
Jaquilino Lopes Silva

Bachelor of Science in Computer Science

A Distributed Platform for the Volunteer
Execution of Workflows on a Local Area

Network

Thesis submitted in fulfilment of the requirements for the Degree of
Master of Science in
Computer Science

Adviser : Dr. Hervé Miguel Cordeiro Paulino, Assistant Profes-
sor, FCT-UNL

Co-adviser : Dr. Francisco de Moura e Castro Ascensão de
Azevedo, Assistant Professor, FCT-UNL

Jury:

Chairman: Dr. Nuno Manuel Robalo Correia, Full Professor,
FCT-UNL

Main referee: Dr. Paulo Jorge Pires Ferreira, Associate Profes-
sor, IST

Other member of the jury: Dr. Hervé Miguel Cordeiro Paulino, Assistant Pro-
fessor, FCT-UNL

June, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/157629201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

A Distributed Platform for the Volunteer Execution of Workflows on a Local
Area Network

Copyright c© Jaquilino Lopes Silva, Faculdade de Ciências e Tecnologia, Universidade
Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

I dedicate this dissertation to my family, to all friends and
classmates from high school to university. A special feeling of
gratitude to my grandmother, Maria, who always encouraged

me to take this master course.

vi

Acknowledgements

Many thanks to Prof. Dr. Hervé Paulino for being my adviser and for all time spent help-
ing me during the elaboration of this MSc dissertation. In the same way, I would like
to thank my co-adviser Prof. Dr. Francisco Azevedo for having invited Prof. Dr. Hervé
Paulino to coordinate this dissertation in collaboration with him and for all supporting.
Yours technical background and skills have contributed significantly to the success of this
work. You were excellent for me!

I also would like to dedicate this dissertation to all my co-workers from Albatroz
Engineering, who supported and advised me whenever I needed to clarify some doubts
about system requirements. Special thanks go to Eng. Miguel Ramos, Eng. Tiago Gusmão
and Eng. Gomes Mota. Without their supporting may be the realization of this work
would not be possible.

Finally, I would like to acknowledge and thank Albatroz Engineering for having par-
tially funded this work and provided enough computing resources to test the developed
system.

Thank you very much!

vii

viii ACKNOWLEDGEMENTS

Abstract

Albatroz Engineering has developed a framework for over-head power lines inspec-
tion data acquisition and analysis, which includes hardware and software. The frame-
work’s software components include inspection data analysis and reporting tools, com-
monly known as PLMI2 application/platform.

In PLMI2, the analysis of over-head power line maintenance inspection data consists
of a sequence of Automatic Tasks (ATs) interleaved with Manual Tasks (MTs). An AT
consists of a set of algorithms that receives as input one or more datasets, processes them
and returns new datasets. In turn, an MT enables human supervisors (also known as
lines inspection operators) to correct, improve and validate the results of ATs. ATs run
faster than MTs and in the overall work cycle, ATs take less than 10% of total processing
time, but still take a few minutes. There is data flow dependency among tasks, which
can be modelled with a workflow and even if MTs are omitted from this workflow, it is
possible to carry the sequence of ATs, postponing MTs.

In fact, if the computing cost and waiting time are negligible, it may be advantageous
to run ATs earlier in the workflow, prior to validation. To address this opportunity, Al-
batroz Engineering has invested in a new procedure to stream the data through all ATs
fully unattended.

Considering these scenarios, it could be useful to have a system capable of detecting
available workstations at a given instant and subsequently distribute the ATs to them.
In this way, operators could schedule the execution of future ATs for a given inspection
data, while they are performing MTs of another.

The requirements of the system to implement fall within the field Volunteer Comput-
ing Systems and we will address some of the challenges posed by these kinds of systems,
namely the hosts volatility and failures. Volunteer Computing is a type of distributed
computing which exploits idle CPU cycles from computing resources donated by volun-
teers and connected through the Internet/Intranet to compute large-scale simulations.

This thesis proposes and designs a new distributed task scheduling system in the

ix

x ABSTRACT

context of Volunteer Computing Systems, able to schedule the ATs of PLMI2 and exploit
idle CPU cycles from workstations within the company’s local area network (LAN) to
accelerate the data analysis, being aware of data flow interdependencies.

To evaluate the proposed system, a prototype has been implemented, and the simula-
tions results have shown that it is scalable and supports fault-tolerance of tasks execution,
by employing the rescheduling mechanism.

Keywords: Volunteer Computing system, Interdependent tasks, Distributed task schedul-
ing, Fault-tolerance, Scalability

Resumo

A Albatroz Engenharia SA desenvolveu um sistema de aquisição e análise de da-
dos das inspeções de linhas elétricas, que inclui hardware e software. Os componentes de
software incluem ferramentas de análise e elaboração dos relatórios das inspeções, conhe-
cidas como PLMI2.

A análise dos dados de uma inspeção no PLMI2 consiste numa sequência de Tarefas
Automáticas (TAs), intercaladas com Tarefas Manuais (TMs).

Uma TA consiste num conjunto de algoritmos que recebem como entrada um ou mais
conjuntos de dados, processa-os e cria novos conjuntos de dados. Por sua vez, uma
TM permite aos supervisores humanos (também conhecidos como operadores) corrigir,
melhorar e validar os resultados das TAs. As TAs executam com maior rapidez do que
as TMs, e no ciclo geral de processamento dos dados de uma inspeção, demoram menos
de 10% do tempo total, mas ainda na ordem dos minutos. Há uma dependência no fluxo
de dados entre as tarefas, que pode ser modelada como um workflow e se as TMs forem
omitidas deste workflow, é também possível realizar a sequência das TAs, adiando TMs.

De facto, se o custo da computação e o tempo de espera forem desprezáveis, pode
ser vantajoso executar as TAs no início do workflow, antes do processo de validação pe-
los operadores. Para abordar essa oportunidade, a Albatroz Engenharia tem investido
num novo procedimento alternativo para fazer transmitir os dados entre todas as TAs
totalmente autónoma.

Considerando estes cenários, seria útil dispor de um sistema capaz de detetar que as
estações de trabalho estão livres num determinado instante e subsequentemente distri-
buir as TAs por elas. Deste modo, os operadores poderão agendar a execução das pró-
ximas TAs para um determinado conjunto de dados de uma inspeção, enquanto estão a
fazer as TMs de um outro conjunto de dados.

Os requisitos do sistema a implementar enquadram-se no âmbito dos Sistemas de
Computação Voluntária (SCV) e vamos abordar alguns dos desafios impostos por esses
tipos de sistemas. Computação Voluntária é um tipo de computação distribuída que

xi

xii RESUMO

tira partido de ciclos livres dos recursos de computação doados por voluntários (i.e.,
os proprietários dos recursos) e que estão ligados através da Internet ou Intranet para a
computação de simulações de grande escala. Pretendemos desenvolver um novo sistema
de escalonamento de tarefas no contexto dos SCV, capaz de agendar as TAs do PLMI2
e explorar os ciclos livres de CPU das estações de trabalho presentes na rede local da
empresa (i.e., na LAN) para acelerar a análise dos dados, tendo em consideração as suas
interdependências.

Esta tese propõe e desenha um novo sistema de agendamento distribuído de tarefas
no contexto da Computação Voluntária, capaz de agendar as TAs do PLMI2 e explorar os
ciclos livres de CPU das estações de trabalho dentro da LAN, para executar essas tarefas,
tendo em consideração os requisitos definidos pela Albatroz Engenharia.

Para avaliar o sistema proposto, foi implementado um protótipo e os resultados das
simulações mostram que este é escalável e suporta tolerância a falhas na execução das
tarefas, recorrendo a um mecanismo de reescalonamento das tarefas.

Palavras-chave: Computação Voluntária, Interdependências entre tarefas, Sistema de
escalonamento distribuído de tarefas, Tolerância a falhas, Escalabilidade

Contents

Acknowledgements vii

Abstract ix

Resumo xi

1 Introduction 1
1.1 Motivation . 3
1.2 Problem Description . 4
1.3 Context . 6
1.4 Solution . 8
1.5 Contributions . 8
1.6 Document Organization . 9

2 State of the Art 11
2.1 Introduction . 11
2.2 Job Scheduling System . 12

2.2.1 Scheduling Architectures . 13
2.2.2 Resource Discovery . 15
2.2.3 Job Scheduling Policy . 16
2.2.4 Job Dispatching . 18

2.3 Job scheduling in Volunteer Computing Systems 18
2.3.1 Scheduling . 19

2.4 Peer-to-Peer Approach to Scheduling . 20
2.5 Scheduling of Interdependent Tasks . 22
2.6 Discussion . 24

3 The Distributed Execution Platform 25
3.1 Requirements . 25
3.2 Overall Architecture . 26

xiii

xiv CONTENTS

3.3 Task Identification and Contents . 29
3.4 Communication: Client-application↔ Server-node 29
3.5 Communication: Server-node↔ Running Task 32
3.6 Communication: Server-node↔ Server-node 33

3.6.1 Master Election . 34
3.6.1.1 Fault-tolerance . 35
3.6.1.2 Properties . 38

3.6.2 Scheduling and Distributed Execution of Tasks 38
3.6.2.1 Fault-tolerance . 40
3.6.2.2 Properties and assumptions 42

3.6.3 Server-node Joining/Leaving . 43

4 Implementation 45
4.1 Introduction . 45
4.2 Task Interface . 46
4.3 Integration of a New Task in the System . 46
4.4 Inter-tasks Dependencies . 47
4.5 Server-node Module . 48
4.6 Execution Logging . 52

5 Evaluation 55
5.1 Functional Evaluation . 55
5.2 Experimental Evaluation . 55

5.2.1 Computing Resources . 56
5.2.2 Simulation Framework . 56
5.2.3 Test Configurations . 57
5.2.4 Experimental Results . 58

5.3 Non-Functional Requirements Evaluation 61

6 Conclusions and Future Works 63

A Appendix 71
A.1 List of Acronyms . 71

List of Figures

1.1 A workflow with ATs and MTs intertwined. ATs are outlined with the
green colour and MTs with purple. 2

1.2 A general view of the current system architecture. 4
1.3 Another possible way to structure the workflow with the MTs on the up-

stream. 5

2.1 The states of a job. 13
2.2 Centralized scheduling architecture. Adapted from Li et al. [36]. 13
2.3 Distributed scheduling architectures. Adapted from Li et al. [36]. 14
2.4 Hierarchical scheduling architecture. Adapted from Li et al. [36]. 15
2.5 The pull model for resource discovery. Adapted from Li et al. [36]. 16
2.6 The push model for resource discovery. Adapted from Li et al. [36]. 16
2.7 The push-pull model for resource discovery. Adapted from Li et al. [36]. . 17
2.8 The architecture of PGS. Adapted from Cao et al. [37]. 21

3.1 A general view of proposed system architecture. 28
3.2 Schedule an automatic task (client-application↔ server-node). 30
3.3 Subscribing interest in getting the progress and state of a set of tasks (client-

application↔ server-node). 31
3.4 Progress reporting (server-node→ client-application). 31
3.5 Cancelling the execution of a task (client-application↔ server-node). . . . 32
3.6 Progress reporting (running task→ server-node). 33
3.7 Reporting the final results of a task (running task→ server-node) 33
3.8 Cancelling the execution of a task (server-node↔ running task) 34
3.9 An illustration of master election protocol. 37
3.10 An illustration of the ENQUEUE protocol. 39
3.11 A system configuration on which can be minimized the race conditions. . 40
3.12 Example illustrating the interaction protocol for system’s state download-

ing by a joining node. 44

xv

xvi LIST OF FIGURES

4.1 Overview of components of a server-node. 48

5.1 Workflow used for testing purposes. 58
5.2 System scalability with the increasing number of server-nodes. 59
5.3 The average waiting time by a task in ready-to-run queue, according to the

number of server-nodes in the system. 60

List of Tables

2.1 Description of job state. 12
2.2 A summary of advantages and disadvantages of centralized, distributed

and hierarchical scheduling. 15

3.1 List of functional requirements . 26
3.2 List of non-functional requirements . 27
3.3 Format of the messages exchanged between a client-application and server-

node. 30
3.4 Format of the messages exchanged between a server-node and a running

task. 32
3.5 Format of the messages used in the master election. 35

4.1 Example of dependencies representation among ATs. 47

5.1 Functional requirements satisfaction. 56
5.2 List of workstations used to test the system. 56
5.3 Average makespan in minutes by a workflow for each number of server-

nodes in the system. 58
5.4 Average waiting time in minutes by a task for each number of server-nodes

in the system. 59
5.5 Average waiting time by a task and average makespan of a workflow, in

minutes, for each number of failed servers. 60
5.6 Non-functional requirements satisfaction. 61

xvii

xviii LIST OF TABLES

List of Algorithms

- Procedure on reception of TTBM(TRY_TO_BE_MASTER reputation map_size
timestamp) . 36

- Procedure on reception of SNME(START_NEW_MASTER_ELECTION) . 36
- Procedure elect master() . 36
3.1 Master Election . 36
- Procedure on CPU idle() . 41
- Procedure on reception of TD(TRY_DEQUEUE task_uuid timestamp) . . . 41
- Procedure dispatch() . 41
3.2 Distributed dequeuing . 41

xix

xx LIST OF ALGORITHMS

Listings

4.1 Example of task description file. 47
4.2 Example of the server configuration file. 51
4.3 Excerpt of a server log. 53

xxi

xxii LISTINGS

1
Introduction

This thesis fits in an enterprise environment, emerging as a real need of Albatroz Engi-
neering, a private company dedicated to research, development and innovation in fields
such as robotics, aeronautics, software, etc. (see J.Gomes Mota [1] for more details). This
company was founded in February 2006 when Gomes Mota and Alberto Vale conceived
the Power Line Maintenance Inspection (PLMI) system, which is an innovative, inte-
grated, real time, full-featured airborne solution for over-head lines inspection [2].

Since then, Albatroz Engineering has developed a comprehensive framework for over-
head power lines inspection data acquisition and analysis [3], that includes hardware
(sensors for data acquisition) and software tools. The framework’s software components
include inspection data analysis and reporting tools, commonly known as PLMI Fron-
tEnd v2.0, abbreviated PLMI2, and one of its main features is the classification of points
of interest (PoIs) detected during over-head power line inspections. A point of interest
represents an entity (such as a tower, or a tree branch dangerously close to the electrical
wires) detected either by a human operator or by an automatic process during a session
of data acquisition.

In PLMI2, the analysis of over-head power line maintenance inspection data com-
prises a sequence of automatic tasks (ATs) followed by manual tasks (MTs). An AT con-
sists of a set of algorithms that receives as input one or more datasets, processes them
and returns new datasets. In turn, an MT enables human supervisors (also known as
lines inspection operators) to correct, improve and validate the results of ATs.

Figure 1.1 depicts the usual workflow for the processing of inspection data. A work-
flow can be modelled as a Directed Acyclic Graph (DAG), where each node represents
a task and an edge between two nodes means the data dependency between two tasks.

1

1. INTRODUCTION

(2) Features extraction

(0) Import data

Features validation

(3) Detect PoIs

PoIs validation

(4) Aggregate PoIs

Annotate PoIs

(5) Generate report

(1) Georeferencing

B C

D E

A

F

G

H

H

I

I

Figure 1.1: A workflow with ATs and MTs intertwined. ATs are outlined with the green
colour and MTs with purple.

The data flow dependency is represented by the labelled arrows while the workflow it-
self by the blue arrows (the thicker ones). Note that a task may depend on one or more
outputs of another, being this determined by the number of edges between them. For
instance, the AT Features extraction depends on one output of Import data (A) and on two
of Georeferencing (D and E). The labels A, B, C, and so on, represent the identifiers of
output datasets generated in database when a task is executed. The only manual task
which may generate a new dataset on database is the Features validation. The remaining
ones just make changes on existing datasets.

Briefly, for any processing of an inspection data, there are at least the following tasks
organized according to a waterfall model:

0 (automatic) Import inspection data (sensors’ data and video) to a centralized database
server;

1 (automatic) Geo-referencing of imported data and returning the results to the database

2

1. INTRODUCTION 1.1. Motivation

server. This task consists in merging acquired data from three sensors, i.e., GPS,
IMU1 and LiDAR2;

2 (automatic) Features extraction or classification, which is the process of finding
power lines, towers, vegetation, buildings, ground, roads and water;

• (manual) Features validation, i.e., the validation of extracted features from the pre-
vious task;

3 (automatic) Detection of Points of Interest;

• (manual) Validation of Points of Interest;

4 (automatic) Aggregate Points of Interest according to relevance and maintenance
criteria;

• (manual) Add annotations to Points of Interest;

5 (automatic) Generate the inspection analysis report files.

For the first AT, the data to be imported is stored in a local workstation (where the
PLMI2 is installed) or else in some location within the company’s Local Area Network
(LAN). For the remainder ATs and MTs, the input data is available from the database
server. All tasks are performed in a workstation where the PLMI2 application is already
installed, and each one of them retrieves data from a central server and stores the subse-
quent results in this same server.

The PLMI2 application is the main entry point to the system, i.e., it is the tool from
where the analysis of inspection data is triggered, when an operator requests the execu-
tion of the first AT. PLMI2 provides for the processing of the inspection data; for a very
rich and complete visualization of the power line and surrounding environment [3], by
combining data from different sensors; and for the generation of inspections’ report files.

On the other hand, the database server is very simple, i.e., it does not do any com-
plex processing. It simply provides a database service to store the large data volumes
processed by PLMI2 applications. The system architecture is illustrated in Figure 1.2.

1.1 Motivation

Automatic tasks run faster than manual tasks. In the overall work cycle, ATs take less
than 10% of total processing time. Each AT takes from 1 to 15 minutes to complete its
execution and they are intertwined with MTs. Therefore, the lines inspection operators
wait during the execution of ATs but not too much to make it useful to leave the computer
unattended to carry other duties.

1http://en.wikipedia.org/wiki/Inertial_measurement_unit
2http://en.wikipedia.org/wiki/LIDAR

3

http://en.wikipedia.org/wiki/Inertial_measurement_unit
http://en.wikipedia.org/wiki/LIDAR

1. INTRODUCTION 1.2. Problem Description

PLMI2

Workstations

PLMI2

... LAN
DB

Database server

Figure 1.2: A general view of the current system architecture.

Currently, the PLMI2 enables an operator to request the execution of ATs in several
ways. Some restrictions apply, such as Import data must be the first to be executed and all
MTs should be performed before the Generate report due to the final inspection’s report
quality. Figures 1.1 (already presented) and 1.3 depict two different ways to perform the
analysis of an inspection data.

Even if MTs are omitted from the workflow, it is possible to carry the sequence of
ATs, although with a significant amount of errors. Nevertheless, the quality control tools
embedded in PLMI2 highlight these errors which may contribute to a more efficient hu-
man validation. In conclusion, if the computing cost and waiting time are negligible it
may be advantageous to run ATs earlier in the waterfall stream, prior to validation on the
upstream. The configuration depicted in Figure 1.3 takes this approach to the extreme
performing all automated tasks before manual tasks.

Moreover, even if one maintains the current waterfall model, it may be advantageous
to allocate optimal computing resources to execute ATs instead of investing in top per-
forming computers for every human operator since the validation tasks do not benefit
from the additional computing power and a modest CPU is sufficient.

To address this opportunity, Albatroz Engineering has invested in a new procedure
to stream the data through all ATs fully unattended. Depending on the type of power
line, this produces between 10% and 70% of correct results before human validation and
correction.

1.2 Problem Description

Taking into consideration the scenarios described in the previous section, it may be use-
ful to have a system capable to distribute ATs among the available hosts within the com-
pany’s Local Area Network (LAN). In this way the lines inspection operators could re-
quest the scheduling of next tasks for a given inspection data analysis, to be executed on
available hosts, while they are performing manual tasks of another inspection data.

Briefly, the aim of Albatroz Engineering is to have a system that allows the scheduling

4

1. INTRODUCTION 1.2. Problem Description

(2)BFeaturesBextraction

(0)BImportBdata

(3)BDetectBPoIs

(4)BAggregateBPoIs

(5)BGenerateBreport

(1)BGeoreferencing

B C

D E

A

F

G

H

I

I

I

AnnotateBPoIs

PoIsBvalidation

FeaturesBvalidation

Figure 1.3: Another possible way to structure the workflow with the MTs on the up-
stream.

of all possible combinations of ATs for any inspection data analysis, either during day-
time or night-time, by exploiting idle CPU cycles from the workers’ workstations within
the LAN and consequently minimizing the time that lines inspection operators wait for
ATs results to be available

It is necessary to design and implement a system able to detect that the hosts are
available at a given instant and subsequently distribute the automatic tasks to them. In
addition to the task’s execution, this system should be aware of their inter-dependencies,
as explained in Section 1.1. Moreover, operators may want to prioritize the execution of
tasks of a workflow relatively to tasks of another workflows. Therefore, when an operator
requests the execution of a task, the system may execute it immediately or not, according
to its priority and the number of other tasks that are waiting to be executed.

Computing resources should be able to execute ATs, either in a batch processing mode
(which will be useful, for instance, during night-time because the company has several
hosts that are stopped overnight), or in a screensaver-like mode, which will exploit idle
CPU cycles from computing resources during lunch hours, meetings, etc., to accelerate
the inspection data analysis.

These requirements lead us to design and implement a system which falls within the
field of Volunteer Computing Systems (VCSs), defined in Section 1.3, which addresses

5

1. INTRODUCTION 1.3. Context

some of the challenges posed by these systems, such as hosts volatility (i.e., a host may
join and leave the system any time it wants) and heterogeneity, i.e., hosts have different
operating systems, CPU type, RAM size, etc.

1.3 Context

Volunteer Computing (VC) is a type of distributed computing in which computer owners
(i.e., the volunteers) provide their computing resources, such as idle CPU cycles, storage
and Internet bandwidth, for scientific projects, which use these resources to distribute
the computing of large-scale processes, such as simulations. The term volunteer comput-
ing was introduced by Luis F. G. Sarmenta in his Ph.D. thesis in 2001 [4]. The first VC
project was the Great Internet Mersenne Prime Search (GIMPS) [5], which searches for
Mersenne prime numbers and began in 1996. One year later, in 1997 the Distributed.net
was founded, which is a general-purpose distributed computing project where thou-
sands of users around the world donate the power of their personal computers to aca-
demic research and public-interest projects [6]. The SETI@home [7], since its release in
1999, has demonstrated the great potential of VC. SETI@home is an Internet-based public
VC project with the purpose of analysing radio signals, searching for signs of extraterres-
trial intelligence [8].

One of the main advantages of volunteer computing over traditional solutions based
on supercomputers is the fact that it is not expensive. However, the development of
VC projects needs to address some problems and challenges in order to provide high-
throughput computing. The big challenge in Volunteer Computing Systems (VCSs) is
the scheduling of work-units in highly dynamic environment composed of multiple het-
erogeneous computers, as stated in [9]; and the common problem to address in these
systems is the distributed resources management [10].

On the first viewpoint, one might sense that VC is restricted only to systems where
computing resources are located in the scope of the Internet, but not necessarily, since
people within an organization (i.e., within a LAN) can also volunteer their workstations
during idle time, in the same way as Internet users volunteer theirs. Indeed, an impor-
tant aspect emphasized by L. Sarmenta in [11], is that volunteer computing can be used
not only for building a wide area network (WAN) of parallel computing more power-
ful than a supercomputer but it also can be employed even for small scale environments,
such as companies or institutions, to exploit the power of workstations to provide similar
solutions like a supercomputer.

Unlike common existing VC projects on which the resource providers are located in
the scope of the Internet [12], the scope of the system to be developed is LAN-based, i.e., it
may have many producers (submission hosts) of tasks, all workstations are potential pro-
ducers and consumers (execution hosts), and the VC resources are only those connected
by the company’s LAN, meaning that some of them can be fully dedicated to execute
automatic tasks and others may not. Thus, it is not relevant to address the challenges

6

1. INTRODUCTION 1.3. Context

related with reliability (e.g., trying to protect the system against malicious volunteers) as
identified and discussed in [4].

The resources in the company’s LAN are heterogeneous (e.g., operating system, CPU,
memory, availability, volatility, etc.) and the degree of their volatility is very high during
the day (when needed, some of them keep running during the night), meaning that the
system should address these problems because the heterogeneity may delay the overall
tasks execution time and/or make the scheduling decisions more difficult.

We intend to implement a system with the following features:

1. A distributed execution system and decentralized;

2. Execution of workflows of tasks;

3. Volunteer Computing-based;

4. Directed to the LANs;

5. Resilient to the nodes failures (fail-stop model, not Byzantine failures);

Volunteer Computing systems for the Internet, such as SETI@home [7] or those sys-
tems based on BOINC middleware [13], are resilient to the failures, take into account
hosts heterogeneity, volatility, etc., but they are all centralized.

Systems based on Desktop Grid Computing (DGC), which is a type of distributed sys-
tem that uses computing, network, and storage resources of idle desktop PCs distributed
over multiple LANs or the Internet [14], are volunteer-based, operate within a LAN or
interconnect LANs but we have not found none of them which has simultaneously all
features that the system we propose should have.

At the moment of this writing, the Condor [12, 15, 16], which is a DGC system that
manages clusters of desktop workstations, supports execution of dependent or indepen-
dent jobs/tasks, provides supporting for fault-tolerance, addresses challenges such as
resources volatility, heterogeneity, etc., is directed either to LAN or Internet, is the only
system that supports the majority of features provided by our proposed system, but its
current release has some limitations 3 on jobs which use checkpointing as mechanism for
the fault-tolerance supporting and it relies on a single central manager.

For example, the system proposed in [17] follows a peer-to-peer scheduling archi-
tecture, takes into account the hosts’ heterogeneity when it makes scheduling decisions
and harvests night-time idle cycles from desktop computers distributed geographically
in different time zones over the Internet, but does not consider tasks with dependencies.

The system presented in [18] follows a peer-to-peer based Volunteer Computing ar-
chitecture, i.e., a decentralized scheduling model, but does not support fault-tolerance.

Entropia [19] is a DGC system directed to LAN or Internet, which addresses a number
of challenging issues, such as fault-tolerance supporting, scalability, robustness, etc., but
does not consider the scheduling of tasks/jobs containing dependencies.

3http://research.cs.wisc.edu/htcondor/manual/v8.1/1_4Current_Limitations.html

7

http://research.cs.wisc.edu/htcondor/manual/v8.1/1_4Current_Limitations.html

1. INTRODUCTION 1.4. Solution

Regarding distributed scheduling algorithms in the context of Volunteer Computing,
currently, it may be found research works such as:

• For example, [20] is a fully distributed scheduling algorithm which takes into con-
sideration several issues, such as scheduling interdependent tasks of DAG and ex-
ploits idle CPU cycles, but it lacks of fault-tolerance supporting of task execution;

• The decentralized scheduling algorithm CoAllocation proposed in [21], for schedul-
ing tasks having dependencies in Grid environments, which tries to achieve the
load-balancing in terms of number of tasks scheduled in each computing resource,
yields good results, but lacks of the fault-tolerance supporting.

1.4 Solution

We developed a new task scheduling system in the context of Volunteer Computing Sys-
tems, able to schedule simulated automatic tasks of PLMI2 and exploit the idle CPU cy-
cles from hosts within Albatroz Engineering’s LAN to accelerate the data analysis, being
aware of their inter-dependencies and priorities. These tasks are executed by the com-
pany’s computing resources either in a batch processing mode or in a screensaver-like
mode. This system follows a distributed scheduling architecture, on which each sched-
uler may have either the role of server and/or client; which does not rely on the process
of computing resources discovery such as pull and push modes (defined later in Subsec-
tion 2.2.2) because all schedulers are supposed to have the same set of tasks and when
a scheduler’s host becomes idle it just asks other servers if it can start executing a given
task.

The main challenges of this thesis are:

• Dealing with the data flow dependency among tasks, i.e., how to represent that
an automatic task depends on the results of other tasks which have not finished
yet their executions, meaning that an AT should only start its execution once its
dependable tasks have processed the data on which it depends on. In other words,
tasks are organized in an assembly-like manner, where the output of a task is fed to
following tasks;

• Dealing with the computing resources volatility, i.e., they may join or leave the
system unexpectedly;

• The implementation of a distributed system with fault-tolerance supporting.

1.5 Contributions

The main contributions of this thesis are:

8

1. INTRODUCTION 1.6. Document Organization

• The design of a system fully distributed, able to meet the requirements defined by
Albatroz Engineering, namely the scheduling of tasks of a workflow within a LAN
following a Volunteer Computing model;

• Implementation of a prototype of the proposed system;

• Evaluation of the system scalability and its ability for fault-tolerance supporting;

• Evaluation of the average waiting time by a task, i.e., the time since it becomes
ready to be executed until the system starts executing it and the average completion
time of a workflow.

1.6 Document Organization

This document has six chapters organized as follows:

• Chapter 1 introduces us to the problem, its motivations and challenges.

• Chapter 2 discusses what is a job scheduling system, what are the common schedul-
ing architectures employed, how the computing resources are discovered and fi-
nally presents the related works from state-of-the-art.

• In Chapter 3, we present the system requirements, the communication protocols
among its entities, the algorithms for achieving the distributed scheduling and its
architecture.

• Chapter 4 explains in details how a system prototype was implemented.

• In Chapter 5, we describe how it was developed a simulation framework to auto-
matically test the prototype and we present the results obtained by evaluating it
with different test configurations. We also provide an evaluation of the require-
ments satisfaction by our developed prototype.

• In Chapter 6, we present the overall conclusions of this thesis, the goals that were
met and we propose the future work needed to improve the implemented proto-
type.

9

1. INTRODUCTION 1.6. Document Organization

10

2
State of the Art

This chapter briefly presents a literature overview of existing job scheduling systems,
in which we define and discuss several issues related to this field of study. Concretely,
we present the common architectures employed by existing scheduling systems, their
advantages and disadvantages taking into consideration the requirements of a given
job scheduling problem. We also talk about the scheduling for Volunteer Computing,
its main challenges and problems. Furthermore, this chapter presents some of close re-
lated works from state-of-the-art, namely the scheduling in Peer-to-Peer systems. Finally,
this chapter ends with a brief discussion about the scheduling systems and what are the
mechanisms that our system will employ.

2.1 Introduction

The scheduling problem is not new in the field of distributed computing systems. It has
been a subject of study for more than two decades; hence, several solutions to solve this
problem in an effective way have been proposed in the field of Artificial Intelligence,
often based on genetic algorithms and heuristic search strategies [9, 22, 23, 24]. A con-
siderable number of researches have been done in order to categorize the field [4, 10, 12,
25] and several systems addressing this problem have been implemented in real-world
scenarios [7, 11, 15, 26, 27].

The remainder of this chapter is organized as follows. Section 2.2 gives an overview
of what a scheduling system is about and how it works. Section 2.3 provides basic char-
acteristics of scheduling in the context of Volunteer Computing Systems and overviews
existing policies. Related works concerning the scheduling in peer-to-peer systems are

11

2. STATE OF THE ART 2.2. Job Scheduling System

Sate Description

Submitted The job was submitted to the scheduler and is waiting in the job queue
for its turn to be processed, according to its type, priority and resources
it needs, then going to Ready state.

Ready The job is waiting in the ready job queue to be assigned to the execution
host.

Scheduled The job was dispatched to the execution host.

Running The job is being executed.

Suspended The job was interrupted, either explicitly by a user through an exter-
nal command or the job suspended itself waiting for some condition to
allow it to proceed.

Cancelled The job was cancelled (e.g., by a user).

Aborted The job was aborted due to an internal system error.

Terminated The job has finished execution.

Table 2.1: Description of job state.

presented in Section 2.4. Section 2.5 presents two related works concerning the schedul-
ing of tasks with dependencies and provides references to more related works. Finally, a
general discussion about what techniques will be applied by our system is presented in
Section 2.6

2.2 Job Scheduling System

This section gives a general overview of what a scheduling system is about and how it
works in the context of distributed computing systems.

Job scheduling is defined as the process of mapping jobs for execution into available
computing resources. The concept of job is not clearly defined in state-of-the-art, thus in
the context of this research we will define it has being a unit of computational work to
be performed. Some research papers [21, 28] consider that it can be split in many small
tasks, but in our case we will consider a job as being the same as a task, and these terms
may be used interchangeably. A resource will be considered as any computer in the LAN
with minimum required features to run a job.

The scheduler has the responsibility of selecting resources and scheduling jobs in such
a way that user and application requirements are met, in terms of global execution time
(throughput), cost of used resources and response time. Generally, a job can have the
states shown in Figure 2.1 and described in Table 2.1. The provided diagram is similar to
those diagrams of state transition of a process, found in many classical operating systems’

12

2. STATE OF THE ART 2.2. Job Scheduling System

Submitted Ready Scheduled Running

Aborted

Suspended Cancelled

Terminated

Figure 2.1: The states of a job.

central
scheduler

jobs

job1
job2

job3

node2node1 node3

Figure 2.2: Centralized scheduling architecture. Adapted from Li et al. [36].

books, for example in [29, 30, 31], or found in [32, 33, 34]. Note that a job goes into Sub-
mitted, Suspended or Cancelled state by a user’s action while the remainder transitions
are triggered by the scheduling system.

2.2.1 Scheduling Architectures

When designing and developing a scheduling system, the designers should consider the
following architectures according to where and how the scheduling decision is made.
There are three proposed architectures [12, 35], centralized, distributed and hierarchical,
which are detailed below.

Centralized scheduling: In this architecture, there is only one scheduler that is respon-
sible for making all decisions, i.e., how to select a job and to which resource it will be
scheduled. This approach is illustrated in Figure 2.2.

Distributed scheduling: In this architecture, multiple processes cooperate with each
other for making scheduling decisions. The communication type between schedulers

13

2. STATE OF THE ART 2.2. Job Scheduling System

local
resources

local
resources

local
resources

local
resources

scheduler1

scheduler3 scheduler4

scheduler2

jobs

jobs

jobs

jobs

jobs

jobs

(a) Distributed scheduling with direct communication between sched-
ulers.

local
resources

scheduler3

scheduler1

scheduler2

jobsjobs

jobs

jobs jobs

jobs

Job pool

local
resources

local
resources

(b) Distributed scheduling with indirect communication be-
tween schedulers via job pool.

Figure 2.3: Distributed scheduling architectures. Adapted from Li et al. [36].

can be divided in two sub-types [36], namely (1) direct communication and (2) indirect
communication via job pool. In (1) each scheduling process features a list of it peers
to whom it can communicate with. When it cannot schedule a given job locally then it
sends the job to other schedulers as shown in Figure 2.3(a), whereas in (2), illustrated
in Figure 2.3(b), when a job cannot be locally scheduled, then it is placed on a job pool
to be scheduled by other and therefore the schedulers’ policies should ensure that all
submitted jobs to the job pool eventually will be executed.

Hierarchical scheduling: In this approach, jobs are submitted to a central node, which
dispatches them to local schedulers, whereas each local scheduler submits jobs to its com-
puting resources. Figure 2.4 depicts this approach.

In Table 2.2, we summarize the advantages and disadvantages of each scheduling
architecture.

14

2. STATE OF THE ART 2.2. Job Scheduling System

local
resources

central
scheduler

local
scheduler1

local
scheduler2

jobs

jobs jobs

local
resources

Figure 2.4: Hierarchical scheduling architecture. Adapted from Li et al. [36].

Architecture Advantages Disadvantages

Centralized - Makes better scheduling deci-
sions because the scheduler has
access to all information about
all resources.

- Single point of failure;
- Does not scale well with the in-
creasing of number of resources.

Distributed - Scalable;
- Can offer better fault tolerance
and reliability.

- The lack of a global scheduler,
that knows all system informa-
tion, may lead to sub-optimal
scheduling decisions.

Hierarchical - Global scheduler and local
scheduler can have different
policies in selecting jobs or re-
sources.

- The central scheduler can have
scalability and communication
bottlenecks because it is a sin-
gle instance to which all jobs are
firstly submitted.

Table 2.2: A summary of advantages and disadvantages of centralized, distributed and
hierarchical scheduling.

2.2.2 Resource Discovery

The resource discovery consists in finding suitable resources from an available set of
them, for executing jobs. The information that is passed from resources to the scheduler
are CPU speed and current load, available memory, etc. The resource discovery might be
performed by three models, i.e., the pull model, push and push-pull, as proposed by Li
et al. [36].

The pull model: A daemon process associated with the scheduler is responsible for
requesting/pulling state information from resources. Figure 2.5 depicts this model.

The push model: In this model, the process of resource discovery is started by resources
themselves, i.e., each resource has a local daemon that collects and pushes state informa-
tion to the scheduler, which receives and stores it in a database for later retrieving by the

15

2. STATE OF THE ART 2.2. Job Scheduling System

daemon

scheduler

node1 node2

node information node information

Figure 2.5: The pull model for resource discovery. Adapted from Li et al. [36].

daemon daemon

Node State
scheduler

node1 node2

node information node information

Figure 2.6: The push model for resource discovery. Adapted from Li et al. [36].

scheduling algorithm. Figure 2.6 illustrates this model.

The push-pull model: This model is a combination of pull and push strategies, i.e.,
there is a daemon process in the central scheduler, who pulls information from aggrega-
tors, and there are daemons in nodes/resources whom collect and push state information
to the daemon process of a known aggregator, which is responsible for aggregating in-
formation from a set of resources and replying queries from the scheduler. This strategy
for resource discovery is shown in Figure 2.7.

Resource discovery in distributed scheduling: Note that, the previously described re-
source discovery mechanisms apply not only to the centralized but also to distributed
scheduling. But usually in decentralized environments the discovery is accomplished by
a central entity (e.g., the Grid Peer Information Service in [37]), which itself can be imple-
mented either as centralized or decentralized. The latter case might be more challenging
because it is necessary to keep all its replicas coherent.

2.2.3 Job Scheduling Policy

The process of selecting the next job from a queue to be scheduled is accomplished by
using a dedicated algorithm named scheduling policy.

In the context of scheduling in distributed computing systems, a policy is defined as
an algorithm that determines to which resources a job is assigned [12], that is, how it
should choose a job for execution from its available set of jobs and how it should pick

16

2. STATE OF THE ART 2.2. Job Scheduling System

daemon

daemondaemon

daemon

daemon

daemon

scheduler

aggregator aggregator

node2node1 node3

node informationnode information node information

Figure 2.7: The push-pull model for resource discovery. Adapted from Li et al. [36].

up one resource to execute the chosen job, from an available set of resources. Or even
more concrete, what is the matching job-resource that would minimize the overall jobs
execution time.

The problem of mapping jobs into distributed resources in a way that minimizes the
makespan (the total execution time), has shown to be NP-complete, by a reduction from
the Minimum Multiprocessor Scheduling [38]. What can be done is to find sub-optimal
solutions by using strategies based on heuristic search.

Choi et al. [12] classified the scheduling policy in three approaches, i.e., simple, model-
based and heuristic-based.

Simple approach The common and simple strategy [12, 39] consists in selecting jobs or
resources with the First Come First Serve (FCFS) method, which can be imple-
mented with a well-known data structure, the FIFO (First In First Out) queue, or
a random approach, which is implement by techniques of random numbers gener-
ation.

Model-based This approach is divided in three main categories, namely deterministic,
probabilistic or economy model.

In deterministic model, jobs or resources are selected according to a predefined
structure or topology of their organization, that is, how the jobs or resources are in-
terconnected with each other. The common structures or topologies are the queue,
stack, graph and the ring. In comparison, in probabilistic model, jobs or resources
are selected according to probability theory (e.g., using the Markov model as ap-
plied in [40]).

Heuristic-based In this approach, jobs or resources are selected by ranking (i.e., ranks
and then chooses the best one), matching (i.e., chooses the best one according
to evaluation functions) and/or exclusion (i.e., excludes resources according to a
given criteria and then chooses the best one among survivors).

17

2. STATE OF THE ART 2.3. Job scheduling in Volunteer Computing Systems

There are other scheduling policies that were not mentioned above, which are those
based on priority of jobs. Examples are pre-emptive scheduling, which lets a pending
high-priority job to take resources away from an executing job of lower priority, and
shortest job first (SJF), in which the next job to be scheduled is the one that has minimum
estimated completion time (ECT); if two jobs have the same ECT then FCFS is applied.

A well-known problem of priority-based scheduling is starvation, i.e., a job that is
ready to run can never be scheduled because high-priority jobs are always selected first
even when they arrive after that job. A solution to solve this problem is to apply ageing,
which is a technique of gradually increasing the priority of jobs that wait in the system
for a long time [31].

2.2.4 Job Dispatching

It is the process of assigning the execution of next job to run on the selected resource. It
can also be performed according to the pull and push modes [36], described as follows:

Pull mode: The resources pull jobs from scheduler when they go into idle time and
then the scheduler assigns jobs to them according to its scheduling policy. This mode is
suitable for those systems where resources are volatile, i.e., non-dedicated [12, 41].

Push mode: The scheduler starts the scheduling process when jobs are submitted to its
queue, that is, it pushes jobs to resources according to its scheduling policy. The push
mode can be suitable for systems whose the probability of a resource being in idle state is
very low (in this case, the resources are called dedicated resources as defined in [12, 41]).

An example of a scheduling system that employs similar mechanisms is the Condor
[15]. It allocates resources for job dispatching by employing a matchmaking mechanism.
This mechanism is based upon notion that jobs and resources advertise themselves in
classified advertising (abbreviated ClassAds), which include their characteristics and
requirements, then each pair job-resource that matches is created.

2.3 Job scheduling in Volunteer Computing Systems

The job scheduling in VCSs has several common characteristics with Grid scheduling,
but in VCSs it should be taken into consideration that the resource providers are not
reliable; VC resources are dynamic (they can join and leave the system at any time), ei-
ther due to the poor network bandwidth or intentionally by theirs providers; and the
resources are highly heterogeneous [12]. The reliability is related with the fact that VC
resources may return maliciously incorrect result [42] and they are faulty, which requires
the implementation of result validation and fault tolerance mechanisms.

18

2. STATE OF THE ART 2.3. Job scheduling in Volunteer Computing Systems

Fault tolerance: It is a common non-functional requirement found in many computing
systems, which enables a system to work properly even if some of its part fails [43]. In
the context this work, it can be considered as a quality attribute that tolerates resource
failures and volatility. The rescheduling, checkpoint-restart, replication of tasks, etc., are
the common applied techniques for leading with these failures [12]. For the rescheduling
technique, if a scheduler detects a resource failure then it reassigns the failed task to
another resource. For the checkpoint-restart, the scheduler restarts the failed task from
the checkpoint in another resource. For the replication, a scheduler replicates a task on
multiple resources, to allow a resource to mask the failure of another.

Load balancing: In the context of VCSs, this property attempts to balance the compu-
tation load among computing resources present in the system. Normally, the system’s
lightly loaded nodes cooperate to remove the work in heavily loaded node by exchang-
ing information (periodically or on demand) about their characteristics and current CPU
load. This property can be accomplished by applying the pull mode for the work stealing
or the push mode for the load distribution.

2.3.1 Scheduling

Recently, many scheduling policies based on heuristics (e.g., HEFT, min-min, max-min,
and so on [44]) have been proposed in the context of VCSs because the problem of opti-
mal mapping of tasks to resources is NP-complete as already mentioned previously, thus
these heuristics try to find sub-optimal mapping.

The pull approach (presented in Subsection 2.2.4) is the common dispatching mode
employed by the VCSs, i.e., when volunteers go into idle state then they contact a VC
job scheduler, requesting for the jobs for the execution. As an example, the BOINC’s
local scheduling [45] employs this mode. BOINC (Berkeley Open Infrastructure for Net-
work Computing) is an open source middleware system for VCSs [13] used in several VC
projects (e.g., SETI@home [7], FightAIDS@home [27], Folding@home [26], etc.).

As stated by Estrada et al. in [9], existing job dispatching policies in VC projects can be
classified in two classes, i.e., naive and knowledge-based. Examples of naive approaches
are FCFS, the random allocation and the locality assignment in which jobs are assigned
preferentially to volunteers that already have necessary data to accomplish the execution.
In contrast, knowledge-based approach takes into account the historical behaviour of the
volunteers when assign jobs to them.

In contrast to the manually designed scheduling policies, which are limited to the spe-
cific projects, or to those randomly generated, Estrada et al. [9] in their research entitled A
Distributed Evolutionary Method to Design Scheduling Policies for Volunteer Computing, pro-
posed an evolutionary method to automatically generate scheduling policies based on
the volunteers’ behaviour, when the computing resources request the jobs for execution.

19

2. STATE OF THE ART 2.4. Peer-to-Peer Approach to Scheduling

This method includes a genetic algorithm in which the representation of individuals, fit-
ness function, and genetic operators are tailored to get effective policies that are project-
independent, minimize errors, and maximize throughput in VC projects. However, some
input values to the algorithm are manually introduced and they intend to automate this
process in future work.

In [43], Lee et al. addressed the problem of robust task scheduling in VCSs by propos-
ing two heuristics, which identifies best task-resource matches in terms of makespan and
robustness. Generally, the robustness is defined as the capacity to function properly in
variable conditions. As the context of the research was VCSs, the definition of robustness
was narrowed down to the ability to ensure the quality of a schedule in spite of a certain
degree of performance fluctuations, such as inaccurate estimative of task completion time
and resource performance degradation. For a given schedule, both proposed algorithms,
RMAX and RMXMN, aim to reschedule it, if a new task-resource match improves the
robustness without increasing the makespan.

Extensive set of experiments allowed to conclude that the robustness of output sched-
ules is improved by maximizing either the total or minimum relative delay time over all
allocated VC resources.

2.4 Peer-to-Peer Approach to Scheduling

This section overviews two related works concerning the scheduling in P2P1 systems.
The reason why we are presenting these systems, is because we intend to developed a
distributed job scheduling where each node can provide both client and server function-
alities.

Cao et al. [37] in their research entitled A Peer-to-Peer Approach to Task Scheduling pro-
posed a P2P approach which employs the distributed scheduling architecture to lessen
the load of intermediate server by letting the peers to cooperate among them to make
scheduling decisions using their own scheduling policies. Each scheduler running on a
peer follows a generic architecture which authors denominated PGS (P2P Grid Sched-
uler) and jobs are firstly submitted to the local scheduler where they originated. Each
peer interacts with GPIS for collecting information about other peers and making schedul-
ing decisions. Once a scheduler has decided to/from which peer it should dispatch/re-
quest jobs, then starts to interact directly with it through Peer Communication compo-
nent.

The system relies on a Grid Peer Information Service (GPIS) based on Grid Informa-
tion Service (GIS2). The GPIS provides information about peers in the system and it is a
meta-data infrastructure that enhances existing GIS in Grid middleware. As the authors
stated, in Grid environment the GIS gets outdated very quickly, because nodes are freely

1The term peer-to-peer (P2P) refers to a class of systems and applications that employ distributed re-
sources to perform a function in a decentralized manner [46].

2GIS is a software component, either centralized or distributed, that maintains information about services,
computing resources in computational grid, etc., and makes that information available when inquired [47].

20

2. STATE OF THE ART 2.4. Peer-to-Peer Approach to Scheduling

GPIS

Dispatcher

System
Monitor

Scheduler Reporter

Enquirer

Process
Monitor

CollectorExecution
queue

Application
Communication

Grid
Communication

Peer
Communication

Task

Grid

PGS

Figure 2.8: The architecture of PGS. Adapted from Cao et al. [37].

to join and leave at any time, and due to possible system failures. Figure 2.8 illustrates
the PGS architecture installed on every peer. The components that compose the PGS are
the following:

Grid Communication It is a communication interface between GPIS and PGS’s compo-
nents to allow a peer to query information about other peers kept by GPIS.

Application Communication It is an interface to enables user to provide resource de-
tails, to edit GPIS and specify scheduling policies.

System Monitor It is responsible for gathering quality information (either periodically
or on the demand) about a peer (i.e., CPU load, available RAM, etc.) and translating
it into readable format to be used in resource selection process.

Scheduler The component responsible for scheduling tasks of submitted jobs, by re-
questing a group of peers from the GPIS and consulting the System Monitor to
get peer information, and according to the scheduling policy it decides if a task will
be executed locally or remotely.

Dispatcher It is responsible for dispatching tasks of a job to other peers when peer is
busy.

Collector It is responsible for requesting tasks from other peers when the peer go into
idle time.

21

2. STATE OF THE ART 2.5. Scheduling of Interdependent Tasks

Process Monitor The component responsible for monitoring the tasks that are being ex-
ecuted locally.

Reporter It is responsible for gathering the tasks’ status from Process Monitor when
inquired by other peers.

Enquirer The component responsible for requesting tasks’ status information from re-
mote peers.

The process of scheduling in PGS is composed by peers registration in GPIS, task
scheduling and task execution. The task scheduling is divided in task capturing and task
dispatching. Task capturing uses push mode, whereas task dispatching employs pull
mode.

The proposed architecture was implemented and the performed experiments allowed
to conclude that combination of push and pull modes for task dispatching achieved faster
convergence in speedup than only push mode.

Zhao et al. [18] proposed a system named PPVC: A P2P Volunteer Computing System,
for job scheduling, in which volunteers are organized as a P2P network, i.e., there is no
central server and every volunteer has the same functionality.

In order to use several computers in the network, a job should be able to be recursively
separable into small sub-jobs. When a peer receives a job, he splits it in N + 1 sub-jobs,
where N is the number of its neighbours that are free. One sub-job is executed locally and
remaining will be sent to N free neighbours. A job is split until not possible to be split
any more or if a peer has no available neighbour. When a peer completes the execution
of a job, the result is sent to its parent to be collected and merged with other results. The
system supports the dynamic joining and leaving of peers, by self-reorganization of its
grid.

The authors implemented the PPVC using Java platform and the case of study was
N-Queen problem. The experiments were conducted by using three computers and the
results shown that the efficiency in terms of system’s response time with three peers, for
14-Queen was 87.5%, 15-Queen was 88.1% and 16-Queen was 89.9%, respectively.

2.5 Scheduling of Interdependent Tasks

Relatively to scheduling tasks with dependencies, it was found that they can be modelled
with a Directed Acyclic Graph (DAG) [21, 23, 43, 48, 49, 50, 51, 52], where each node
represents a task, the data dependency between two tasks is represented by an edge
and in some cases a weight on an edge represents the cost in terms of time to transfer
information (e.g., data, code, etc.) from one task to another.

22

2. STATE OF THE ART 2.5. Scheduling of Interdependent Tasks

Blythe et al. [50] proposed two classes of resources allocation algorithms: task-based
approach (TBA) and workflow-based approach (WBA). The jobs/tasks in a workflow
have well-defined dependencies of required input data to allow the computing. TBA
greedily assigns each ready to run task to a resource regarding only the information
about that task, i.e., it only reasons about the tasks that are ready to run at any given time
instant, whereas WBA searches for an efficient allocation of entire workflow, and may
revise the allocation of a task based on subsequent tasks. The performed simulations al-
lowed the authors to conclude that both approaches are suitable for computing-intensive
workflows but WBA is more suitable for data-intensive workflows because it decreases
the time to transfer data from one task to another.

Moise et al. [21] proposed a scheduling algorithm named CoAllocation, for scheduling
tasks having dependencies, which is a decentralized, dynamic and optimal mechanism
for job scheduling in Grid environments. CoAllocation consists in allocating tasks hav-
ing dependencies, in which the main purpose consists in generating schedules in efficient
way, in terms of load balancing among computing resources and minimum time for exe-
cution of tasks. Tasks and computing resources are described by using the XML format.

A set of tasks is represented with a weighted DAG, in which each node represents a
task and the dependency between two tasks is represented by an edge. A weight on edge
means the cost in terms of time to transfer information between two tasks and a weight
on a node is the cost in terms of time to execute a task.

The CoAllocation algorithm involves two types of entities, called broker and agent,
defined as follows:

Broker This entity is responsible for receiving an XML file containing tasks’ dependen-
cies from a user, clustering of tasks and distributing each formed cluster to each
agent.

Agent It is an entity responsible for managing a set of local computing resources.

The CoAllocation algorithm comprises three phases, which are described below:

Task clustering This phase consists in creating a DAG of sub-DAGs of tasks having de-
pendencies, on which each a sub-DAG is connected to another if there is a depen-
dency between one of its tasks and another tasks of other sub-DAG.

Dynamic scheduling inside a cluster (i.e., a sub-DAG) It consists in scheduling tasks to
an agent’s local computing resources.

Dynamic scheduling of clusters It is the final scheduling, that will be done by the bro-
ker, of the DAG of clusters based on the dependencies between them.

The proposed algorithm was tested and experimental results have shown that load
balancing goal was met. However, the authors did not specify if their implementation of

23

2. STATE OF THE ART 2.6. Discussion

the broker is centralized or distributed, i.e., if the broker is centralized then it is a single
point of failure.

2.6 Discussion

Throughout the previous sections, we have presented what is a job scheduling system,
how it works in the context of distributed systems and particularly in the context of Vol-
unteer Computing Systems. We also presented what are the challenges and problems
raised by these kinds of systems.

Since we intend to develop a distributed task scheduling where each node may have
the role of task producers, by submitting workflows for execution, and task consumers,
by donating CPU cycles, then the distributed scheduling architecture with direct commu-
nication (presented in Subsection 2.2.1) better fills our requirements, in comparison with
centralized or hierarchical scheduling. The scheduling policy which will be employed is
the priority-based FCFS.

The inter-dependencies between ATs may be modelled with a DAG and the system
will schedule only ready-to-run tasks, i.e., the tasks that satisfy all required conditions to
be scheduled.

To automatically ensure the load balancing property, the pull mode, defined on Sub-
section 2.2.4, will be applied by resources for requesting jobs when their CPUs come into
idle state. Also, the push mode may be applied when first jobs are submitted to the sys-
tem. The fault tolerance mechanism will be the reassignment, explained in Section 2.3.

24

3
The Distributed Execution Platform

This chapter describes the requirements that the system to implement must satisfy, by
exploiting idle CPU cycles of existing computing resources within the company’s LAN,
to execute automatic tasks of PLMI2 application, taking into account the well-defined de-
pendencies among them. We also define the overall system architecture and establish the
communication protocols among its several entities, in order to support the scheduling
of the computation in the distributed environment.

3.1 Requirements

Albatroz Engineering aims to have a workflow execution engine able to schedule the
automatic tasks from the PLMI2 application among the multiple desktops available in
the local network, according to a volunteer-based work distribution strategy. This system
should be efficient, scalable, and at the same time, resilient to both network and node
failures.

For instance, suppose that one operator requests the scheduling of four tasks to be
executed by a server located in a given host and subsequently this host is turned off.
Then, if there is at least one another server located in other host, the system should ensure
that these tasks will be executed.

Actually, the company has between twenty and thirty hosts available for data process-
ing, and usually only between five and ten hosts are used by lines inspection operators
to process inspections’ data. The company’s PLMI2 application does not support fault-
tolerance of tasks execution. For instance, if an operator requests the execution of four
tasks with dependencies and immediately he turns off his workstation then all four tasks
will be lost because the tasks are executed only by a single host, that is, by the host where

25

3. THE DISTRIBUTED EXECUTION PLATFORM 3.2. Overall Architecture

ID Description Priority

FR1 It must be built a distributed system able to exploit idle computing time from work-
stations, to schedule and execute automatic tasks of PLMI2 application.

MUST

FR2 It must be possible to establish the well-defined dependencies among tasks. MUST
FR3 It must be possible to distinguish an interactive from batch task. MUST
FR4 Enable a client application to request the scheduling, cancelling and subscription of

task execution.
MUST

FR5 Design and implement User Interfaces for client applications. SHOULD

Table 3.1: List of functional requirements

they were generated. The company would like to have a system where operators can
request the executions of tasks on a host and if this submission host is busy (e.g., its CPU
is highly loaded) then those tasks can be executed by one of another hosts located in the
local area network (LAN). In this way, the time that lines inspection operators wait for
AT results to be available, could be minimized.

The aim is to install a server application in every workstation, even if the latter is not
dedicated to process the inspection data because a server is supposed to exploit only idle
cycles from hosts’ CPUs to execute the tasks and also it is supposed to not decrease the
host performance given that the user may be using the workstation to carry other duties.
However, in case of a server located in the submission host, if a task has a high priority
then it should be executed there (if there is no other task currently being executed by it),
even if its CPU load is not low because in such case the operator wants to get the task’s
results immediately.

Taking into consideration these scenarios, we propose a new distributed task schedul-
ing system where each node may have the role of producer and consumer. Coming to
details, this means that a node may generate tasks to be executed by the remainder nodes,
or, when idle, contribute with its computing resources to the Volunteer Computing, be-
coming a consumer.

To meet such requirements, we opt for a distributed scheduling architecture with
direct communication (already presented in Section 2.2.1) in comparison with the cen-
tralized or hierarchical scheduling, since it may provide scalability, better fault-tolerance
mechanisms and load-balancing among schedulers/servers.

Concretely, we summarize these requirements as functional and non-functional, pre-
sented in Table 3.1 and Table 3.2, respectively, according to the MoSCoW1 prioritisation
method.

3.2 Overall Architecture

The general overview of the system’s architecture that we propose is shown in Figure
3.1, where all hosts are interconnected by the company’s LAN, on which the role of each
component is defined as follows:

1https://en.wikipedia.org/wiki/MoSCoW_method

26

https://en.wikipedia.org/wiki/MoSCoW_method

3. THE DISTRIBUTED EXECUTION PLATFORM 3.2. Overall Architecture

ID Description Priority

NFR1 The system should be efficient and scalable, i.e., it only provides added value if its
global execution time is less than of the existing solution.

MUST

NFR2 Fault-tolerance of task execution – the failure of a server-node should not cause the
system to behave incorrectly.

MUST

NFR3 Non-intrusive – the performance of the workstation where a server is running,
should not be lower if it is not running a task. The server should be lightweight
when not running a task.

SHOULD

NFR4 Heterogeneity – the system should work in the LAN which has heterogeneous
workstations (different CPUs, RAM, operating systems, etc.).

SHOULD

Table 3.2: List of non-functional requirements

client-application This component represents a generic client-application, that is, it may
be either a command-line client (e.g., Telnet) or Graphical User Interface (GUI)
clients. Firstly, it should be able to request a server-node (local or remote) to sched-
ule the execution of a task. Secondly, it must be able to request the cancellation
of a running task and also subscribe its interest in getting a given task’s progress.
Moreover, it may also run in the same host (local) as the server-node, as illustrated
in Figure 3.1, i.e., the cases where ca (client-application) and sn (server-node) are
inside the same rectangle shape. Local means that the server and client are running
in the same host, and remote in different hosts.

server-node This component is responsible for making scheduling decisions, such as
task dispatching by communicating with other servers/schedulers. The selected
node for executing a given task (t) launches the executable of t and opens a com-
munication channel between both to monitor the evolution of the t’s execution. An-
other responsibility of a server-node, is to report, to interested parties, the progress
of the task currently in execution. It should be stated that a server-node may sup-
port connections with multiple client-applications at the same time and it is not
required to be connected with any client-application.

Database server This component stores the results generated by the execution of a task
by a server-node. A result is a dataset generated by a task and it is identified by a
database relation primary key.

task It represents the execution an automatic task of PLMI2 application. The PLMI2
tasks were, up to now, integral parts of PLMI2, and now for the purposes of this
system they have to be independent applications. Therefore, when a task is start-
ed/launched by a server-node then it may read input datasets from the Database
server and should generate output datasets in this same database.

Upon the completion of a task t, the hosting server-node is responsible for assigning
the identifiers of output datasets to all tasks whose inputs depend on the outputs
of t.

27

3. THE DISTRIBUTED EXECUTION PLATFORM 3.2. Overall Architecture

Figure 3.1: A general view of proposed system architecture.

The devised architecture comprises three distinct entities, i.e., the client-application,
the server-node and the running task. In order for these to communicate, protocols have
to be established.

Due to the lack of a centralized entity in the system architecture, it is in fact a dis-
tributed protocol among server-nodes, and in order to meet this requirement it is nec-
essary to have distributed algorithms for ensuring that all nodes will have a consistent
view of the system’s state.

Therefore, all system components should agree on the protocols defined here, in such
a way that each one of them can understand each other and cooperate to achieve the
common goal, which is the execution all the scheduled tasks.

The communication among the system’s entities is achieved by exchanging messages
and a message may contain several pieces of information. For instance, when a server-
node receives a message from another server-node or from a client-application, then it
triggers an appropriate action to process the received message and according to the kind
of the message it makes some local decisions and may change its state, and additionally
it may reply back to the message sender.

In the remainder of this chapter, we begin by explaining how tasks are uniquely iden-
tified during their lifetimes and the content of a task, in Section 3.3. In Section 3.4 to 3.6
we, respectively, specify the communication protocol between a client-application and a
server-node, between a server-node and a running task and the protocol among server-
nodes.

28

3. THE DISTRIBUTED EXECUTION PLATFORM 3.3. Task Identification and Contents

3.3 Task Identification and Contents

A task needs to be uniquely identified during its lifetime in the system. The best way
we found to do this was by using the Universally Unique Identifier (UUID) specified by
IETF RFC 4122 [53], which allows the generation of unique identifiers, across space and
time, in distributed environments without a centralized coordinator.

A task has the following properties:

1. A Universally Unique Identifier (UUID);

2. The associated executable file name;

3. The number of input datasets required to be assigned for it to become a Ready task;

4. The identifier of the client-application’s host which ordered its execution;

5. A state, which may be Submitted, Ready, Running, Terminated or Cancelled;

6. A priority, which can be low or interactive. The priority interactive is privileged over
the low;

7. A timestamp registering when it was submitted to the system;

8. The hostname of the server-node which scheduled it;

9. The hostname of the server-node where it is running, if its state equals Running;

10. The required identifiers of input datasets;

11. The identifiers of output datasets.

3.4 Communication: Client-application↔ Server-node

In this section we describe the interaction protocol between a client-application and server-
node, for each operation offered by the system to client-applications, i.e., the schedul-
ing of a task, cancellation of a task execution and, subscription of interest in getting the
progress and state of a task. For these three operations, the interaction follows a request
reply-reply pattern that is always initiated by the client. Additionally, the server, period-
ically sends the progress of the tasks over which the client has revealed its interest.

This communication protocol consists of seven kinds of messages, described in Table
3.3. In case of the SCHEDULE message, when a client-application requests the schedul-
ing of task ty which has an input i that depends on the nth output of a task tx then it
should send the argument

−a task_uuid_x nth_output_x

to inform the server-node how to assign the required identifier of output dataset (the nth

output) to i, when tx terminates the execution.

29

3. THE DISTRIBUTED EXECUTION PLATFORM 3.4. Communication: Client-application ↔ Server-node

Message Parameters Description

SCHEDULE task_exec_name priority [-p
path_to_raw_files] [-a task_uuid_1
nth_output_1] ... [-a task_uuid_n
nth_output_n] [-x parameters_file]

Allows a client-application to request a
server-node to schedule the execution of
an automatic task.

SUBSCRIBE task_uuid_1 ... task_uuid_n Allows a client to subscribe its interest in
getting the progress and state of a set of
tasks.

CANCEL task_uuid Allows a client to request a server to cancel
the execution of a task.

SCHEDULED task_uuid A server-node notifies a client-application
that a given task was scheduled.

SUBSCRIBED task_uuid_1 ... task_uuid_n A server notifies a client that its subscrip-
tion to a given set of tasks was registered
successfully.

CANCELLED task_uuid A server notifies a client that a given task
was cancelled.

PROGRESS task_uuid percent-
age_of_work_performed state

A server sends the progress of a running
task to all clients that subscribed this task.

ERROR message A server-node notifies a client-application
that its request was not successfully pro-
cessed.

Table 3.3: Format of the messages exchanged between a client-application and server-
node.

SCHEDULED task_uuid

SCHEDULE task_name priority [optional params]

client-application server-node

or
ERROR msg

Figure 3.2: Schedule an automatic task (client-application↔ server-node).

The options of the SCHEDULE message are:

−a Indicates one of arguments of ty. An argument is composed by the UUID of a task tx

on which ty depends on and the nth output of tx.

−x Indicates that a parameter file (an XML) was provided.

−p Indicates that a file system path or a location within the LAN containing the raw data
files was provided.

Just to illustrate how it works, suppose that a client-application ca wants to schedule
an automatic task t. Then this protocol enables ca able to pass only the required argu-
ments to t.

30

3. THE DISTRIBUTED EXECUTION PLATFORM 3.4. Communication: Client-application ↔ Server-node

SUBSCRIBE task_uuid_1 ... task_uuid_n

client-application server-node

SUBSCRIBED task_uuid_1 ... task_uuid_n

or
ERROR msg

Figure 3.3: Subscribing interest in getting the progress and state of a set of tasks (client-
application↔ server-node).

PROGRESS task_uuid percentage state

client-application server-node

Figure 3.4: Progress reporting (server-node→ client-application).

The protocol for enabling a client-application to request the scheduling of a task is
illustrated in Figure 3.2, on which any argument inside a square brackets means optional.
If the server-node was able to schedule the task then it generates and sends the task
unique identifier to the client. Else, it replies with an error message describing why it
was not possible to schedule the task.

Figure 3.3 depicts the interaction protocol for a client-application to request its sub-
scription in getting the progress and state of a set of tasks, identified by task_uuid_1 until
task_uuid_n. If the server-node has processed its request successfully then it confirms.
Else, if it has found some error while processing the request then it sends an error mes-
sage describing what happened.

Figure 3.4 shows the interaction protocol, in which a server-node sends the progress
and sate of a given task identified by task_uuid to a client-application, being the latter
previously subscribed its interest in task_uuid.

Finally, this section ends with Figure 3.5, which illustrates the protocol for a client-
application to request the cancellation of a given task, identified by task_uuid. If the
server has cancelled the task then it confirms the cancellation to the client-application.
Otherwise, it notifies the client with an error message explaining what happened.

31

3. THE DISTRIBUTED EXECUTION PLATFORM 3.5. Communication: Server-node ↔ Running Task

CANCELLED task_uuid

CANCEL task_uuid

client-application server-node

or
ERROR msg

Figure 3.5: Cancelling the execution of a task (client-application↔ server-node).

Message Parameters Description

PROGRESS percentage_of_work_performed A running task sends its local server the current
progress of a running task.

CANCEL A server requests a running task to cancel the exe-
cution of a task.

TERMINATED id-dataset-1 ... id-dataset-n A task notifies a server that it has completed its the
execution, where the id-dataset-n is the nth identi-
fier of output dataset generated on database by the
task execution.

CANCELLED A task notifies the server that it has cancelled its
execution.

ERROR message Message sent from a running task to the server-
node, if some error has happened while it was pro-
cessing the latter’s request.

Table 3.4: Format of the messages exchanged between a server-node and a running task.

3.5 Communication: Server-node↔ Running Task

The communication between a server-node and a running task may be initiated by either
entities. Server-node initiated communication has the sole purpose of cancelling the exe-
cution of the task, whilst task initiated communication has the purpose of reporting the
task’s execution progress.

Table 3.4 presents the format of messages exchanged between a server-node and a
running task. The messages that not have any parameter, means that either it is not re-
quired or else the only parameter needed is the identification of the message sender (e.g.,
its IP address), which we assume that is extracted/retrieved by the message receiver.

The protocol for a running task to report its progress to the server-node is depicted
in Figure 3.6. The protocol for a running task to report the final results of its execution
to the server-node is presented in Figure 3.7. The protocol for a server-node to request a
running task to cancel its execution is shown in Figure 3.8.

32

3. THE DISTRIBUTED EXECUTION PLATFORM 3.6. Communication: Server-node ↔ Server-node

server-node running task

PROGRESS percentage

Figure 3.6: Progress reporting (running task→ server-node).

Figure 3.7: Reporting the final results of a task (running task→ server-node)

3.6 Communication: Server-node↔ Server-node

Every server-node has a local state, mainly composed by two data structures: a map
storing all tasks currently under the system’s supervision and the queue of ready-to-run
tasks. Given that the system is purely distributed, the server-nodes have to coordinate
themselves in order to ensure that each of one of them has a consistent view of this state.
However, we do not want to impose a strong consistency model that requires a synchro-
nization among server-nodes for every operation performed on these data structures.
Accordingly, we opt for a more relaxed approach with eventual consistency properties.
As such, each server-node will update its state, based on the type and contents of the
messages that it receives. When an inconsistency is detected by a server-node, then it ap-
peals to a special server-node, which we denominate master, to deliver it the most recent
state of the data structures.

In the next two subsections, we provide a comprehensive explanation of two dis-
tributed algorithms run by every server-node, namely the master election and the dis-
tributed scheduling algorithms. The communication model for these two algorithms, as
well as the almost communication in the system, is based on the 1 to N approach, on top
of a broadcasting protocol, instead of request-reply model. The motivation is to avoid, as
much as possible, synchronization points among server-nodes.

33

3. THE DISTRIBUTED EXECUTION PLATFORM 3.6. Communication: Server-node ↔ Server-node

server-node running task

CANCEL

CANCELLED
or
ERROR msg

Figure 3.8: Cancelling the execution of a task (server-node↔ running task)

3.6.1 Master Election

Firstly, we have to state that our system does not have a master by default; it is elected
by a consensus algorithm among server-nodes, i.e., the nodes that belong to the system
at the time of the election.

Every server-node has a reputation assigned, which indicates how many times it has
failed, terminated or crashed. This information is used to elect the current master - the
greater is the number of times a server-node has failed, the lower is its reputation. This
reputation is initialized with basis on a number loaded from a stable configuration file,
whenever the node starts running. It is also decremented each time the node re-joins the
system because we assume that it is recovering from a failure/crash. In the first time that
a node starts up its reputation is not decremented.

This approach is similar to the Elect Lower Epoch presented in the book entitled In-
troduction to Reliable and Secure Distributed Programming on page 77 [54], where the leader
(in our case the master) is the process that has failed fewer times.

The need for a special node to act as the delivery of the system’s state to the new
joining nodes, or send a given task to a node when requested, came from the fact that if
was any node to perform these operations, may be it would not have the recent system’s
state. The master is elected as being mainly the older node in system. Therefore, its
probability of having the most recent system’s state is greater than or equals to the other
nodes.

For the definition of master election protocol, the format of the messages presented in
Table 3.5 are added to the system. Some of the messages do not have parameters because
in such cases they are either not required or the only parameter needed is the identifier
of message sender (e.g., the IP address), and we assume that the receiver is able to extract
this identifier when it receives a message.

The master election is presented in Algorithm 3.1 and it works as follows. Upon the
reception of a START_NEW_MASTER_ELECTION message, by the procedure on recep-
tion of SNME(...), on a server-node from one of its counterparts notifying that they must
elect a new master then it makes its candidacy by broadcasting the TRY_TO_BE_MASTER

34

3. THE DISTRIBUTED EXECUTION PLATFORM 3.6. Communication: Server-node ↔ Server-node

Message Parameters Description

WHO_IS_MASTER Used by a new server when it
comes into the system, for ask-
ing other server-nodes for the
master-server’s information.

START_NEW_MASTER_ELECTION A server-node notifies other
servers that they should start a
new master-server election.

TRY_TO_BE_MASTER my_reputation local_map.size
timestamp

A server proposes its proposal
to be the master-server on an
election.

NEW_MASTER The master-server sends its in-
formation to a server when
asked or to all servers when it
wins an election.

Table 3.5: Format of the messages used in the master election.

message (line 6) to all. A candidacy is composed by the node’s reputation, the number of
tasks on its local map and a timestamp registering when the candidacy was generated.
Within a given waiting time-window (line 7) of 10 seconds, whenever a server-node re-
ceives a candidacy from another server then he inserts it in a priority queue of candi-
dacies ordered by candidacy’s timestamp (see the procedure on reception of TTBM(...)).
The algorithm stores the received candidacies in a priority queue ordered by the candi-
dacy’s generation timestamp on its candidate because we want a server to process these
candidacies by their emissions’ order. When this time-window finishes then it processes
all received candidacies.

A server wins the election if its own candidacy is better than those ones received,
meaning that if it has the highest reputation, or in case of a tie, if the number of tasks
on its map is greater than the remainder candidacies, or in case of a new tie, then if its
candidacy’s timestamp is older than the remainder candidacies, or again in case of a new
tie, then if its host name is alphabetically lower than the remainder ones.

At the end of the algorithm, if the server has won the election then it broadcasts a
message to all nodes notifying the winning. Else, if it has lost then it will receive the new
master information.

In Figure 3.9 is shown an example of an interaction protocol in which the server-
node labelled as sn1 wins the election, supposing that it has the highest reputation. The
TASKS_TRANSFER message that appears in this figure is later introduced in Section
3.6.3.

3.6.1.1 Fault-tolerance

Our system aims to provide the supporting for fault-tolerance at server-node and net-
work level. Taking this aspect into consideration and the fact that a master is one of
server-nodes, then the system should support fault-tolerance for it.

35

3. THE DISTRIBUTED EXECUTION PLATFORM 3.6. Communication: Server-node ↔ Server-node

Algorithm 3.1: Master Election
Data: // Required variables.

1 bool Did_I_Win_The_Election;// Whether this server has won the election or not.
2 int my_reputation;// The server reputation loaded from a stable configuration file.
3 string my_hostname;// The name of the server’s host.
4 bool Am_I_Master;// Whether this server is the master or not.
5 time my_TTBM_timestamp;
6 map<uuid, task> local_map;
7 priority_queue<TRY_TO_BE_MASTER_Request>TRY_TO_BE_MASTER_requests_queue;

8

Procedure on reception of TTBM(TRY_TO_BE_MASTER reputation map_size
timestamp)
1 TRY_TO_BE_MASTER_requests_queue.push(TRY_TO_BE_MASTER_Request(timestamp,

peer_hostname, reputation, map_size));

9
Procedure on reception of SNME(START_NEW_MASTER_ELECTION)
1 trigger elect master();

10

Procedure elect master()
1 begin
2 Did_I_Win_The_Election← true;
3 TRY_TO_BE_MASTER_Request req← null;
4 Am_I_Master← false;
5 my_TTBM_timestamp← time();
6 broadcast TRY_TO_BE_MASTER my_reputation local_map.size timestamp;
7 wait for a given time-window for another servers to make their candidacies;

// Process TRY_TO_BE_MASTER messages received from other servers/peers.
8 while not TRY_TO_BE_MASTER_requests_queue.empty() do
9 req← TRY_TO_BE_MASTER_requests_queue.pop();

10 if req.reputation > my_reputation then
11 Did_I_Win_The_Election← false;

12 else if req.reputation = my_reputation then
13 if req.map_size = local_map.size() then
14 if req.TTBM_timestamp < my_TTBM_timestamp then // Did the peer send

TRY_TO_BE_MASTER first than me?
15 Did_I_Win_The_Election← false;

16 else if req.TTBM_timestamp = my_TTBM_timestamp then
17 if req.peer_hostname < my_hostname then
18 Did_I_Win_The_Election← false;

19 if Did_I_Win_The_Election then
20 Am_I_Master← true;
21 broadcast NEW_MASTER; // Notify the peers that this server is the new

master.

36

3. THE DISTRIBUTED EXECUTION PLATFORM 3.6. Communication: Server-node ↔ Server-node

joiningmsn

sn2

sn1

WIMm->mWHO_IS_MASTER,mSNMEm->mSTART_NEW_MASTER_ELECTION,mTTBMm->mTRY_TO_BE_MASTER,
NMm->mNEW_MASTER,mTTm->mTASKS_TRANSFER

WIM

time-window

SNME TTBM

TTBM

TTBM

time-window

time-window

time-window

NM

(reputation = -1)

(reputation = 10)

(reputation = 5)

TT

TTBM NM

Figure 3.9: An illustration of master election protocol.

Server-node level: If the master server-node fails then the remainder nodes should
eventually detect this issue and elect a new one, according to the Algorithm 3.1. The
system detects the failure of the master-server when a node receives a PROGRESS mes-
sage of a given task that it does not have on its local map yet then it asks the master for
this task by sending a GET_TASK message (defined later in Section 3.6.2), and the master
does not reply. Also, the system detects the master failure when a new node joins the sys-
tem, broadcasts WHO_IS_MASTER message and no server replies. The system tolerates
its failure by electing a new one.

Network level: An example of a problem that a network failure may cause is, suppose
that the communication link breaks between the master and the remainder nodes. Then,
the latter will assume that the master has failed and elect a new one. When the older
master has the communication link with the system back, there will be two masters, i.e.,
the older one will behave like if it was the only one master when it is not. The aim is to
have only one master in the system at any time but this failure may cause it to have more
than one.

Although it has not been implemented, a possible way to solve this issue could be
by forcing a master to broadcast its information periodically (e.g. a heartbeat message),
which must contain a timestamp registering when it was elected. Each node when re-
ceives this information will update who is the current master regarding the timestamp,
meaning that if the timestamp of when the message sender was elected in newer than

37

3. THE DISTRIBUTED EXECUTION PLATFORM 3.6. Communication: Server-node ↔ Server-node

one from the master that it currently knows then it updates its knowledge about the mas-
ter as being the sender. In case of the older master, when it receives the message from
the newer one, it should update its local state as not being the master any more, save the
information of the new master and stop broadcasting heartbeat messages claiming to be
the master.

Also, the above solution could be employed to solve the conflict when some message
loss has happened during the election, and due to this issue two servers may think that
both of them won the election then they broadcast the NEW_MASTER message to all.

3.6.1.2 Properties

The master election algorithm has the following properties:

• Whenever a master is needed, or it exists at the moment or it is elected immediately;

• It ensures that if every server-node has received all proposals sent by other server-
nodes, then a unique master will be elected, with basis on its tiebreaker conditions;

• In case of network partitions, it does not support conflict solving if two or more
masters are elected in different partitions, when they reconnect. A possible way
to deal with this issue can be by employing the solution previously described in
Section 3.6.1.1.

3.6.2 Scheduling and Distributed Execution of Tasks

The following kinds of messages are exchanged among server-nodes in order to achieve
the distributed scheduling:

ENQUEUE A server broadcasts a task to all its peers.

TRY_DEQUEUE A server notifies its peers that it is trying to remove a given task from
the FIFO queue for the execution locally.

STATE Used by a server to notify its peers when some change happens on a task’s state.
These states can be:

Running For notifying that it has started running a task.

Terminated To notify that a task has successfully executed. The message will al-
ways contain the final result of a task, i.e., the identifiers of output datasets
that were generated by the task execution.

Cancelled For informing that a task was cancelled.

PROGRESS A server reports to its peers the progress of a running task.

GET_TASK A server requests the master-server to deliver it a given task (t), identified
by a UUID, when it receives the progress of t and it does not have t in its state.

38

3. THE DISTRIBUTED EXECUTION PLATFORM 3.6. Communication: Server-node ↔ Server-node

client-application

sn2

sn1

SCHEDULE task_name priority [optional params]

sn3

ENQUEUE task

SCHEDULED task_uuid

Figure 3.10: An illustration of the ENQUEUE protocol.

When a client-application requests a server-node to schedule the execution of a task
then the server broadcasts an ENQUEUE message to all another servers, as illustrated
in Figure 3.10. Upon the reception of an ENQUEUE message by a server, it places the
corresponding task (t) on its local map and if the t’s state equals to Ready, then t is also
placed in the local ready-to-run task queue.

The algorithm for the distributed dequeuing of a ready-to-run task is presented in
Algorithm 3.2 and it works as follows. Once a server enters in volunteer mode (it detects
that its CPU has become idle) it broadcasts a TRY_DEQUEUE message to its peers, indi-
cating that it wants to execute the next task in its ready-queue (line 3). This TRY_DEQUEUE
operation is followed by a waiting time-window (line 9) of 15 seconds (as it was imple-
mented), which has the purpose of assessing if no server-node has concurrently issued
the same request. If no TRY_DEQUEUE message has arrived within this window then
server can dequeue t. A TRY_DEQUEUE message that arrives a server out of the time-
window is simply ignored. The possible concurrent execution of tasks will be dealt later
in time. If one or more TRY_DEQUEUE are received for the same task, then a conflict
arises and the server handles each one of them (line 11 to 15). A server loses the race
for dequeuing t if it has received at least one proposal to execute t which is lower than
its own, according to a pre-established total order relation (line 14). This order is given
by the following properties: the server proposal’s timestamp is older than the remainder
proposals, or in case of a tie, then if its hostname is alphabetically lower than the other
servers’ hostnames. This total order relation is deterministic and is it computed locally
in each server.

The server-node with the lower proposal, according to the total order relation, wins to
the race to execute t. The remaining servers account (line 15) the rank of their proposals,
to be used as a strategy for avoiding/minimizing the race conditions on the next time
they want to try dequeue the next task. For instance, if a server has lost the race to
dequeue t against two servers then on the next time it will try to dequeue the task that is
in second position of the queue because its rank was 2. In this way, it will not compete

39

3. THE DISTRIBUTED EXECUTION PLATFORM 3.6. Communication: Server-node ↔ Server-node

sn1

sn3

sn2

TD -> TRY_DEQUEUE

TD Tx.uuid

time-window

Tx.uuid Running

TD Ty.uuid

TD Tz.uuid

time-window

time-window

Queue[Tx, Ty, Tz]

Queue[Tx, Ty, Tz]

Queue[Tx, Ty, Tz]

time-window

time-window

TD Tx.uuid

TD Tx.uuid Tz.uuid Running

Ty.uuid Running

Ty.uuid Running

Figure 3.11: A system configuration on which can be minimized the race conditions.

with the server that has lost the race just once (rank 1) because that server will dequeue
the task at first position of the queue. To illustrate this situation, consider the system
configuration shown in Figure 3.11, where it has three server-nodes (sn1, sn2 and sn3)
and each one of them has three ready-to-run tasks (Tx, Ty and Tz) in the local task queue.
Then suppose that all three nodes are competing to dequeue the task Tx. One of them
will win and remainder two will lose. Thus, the node which has lost the race for Tx just
once will try to dequeue Ty and the node which has lost two times will try to dequeue Tz .

Whenever a server agrees that a given node will run t or when it is notified that the
t’s state became Running, then it removes t from its local ready-queue, but keeps t in the
map of tasks until it receives the notification that the t has terminated its execution.

3.6.2.1 Fault-tolerance

As we have stated before in Section 3.6.1.1, we want the system to be able to support
failure at server-node and network level.

Server-node level: Failures occurred at server-node level cause the task that eventually
was executing at the node to fail. Thus, the remainder nodes should detect this failure
and reschedule the failed task, so that it can be executed by one of the remaining server-
nodes. The system notices that a node has failed/crashed during the execution of a task

40

3. THE DISTRIBUTED EXECUTION PLATFORM 3.6. Communication: Server-node ↔ Server-node

Algorithm 3.2: Distributed dequeuing
Data: // Required variables.

1 int rank;// The server rank in last race to dequeue a task.
2 uuid try_dequeue_task_uuid;
3 time timestamp_of_my_last_try_dequeue;
4 string my_hostname;
5 priority_queue<task> local_queue;
6 priority_queue<TRY_DEQUEUE_Request> TRY_DEQUEUE_requests_queue;

7
Procedure on CPU idle()
1 trigger dispatch();

8

Procedure on reception of TD(TRY_DEQUEUE task_uuid timestamp)
1 TRY_DEQUEUE_requests_queue.push(TRY_DEQUEUE_Request(timestamp, task_uuid,

peer_hostname));

9

Procedure dispatch()
1 begin
2 if rank = 0 then
3 try_dequeue_task_uuid← local_queue.top().task_uuid;

4 else
5 try_dequeue_task_uuid← getTaskUUIDFromQueueAt(rank).task_uuid;
6 rank← 0;
7 timestamp_of_my_last_try_dequeue← time();
8 broadcast TRY_DEQUEUE try_dequeue_task_uuid timestamp_of_my_last_try_dequeue;
9 wait for a given time-window for messages of type TRY_DEQUEUE to arrive;

10 TRY_DEQUEUE_Request req← null;
// Process TRY_DEQUEUE messages received from other servers/peers.

11 while not TRY_DEQUEUE_requests_queue.empty() do
12 req← TRY_DEQUEUE_requests_queue.pop();
13 if try_dequeue_task_uuid = req.task_uuid then // Conflict checking
14 if (timestamp_of_my_last_try_dequeue = req.timestamp and my_hostname > req.peer_hostname)

|| (timestamp_of_my_last_try_dequeue > req.timestamp) then
// Account my rank to determine which task to try dequeue on the
next call of "dispacth()".

15 rank← rank + 1;

16 if rank > 0 then // It is not the winner
// The next calling of dispach() is when the CPU becomes idle again.

17 else
18 broadcast STATE try_dequeue_task_uuid Running timestamp;

// Execute task.

41

3. THE DISTRIBUTED EXECUTION PLATFORM 3.6. Communication: Server-node ↔ Server-node

if the latter has stopped reporting the progress of a running task. When a task is running,
its progress is sent periodically to all nodes like a heartbeat message. In Section 4.5 of
Chapter 4 we present how it was implemented the fault-tolerance supporting at server-
node level.

Network level: The network partition, on which the nodes of one partition cannot com-
municate with other nodes located in any of the others, may cause two nodes, each one
in different partitions, to start execute the same task.

To solve the above conflict scenario, when the partitions are reconnected, our imple-
mentation detects that two or more nodes are running the same task and cancels the
executions on all nodes, and lets just one node to keep running the task, according to a
pre-established total order function. Ideally, this function should take into consideration
the current progress of each execution, in such a way that it would let the node which
is almost completing the task execution to continue because in this way the total task
completion time could be decreased.

If the partitions have a delay greater than the total execution time of tasks, given
that database is located in one of partitions, then it will be the task that has run in that
partition which commits its results with success to the database, while other tasks will
get an error when they try to connect with the database.

Nevertheless, it is very unlikely that it may happen scenarios where more than one
instance of the same task to terminate their executions and contact the database server
with success. If such happens, the consequence is that the database will have more than
one version of the same result. However, given this work context, it is very unlikely that
such scenario occurs and an analysis of cost/benefit reveals that its treatment is not a
priority.

In addition to the network partition, as our system follows a distributed approach,
then it is exposed to more failures. For instance, if it happens some momentary network
failure or some delay in message delivering/transmission, i.e., if a message has arrived
out of the time-window (defined in line 9 of the Algorithm 3.2) then the nodes may start
to execute the same task. This may happen because in such case, on each node the dis-
tributed dequeuing algorithm will behave like if the node is the only one in the system.
The implementation solves this conflict scenario in the same way as described above, that
is, by stopping the task execution at one of server-nodes and letting another to keep run-
ning. But, just to recall, the scope of this thesis is within a LAN, not the Internet where
network level failures may occur frequently.

3.6.2.2 Properties and assumptions

The distributed scheduling algorithm takes into consideration the following assump-
tions:

• Tasks may be cancelled during their lifetimes in the system, either by an operator

42

3. THE DISTRIBUTED EXECUTION PLATFORM 3.6. Communication: Server-node ↔ Server-node

or by the system itself;

• A given task may be running at the same time in two different hosts.

And it ensures the following properties:

• Since there is at least one server-node running in the system and if such a node has
all tasks in its state and does not fail, then eventually all tasks will be executed;

• In case of two hosts executing the same task, if no network partition occurs, nor-
mally, just one instance of a task completes the execution, as explained previously
in Section 3.6.2.1;

• The algorithm is resilient to network partitions, as explained in Section 3.6.2.1.

3.6.3 Server-node Joining/Leaving

Whenever a new server-node joins the system it has to obtain the system’s state. To
that end it begins by discovering the location of the master node by broadcasting the
WHO_IS_MASTER message (defined in Section 3.6.1) to all. If no reply arrives, it as-
sumes that no master is currently active and triggers the election process by broadcasting
the START_NEW_MASTER_ELECTION message (also defined in Section 3.6.1) to other
nodes for notifying that they must elect a new one (which was previously illustrated in
Figure 3.9).

Otherwise, if a reply arrives, subsequently the node requests the master the system’s
state. The master sends all tasks to it, by iterating its local map of tasks and for every task
it sends an ENQUEUE message directly to the node.

In addition to the WHO_IS_MASTER message, the following kind of message is
added to the system, for allowing a joining server-node to get the current system’s state:

TASKS_TRANSFER A new server requests the master-server to deliver it the current
tasks in the system.

The protocol for allowing a joining node to get the system’s state is illustrated in
Figure 3.12.

Whenever a new server-node leaves the system, the remaining nodes consider that
it has failed/crashed. If it was running a task before leaving the system, then the other
nodes will rescheduled that task, as explained later in Section 4.5 of Chapter 4. If it was
the master, then when the master is needed, the election algorithm is triggered (Algo-
rithm 3.1).

43

3. THE DISTRIBUTED EXECUTION PLATFORM 3.6. Communication: Server-node ↔ Server-node

Figure 3.12: Example illustrating the interaction protocol for system’s state downloading
by a joining node.

44

4
Implementation

Throughout the previous chapter, we have presented what are the requirements that the
system should meet, its distributed scheduling architecture and the communication pro-
tocols among its several entities, in order to achieve the distributed scheduling. We have
also explained the distributed algorithms which implement those protocols and how the
system supports failures at server-node and network level.

In this chapter we describe the implementation of the system prototype, which used
some existing technologies, and we describe the architecture employed by every server-
node and how the system execution log is saved persistently.

4.1 Introduction

The system was fully developed in C++11 [55] and with basis on two well-known Internet
protocols, which are the Transmission Control Protocol (TCP) and User Datagram Proto-
col (UDP). Concretely, we use TCP for the communications between a client-application
and a server-node, and UDP for communications among servers. In spite of being UDP
not reliable and not offering flow control, it is fast for local area networks (LANs) [56]
and we want each server to be stateless regarding the communication with other servers
like the relation between a server and the clients in the Network File System (NFS) [57].
The developed system prototype is portable for both Unix-like and Windows operating
systems. For Unix, we use The BSD UNIX Socket Library [58] and for Windows Sockets
2 API [59].

The remainder of this chapter is organized as follows. Section 4.2 briefly describes
the task interface. Section 4.3 defines a possible way for the integration of new tasks
in the system. In Section 4.4, we explain how the interdependencies among tasks were

45

4. IMPLEMENTATION 4.2. Task Interface

solved and in Section 4.5 we present and describe the implementation all components of
a server-node. Finally, Section 4.6 describes how a server-node’s execution log is saved
in a stable logging file.

4.2 Task Interface

As we have stated previously in Section 3.3, we use the Universality Unique Identifier
(UUID) to uniquely identify a task in the system. To achieve this, our system uses the
Boost C++ UUID library1, which is an implementation of UUID, for the generation of
tasks’ identifiers.

To send a task t from one server-node to another, we implemented a marshal() func-
tion to convert a task’s instance to its string data type representation and the bytes of
this string which are sent to other server-nodes, are converted back to the task’s original
representation by using a un-marshal() function.

Regarding the system portability, the binary files (executables) of all tasks are placed
in the same working directory as the executable of the server-node application. In this
way, the server-node will use the relative path of a task instead of the absolute, when
it launches the corresponding executable. For Unix environments, as an executable nor-
mally does not contain an extension associated and for Windows the .exe is the common
extension, then our task scheduling protocol imposes the client-application to send the
task executable name (the task_exec_name argument presented in Table 3.3) to the server-
node. When the server-node has to start running a task in Unix, it just executes the pro-
gram identified by the task_exec_name, and for Windows, it appends the .exe extension to
the task_exec_name.

4.3 Integration of a New Task in the System

To integrate a new task in our system, the server-node was implemented in such a way
that it does not have to know a task a priori, but the client-application should know and
must strictly follow the protocols defined in Section 3.4.

If a new task has to be implemented, then it will be required to specify a configuration
file which describes it (such as its type, its kinds of dependencies/inputs, etc.). The XML
provided in Listing 4.1, can be a possible way to enable the specification of new task to
be integrated in the system.

On the client’s side a task can be simply integrated with the system, by adding its
specification file to the client-application and on the server’s side, a task can be added
by putting its binary file (executable) in the same working directory as the server-node
application.

1http://www.boost.org/doc/libs/1_55_0/libs/uuid/uuid.html

46

http://www.boost.org/doc/libs/1_55_0/libs/uuid/uuid.html

4. IMPLEMENTATION 4.4. Inter-tasks Dependencies

Listing 4.1: Example of task description file.
1 <?xml version="1.0" encoding="utf-8"?>
2 <task>
3 <name>...</name>
4 <type>...</type>
5 <inputs>
6 <input>
7 <other_task_type>...</other_task_type>
8 <other_nth_output>...</other_nth_output>
9 </input>
10 <input>
11 <other_task_type>...</other_task_type>
12 <other_nth_output>...</other_nth_output>
13 </input>
14 ...
15 </inputs>
16 </task>

4.4 Inter-tasks Dependencies

To solve the interdependencies among tasks, presented in Section 1.1, we use the own
tasks identifiers and ordinal numbers to represent that a task depends on results of an-
other, e.g., if the first input of a task tj depends on the first output of a task ti, then we
represent tj .input1 = ti.task_uuid/1st. The example in Table 4.1 illustrates this approach
for those automatic tasks presented in Section 1.1, where I, G, S and AD, represent the
Import task, Georeferencing, Segmentation and Anomaly-Detection, respectively.

This representation is built internally in a server-node with basis on the task’s param-
eters passed from a client-application, when the latter requests it to the schedule a task
(as described in Section 3.4). In this way, a server-node is able to pass the identifiers of
output datasets from a terminated task to the tasks’ inputs that depend on them.

Task UUID Name Inputs

3aff3d90−2b79−11e3−8224−0800200c9a66 I Path to location with raw files

679e9490−2b79−11e3−8224−0800200c9a66 G parameters.xml

input1= 3aff3d90−2b79−11e3−8224−0800200c9a66/1st

input2= 3aff3d90−2b79−11e3−8224−0800200c9a66/2nd

input3= 3aff3d90−2b79−11e3−8224−0800200c9a66/3rd

7f850cb0−2b79−11e3−8224−0800200c9a66 S parameters.xml

input1= 3aff3d90−2b79−11e3−8224−0800200c9a66/1st

input2= 679e9490−2b79−11e3−8224−0800200c9a66/1st

input3= 679e9490−2b79−11e3−8224−0800200c9a66/2nd

2daec57e−b129−4359−9986−21294643a0a3 AD parameters.xml

input1= 7f850cb0−2b79−11e3−8224−0800200c9a66/1st

Table 4.1: Example of dependencies representation among ATs.

47

4. IMPLEMENTATION 4.5. Server-node Module

Incoming messages from other servers Incoming messages from client-applications

Communication layer

Task executer Progress reporter

Task failure detector

Master election
Volunteer mode checker

Running task

Outgoing messages to client-applicationsOutgoing messages to other servers

Client request handler
Map of tasks

Task queue

Server request handler

read/write access

message

synchronization

notification/signal

communication

trigger

Figure 4.1: Overview of components of a server-node.

4.5 Server-node Module

In this section we present the main components of a server-node and describe the func-
tionalities of each one of them. Figure 4.1 depicts all its components, where the syn-
chronization between two components is represented by a bidirectional arrow, the com-
munication by bidirectional dashed arrow, the operations of read and write over data
structures by blue arrows, the notification/signal from a component to another by an or-
ange arrow, the messages are represented by green arrows and the triggering of a new
thread of execution by pink arrow. A rectangle represents a thread of execution or a
running task, an ellipse represents an incoming/outgoing messages and a rectangle with
rounded corners represents the data structures.

Map of tasks and Task queue: The Map of tasks is a map data structure, which con-
tains all system’s tasks that have not been executed yet. It stores key-value pairs, where
the key is the task’s UUID and the value is the task itself.

The Task queue represents a queue data structure with all ready-to-run tasks, which
follows the priority-based First Come First Served (FCFS). It was used the priority_queue2,

2http://en.cppreference.com/w/cpp/container/priority_queue

48

http://en.cppreference.com/w/cpp/container/priority_queue

4. IMPLEMENTATION 4.5. Server-node Module

because its operations of push and pop have logarithmic complexity and also it provides
a simple way to define a new sorting criterion.

As we have stated before, whenever a server-node receives an ENQUEUE message,
it places the corresponding task (t) in the map and if the t’s state is ready, or when even-
tually it becomes ready, then t is also placed in the task queue.

If a task ta has priority low and a task tb has priority interactive, then tb is be placed in
front of ta in queue. If ta and tb have the same priority then it is applied the FCFS policy.

As illustrated in Figure 4.1 these two data structures may be accessed by multiple
server-node’s threads of execution simultaneously. To ensure mutual exclusion when
they are accessed for read and write operations, the implementation uses the std::mutex3

and std::lock_guard<std::mutex>4 classes.

Communication layer: This component supports the incoming communications. It
handles the requests coming either from other servers or from client-applications by us-
ing the select() system call and regarding the message sender, i.e., a client-application
or a server, it creates a Client request handler or Server request handler to process the
request, respectively. The communication layer may create/trigger multiple request han-
dlers if it has received multiple request simultaneously, but a handler is deleted immedi-
ately when it has processed the assigned request.

A server-node has a TCP socket for communications with client-applications and
three UDP Sockets for communications with other servers. When it starts up, the first
thing it does, is the creation all needed socket file descriptors used to communicate with
client-applications and other server-nodes. These sockets are:

1. A TCP socket for receiving new connections establishment with new clients;

2. A UDP socket which is used for receiving incoming messages (either broadcast or
unicast) from other servers;

3. A UDP socket used for sending broadcast messages to other servers;

4. A UDP broadcast socket for task progress reporting.

Having the socket file descriptors created, the thread which runs the Communication
layer will be always listening, by using the select()5 system call to monitor all created
socket file descriptors, to check if it has received messages in any of them.

Whenever a message is received on its TCP socket file descriptor then it is considered
as being a new connection establishment request from a client-application and it accepts
the connection using the accept()6 system call, which generates a new file descriptor for
this new client, which is also registered to be monitored with select() from that time.

3http://en.cppreference.com/w/cpp/thread/mutex
4http://en.cppreference.com/w/cpp/thread/lock_guard
5It allows a program to monitor multiple file descriptors, waiting until one or more of the file descriptors

become "ready" for some class of I/O operation.
6It accepts a connection on a socket.

49

http://en.cppreference.com/w/cpp/thread/mutex
http://en.cppreference.com/w/cpp/thread/lock_guard
http://linux.die.net/man/2/select
http://linux.die.net/man/2/select
http://linux.die.net/man/2/accept

4. IMPLEMENTATION 4.5. Server-node Module

When it receives a message in one of registered file descriptors for client application
then it creates a thread to handle that client request, which can be the scheduling or
cancelling of task, or task subscription request.

When it receives a message in one of its UDP file descriptors from another server,
which can be a broadcast or unicast message, then it creates a thread to handle that
server’s request. The kinds of messages which can arrive to its UDP file descriptors are,
WHO_IS_MASTER, START_NEW_MASTER_ELECTION, ENQUEUE, TRY_DEQUEUE,
STATE, GET_TASK, etc., that were previously described in Sections 3.6.1 and 3.6.2.

Task failure detector: This component is responsible for detecting the failures of tasks
running remotely, i.e., the tasks running by the other servers. Every server-node has a
dedicated thread, which runs this component, for detecting the task execution failure
periodically (every 60 seconds) and when: there is at least one task running on a remote
host. This is to avoid the thread from being always wasting the host computing resources
when there is no task running on remote host to detect its failure. A task t running
remotely is considered as failed if the server-node has not received its progress for a
given time limit. In such case, this component reschedules t by adding it again to the
Task queue.

If the Task executer is running a task t and it has to stop the t’ execution because it
detects that another node is also running t, then it may wake up the Task failure detector
to start checking if t does not fail.

Volunteer mode checker: This component is responsible for checking, periodically, whether
the host is idle or not. Our implementation considers that a host becomes idle if its CPU
load keeps being less than or equals 10% since last verification time. This checking is
done every 60 second intervals. It is run by a dedicated thread which only checks the CPU
idleness if there is no task running locally. In other words, if a server-node is currently
running a task then it cannot contribute with its computing resources to run another task.
Taking this issue into account, it does not make sense to check if it is idle or not. To get the
current CPU load percentage we use the Windows Performance Data Helper functions
7 for collecting host’s performance data. Although being our implementation portable,
this feature has not yet been implemented for Unix environments. Currently, we are con-
sidering that a server-node running on Unix can always try to dequeue a task even if the
host is not idle.

Task executer: This component is run by a thread and it is responsible for cooperat-
ing with other servers in order to try dequeuing a ready task from Task queue. It runs
the distributed dequeuing algorithm (presented in Algorithm 3.2), which has a for loop
where in each step it tries to get a task from the Task queue to execute. In each iteration
of its for loop, it blocks on a condition variable until the following conditions are true: the

7http://msdn.microsoft.com/en-us/library/aa939698(v=winembedded.5).aspx

50

http://msdn.microsoft.com/en-us/library/aa939698(v=winembedded.5).aspx

4. IMPLEMENTATION 4.5. Server-node Module

Listing 4.2: Example of the server configuration file.
1 <?xml version="1.0" encoding="utf-8"?>
2 <server>
3 <reputation>10</reputation>
4 <first_startup>true</first_startup>
5 </server>

host CPU is idle, there is no other task running locally and the Task queue is not empty.
The server-node’s threads which may signal this condition variable are: the Volunteer
mode checker component which decides whether the host CPU is idle or not, the Client
request handler which may generate a new task if a client-application has requested a
scheduling and the Server request handler which may receive an ENQUEUE message or
some information that makes the state of a pending/dependent task to become Ready, for
example when a server-node receives the results of dependable task that has terminated
the execution.

When a server-node receives a scheduling request from a client-application then it
checks the task’s priority. If it is interactive then the task should be executed locally if there
is no other running, even if the host is not idle. Otherwise, the system will eventually
execute it and should save the execution results on the database server.

Up to now, we consider a batch task as being one with priority low and interactive task
as being one with priority interactive, i.e., a task in which the user wants to get results as
soon as possible.

Running task: It represents a task during the execution. The task execution is launched
by the Task executer as a child process and they communicate through the standard input
(stdin) and standard output (stdout). The messages exchanged between them, follow the
communication protocol defined in Section 3.5.

Progress reporter: This component is responsible for reporting the progress of a run-
ning task, periodically (every 15 seconds), to other servers by broadcasting the PROGRESS
message and to the client-applications which have subscribed interest in getting this task
progress, by iterating the list of socket file descriptors of task’s subscribers, and for each
one it sends the PROGRESS message directly.

The component is run by a dedicated thread which waits on a condition variable until
Task executer starts running a task.

Master election: This component represents the master election algorithm which is run
by a thread locally in the node whenever the system needs to elect a new master. The
thread is triggered/created to run the algorithm and deleted when the election termi-
nates. As described in Section 3.6.1, the election algorithm has as input the node’s repu-
tation loaded from a configuration file (provided in Listing 4.2). By default, every sever-
node starts with the same reputation, which is later decremented whenever a node stops

51

4. IMPLEMENTATION 4.6. Execution Logging

and restarts. The first time a node joins the system, its reputation is not decremented, but
the content the element first_startup is set as false. In this way, the next time it
restarts for some reason (e.g., it has crashed), then it will check the content of that element
and decrement the value of reputation.

4.6 Execution Logging

Every server-node stores its execution log in a persistent logging file, for allowing the
later retrieving of historical data of its behaviour and statistical data. The same execution
log is also displayed on its console, in order to monitor its execution in real-time and
analyse the reasons of unwanted behaviours.

To achieve this, our implementation uses the Boost Log library8, which is simple to in-
tegrate with an existing application and also extensible. Each line that is saved in the log
file has a severity associated, for better understanding about what happened. The format
of the log messages are shown below, where [YYYY-MM-DD HH:MI:SS] corresponds to
the date and time of day that the message was generated.

• [YYYY-MM-DD HH:MI:SS]: <normal> A normal severity message;

• [YYYY-MM-DD HH:MI:SS]: <error> An error severity message;

• [YYYY-MM-DD HH:MI:SS]: <debug> A debug severity message;

• [YYYY-MM-DD HH:MI:SS]: <info> An information severity message;

• [YYYY-MM-DD HH:MI:SS]: <warning> A warning severity message.

Listing 4.3 shows an excerpt of a server log file, where can be seen some information
that is output by a server, namely its CPU load, TRY_DEQUEUE message, reception of
task’s states from other servers, etc.

In the next chapter we evaluate the system taking into consideration the results ob-
tained from a simulation framework that we have developed.

8http://www.boost.org/doc/libs/1_55_0/libs/log/doc/html/index.html

52

http://www.boost.org/doc/libs/1_55_0/libs/log/doc/html/index.html

4. IMPLEMENTATION 4.6. Execution Logging

Listing 4.3: Excerpt of a server log.
1 [2014-05-25 19:14:19]: <info> This server CPU became idle: 0.0840164%
2 [2014-05-25 19:14:19]: <debug> TRY_DEQUEUE UUID[7223e71f-cf39-4c8f-a2a5-2d02e5d2f5f2] was broadcast to all servers.
3 [2014-05-25 19:14:33]: <debug> Task UUID{fc89684f-99b5-4bb7-8803-426716c59721} State{Terminated} received from {gaviao

} timestamp=[2014-05-25 19:14:35]
4 [2014-05-25 19:14:34]: <debug> TRY_DEQUEUE UUID[7223e71f-cf39-4c8f-a2a5-2d02e5d2f5f2] from Andorinha timestamp

=[2014-05-25 19:14:34] processed.
5 [2014-05-25 19:14:34]: <debug> I won the race to dequeue task UUID{7223e71f-cf39-4c8f-a2a5-2d02e5d2f5f2} in this round

of TRY_DEQUEUE.
6 [2014-05-25 19:14:34]: <info> Task(UUID{7223e71f-cf39-4c8f-a2a5-2d02e5d2f5f2} name{anomaly_detection} priority{

interactive} state{Running} ScheduledBy{ROUXINOL} RunningOn{Acor})
7 [2014-05-25 19:14:34]: <info> Task executable anomaly_detection.exe started running.
8 [2014-05-25 19:14:34]: <debug> Server started communication with task executable.
9 [2014-05-25 19:15:03]: <debug> Task UUID{54e813af-003f-4e3d-a4c4-ab4ad94dbc37} State{Terminated} received from {Gralha

} timestamp=[2014-05-25 19:15:04]
10 [2014-05-25 19:15:03]: <info> Task(UUID{40fda816-f118-4d70-8c0c-d82c35a870b9} name{segmentation} priority{interactive}

state{Ready} ScheduledBy{ROUXINOL})
11 [2014-05-25 19:15:18]: <debug> Task UUID{40fda816-f118-4d70-8c0c-d82c35a870b9} State{Running} received from {Cotovia}

timestamp=[2014-05-25 19:15:18]
12 [2014-05-25 19:16:03]: <debug> Task UUID{561f0c57-8533-40ae-8ca1-68e414d82936} State{Terminated} received from {

ROUXINOL} timestamp=[2014-05-25 19:16:05]
13 [2014-05-25 19:16:34]: <info> Task(UUID{7223e71f-cf39-4c8f-a2a5-2d02e5d2f5f2} name{anomaly_detection} priority{

interactive} state{Terminated} ScheduledBy{ROUXINOL} ExecutedBy{Acor} WaitingTimeOnQueue{16s} makespan{1109s})
14 [2014-05-25 19:17:18]: <debug> Task UUID{40fda816-f118-4d70-8c0c-d82c35a870b9} State{Terminated} received from {

Cotovia} timestamp=[2014-05-25 19:17:19]
15 [2014-05-25 19:17:18]: <info> Task(UUID{9983e514-ece7-4a3c-9746-f5664488ae61} name{anomaly_detection} priority{

interactive} state{Ready} ScheduledBy{ROUXINOL})
16 [2014-05-25 19:17:33]: <debug> Task UUID{9983e514-ece7-4a3c-9746-f5664488ae61} State{Running} received from {Andorinha

} timestamp=[2014-05-25 19:17:34]
17 [2014-05-25 19:17:34]: <info> This server CPU became idle: 0.415445%
18 [2014-05-25 19:18:34]: <info> This server CPU became idle: 0.0385261%
19 [2014-05-25 19:19:15]: <info> Server::communication_layer(): New connection established with client 10.1.1.206:9965

53

4. IMPLEMENTATION 4.6. Execution Logging

54

5
Evaluation

This chapter presents and evaluates the results obtained from several executions of the
developed prototype, considering different test configurations. Section 5.1 provides a
brief presentation of functional requirements evaluation. In Section 5.2 we describe an
implementation of a simulation framework that we have developed for automatic test-
ing purposes and we evaluate the prototype taking into consideration the experimental
results obtained from several tests. Finally, the Section 5.3 evaluates the satisfaction of
non-functional requirements by our prototype.

5.1 Functional Evaluation

In Table 3.1 of Section 3.1, we have summarized the functional requirements that the
system should meet. The majority of these requirements were fully satisfied, some of
them were partially satisfied and just one was not, as shown in Table 5.1, where one
check mark (X) means partially satisfied, two check marks (XX) means fully and no
check mark means not satisfied.

5.2 Experimental Evaluation

In this section we present and evaluate the developed prototype, using a simulation
framework for automatic tests. We also present an evaluation of non-functional require-
ments that the system should meet, which were previously specified in Section 3.1.

55

5. EVALUATION 5.2. Experimental Evaluation

ID Satisfaction Comments

FR1 X It was partially satisfied because the system is able to exploit idle computing time of
workstations but currently it only executes simulated tasks of PLMI2 application,
instead of real tasks, since these were not available.

FR2 XX It was provided a way to represent dependencies among tasks, as defined in 4.4.
FR3 XX The system is able to distinguish an interactive from batch task, as specified in

Section 4.5.
FR4 XX Client applications can request the scheduling, cancellation and subscription of a

task, by following the protocols defined in Section 3.4.
FR5 This requirement was not satisfied because it was not possible to implement any

User Interface for client applications due to time constraints. It was desirable to
have but not crucial.

Table 5.1: Functional requirements satisfaction.

Hostname CPU (model + speed) RAM Storage

acor Intel(R) Core(TM) i5-2400S 2.56 GHz 4 GB 931 GB
andorinha Intel(R) Core(TM) i5-3570T 2.30 GHz 4 GB 456 GB
corredor Intel(R) Core(TM) i5-3570T 2.30 GHz 4 GB 465 GB
cotovia Intel(R) Core(TM) i5-2400 3.10 GHz 4 GB 931 GB
gaviao Intel(R) Core(TM) i5-3570T 2.30 GHz 4 GB 456 GB
gralha Intel(R) Core(TM) i7-2600K 3.40 GHz 8 GB 175 GB
grifo Intel(R) Core(TM) i5-3570T 2.3 GHz 4 GB 500 GB
pato AMD Athlon(tm) II X3 440 Processor 3.00 GHz 4 GB 156 GB
rouxinol Intel(R) Core(TM) i5-3570T 2.30 GHz 4 GB 465 GB

Table 5.2: List of workstations used to test the system.

5.2.1 Computing Resources

To measure the system scalability and the ability for supporting the fault-tolerance, we
used nine workstations within the Albatroz’s local network. Their characteristics are
presented in Table 5.2 and all of them have the same operating system type, which is
Windows 64-bit.

5.2.2 Simulation Framework

To test the system, we developed four simulated tasks’ executables, as described below.
The code for all tasks’ executables is portable for both Unix-like and Windows operating
system. Each one of them respects the communication protocol between a server-node
and a running task that we have previously specified in Section 3.5.

import This task’s executable simulates the inspection data importing to the database
server.

georeferencing This task’s executable simulates the geo-referencing of the imported data
on database.

segmentation This executable simulates the classification of points of interest as ground,
vegetation, road, building, etc.

56

5. EVALUATION 5.2. Experimental Evaluation

anomaly_detection This task’s executable simulates the classification of points of inter-
est as an anomaly or not-an-anomaly, considering their distances to the power line.

The tasks’ executables were implemented in such way that they can be executed as
the following (command line-like):

$./task_exec_name [−p path_to_raw_files] [−i input1] ... [−i inputn] [−x parameters.xml] >

ouput1 ... outputn

task_exec_name The name of a task’s executable.

[-p path_to_raw_files] This option means that a location in the file system (or a location within
the LAN) containing the raw data files was passed. This option is only needed for the
import task.

[-i input_nth] This option indicates that an integer number identifying an input dataset on database
was passed. The number of input datasets to be passed to a task should be according to its
need.

[-x parameters.xml] Indicates that an XML file with more task’s parameters was passed.

ouput1 ... outputn are the identifiers of output datasets generated by the task’s executable. These
identifiers are supposed to be obtained when the task’s executable generates datasets on
database, but currently they are randomly generated by the simulated tasks.

We developed a dedicated tester application for automatic simulation of client-applications, where
each client-application requests a server-node to schedule those four tasks described above. The
priority of each task is chosen randomly according to a uniform distribution in interval [1, 2], in
which 1 means low and 2 means interactive priority, respectively.

Basically, the tester application creates between one and ten clients-applications by picking
up a random number generated with a uniform distribution in interval [1, 10]. Also, this tester is
easily expansible to support more server-nodes and client-applications.

We used nine workstations to work as the server-nodes (i.e., the server-node application was
installed in each one) and a client-application chooses to which server-node to request the execu-
tion of its tasks randomly according to a uniform distribution in interval [1, 9].

5.2.3 Test Configurations

The dedicated tester application that was implemented, may launch a specified number client-
applications, where each client-application requests the scheduling of one workflow containing
four tasks (illustrated in Figure 5.1) and the server-node to which a client-application requests the
scheduling of its workflow is selected randomly, according to the number of servers used in each
test configuration.

To show that the system is scalable with the increasing number of server-nodes we had to im-
pose some restrictions on the test configuration, differently from that described in Section 5.2.2;
i.e., in this case, some simulation parameters should not be chosen randomly, namely, the total
task execution time and the number of client-applications. Indeed, we impose each task to take
exactly 2 minutes to complete its execution, and for all tests, were scheduled 5, 10 and 15 work-
flows, which correspond to 20, 40 and 60 tasks, respectively. Regarding task’s priority, we had to
use the same seed for the uniform distribution, so that for every system execution tasks will have

57

5. EVALUATION 5.2. Experimental Evaluation

segmentation

import

anomaly_detection

georeferencing

B C

D E

A

F

Figure 5.1: Workflow used for testing purposes.

Number of server-nodes 5 workflows 10 workflows 15 workflows

1 52,03 100,76 149,75
2 18,76 44,19 54,37
3 14,79 26,34 45,06
4 12,76 20,97 35,31
5 11,63 19,30 28,12
6 10,00 16,57 24,18
7 9,59 15,10 20,76
8 9,55 13,50 18,68
9 9,23 13,16 18,08

Table 5.3: Average makespan in minutes by a workflow for each number of server-nodes
in the system.

the same priority as in the first execution. The only simulation parameter which changes from
one test configuration to another is the number of server-nodes.

Although being the prototype developed in such a way that it only exploits the idle CPU
cycles from workstations to execute tasks, we have to state that all tests were conducted with
workstations in fully dedicated mode to execute tasks, i.e., the server-node was the only user
application running on each workstation.

5.2.4 Experimental Results

In this section we present the results which show that our system is efficient/scalable and resilient
to server-nodes’ failures.

In Table 5.3 we present the results we have got with nine system executions, each one with a
different number of server-nodes in the system and workflows. These results show that the aver-
age makespan of a workflow – the time since the submission to the system until its termination –
decreases with the increasing number of the server-nodes. For instance, with 9 server-nodes and
10 workflows, in average a workflow took just 13,16 minutes to complete the execution, whilst
with 1 server-node it took 1 hour and 40,76 minutes.

In Figure 5.2, we show the relationship between the number of server-nodes and the average
completion time of a workflow, which uses the data previously presented in Table 5.3. This figure

58

5. EVALUATION 5.2. Experimental Evaluation

Figure 5.2: System scalability with the increasing number of server-nodes.

Number of server-nodes 20 tasks 40 tasks 60 tasks

1 11,01 23,19 35,44
2 2,79 9,05 11,71
3 1,80 4,57 9,27
4 1,29 3,23 6,83
5 1,01 2,81 5,04
6 0,63 2,13 4,05
7 0,54 1,77 3,20
8 0,53 1,39 2,68
9 0,44 1,31 2,53

Table 5.4: Average waiting time in minutes by a task for each number of server-nodes in
the system.

shows, for instance, that the average completion time of a workflow significantly decreased from
1 to 3 server-nodes, either for 5, 10 or 15 workflows.

Table 5.4 presents the values of average waiting time of task in queue for each number of
server-nodes and total number of tasks in the system.

To evaluate the average waiting time that a task of a workflow takes since its state gets ready
until a server-node starts executing it, the line graphs in Figure 5.3 illustrate how the curves of
waiting time changed with the increasing number of server-nodes and for different number of
tasks in the system. As can be seen, with 9 server-nodes and 40 tasks in the system, a task waited
in average 1,3 minutes to be started, whilst with just one server-node it waited 23,19 minutes.
Taking into consideration that the waiting time of a task of a workflow depends on the time that
its dependable tasks take to finish, and that each task takes 2 minutes to complete when it is
started by a server-node and that each workflow has 4 tasks, then 1,3 minutes of waiting time by
a task in a system configuration containing 9 servers is acceptable.

Ideally, a workflow used for testing purposes could be executed in 8 minutes by a server-node,
since it has 4 tasks and each one takes exactly 2 minutes to complete. However, the implemen-
tation introduces some delay, that is, our distributed dequeuing algorithm establishes a waiting
time-window when a server-node broadcasts a TRY_DEQUEUE message and also during the
system execution some of computing resources may have periods that their CPUs are not idle.

In the same way as the makespan, the average waiting time by a task of a workflow – the

59

5. EVALUATION 5.2. Experimental Evaluation

Figure 5.3: The average waiting time by a task in ready-to-run queue, according to the
number of server-nodes in the system.

Number of server-nodes that failed Avg. waiting time of a task Avg. makespan of a workflow

8 out of 9 19,77 89,14
5 out of 9 3,35 22,81
2 out of 9 1,83 15,88
0 out of 9 1,31 13,16

Table 5.5: Average waiting time by a task and average makespan of a workflow, in min-
utes, for each number of failed servers.

time since a task becomes ready until its execution is started by a server-node – also decreases as
illustrated by three curves in Figure 5.3.

Note that the line graphs presented in Figure 5.2 and 5.3 have similar slopes. This happens
because the makespan of a workflow is related with the waiting time of its tasks, that is, the
greater the waiting time higher is the makespan.

Fault Tolerance of Server-nodes

We have tested the fault-tolerance supporting of server-nodes when they were running tasks sev-
eral times. For all tests the system was always able to detect their failures and reschedule the failed
tasks. Moreover, to show that our system is resilient to the server-nodes failures, we have built
4 test configurations, in which client-applications requested the scheduling of 10 workflows (40
tasks) for a system with 9 server-nodes. Then, we intentionally caused 8, 5, 2 and 0 server-nodes
to fail (i.e., cause them to leave the system) while they were running their first tasks, having the
system started with 9 nodes. The remaining servers were able to detect the others’ failures and
rescheduled the failed tasks. Therefore, the remaining server-nodes executed all 40 tasks that
were scheduled, with success. The results of average waiting time by a task and makespan of a
workflow obtained from these system executions are shown in Table 5.5.

Fault Tolerance of Master Server

As we have presented previously, our system masks the master failure by electing a new one
according the election algorithm defined in Algorithm 3.1. We have tested the master failure
several times, where the joining server-node was always able to detect this issue and trigger new

60

5. EVALUATION 5.3. Non-Functional Requirements Evaluation

ID Satisfaction Comments

NFR1 XX The system supports fault-tolerance of task execution, employing the reschedule
mechanism and the failure of a server does not imply incorrect behaviour of the
remaining, regarding the specifications provided in Sections 3.6.1.1 and 3.6.2.1.

NFR2 X The heterogeneity was partially met because the system was developed in such
a way that it works either for Unix-like and Windows operating systems, but
for Unix it is missing to implement the Volunteer mode checker component pre-
sented in Section 4.5, and also it is missing some tests to ensure that communica-
tion Unix ↔ Windows works.

NFR3 X Experimental results provided in Section 5.2.4, have shown that the developed
prototype presents an acceptable total task execution time, but unfortunately we
cannot compare these results with those of existing system because our results
were obtained with simulated tasks. The real tasks of PLMI2 were not available.

NFR4 XX The performed tests have shown that a server-node has a low consumption of
workstation resources, mainly the CPU usage.

Table 5.6: Non-functional requirements satisfaction.

election.

5.3 Non-Functional Requirements Evaluation

Table 5.6 presents whether a given non-functional requirement that was previously specified in
Table 3.2 of Section 3.1, was met or not. The check marks have the same meaning as described in
Section 5.1.

Summary

The results presented in this chapter show that the implemented system works as expected, in
terms of fault-tolerance supporting and scalability.

We have also shown how quickly the implemented prototype dispatches workflows by in-
creasing the number of server-nodes and that it is resilient to the failures of server-nodes, even if
some of them fail, since the system still having at least one server-node running.

61

5. EVALUATION 5.3. Non-Functional Requirements Evaluation

62

6
Conclusions and Future Works

This thesis has studied a problem that emerged as a real need of Albatroz Engineering, with the
purpose of building a distributed task scheduling system able to schedule the execution of auto-
matic tasks of a workflow of the company’s PLMI2 application, to be executed by the available
workstations within the Local Area Network (LAN) and tailored to the company’s needs.

We have designed and implemented a new task scheduling system in the context of Vol-
unteer Computing systems, which follows a distributed scheduling architecture, supports fault-
tolerance of tasks execution by employing the rescheduling mechanism and takes into account the
priority of a task. The task scheduling policy follows the priority-based First Come First Served
(FCFS).

The implementation of the prototype has addressed some of challenging issues raised by dis-
tributed systems and Volunteer Computing, namely the dealing with hosts volatility and failures.

Furthermore, we have also defined three communication protocols between the system com-
ponents:

• The protocol between a server-node and a task’s executable, which can be used to easily
add new tasks to the system;

• The protocol between a client-application and a server-node, to allow the supporting of
new client-applications;

• The protocol among the distributed server-nodes within the LAN, in order to achieve the
distributed task scheduling.

Our implementation relies mainly on two distributed algorithms, which respect a pre-established
interaction protocol among server-nodes, in order to be achieved the agreement in distributed
scheduling of tasks.

The evaluation results have shown that the system prototype is scalable with the increasing
number of server-nodes and that it is resilient to the failures of server-nodes. Also, the results have
shown that the system had in average an acceptable completion time of workflows dispatching

63

6. CONCLUSIONS AND FUTURE WORKS

(i.e., according to the expected), and that the average waiting time for the execution of a task to
be started by a server-node significantly decreases by adding more server-nodes to the system.

In order to extend the developed prototype, as a future work we recognize the need to:

• Improve our proposed distributed dequeuing algorithm to take into account the host CPU
type, where a server-node is running, in order to assign a task to the host with better prop-
erties;

• Improve the system by adding a new scheduling policy to schedule tasks based on histor-
ical behaviour of computing resources, since this mechanism can significantly lower the
global tasks execution time [9];

• Improve the server-node to consider a host as being idle, not only when the CPU load is
low, as it is currently implemented, but also the mouse and keyboard activities, i.e., when
the user moves away from the workstation for a given time;

• Design and implement Graphical User Interfaces for client-application’s side, to inform the
users about the current system state and to allow them to request the scheduling of tasks
execution, cancelling the execution, etc.;

• Seamlessly integrate the developed prototype with PLMI2 platform.

64

Bibliography

[1] J. Gomes-Mota. About Albatroz Engineering - history, people, company data. URL: http:
//albatroz-eng.com/about_albatroz.php.

[2] J. Gomes-Mota. The history of Albatroz Engineering. URL: http://albatroz-eng.
com/corporate/history.html.

[3] J. Gomes-Mota. Albatroz Engineering - Power Line Maintenance Inspection [PLMI].
URL: http://albatroz-eng.com/solutions/power_line_maintenance_
inspection.html.

[4] L. F. G. Sarmenta. “Volunteer Computing”. PhD thesis. Massachusetts Institute of
Technology, 2001, p. 216. URL: http://dspace.mit.edu/handle/1721.1/
16773.

[5] MersenneResearch. GIMPS. URL: http://www.mersenne.org/.

[6] Distributed.net. distributed.net. URL: http://www.distributed.net/.

[7] SETI@home. SETI@home. URL: http://setiathome.berkeley.edu/.

[8] D. P. Anderson, J. Cobb, E. Korpela, and M. Lebofsky. “SETI@home: An Experiment
in Public-Resource Computing”. In: Communications of the ACM 45.11 (Nov. 2002),
pp. 56–61. DOI: 10.1145/581571.581573.

[9] T. Estrada, O. Fuentes, and M. Taufer. “A Distributed Evolutionary Method to De-
sign Scheduling Policies for Volunteer Computing”. In: Proceedings of the 2008 con-
ference on Computing frontiers - CF ’08. New York, New York, USA: ACM Press,
2008, pp. 40–49. ISBN: 9781605580777. DOI: 10.1145/1366230.1366282. URL:
http://portal.acm.org/citation.cfm?doid=1366230.1366282.

[10] T. L. Casavant and J. O. N. G. G. Kuhl. “A Taxonomy of Scheduling in General-
Purpose Distributed Computing Systems”. In: IEEE Transactions on Software Engi-
neering 14.2 (1988), pp. 141–154. DOI: 10.1109/32.4634. URL: http://dl.acm.
org/citation.cfm?id=630963.

65

http://albatroz-eng.com/about_albatroz.php
http://albatroz-eng.com/about_albatroz.php
http://albatroz-eng.com/corporate/history.html
http://albatroz-eng.com/corporate/history.html
http://albatroz-eng.com/solutions/power_line_maintenance_inspection.html
http://albatroz-eng.com/solutions/power_line_maintenance_inspection.html
http://dspace.mit.edu/handle/1721.1/16773
http://dspace.mit.edu/handle/1721.1/16773
http://www.mersenne.org/
http://www.distributed.net/
http://setiathome.berkeley.edu/
http://dx.doi.org/10.1145/581571.581573
http://dx.doi.org/10.1145/1366230.1366282
http://portal.acm.org/citation.cfm?doid=1366230.1366282
http://dx.doi.org/10.1109/32.4634
http://dl.acm.org/citation.cfm?id=630963
http://dl.acm.org/citation.cfm?id=630963

BIBLIOGRAPHY

[11] L. F. Sarmenta. “Bayanihan: Web-Based Volunteer Computing Using Java”. In: Sec-
ond International Conference on World-Wide Computing and its Applications. 1998, pp. 444–
461. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.
1.1.37.6643.

[12] S. Choi, H. Kim, E. Byun, and H. ChongSun. A Taxonomy of Desktop Grid Systems
Focusing on Scheduling. Tech. rep. Dept. of Computer Science & Engineering, Korea
University, 2006, p. 17. URL: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.75.5256.

[13] D. P. Anderson. “BOINC: A system for public-resource computing and storage”.
In: 5th IEEE/ACM International Workshop on Grid Computing. 2004, pp. 4–10. URL:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.123.

6649.

[14] C. Christophe and G. Fedak. Desktop Grid Computing. CRC Press, 2012, p. 388.
ISBN: 9781439862155. URL: http://www.crcpress.com/product/isbn/
9781439862148.

[15] HTCondor. HTCondor - Home. URL: http://research.cs.wisc.edu/htcondor/.

[16] Z. C. F. Scientific Computing, Copyright Nicolae. “A Desktop Grid Computing Ap-
proach”. PhD thesis. URL: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.139.1886.

[17] D. Zhou and V. Lo. “Wave Scheduler: Scheduling for Faster Turnaround Time in
Peer-Based Desktop Grid Systems”. In: 11th Workshop on Job Scheduling Strategies
for Parallel Processing. Springer, 2005, pp. 194–218. URL: http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.105.1922.

[18] Z. Zhao, F. Yang, and Y. Xu. “PPVC: A P2P volunteer computing system”. En-
glish. In: 2009 2nd IEEE International Conference on Computer Science and Informa-
tion Technology. Beijing: IEEE, Aug. 2009, pp. 51–55. ISBN: 978-1-4244-4519-6. DOI:
10.1109/ICCSIT.2009.5234999. URL: http://www.computer.org/
csdl/proceedings/iccsit/2009/4519/00/05234999-abs.html.

[19] A. A. Chien, B. Calder, S. Elbert, and K. Bhatia. “Entropia: Architecture and Perfor-
mance of an Enterprise Desktop Grid System”. In: (2003). URL: http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.12.8273.

[20] P. Chauhan. “Decentralized Scheduling Algorithm for DAG Based Tasks on P2P
Grid”. In: Journal of Engineering 2014 (2014), pp. 1–14. ISSN: 2314-4904. URL: http:
//www.readcube.com/articles/10.1155/2014/202843?locale=en.

[21] D. Moise, E. Moise, F. Pop, and V. Cristea. “Resource CoAllocation for Scheduling
Tasks with Dependencies, in Grid”. In: Proceedings of The Second International Work-
shop on High Performance in Grid Middleware (HiPerGRID 2008). IEEE Romania, June
2008, pp. 41–48. URL: http://arxiv.org/abs/1106.5309.

66

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.6643
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.6643
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.75.5256
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.75.5256
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.123.6649
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.123.6649
http://www.crcpress.com/product/isbn/9781439862148
http://www.crcpress.com/product/isbn/9781439862148
http://research.cs.wisc.edu/htcondor/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.139.1886
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.139.1886
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.1922
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.1922
http://dx.doi.org/10.1109/ICCSIT.2009.5234999
http://www.computer.org/csdl/proceedings/iccsit/2009/4519/00/05234999-abs.html
http://www.computer.org/csdl/proceedings/iccsit/2009/4519/00/05234999-abs.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.8273
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.8273
http://www.readcube.com/articles/10.1155/2014/202843?locale=en
http://www.readcube.com/articles/10.1155/2014/202843?locale=en
http://arxiv.org/abs/1106.5309

BIBLIOGRAPHY

[22] T. D. Braun, H. J. Siegel, A. A. Maciejewski, and Y. Hong. “Static resource allocation
for heterogeneous computing environments with tasks having dependencies , pri-
orities , deadlines , and multiple versions”. In: J. Parallel Distrib. Comput. 68 (2008),
pp. 1504–1516. DOI: 10.1016/j.jpdc.2008.06.006.

[23] G. Falzon and M. Li. “Enhancing genetic algorithms for dependent job scheduling
in grid computing environments”. In: The Journal of Supercomputing 62.1 (Dec. 2011),
pp. 290–314. ISSN: 0920-8542. URL: http://link.springer.com/10.1007/
s11227-011-0721-2.

[24] D. Jakobović and K. Marasović. “Evolving priority scheduling heuristics with ge-
netic programming”. In: Applied Soft Computing 12.9 (Sept. 2012), pp. 2781–2789.
ISSN: 15684946. DOI: 10.1016/j.asoc.2012.03.065. URL: http://linkinghub.
elsevier.com/retrieve/pii/S1568494612001780.

[25] A. Yu, Jia (The University of Melbourne and A. Buyya, Rajkumar (The University of
Melbourne. A taxonomy of scientific workflow systems for grid computing. New York,
USA, 2005. DOI: 10.1145/1084805.1084814. URL: http://dl.acm.org/
citation.cfm?doid=1084805.1084814.

[26] V. Pande. Folding@home. URL: http://folding.stanford.edu/.

[27] A. L. Perryman. FightAIDS@Home. URL: http://fightaidsathome.scripps.
edu/.

[28] J. Barbosa and B. Moreira. “Dynamic Job Scheduling on Heterogeneous Clusters”.
In: ISPDC ’09 Proceedings of the 2009 Eighth International Symposium on Parallel and
Distributed Computing. 2009, pp. 3–10. DOI: 10.1109/ISPDC.2009.19.

[29] A. S. Tanenbaum and A. S. Woodhull. Operating Systems Design and Implementation.
3rd. Prentice-Hall, Inc., Dec. 2005, p. 1099. ISBN: 0131429388. URL: http://dl.
acm.org/citation.cfm?id=1076555.

[30] T. W. Doeppner. Operating Systems In Depth: Design and Programming. John Wiley
& Sons, 2010, p. 444. ISBN: 978-0-471-68723-8. URL: http://eu.wiley.com/
WileyCDA/WileyTitle/productCd-EHEP001803.html.

[31] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts with Java.
7th. John Wiley & Sons, Inc., Nov. 2006, p. 966. ISBN: 0-471-76907-X. URL: http:
//codex.cs.yale.edu/avi/os-book/OS7/os7j/.

[32] Oracle. Monitoring and Managing the Scheduler. URL: http://docs.oracle.com/
cd/B28359_01/server.111/b28310/schedadmin002.htm.

[33] Globus. GT 4.0 Pre WS GRAM Approach. URL: http : / / www . globus . org /
toolkit/docs/4.0/execution/prewsgram/Pre_WS_GRAM_Approach.

html.

[34] Microsoft. Using Windows Compute Cluster Server 2003 Job Scheduler. URL: http:
//technet.microsoft.com/en-us/library/cc720125(v=ws.10).aspx.

67

http://dx.doi.org/10.1016/j.jpdc.2008.06.006
http://link.springer.com/10.1007/s11227-011-0721-2
http://link.springer.com/10.1007/s11227-011-0721-2
http://dx.doi.org/10.1016/j.asoc.2012.03.065
http://linkinghub.elsevier.com/retrieve/pii/S1568494612001780
http://linkinghub.elsevier.com/retrieve/pii/S1568494612001780
http://dx.doi.org/10.1145/1084805.1084814
http://dl.acm.org/citation.cfm?doid=1084805.1084814
http://dl.acm.org/citation.cfm?doid=1084805.1084814
http://folding.stanford.edu/
http://fightaidsathome.scripps.edu/
http://fightaidsathome.scripps.edu/
http://dx.doi.org/10.1109/ISPDC.2009.19
http://dl.acm.org/citation.cfm?id=1076555
http://dl.acm.org/citation.cfm?id=1076555
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-EHEP001803.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-EHEP001803.html
http://codex.cs.yale.edu/avi/os-book/OS7/os7j/
http://codex.cs.yale.edu/avi/os-book/OS7/os7j/
http://docs.oracle.com/cd/B28359_01/server.111/b28310/schedadmin002.htm
http://docs.oracle.com/cd/B28359_01/server.111/b28310/schedadmin002.htm
http://www.globus.org/toolkit/docs/4.0/execution/prewsgram/Pre_WS_GRAM_Approach.html
http://www.globus.org/toolkit/docs/4.0/execution/prewsgram/Pre_WS_GRAM_Approach.html
http://www.globus.org/toolkit/docs/4.0/execution/prewsgram/Pre_WS_GRAM_Approach.html
http://technet.microsoft.com/en-us/library/cc720125(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc720125(v=ws.10).aspx

BIBLIOGRAPHY

[35] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. “Evaluation of Job-
Scheduling Strategies for Grid Computing”. In: Proceedings of the First IEEE/ACM
International Workshop on Grid Computing. Springer-Verlag, 2000, pp. 191–202. URL:
http://dl.acm.org/citation.cfm?id=645440.652831.

[36] M. Li and M. Baker. The Grid Core Technologies. John Wiley & Sons c©2005, 2005,
pp. 243–254. ISBN: 9780470094174. URL: http://eu.wiley.com/WileyCDA/
WileyTitle/productCd-0470094176.html.

[37] J. Cao, O. M. Kwong, X. Wang, and W. Cai. “A peer-to-peer approach to task
scheduling in computation grid”. In: International Journal of Grid and Utility Com-
puting 1.1 (May 2005), pp. 13–21. ISSN: 1741-847X. DOI: 10.1504/IJGUC.2005.
007056. URL: http://dl.acm.org/citation.cfm?id=1359318.1359320.

[38] M. R. A. GAREY and D. S. Johnson. Computers and Intractability: A Guide to the The-
ory of NP-Completeness. 1979. ISBN: 0716710455. URL: http://dl.acm.org/
citation.cfm?id=574848.

[39] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn. “Parallel Job Scheduling -
A Status Report”. In: JSSPP’04 Proceedings of the 10th international conference on Job
Scheduling Strategies for Parallel Processing. Vol. 3277. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2005, p. 16. URL: http://www.springerlink.
com/index/10.1007/b107134.

[40] E. Byun, S. Choi, M. Baik, J. Gil, C. Park, and C. Hwang. “MJSA: Markov job sched-
uler based on availability in desktop grid computing environment”. In: Future Gen-
eration Computer Systems 23.4 (May 2007), pp. 616–622. ISSN: 0167739X. URL: http:
//dx.doi.org/10.1016/j.future.2006.09.004.

[41] V. Kadappa, S. Ramachandram, and A. Govardhan. “Adaptive resource discov-
ery models and Resource Selection in grids”. In: 2010 First International Conference
On Parallel, Distributed and Grid Computing (PDGC 2010). IEEE, Oct. 2010, pp. 95–
100. ISBN: 978-1-4244-7675-6. DOI: 10.1109/PDGC.2010.5679878. URL: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

5679878.

[42] D. Anderson, E. Korpela, and R. Walton. “High-Performance Task Distribution for
Volunteer Computing”. In: First International Conference on e-Science and Grid Com-
puting (e-Science’05). IEEE, Dec. 2005, pp. 196–203. URL: http://dl.acm.org/
citation.cfm?id=1107836.1107874.

[43] Y. C. Lee, A. Y. Zomaya, and H. J. Siegel. “Robust task scheduling for volunteer
computing systems”. In: The Journal of Supercomputing 53.1 (Sept. 2009), pp. 163–
181. ISSN: 0920-8542. URL: http://dl.acm.org/citation.cfm?id=1825310.
1825317.

68

http://dl.acm.org/citation.cfm?id=645440.652831
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470094176.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470094176.html
http://dx.doi.org/10.1504/IJGUC.2005.007056
http://dx.doi.org/10.1504/IJGUC.2005.007056
http://dl.acm.org/citation.cfm?id=1359318.1359320
http://dl.acm.org/citation.cfm?id=574848
http://dl.acm.org/citation.cfm?id=574848
http://www.springerlink.com/index/10.1007/b107134
http://www.springerlink.com/index/10.1007/b107134
http://dx.doi.org/10.1016/j.future.2006.09.004
http://dx.doi.org/10.1016/j.future.2006.09.004
http://dx.doi.org/10.1109/PDGC.2010.5679878
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5679878
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5679878
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5679878
http://dl.acm.org/citation.cfm?id=1107836.1107874
http://dl.acm.org/citation.cfm?id=1107836.1107874
http://dl.acm.org/citation.cfm?id=1825310.1825317
http://dl.acm.org/citation.cfm?id=1825310.1825317

BIBLIOGRAPHY

[44] G. Falzon and M. Li. “Enhancing list scheduling heuristics for dependent job schedul-
ing in grid computing environments”. In: The Journal of Supercomputing 59.1 (Mar.
2010), pp. 104–130. ISSN: 0920-8542. DOI: 10.1007/s11227-010-0422-2. URL:
http://link.springer.com/10.1007/s11227-010-0422-2.

[45] D. P. Anderson and J. M. Vii. Local Scheduling for Volunteer Computing. 2007. URL:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.

4566.

[46] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, R. Bruno, S. Rollins,
and Z. Xu. Peer-to-peer Computing. Tech. rep. URL: http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.9.8222.

[47] P. D. Beth Plale. “Key Concepts and Services of a Grid Information Service”. In:
15th International Conference on Parallel and Distributed Computing Systems (PDCS).
2002. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.
1.1.19.209.

[48] J. Barbosa, C. Morais, R. Nobrega, and A. Monteiro. “Static scheduling of depen-
dent parallel tasks on heterogeneous clusters”. In: Cluster Computing, 2005. IEEE
International. Vol. 20005. Burlington, MA, 2005, pp. 1–8. DOI: 10.1109/CLUSTR.
2005.347024. URL: http://ieeexplore.ieee.org/xpl/articleDetails.
jsp?arnumber=4154152.

[49] G. Falzon and M. Li. “Evaluating Heuristics for Scheduling Dependent Jobs in Grid
Computing Environments”. In: International Journal of Grid and High Performance
Computing 2.4 (Jan. 2010), pp. 65–80. ISSN: 1938-0259. URL: http://dl.acm.org/
citation.cfm?id=2439421.2439427.

[50] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy. “Task
Scheduling Strategies for Workflow-based Applications in Grids”. In: CCGRID ’05
Proceedings of the Fifth IEEE International Symposium on Cluster Computing and the
Grid (CCGrid’05) - Volume 2. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 759–767. URL: http://dl.acm.org/citation.cfm?id=1169581.

[51] Y. C. Lee, R. Subrata, and A. Y. Zomaya. “On the Performance of a Dual-Objective
Optimization Model for Workflow Applications on Grid Platforms”. In: IEEE Trans-
actions on Parallel and Distributed Systems 20.9 (2009), pp. 1273–1284. DOI: 10.1109/
TPDS.2008.225.

[52] O. Sonmez, N. Yigitbasi, S. Abrishami, A. Iosup, and D. Epema. “Performance anal-
ysis of dynamic workflow scheduling in multicluster grids”. In: HPDC ’10 Proceed-
ings of the 19th ACM International Symposium on High Performance Distributed Com-
puting. 2010, pp. 49–60. ISBN: 9781605589428. DOI: 10.1145/1851476.1851483.

[53] P. J. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID) URN
Namespace. 2005. URL: http://tools.ietf.org/html/rfc4122.

69

http://dx.doi.org/10.1007/s11227-010-0422-2
http://link.springer.com/10.1007/s11227-010-0422-2
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.4566
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.4566
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.8222
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.8222
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.209
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.209
http://dx.doi.org/10.1109/CLUSTR.2005.347024
http://dx.doi.org/10.1109/CLUSTR.2005.347024
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4154152
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4154152
http://dl.acm.org/citation.cfm?id=2439421.2439427
http://dl.acm.org/citation.cfm?id=2439421.2439427
http://dl.acm.org/citation.cfm?id=1169581
http://dx.doi.org/10.1109/TPDS.2008.225
http://dx.doi.org/10.1109/TPDS.2008.225
http://dx.doi.org/10.1145/1851476.1851483
http://tools.ietf.org/html/rfc4122

BIBLIOGRAPHY

[54] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable and Secure Dis-
tributed Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. ISBN:
978-3-642-15259-7. DOI: 10.1007/978-3-642-15260-3. URL: http://link.
springer.com/10.1007/978-3-642-15260-3.

[55] B. Stroustrup. C++11 FAQ. URL: http://www.stroustrup.com/C++11FAQ.
html.

[56] L. Parziale, D. W. Liu, C. Matthews, N. Rosselot, C. Davis, J. Forrester, D. T. Britt,
and I. Redbooks. TCP/IP Tutorial and Technical Overview. IBM Redbooks, 2006, p. 998.
URL: http://www.redbooks.ibm.com/abstracts/gg243376.html.

[57] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. “Design and Imple-
mentation of the Sun Network Filesystem”. In: Summer ’85 USENIX. Sun Microsys-
tems. Inc., 1985. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.14.473.

[58] SAS. The BSD UNIX Socket Library. 2001. URL: http://support.sas.com/
documentation/onlinedoc/sasc/doc700/html/lr2/lr2bsd.htm.

[59] Microsoft. Windows Sockets 2 API. URL: http://msdn.microsoft.com/en-
us/library/windows/desktop/ms740673(v=vs.85).aspx.

70

http://dx.doi.org/10.1007/978-3-642-15260-3
http://link.springer.com/10.1007/978-3-642-15260-3
http://link.springer.com/10.1007/978-3-642-15260-3
http://www.stroustrup.com/C++11FAQ.html
http://www.stroustrup.com/C++11FAQ.html
http://www.redbooks.ibm.com/abstracts/gg243376.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.473
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.473
http://support.sas.com/documentation/onlinedoc/sasc/doc700/html/lr2/lr2bsd.htm
http://support.sas.com/documentation/onlinedoc/sasc/doc700/html/lr2/lr2bsd.htm
http://msdn.microsoft.com/en-us/library/windows/desktop/ms740673(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms740673(v=vs.85).aspx

A
Appendix

A.1 List of Acronyms

AT Automatic Task

CPU Central Processing Unit

DAG Directed Acyclic Graph

ECT Estimated Completion Time

FCFS First Come First Served

FIFO First In First Out

GIMPS Great Internet Mersenne Prime
Search

GIS Grid Information Service

GPIS Grid Peer Information Service

GPS Global Positioning System

GUI Graphical User Interface

HEFT Heterogeneous Earliest Finish Time

IMU Inertial Measurement Unit

LAN Local Area Network

LiDAR Light Detection and Ranging

MT Manual Task

P2P Peer-to-Peer

PGS Peer-to-peer Grid Scheduling

PPVC A P2P Volunteer Computing System

PLMI Power Line Maintenance Inspection

PoI Point of Interest

SETI Search for Extraterrestrial
Intelligence

SJF Shortest Job First

SCV Sistema de Computação Voluntária

TA Tarefa Automática

TBA Task-Based Approach

TM Tarefa Manual

TCP Transmission Control Protocol

UDP User Datagram Protocol

UUID Universally Unique Identifier

VC Volunteer Computing

VCS Volunteer Computing System

WAN Wide Area Network

WBA Workflow-Based Approach

XML eXtensible Markup Language

71

	Acknowledgements
	Abstract
	Resumo
	Introduction
	Motivation
	Problem Description
	Context
	Solution
	Contributions
	Document Organization

	State of the Art
	Introduction
	Job Scheduling System
	Scheduling Architectures
	Resource Discovery
	Job Scheduling Policy
	Job Dispatching

	Job scheduling in Volunteer Computing Systems
	Scheduling

	Peer-to-Peer Approach to Scheduling
	Scheduling of Interdependent Tasks
	Discussion

	The Distributed Execution Platform
	Requirements
	Overall Architecture
	Task Identification and Contents
	Communication: Client-application Server-node
	Communication: Server-node Running Task
	Communication: Server-node Server-node
	Master Election
	Fault-tolerance
	Properties

	Scheduling and Distributed Execution of Tasks
	Fault-tolerance
	Properties and assumptions

	Server-node Joining/Leaving

	Implementation
	Introduction
	Task Interface
	Integration of a New Task in the System
	Inter-tasks Dependencies
	Server-node Module
	Execution Logging

	Evaluation
	Functional Evaluation
	Experimental Evaluation
	Computing Resources
	Simulation Framework
	Test Configurations
	Experimental Results

	Non-Functional Requirements Evaluation

	Conclusions and Future Works
	Appendix
	List of Acronyms

