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RESUMO 

Os biorreactores de membranas (MBRs, ‘membrane bioreactors’) para o tratamento de 

águas residuais combinam o processo de lamas activadas com um passo de filtração 

para obtenção de um efluente limpo, livre de sólidos. Os MBRs representam uma 

tecnologia em expansão no tratamento de águas residuais sobretudo devido ao reduzido 

espaço que requerem e à elevada qualidade do efluente obtido. No entanto, a 

colmatação das membranas pode reduzir o desempenho do MBR. Por este motivo, no 

presente trabalho, pretendeu-se estudar a monitorização dos MBRs, com o objectivo de 

minimizar o número de parâmetros de monitorização necessários para descrever o 

desempenho do processo e obter uma monitorização em tempo real com recurso mínimo 

a técnicas laboratoriais demoradas. Para este fim, estudou-se a aplicabilidade da 

fluorescência bidimensional em meios biológicos complexos, tais como as lamas 

activadas utilizadas para o tratamento de águas residuais. A fluorescência bidimensional 

mostrou ser uma técnica abrangente, capaz de recolher informação relevante sobre o 

estado do sistema em tempo real. Devido à complexidade da informação contida nos 

espectros de fluorescência, usaram-se técnicas de estatística multivariada, tais como 

análise de componentes principais e projecção de estruturas latentes (PLS, ‘projection to 

latent structures’), para extrair a informação dos espectros e correlacioná-la com 

parâmetros de operação e de desempenho do MBR. O uso de modelos estatísticos 

permitiu a previsão de parâmetros chave para o desempenho do MBR usando somente 

dados de processo impostos ou facilmente adquiríveis em tempo real. Adicionalmente, a 

modelação estatística foi combinada com um modelo mecanístico, numa estrutura 

híbrida, de forma a melhorar a previsão mecanística. Este estudo demonstrou ser 

possível usar modelos PLS para incorporar dados de fluorescência obtidos em tempo 

real, de modo a melhorar a previsão mecanística sem requerer análises laboratoriais 

adicionais.  

 

Palavras-chave: Biorreactor de membranas; tratamento de águas residuais; 

monitorização; fluorescência bidimensional; modelação estatística multivariada; 

modelação híbrida. 
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ABSTRACT 

Membrane bioreactors (MBRs) for wastewater treatment combine an activated sludge 

process with a filtration step for solids separation. The application of MBRs for 

wastewater treatment is growing worldwide due to their compactness and high effluent 

quality. However, membrane fouling, mostly associated to biologic products, can 

reduce MBR performance. Therefore, the present study aimed at improving the 

monitoring of MBRs with simultaneous reduction of the analytical effort. Regarding 

this objective, the applicability of 2D fluorescence spectroscopy as a monitoring tool in 

complex biological media, such as activated sludge systems for wastewater treatment, 

was evaluated. It was shown that 2D fluorescence spectroscopy is a comprehensive 

technique, able to assess the system status at real-time. Due to the complexity of 

fluorescence interactions in 2D fluorescence spectroscopy, multivariate statistical 

analysis, such as principal components analysis (PCA) and projection to latent 

structures (PLS), was used to extract the information contained in fluorescence spectra 

and correlate it with operating and performance parameters of an MBR. Through this 

modelling approach, it was possible to predict key performance parameters of an MBR 

based only on on-line monitoring data (including 2D fluorescence) or in combination 

with few additional imposed operating parameters. Additionally, a modelling hybrid 

approach was developed to improve the predictions of a mechanistic model for MBR 

performance. It was found that PLS models can be used to incorporate on-line data from 

2D fluorescence spectroscopy in order to improve the mechanistic prediction without 

additional laboratory analysis. 

 

 

Keywords: Membrane bioreactor; wastewater treatment; monitoring; 2D fluorescence 

spectroscopy; multivariate statistical modelling; hybrid modelling 
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INTRODUCTION 

 

 

1.1. MOTIVATION AND WORK OBJECTIVES   

Membrane bioreactor (MBR) technology is increasingly applied in wastewater 

treatment plants, mainly due to their small footprint and high effluent quality. The 

increasing demand for MBR technology requires the development of adequate 

monitoring and control techniques, particularly in view of the high operational costs 

associated to membrane fouling. Extracellular polymeric substances (EPS) are 

recognised as major fouling agents in MBRs. EPS and cells may deposit and/or adsorb 

at the membrane surface and within the pores causing fouling. Therefore, monitoring 

and control during MBR operation is essential. Additionally, adequate and easy 

operating monitoring tools for MBR will further increase confidence and acceptance of 

MBR technology, which has been pointed out as one of the main factors influencing the 

MBR market (Judd, 2006). 

 

Monitoring the performance of an MBR usually involves a high number of time-

consuming off-line analytical techniques, due to the complexity of the media. Therefore, 

MBR technology would greatly benefit from real-time monitoring, able to assess the 

system status, without further off-line analytic measurements. Furthermore, the 

development of comprehensive new on-line tools for MBRs monitoring could be used 

to support immediate control actions. 
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2D fluorescence spectroscopy is a sensitive, on-line, non-invasive technique that can 

provide rapid information about the composition of complex biological media. 

Biological wastewater treatment media contain high quantities of natural fluorophores, 

such as amino acids (e.g. tyrosine, tryptophan and phenylalanine), vitamins, coenzymes 

and humic compounds. Furthermore, EPS are composed by large amounts of proteins 

and aromatic organic substances, making fluorescence a powerful technique to monitor 

their production in MBRs. Thus, the excitation-emission matrices (EEMs) obtained by 

scanning a range of spectra wavelengths can cover a wide diversity of natural 

fluorophores, capturing the physiological activity of a biological system as a fingerprint. 

2D fluorescence is thus a promising technique for MBR monitoring, able to capture 

fingerprinting information about the state of the biological system, including EPS. 

However, it generates a large amount of complex data that requires mathematical 

analysis to be fully interpreted. 

 

Multivariate statistical modelling is able to correlate large sets of data, integrating 

different types of monitoring data, for prediction of performance parameters. The 

present work is focused on the improvement of MBRs monitoring, through the 

combination of a comprehensive technique, such as the 2D fluorescence spectroscopy, 

with the appropriated mathematical tools to extract quantitative information from 

EEMs.  

 

The main objectives of this thesis can then be defined as: i) monitoring the performance 

of MBRs for domestic wastewater treatment with minimal off-line analytical effort, ii) 

use of 2D fluorescence spectroscopy to monitor MBRs under a large range of operating 

conditions and iii) modelling the performance of a MBR operated at pilot scale for 

domestic wastewater treatment. 

 

1.2. RESEARCH STRATEGY AND THESIS OUTLINE 

The strategy followed in this PhD project involved an initial analysis of the possible 

interdependencies between common monitoring parameters assessed for a MBR for 

domestic wastewater treatment in an attempt to reduce redundant analytical parameters. 

Additionally, 2D fluorescence spectroscopy was investigated regarding the information 

captured from the main fluorophores, the interferences present in biological wastewater 

treatment systems and the feasibility of extraction of quantitative information from 
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fluorescence spectra. Multivariate statistical tools, based on principal component 

analysis and projection to latent structures, were selected to model, alone or in 

combination with a simple mechanistic model, key performance parameters of a MBR 

for domestic wastewater treatment. The final purpose of this work is the development of 

an effortless and real-time monitoring technique for biological wastewater treatment 

systems, such as MBRs. The approach used is supported in the belief that 2D 

fluorescence spectroscopy can be used as a fingerprinting monitoring technique of a 

MBR and that multivariate statistical analysis are able to extract the quantitative 

information enclosed in the fluorescence spectra, improving the overall acceptance of 

MBRs in the wastewater treatment market. 

 

This Thesis is divided into seven chapters following the work performed during this 

PhD project. Each chapter includes an introduction with a short review of the specific 

state of the art related with each chapter subject, describes the materials and methods 

used in that chapter, and discusses the results and main conclusions obtained. The 

methodology used in each individual chapter is detailed in the context of the respective 

subject. The work performed during this PhD has resulted in four scientific articles, 

presented in Chapters 3, 4, 5 and 6, respectively. The articles related to Chapters 3 and 4 

are already published in peer reviewed international journal, and the articles related to 

Chapters 5 and 6 were recently submitted for publication.  

 

Chapter 1 describes the motivation for this PhD project and defines the work objectives. 

Additionally, Chapter 2 presents the actual state of the art as a context for the work 

developed in this thesis. 

 

In Chapter 3, 2D fluorescence data obtained from the influent and the permeate of a 

MBR operated for the treatment of domestic wastewater were successfully modelled 

using projection to latent structures (PLS) to monitor variations in the influent and 

effluent total chemical oxygen demand (COD), an indicator of biological performance 

of the system. However, this approach was not valid for other performance parameters 

of the MBR system (such as influent and effluent ammonia and phosphorus), which is 

usually characterised through a high number of analytical and operating parameters. 

Principal component analysis (PCA) was thus used to find possible correlations between 

these parameters, in an attempt to reduce the analytical effort required for full MBR 
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characterisation and to reduce the time frame necessary to obtain monitoring results. 

This approach alone could not provide robust enough correlations to enable the 

elimination of parameters for process description. Additionally, it was hypothesised that 

the information captured by 2D fluorescence spectroscopy could replace some of the 

analytical and operating parameters, since this technique was able to successfully 

describe influent and effluent total COD. It was then proposed that a combined 

modelling of 2D fluorescence data and selected performance/operating parameters 

should be further explored for efficient MBR monitoring aiming at real-time process 

control. 

 

In Chapter 4, 2D fluorescence spectroscopy was further investigated in view of the 

numerous contributions of different compounds in fluorescence spectra. In this chapter 

it is investigated the occurrence of interference effects (such as quenching and inner 

filter effects) due to the presence of multiple species in complex biological media, such 

as natural water matrices, wastewaters and activated sludge. It is shown that the 

response of fluorescence to a large range of interferences does not represent a problem 

but a source of information if adequate mathematical tools are used. A statistical 

multivariate analysis based in a combination of principal component analysis (through 

the use of PARAFAC function) and PLS modelling is proposed to extract relevant 

information from 2D fluorescence data. This chapter demonstrates the potential of using 

2D fluorescence spectroscopy as a status fingerprint, and how statistical multivariate 

data analysis can be used to correlate EEMs with selected performance parameters for 

monitoring of biological systems. 

 

Chapter 5 presents the development of the multivariate statistically-based models, 

previously defined, for monitoring several key performance parameters of a MBR for 

wastewater treatment of domestic effluent. PLS modelling was used to integrate 2D 

fluorescence data, after compression through a PARAFAC function, with operation and 

analytical data to describe a MBR fouling indicator (transmembrane pressure, TMP), 

five descriptors of the effluent quality (total COD, soluble COD, nitrite and nitrate 

concentration, total nitrogen and total phosphorus in the permeate) and the biomass 

concentration in the bioreactor (MLSS). This study investigated the correlations 

between inputs and outputs, either through multilinear PLS or by including quadratic 

and interaction terms of the compressed 2D fluorescence matrices in PLS modelling. 
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This work demonstrates the applicability of 2D fluorescence and statistically-based 

models to simultaneously monitor multiple key MBR performance parameters with 

minimal analytical effort.  

 

In Chapter 6, the MBR performance was modelled using a hybrid approach based on the 

activated sludge model number 3 (ASM3) combined with PLS to predict the residuals 

of the ASM.  The objective of the modelling strategy used in this chapter was to 

improve the prediction ability of a plain and easy to implement ASM, with minimal 

additional monitoring effort. Hybrid models were developed to predict three MBR 

performance parameters: MLSS, COD in the permeate and nitrite and nitrate 

concentration in the permeate. PLS modelling of ASM residuals was performed using 

three different input strategies: 1) analytic and operating data; 2) operating data plus 2D 

fluorescence spectroscopy; 3) all the data. With the first input strategy, PLS modelling 

was used to investigate what type of information is missing in the ASM modelling. In 

the second input strategy, the incorporation of updated data from 2D fluorescence 

spectroscopy aimed the improvement of the ASM prediction at real-time. Finally, the 

third input strategy incorporated all the collected data in an attempt to find the best 

prediction possible of the outputs. In this study demonstrates that 2D fluorescence 

spectroscopy is a comprehensive monitoring tool, able to capture on-line the required 

information to complement, through hybrid modelling, the mechanistic information 

described by an ASM. 

 

In Chapter 7, the main results obtained in this PhD project are summarised, and the 

main conclusions are discussed. Some possible challenges and suggestions for future 

research are also presented. 

 

 



 

6 

 



 

7 

 

 

Chapter 
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STATE OF THE ART 

 

 

2.1. BIOLOGICAL WASTEWATER TREATMENT 

Domestic wastewaters are mainly composed by organic compounds that were not 

completely metabolised in the human body. These compounds, that are rich in nutrients 

(C, N and P), if discharged in large quantities directly in natural water bodies, are 

responsible for water pollution and for the well-known phenomena of eutrophication, 

destroying the natural ecosystems. Additionally, domestic wastewaters are high in 

pathogenic microorganisms that can contaminate a body of water and spread infectious 

diseases throughout the population. Therefore, sewage treatment requires reduction of 

both organic and inorganic nutrients concentrations of the wastewaters and disinfection 

prior to discharge. 

 

The development of the activated sludge processes for wastewater treatment resulted 

from the common observation that wastewaters would clarify if left long enough in 

contact with air. In 1914, Arden and Lockett discovered that the sludge sediment from 

previous wastewater treatments could be used to supplement fresh untreated wastewater 

and thus, accelerate the treatment process (Seviour and Nielsen, 2010). The so called 

activated sludge is composed by a consortium of microorganisms (mainly bacteria and 

protozoa) that together can degrade and consume the organic and inorganic nutrient 

present in the domestic wastewaters. 

 

Originally, wastewater treatment systems were conceived to remove only carbonaceous 

material and ammonia, which is toxic to fish, from domestic wastewaters. This 

treatment aimed at producing a treated effluent with low levels of organic carbon and 
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suspended solids, safe for discharge into natural water bodies. Following narrower 

requirements for nitrogen compounds content in treated wastewaters, treatment plants 

were progressively modified. Indeed, in the last 3 decades, a significant effort has been 

done to update plants to remove both nitrogen and phosphorus in addition to organic 

carbon (Seviour and Nielsen, 2010). Biological processes are preferred for their 

versatility, low cost and environmental sustainability. 

 

2.1.1 Biological removal of nutrients 

In the presence of oxygen, the carbon present in the organic matter is consumed by 

heterotrophic microorganisms, for biomass growth, with the release of carbon dioxide: 

 

C+O2  biomass + CO2 

 

Additionally, ammonia is oxidised by autotrophic microorganisms to nitrite and nitrate 

in the presence of oxygen, in a process called nitrification: 

 

NH4
+
 + O2  NO2

- 

NO2
-
 + O2  NO3

- 

 

Conversely, in the absence of oxygen other heterotrophic microorganisms (so called 

denitrifying bacteria) can reduce the NO3
-
 sequentially to nitrogen gas (N2), which is 

harmless and disperses into the atmosphere: 

 

NO3
-
  NO2

-
  NO  N2O  N2 

 

In wastewater treatment plants, excess phosphorus is commonly removed by chemical 

precipitation or biologically, in a process called enhanced biological phosphorus 

removal (EBPR), by polyphosphate accumulating organisms.  

 

2.1.2. Conventional activated sludge systems 

Nowadays, the activated sludge process most used and well studied for domestic 

wastewater treatment is the conventional activated sludge (CAS) system. The basic 

design for conventional plants consists in an aerobic reactor with either submerged 
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diffusers or mechanical surface agitators to provide mixing and aeration, followed by a 

clarifier where the mixed liquor is separated into sludge and liquid supernatant, by 

gravity. The settled sludge is then partially recycled to inoculate the incoming raw 

wastewater. This process allows heterotrophic microorganisms to be in contact with 

nutrients in the bulk liquid which, in the presence of oxygen, rapidly oxidise the organic 

compounds, with release of carbon dioxide. Simultaneously, other important 

communities of microorganisms present in conventional activated sludge systems are 

able to oxidise compounds like ammonia to nitrite and nitrate (autotrophic 

microorganisms). 

 

Biological denitrification is achieved in activated sludge systems with the incorporation 

of an anoxic zone, either preceding or following the aerobic zone. These processes for 

nitrogen removal are respectively called pre-denitrification and post-denitrification.  

 

Additionally, despite activated sludge processes being able by themselves to eliminate 

part of the pathogenic microorganisms, disinfection of wastewater in CAS systems is 

usually performed after biological treatment by chlorine, ultraviolet light or ozone 

treatment of the clarified effluent. 

 

2.2. MEMBRANE BIOREACTORS  

In some wastewater treatment plants the clarifier used in the conventional systems is 

replaced by membranes, which are very effective to separate the mixed liquor into 

solids (sludge) and liquid phase. In these processes, called membrane bioreactors 

(MBRs), the final effluent has lower suspended solids (and then lower turbidity) than 

the effluent from clarifiers, and also higher effluent quality, since the membranes enable 

the retention of pathogens.  

 

With the use of membranes to retain suspended solids, MBRs do not depend on the 

settle ability of the biomass, and thus, all solids have the same residence time. MBRs 

can thus be operated at high biomass concentration, with hydraulic retention time 

(HRT) defined independently of the solids retention time (SRT) (Judd, 2006). 

Therefore, unlike the conventional activated sludge systems, MBRs can easily retain 

slow growing organisms with poor settling ability, like nitrifying bacteria (Seviour and 

Nielsen, 2010). 
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The high quality of the effluent permeate from a MBR permits the direct application of 

this technology when advanced treatments are required, such as for bathing water, 

sensitive discharge bodies or water reuse. Additionally, due to the elimination of settlers 

and due to the possibility of operation with higher biomass concentration in low 

operating volumes, MBRs have smaller footprints than CAS, which can be valuable 

when a compact system is needed, such as in areas with high population density. 

 

Despite its advantages, the application of MBR technology for wastewater treatment is 

still conditioned by the inevitable membrane fouling, by the operational high costs 

(mostly associated to the aeration of the membrane) (Judd, 2008) and by the complex 

control systems required (Lesjean et al., 2011). 

 

2.2.1. Configurations of membrane bioreactors 

Membrane bioreactors can be generally classified as side-stream or submerged based, 

according with the membranes placement and operation (Figure 2.1). In side-stream 

MBRs, membranes are placed externally to the biological reactor and the mixed liquor 

is pumped into the membrane module. In the membrane module, a permeate stream is 

generated and the concentrated sludge recycled to the bioreactor. In this configuration, 

membrane filtration occurs as a typical cross-flow process. 

 

 

Figure 2.1. Side-stream and submerged MBR configurations. 

 

In submerged MBRs, the membrane module is directly immersed in the mixed liquor, in 

the aerated bioreactor. This operating strategy was first introduced by Yamamoto et al. 
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(1989) with the objective of reducing energy consumption associated with the 

recirculation pump in the side-stream configuration. The submerged MBR configuration 

corresponds to a dead-end filtration, with shear stress generated by the air bubble flow.  

 

Besides the membrane module placement, the biological compartment of an MBR, like 

in CAS systems, can be operated in a wide range of bioreactor configurations to achieve 

specific nutrient removal (e.g. pre- or post-denitrification). 

 

2.2.2. Filtration process in MBRs 

Membrane processes depend on both the driving force applied and the membrane 

characteristics, such as structure and material (Mulder, 1997). Pressure-driven 

membrane filtration processes are commonly used in water and wastewater treatment 

systems, and can be divided in four general types, according to the molecular weight 

cut-off and transmembrane pressure applied: reverse osmosis, nanofiltration, 

ultrafiltration and microfiltration (Figure 2.2). 

 

 
 
Figure 2.2. Classification of membranes and characteristic retained compounds, based on 

membrane separation ranges and particle sizes, respectively (adapted from Judd (2006)). 
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In MBRs for wastewater treatment, either tight microfiltration or loose ultrafiltration 

membranes are typically used. Since the filtration process determines which 

components of the mixed liquor can be permeated, the effluent quality of an MBR is 

also dependent on the membrane used. In fact, polysaccharides, proteins and peptides, 

colloids, bacteria or virus will cross or be retained by the membrane in accordance with 

their sizes and the membrane properties (Figure 2.2). 

 

Other membrane characteristics essential for the performance of an MBR are the 

membrane material and the module configuration. Concerning material, membranes 

applied in MBRs for domestic wastewater treatment are usually polymeric, with a 

negative surface charge and hydrophilic. Concerning configuration, the filtration 

module in MBRs is normally composed by either flat-sheet membranes or hollow-fibre 

membranes. While submerged MBRs hollow-fibre systems are operated with an 

outside-inside flux direction, in side-stream configurations hollow-fibre membranes can 

be operated with either an outside-inside or an inside-outside flux direction. However, 

in the later flux operation mode, the hollow-fibre membranes used have higher internal 

diameter (also called tubular membranes) (Judd, 2006). 

 

Fouling 

Despite the evident advantages of MBRs for wastewater treatment, the main problem 

associated with their use is membrane fouling. Membrane fouling refers to the 

progressive deposition and/or adsorption of material on the membrane surface, or within 

the membrane structure, resulting in a gradual loss of membrane permeability.  

 

Mixed liquors are a complex mixture of variable amounts of particulate, colloidal and 

dissolved fractions, all of which containing potential foulants. In MBRs, fouling 

development is mainly due to the adsorption of colloidal material at the membrane 

surface and deposition of flocs (composed by cells and organic and inorganic 

compounds). This type of fouling is usually the predominant fouling component in 

MBRs, though it is easily removed by physical means (Meng et al., 2009).  

 

Intrapore adsorption occurs in MBRs mainly due to the adsorption of organic matter 

present in the mixed liquor, either colloidal or soluble. These organic compounds result 

both from incoming wastewaters (such as humic compounds) and from microbial 
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activity (such as polysaccharides and proteins). Despite their diverse origin, these 

compounds are generally termed extracellular polymeric substances (EPS) and are 

classified into bound EPS, when they are attached to biomass to form flocs, and soluble 

EPS (also called soluble microbial products, SMP), when freely suspended.  

 

Additionally, at the surface of membranes there is also the adhesion and growth of 

microorganisms, forming a biofilm, and the precipitation of some salts. The attached 

deposit of cells, cell debris and suspended materials, are not truly discernible and all 

together form a more or less bound fouling layer at the membrane surface. Indeed, all 

mechanisms of fouling can occur simultaneously forming complex forms of fouling 

with increase difficulty of cleaning (Poele and van der Graaf, 2005). 

 

According to Meng et al. (2009), membrane fouling can be classified in three types of 

fouling, based on their persistence to cleaning: removable fouling, irremovable fouling 

and irreversible fouling. Removable fouling is the fouling easily removed by physical 

cleaning (e.g. backwash), whereas the elimination of irremovable fouling is only 

achieved with chemical cleaning. Removable fouling is caused by loosely attached 

compounds and, in general, corresponds to the cake layer. Irremovable fouling is 

attributed to pore adsorption and strongly attached foulants. Irreversible fouling is a 

permanent fouling that cannot be removed by cleaning, and will eventually lead to the 

need of replacing the membranes.  

 

Fouling control is, then, essential in MBRs to maintain high membrane permeability 

and minimise operational costs associated with the system performance and membranes 

lifespan. To minimise fouling, the major aspects to take into account during the 

operation of an MBR are: i) the influent characteristics; ii) the microbial population and 

activity; iii) the permeate flux imposed; iv) the shear at the membranes surface; v) and 

membrane cleaning strategies. Concerning the influent wastewater, the concentration, 

composition, size and degradability of the organic matter can have a direct impact in 

MBR fouling. In fact, fouling due to natural organic matter, mainly humic compounds, 

is a well-known problem in the filtration of natural waters, due to their ability to adsorb 

on membranes (Jones and O'Melia, 2000; Lee et al., 2004; Yuan and Zydney, 1999). 

Furthermore, the degradation of organic matter by microbial population can result in 
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several intermediate compounds and microbial sub-products which can act as fouling 

agents as well.  

 

Regarding the MBR operating conditions, the imposed permeate flux is probably the 

most important parameter in fouling control. Thus, membrane bioreactors are usually 

operated at a low permeate flux (below critical flux) to avoid the deposition of particles 

on the membrane surface and keep permeability for a long operating time. The concept 

of critical flux was introduced by Field et al. (1995) and it is defined as the flux where 

the forces linked to filtration pressure and shearing forces are balanced. In MBR 

systems, the critical flux value depends on the characteristics of the membrane (e.g. 

pore diameter and material), characteristics of the mixed liquor, shear forces at the 

membrane surface and temperature. The application of shear forces at the surface of the 

membranes is a current operational strategy to hamper fouling formation, either through 

the use of coarse air bubbles in submerged configurations or through increased 

crossflow velocity (with or without addition of air) in side-stream configurations (Judd, 

2006). 

 

Additionally to the strategies used to prevent fouling, membrane cleaning, either 

physical or chemical, is an essential step in MBRs operation and membrane 

maintenance. The physical cleaning strategies predominantly used in MBRs are 

relaxation and backwash. In relaxation, permeation is interrupted for short periods of 

time, while continuing to scour the membranes with coarse air bubbles, to allow the 

detachment of the fouling agents from membranes surface. In backwash, the permeate 

flux is periodically inverted for few seconds to compel the release of loosely bound 

compounds from membrane pores. While backwash might be more effective, its 

application is limited to robust membranes (usually hollow-fibres) (Judd, 2006). These 

two techniques may be used in combination, and backwash may be enhanced by adding 

air to the backwash flow, increasing the shear (Judd, 2006). Chemical cleaning is the 

strongest form of cleaning and it is used when fouling cannot be removed physically. 

Chemical cleaning is generally carried out with mineral or organic acids, sodium 

hydroxide or, more usual in MBRs, sodium hypochlorite, and can be performed either 

in situ or ex situ (Judd, 2006). However, chemical cleaning has a negative impact on the 

lifespan of the membrane due to the effect of free radicals. 
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2.3. MONITORING  

2.3.1. Conventional monitoring of wastewater treatment plants 

In wastewater treatment systems, monitoring of the biological process and of key 

effluent parameters is essential to achieve conformity with quality and safety 

requirements. Usual characterisation of influent wastewater in activated sludge systems 

includes the assessment of suspended solids, 5-day biochemical oxygen demand 

(BOD5), total organic carbon (TOC), chemical oxygen demand (COD), nitrogen (as 

ammonia, total nitrogen, organic nitrogen, nitrate and nitrite), phosphorus (as 

orthophosphate and total phosphorus), sulphate, alkalinity, greases and coliform 

bacteria (as an indicator of pathogenic organisms). BOD5, COD and TOC are used to 

assess the global organic content of wastewaters, regardless of their composition. 

However, while BOD5 is a standard method used to evaluate the oxygen necessary for 

the oxidation of the biodegradable organic compounds (during 5 days), COD assesses 

all organic compounds able to be oxidised, without distinction on biodegradability. 

Nevertheless, fractionation of wastewater COD into readily biodegradable, slowly 

biodegradable or inert is also actually performed through respirometric batch tests for 

biodegradability assessment (Sperandio and Etienne, 2000). In addition, TOC is an easy 

and rapid measurement of the organic carbon, but does not give information on their 

oxidation state. Although these analytic techniques are used in wastewater treatment 

plants for a better characterisation of organic matter, frequent determinations for 

monitoring purpose are usually performed only by COD or TOC, which are quicker and 

easier techniques then BOD5.  

 

Additionally to wastewater characterisation, the following water quality parameters of 

the effluent are typically monitored: suspended solids, coliform bacteria, nutrients 

(mainly organic compounds, nitrogen, phosphorus and sulphate), pH, and toxic 

compounds. However, in the last decades, due to higher environmental requirements 

and increased knowledge on the chemistry and microbiology of wastewater treatment, 

additional and more specific monitoring analysis of wastewater treatment systems are 

being claimed (Metcalf and Eddy, 1991). 

 

2.3.2. Monitoring membrane bioreactors 

Membrane bioreactors for wastewater treatment, like conventional activated sludge 

systems, require monitoring of both influent and effluent streams, as well as frequent 
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assessment of the biological activity. Moreover, tight monitoring of MBR systems is 

critical, not only because of the quality of the final treated effluent, but also due to the 

fouling potential of the complex biological media. Indeed, several techniques are being 

developed and tested for the evaluation and characterisation of fouling and fouling 

agents in MBRs. 

 

Total COD measurements of wastewater and permeate are easy to perform but not 

sufficient to characterise the organic compounds fed to the MBR, that remain in the 

permeate after treatment, in terms of biodegradability and composition. Additionally, in 

MBRs, large colloidal organic compounds are retained by the membrane and can either 

be returned to the bioreactor bulk liquor or deposited on the membrane causing fouling.  

 

Several studies pointed natural organic matter from influent wastewater as a major 

fouling agent (Jones and O'Melia, 2000; Yuan and Zydney, 1999). Furthermore, the 

biological performance of an MBR also depends on the characteristics of the influent 

organic carbon, which includes soluble simple organic molecules with low molecular 

weight, and colloidal organic compounds present in the soluble COD. A physical-

chemical method to distinguish between solutes and colloids in the soluble fraction of 

COD (usually obtained by filtration) was proposed by Mamais et al. (1993). This 

method uses zinc sulphate to flocculate colloidal material in a wastewater sample before 

filtration, and thus obtain a soluble COD without the colloids. 

 

Transmembrane pressure (TMP), defined as the difference of pressure between the feed 

and the permeate sides of the membrane, and permeate flux are typically monitored on-

line at full-scale plant. MBRs for wastewater treatment are usually operated at constant 

permeate flow (Drews, 2010), and thus, TMP is used as a fouling indicator parameter. 

However, TMP increase does not distinguish the dominant fouling mechanism or the 

upcoming of extreme fouling (observed as a TMP jump). Therefore, various methods 

and techniques to evaluate and monitor fouling with more detail were developed.  

 

To assess the physical properties of fouling and potential foulants, some authors 

developed filtration tests to determine the filtration resistances of fouling (Chu and Li, 

2005) and of suspended solids, solutes and colloids in mixed liquor (Bouhabila et al., 

2001). Additionally, the use of filtration devices has also been used to characterise the 
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fouling potential of mixed liquor as reversible or irreversible (Huyskens et al., 2008). 

Capillary suction time (CST) and sludge volume index (SVI) were also used in the past 

as sludge characteristics that would be directly linked to its fouling potential, although 

they have been shown to be poor measures of filterability (Drews, 2010). 

 

Still concerning physical characteristics of fouling, the exact location of fouling 

formation on the membrane module (knowing exactly which membrane or location of 

the module affected) and at the membrane level (at the surface or inside the pores) was 

also previously studied through model-based strategies. These strategies, aiming at the 

recognition of the underlying mechanism of fouling, included either the estimation of 

permeate flow distribution in membrane modules (Wicaksana et al., 2009) or the use of 

filtration models to describe filtration and fouling mechanisms (Drews et al., 2009).  

 

Concerning chemical analysis of fouling components, several techniques have been 

reported for characterisation of both the foulants, effectively deposited on the 

membrane, and potential fouling agents found in the bulk liquor. EPS, mainly composed 

of proteins, polysaccharides, lipids, nucleic acids and humic compounds, were 

previously found to play a major role in membrane fouling of MBRs (Judd, 2008; Le-

Clech et al., 2006; Meng et al., 2009). Besides being the most abundant EPS 

components, proteins and polysaccharides are usually assumed to be the EPS major 

contributors for fouling (Drews, 2010), therefore, the evaluation of EPS concentration 

relies almost exclusively on their measurement. Photometric methods are generally used 

to assess proteins (Lowry et al., 1951) and polysaccharides (Dubois et al., 1956). Due to 

the large importance of proteins and polysaccharides in MBRs, Mehrez et al. (2007) 

developed an automated version of Lowry and Dubois assays using an at-line sensor to 

monitor soluble EPS. Despite the large use of photometric methods for determination of 

both proteins and polysaccharides, their application has several interferences, thus, 

correction methods are also often applied. For protein assessment, (Frolund et al., 1995) 

proposed a modified Lowry method to subtract humic compounds contribution, while 

the interferences in the Dubois method for polysaccharide determination can be 

corrected with the concentrations of nitrate and nitrite in the sample (Drews et al., 

2007).  
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Soluble EPS (also referred as SMP) is usually obtained by centrifugation (e.g. 

Sperandio and Espinosa, 2008) or filtration (e.g. Rosenberger et al., 2006) of the mixed 

liquor, whereas several methods for the extraction of bound EPS have been applied, 

without consensus. The most common methods for bound EPS extraction found in 

literature include the cation exchange resin method (Frolund et al., 1996; Rosenberger et 

al., 2006) and heating methods (Ng and Ng, 2010; Wang et al., 2009a), however, 

several other methods have been used, such as formaldehyde and NaOH methods or 

combinations of them (Liu and Fang, 2002).   

 

Despite the general recognition of EPS as major fouling agents, there is still no 

consensus about the role played by each of the EPS fractions and by their components 

(proteins and polysaccharides) on fouling and on factors governing their occurrence 

(Drews, 2010). However, great variety of samples preparation, analytical methods, 

system configurations and operating conditions are simultaneously used, which could be 

partially responsible for the discrepancy in results (Drews, 2010). 

 

In addition, for determination of EPS concentrations (either soluble or bound) some 

authors measured the organic carbon (e.g. Dong and Jiang, 2009; Lyko et al., 2008) or 

the COD (e.g. Jiang et al., 2008) of EPS samples, in substitution or in combination with 

the proteins and polysaccharides assessment. EPS quantification through the 

measurements of organic carbon and COD do not distinguish the EPS composition, 

however they were found to be an alternative to more complex and costly measurements 

of EPS components to characterise sludge (Lyko et al., 2008).  

 

Chromatographic methods have been applied to characterise the fouling agents after a 

separation step. Size exclusion chromatography (SEC) has been used for 

characterisation of EPS constituents based on molecular size, with different detectors, 

such as UV (e.g. Her et al., 2003; Lyko et al., 2008; Rosenberger et al., 2006), organic 

carbon (e.g. Her et al., 2003; Rosenberger et al., 2006) or fluorescence (Her et al., 

2003). In general, the chromatograms obtained were able to separate peaks with 

distinguished molecular weight, corresponding to polysaccharides, some proteins, 

colloids and humic compounds. 
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In addition, characterisation of membrane organic fouling has also been performed by 

Fourier transform infrared (FTIR) spectroscopy (e.g. Kimura et al., 2009; Meng et al., 

2007; Wang et al., 2009b) and by 
13

C-nuclear magnetic resonance (NMR) spectroscopy 

(e.g. Kimura et al., 2009; Meng et al., 2011), to identify functional groups of organic 

molecules generally accepted as fouling agents. Further evaluation of the proteins 

present in EPS, by their identification, has recently been adapted through gel 

electrophoresis (Kuhn et al., 2011; Silva et al., 2011). 

 

Microscopic structural properties of membrane fouling have been also assessed using 

confocal laser scanning microscopy (CLSM) (Bjorkoy and Fiksdal, 2009; Chu and Li, 

2005; Meng et al., 2007; Ng and Ng, 2010) and scanning electron microscopy (SEM) 

(Chu and Li, 2005; Meng et al., 2007). These techniques assessed the presence of 

bacterial cells attached to membrane and their interaction with biopolymer foulants. In 

this context, Le-Clech et al (2007) compared environmental scanning electron 

microscopy (ESEM), confocal laser scanning microscopy and direct observation of 

fouling. These authors concluded that, despite CLSM ability to differentiate between the 

different types of foulants, the direct observation of fouling (using a specially designed 

microscope-based installation (Li et al., 1998) appeared to be the most promising 

technique for direct and in situ observation of MBR fouling. However, its use is limited 

to optically accessible systems such as dilute suspensions or single fibres (Drews, 

2010). 

 

In addition to the monitoring techniques targeting specific compounds in the MBR, 

fingerprinting methods, able to assess the system status, have also been studied for 

characterisation of such complex biological systems, e.g. Fourier transform near 

infrared (FT-NIR) (Reed et al., 2011) and 2D fluorescence spectroscopy (Wolf et al., 

2007; Wolf et al., 2001). Indeed, spectroscopic methods can be used as fingerprint 

techniques providing large sets of data (the spectra) from which meaningful information 

could be extracted (Pons et al., 2004). 

 

Two-dimensional fluorescence spectroscopy 

The use of fluorescence spectroscopy in such complex systems explores the natural 

fluorescence of several compounds typically present on biological media. When 

different compounds, with different excitation/emission wavelengths, are present, it is 
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possible to assess all compounds by simultaneously scanning a range of excitation and 

emission wavelengths.  Natural fluorophores include proteins, and a large range of other 

organic compounds, as well as some vitamins, co-factors and NADH. Additionally, 

fluorescence spectra are sensitive to several other factors, such as the presence of salts, 

temperature and medium turbidity (Lakowicz, 1983).  

 

Further analysis of the current state of the art on the application of fluorescence 

spectroscopy to biological systems is explored in Chapter 4, as well as the advantages 

and disadvantages of the application of 2D fluorescence spectroscopy as a monitoring 

tool in wastewater treatment systems. 

 

In view of the complexity of MBR systems for wastewater treatment and the wide range 

of monitoring techniques available, the development of mathematic methods to 

integrate and correlate different (and disperse) types of information would greatly 

benefit the comprehension and monitoring of these systems. Therefore, some modelling 

strategies have been used, such as mechanistic modelling of MBR performance. 

However, non-mechanistic modelling tools have greater potential to integrate, analyse 

and correlate different types of information.  

 

2.4. MODELLING MBRS 

2.4.1. Activated sludge model 

The activated sludge system has been widely studied in the past, resulting in deep 

understanding of the kinetics of the main heterotrophic and autotrophic biological 

processes, which set the basis for the development of mechanistic models. These kinetic 

models have been synthesised in four activated sludge models (ASM) by the 

International Water Association (IWA) Task Group on Mathematical Modelling for 

Design and Operation of Biological Wastewater Treatment (Henze et al., 2000).  

 

The first activated sludge model published, ASM1, was developed to model biological 

treatment for organic carbon removal, nitrification and denitrification. This model is 

able to predict oxygen demand and sludge production in activated sludge systems.  
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ASM2 was developed later to incorporate phosphorus removal from wastewater, and 

ASM2d to account for the ability of phosphorus-accumulating organisms to use cell 

internal substrates for denitrification.  

 

ASM3 does not include phosphorus removal, but it was established to addresses 

problems found in the first model ASM1, such as the inclusion of internal cell storage 

compounds in heterotrophs (shifting the focus from hydrolysis to the storage of organic 

substrates) and the replacement of the death-regeneration concept by the growth-

endogenous respiration model. 

 

Due to the similarity between the biological processes occurring in conventional 

activated sludge systems and in MBRs, ASM can be used for modelling the biological 

removal of nutrients in a MBR. Nevertheless, some differences between the two 

systems have to be taken into account when applying an ASM to model the biological 

performance of an MBR, for instance, the elimination of sludge in the effluent with the 

replacement of the clarifier by a membrane, and the additional supply of oxygen for 

aeration of membrane modules. 

 

According with Fenu et al. (2010), the application of the ASMs to the MBR processes 

can be divided into unmodified and modified ASMs in view of the adaptations made to 

the ASM to fit an MBR. The expression unmodified or plain encloses ASM applications 

with modelling objectives similar to those originally stipulated for the CAS systems 

(process design, effluent characterisation, oxygen demand and sludge production) and 

without modification of the ASM model structure. However, it includes slight 

modifications to the biokinetic processes. Modified ASMs extend the original ASM in 

terms of biokinetic process models, namely the so-called SMP and EPS models. While 

unmodified ASMs are usually more readily applicable in practice, modified ASMs are 

developed in academic work to improve process understanding. 

 

Despite the applicability of plain ASM to model the MBR biological performance, such 

models do not link the biological process of an MBR with membrane fouling. 

Therefore, modifications to the ASM have been developed to include models for EPS 

(both bound and soluble) and SMP (defined here as the soluble microbial products 

resulting from cell lysis) description in MBRs (Jiang et al., 2008; Laspidou and 
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Rittmann, 2002). Despite the good predictions obtained in these studies, they are 

complex, involve the calibration of several model parameters and require frequent input 

data about the feed characteristics. 

 

2.4.2. Statistically-based tools 

Principal component analysis 

The objective of principal component analysis (PCA) is to substitute the representation 

of objects in its initial representation into the new Principal Component coordinate 

space. PCA results in a new co-ordinate system with reduced noise and lower 

dimensionality through decomposition of a data matrix, X, into a “structure” part plus a 

“noise” part. 

 

X=CP
T
+E 

 

C are the scores matrix, and have as many rows as the original data matrix, P
T
 are the 

loadings matrix, and have as many columns as the original data matrix. The scores 

matrix can be seen as the representation of the initial data in the new and reduced co-

ordinate system, composed by the new components (Principal Components, PC), while 

the loadings describe the ‘distance’ between the initial co-ordinate system and the PC 

system. The E matrix contains unexplained data variance, such as co-linearity and noise.   

 

Principal component analysis can be used either as a qualitative data analysis tool, 

through the analysis of loadings plots, or for compression of the number of parameters 

needed to describe spectroscopic data. PARAFAC (parallel factor analysis) function can 

be used as a principal component analysis computational tool, to find the scores 

matrices for 2D fluorescence spectra, which include the most relevant information from 

original data, but with reduced dimension (Andersson and Bro, 2000; Bro, 1997).  

 

Projection to latent structures regression 

Projection to latent structures (PLS) is a non-parametric model that reveals linear 

relations between the data, by maximising the covariance between the input matrix X, 

and the output Y. This technique combines features from the principal component 

analysis and multiple linear regression, and aims at the prediction of dependent 

variables by decomposing iteratively both the X and Y matrices into reduced orthogonal 
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factors, termed latent variables. Therefore, PLS regression differs from traditional 

multivariate regression due to elimination of redundancy in the input and output data. 

PLS is considered a simple but powerful predictive modelling technique due to its 

ability to handle co-linearity between variables, data noise and missing data (Wold et 

al., 2001).  

 

In PLS regression methodology, the input matrix, X, is decomposed as the product of 

the matrix of scores (T) and the matrix of loadings (P
T
) that minimises the residuals E.  

 

X = TP
T
 + E 

 

Similarly, the product of T and C
T
 estimates the output Y, where C is the Y-weights 

matrix and F is the error term. 

 

Y = TC
T
 + F 

 

Therefore, the scores matrix, T, enclosing the new variables obtained from the latent 

variables, is estimated in a way that is simultaneously able to describe the original X 

and is a good predictor of Y. The weights matrix W (defined by a linear correlation of T 

with the original data, T=XW) quantifies the relation between X and Y, therefore, it can 

be used to identify the important variables to the output. Finally, a multivariate 

regression model is obtained as follows: 

 

Y = XWC
T
 + F = XB + F 

 

where the regression coefficients are given by: 

 

B = WC
T 

 

Since the linear PLS model finds a new data arrangement, it is possible to determine 

and interpret the contribution of the input parameters to the model. A large numerical 

value of B is highly correlated with Y and similar profiles of B-values provide the same 

contribution to the prediction (Wold et al., 2001). 
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Using PLS modelling is possible to correlate the information contained in 2D 

fluorescence spectra with a quantitative output parameter, and thus extract qualitative 

information from fluorescence spectra. 
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REAL-TIME MONITORING OF MEMBRANE BIOREACTORS 

WITH 2D FLUORESCENCE DATA AND  

STATISTICALLY-BASED MODELS 

 

 

SUMMARY 

The application of membrane bioreactors (MBR) for wastewater treatment is growing 

worldwide due to their compactness and high effluent quality. However, membrane 

fouling, mostly associated to biological products, can reduce MBR performance. 

Therefore, it is important to monitor MBRs as close to real-time as possible to 

accelerate control actions for maximal biological and membrane performance. 2D 

fluorescence spectroscopy is a promising on-line tool to simultaneously monitor 

wastewater treatment efficiency and the formation of potential biological fouling agents. 

In this study, 2D fluorescence data obtained from the wastewater and the permeate of a 

MBR was successfully modelled using projection to latent structures (PLS) to monitor 

variations in the influent and effluent total chemical oxygen demand (COD). Analysis 

of the results also indicated that humic acids and proteins highly contributed to the 

measured COD in both streams. Nevertheless, this approach was not valid for other 

performance parameters of the MBR system (such as influent and effluent ammonia and 

phosphorus), which is usually characterised through a high number of analytical and 

operating parameters. Principal component analysis (PCA) was thus used to find 

possible correlations between these parameters, in an attempt to reduce the analytical 

effort required for full MBR characterisation and to reduce the time frame necessary to 

obtain monitoring results. The 3 first principal components, capturing 57% of the 

variance, indicated and confirmed expected relationships between the assessed 

parameters. However, this approach alone could not provide robust enough correlations 

to enable the elimination of parameters for process description (PCA loadings ≤0.5). 

Nevertheless, it is possible that the information captured by 2D fluorescence 

spectroscopy could replace some of the analytical and operating parameters, since this 

technique was able to successfully describe influent and effluent total COD. It is thus 

proposed that combined modelling of 2D fluorescence data and selected 

performance/operating parameters should be further explored for efficient MBR 

monitoring aiming at rapid process control.  
 
Published as: Galinha, C.F., Carvalho, G., Portugal, C.A.M., Guglielmi, G., Oliveira, R., Crespo, J.G. and Reis, 

M.A.M., 2011. Real-time monitoring of membrane bioreactors with 2D-fluorescence data and statistically based 

models. Water Science and Technology, 63, 1381-1388.1 
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3.1. INTRODUCTION 

Membrane bioreactors (MBR) are increasingly applied in wastewater treatment plants, 

mainly due to their small footprint and high effluent quality. The increasing demand for 

MBR technology requires the development of adequate monitoring and control 

techniques, particularly in view of the high operational costs associated to membrane 

fouling resulting from the adhesion of cells and cell products. Monitoring of MBR 

performance involves a high number of off-line and time-consuming analytical 

techniques, regarding the complexity of the media. Therefore, MBR technology would 

greatly benefit from real-time monitoring techniques that could be used to support 

immediate control actions. 

 

2D fluorescence spectroscopy is an on-line and non-destructive technique that can 

quickly provide information about the composition of complex biological media and 

consequently be used as a real-time monitoring tool. Wastewater media contain high 

quantities of natural fluorophores, such as aminoacids (e.g. tyrosine, tryptophan and 

phenylalanine), vitamins, coenzymes and aromatic organic matter in general. 

Furthermore, extracellular polymeric substances (EPS) containing large amounts of 

proteins, are the major fouling agent of MBRs. Thus, fluorescence is a good candidate 

technique for MBR monitoring, able to capture fingerprinting information on the state 

of the biological media, including EPS. 

 

Fluorescence spectroscopy, using selected excitation/emission wavelengths, was first 

explored by Li et al. (1991) and Li and Humphrey (1991) for monitoring cell growth 

and activity in biological reactors. Later, other studies have applied 2D fluorescence 

spectroscopy to monitor water and wastewater treatment processes (Her et al., 2003; 

Kimura et al., 2009; Lee et al., 2006; Wang et al., 2009b), and the need to extract 

deeper, quantitative information from 2D fluorescence spectra obtained from high 

complex media guided other authors to use multivariate statistical tools (Boehl et al., 

2003; Ganzlin et al., 2007; Surribas et al., 2006; Teixeira et al., 2009; Wolf et al., 2001). 

 

In wastewater treatment plants (WWTPs), media are highly complex, generally 

composed by a wide variety of molecular species (fluorophores and non-fluorophores) 

which may promote mutual interference effects on the fluorescence signal. 

Consequently fluorescence excitation-emission matrices (EEMs) obtained from these 
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systems contain highly embedded information. In this study, the information contained 

in fluorescence spectra was assessed using projection to latent structures (PLS) aiming 

at establishing correlations with performance parameters of a MBR.  

 

PLS is a linear regression method that maximises the covariance between input data and 

output performance parameters. PLS models generate a set of latent variables that 

explain the maximum variance in the output variables, combining in a single step data 

decomposition and correlation with predicted outputs. PLS were used in this work to 

predict quality parameters (such as chemical oxygen demand, COD) of wastewater and 

permeate based only on 2D fluorescence data. Moreover, the importance of specific 

areas of the fluorescence matrices was investigated for the prediction of each output. 

 

In MBRs for wastewater treatment the relationships between operating and performance 

parameters are abundant and complex, essentially due to the interdependency between 

operating parameters, biological performance and membrane performance. This 

complexity was assessed in this work by principal component analysis (PCA) (Rencher, 

2002) of analytical parameters conventionally used to monitor MBRs for wastewater 

treatment. 

 

PCA is often used to examine interrelationships between a large number of variables 

and to explain these variables in terms of their common underlying dimensions (Hair et 

al., 1998). In PCA, the input matrix is described as a linear correlation between scores 

and loadings that minimises the residuals. The best linear combination of variables is 

determined in order to capture the maximum variance in data. So, the first principal 

component (PC1) can be seen as the best summary of linear relationships present within 

data. The second principal component (PC2) is identified as orthogonal to the first one, 

and aims to find the best relationship for the remaining variance. The following PCs are 

all orthogonal between each other. The interpretation of the contribution of each 

variable in the PCA is quantified by the loadings matrix. The loadings represent the 

degree of correlation between the variables and the principal components. Therefore 

similar values represent variables with a high correspondence as well as higher values 

of loadings point to a more representative variable (Jackson, 2003). In this work, 

correlations across data were analysed based on loadings resultant from PCA applied to 

a comprehensive set of MBR operating and performance parameters. 
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The aim of this work was the development of a strategy for real-time monitoring of a 

MBR through the use of an on-line method based on 2D fluorescence spectroscopy data 

and PLS modelling. Alternatively, this study also evaluated the reduction of the number 

of MBR monitoring parameters by multivariate data analysis that would enable the 

elimination of redundant analysis. 

 

3.2. METHODS 

3.2.1. Membrane bioreactor 

The pilot scale MBR was operated to treat domestic wastewater and monitored with 2D 

fluorescence spectroscopy. It was located at the wastewater treatment plant of Lavis, 

Italy and consisted of a biological anoxic/aerobic tank followed by a separate tank with 

a submerged hollow fibre system (GE Zenon ZW500d) with 0.04 m membrane pore 

size (Figure 3.1). This pilot MBR was monitored with 2D fluorescence for a period of 

10 months, when it was operated under controlled permeate flux.  During this period, 

operational changes were programmed and imposed in the permeate flux and solids 

retention time. Temperature changed due to seasons’ weather, hydraulic retention time 

(HRT) and dissolved oxygen (DO) changed due to other operating and control 

experiments. 

 

 

Figure 3.1. Representation of the pilot MBR located in at the Lavis wastewater treatment plant 

(Trento, Italy). 

 

3.2.2. 2D fluorescence spectroscopy 

Fluorescence EEMs were acquired with a fluorescence spectrophotometer Varian Cary 

Eclipse coupled to a fluorescence optical fibre bundle probe. Fluorescence spectra were 

generated in a range of 250 to 700 nm (excitation) and 260 to 710 nm (emission), with 

Anoxic Aerobic 

Pre-treated 

wastewater 

Permeate 

Mixed liquor 

recirculation 
Sampling 

point 

Sampling point 

Sampling point 



Real-time monitoring of MBRs with 2D fluorescence data and statistically-based models 

 

29 

 

an excitation wavelength incrementing step of 10 nm. Fluorescence spectra were 

obtained using excitation and emission slits of 10 nm and a scan speed of 3000 nm/min.  

 

3.2.3. Data collection 

2D fluorescence spectra were acquired in the wastewater feed, in the bulk activated 

sludge and in the permeate at the same time that samples were collected for further 

analysis of wastewater, permeate and mixed liquor (Table 3.1). Also transmembrane 

pressure (TMP), temperature and dissolved oxygen were measured on-line. All these 

data collected together with selected operating parameters – permeate flux, hydraulic 

retention time and sludge retention time – were used in this work to find correlations by 

multivariate analysis. 

 

3.2.4. Multivariate data analysis 

Before multivariate data analysis, all data was normalised by subtracting the respective 

average values and dividing by their standard deviations. The 2D fluorescence 

spectroscopy measurements were acquired and plotted in excitation-emission matrices 

(EEMs) where each value of fluorescence intensity corresponds to a pair of 

excitation/emission wavelengths, totalising 5490 model input variables. The 

mathematical models were obtained through PLS regression, using EEMs of wastewater 

and permeate as model inputs and total COD in wastewater and permeate as outputs, 

respectively. Data from 146 observations obtained throughout the 10 months of 

operation were used for PLS modelling. These 146 observations were divided randomly 

into a training set (75% of the observations, which were used to calibrate the model) 

and a validation set (25% of the observations, which were used to validate the final 

model). The PLS models thus obtained are a linear correlation of the 5490 fluorescence 

inputs to predict total COD in the wastewater and in the permeate accordingly. Model 

fitting to the experimental data was assessed by the training and validation correlation 

coefficients (R2) and root mean square error of prediction (RMSEP), calculated as the 

squared root of the sum of the squared differences between predicted and experimental 

values. 
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Table 3.1. Monitoring parameters and respective range of values assessed during MBR 

operation. 
 

Abbreviation 
Range 

 Min. Max. average 

Process and Performance Parameters:     

Total chemical oxygen demand in wastewater (mg L
-1

) CODtw 151 1862 524 

Soluble chemical oxygen demand in wastewater 

obtained by sample flocculation (mg L
-1

) 
CODsw 17 410 108 

Soluble chemical oxygen demand in wastewater 

obtained by sample filtration (mg L
-1

) 
CODfw 46 467 155 

Ammonia in wastewater (mg N L
-1

) NH4w 9.1 88.5 34.2 

Nitrite in wastewater (mg N L
-1

) NO2w 0.01 9.98 1.08 

Nitrate in wastewater (mg N L
-1

) NO3w 0.1 26.8 4.4 

Organic nitrogen in wastewater (mg L
-1

) Norgw 0.1 89.0 19.6 

Phosphate in wastewater (mg P L
-1

) PO4w 0.10 7.35 3.26 

Total phosphorus in wastewater (mg L
-1

) Ptw 1.2 33.0 9.5 

Total suspended solids in wastewater (mg L
-1

) TSSw 50 2100 316 

Volatile suspended solids in wastewater (mg L
-1

) VSSw 30 2071 264 

Total chemical oxygen demand in permeate (mg L
-1

) CODtp 10 77 36 

Soluble chemical oxygen demand in permeate obtained 

by sample flocculation (mg L
-1

) 
CODsp 10 67 28 

Ammonia in permeate (mg N L
-1

) NH4p 0.1 19.3 2.4 

Nitrite in permeate (mg N L
-1

) NO2p 0.01 0.84 0.13 

Nitrate in permeate (mg N L
-1

) NO3p 0.1 37.2 13.6 

Organic nitrogen in permeate (mg L
-1

) Norgp 0.1 6.0 1.4 

Phosphate in permeate (mg P L
-1

) PO4p 0.10 3.67 1.31 

Total phosphorus in permeate (mg L
-1

) Ptp 0.1 4.4 1.7 

Total suspended solids in membrane reactor (mg L
-1

) TSSs 5900 13200 9121 

Volatile suspended solids in membrane reactor (mg L
-1

) VSSs 4266 9491 6694 

Mixed liquor suspended solids acquired on-line in the 

biological reactor (g L-1) 
MLSSb 4.60 8.70 6.97 

Transmembrane pressure (mbar) TMP 100 378 195 

Operating Parameters:     

Permeate flux (m
3
 h

-1
) Jp 0.80 3.00 1.80 

Hydraulic retention time (h) HRT 5.30 19.86 9.71 

Dissolved oxygen (mg L
-1

) DO 0.10 7.37 1.64 

Sludge wastage (m
3
 day

-1
) Vslg/d 0.00 1.29 0.57 

Temperature (ºC) T 9.0 26.9 20.7 
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PCA was applied to all data, except fluorescence matrices, and the loadings obtained for 

the first 3 PCs were analysed in search for correlations within data. Both PLS models 

and PCA were implemented in Matlab according to nPLS and PARAFAC functions 

(Andersson and Bro, 2000), respectively. 

 

3.3. RESULTS AND DISCUSSION 

3.3.1. PLS models based on 2D fluorescence spectroscopy 

Multivariate linear models were obtained to predict total COD in permeate and total 

COD in wastewater using fluorescence data from permeate and wastewater, 

respectively. PLS models were performed using the values of emission intensity for 

each pair of excitation/emission wavelength as inputs (total of 5490 inputs) and 

respective COD as output. Predicted results of training and testing data sub-sets were 

plotted against the experimental values obtained from the pilot MBR (Figure 3.2 and 

3.3). The PLS model to predict total COD in the permeate was generated using 3 latent 

variables and has a good fitting for both training and validation sets (R
2
 of 0.88 and 

0.92, respectively) and RMSEP of 5.4 mg L
-1

, corresponding to a mean error of 15%. 

The PLS model to predict total COD in wastewater made with 9 latent variables gave an 

overall lower correlation (R
2 

of 0.95 and 0.60 for training and validation data, 

respectively) with a RMSEP of 175 mg L
-1

 corresponding to a mean error of 33%.  

 

 
Figure 3.2. Prediction of total permeate COD based on 2D fluorescence spectra acquired in the 

permeate. 

 

The establishment of these equations demonstrates that 2D fluorescence spectroscopy is 

able to describe the variation of total COD in wastewater and permeate media. 

Furthermore, the coefficients of the multilinear regression were analysed in order to 

identify the 2D fluorescence spectral regions that specifically correlate with total COD. 
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Thus, if the model coefficients are regarded as the weight of each input (in this case 

each position in the fluorescence matrices) it is possible to identify the 

excitation/emission pairs that may have a higher contribution to the description of total 

COD. In Figures 3.4 and 3.5 these coefficients are plotted as a function of their position 

in the fluorescence spectrum.  

 

 

Figure 3.3. Prediction of total wastewater COD based on 2D fluorescence spectra acquired in 

the wastewater. 

 

The coefficients for total COD prediction in wastewater (Figure 3.4) show that COD is 

mostly expressed by variations in two spectral regions at approximately 280/340 nm 

and 360/430 nm of excitation/emission, where proteins and humic compounds have 

higher emission, respectively. Thus, fluorescence response due to the presence of 

proteins and humic compounds appears to be the most relevant to predict COD in 

wastewater. In addition, the two diagonal lines in fluorescence matrices, resultant from 

light scattering, which is commonly correlated with media turbidity, suspended solid 

matter and high concentrations of solutes (Harms et al., 2002; Rinnan et al., 2005), also 

appear to be of high importance. This result is not a surprise when taking into account 

that some compounds contributing to total COD in domestic wastewaters (particulate 

COD) are associated with media turbidity.  

 

In the permeate (Figure 3.5), total COD seems to be strongly described by the humic 

compounds region of fluorescence spectra and also by light scattering. This result was 

expected since proteins are generally larger than humic compounds and thus are 

preferentially retained by the membrane; therefore, the permeate COD can be mostly 

predicted by fluorescence signal of humic compounds, as opposed to wastewater COD 



Real-time monitoring of MBRs with 2D fluorescence data and statistically-based models 

 

33 

 

where proteins also have an important contribution. Light scattering in permeate EEMs 

is also lower than in wastewater (data not shown), likely due to the absence of turbidity 

and to reduced concentrations of solutes and colloids. However, its contribution to COD 

prediction is also important as revealed by the analysis of contributions given by the 

PLS coefficients (Figure 3.5).  

 

 

Figure 3.4. Coefficient values of the PLS model for prediction of total COD in wastewater 

plotted in function of the respective variable position in fluorescence matrices. 

 

 

Figure 3.5. Coefficient values of the PLS model for prediction of total COD in permeate plotted 

in function of the respective variable position in fluorescence matrices. 
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Despite the fact that some areas of the fluorescence spectra have higher importance to 

predict total COD in permeate and in wastewater, the complete matrices have a role in 

modelling and it is not possible to arbitrary remove these inputs without compromising 

output prediction. 

 

2D fluorescence spectroscopy showed to be rich in information about media 

composition (enough to predict the variation of total COD) and therefore can be a useful 

tool in real-time monitoring of MBRs.  However, the fluorescence EEMs could not 

provide sufficient information to predict other parameters, such as influent and effluent 

ammonia and phosphorus (results not shown). Therefore, the accurate quantitative 

monitoring of MBR performance will still require the acquisition of at least some 

process variables. 

 

3.3.2. Principal component analysis of operational and performance parameters 

In an attempt to reduce the analytical effort required for full characterisation and to 

reduce the time frame necessary to obtain monitoring results, PCA was used to study 

the complex correlations between a comprehensive set of operating and performance 

parameters (Table 3.1). Using PCA applied simultaneously to all data, it is possible to 

understand which parameters are strongly correlated and therefore reduce the number of 

parameters used to monitor MBRs performance. 

 

In PCA, a new system of axes is generated based in the maximum variance captured in 

order to reduce redundancy and noise, and describe data more accurately. In this study, 

PCA was applied to all analytical data acquired together with the operating conditions 

used to obtain each observation. Loadings quantify the difference between the new 

system of axes and the original one. Therefore, the variables that are correlated have a 

similar value of loading or are in the same line that crosses the axes intersection, since 

the direction of the PC is identical. Otherwise, the uncorrelated variables have an 

orthogonal relationship and appear in a perpendicular direction to the considered 

variable. The strongest correlation is obtained when loadings have the value of one.  
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Figure 3.6. Loadings plots for PC1, PC2 and PC3 obtained from PCA of the process and 

operating parameters used to characterise the pilot MBR. 

 

Figure 3.6 illustrates the loadings of the PC1, PC2 and PC3 for operating and 

performance MBR data. PC1 captured 28.9% of variance, PC2 19.6% and PC3 8.5%, 

totalising 57% of variance for the first 3 principal components. The subsequent PCs 

captured progressively lower variance percentages, thus only the loadings of the first 3 

PCs were analysed. Loadings of PC1 and PC2 show that transmembrane pressure 

(TMP) belongs to the same cluster as ammonia (NH4w), soluble COD by flocculation 

(CODsw) and soluble COD by filtration (CODfw) in wastewater, and therefore is 

positively correlated with these wastewater parameters. Also shows that ammonia in the 

permeate (NH4p) decreases when the hydraulic retention time (HRT) increases. 

Loadings of PC2 and PC3 show that TMP is positively dependent of the permeate flux 

(Jp) and the suspended solids in wastewater (total and volatile, respectively TSSw and 

VSSw). It is also noticeable, looking to the loading plots, that PC1 captures essentially 

the variation in permeate quality in function of the biomass concentration: permeate 

quality parameters (CODtp, CODsp, NO3p, PO4p and Ptp) are inversely correlated with 

the amount of sludge in the MBR (mixed liquor suspended solids in biological 
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compartment, MLSSbio, and volatile and total suspended solids in sludge, VSSs and 

TSSs respectively). Additionally, PC2 captures variations due to the flux (note that both 

permeate flux, Jp, and hydraulic retention time, HRT, were plotted since the MBR 

volume changed during the study).   

 

It is also evident that permeate quality parameters vary inversely with temperature (T), 

which is consistent with the higher activity of sludge expected and observed at higher 

temperature (during the summer period). Moreover, since aeration was maintained 

constant, the increase of dissolved oxygen (DO) means that less oxygen is consumed 

and therefore lower sludge activity and lower COD and nutrients removal, as reflected 

by the inverse correlation of DO with T and positive correlation with permeate quality 

parameters. 

 

Other expected correlations are evident in the loadings plots such as the proximity 

between soluble COD by filtration and by flocculation in wastewater, or between 

MLSSbio, TSSs, VSSs and sludge wastage (Vslg/d) since the first three are different 

measurements of suspended solids and sludge wastage were performed in order to keep 

specific solid retention times. 

 

These results confirm the complexity and abundance of correlations across data and 

show that process variables are not fully described by the first 3 PCs of the PCA, which 

only capture 57% of total variance. Additionally, loadings have low values (≤ 0.5), 

meaning that the monitoring parameters are not fully described by any of the three PCs. 

Therefore, and despite all the relationships found, it is not possible to identify strong 

correlations that could reduce the number of analytical parameters needed to make a 

complete characterisation of the MBR performance. 

 

3.4. CONCLUSIONS 

In this study, 2D fluorescence spectroscopy data was combined with PLS modelling to 

predict performance parameters of an MBR, aiming at developing a strategy for real-

time monitoring. Using only this technique, it was possible to describe total COD in 

both the influent wastewater and the permeate of a MBR. However, this approach was 

not successful in accurately predicting other performance parameters, suggesting that 

2D fluorescence spectroscopy cannot totally replace conventional MBR monitoring. 
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Alternatively, a set of MBR process and operating parameters were analysed by PCA in 

order to find correlations between them and thus reduce redundancy and analytical time 

necessary for monitoring. This multivariate analysis tool revealed some linear degree of 

correlation between certain parameters. However, these correlations were not strong 

enough (loadings≤0.5) to reduce the number of parameters needed to describe the 

process. Additionally, the PCA possibly did not cover all the existing correlations, since 

only a low level of variance (57%) was captured using the most contributing PCs. 

 

Overall, it was found that correlations across the MBR data are abundant and that 

relationships between operating parameters and performance variables are complex and 

interdependent. However, it is possible that the information captured by 2D 

fluorescence spectroscopy could replace some of the analytical and operating 

parameters, since this technique was able to successfully describe some MBR influent 

and effluent quality indicators (total COD). It is thus proposed that combined modelling 

of 2D fluorescence data and selected performance/operating parameters should be 

further explored for efficient MBR monitoring aiming at rapid process control. 
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4 

 

 

2D FLUORESCENCE AS A FINGERPRINTING TOOL FOR 

MONITORING WASTEWATER TREATMENT SYSTEMS 

 

 

SUMMARY 

The use of 2D fluorescence for monitoring complex biological systems requires a 

careful assessment of the effect of chemical species present, which may be fluorescent 

and/or may interfere with the fluorescence response of target fluorophores. Given the 

complexity of fluorescence data (excitation emission matrices – EEMs), the challenge is 

how to recover the information embedded into those EEMs that can be quantitatively 

related with the observed performance of the biological processes under study. In this 

chapter it is shows clearly that interference effects (such as quenching and inner filter 

effects) occur due to the presence of multiple species in complex biological media, such 

as natural water matrices, wastewaters and activated sludge. A statistical multivariate 

analysis is proposed to recover quantitative information from 2D fluorescence data, 

correlating EEMs with the observed performance. A selected case study is discussed, 

where 2D fluorescence spectra obtained from the effluent of a membrane bioreactor 

were compressed based on principal component analysis and successfully correlated 

with the effluent chemical oxygen demand, using projection to latent structures 

modelling. This chapter demonstrates the potential of using 2D fluorescence 

spectroscopy as a status fingerprint. Additionally, it is shown how statistical 

multivariate data analysis can be used to correlate EEMs with selected performance 

parameters for monitoring of biological systems. 

 
Published as: Galinha, C.F., Carvalho, G., Portugal, C.A.M., Guglielmi, G., Reis, M.A.M. and Crespo, J.G., 2011. 

Two-dimensional fluorescence as a fingerprinting tool for monitoring wastewater treatment systems. Journal of 

Chemical Technology and Biotechnology, 86, 985-992.1 
                                                 
1
 Reproduced with the authorization of the editor and subjected to the copyrights imposed. 
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4.1. INTRODUCTION 

Fluorescence spectroscopy is a highly sensitive and non-invasive technique that can be 

used in situ and on-line through an optical fibre probe. Biological systems contain many 

natural fluorophores, such as amino acids (tryptophan, tyrosine and phenylalanine), 

vitamins, coenzymes and aromatic organic matter in general that can be detected by 

fluorescence spectroscopy, regardless if they are intra- or extra-cellular. Therefore, this 

technique has great potential for real-time monitoring of biotechnological systems, as 

was previously demonstrated by e.g. Li et al. (1991) and Li and Humphrey (1991). In 

those studies, the fluorescence signal obtained at specific excitation wavelengths was 

used to measure key fluorophores in biological media. A broader approach consists of 

scanning a sample with simultaneous variation of the excitation and emission 

wavelengths, i.e., two-dimensional (2D) fluorescence. The resulting excitation-emission 

matrices (EEMs) capture information about the presence of multiple substrate 

components and microbial products, and thus can be seen as a fingerprint of the 

biological system (Marose et al., 1998).  

 

The 2D fluorescence signal is complex and subject to interferences due to the presence 

of multiple molecules in the system. Changes in the fluorescence signal (such as 

decrease in fluorescence intensity or change of the emission band shape) may be caused 

by quenching and/or by inner filter effects. Fluorescence quenching affects the 

fluorescence characteristics of target fluorophores present in the media, and results from 

the interaction of the fluorophore in the excited state with a (fluorescent or non-

fluorescent) quencher, which interferes with the de-excitation process. The extent of the 

quenching effect will depend on the type and concentration of the quencher (Valeur, 

2002). On the other hand, inner filter promoters interfere with the light pathway, e.g. by 

absorbing light either in the same absorbance region or the same emission region as the 

fluorophores (Valeur, 2002). 

 

Although interference effects hamper the recovery of quantitative information about 

specific fluorophores, they are an extremely rich source of information if adequate 

mathematical tools are used to analyse the data.  In fact, changes in spectra caused by 

interference effects can increase the richness of information contained in 2D 

fluorescence spectroscopy results, providing an overall fingerprint of the physiological 
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state of a biological system. Additionally, EEMs are able to elicit information on the 

performance of bioreactors under specific process environments, since the fluorescence 

response is also sensitive to the environmental conditions (pH, ionic strength and salt 

composition). The challenge is how to recover and use all of this embedded information 

for systems monitoring and develop appropriate models that correlate input (the 

fluorescence EEMs ) with output data (performance parameters), for process control. 

 

2D fluorescence has been applied for monitoring surface water composition and 

wastewater systems (Her et al., 2003; Kimura et al., 2009; Lee et al., 2006; Tang et al., 

2010; Wang et al., 2009b). However, most of those studies did not use fluorescence on-

line; the samples were extracted and/or fractioned before fluorescence analysis, and the 

interferences existing in a complex media were not considered. Recently, Kobbero et al. 

(2008) assessed the quenching effects observed in activated sludge samples, and 

concluded that individual components could not be quantified by direct observation of 

2D fluorescence peak intensity. However, no attempt to deconvolute the matrices 

through modelling techniques was made. 

 

This study aims at demonstrating the applicability of 2D fluorescence for real-time 

monitoring of biological wastewater treatment systems, by regarding the EEMs as 

fingerprints that may be mathematically correlated with representative performance 

parameters. Similar approaches have been previously employed by Scheper and co-

workers (Boehl et al., 2003; Ganzlin et al., 2007; Marose et al., 1998; Surribas et al., 

2006) as well as by our research group (Teixeira et al., 2009; Wolf et al., 2007; Wolf et 

al., 2001), to monitor other biotechnological systems with better defined media and/or 

biological composition. 

 

The sensitivity of this technique to water and wastewater compositions was assessed in 

the present study, as well as the occurrence of fluorescence interferences in these media. 

Multivariate statistical modelling, using principal component analysis (PCA) 

(implemented with PARAFAC function) and multiple linear regression (done by 

projection to latent structures – PLS), were used to correlate the interlinked information 

contained in EEMs from a wastewater treatment system with a selected performance 

indicator (chemical oxygen demand of the treated effluent). Data from a membrane 

bioreactor (MBR) for wastewater treatment was selected as a case study to illustrate this 
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approach and exemplify how the information obtained by 2D fluorescence spectroscopy 

can be correlated with performance parameters.  

 

The modelling approach described in this study could be used in the development of 

expert-control systems based on the modelling approach described. Such control 

systems may be operated together with on-line 2D fluorescence monitoring, using 

optical fibres located in defined positions of the biological process, without the need to 

sample the system periodically and run all the time-consuming and laborious analytical 

procedures. Therefore, real-time control and operator decision-making may be ensured. 

 

4.2. MATERIALS AND METHODS 

4.2.1. Water and wastewater samples and aqueous solutions used for 2D 

fluorescence analysis 

Surface water was collected from the river Tagus, in Portugal, spring water was 

collected in Alenquer, Portugal, and domestic wastewater was collected at the entrance 

of the wastewater treatment plant (WWTP) of Mutela, located in the region of Lisbon 

(Almada), Portugal. All samples were collected within a 5 week period during autumn. 

The wastewater sample was previously centrifuged at 9000 rpm, 10 min at 10 ºC. The 

samples were filtered using a filter with 0.20 m pore diameter to remove 

microorganisms before fluorescence scanning. 

 

Solutions of commercial humic acids (Sigma, USA) in deionised water were used to 

confirm the excitation/emission regions typical from these compounds. Excitation-

emission maps of a model protein, bovine serum albumin (BSA, Fluka, Switzerland), 

were obtained in the presence and absence of commercial humic acids (10 mg L
-1

), in 

order to test fluorescence interferences caused by the simultaneous presence of humic 

acids and proteins in media. BSA was employed at concentrations of 10 and 50 mg L
-1

 

for these tests. Subsequently, 2D fluorescence maps were obtained for different water 

samples with and without addition of BSA at the same final concentrations (10 and 50 

mg L
-1

) to assess the interference of natural humic acids in protein fluorescence. 
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4.2.2. Membrane bioreactor set-up and operation  

Pre-screened wastewater, activated sludge and permeate samples were collected from a 

pilot MBR located in the WWTP of Lavis (Trento), in Italy. The system consisted on an 

anoxic/aerobic compartment (4.7 m
3
 denitrification, 8.7 m

3
 nitrification) and a separate 

membrane tank (1.5 m3), in which a hydrophilized PVDF ultrafiltration membrane was 

immersed (GE Zenon ZW500d hollow fibre module; 0.04 m; 100 m
2
). The plant was 

operated at an average SRT of  22 days; the MLSS in the biological tank was around 

7.5 kg m
-3

 whereas the MLSS content in the membrane compartment ranged between 

10 and 11 kg m
-3

, with a recirculation ratio of  2.5 from the membrane tank to the 

anoxic one. Samples were taken simultaneously from the feed, the activated sludge 

recirculation and the permeate, and were immediately analysed by 2D fluorescence 

spectroscopy by immersion of an optical fibre probe in a stirred beaker. In order to 

avoid sedimentation of suspended solids present in wastewater and activated sludge 

samples, identical stirring conditions were applied to all the samples (wastewater, 

activated sludge and permeate) during the acquisition of the fluorescence spectra. In 

addition, chemical oxygen demand (COD) was determined in the permeate samples 

according to the APHA Standard Methods. COD was selected as a performance 

indicator since it is the principal parameter used to characterise the effluent’s quality in 

WWTPs used for carbon removal.   

 

4.2.3. Acquisition of 2D fluorescence spectra  

The 2D fluorescence spectra of humic and BSA solutions, surface water, spring water 

and domestic wastewater from Mutela were obtained with a fluorometer computer-

interface Perkin-Elmer LS 50B. The excitation source was a pulsed Xenon UV lamp, 

and the detector was a gated photomultiplier. Reflection grating monochromators were 

used on both excitation and emission sides. The scanning speed was 1500 nm/min; 

excitation and emission slits were 10 nm. Fluorescence spectra were generated in a 

range of 200 to 600 nm (excitation) and 225 to 625 nm (emission), with an excitation 

wavelength incrementing step of 10 nm.  

 

The 2D fluorescence spectra obtained from the MBR in the WWTP of Lavis were 

acquired with a fluorescence spectrophotometer Varian Cary Eclipse equipped with 

excitation and emission monochromators and coupled to a fluorescence optical fibre 
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bundle probe. The optical fibre bundle is constituted by a total of 294 randomized 

optical fibres (147 excitation and 147 emission) each with a diameter of 200 µm and a 

length of 2 m. Fluorescence spectra were generated in an excitation wavelength range of 

250 to 700 nm and an emission wavelength range between 260 and 710 nm, with an 

excitation wavelength incrementing step of 10 nm. Fluorescence spectra were obtained 

using excitation and emission slits of 10 nm and a scan speed of 3000 nm/min.  

 

4.2.4. Mathematical data deconvolution  

The 2D fluorescence spectroscopy measurements result in excitation-emission matrices 

(EEMs) where each value of fluorescence intensity corresponds to each pair of 

excitation/emission wavelengths, totalising more than 5 thousand model input variables. 

In order to reduce the number of variables to introduce in mathematical models, EEMs 

were vectorised and compacted. Compression was done to decrease the number of 

variables, co-linearity and noise using principal component analysis (PCA). PCA was 

applied using three principal components, corresponding to > 99.5% of variance 

captured. Projection to latent structures (PLS) were then used to maximise the co-

variance between the compacted fluorescence maps of permeate, measured during the 

operation of the pilot MBR, and COD in the permeate. The PLS model was developed 

using 146 different measurements of 2D fluorescence spectroscopy and COD in the 

MBR permeate effluent, obtained throughout 10 months of operation. These 146 

observations were divided randomly into a training set (75% of the observations, which 

were used to calibrate the model) and a validation set (25% of the observations, which 

were used to validate the final model). A model was thus obtained for prediction of the 

permeate COD through a linear correlation of the three new fluorescence input variables 

(PC1, PC2 and PC3) resulting from EEM compression. 

 

4.3. RESULTS AND DISCUSSION 

4.3.1. Discriminating water samples of different nature with 2D fluorescence 

spectroscopy  

Three different types of real water samples were analysed by 2D fluorescence 

spectroscopy: spring water, surface water and domestic wastewater. Their spectra 

showed significant differences between them (Figure 4.1). The spring water sample had 

few components in solution, which is reflected in the low complexity of the EEM, 

displaying no detectable fluorescence peaks of protein or humic-like compounds in their 
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corresponding regions of the contour maps (at Ex/Em of 280 / 320-350 nm and Ex/Em 

of 320-340 / 420-455 nm regions, respectively). The surface water sample had 

fluorescence signal in the humic compounds region, but no detectable proteins. It is also 

interesting to note the similarity between the surface water fingerprint (Figure 4.1b) and 

the humic acid aqueous solution fingerprint (see Figure 4.4b), which reflects the 

presence of humic compounds in this natural water, as could be anticipated. Domestic 

wastewater showed high fluorescence peaks in the protein and the humic-like 

compounds regions, as expected from such a complex biological matrix. These results 

clearly show that it is possible to qualitatively distinguish water samples with different 

nature by comparing the profile and intensities of their fluorescence matrices. 

 

 

Figure 4.1. 2D fluorescence spectra of (a) spring water collected in Alenquer, Portugal; (b) 

surface water collected from the river Tagus, Portugal; and (c) domestic wastewater collected at 

the entrance of a WWTP in Almada, Portugal. 
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Figure 4.2. 2D fluorescence spectra of (a) influent pre-screened wastewater, (b) activated 

sludge and (c) effluent permeate collected in the WWTP of Lavis in Italy at the 7
th
 day of 

operation. 

 

Additionally, samples collected from different sampling points of an MBR system 

(influent wastewater, activated sludge and permeate effluent) were also analysed by 2D 

fluorescence spectroscopy. Figures 4.2 and 4.3 show the results obtained for the three 

sampling points for two different days of operation. The obtained EEMs show 

significant differences between the three types of samples, corresponding to their 

different characteristics, which confirm the capability of this technique to qualitatively 

distinguish samples collected in different treatment phases of a WWTP. Although 

fluorescence spectra have a consistent profile for each sampling point, small differences 

can be observed between different days. In Figures 4.2 and 4.3 these differences are 

likely related to changes observed in the wastewater composition (e.g. total COD in 

wastewater changed from 970 mg L
-1

 on day 7 (Figure 4.2) to 377 mg L
-1

 on day 23 

(Figure 4.3)) and operating conditions, such as hydraulic retention time (11.6 and 7.9 

hours, respectively) and average temperature (16.2 and 13.1 ºC, respectively), which 

affect the system conditions and process performance. From these results it can be seen 
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that 2D fluorescence measurements of influent wastewater, activated sludge and 

effluent permeate can be used to monitor changes occurring through MBR operation. 

 

 

Figure 4.3. 2D fluorescence spectra of (a) influent pre-screened wastewater, (b) activated 

sludge and (c) effluent permeate collected in the WWTP of Lavis in Italy at the 23
rd

 day of 

operation. 

 

The influent wastewater samples had high fluorescence intensity in the 

excitation/emission regions of humic-like compounds and proteins, as observed for the 

wastewater analysed in the first assay (Figure 4.1). Permeate samples had lower 

fluorescence intensity in both regions when compared with the influent wastewater, 

particularly in the protein region. This observation suggests that small molecules like 

small peptides, amino acids and small humic compounds can cross the membranes 

while the larger molecules (such as proteins) are preferentially retained, which agrees 

with previously published results (Teychene et al., 2008). Activated sludge samples 

showed peaks both in the protein and humic compounds region; however, when 

compared with wastewater and permeate fluorescence peaks, their intensity was lower 

than expected, especially in a media with such a high cell concentration and 

consequently with high amounts of fluorophores. The relatively low fluorescence 
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intensity in activated sludge samples was likely due to the high cell density in the 

media. High concentrations of cells and other suspended solids (high turbidity), and the 

colour of the liquid phase itself, increase light scattering and media absorbance. Highly 

concentrated complex multi-component matrices, such as in the present study, can also 

lead to inner filter effects. Indeed, other substances present in the mixture may compete 

with the fluorophores for the incident light or reabsorb emitted light (Valeur, 2002). The 

overall contribution of these effects explains the reduced fluorescence intensity 

observed for activated sludge samples. Moreover, the humic-like compounds peak 

revealed a shift in the maximum excitation wavelength (see Figures 4.2 and 4.3 versus 

Figure 4.4).  

 

 

Figure 4.4. 2D fluorescence spectra of (a) a BSA solution with a concentration of 10 mg L
-1

, (b) 

a commercial humic acid solution (10 mg L
-1

) and (c) a mixed solution of humic acid and BSA, 

both at 10 mg L
-1

. 

 

This apparent peak shift could be due to a change in composition of the humic 

compounds fraction, since organic compounds present in the wastewater are degraded, 

whereas other organics resulting from biological activity are generated. Additionally, 

fluorescence interference effects may also have a role on this peak shift, since 

 

b) c) 

a) 
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quenching and inner filters effects can interfere with fluorescence intensity in this 

specific region of the spectra, masking part of the humic substances peak.  

 

The analysis carried out in this study demonstrates the high sensitivity of the 2D 

fluorescence technique, beyond the direct response to variations in the fluorophores 

concentrations.  

 

4.3.2. Assessment of interference effects on protein fluorescence spectra  

Proteins are one of the key compounds that can be monitored using fluorescence 

techniques in biological processes such as wastewater treatment systems. However, 

these systems also possess high amounts of numerous organic and inorganic compounds 

(e.g. the humic compounds present in the wastewater, oxygen, nitrates) that have been 

shown to interfere with protein fluorescence spectra (Kobbero et al., 2008; Lakowicz, 

1983; Ricci and Nesta, 1976). In the present study, quenching and inner filter effects on 

protein fluorescence spectra were investigated using a commercial humic acid and a 

standard protein, bovine serum albumin (BSA). Figures 4.4a and b show the 2D 

fluorescence spectra obtained with two independent solutions of BSA and humic acid, 

both at a concentration of 10 mg L
-1

 (Figures 4.4a and b), displaying the expectable 

peaks in the protein and in the humic-like compounds regions, respectively. However, 

when humic acids and BSA were both combined at the same final concentration of 10 

mg
 
L

-1
 in a mixed solution, the protein peak was no longer visible (Figure 4.4c). Protein 

and humic acid peaks do not overlap in their emission spectra and consequently this 

cannot be the cause for protein signal disappearance. To investigate the reason for this 

fact, a UV/visible light absorption spectrum of the humic acids was obtained using a 

spectrophotometer (data not shown), which showed that humic compounds absorb in a 

range of wavelengths that includes the region of protein absorption (competing with 

proteins by excitation light) and in the region of protein emission, absorbing the light 

emitted by proteins. These effects may explain the disappearance of the protein peak in 

Figure 4.4c.   
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Table 4.1. Decrease in fluorescence intensity at exc = 280 nm and em = 345 nm (maximum 

emission of BSA) of a standard BSA solution in comparison with solutions prepared with either 

commercial humic acids (at 10 mg L
-1

), or real water/wastewater samples. 

 Fluorescence Intensity Decrease 

 BSA 10 mg L
-1 

 BSA 50 mg L
-1 

Humic acids 95 %  96 % 

Surface water 52 %  57 % 

Spring water 33 %  31 % 

Wastewater 37 %  58 % 

 

In order to assess fluorescence interference effects in natural water sources and 

wastewater samples, BSA solutions were prepared using domestic wastewater, as well 

as surface and spring water. Two different concentrations of BSA (10 and 50 mg
 
L

-1
) 

were tested in order to understand if the interference effects are constant for each type 

of water, independently of the concentration of protein. BSA solutions with the same 

concentration, prepared in deionised water, were used for comparison purposes. The 

results showed that the presence of other components in water and wastewater samples 

reduced the protein fluorescence emission of the obtained EEMs, as exemplified in 

Figure 4.5. The fluorescence intensity values at the 280/345 nm excitation/emission pair 

in these tests are shown in Table 4.1. The degree of interference of water/wastewater 

samples on the BSA fluorescence emission was lower than a concentrated humic acids 

solution, but still induced a decrease in the protein peak intensity of 31-58% (despite the 

additional contribution of the proteins present in the wastewater to this peak). These 

interferences were likely due to the presence of humic-like compounds in the water 

matrices, as revealed by their fluorescence spectra (Figure 4.1). The extent of 

interference varied in these different matrices (Table 4.1), which was probably due to 

differences in the concentration and composition of the humic-like compounds. Indeed, 

the surface water spectrum showed higher fluorescence intensity than the spring water 

spectrum in the humic compounds region, and a different contour shape than the 

wastewater spectrum (Figure 4.1). Correspondingly, different interference levels were 

observed for all three water types (Table 4.1). Moreover, the results obtained with 

wastewater showed that the percent fluorescence decrease was dependent on the protein 

concentration, reflecting the high complexity of the interference phenomena occurring 

in such media. 
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Figure 4.5. Example of fluorescence interference effects in surface water: EEM of a BSA 

solution (10 mg L
-1

) in (a) deionised water and (b) prepared with surface water. 

 

Additionally to the humic-like compounds, there are other substances with quenching 

properties that can be present in wastewater systems, such as dissolved oxygen and 

heavy metals (Lakowicz, 1983), which were not investigated in this study. However, it 

is clear that the complexity of interferences on the fluorescence signal limits the simple 

and direct quantitative measurement of specific fluorophores in complex biological 

systems, such as wastewater treatment systems. Nevertheless, fluorescence EEMs may 

be used as fingerprints, which can be regarded as extremely rich, although complex, 

sources of information.  Actually, since fluorescence spectroscopy is highly sensitive to 

the composition of biological media and to the environmental conditions (T, pH, ionic 

strength), these effects should not be regarded as a problem but, on the contrary, as a 

source of information. The challenge is to develop methodologies that allow the 

extraction of this embedded information, correlating 2D fluorescence data with selected 

performance indicators.  

 

4.3.3. Use of multivariate statistical analysis to extract quantitative information 

from EEMs  

To extract deeper, quantitative information from 2D fluorescence spectra, previous 

studies used either an approach based on pattern recognition, i. e. artificial neural 

networks (ANN) (Wolf et al., 2007; Wolf et al., 2001) or PLS modelling (Morel et al., 

2004) to deconvolute EEMs from mixed culture bioreactors. In the present study, PLS 

modelling was chosen over ANN to describe the data analysed since the multivariate 

linear PLS models are less complex than non-linear ANN models, and therefore 

minimise over-fitting of the data points (Chan et al., 2006). Previous compression of 

fluorescence spectra with PCA is an important step, since it translates fluorescence 

 

a) b) 
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EEM information into a lower number of new orthogonal variables. These new 

variables describe data contained in the spectra while eliminating noise, and are each 

one a combination of the information present in different regions of the EEMs. 

 

2D fluorescence data of a MBR for municipal wastewater treatment was selected to 

illustrate this approach.  (2D) fluorescence spectroscopy has been previously applied for 

monitoring MBR (Tang et al., 2010; Teychene et al., 2008) aiming at the detection of 

single specific compounds. In this study, the complete EEMs obtained in a MBR were 

used as fingerprints, which were correlated with a selected performance indicator 

(permeate COD) through multivariate statistical analysis. 

 

A PLS model was developed to predict COD in the permeate, as a function of the 

compressed permeate EEMs (PC1, PC2 and PC3).  

 

[COD] = - 0.198 PC1 - 0.887 PC2 + 0.198 PC3  (Equation 4.1) 

 

The model obtained (Equation 4.1) shows good fitting for both training and validation 

sets of data, as can be seen from Figure 4.6 where experimentally observed values are 

plotted against predicted values. Regression coefficients (R
2
) were 0.86 and 0.89, 

respectively for training and validation, with slopes of approximately 1, and a root mean 

square error of prediction (RMSEP) of 6.0 mg COD L
-1

, which is approx. 8% of the 

maximum measured COD. The COD variance captured by the three compressed inputs 

was 86%. This value shows that the model was able to predict the experimental COD 

values while excluding noise. 

 

This example demonstrates that multivariate statistical models can adequately correlate 

EEM information to predict physical parameters associated with the system 

performance. 
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Figure 4.6. Observed values of COD in the permeate represented vs the corresponding values 

predicted by a PLS model developed with permeate EEM data. 

 

4.4. CONCLUSIONS 

Two-dimensional fluorescence can be applied for monitoring of biological systems due 

to the ability of this technique to distinguish matrices with different compositions. 2D 

fluorescence data can be acquired in multiple locations of the system (off-line or on-

line, according to specific needs), and time-programmed with the help of an optical 

“switch-box”. Considering that the acquisition of a complete fluorescence map takes 

only a few minutes (depending on the number of data points aimed), this tool can be 

used as an on-line, non-invasive, real-time monitoring technique. The challenge, 

however, remains on the ability of integrating this information in quantitative models, 

where fluorescence data are related with relevant process performance parameters 

determined independently. 

 

To solve this problem, the EEMs can be vectorised and introduced as input information 

in multivariate statistical models, namely using PLS tools. Through this procedure, 2D 

fluorescence input data (that characterise influent, effluent and biological media) can be 

correlated with relevant output variables (e.g. effluent quality). 

 

The approach presented in this paper has high potential for several reasons: 1) 2D 

fluorescence monitoring of biological systems is simple and fast; other traditional 

characterisation methods, which are laborious and slow, may be totally replaced by this 
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technique; 2) The multivariate statistical model developed may be continuously 

improved with new data; 3) This modelling approach could be implemented within 

expert-control systems; the data captured by the fluorescence fingerprints could then be 

used to rapidly evaluate the system status and support a real-time adjustment of the 

operating conditions. 
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5 

 

 

MULTIVARIATE STATISTICALLY-BASED MODELLING OF A 

MEMBRANE BIOREACTOR FOR WASTEWATER TREATMENT 

USING 2D FLUORESCENCE MONITORING DATA 

 

 

SUMMARY 

This work presents the development of multivariate statistically-based models for 

monitoring several key performance parameters of membrane bioreactors (MBR) for 

wastewater treatment. This non-mechanistic approach enabled the deconvolution of 2D 

fluorescence spectroscopy data, a powerful technique that has previously been shown to 

capture important information regarding the status of MBRs. Projection to latent 

structure (PLS) modelling was used to integrate 2D fluorescence data, after compression 

through parallel factor analysis (PARAFAC), with operation and analytical data to 

describe a MBR fouling indicator (transmembrane pressure, TMP), five descriptors of 

the effluent quality (total COD, soluble COD, concentration of nitrite and nitrate, total 

nitrogen and total phosphorus in the permeate) and the biomass concentration in the 

bioreactor (MLSS). A multilinear correlation was successfully established for TMP, 

CODtp and CODsp, whereas the optimised models for the remaining outputs included 

quadratic and interaction terms of the compressed 2D fluorescence matrices. 

Additionally, revealing correlations between inputs and outputs were found when 

analysing the coefficients of the optimised multilinear models. This work demonstrates 

the applicability of 2D fluorescence and statistically-based models to simultaneously 

monitor multiple key MBR performance parameters with minimal analytical effort. This 

is a promising approach to facilitate the implementation of MBR technology for 

wastewater treatment. 

 
Published as: Galinha, C.F., Carvalho, G., Portugal, C.A.M., Guglielmi, G., Reis, M.A.M. and Crespo, J.G., 2012. 

Multivariate statistically-based modelling of a membrane bioreactor for wastewater treatment using 2D fluorescence 

monitoring data. Water Research, 46, 3623-3636.1 
                                                 
1
 Reproduced with the authorization of the editor and subjected to the copyrights imposed. 
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5.1. INTRODUCTION 

Despite the increasing acceptance of membrane bioreactors (MBR) for wastewater 

treatment, membrane fouling is still a major obstacle during MBR operation. The 

adsorption of microbial cells and organic compounds (colloids and solutes) on the 

membrane surface and porous structure decreases permeability, leading to frequent 

membrane cleaning, reducing membrane life span and increasing operating costs.  

 

Several studies have found that extracellular polymeric substances (EPS) play a major 

role in membrane fouling of MBRs (Judd, 2008; Le-Clech et al., 2006; Meng et al., 

2009). EPS are organic compounds that result from microbial metabolism and that can 

be solubilised in the bulk liquid (soluble EPS) or remain on the cells external surface 

(bound EPS). EPS are mainly composed of proteins, polysaccharides, lipids, nucleic 

acids and humic compounds. Indeed, activated sludge is a highly complex matrix 

composed by a great diversity of microorganisms and microbial products, and also by 

wastewater organic and inorganic components. 

 

Despite the multiple studies on fouling agents and mechanisms carried out in the latest 

years, fouling formation and the conditions that lead to it are far from being completely 

understood. A large variety of techniques has been employed to investigate organic 

fouling, including Fourier transform infrared (FTIR) spectroscopy, solid state 
13

C-

nuclear magnetic resonance (NMR) and high performance size exclusion 

chromatography (HP-SEC), which cover a broad range of molecules (Meng et al., 

2009). However, even though these comprehensive techniques can provide detailed 

information about the fouling agents, they cannot be used for real-time monitoring due 

to their technical requirements and limitations. Simple, real-time and in situ monitoring 

of the fouling agents evolution in the reactor is desirable to improve MBR operation, 

avoiding damage due to unpredictable membrane fouling or module clogging.  

 

Real-time monitoring techniques are also important to partially or totally replace the 

numerous and time-consuming analytical techniques used to monitor the biological 

activity performance for control purposes. Real-time monitoring information can thus 

be used for optimisation and control of the operating parameters, to maximise process 

performance and minimise fouling. Furthermore, simultaneous assessment of the 
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wastewater influent, biological media and permeate effluent allows inferring about the 

relationship between process performance and different operating and environmental 

conditions. 

 

Fluorescence spectroscopy is a highly sensitive and non-invasive technique that can be 

applied in situ and on-line using an optical fibre probe without disturbing the biological 

system. Moreover, all microorganisms produce natural fluorophores, such as amino 

acids (tryptophan, tyrosine and phenylalanine), vitamins, coenzymes and aromatic 

organic matter in general that can be detected by fluorescence spectroscopy, regardless 

if they are intra- or extra-cellular. Wastewater and EPS released by cells also comprise 

fluorescent molecules, such as proteins and humic compounds. Therefore, fluorescence 

spectroscopy can be used to provide rapid information about components in MBR 

media that are relevant for biological and membrane performance.  

 

In complex systems, two dimensional (2D) fluorescence can be used by varying 

simultaneously the excitation and emission wavelengths, detecting at the same time the 

presence of a wide diversity of natural fluorophores (Marose et al., 1998). The presence, 

concentration and interaction between several fluorescent and non-fluorescent 

components in complex biological media, result in different fluorescence spectra 

patterns. The fluorescence excitation-emission matrices (EEMs) obtained throughout 

time may, thus, reflect the physiological activity of a biological system. 

 

Nevertheless, as shown in Chapter 4, fluorescence spectroscopy is susceptible to several 

interferences, which can prevent the direct measurement of fluorophores in complex 

media such as wastewater and activated sludge. Previous studies have applied 2D 

fluorescence spectroscopy to monitor water and wastewater treatment processes either 

by characterising the organic matter after chromatographic fractioning (Her et al., 2003; 

Lee et al., 2006) or by comparing the location and intensity of fluorescence spectra 

peaks of EPS extracts (Kimura et al., 2009; Wang et al., 2009b). While these 

methodologies can provide information on specific fluorescent compounds present in 

media, EEMs of the whole sample may contain additional information about the whole 

complex media that should not be excluded a priori. 
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To rapidly extract the full contextual information contained in spectroscopic data, a 

non-mechanistic approach can be followed as used in previous studies (Wolf et al., 

2007; Wolf et al., 2001; Wolf et al., 2005). Non-mechanistic models are able to 

correlate large sets of data (including 2D fluorescence spectra and other performance 

parameters) and thus extract hidden information, disclosing unobvious relationships 

between different variables. Thereby, 2D fluorescence spectroscopy has the ability to 

detect mutual interferences of fluorophores with the surrounding medium, which 

represents an advantage over other analytical methodologies that have been applied so 

far for MBR monitoring. 

 

A mathematical approach based on projection to latent structures (PLS) was proposed in 

Chapter 4 for the application of 2D fluorescence data for monitoring wastewater 

treatment systems. This methodology comprises compression of the EEMs through 

parallel factor analysis (PARAFAC) to reduce data redundancy and eliminate noise, and 

PLS modelling to correlate the compressed information with performance parameters. 

In the present study, this methodology was extended to the combined application of 2D 

fluorescence and process data (operating and analytical parameters) to predict biological 

and membrane performance parameters of a pilot MBR plant operated for domestic 

wastewater treatment.  

 

Fouling control and the complexity of operating MBR plants were previously pointed 

out as the major challenges for the implementation of MBR technology (Judd, 2005; 

2008; Lesjean et al., 2011). The combination of PLS modelling with 2D fluorescence 

spectra can result in the development of an on-line monitoring tool with minimal 

analytical effort. These models can be invaluable decision supporting tools to optimise 

on-site MBR operation.  

 

5.2. MATERIALS AND METHODS 

5.2.1. Membrane bioreactor set-up and operation  

The pilot scale MBR was located in the wastewater treatment plant of Lavis (Trento, 

Italy). The MBR was fed with domestic wastewater collected after fine screens (2 mm) 

and sand/oil removal. The MBR system consisted of a biological tank with a 4.7 m
3
 

anoxic compartment and a 8.7 m
3
 aerobic compartment for denitrification and 

nitrification, respectively, followed by a tank (1.5 m
3
), in which a hydrophilised PVDF 



Modelling of a MBR for wastewater treatment using 2D fluorescence monitoring data 

 

59 

 

ultrafiltration membrane was immersed (GE Zenon ZW500d hollow fibre module with 

0.04 m pore size and 100 m
2
 area). The permeation regime consisted of alternate 

relaxation (1 min) and suction phases (9 min). The MBR plant was operated with a 

solids retention time (SRT) between 60 and 15 days; the mixed liquor suspended solids 

(MLSS) in the biological tank ranged between 4.6 and 8.7 kg m
-3

 whereas the MLSS 

content in the membrane tank ranged between 6.0 and 9.6 kg m
-3

, with a recirculation 

ratio (between the recirculation flow and permeate flow) of  2.5 from the membrane 

tank to the anoxic compartment.  

 

Table 5.1. Operating and analytical data collected during the 10 months of MBR operation, and 

input and output parameters used in PLS modelling.  

All Data Average (Stdev) Predicted Outputs Inputs Used 

Wastewater characteristics:  
TMP 

(Transmembrane 

pressure) 

All data but TMP 
 CODtw – Total COD (mg L

-1
) 524 (221) 

CODfw – COD after filtration (mg L
-1

) 155 (62) 

 CODsw – Soluble COD (mg L
-1

) 108 (58) 

NH4w – Ammonia (mg N L
-1

)  34 (14) 

CODtp 

(Total COD in the 

permeate) 

All data but total and 

soluble COD in the 

permeate 

NO2w – Nitrite (mg N L
-1

) 1.1 (1.7) 

NO3w – Nitrate (mg N L
-1

) 4.4 (6.1) 

Norgw – Organic N (mg N L
-1

) 19.6 (11.8) 

PO4w – Phosphate (mg P L
-1

) 3.3 (1.6) 

Ptw – Total phosphorus (mg P L
-1

) 9.5 (5.1) 

CODsp 

(Soluble COD in the 

permeate) 

All data but total and 

soluble COD in the 

permeate 
TSSw – Total suspended solids (mg L

-1
) 316 (221) 

VSSw – Volatile suspended solids (mg L
-1

) 264 (199) 

Permeate characteristics:  OR 

CODtp – Total COD (mg L
-1

) 36 (17) Operating parameters 

and on-line MLSSb CODsp – Soluble COD (mg L
-1

) 28 (13) 

NH4p – Ammonia (mg N L
-1

) 2.4 (2.9) 
Ntp 

(Total nitrogen in the 

permeate) All data but nitrogen 

measurements in the 

permeate 

NO2p – Nitrite (mg N L
-1

) 0.13 (0.19) 

NO3p – Nitrate (mg N L
-1

) 13.6 (10.5) 

Norgp – Organic N (mg N L
-1

) 1.39 (0.97) 

PO4p – Phosphate (mg P L
-1

) 1.31 (1.11) 
NOxp 

(Nitrite and nitrate in 

the permeate) 

Ptp – Total phosphorus (mg P L
-1

) 1.72 (1.25) 

Operating parameters:  

T – Temperature (ºC) 21 (5) 

Vslg/d – Volume of sludge purged per day 

(mL d
-1

) 
573 (359) 

Ptp 

(Total phosphorus in 

the permeate) 

All data but 

phosphorus 

measurements in the 

permeate 

 

HRT – Hydraulic retention time (hour) 10 (3) 

Jp – Permeate flux  (L m
-2

 h
-1

) 18.0 (6.2) 

DO – Dissolved oxygen (mg L
-1

) 1.6 (1.5) 

TMP – Transmembrane pressure (mbar) 195 (71) 

Activated Sludge characteristics:  

MLSS 

(Mixed liquor 

suspended solids on 

biological tank) 

All data but suspended 

solids of sludge 

MLSSb – Mixed liquor suspended solids,  

acquired on-line in the biological tank (g L
-1

) 
7.0 (1.1) 

TSSs – Total suspended solids in sludge 

recirculation (g L
-1

) 
9.1 (1.6) 

VSSs – Volatile suspended in sludge 

recirculation (g L
-1

) 
6.7 (1.2) 
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This system was operated under controlled permeate flux for a period of 10 months. 

During this period, operational changes were imposed in the permeate flux, SRT, 

temperature (due to seasons’ weather), hydraulic retention time (HRT) and dissolved 

oxygen. The average values of wastewater quality characteristics and operating 

parameters during the MBR operation are shown in Table 5.1. 

 

5.2.2. Sampling and chemical analysis 

Samples taken simultaneously at the influent to the biological tank, the activated sludge 

recirculation and the permeate, were immediately analysed by 2D fluorescence 

spectroscopy by immersion of an optical fibre probe in a stirred beaker. In order to 

avoid sedimentation of suspended solids present in wastewater and activated sludge 

samples, identical stirring conditions were applied to all samples (wastewater, activated 

sludge and permeate) during the acquisition of the fluorescence spectra.  

 

Additional laboratory analyses were performed for each sample. Wastewater samples 

were filtered through a filter with a pore size of 0.45 m.  Three different fractions of 

chemical oxygen demand (COD) were measured in wastewater samples (total, soluble 

after filtration and soluble after flocculation), while only total COD and soluble COD 

after flocculation were determined for permeate samples. The flocculation method used 

in wastewater and permeate samples is described in Mamais et al. (1993) and deduces 

the COD contribution of the colloidal particles that normally pass through 0.45 μm 

filters. COD, ammonia, nitrate, nitrite, total nitrogen, phosphate and total phosphorus 

were measured in wastewater and permeate samples, whereas total suspended solids 

(TSS) and volatile suspended solids (VSS) measurements were performed for 

wastewater and sludge samples. These parameters were analysed according to the 

APHA Standard Methods (APHA, 1998). Additionally, the following parameters were 

continuously acquired on-line: transmembrane pressure (TMP), temperature (T), 

dissolved oxygen (DO) and mixed liquor suspended solids in the biological tank 

(MLSSb) (see Guglielmi et al. (2007) for equipment details). 

 

5.2.3. 2D fluorescence spectra 

2D fluorescence spectra were acquired with a fluorescence spectrophotometer Varian 

Cary Eclipse equipped with excitation and emission monochromators and coupled to a 

fluorescence optical fibre bundle probe. The probe comprised 294 randomised optical 



Modelling of a MBR for wastewater treatment using 2D fluorescence monitoring data 

 

61 

 

fibres (147 excitation and 147 emission), each with a diameter of 200 µm and a length 

of 2 m. Fluorescence spectra were generated in an excitation wavelength range of 250 to 

700 nm (with an incrementing step of 10 nm) and an emission wavelength range 

between 260 and 710 nm, using excitation and emission slits of 10 nm and a scan speed 

of 3000 nm min
-1

. 

 

5.2.4. Development of PLS models 

2D fluorescence spectroscopy measurements resulted in excitation-emission matrices 

(EEMs) with more than 5 thousand values, a value of fluorescence intensity for each 

pair of excitation/emission wavelengths. Therefore, to reduce the dimension and the 

number of variables to introduce in the mathematical models, EEMs were vectorised 

and compacted. Compression was done to decrease the number of variables, co-linearity 

and noise using PARAFAC (parallel factor analysis), a decomposition method of multi-

way data (such as EEMs) that can be considered an extension of the well-known 

principal component analysis (PCA) (Bro, 1997). PARAFAC was applied using three 

components for sludge and permeate EEMs, four components for wastewater EEMs and 

six components when the three types of EEMs where compressed together, which 

captured more than 99% of variance in all cases. When the EEMs corresponding to the 

three types of matrices were used in the same model, compression was done 

simultaneously to eliminate co-linearity and redundancy of information. 

 

Multivariate statistical modelling was used to correlate operating and analytical 

parameters, including compressed fluorescence data, with selected performance 

parameters, aiming at process monitoring. Mathematical models were obtained through 

projection to latent structures (PLS) modelling, where an output is described by linear 

correlations of the inputs. In this study, selected operating parameters – permeate flux 

imposed (Jp), DO, HRT and SRT – were used together with the analytical data 

(obtained either through laboratory analysis or on-line) as inputs for model development 

(Table 5.1). A total of 130 MBR sampling events or observations were used, which 

were divided randomly into a training set (75% of the observations, which were used to 

calibrate the model) and a validation set (25% of the observations, which were used to 

validate the final model). The same training and validation data sets were used for the 

different models carried out for an output, in order to simplify the comparison between 

them. All data used in PLS models were previously normalised by subtracting the 
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respective average values and dividing by their standard deviations. The biomass 

concentration (as MLSS), a fouling descriptor parameter (TMP), and five descriptors of 

the biological treatment efficiency (total COD, soluble COD, concentration of nitrite 

and nitrate, total nitrogen and total phosphorus in the permeate) were selected as 

outputs. 

 

Six different statistical parameters were used to compare, select and optimise the best 

models for each output prediction. These parameters were the variance captured, the 

root mean square error of prediction (RMSEP), the R
2
 coefficients and the slopes 

between prediction and experimental data for both the training and test sets. The 

RMSEP was the main criterion used to analyse the prediction ability of each PLS 

model. It translates the error of the validation set and is calculated using the following 

equation: 

 

N

yy

RMSEP

N

i

pred




 1

2

exp)(

 

 

where ypred is the value predicted by the model, yexp is the value experimentally 

observed, and N is the total number of observations used in the model. Thus, the 

number of latent variables (LV) used to perform each PLS model was chosen based on 

the lowest RMSEP. 

 

To assess the importance of 2D fluorescence as a monitoring tool, PLS models were 

developed for each selected performance parameter (output) with and without the use of 

fluorescence spectra as inputs. EEMs were combined with operating and analytical data 

as inputs using four different modelling strategies: in exclusive combination with each 

type of EEMs (wastewater, sludge or permeate) and in combination with all the EEM 

types compressed together (only the best model out of these four strategies is presented 

for each output, for simplicity). In order to find outlier data, the confidence intervals for 

PLS predictions were defined as 2 times the standard deviation of the output 

experimental data. 
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Additionally, when simple, multilinear PLS modelling was not sufficient to predict an 

output, interaction and quadratic terms of the compressed fluorescence matrix were also 

introduced as inputs in the PLS models. The models thus obtained are able to describe 

complex, non-linear interactions: 

 

...... 3121

2

1321  xxfxxexdxcxbxay
 

 

Since not all the parameters initially used as inputs are truly correlated with the outputs, 

the useful predictors were selected for each output by a process of optimisation. Four 

mathematic methods were used for input elimination: iterative stepwise elimination 

(ISE) (Boggia et al., 1997), iterative predictor weighting (IPW) (Forina et al., 1999), 

stepwise elimination (Ryan, 1997), and the Martens uncertainty test (Forina et al., 2004) 

using the jackknife standard deviations (Duchesne and MacGregor, 2001). The use of 

different methods for selection of inputs resulted in models with different number of 

useful inputs, from which the optimal model was selected based on the RMSEP, and on 

the R
2
 coefficients when necessary.  

 

5.3. RESULTS AND DISCUSSION 

In the present work, PLS modelling was used to predict seven MBR performance 

parameters: transmembrane pressure (TMP), total chemical oxygen demand in the 

permeate (CODtp), soluble chemical oxygen demand in the permeate (CODsp), total 

nitrogen in the permeate (Ntp), nitrate and nitrite concentration in the permeate (NOxp), 

total phosphorus in the permeate (Ptp) and mixed liquor suspended solids (MLSS). 

TMP was chosen as a fouling indicator parameter, while the remaining parameters are 

key effluent quality characteristics that reflect the biological performance. 

 

Various multivariate regression models were developed to predict each output 

independently from each other, using as inputs the fluorescence data and/or a set of 

process data (operating and performance parameters – Table 5.1). Low RMSEP means 

less error in the prediction of the outputs, thus this criterion was primarily used to 

identify the best models obtained for each output. Table 5.2 presents the statistical 

parameters obtained for selected models of TMP, CODtp, CODsp, Ntp, NOxp, MLSS 

and Ptp.  
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Table 5.2. Statistical parameters for the selected PLS models. 

Outputs 
Model 

# 

2D fluorescence data incorporated 

in PLS 
Inputs selection 

Number of 

inputs  

LV used 

in PLS 

Variance 

(%) 
RMSEP

a
 R

2
train R

2
valid Slopetrain Slopevalid 

TMP 

1 
No 

no 27 8 87 39 0.87 0.70 1.00 1.01 

2
b
 yes 7 6 84 35 0.84 0.77 1.00 1.10 

3 
Permeate (3 components) 

no 22 13 86 36 0.86 0.76 1.00 1.09 

4
b
 yes 11 8 85 34 0.85 0.78 1.00 1.09 

TMP 

(without 

outliers) 

5 
No 

no 27 15 94 17 0.95 0.94 1.01 1.09 

6
b
 yes 6 3 92 15 0.92 0.96 1.01 1.07 

CODtp 

7
b
 No yes 9 3 77 8.4 0.77 0.76 1.00 1.09 

8 
Permeate (3 components) 

No 29 11 95 4.8 0.95 0.92 1.00 0.99 

9
b
 Yes 2 2 91 4.0 0.91 0.94 1.00 0.95 

CODsp 

10
b
 No Yes 8 4 66 6.3 0.66 0.75 1.00 1.19 

11 

Permeate (3 components) 

No 29 7 92 3.4 0.92 0.92 1.00 0.98 

12 Yes 16 8 93 3.2 0.93 0.93 1.00 0.97 

13
b
 yes (on-line inputs) 7 7 90 2.9 0.90 0.95 1.00 0.91 

Ntp 

14
b
 No Yes 5 1 67 5.7 0.67 0.70 1.00 1.03 

15
b
 Permeate (3 components) Yes 9 9 70 5.6 0.70 0.72 1.00 1.00 

16
b
 Permeate (10 components) Yes 8 7 70 5.4 0.70 0.73 1.00 1.00 

17 
Permeate (3 components + 

quadratic and interaction terms) 
Yes 24 15 78 5.1 0.78 0.77 1.00 0.96 

18
b
 

Permeate (10 components + 

quadratic and interaction terms) 
Yes 29 29 87 3.4 0.87 0.89 1.00 1.01 

NOxp 19
b Permeate (10 components + 

quadratic and interaction terms) 
Yes 31 31 91 4.0 0.91 0.86 1.00 0.99 

Ptp 20
b
 

All (6 components + quadratic 

and interaction terms) 
Yes 22 5 86 0.48 0.86 0.82 1.00 0.97 

MLSS 21
b Sludge (10 components + 

quadratic and interaction terms) 
Yes 21 6 89 0.33 0.89 0.90 1.00 0.99 

a
 Units: TMP in mbar, MLSS in g L

-1
 and the remaining in mg L

-1
. 

b
 Models represented in Figures 5.1-5.7. 



Modelling of a MBR for wastewater treatment using 2D fluorescence monitoring data 

 

65 

 

 

The optimisation of the PLS models, by selection of the useful inputs to predict the 

output, resulted in a general improvement of fitting (reducing the RMSEP) and it 

decreased the complexity of the models. The best method for the selection of the useful 

inputs differed with the output modelled and with the initial inputs used. However, 

regardless the selection method chosen, optimisation was essential to improve, simplify 

and reduce noise of the PLS models. Figures 5.1-5.7 summarise the optimised models 

obtained for the different outputs, where observed data was plotted against predicted 

data and the confidence intervals of the models were established. 

 

From the optimised models obtained, it is possible to infer about the relationships 

between the performance parameters modelled and the operating and analytical 

parameters used as predictors. Nevertheless, some prudence is needed when inferring 

about the correlation between inputs and outputs. The regression coefficients relative to 

some of the inputs showed very high standard deviations, meaning that, although these 

inputs are essential for the outputs prediction, the positive or negative correlation 

obtained may have or not a mechanistic interpretation related with the system’s 

behaviour. 

 

5.3.1. Modelling of transmembrane pressure 

Transmembrane pressure is a parameter usually assessed on-line to monitor the 

membrane performance of MBRs operated at controlled, constant permeate flux. Since 

TMP is a fouling indicator, in the present study this parameter was modelled in search 

of correlations between fouling and operating conditions. Two optimised models were 

obtained for TMP prediction, one without fluorescence data as input (model #2) and 

another including the fluorescence spectra obtained in the permeate (model #4)  (Table 

5.2 and Figure 5.1). Figures 5.1a and 5.1b show the fitting of the models without and 

with fluorescence data, respectively. Figures 5.1c and 5.1d show the regression 

parameters of TMP models with the respective standard deviations calculated by the 

jackknife method (Duchesne and MacGregor, 2001) (results shown are normalised 

values). The model developed incorporating permeate fluorescence data (model #4) 

showed that the three components resultant from EEM compression (C1, C2 and C3) 

could contribute strongly for TMP prediction (Figure 5.1d). However, the overall model 
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fitting did not improve significantly with the inclusion of fluorescence data as compared 

to model #2, based only on the operating conditions (Table 5.2). 

 
 

Figure 5.1. TMP prediction: a) without fluorescence data (model #2); b) with permeate 

fluorescence data (model #4). Regression coefficients of model inputs for TMP prediction: c) 

without fluorescence data (model #2); b) with permeate fluorescence data (model #4). Closed 

circles represent training data and open circles represent validation data, both in mbar. 

Regression coefficients are normalised. 

 

Despite the fact that PLS models carried out in this study did not take into account 

neither the operating time elapsed nor the time that the membranes were operated at 

each permeate flux value, satisfactory TMP models were achieved. Even so, a couple of 

TMP data points were not properly predicted by any of the obtained models and are 

outside the confidence intervals (Figures 5.1a and 5.1b). A careful look into the 
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operational history showed that outlier TMP data corresponded to samplings performed 

after a long time of operation without membrane cleaning (chemical cleaning of 

membranes was performed immediately after the collection of these data points), where 

TMP increase was essentially due to fouling accumulation throughout operation time. 

These two outlier TMP values were in the same range of values occurring in other days 

(~350 mbar, Figure 5.1a), which were predicted by the models. However, the latter 

corresponded to situations of higher permeate fluxes and/or removable fouling, which 

could be reduced by physical means (air scouring) without requiring the permeation 

interruption and membrane backwashing or chemical washing. This suggests that both 

optimised TMP models (#2 or #4) could then be used to alert to the need of chemical 

cleaning through deviations from the model. 

 
Figure 5.2. TMP prediction without fluorescence and without the outlier data (model #6): a) 

model fitting; b) regression coefficients of model inputs for TMP prediction. Closed circles 

represent training data and open circles represent validation data, both in mbar. Regression 

coefficients are normalised. 

 

The removal of these two data points resulted in an improved model (model #6) (Table 

5.2 and Figure 5.2) where the RMSEP decrease from 34.7 mbar to 14.7 mbar. Similarly 

to models #1-4, the incorporation of 2D fluorescence data did not improve model 

prediction in the absence of these outliers; indeed, the model optimisation process 

always resulted on the elimination of fluorescence as input (data not shown).  
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As expected, the highest contribution to TMP prediction comes from the permeate flux 

imposed (Jp) for all of the obtained models (Figure 5.1c, 5.1d and 5.2b). In fact, the 

positive correlation with permeate flux and negative correlation with operating 

temperature (T), obtained with PLS modelling, is a well-established fact for membrane 

permeation. Interestingly, the remaining inputs needed to predict TMP in both 

optimised models obtained with (model #2) and without (model #6) the TMP outliers, 

reflected the same operating conditions. For instance, biomass concentration correlated 

negatively with TMP in both models: where in model #2 (Figure 5.1c) the selected input 

was the total suspended solids in the membrane tank (TSSs), and in model #6 (Figure 

5.2b) was the on-line measurement of the mixed liquor suspended solids (MLSSb) and 

the mean volume of activated sludge purged from the system per day (Vslg/d), which is 

also correlated (inversely) with the biomass concentration. The negative correlation 

between TMP and biomass concentration may result from the increased consumption of 

the organic matter by the higher number of microorganisms at higher suspended solids 

concentration. This organic matter could include colloids and particles that might 

contribute to fouling (Rosenberger et al., 2006). Previous studies reported in lieterature 

pointed out that mixed liquor suspended solids impact on membrane fouling can be 

either positive, negative or have no impact for high, low or intermediate MLSS values, 

respectively (Le-Clech et al., 2006; Rosenberger et al., 2005). The negative correlation 

found in the present study for a low MLSS range (4.6 - 8.7 g L
-1

) corroborates these 

findings.   

 

In general, the optimised models obtained for TMP prediction confirmed that 

mathematical correlations obtained with the statistically-based models developed in this 

work can be representative of the relationships between the system parameters 

(operational and/or analytical).  

 

5.3.2. Modelling of chemical oxygen demand (total and soluble) in the permeate  

Total and soluble COD in the permeate are two important biological performance 

indicators. Since particulate COD is retained by the membrane, it is expected that most 

of the effluent COD was due to either undegraded organic compounds or microbial 

products. Therefore, the difference between CODtp and CODsp consists of colloids that 

were able to permeate through the membrane, including extracellular polymeric 

substances (EPS) produced in the MBR. It is expected that the abundance of this 
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permeated colloidal fraction is related to the retained colloidal fraction, which is known 

to be a major fouling agent. Similarly, the soluble COD detected in the permeate is also 

likely reflective of the total soluble microbial products in the MBR, a part of which is 

retained in the cake layer formed on the membrane surface, contributing to fouling. 

Therefore, although total COD in the permeate is mainly in the soluble form (Table 

5.1), both performance parameters are of interest in MBR monitoring. 

 
Figure 5.3. Prediction of the total COD in the permeate (CODtp): a) without fluorescence data 

(model #7); b) with permeate fluorescence data (model #9). Regression coefficients of model 

inputs for CODtp prediction: c) without fluorescence data (model #7); b) with permeate 

fluorescence data (model #9). Closed circles represent training data and open circles represent 

validation data, both in mg L
-1

. Regression coefficients are normalised. 
 

Modelling of the total chemical oxygen demand in the permeate (CODtp) was firstly 
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and excluding fluorescence data (Figures 5.3a and 5.3c). The model obtained after 

optimisation (model #7) described poorly the total COD in the permeate, with fitting 

correlation coefficients (R
2
) of 0.77 and 0.76 for training and validation respectively 

(see Table 5.2). However, with the addition of permeate fluorescence data as input 

information (model #9), the model was substantially improved, with R
2
 of 0.91 and 0.94 

for training and validation, respectively, and the RMSEP decreased from 8.4 to 4.0 mg 

COD L
-1

. In the latter model, only two inputs were needed to describe the CODtp after 

optimisation: the TMP and the second component of compressed permeate fluorescence 

data (C2) (Figure 5.3d). Thus, the inclusion of fluorescence data as input also improved 

the model by reducing the number of total inputs needed, simplifying the final model.  

 

Similarly to the total COD in the permeate (CODtp), the inclusion of 2D fluorescence 

data in PLS models substantially improved the model prediction of chemical oxygen 

demand in the permeate after precipitation of the colloidal matter or soluble COD 

(CODsp) (Figure 5.4). The optimised models obtained with fluorescence data (models 

#11 and 12) captured higher variance, had half of the error and better R
2
 coefficients for 

both training and validation sets (Table 5.2).  

 

Since the best model obtained for CODtp used only permeate fluorescence and TMP as 

inputs, other initial combination of inputs were attempted in PLS modelling for CODsp 

prediction (Table 5.1). This approach enabled the development of a model based only 

on the MLSSb acquired on-line, the imposed operating parameters and permeate 

fluorescence data. Figures 5.4b and 5.4d represent the optimised   model (model #13), 

which showed a substantially better fitting than model #12, using all the analytical data 

(Table 5.2). 

 

The high contribution of the fluorescence components to the models developed for both 

COD forms (CODtp and CODsp) suggests that the majority of the compounds 

contributing to the COD in the permeate are fluorescent or interfere with the 

fluorescence signal, and can be accounted for through 2D fluorescence measurements. 

This finding reinforces the results obtained in the previous studies (Chapter 3 and 4). 
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Figure 5.4. Prediction of the soluble COD in the permeate (CODsp): a) without fluorescence 

(model #10); b) with permeate fluorescence and on-line parameters (model #13). Regression 

coefficients of model inputs for CODsp prediction: c) without fluorescence (model #10); b) with 

permeate fluorescence and on-line parameters (model #13). Closed circles represent training 

data and open circles represent validation data, both in mg L
-1

. Regression coefficients are 

normalised. 
 

Despite that in the present work 2D fluorescence measurements were performed at-line 

after sampling, the optical probe can be coupled directly to an MBR to perform on-line 

measurements (Wolf et al., 2007; Wolf et al., 2001). Furthermore, fluorescence spectra 
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optical probes in multiple locations of the system and time-programmed with the help of 
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(Vslg/d)), meaning that, after calibration of the models developed, the total and soluble 

COD in the permeate can be monitored on-line, in situ and without laboratory work or 

reagents consumption. 

 

Although modelling of both total and soluble COD in the permeate without using 

fluorescence as input resulted in models with lower predictive capability, as compared 

to those incorporating fluorescence data, some relationships are noteworthy (Figures 

5.3c and 5.4c). For instance, a strong positive correlation was obtained between the 

COD in the permeate and the dissolved oxygen in the biological tank (DO). This 

correlation may result from shear forces promoted by increased aeration that could 

increase floc disaggregation, and EPS solubilisation, as well as cell lysis. Additionally, 

both models obtained for total and soluble COD without fluorescence show a 

relationship with the influent wastewater characteristics (positive correlation between 

influent and permeate COD), which was expected and might result from incomplete 

COD removal or increased EPS production at higher influent COD. In the same way, 

some other characteristics of the permeate (NH4, NO3 and PO4) correlated positively 

with the total COD, possibly linked by the overall wastewater treatment performance of 

the MBR. 

 

Another interesting correlation occurred between the permeate flux (Jp) and soluble 

COD in the permeate, CODsp (Figure 5.4c). This negative correlation with the CODsp 

(i.e. after precipitation of the colloidal fraction) may be due either to the higher 

production of EPS at lower hydraulic retention time, or to distinct retention and 

membrane selectivity due to different fouling mechanisms occurring at different 

permeate fluxes. Finally, Figure 5.3c shows a negative correlation between the MLSSb 

and total COD in the permeate, suggesting that the organic content in the permeate is 

mainly due to unconsumed COD, which would increase with decreasing biomass 

concentration. However, MLSSb correlated positively with the soluble COD in the 

permeate (Figure 5.4d), showing that despite the overall decrease in total COD, the 

soluble fraction increased with the biomass concentration, perhaps meaning it is mostly 

composed of products resulting from biological activity. 

 

From the COD models achieved with fluorescence it is possible to see not only a strong 

correlation with the second component of compression of the permeate EEMs, but also 
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a positive correlation of both total and soluble COD in the permeate with the TMP 

(Figures 5.3d and 5.4d). This relationship shows a link between membrane fouling and 

the permeate composition. In model #13 (Figure 5.4d), CODsp also correlated 

positively with temperature, which can be due to the microbial activity and/or to the 

increase of membrane permeability at higher temperature.  

 
Figure 5.5. Prediction of the total nitrogen in the permeate (Ntp): a) without fluorescence 

(model #14); b) with 3 components of permeate EEMs compression (model #15). Regression 

coefficients of model inputs for Ntp prediction: c) without fluorescence (model #14); b) with 3 

components of permeate EEMs compression (model #15). Closed circles represent training data 

and open circles represent validation data, both in mg L
-1

. Regression coefficients are 

normalised. 
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5.3.3. Modelling of nitrogen in the permeate 

Two different nitrogen parameters were successfully modelled: total nitrogen in the 

permeate (Ntp) and nitrite and nitrate concentration in the permeate (NOxp). Different 

data combinations were used to develop PLS models for prediction of the Ntp. Despite 

the good correlations obtained for both COD measurements in the permeate, modelling 

of total nitrogen either without or with fluorescence (models #14 and 15, respectively) 

resulted in weaker correlations (Table 5.2 and Figure 5.5). The best model achieved 

using fluorescence data incorporated permeate fluorescence matrices compressed into 3 

components (C1, C2 and C3). 

 
Figure 5.6. Prediction of total nitrogen in the permeate (Ntp): a) with 10 components of 

permeate EEMs compression (model #16); b) with 10 components of permeate EEMs 

compression plus their quadratic and interaction terms (model #18). Closed circles represent 

training data and open circles represent validation data, both in mg L
-1

. 

 

The models obtained showed that compression of permeate EEMs using only 3 

components are likely not enough to include all the information related with nitrogen. 

Indeed, nitrogen should be captured by 2D fluorescence of amino acids and proteins (as 

fluorophores), urea (due to colour interferences) and due to ammonia (as a fluorescence 

quencher). The combined interference of these compounds over the fluorescence spectra 

is complex and probably not totally captured in the three first PARAFAC components. 

Therefore, permeate fluorescence was also compressed with 10 components and used 

together with operating and analytical data to model total nitrogen in the permeate 
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models gave additional information for nitrogen prediction, resulting in a slight 

improvement of the PLS models, with lower RMSEP and higher R
2
 coefficients (Table 

5.2, models #14-16). However, even using more information from permeate 

fluorescence, PLS linear correlations did not result in a good and strong model, as R
2
 

coefficients were below 0.8.  

 

When a simple multilinear approach is not sufficient to model and predict an output, a 

more complex modelling tool may be considered. Consequently, interaction and 

quadratic terms (that reflect the crossed interferences between inputs) of the compacted 

permeate fluorescence matrix (either with 3 and 10 components) were introduced as 

inputs in the multilinear PLS models, resulting in more complex, non-linear models 

(models #17 and 18). This modelling approach resulted in better model fitting for total 

nitrogen prediction (Table 5.2, Figure 5.6b). The best optimised model required 

fluorescence EEMs compression with 10 components (model #18) and had better R
2
 

coefficients (0.87 and 0.89 for training and validation, respectively) and a much lower 

RMSEP, 3.4 mg L
-1

 than the regular multilinear PLS. Improvement of PLS models with 

the incorporation of quadratic and interaction terms reveals that the complex 

correlations between the convoluted information enclosed in fluorescence spectra are 

not linearly correlated with the concentration of total nitrogen in the permeate. 

 

Modelling of nitrite and nitrate concentration in the permeate (NOxp) was also initially 

attempted using the multilinear PLS modelling with and without fluorescence data. 

However, a good model prediction (with R
2
 coefficients of 0.91 and 0.86 for training 

and validation, respectively) was only achieved with the inclusion of quadratic and 

interaction terms of the 10 compression components of the permeate EEMs in the PLS 

modelling (Table 5.2, Figure 5.7a). Like for total nitrogen, the complex information and 

crossed interferences present in permeate spectra associated with nitrate and nitrite 

concentration required the use of non-linear correlations to fully extract that 

information.  

 

Furthermore, the optimisation of the models obtained for both nitrogen measurements 

(Ntp and NOxp) with quadratic and interaction terms from fluorescence spectra of the 

permeate resulted in the elimination of all inputs except the fluorescence data and 

temperature. Therefore, similarly to the COD measurements in the permeate, 2D 
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fluorescence spectroscopy can be used as a monitoring tool to predict Ntp and NOxp 

on-line, in situ and without laboratory work or reagents consumption. 

 

 
Figure 5.7. Prediction of: a) NOx in the permeate with 10 components of permeate EEMs 

compression plus their quadratic and interaction terms (model #19); b) total phosphorus in the 

permeate (Ptp) with 6 components of all EEMs compression plus their quadratic and interaction 

terms (model #20); c) MLSS with 10 components of sludge EEMs compression plus their 

quadratic and interaction terms (model #21). Closed circles represent training data and open 

circles represent validation data, both in mg L
-1

. 
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sludge fluorescence matrices, permeate fluorescence matrices or all matrices combined 

together. The best obtained model incorporated the information contained in all 

fluorescence spectra compressed together, but with R
2
 coefficients of only 0.74 and 0.72 

for training and validation, respectively, and RMSEP of 0.60 mg L
-1

. Therefore, a more 

complex, non-linear modelling approach was followed to deconvolute the information 

from fluorescence matrices. The quadratic and interaction terms of the 6 components 

resulting from compression of the EEMs of wastewater, sludge and permeate were 

incorporated as inputs in PLS modelling. With this strategy, a better prediction of total 

phosphorus in the permeate was achieved, with lower RMSEP (0.48 mg L
-1

) and better 

R
2
 coefficients (0.86 and 0.82 for training and validation, respectively) (Table 5.2, 

Figure 5.7b).  

 

Despite the good models obtained for the previous outputs using only permeate EEMs, 

the best models achieved for Ptp prediction required the three measurements of 

fluorescence. This suggests that fluorescence from the permeate might not capture the 

information from all the different phosphorus compounds, but with the addition of 

fluorescence information from influent wastewater and activated sludge, it was possible 

to predict total phosphorus concentration in the permeate.  

 

Figure 5.7b shows an outlier value that PLS modelling was not able to predict. This 

value is in the same range of values occurring in other days and there was nothing 

remarkable in the operational history. Therefore, the outlier may have occurred due to a 

variation in the phosphorus concentration in the permeate that is not reflected by any of 

the inputs parameters (or due to an analytical error when analysing phosphorus off-line). 

 

Although a good fitting was achieved with the incorporation of quadratic and 

interaction terms, the analysis of the regression coefficients is not feasible due to the 

complexity and high number of inputs used to model the total phosphorus in the 

permeate. 

 

5.3.5. Modelling of mixed liquor suspended solids 

One of the major concerns in biological wastewater treatment is the sludge production. 

Therefore, additionally to the permeate quality parameters, the mixed liquor suspended 

solids (MLSS) in the biological tank was also modelled. 
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The complexity of the 2D fluorescence spectra acquired from the sludge samples is 

caused not only by the broad range of compounds present in the medium but also by the 

high microbial cell density and high turbidity of the medium. Therefore, it was 

necessary to incorporate the quadratic and interaction terms of 10 compression 

components of sludge EEMs into PLS modelling to deconvolute the 2D fluorescence 

spectra of sludge and predict the MLSS. The model then obtained presents a good 

fitting with R
2
 coefficients of 0.89 and 0.90 for training and validation, respectively, and 

RMSEP of 0.33 g L
-1

 (Table 5.2, Figure 5.7c). 

 

Additionally, the optimised model obtained for MLSS prediction only required as inputs 

the permeate flux and dissolved oxygen combined with the 2D fluorescence data of the 

sludge, which are all monitored on-line. In fact, in MBRs for wastewater treatment, the 

MLSS is already a parameter usually monitored on-line; however the use of 2D 

fluorescence as a monitoring tool has the potential to incorporate the screening of 

several performance parameters simultaneously in the same tool. 

 

5.4. CONCLUSIONS 

The PLS models obtained prove that the performance of a MBR can be monitored by 

2D fluorescence spectroscopy combined with a few other process parameters through 

statistically-based modelling.  Moreover, the correlations between the input and output 

parameters obtained through this approach are significant and they highlight the 

relationships between operating and performance variables, which can be used for 

process control and optimisation.  

 

Three MBR performance parameters were successfully modelled using the a multilinear 

correlation: TMP, CODtp and CODsp. With the incorporation of 2D fluorescence data 

in PLS modelling, both CODtp and CODsp predictions were improved.  

 

When multilinear PLS was not sufficient to describe complex data correlations, 

particularly from the fluorescence matrices, it was possible to incorporate quadratic and 

interaction terms of the compressed EEMs to improve model prediction. Thereby, Ntp, 

NOxp, Ptp and MLSS models were achieved with good fitting. The good results 

obtained with the incorporation of quadratic and interaction terms of EEMs 
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compression demonstrates the complexity of the information contained in the 

fluorescence spectra and reinforces the capability of the mathematical tools used to 

extract the required information.  

 

Furthermore, it was shown that both soluble and total COD in the permeate, both 

nitrogen parameters in the permeate (Ntp and NOxp) and MLSS may be predicted based 

fully on on-line data (including 2D fluorescence data) and imposed operating 

parameters. The use of 2D fluorescence has the additional advantage of integrating the 

monitoring of several performance parameters of MBR for wastewater treatment. 

 

This work shows that 2D fluorescence spectroscopy deconvoluted by adequate 

mathematical tools is a promising, simple monitoring technique that can facilitate 

monitoring and optimisation of MBRs performance. 
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Chapter 

6 

 

 

DEVELOPMENT OF A HYBRID MODEL STRATEGY FOR 

MONITORING MEMBRANE BIOREACTORS 

 

 

SUMMARY 

In the present study, the performance of a membrane bioreactor (MBR) was modelled 

using a hybrid approach based on the activated sludge model number 3 (ASM3) 

combined with projection to latent structures (PLS) to predict the residuals of the ASM.  

The application of ASM to MBRs requires frequent re-calibration to adjust the model to 

variations in influent characteristics, determined through time-consuming analysis and 

batch tests. Considering this problem, the objective of this study was to improve ASM 

prediction ability with minimal additional monitoring effort. Hybrid models were 

developed to predict three MBR performance parameters: mixed liquor suspended 

solids (MLSS), COD in the permeate (CODp) and nitrite and nitrate concentration in 

the permeate (NOxp). For PLS modelling of ASM residuals three input strategies were 

used: 1) analytic and operating data; 2) operating data plus 2D fluorescence 

spectroscopy; 3) all the data. The first input strategy improved ASM prediction of the 

three selected outputs, and highlighted the lack of detailed and real-time information 

from wastewater and operating parameters in the ASM used in this study. In the second 

input strategy, the incorporation of updated data from 2D fluorescence spectroscopy 

resulted on better model fitting than in the first input strategy, for all the output 

parameters studied. Through the hybrid modelling approach it was possible to 

significantly improve the ASM predictions in real-time using 2D fluorescence 

measurements and other relevant parameters acquired on-line, without requiring further 

laboratory analysis. Furthermore, the third input strategy, incorporating all the collected 

data, did not significantly improve the prediction of the outputs beyond the second 

strategy. This shows that 2D fluorescence spectroscopy is a comprehensive monitoring 

tool, able to capture on-line the required information to complement, through hybrid 

modelling, the mechanistic information described by an ASM.  

 

Submitted as: Galinha, C.F., Carvalho, G., Portugal, C.A.M., Guglielmi, G., Crespo, J.G. and Reis, M.A.M., 2012. 

Development of a hybrid model strategy for monitoring membrane bioreactors. Journal of Biotechnology. 
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6.1. INTRODUCTION 

Membrane bioreactors (MBR) for wastewater treatment consist in an activated sludge 

process coupled with a membrane filtration process to separate the treated effluent from 

the activated sludge. MBRs have been increasingly employed for industrial and 

municipal wastewater treatment for their numerous advantages in respect to 

conventional activated sludge systems (CAS), such as compactness, high quality 

effluent and flexibility in treating problematic wastewaters (e. g. with foaming 

problems) (Judd, 2008).  

 

Despite the progress achieved in membrane technology in the recent years, the use of a 

MBR for wastewater treatment still involves high energy consumption (mainly for 

aeration used for membrane scouring and/or sludge recirculation, depending on the 

process configuration) and high operational costs due to membrane fouling, which 

requires tight monitoring and control (Le-Clech et al., 2006; Lesjean et al., 2011; Meng 

et al., 2009). In order to maintain membrane permeability to a sustainable level, the 

permeate flux is often carried out with a membrane-relaxation or a backwash mode. 

Moreover, membrane fouling has to be removed frequently, in a process that involves 

stopping reactor operation to physically and/or chemically wash the accumulated 

material. It is desirable that these operation interruptions are as spaced in time as 

possible in order to maximise the flow of wastewater that is treated. Therefore, further 

acceptance of MBR technology depends on developing automatic monitoring and 

control tools that are easy to implement and operate.  Mathematical models that 

accurately describe the MBR performance are necessary tools of such monitoring and 

control systems.  

 

The activated sludge systems have been studied in detail for many years, resulting in 

deep knowledge about the main heterotrophic and autotrophic biological processes. 

Four activated sludge models (ASM) were developed by the International Water 

Association (IWA) Task Group on Mathematical Modelling for Design and Operation 

of Biological Wastewater Treatment to describe the kinetics and stoichiometry of the 

different processes occurring in these systems (Henze et al., 2000). The first activated 

sludge model published, ASM1, was developed to model biological treatment for 

organic carbon removal, nitrification and denitrification. ASM1 predicts oxygen 

demand and sludge production in an activated sludge system. Later, ASM2 and ASM2d 
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were developed to include the phosphorus removal and organic carbon storage, 

respectively. ASM3 was the last to be developed and, although it does not include 

phosphorus removal, it addresses some problems found in the first model, ASM1, such 

as the inclusion of internal cell storage compounds in heterotrophs (shifting the focus 

from hydrolysis to the storage of organic substrates) and the replacement of the death-

regeneration concept by the growth-endogenous respiration model. 

 

Nevertheless, ASM were specifically developed to describe activated sludge processes 

under the typical operating conditions of the well-known CAS systems. Therefore, in 

order to apply ASM to model the biological process occurring in MBRs, some specific 

characteristics of the MBRs, which are different from CAS, must be taken in account: 

higher biomass concentration and viscosity, with lower biomass production; higher 

solids retention time; accumulation of influent non-biodegradable solids and microbial 

products larger than the membrane molecular cut-off; high aeration rates for scouring of 

the membranes (Fenu et al., 2010; Ng and Kim, 2007). 

 

To date, ASM have been applied to MBRs using two different approaches:  the so-

called plain or unmodified ASM, where differences between MBRs and CAS were only 

reflected in the parameters estimated to match model prediction with experimental data; 

or introducing major modifications by adding state variables to the ASM state vector 

(e.g. soluble microbial products, which play a major role in MBRs) (Fenu et al., 2010). 

Despite the overall improved fittings of the latter approach, a simple model is preferable 

(Fenu et al., 2010), since the addition of new variables implies additional laboratory 

analyses, some of which still do not have universally accepted analytical methods. An 

alternative to a complex mechanistic model (such as a modified ASM) could be a 

hybrid approach to improve ASM for MBR modelling. In fact, combined approaches 

between mechanistic and non-mechanistic models for chemical and biological processes 

were previously reported as advantageous either by expanding the mechanistic model to 

situations beyond its building assumptions, or by extrapolation of the non-mechanistic 

model to regions lacking calibration data (Duarte and Saraiva, 2003; Ricardo et al., 

2012; Thompson and Kramer, 1994). 

 

In the present study, a hybrid model is proposed, where a plain ASM is combined with a 

statistically-based model to predict the residuals from the mechanistic model. Hybrid 
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modelling with statistically-based models can use common analytical tools and/or on-

line measurements to improve prediction from a plain ASM. Therefore, the selection of 

the inputs needed to predict residuals with a statistically-based model can, 

simultaneously, highlight missing information in the mechanistic model. 

 

In the previous studies, 2D fluorescence spectroscopy showed high potential as an on-

line monitoring technique able to capture a broad range of information from complex 

biological media, including biologic wastewater treatment systems. In the present work, 

2D fluorescence was used as a tool to improve the predictions obtained with a plain 

ASM. Through the incorporation of 2D fluorescence measurements in hybrid models, 

an on-line correction of the ASM could be automatically done, without any additional 

off-line analytical measurements for ASM re-calibration. This study presents the 

development of a hybrid model based on ASM3 combined with projection to latent 

structures (PLS) to predict the residuals of the ASM.  The model was developed to 

predict the performance of an MBR for wastewater treatment, i.e. the ability of the 

system to remove major macro-pollutants (carbonaceous and nutrients) from wastewater 

with minimal sludge production. 

 

6.2. MATERIALS AND METHODS 

6.2.1. Membrane bioreactor set-up and operation  

A pilot scale MBR for domestic wastewater treatment, located in the wastewater 

treatment plant of Lavis (Trento), in Italy, was monitored for a period of approximately 

15 months. The MBR system was composed by a biological tank divided in anoxic and 

aerobic compartments (4.7 and 8.7 m
3
, respectively), followed by a 1.5 m

3
 tank where a 

hydrophilised PVDF ultrafiltration membrane module (GE Zenon ZW500d hollow fibre 

module with 0.04 m pore size and 100 m
2
 area) was immersed. The excess sludge in 

the membrane tank was recirculated to the anoxic compartment of the biological tank at 

a recirculation ratio (ratio between the recirculation flow and permeate flow) ranging 

between 2 and 3. Membrane permeation was performed by alternating suction and 

relaxation phases of 9 min and 1 min respectively, under controlled permeate flux. The 

MBR plant was operated at sludge retention time (SRT) between 15 and 60 days, with 

mixed liquor suspended solids (MLSS) in the biological tank and influent wastewater 

characteristics ranging as shown in Table 6.1. During the study period, several 

operational changes were imposed in the permeate flux, SRT, temperature (due to 
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seasons’ weather), hydraulic retention time (HRT) and dissolved oxygen concentration 

(DO). 

 

Table 6.1. Range of values of wastewater characteristics and mixed liquor suspended solids 

during both calibration and validation periods of the ASM. 

 
 

6.2.2. Sampling and chemical analysis 

Samples were collected simultaneously in the wastewater fed to the MBR, permeate 

effluent and mixed liquor recirculation. Suspended solids were measured in wastewater 

and sludge samples, and influent and effluent characteristics for main macro-pollutants 

were measured according to the APHA Standard Methods (APHA, 1998). Wastewater 

samples were filtered through a filter with a pore size of 0.45 m.  Three different 

fractions of chemical oxygen demand (COD) were measured in wastewater samples 

(total, soluble after filtration and soluble after flocculation), while only total COD and 

soluble COD after flocculation were determined for permeate samples. The flocculation 

method used in wastewater and permeate samples is described in Mamais et al. (1993) 

and deduces the COD contribution of the colloidal particles that normally pass through 

0.45 μm filters. COD, ammonia, nitrate, nitrite, total nitrogen, phosphate and total 

phosphorus were measured in wastewater and permeate samples, whereas total 

suspended solids (TSS) and volatile suspended solids (VSS) measurements were 

performed for wastewater and sludge samples. Additionally, the following parameters 

were continuously acquired on-line: transmembrane pressure (TMP), temperature (T), 

dissolved oxygen (DO) and mixed liquor suspended solids in the biological tank 

(MLSSb). 

 

50 days of ASM calibration 400 days of validation

Wastewater:

Total COD (CODtw) 165 - 1760 151 - 1862

Soluble COD (CODsw) 24 - 484 17 - 410

COD after filtration (CODfw) 64 - 537 46 - 467

Amonia (NH4w) 19.8 - 63.8 9.1 - 88.5

Nitrite (NO2w) 0.01 - 4.20 0.01 - 9.98

Nitrate (NO3w) 0.1 - 6.0 0.1 - 26.8

Organic nitrogen (Norgw) 7.6 - 80.2 0.1 - 89.0

Phosphate (PO4w) 0.1 - 5.7 0.1 - 7.35

Total phosphorus (Ptw) 2.7 - 20.2 1.2 - 33.0

Total suspended solids (TSSw) 130 - 1700 50 - 2100

Volatile suspended solids (VSSw) 115 - 1370 30 - 2071

Sludge:

Mixed liquor suspended solids in 

the biological tank (MLSSb) 5400 - 10200 4266 - 9491

Range of operation in mg/L
Parameter
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6.2.3. 2D fluorescence spectra 

2D fluorescence measurements were performed immediately after sample collection by 

immersion of an optical fibre probe in a beaker that was stirred, in order to avoid 

sedimentation of suspended solids present in wastewater and activated sludge samples. 

Identical stirring conditions were applied to all the samples (wastewater, activated 

sludge and permeate) during the acquisition of the fluorescence spectra. Fluorescence 

spectra were acquired with a fluorescence spectrophotometer Varian Cary Eclipse 

equipped with excitation and emission monochromators and coupled to a fluorescence 

optical fibre bundle probe. Fluorescence spectra were generated in an excitation 

wavelength range of 250 to 700 nm (with an incrementing step of 10 nm) and an 

emission wavelength range between 260 and 710 nm, using excitation and emission slits 

of 10 nm and a scan speed of 3000 nm min
-1

. 

 

6.3. HYBRID MODEL DEVELOPMENT 

6.3.1. Development of the ASM  

Brief description of the model 

An extended version of ASM3 (ASM3e for simplicity) was used as mechanistic model. 

The approach, originally proposed by Sin et al. (2005a), extends the conventional 

ASM3, assuming biomass growth to occur on both readily biodegradable substrate (SS) 

and storage products (XSTO). In terms of biochemical stoichiometry, two different 

pathways for biomass growth result in three yield coefficients, namely YH,S 

(heterotrophic direct growth on SS), YSTO (conversion of SS into storage compounds 

XSTO) and YH,STO (heterotrophic growth on stored substrates XSTO). Such stoichiometric 

coefficients are related to each other by means of the efficiency of oxidative 

phosphorylation δ (molP molO
-1

), according to the metabolic model proposed by van 

Aalst-van Leeuwen et al. (1997). The pilot plant layout was coded into AQUASIM 

platform (Reichert, 1994), with the following as input data: 

 Influent flowrate and composition; 

 Influent COD fractions according to the ASM3e, routinely assessed by means of 

respirometric batch tests; 

 Operational conditions, such as temperature in the biological tank and SRT. 

 

A sensitivity analysis was carried out in order to assess the most suitable parameters for 

model calibration; given the overall target of the hybrid model in this study, effluent 
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nitrogen (ammonia and oxidised forms), effluent COD and sludge production were 

chosen as output functions. The absolute-relative sensitivity method revealed the 

following to be the most significant parameters to be calibrated: 

 maximum growth rates of heterotrophs on both readily biodegradable substrate 

and storage products (µH,S20 and µH,STO20, respectively) and  

 maximum growth rate of autotrophs (µA20). 

 

Model calibration 

An initial period of 50 days was considered for the ASM calibration. Data used for 

calibration included off-line 24h-grab samples of permeate and on-line MLSS 

concentration. A trial-and-error procedure was used to estimate the biokinetic 

parameters. As a result of the calibration process, the following values were obtained 

and subsequently used for model validation: 

 µH,S20 = 0.89 d
-1

 

 µH,STO20 = 0.59 d
-1

 

 µA20 = 0.40 d
-1

 

 

After the initial model calibration, the ASM3e was used throughout a 400-day 

validation period in order to predict biomass and effluent characteristics. During an 

ASM validation, an input data vector is supplied to the model in order to obtain the 

output prediction corresponding to the current system status. Therefore, the application 

of this model was dependent on the acquisition of updated state data, which, in this 

study, consisted on the measurement of the wastewater characteristics every two or 

three days throughout the 400 days period of validation. 

 

6.3.2. Development of PLS models 

One hundred and thirty experimental observations, made after the 50 days period of 

ASM3e calibration, were used to develop the hybrid model. The differences between 

the ASM predictions and experimental measurements were calculated, and a projection 

to latent structures (PLS) technique was used to predict these residuals. Therefore, for 

each output, the hybrid model is the result of the ASM3e prediction plus the PLS 

prediction of the respective residual.  
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PLS models were trained using 75% of the experimental data collected, and the 

remaining 25% were used for validation. Training and validation sets of data were 

randomly chosen throughout the operation period used for ASM validation. For each 

output, three different input strategies were used (Figure 6.1): 1) using analytic and 

operating data (aiming to understand what type of information is missing in the ASM 

model); 2) using operating data plus fluorescence spectra (aiming at obtaining a model 

that does not require the acquisition of new analytical data, i.e. an on-line prediction); 3) 

using all data collected (to achieve the best fitting possible). 

 

Previously to PLS modelling, the excitation-emission matrices (EEMs) obtained 

through 2D fluorescence spectroscopy were analysed using a PARAFAC (parallel 

factor analysis) function in order to reduce the number of inputs and remove noise. 

PARAFAC was used to compress the EEMs of wastewater, sludge and permeate 

separately, with more than 99% of variance captured in all cases. The parameters 

resultant from fluorescence compression are referred further in this work as 

compression components (C1, C2,...). Each of the three types of EEM (wastewater, 

sludge or permeate) was incorporated into the PLS models either individually or 

combined altogether, in which case they were also compressed together to eliminate co-

linearity and redundancy of information. For simplicity, only the best model out of these 

four possibilities is presented for each output and modelling strategy. 

 

 In PLS models the number of latent variables and the selection of the best models were 

made based on the lower root mean square error of prediction (RMSEP), or, when the 

RMSEP results were not conclusive, by the R
2
 coefficients and the slopes of the linear 

correlation between predicted vs observed values. The models presented in this work 

were obtained after selection of useful inputs for each output prediction. Four different 

mathematic methods were used for input elimination: iterative stepwise elimination 

(ISE) (Boggia et al., 1997), iterative predictor weighting (IPW) (Forina et al., 1999), 

stepwise elimination (Ryan, 1997) and by the Martens uncertainty test (Forina et al., 

2004) using the jackknife standard deviations (Duchesne and MacGregor, 2001). For 

each output and each modelling approach the four methods were applied and the best 

models chosen.  
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Figure 6.1. Different input combinations used in PLS modelling for prediction of MLSS, CODp 

and NOxp residuals from ASM. 

 

When a simple PLS multilinear correlation was not sufficient to predict an output, the 

quadratic and interaction terms of fluorescence compression components were added to 

PLS models to account for non-linear correlations with fluorescence data. Similarly, the 

non-linear correlations between the outputs and the operating conditions (temperature 

(T), transmembrane pressure (TMP), dissolved oxygen (DO), hydraulic retention time 

INPUTS MODEL STRATEGY
Operational parameters

TMP - Transmembrane pressure

Jp - Permeate flux

HRT - Hydraulic retention time

DO - Dissolved oxygen

Vslg - Volume of sludge purged per day

T - Temperature

Wastewater characteristics

CODtw - Total COD in wastewater

CODsw - Soluble COD in wastewater

CODfw - COD in wastewater after filtration

NH4w - Amonia in wastewater

NO2w - Nitrite in wastewater

NO3w - Nitrate in wastewater

Norgw - Organic nitrogen in wastewater

PO4w - Phosphate in wastewater

Ptw - Total phosphorus in wastewater

TSSw - Total suspended solids in wastewater

Vssw - Volatile suspended solids in the wastewater

Sludge characteristics

TSSs - Total suspended solids of sludge

VSSs - Volatile suspended solids of sludge

MLSSb - Mixed suspended solids (online)

Permeate characteristics

CODtp - Total COD in the permeate

CODsp - Soluble COD in the permeate

NH4p - Amonia in the permeate

NO2p - Nitrite in the permeate
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Ntp - Total nitrogen in the permeate

PO4p - Phosphate in the permeate

Ptp - Total phosphorus in the permeate

Wastewater, or

Sludge, or

Permeate, or

All together.

"
A

N
A

L
IY

T
IC

"

"
A

L
L

"

Compression components of fluorescence matrices           

(C1,C2,…)

(when necessary, plus the respective interaction and quadratic 

terms)

(when necessary, plus their interaction and quadratic terms)

"
O

N
-L

IN
E

"



Chapter 6 

 

90 

 

(HRT), permeate flux (Jp) and volume of sludge purged per day (Vslg/d)) were also 

added by the inclusion of the quadratic and interaction terms of these operating 

conditions in PLS models, when required to obtain better model prediction.  

 

6.4. RESULTS AND DISCUSSION 

6.4.1. Activated sludge models 

Mechanistic modifications of ASM aiming at fitting the specific MBR biological 

processes are usually oriented for research work (requiring additional and laborious 

bench tests) and hard to implement for practical use. Therefore, for practical 

applications, a simpler activated sludge model is preferred. 

 

In the present study, an extended version of the ASM3, ASM3e (Sin et al., 2005a), that 

assumes that biomass growth occurs both on readily biodegradable substrate and on 

storage products, was applied directly to model the activate sludge performance of an 

MBR, without any further modification to membrane systems. The model developed 

aimed at predicting the performance of an MBR for wastewater treatment. Therefore, 

three outputs descriptive of the MBR sludge production and effluent quality were 

studied: mixed liquor suspended solids (MLSS), chemical oxygen demand in the 

permeate (CODp) and nitrite and nitrate in the permeate (NOxp). Figure 6.2 shows the 

values of MLSS, CODp and NOxp predicted by the ASM3e plotted against the 

respective observed values for the 130 experimental observations obtained during the 

ASM validation period, corresponding to those used for PLS modelling. The ASM used 

did not result in a good prediction for the three outputs, particularly after the initial 50-

70 days of the validation period (data not shown). MLSS and NOx prediction had not 

only low R
2
 of validation (of 0.13 and 0.55, respectively) and high RMSEP (1.1 g L

-1
 

for MLSS and 8.3 mg N L
-1

 of NOx), but also the slopes of predicted vs observed values 

were clearly different from 1. ASM prediction for COD had the best slope (1.04) of all 

outputs, showing that the COD model captured the trend of the experimental data, but 

with high dispersion of values (ASM predicted the same COD value for multiple 

observation points corresponding to very different COD experimental values). 
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Figure 6.2. ASM3e prediction of a) Mixed liquor suspended solids, b) COD in the permeate 

and c) Nitrite and nitrate concentration in the permeate. The predicted values are plotted against 

the observed values for 130 experimental observations obtained throughout the validation 

period. The units in all axes are in mg L
-1

. 

 

It should be noted that, in this work, the ASM was used during an extended validation 

period of more than 400 days, where possible changes on microbial population may 

affect the biokinetic parameters initially calibrated. After the initial model calibration, 

ASM may require frequent input of feedwater characterisation through batch tests to re-

adjust the model and improve the fitting (Fenu et al., 2010; Sin et al., 2005b). 

Additionally, despite the extrapolative ability of mechanistic models, the ranges of the 

parameters that characterise the wastewater during the validation period were not 

completely overlapped by those in the calibration period (Table 6.1), which also may 

affect the ASM prediction ability.  In this study, the input data consisted only on the 

conventional feedwater characteristics (Table 6.1), without additional re-calibration 

data. Therefore, it is clear from the results obtained that the ASM presented required 

additional input data throughout the validation period, which is one of the well-known 

shortcomings of ASM (Fenu et al., 2010).   
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6.4.2. Hybrid Modelling 

A hybrid model approach combines mechanistic and statistic-based modelling. In 

practice, this approach is an alternative to the need of frequently supplying the ASM 

with new input data which are laborious to acquire and time-consuming. PLS modelling 

of ASM residuals permits the use of any input data vector for model re-adjustment (on-

line data being preferred for practical reasons), as long as it contains valuable 

information that complements that contained in the mechanistic model. In this study, 

three different sets of PLS input data were compared: the first, aiming at understanding 

the pitfalls of the ASM; the second, obtaining a model based only on on-line data to 

improve the ASM prediction; the third, obtaining the best fitting possible (see Figure 

6.1). 

 

Table 6.2. Statistical parameters of selected hybrid models. 

 
a
 Root mean square error of prediction in mg L

-1
. 

b
 Latent variables used in PLS modelling. 

 

Regardless the PLS input strategy used, it was found that the hybrid model always 

resulted in prediction improvements in respect to the plain ASM3e (even for points 

corresponding to the period immediately following calibration), for the three outputs 

studied: mixed liquor suspended solids in the biological tank (MLSS), chemical oxygen 

demand in the permeate (CODp) and nitrite and nitrate concentration in the permeate 

(NOxp). Table 6.2 summarises the statistical parameters obtained for the selected hybrid 

models performed for each output. 

 

 

Outputs
Model 

#
Initial inputs in PLS

Number of 

inputs 

LV used 

in PLS

Variance 

(%)
RMSEPa R2

train R2
v alid Slopetrain Slopev alid

1 no fluorescence, with opx2 24 3 81 558 0.83 0.76 0.94 0.89

2 online with slg10x2 27 26 80 522 0.83 0.80 0.91 0.85

3 all with all6x2 17 17 79 536 0.82 0.78 0.92 0.88

4 no fluorescence 13 9 70 8.36 0.81 0.77 0.95 1.11

5 online with all6x2 17 5 76 6.51 0.86 0.86 0.90 0.93

6 all with perm10 9 5 77 5.63 0.86 0.90 0.92 1.01

7 no fluorescence 18 13 58 4.27 0.78 0.84 1.00 0.97

8 online with perm10x2 30 24 75 3.08 0.87 0.92 0.96 0.93

9 all with perm10x2 37 34 84 3.20 0.92 0.91 0.98 0.96

opx
2
 - interaction and quadratic terms of operational parameters.

slg10x
2
 - 10 compression components of sludge EEMs, plus their interaction and quadratic terms.

all6x
2
 - 6 components of all EEMs compressed together, plus their interaction and quadratic terms.

perm10 - 10 compression components of permeate EEMs.

perm10x
2
 - 10 compression components of permeate EEMs, plus their interaction and quadratic terms.

NOxp

MLSS

CODp
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Prediction of mixed liquor suspended solids 

Figure 6.3a shows the best hybrid model obtained for MLSS prediction when using only 

analytic data as PLS model inputs, and Figure 6.3b shows the normalised regression 

coefficients of the selected PLS model inputs (model #1). With this input strategy, the 

ASM prediction of MLSS was significantly improved. From the PLS model inputs 

selected as useful to predict the MLSS residuals (Figure 6.3b), it was possible to 

conclude that the ASM model lacks information not only about the influent (wastewater 

characteristics) but also about the effluent (permeate characteristics). In this model, 

MLSS residuals were also correlated with some of the operating parameters, mostly in a 

non-linear way. When incorporating fluorescence data (model #2), the model showed a 

better fitting to the experimental data (Figure 6.3c). In this model, the selected inputs 

were the hydraulic retention time (HRT) and dissolved oxygen (DO), besides inputs 

from 2D fluorescence spectra from the activated sludge (selected from 10 compression 

components of sludge EEMs plus their interaction and quadratic terms) (Figure 6.3d). 

Since HRT is an imposed operating parameter, DO is commonly measured on-line and 

2D fluorescence spectra can also be easily acquired on-line, this model has the potential 

to be applied using information exclusively acquired on-line, making possible real-time 

prediction of mixed liquor suspended solids in the MBR. 

 

Model #3 (Figure 6.3e and f), including both analytic and on-line data, was developed 

in search for a better model fitting, but it shows that even when all the data collected 

was incorporated into PLS modelling there was no real improvement in MLSS 

prediction, when compared with the on-line model (model #2). 



Chapter 6 

 

94 

 

 
Figure 6.3. MLSS prediction by hybrid models: a-b) model #1, c-d) model #2 and e-f) model 

#3. Predicted vs observed values respectively for each model (left). Close circles represent 

training data and open circles represent validation data, both in mg L
-1

. Regression coefficients 

of model inputs are in normalised units (right).  
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Prediction of chemical oxygen demand in the permeate  

PLS modelling using only analytic data improved considerably the COD prediction 

(model #4, Figure 6.4a) when compared to the ASM used. In this model, the difference 

between ASM prediction and experimental data is mainly explained, in a linear 

correlation, by: i) some operating parameters (transmembrane pressure (TMP), 

dissolved oxygen (DO), temperature (T) and mixed liquor suspended solids in the 

biological tank (MLSSb)); ii) almost all wastewater quality parameters, and iii) some of 

the permeate quality parameters (nitrate (NO3p) and total phosphorus (Ptp)) (Figure 

6.4b). This input requirement indicates that the mechanistic model used required 

additional information in what concerns wastewater characteristics and operating 

conditions (DO and T) for adequate COD prediction, and lacks crucial information 

about the membrane performance (which is reflected by TMP). In fact, TMP and DO 

revealed to be essential in the prediction of COD residuals regardless the input strategy 

used (Figure 6.4). This gap in the application of ASMs for MBR modelling has been 

previously acknowledged, and indeed some modified ASM models have included 

resistance terms to account for fouling development (Jiang, 2007). 

 

The best model achieved to predict COD in the permeate was model #6, which required, 

besides TMP, DO and T, a few wastewater characteristics and two components of the 

permeate fluorescence analysis to model the ASM residuals (Figure 6.4e and f). 

However, on-line adjustment of ASM is possible with fairly good fitting using only 

TMP, DO and a combination of compression components of the three EEMs obtained 

together, including some of their quadratic and interaction terms (model #5, Figure 6.4c 

and d). This model shows that even without acquiring the analytic data concerning 

wastewater characteristics, this PLS model can use fluorescence data from wastewater, 

sludge and permeate assuring a good prediction of the COD residuals from the ASM. 

Indeed, it was previously demonstrated that 2D fluorescence spectroscopy is able to 

capture the information regarding several key performance parameters of a MBR 

(Chapter 5), thus this technique likely replaced those additional analytical data. 
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Figure 6.4. COD in the permeate prediction by hybrid models: a-b) model #4, c-d) model #5 

and e-f) model #6. Predicted vs observed values respectively for each model (left). Close circles 

represent training data and open circles represent validation data, both in mg L
-1

. Regression 

coefficients of model inputs are in normalised units (right). 
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Figure 6.5. NOx in the permeate prediction by models: a-b) model #7, c-d) model #8 and e-f) 

model #9. Predicted vs observed values respectively for each model (left). Close circles 

represent training data and open circles represent validation data, both in mg L
-1

. Regression 

coefficients of model inputs are in normalised units (right). 
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Prediction of nitrite and nitrate concentration in the permeate 

Figure 6.5a shows the predicted vs observed values of nitrite and nitrate concentration 

in the permeate (NOxp) for the PLS model based purely on analytic data (model #7). 

With this hybrid strategy, the mechanistic prediction was significantly improved. The 

selected parameters for this model included the operating conditions and almost all 

wastewater and sludge analytic parameters, and a multilinear correlation was sufficient 

to obtain a fairly good fitting (Figure 6.5b). The inputs selection process eliminated all 

permeate parameters, meaning that these parameters are not useful to predict the 

residuals of NOxp from the ASM. Interestingly, despite the elimination of permeate 

characteristics as inputs in the previous model, the best models obtained for NOxp 

prediction were the ones that incorporated fluorescence data from the permeate (Table 

6.2). These results reinforce the assumption that, although 2D fluorescence is not 

directly correlated with specific quality parameters, it can be used as a fingerprint of the 

system status, which captures information that indirectly is related to the target quality 

parameters. Models #8 and #9 gave similar fitting, and both where based on non-linear 

correlations with the 10 compression components of permeate EEMs (Figure 6.5c-f). 

The on-line measurements are able to predict NOxp residuals with the best RMSEP 

(model #8). Nevertheless, the incorporation of wastewater characteristics in model #9 

improved the training set fitting (both the R
2
 coefficient and the slope, Table 6.2). 

Through inputs selection analysis, the temperature (T) and mixed liquor suspended 

solids in the biological tank (MLSSb) were found to be necessary in all PLS models to 

complement the ASM results for NOxp prediction, meaning that even if these 

parameters appear to have low contribution (in Figure 6.5d and f) they are essential in 

the PLS modelling of NOxp residuals. 

 

Overall analysis of the hybrid modelling strategies 

Different conclusions can be withdrawn from the three different input strategies used for 

PLS modelling. With the first input strategy it was shown that the incorporation of 

analytic and operating data in the hybrid models, through PLS, can substantially 

improve the prediction of a plain ASM lacking detailed and updated input information 

about the influent wastewater. Additionally, the selection of useful inputs in these PLS 

models showed that the hybrid model required information from the sludge and 

permeate characteristics to improve prediction, reflecting that the ASM kinetic 

parameters were probably not adjusted throughout the entire validation period. 
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In the second input strategy, the incorporation of updated data from a comprehensive 

technique, such as 2D fluorescence (able to assess the system status), not only improved 

ASM prediction, but also resulted on better model fitting than when only analytic and 

operating data were used as PLS inputs. Furthermore, the incorporation of 2D 

fluorescence spectra and operating parameters in hybrid models also resulted on the 

possibility of on-line correction of the ASM, which could be automatically done without 

requiring additional laborious analytical measurements for ASM re-calibration. The last 

input strategy tested, using all data collected, aimed at obtaining the best fitting 

possible. However, it did not significantly improve model fitting for any of the outputs 

studied, showing that 2D fluorescence spectroscopy spectra is a powerful technique, 

able to capture important information about the system, that can be combined with few 

on-line data to optimise the ASM prediction in real-time. 

  

6.5. CONCLUSIONS 

The application of ASM to MBRs requires supplying the model with updated input data 

that depends on off-line, laborious analysis. However, the present work shows that 

modelling the residuals of a plain ASM using PLS to correlate them with relevant 

parameters measured on-line can significantly improve the outputs prediction from 

ASM in real-time, without requiring further laboratory analysis. 

 

For the three outputs modelled in this study (MLSS, and effluent COD and NOx), the 

best results were achieved when using inputs from fluorescence spectra acquired either 

on wastewater influent, sludge or permeate. 2D fluorescence spectroscopy showed to be 

a comprehensive monitoring tool that can be used in hybrid models, in combination 

with other on-line parameters to complement the mechanistic information described by 

an ASM in order to obtain good prediction of key MBR performance indicators.  
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CONCLUSIONS AND FUTURE WORK 

 

 

7.1. FINAL OVERVIEW AND CONCLUSIONS 

In this study, it was found that correlations across the conventional MBR monitoring 

data are abundant and that relationships between operating parameters and performance 

variables are complex and interdependent. However, the initial approach followed could 

not provide robust enough correlations to enable the elimination of monitoring 

parameters for process description, and thus reduce the analytical effort required for full 

MBR characterisation. Furthermore, it was shown that two-dimensional fluorescence 

can be applied for monitoring of biological systems due to the ability of this technique 

to distinguish matrices with different compositions. It was also proven that the 

complexity of interferences on the fluorescence signal prevents the simple and direct 

quantitative measurement of specific fluorophores in complex biological systems, such 

as wastewater treatment systems. However, since fluorescence spectroscopy is highly 

sensitive to the composition of biological media and to the environmental conditions, 

these effects were not regarded as a problem but, on the contrary, as a source of 

information. Therefore, fluorescence EEMs were used as fingerprints, which can be 

regarded as extremely rich, although complex, sources of information.  

 

The challenge, then, was the integration of such information in quantitative models, 

where fluorescence data can be related with selected process performance parameters 

determined independently. Hence, multivariate statistical analysis, combining 

PARAFAC and PLS, was used to successfully extract relevant information contained in 

fluorescence EEMs and correlate it to process parameters. The PLS models obtained 
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proved that the performance of a MBR can be monitored by 2D fluorescence 

spectroscopy combined with a few other process parameters through statistically-based 

modelling.  Moreover, optimisation of PLS models, through the selection of useful 

modelling inputs, resulted in the elimination of the redundant input parameters. 

Therefore, the correlations obtained between the selected inputs and the output 

parameters are significant and highlight the relationships between operating and 

performance variables.  

 

Following this multilinear approach, three MBR performance parameters were 

successfully modelled: TMP, CODtp and CODsp. The incorporation of 2D fluorescence 

data in PLS modelling proved to be essential for successful prediction of both CODtp 

and CODsp. On the other hand, when the multilinear PLS was not sufficient to describe 

the complex data correlations, particularly from the fluorescence matrices, quadratic and 

interaction terms of the compressed EEMs were incorporated in the PLS model to 

improve prediction. Thereby, Ntp, NOxp, Ptp and MLSS models were achieved with 

good fitting. The good results obtained with the incorporation of quadratic and 

interaction terms of EEMs compression demonstrates the complexity of the information 

contained in the fluorescence spectra and reinforces the capability of the mathematical 

tools used to extract the required information. Moreover, it was found that both soluble 

and total COD in the permeate, both nitrogen parameters in the permeate (Ntp and 

NOxp) and the MLSS can be predicted based fully on on-line data (including 2D 

fluorescence data) and imposed operating parameters.  

 

Besides the pure statistical modelling approach, this study demonstrated as well that a 

hybrid approach, combining a plain ASM with PLS to monitor a MBR, can result in 

significant improvement of the prediction of MLSS, effluent COD and effluent NOx. 

Furthermore, the best results achieved with the hybrid modelling strategy were obtained 

through the incorporation of 2D fluorescence data and other on-line parameters to 

complement the mechanistic information described by a plain ASM. It was thus shown 

that PLS, through the integration of relevant monitoring data measured on-line, can be 

used to adjust the ASM prediction, in real-time, without requiring further laboratory 

analysis. 
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Therefore, in this PhD project it was found that multivariate statistical modelling, such 

as PCA and PLS, can use on-line data from fingerprinting techniques, such as 2D 

fluorescence spectroscopy, in combination with few additional operating parameters, to 

predict simultaneously several key performance parameters of an MBR, replacing 

analytical and time consuming measurements. Furthermore, statistically-based tools and 

2D fluorescence spectroscopy proved also to be useful when used in combination with a 

plain mechanistic model, such as ASM3, for prediction improvement of performance 

parameters, in real-time, without requiring further laboratory analysis. 

 

2D fluorescence spectroscopy showed to be a powerful and promising monitoring tool 

for application in MBRs for domestic wastewater treatment. Moreover, after 

development of the multivariate statistical models they may be continuously updated 

and improved with new data. 2D fluorescence data may also be acquired in multiple 

locations of the system (off-line or on-line, according to specific needs), and time-

programmed with the help of an optical “switch-box”. Considering that the acquisition 

of a complete fluorescence map takes only a few minutes (depending on the number of 

data points aimed), this tool can be used as an on-line, non-invasive, real-time 

monitoring technique.  

 

7.2. SUGGESTIONS FOR FUTURE WORK 

The results obtained in the frame of this PhD thesis were a step forward on the 

development of new on-line monitoring tools for MBRs for domestic wastewater 

treatment. However, these results can be improved and extended in several ways. The 

following recommendations for future work can be proposed.  

 

Despite the correlations already found between 2D fluorescence data and performance 

parameters of an MBR, this same multivariate approach could be used to explore further 

information contained in fluorescence spectra. With this objective, more specific 

parameters, such as proteins and polysaccharides composing both soluble and bound 

EPS, could be evaluated and correlated with fluorescence. The statistical models found 

would then be useful to monitor these compounds, with reduced analytical effort, during 

the MBR operation, and infer on their impact on membrane performance. 
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Furthermore, since 2D fluorescence spectroscopy can assess common fluorophores 

constituent of EPS, which are accepted as major fouling agents, the acquisition of 

fluorescence spectra at the membrane surface, in situ, should be also considered in 

future research work. 

 

Some of the PLS models presented required the MLSS data as model input, which in 

the present work was acquired on-line. However, since MLSS was also successfully 

modelled, further investigation on the selection of useful inputs would be necessary to 

fully replace the MLSS on-line probe.  

 

Regarding the study of further correlations of 2D fluorescence with new parameters, it 

may occur that PLS modelling, with linear or with quadratic and interaction terms, 

becomes inefficient to extract more complex information from fluorescence spectra. In 

that case, other non-mechanistic approaches can then be considered, such as artificial 

neural networks. This alternative approach could be useful to predict e.g., the effluent 

ammonia, which was not achieved in the present work.  

 

Concerning hybrid modelling, it would be interesting the use of 2D fluorescence with 

appropriate modelling tools to assess wastewater characteristics (or even the biokinetic 

parameters), on-line. This information could then be used in an ASM to model and 

predict the performance of the activated sludge system, without any loss of the 

mechanistic information. 

 

With the elimination of redundant modelling inputs, the correlations obtained between 

the selected inputs and output parameters are significant and highlight the relationships 

between operating and performance variables. These correlations could then be used for 

process control.  Therefore, as the ultimate objective, the modelling approach presented 

could be implemented within expert-control systems, where the data captured by the 

fluorescence fingerprints could be used to rapidly evaluate the system status and support 

a real-time adjustment of the operating conditions. 
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