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Abstract

The Vehicle Routing Problem (VRP) is a well known combinatorial optimization problem and
many studies have been dedicated to it over the years since solving the VRP optimally or near-optimally
for very large size problems has many practical applications (e.g. in various logistics systems). Vehicle
Routing Problem with hard Time Windows (VRPTW) is probably the most studied variant of the
VRP problem and the presence of time windows requires complex techniques to handle it. In fact,
finding a feasible solution to the VRPTW when the number of vehicles is fixed is an NP-complete
problem. However, VRPTW is well studied and many different approaches to solve it have been
developed over the years.

Due to the inherent complexity of the underlying problem VRPTW is NP-Hard. Therefore,
optimally solving problems with no more than one hundred requests is considered intractably hard.
For this reason the literature is full with inexact methods that use metaheuristics, local search and
hybrid approaches which are capable of producing high quality solutions within practical time limits.

In this work we are interested in applying clustering techniques to VRPTW problem. The idea
of clustering has been successfully applied to the basic VRP problem. However very little work has
yet been done in using clustering in the VRPTW variant. We present a novel approach based on
clustering, that any VRPTW solver can adapt, by running a preprocessing stage before attempting to
solve the problem.

Our proposed method, tested with a state of the art solver (Indigo), enables the solver to find
solutions much faster (up to an order of magnitude speed-up). In general this comes with at slightly
reduced solution quality, but in somes types of problems, Indigo is able to obtain better solutions
than those obtained with no clustering.
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Resumo

O Problema de Roteamento de Veículos (VRP) é um problema de otimização combinatória bem
conhecido e objecto de muitos estudos ao longo dos anos, desde a resolução óptima de VRPs ou
à resolução aproximada para grandes problemas de tamanho tem muitas aplicações práticas (por
exemplo, em vários sistemas de logística). Problemas de roteamento de veículos com janelas temporais
(VRPTW) é provavelmente a variante mais estudada do problema VRP em que a presença de janelas
de tempo requer técnicas complexas para a sua resolução. De facto, encontrar uma solução viável para
o VRTPTW quando o número de veículos está fixado é um problema NP-completo. No entanto,o
VRTPTW está bem estudado e muitas abordagens diferentes para resolvê-lo foram desenvolvidas ao
longo dos anos.

Devido à sua complexidade inerente o problema VRPTW é NP-Difícil. Portanto, resolver de
forma otimizada problemas com mais de cerca de uma centena de pedidos é considerada intratável
difícil. Por isso, a literatura está plena de métodos que usam metaheurísticas inexactas, pesquisa local
e abordagens híbridas, capazes de produzir soluções de alta qualidade em tempos razoáveis.

Neste trabalho estamos interessados em aplicar técnicas de agrupamento para o problema VRPTW.
A idéia de agrupamento tem sido aplicado com sucesso para o problema básico VRP. No entanto,
muito pouco tem sido feito ainda no uso de agrupamento na variante VRPTW. Nesta dissertação, é
apresentada uma nova abordagem baseada em agrupamento, que qualquer resolvedor VRPTW pode
adaptar, executando uma etapa de pré-processamento antes de se tentar resolver o problema.

O método proposto, testado com um resolvedor estado-da-arte (Indigo), permite ao resolvedor
encontrar soluções muito mais rapidamente (com ganho de velocidades de até cerca de uma ordem de
magnitude). Em geral, esta melhoria vem associada a uma pequena redução na qualidade da solução,
mas em certo tipo de problemas, o Indigo é capaz de obter melhores soluções que as obtidos sem
agrupamento.
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1
Introduction

1.1 Introduction

Logistics is the management of the flow of goods between the point of origin and the point of
consumption in order to meet some requirements set by the customers or companies. Any institution
that performs any kind of large scale deliveries faces the problems of deciding how, what and when to
deliver to minimize their costs. Even though the problem can be traced back to ancient civilizations,
only with the appearance of digital computers, this problem could be solved automatically.

Modern day logistics systems have to handle problems of servicing thousands or even tens of
thousands requests. And the problem becomes even harder when the logistics systems have to take
into account external constraints that have to be respected in order to fulfill the request.

The Vehicle Routing Problem (VRP) is the core problem in these systems. It is a well known
combinatorial optimization problem and many studies have been dedicated to it over the years. The
problem was first formalized by [7]. Therefore solving the VRP optimally or near-optimally for very
large size problems has many practical applications.

Due to the inherent complexity of the underlying problem VRP is NP-Hard. Therefore, optimally
solving problems with no more than one hundred requests is considered intractably hard [22, 1], due
to the inherent complexity of the problem. For this reason the literature is full with inexact methods
that use metaheuristics, local search and hybrid approaches which are capable of producing high
quality solutions within practical time limits.

The more general version of VRP is the VRP with Time Windows (VRPTW) introduced by
[28]. VRPTW is a generalization of the Vehicle Routing Problem where every request is required to

1



1. Introduction 1.1. Introduction

be serviced in a particular time period. VRPTW is probably the most studied variant of the VRP
problem and it can be considered the primary ‘rich‘ variant because the presence of time windows
require complicated techniques for constant time feasibility checks. [27] has shown that, even, finding
a feasible solution to the VRPTW when the number of vehicles is fixed is a NP-complete problem.
However, VRPTW is well studied and many different approaches to solve it have been developed
over the years. Recent advances have been presented in [13].

In this work we are interested in applying clustering techniques to VRPTW problem. The idea
of clustering has been successfully applied to the basic VRP problem [14]. However very little work
has yet been done in using clustering in the VRPTW variant.

Our proposed algorithm uses the clustering idea to identify a set of nearby requests that can
be replaced by a single macro request. This process is repeated and the set of requests is eventually
replaced by a set of macro node requests. The new problem, consisting of macro nodes, is much
smaller and a solver can find a solution for this problem much faster. The cost of this speed-up is the
error that is introduced by treating clusters as single node requests. The hypothesis that we want to
verify, is whether the error introduced by clustering is small enough and is worth the benefits in the
speedup.

To test this hypothesis, we implement our proposed clustering algorithm and numerically evaluate
it on the benchmark set [12]. In addition, we use the benchmark set to construct new larger problems,
to see if the clustering works with very large problems.

This thesis is organized as follows. Chapter 1. consists of the introduction. Chapter 2 states the
formal definition of the VRPTW and presents the state of the art review of the current approaches to
solving VRPTW, followed by a review of the most recent applications of clustering to VRP and its
variants. Chapter 2 finishes by giving an overview of the solver we use to conduct our numerical
experiments. Chapter 3 is the core of this work. It shows how the idea of clustering can be used to
identify sequences of requests that can be replaced by a single macro node request. Chapter 4 gives a
detailed description of the implementation details one has to consider to implement the previously
presented macro node clustering approach. The chapter then presents a number of heuristic functions
that could be used to drive the clustering process. Chapter 5 starts by describing the benchmark
data set used for evaluation of the proposed clustering method. The chapter presents numerical
results obtained by running our implementation over the benchmark data set. Chapter 6 finishes
our work by giving a summary of the clustering approach and the empirical results obtained in our
implementation as well as providing some directions for future work.

2



2
State of Art

2.1 Preliminaries

The goal of this section is to introduce a unified notation, that can be used unambiguously throughout
all of the work.

2.1.1 Formal Problem Definition

The VRPTW can be formally stated as the problem of designing least cost routes from a depot D to a
set of requests R using a homogeneous fleet of vehicles V . Each request r ∈ R is associated with a
demand qr ≥ 0 and a service time sr ≥ 0. The travel cost between request ri and r j is denoted by ti j .

In addition each request r is associated with a interval [er , lr ] that represents its service time
window. The request r must be serviced within this time interval. Specifically er represents the
earliest service time for request r and lr represents the latest service time for request r . A vehicle
may arrive earlier than er but it has to wait until time er to be begin servicing the request.

Finally, all feasible vehicle routes start and end at the depot, while the quantities to deliver up to
any request of a route must not exceed the vehicle capacity Q. The vehicles leave the depot at time eo ,
at the earliest and must return to the depot by time lo , at the latest.

2.1.2 Objective Function

The VRPTW usually consists of a hierarchical multi objective optimization. The goal is to first
determine the minimum number of vehicles and then the minimal total travel duration, such that all

3



2. State of Art 2.2. Exact Methods

requests are served and all constraints imposed by vehicle capacity, service times and time windows
are satisfied.

The presented formulation of VRPTW is an established model and many different approaches
have been proposed and successfully employed to solve it. Broadly these approaches can be divided
into two separate groups

1. Exact methods

2. Heuristic methods

2.2 Exact Methods

Exact algorithms for VRPTW are based on Integer Linear Programming (ILP). Integer Linear Pro-
gramming is a Linear Programming (LP) technique were the domains of all of the variables are
restricted to be integers. Linear Programming is a technique for the optimization of a linear objective
function, subject to linear equality and linear inequality constraints. Its feasible region is a convex
polyhedron, which is a set defined as the intersection of finitely many half spaces, each of which is
defined by a linear inequality. Its objective function is a real-valued affine function defined on this
polyhedron. A linear programming algorithm finds a point in the polyhedron where this function
has the smallest (or largest) value if such a point exists.

The general form of a Linear Programming formulation looks like

maximize cT x

subject to Ax ≤ b

and x ≥ 0

2.2.1 Integer Programming formulation of the VRPTW

Let N = {1, . . . , n} be the set of requests. In addition 0 and n+ 1 represent the starting and ending
node for all paths, which in our case is a single depo location. Let K , indexed by k, be the set of
available vehicles to be routed and scheduled. Consider the graph G = (V ,A), where the set of nodes
is equal to V =N ∪ {0, n+ 1}, and the set A contains all feasible arcs, that is A⊆V ×V . For each
request i ∈N , there is a known quantity qi , a time window [ei , li ] and a service time si . We assume
that all vehicles are empty in the depot therefore q0(k) = 0 for each vehicle k ∈K . Every vehicle k has
a working time interval [E k , Lk], that we express by associating a time window with nodes 0 and
n+ 1, [e0(k), l0(k)] = [en+1(k), ln+1(k)] = [E

k , Lk].
For each arc (i , j ) ∈A, there is a cost ci j and a travel time ti j . We assume that ci j = ti j . All the

requests must be assigned to at most v vehicles, v ≤ |K |, such that the capacity Qk of each vehicle is

4



2. State of Art 2.2. Exact Methods

not exceeded.
We present a Integer Programming formulation involving three types of variables: flow variables

X k
i j , (i , j ) ∈A, k ∈K , equal to 1 if arc (i , j ) is used by vehicle k and 0 otherwise; time variables T k

i , i ∈
V , k ∈ K specifying the start of service at node i by vehicle k; and load variables Lk

i , i ∈V , k ∈ K
specifying the load of the vehicle k after servicing node i .

(VRPTW) min
∑

k∈K

∑

(i , j )∈A

ci j X
k
i j (2.1)

subject to
∑

k∈K

∑

j∈N∪{n+1}
X k

i j = 1 ∀i ∈N (2.2)

∑

k∈K

∑

j∈N

X k
0, j ≤ v (2.3)

∑

j∈N∪{n+1}
X k

0 j = 1 ∀k ∈K (2.4)

∑

i∈N∪{0}
X k

i j −
∑

i∈N∪{n+1}
X k

j i = 0 ∀k ∈K ,∀ j ∈N (2.5)

∑

i∈N∪{0}
X k

i ,n+1 = 1 ∀k ∈K (2.6)

X k
i j (T

k
i + si + t k

i j −T k
j )≤ 0 ∀k ∈K , (i , j ) ∈A (2.7)

ei ≤ T k
i ≤ li ∀k ∈K ,∀i ∈V (2.8)

X k
i j (L

k
i + qi − Lk

j ) = 0 ∀k ∈K , (i , j ) ∈A (2.9)

Lk
i ≤Qk ∀k ∈K ,∀i ∈N ∪{n+ 1} (2.10)

Lk
0 = 0 ∀k ∈K (2.11)

X k
i j ≥ 0 ∀k ∈K , (i , j ) ∈A (2.12)

X k
i j ∈ {0,1} ∀k ∈K , (i , j ) ∈A (2.13)

The objective function (2.1) of this nonlinear formulation expresses the total cost. It is possible to
add a fixed cost c of using a vehicle by adding c0, j , j ∈N , then to minimize the number of vehicles c has
to be selected large enough to be greater than any route total distance. Given that N =V \ {0, n+ 1}
represents the set of customers, constraint 2.2 restricts the assignment of each customer to exactly
one vehicle route. Constraints 2.4 - 2.6 characterize the flow on the path to be followed by vehicle k.
Constraints 2.7 - 2.8 guarantee schedule feasibility with respect to time considerations and 2.9 - 2.11
ensure feasibility of capacity aspects. Constraint 2.13 makes the condition variables binary.

To actually solve the proposed model, one can use several approaches to solving ILPs. In particular
we will look at two approaches, the Column Generation and its specialization, and the Lagrangian
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relaxation.

2.2.2 Column Generation

The main idea in Column Generation is that many linear programs are too large to consider all the
variables explicitly. Since most of the variables will be non-basic and assume a value of zero in the
optimal solution, only a subset of variables need to be considered in theory when solving the problem.
Column generation leverages this idea to generate only the variables which have the potential to
improve the objective function.

The problem being solved is split into two problems: the master problem and the subproblem.
The master problem is the original problem with only a subset of variables being considered. The
subproblem is a new problem created to identify a new variable. The objective function of the
subproblem is the reduced cost of the new variable with respect to the current dual variables, and the
constraints require that the variable obey the naturally occurring constraints.

2.2.3 Dantzig Method

The Dantzig-Wolfe decomposition is a special case of the Delayed Column Generation process and
works by identifying which of the constraints are connected. Constraints are connected if the same
variable appears in both of them. The method separates the global list of constraints into buckets
such that only connected constraints appears in each bucket. In addition the objective function is
simplified for each bucket to contain only those variables that are present in the constraints.

Each bucket then forms a subproblem. The solution for each subproblem gives rise to a set of
points that represent the feasible region of this subproblem. The solution to the master problem
must lie somewhere on the intersection of all this feasible regions. Therefore the solution to the
master problem, cab be expressed as a convex combination of the points forming the feasible regions
of the subproblems.

The essence of the Dantzig-Wolfe decomposition is to construct the master problem that tries to
minimize the objective function by finding a convex combination of the points from the polyhedron
formed by the intersection of all the polyhedra formed by the individual subproblems.

More formally, given that each subproblem has a feasible region that forms a convex polyhedron
represented by a set of points Xi =< x1, . . . , xn >, the polyhedron formed by the intersection of all
polyhedra is equal to X̂ =

⋂m
i=1 Xi . And the set of points that represent this polyhedron is equal to

X̂ =< y1, . . . , yk >. We can formulate the objective function of the master problem using this set.
The objective function becomes a linear combination Λ of the points X̂ .

maximize cT X̂Λ
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subject to

Ax ≤ b

x ≥ 0

Λ≥ 0
∑

i=1

λi = 1 λi ∈Λ

2.2.3.1 Dantzig-Wolfe Method with Integer Linear Programming

The Dantzig-Wolfe method was originally designed to work with Linear Programming and not
Integer Linear Programming. However under certain assumptions we can still apply it to ILP. The
conditions for application must be that the solution of the linear relaxation (LP) of the Integer
Programming model must be equal to the original Integer Programming model. This property is
called the integrality property.

Since we can not solve any ILP models directly we first linearize them and solve the linear versions
using standard Simplex algorithms for solving LP. But we must have the guarantee that the linear
solutions are transferable to the integer models.

2.2.3.2 Dantzig-Wolfe decomposition of the VRPTW

Here we give an example one can use to define the subproblem. We can decompose the original
problem based on the observation that it consists of |K | disjoint subproblems, one for each vehi-
cle. Then each subproblem becomes that of finding an elementary shortest path with time and
capacity constraints. Consequently, the flow variables X k

i j can be expressed as a nonnegative convex
combination of the paths generated from the subproblems.

In the case of VRPTW, the linearized subproblem does not posses the integrality property. But
it can still be solved as a nonlinear integer program. The elementary shortest path problem with
capacity and time constraints is known to be N P -hard. However if we allow nonelementary path
solutions, i.e. solutions where a path may contain cycles of finite duration, pseudo-polynomial
algorithms exist.

2.2.4 Lagrangian Relaxation Method

Lagrangian relaxation approximates a difficult problem of constrained optimization by a simpler
problem. A solution to the relaxed problem is an approximate solution to the original problem, and
provides useful information.
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2.2.4.1 Mathematical Description

Given a linear programming model s.t. x ∈Rn and A∈Rm,n .

maximize cT x

subject to

Ax ≤ b

We can separate the constraints in A into two parts A1 ∈Rm1,n and A2 ∈Rm2,n . We can then write
the original problem as.

maximize cT x

subject to

A1x ≤ b

A2x ≤ b

Then we can apply the main idea of the Lagrangian method of introducing some of the constraints
inside the objective value. And assigning nonnegative weights λ = (λ1, . . . ,λm2) to penalize the
objective value for violating the constraints.

maximize cT x +λ(b2−A2x)

subject to

A1x ≤ b

λ≥ 0

Therefore it is always the case that the optimal result to the Lagrangian Relaxation problem will
be no smaller than the optimal result to the original problem.

2.2.4.2 Lagrangian relaxation for VRPTW

There are several ways how one can apply the Lagrangian relaxation to the VRPTW problem. One
way is to relax the difficult constraints - time window and capacity, so that the resulting Lagrangian
subproblem is easy to solve. Another way is to relax the network flow constraints, retaining the
complicated constraints in the Lagrangian subproblem.
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2.2.5 Numerical Results

For the single depot VRPTW with a homogeneous fleet the Dantzig-Wolfe decomposition found
optimal solutions to a number of 100-customer problems [8]. Later it was improved by [20]. This
work added 2-path inequalities to linear relaxation of the subproblem formulation.

In [19] presented a Branch and Bound (BB) algorithm were the relaxation was computed using
the Lagrangian Relaxation. These methods were based on 2-cycle elimination algorithms. Later
[16] described a BB algorithm where the pricing subproblem is solved with a k-cycle elimination
procedure.

The results show that the Dantzig-Wolfe decomposition performs much better then the Lagrangian
relaxation methods. Not only did the Dantzig-Wolfe method solve more problems, it did so in with
less computational time used.

2.3 Heuristics

Given the inherent computational difficulty of the VRPTW, a variety of heuristics have been reported
in the literature that achieve sub-optimal solutions.

We divide heuristics into the following categories:

1. Insertion Heuristics

2. Improvment Heuristics

3. Metaheuristics

Heuristics are often used because they provide a tractable way of tackling NP-Hard problems.
Even though they do not provide a guarantee of finding the best solution, often their solutions are
good enough. Additionally, heuristics are often simple to describe and implement, which leads to
their easy adaptability to many VRP variants.

2.3.1 Insertion Heuristics

Insertion heuristics build a feasible solution by inserting at every iteration an unrouted customer
into a partial route. This process is performed either sequentially, one route at a time, or in parallel,
where several routes are considered simultaneously. The process has to decide two things, which
unrouted customer to insert and where to insert it. Usually the algorithms use metrics based on
distance, waiting time and savings to answer these questions.

2.3.1.1 Clarke and Wright savings algorithm

The Clarke and Wright savings algorithm is the first and the most well known heuristic for the VRP
problem. It was first presented in [5] and it has since been successfully applied to the case where one
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tries to minimize the number of vehicles used.
It is based on the notion of savings. Initially, the solution consists of n back and forth routes

between the depo and each customer. Then during every iteration, two routes (d , . . . , ci , d ) and
(d , c j , . . . , d ) are merged into a single route (d , . . . , ci , c j , . . . , d ) whenever that is feasible. This merge
then generates a saving of si j = ci d + cd j − ci j . See Figure 2.1 for an example.

d

i − 2

i − 1

i

j + 2

j + 1

j

d

i − 2

i − 1

i

j + 2

j + 1

j

Figure 2.1: Example of savings heuristic. Two routes 〈i − 2, i − 1, i , 〉 and 〈 j , j + 1, j + 2, 〉merged
into a single route 〈i − 2, i − 1, i , j , j + 1, j + 2〉.

Solomon in [29] reports a variant of the CW algorithm in which savings are adapted to handle
time windows, but results are disappointing.

2.3.1.2 Solomon

Sequential insertion heuristics for the VRP with time windows were first proposed by [29]. It
proposed a two-criteria insertion algorithms. The first criteria assigns all unrouted customers their
best feasible insertion position based on distance and waiting time. And the second criteria selects
the best candidate based on the savings concept.

Formally, let c1(i , u, j ) and c2(i , u, j ) be the first and the second criteria to insert customer u
between two adjacent customers i and j . Then for each unrouted customer u we compute its best
feasible insertion cost as

c1(i(u), u, j (u)) = min
ρ=1,...,m

c1(iρ−1, u, iρ)

After selection the insertion position, then the customer to be selected is chosen by the second criteria
as

c2(i(u
∗), u∗, j (u∗)) =max

u
{c2(i(u), u, j (u))|u is feasible}

10



2. State of Art 2.3. Heuristics

2.3.2 Improvement Heuristics

Route improvement heuristics start with a feasible solution and then in each iteration try to improve it.
This is done by exploring a neighborhood of possible candidate solutions. Generally, a neighborhood
is the set of solutions that can be reached from the present one by swapping a subset of r arcs between
solutions. An arc exchange is applied only if it improves the objective function. Arc improvement
heuristics are classified by the number or arcs they interchange - 2-Opt, 3-Opt, and in general k-Opt.
Or by the type of operation that the exchange performs - Or-Opt. In the case of Or-Opt, there is not
need to reverse any route segments.

2.3.2.1 2-Opt

First presented in [6] for solving the traveling salesman problem.

d

i i + 1

j j + 1

d

i i + 1

j j + 1

Figure 2.2: Example of a 2-opt move

The 2-opt algorithm removes two edges from a route, and reconnects the two new sub-tours
created (see example at Figure 2.2).
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2.3.2.2 Or-Opt

There is a problem with the 2-opt heuristic, in that it requires one to reverse the customer order. An
alternative approach proposed by [23] consists of generating only those moves that do not require
customer reordering. The idea is to relocate a chain of consecutive customers. This is achieved by
replacing three edges in the original tour by three new ones without modifying the orientation of the
route as shown in the Figure 2.3

d

i − 1

j + 1

i + 1 i

i + 2

j

d

i − 1

j + 1

i + 1 i

i + 2

j

Figure 2.3: Example of a Or-opt move.

2.3.3 Metaheuristics

A metaheuristic is an iterative generation process which guides and subordinates heuristics by com-
bining intelligently different concepts for exploring and exploiting the search space, while learning
strategies are used to structure information in order to find efficient near-optimal solutions [24].

Metaheuristics are the core of recent work on approximation methods for the VRPTW, and they
mainly include Simulated Annealing (SA) and Tabu Search (TS).

Unlike local search heuristics that terminate once a local optimum has been reached, these methods
explore a larger subset of the solution space in the hope of finding a near-optimal solution.
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2.3.3.1 Tabu Search

Tabu search was first proposed in [15]. The main idea is to avoid looping in cycles by forbidding or
penalizing moves which return states that were already previously visited. Thus a heuristic that is
driven by TS may end up accepting a solution of lower quality and making a degrading move, in order
to escape visiting states that were previously explored. This insures that new regions of problem
solution space will be explored in the goal of avoiding local minima.
[11] were the first to adapt the TS metaheuristic to the VRPTW problem. Their approach

consisted of using the Solomon’s insertion heuristic to produce an inital solution and then post-
optimize it with both 2-opt and Or-opt.

2.3.3.2 Simulated Annealing

Simulated Annealing (SA) is a probabilistic metaheuristic first described by [18]where a modification
to the current solution that leads to an increase in solution cost can be accepted with some probability.
This mechanism allows the method to escape from bad local optima.

At each step, the SA heuristic considers some neighbouring state s ′ of the current state s , and
probabilistically decides between moving the system to state s ′ or staying in state s . The probability
of making this transition is specified by an acceptance function that depends on the objective values of
states s and s ′ being E(s ) and E(s ′) respectively, and on a global time-varying parameter T called the
temperature. As the temperature decreases the probability that the acceptance function will make a
degrading move must decrease as well. Therefore it is usual to model the acceptance function as

p(s , s ′,T ) = e−
(E(s)−E(s ′))

T

SA has been successfully applied to the VRPTW by [4].

2.4 Clustering and Decomposition Approaches in VRPTW

In the previous sections we have described the general and historically well studied methods for
solving VRP with time windows. In this part we present those methods that demonstrate the idea of
clustering to help solve VRPTWs.

2.4.1 Cluster-First and Route-Second

Cluster-first route second are methods that perform partitioning of the customer set and then deter-
mine a vehicle route for each cluster. This allows to reduce the complexity of the problem by solving
individual smaller instances. Known approaches of cluster-first and route second are [14, 10, 26, 30].
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2.4.2 Gillett 1974

[14] are the first authors adopting the cluster-first and route-second method to solve VRPs. They
developed a sweep-based heuristic in which customers are partitioned into different groups according
to their polar coordinates as well as the vehicle capacity. A TSP is then solved in each group.

However, in the case for the VRPTW, it usually fails to construct a feasible route in the second
stage due to the required service time window. [29] extended this VRP algorithm to VRPTW by
repeating the cluster-first and route-second procedure with all unscheduled customers until the problem
is solved.

2.4.3 Fisher 1981

[10] proposed a two-phase algorithm for vehicle routing: in the first phase, it finds an assignment
of customers to vehicle routes, and then continued by a route improvement procedure. A number
of seed customers are selected by some criteria, and then the cost from each non-seed customer to
each seed customer is calculated by the additional distance when the non-seed customer is inserted
between the seed customer and the depot.

2.4.4 Dondo 2007

[9] proposed a three stage hybrid approach. During stage 1 requests are combined into clusters. Then,
during stage 2, a new problem is solved based on the combined clusters and the remaining unclustered
requests, using an exact MILP solver. After, as stage 3, for each route a separate TSP optimization is
run to find the best order of visits within this route.

Work proposed by Dondo is very similar to our approach, it also tries to construct clusters in
order to reduce the size of the problem, however it then uses an exact solver to route the clusters into
complete routes.

The difference between our work and Dondo is in the way Dondo creates clusters. First, Dondos
cluster construction is parameterized by the two parameters

(a) the maximum distance between two nodes inside the cluster

(b) the maximum waiting time between two nodes inside the cluster.

In this way the process implicitly controls the reduction size, by only allowing clusters with the
given properties. These numbers have to be manually selected depending on the structure of the
problem. Instead, our approach is explicitly controlled by setting the desired reduction size.

The second difference, is that Dondo only allows to insert an unrouted request into the current
cluster, however we are more flexible and allow for merges between any two clusters.

The third difference is in the order Dondo decides to insert requests into the current cluster.
Dondo always tries to augment the cluster by the first request with the earliest arrival time, that
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fulfills the parameters a) and b). We, on the other, propose a heuristic function based on distance,
waiting time and time window flexibility.

Since Dondo uses an exact solver, it is only able to solve problems up to 100 requests. Therefore
we can not directly compare the results of Dondo with our approach.

2.4.5 Qi 2012

[25] proposed a method to partition the customers into clusters that jointly considers the spatial and
temporal information. It represents time and space in the same coordination system, and develops
a method to measure the space-temporal distance between two customers. However the method
considers the soft version of the time window problem, where a violation of time windows does not
invalidate a solution, but just penalize the objective function value.

2.4.6 Savelsbergh 1985

[27] was the first to suggest that information about a route can be summarized by a so called macro
node in a few parameters, that allowed to decide if a new request can be inserted into the route in
constant time instead of recomputing time feasibility constraints.

2.4.7 Bent 2010

Another way to speed-up neighborhood search algorithms is to perform decoupling in an effort
to define sub-problems that can be optimized independently and then reinserted into an existing
solution.
[2] proposed a so-called randomized adaptive spatial decoupling (RAND). RAND considers

spatial decoupling and produces independent feasible sub-problems. A further improvement was
later proposed in [3]. Where decoupling of the subproblem was based on spacial, temporal and
space-temporal properties of customer requests. These approaches have been successfully applied on
large-scale VRPTW instances.

Similarly, spatial decoupling acceleration techniques have been also utilized by [21].

2.5 Indigo

Although many techniques are presented in the literature, there are no publicly available implemen-
tations that one can use to compare performances of these techniques, since most of Operations
Research work is done by either private companies or private research laboratories. However the
authors of this work had access to the VRPTW solver Indigo developed at NICTA1 .

We briefly present the Indigo solver and show that this solver is comparable with other state of
the art solutions. [17] presents the architecture as well as the benchmark results of the Indigo solver.

1http://www.nicta.com.au/
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2.5.1 Solver Architecture

Indigo builds the solution in two phases. During phase one, a feasible solution is constructed using
the Clarke’s savings method and during phase two a local search algorithm is used to improve on the
solution.

The improvement phase uses the Large Neighborhood Search (LNS) metaheuristic. Indigo
internally uses a Constraint Programming (CP) framework to model the problem as a variable
assignment problem. Combining this CP representation allows Indigo to effectively prune large
sections of the unfeasible search space.

Using CP as the underlying model allows Indigo to be very flexible in modeling the side constraints
of the classical VRP. One can easily extend indigo to handle much more expressive VRP variants.

2.5.2 Benchmarks

According to [17] in 2011, Indigo was able to improve the results of the benchmark data set in [12],
namely, to find new best results for 83 out of 300 benchmarks.

Bellow in Table 2.1, we show performance as a ratio between Indigo’s result and the best know
results reported in the literature. Size gives the number of customers in the problem; Best gives the
number of problems where a new best was found; Mean is the mean increase; 80% gives the 80th
percentile of increase; and Max gives the maximum increase over best-known solution. For example,
1.02 means that Indigo results were 2% worse than the best-known solution.

Size Best Mean 80% Max

200 11 1.01 1.02 1.05
400 13 1.01 1.03 1.06
600 19 1.02 1.04 1.10
800 18 1.02 1.05 1.11

1000 22 1.03 1.06 1.14

Table 2.1: Indigo’s results on [12] promblem set
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3
Macro Nodes

The final goal of this work is to speed up VRPTW solvers by encoding a problem instance into one
that is smaller in size and, therefore, much faster to solve. The new instance is constructed in such
a way, that the solution of the new instance can be translated back to the solution of the original
instance.

To perform this reduction in size, we identify sets of requests that can be replaced by a single
request. Since the new instance has several requests replaced by a single request it is smaller in size.
This new instance is then solved with the state of the art solver Indigo. The solution of the new
instance that is obtained with Indigo can then be translated back to the solution of the original larger
instance.

The task then is to find sets of requests that can be replaced by a single request. The new request
which would replace this set acts like a macro node. This new request must characterize servicing of
the whole set. Nevertheless the macro node must be represented as a single VRPTW request.

In this chapter we show how starting with individual requests one can combine them into larger
macro nodes and how to represent such macro nodes by an abstraction of single requests.

3.1 Macro Nodes

The design of this algorithm is constrained by the use of the Indigo solver (Section 2.5). Since the
goal is not to design a new solution method for VRPTW, but instead to introduce a pre-processing
step that can be executed before the real solver attempts to solve the problem. Therefore, the final
output of our macro node construction algorithm must produce some problem representation, that
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can be passed to Indigo as a proper VRPTW problem.
A VRPTW problem description consists of the following data:

• A set of requests

• Description of the vehicle fleet

Since we do not do anything that affects the vehicle fleet, this part of the problem specification is
just passed over to Indigo as is. However, we change the request set by reducing its size and introducing
new requests.

We repeat what exactly constitutes a request. A request r is defined by the following properties:

• Its geographic location pr where the service is to take place.

• Its demand quantity denoted by qr .

• Its servicing time window interval denoted by [er , lr ].

• Its servicing time duration sr .

More formally a request can be defined as a tuple with 5 components.

Definition 1. A request r is defined by a tuple 〈er , lr , sr , qr , pr 〉, where er and lr are the earliest and
latest arrival times, sr is the servicing time, pr is the geographic location and qr is the demand quantity
of the request r .

Therefore, any macro node object that is constructed must be replaceable by a single request with
the listed properties. This fact puts a limitation on what kind of macro node objects we are be able to
construct.

3.1.1 Structure of the macro nodes

As already stated, the goal of the macro node object is to replace several requests by a single request.
This single request must have a fixed location, a fixed servicing time window interval, a fixed demand
quantity and a fixed servicing time duration.

In order to simplify the mapping of a macro node to a single request, the proposed algorithm
assumes that the order in which we visit requests in the macro node is fixed at macro node construction
time. This assumption makes the structure of a macro node object not a set like object, but instead a
sequence like object, where the sequence determines the visit order of the requests inside the macro
node. Committing to a fixed visit order inside the macro node gives us an easier way to replace a set
of requests by a single request. Therefore servicing a macro nodes automatically determines the order
of servicing all the requests inside the macro node.

Now that we gave the intuition of what a macro node object represents, we can give a formal
definition.

Definition 2. A macro node m is a sequence of requests 〈r1, . . . , rn〉.
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3.2 Macro Node Request

Given that a macro node is a sequence of requests that have to be serviced and given that the servicing
of this macro node must be mapped to servicing of a single new request, we introduce the concept of
a macro node request. The properties of the macro node request are computed in such a way, that if
a feasible solution of a VRPTW problem contains a macro node request then replacing this macro
node request with the actual sequence of requests of the macro node would not make this solution
unfeasible.

Definition 3. If mk = 〈r1, . . . , rn〉 is a macro node then this macro node can be represented by a macro
node request rmk

. Where rmk
is a tuple

rmk
= 〈Ek , Lk , Sk ,Qk , p f i r s tk

, pl a s tk
〉

Arrival at the request r1 within the time windows [Ek , Lk] will make it feasible to service all requests
in the macro node mk , the servicing time Sk should be equivalent in duration to servicing all the requests
in mk and traveling between the requests and, also, waiting if necessary, and the demand quantity Qk has
to represent the total demand for the whole macro node. The locations p f i r s tk

and pl a s tk
are the locations

of the first request of the macro node and the location of the last request of the macro node.

Therefore the macro node request rmk
is a single request with a feasible arrival interval [Ek , Lk]

a servicing time Sk and demand quantity Qk . But instead of a single location as in the case of a request,
a macro node request has two locations - a starting location p f i r s tk

and a finishing location pl a s tk
.

The above definition does not specify how to compute the values Ek , Lk , Sk and Qk given a macro
node mk . The remaining part of this section is dedicated to the problem of computing these values.

3.3 Macro Node Visualization

Before continuing to explain additional properties of macro nodes, we introduce our request visu-
alization technique. The purpose of this visualization technique is to show the proximity of two
requests in time and space simultaneously.

The visualization uses a two dimensional Cartesian coordinate system. The x-axis represents time,
and the y-axis represents distance in space. To display a request we draw an interval along the x-axis
(time axis). This interval depicts the servicing time window of this request. To show movement from
one request to another, we draw a vector at a 45◦. The 45◦ represent movement in both space and
time.

19



3. Macro Nodes 3.4. Servicing time of a Macro Node Request

Time

Distance

ei li

e j l j

bi

b j

Figure 3.1: Request distance visualization in both space and time

Figure 3.1 shows two requests i and j , with their corresponding time window intervals [ei , li ]
and [e j , l j ] respectively. Also, it shows a departure from request i at time bi and an arrival at request
j at time b j .

3.4 Servicing time of a Macro Node Request

Servicing a macro node entails servicing all the requests in this macro node. We can decompose this
servicing time into three components.

• Time spent traveling between all requests of the macro node.

• Minimal time spent waiting for the feasible interval to become active.

• Time spent servicing individual requests.

Definition 4. If mk = 〈r1, . . . , rn〉 is a macro node and rmk
= 〈Ek , Lk , Sk ,Qk , p f i r s tk

, pl a s tk
〉 is its

macro node request then the value Sk is equal to

Sk =
n
∑

i=1

si +
n−1
∑

i=1

ti ,i+1+
n
∑

i=2

wi

where wi is the minimal waiting time incured before request ri .

There is something to be said about the minimal waiting time between two requests. Waiting
time between any two requests ri and r j is influenced by the departure time from the request ri . The
minimal waiting time is incured if we depart from the request ri as late as possible.
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Figure 3.2 illustrates the different waiting times between two requests.

Time

Distance

ei li

e j l jw j

Figure 3.2: Waiting time dependence on the departure time

In Figure 3.2 departing from the request ri at time ei + si would lead to some waiting time w j ,
but departing at time li + si would lead to no waiting time. Therefore the total servicing time of both
requests depends on what time we start servicing the first request, since we might or might not incur
some waiting time in between the requests. This means the total servicing time is a function on the
start time of the two requests.

This leads to a problem, since if we want to represent a macro node as a single request it must
have a fixed total servicing time. To overcome this dependency on the starting time, the resulting
macro node requests, that represent servicing all of their requests, should have a time window that
always ensures a fixed minimal total servicing time.

As shown in Figure 3.3, for the example that we have just given, if we restrict the time window of
the resulting macro node request to the interval [bi , li ] then the overall servicing time of this macro
node is fixed and the overall waiting time is minimal.
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Time

Distance

ei li

e j l j

bi

Figure 3.3: Constant servicing time within interval [bi , li ]

3.5 Demand quantity of a Macro Node Request

Computing demand quantity of a macro node request is simple to compute, since for a fixed macro
node the total demand of this macro node is always the sum of the demands of individual requests.

Definition 5. If mk = 〈r1, . . . , rn〉 is a macro node then the demand quantity Qk of the macro node
request rmk

= 〈Ek , Lk , Sk ,Qk , p f i r s tk
, pl a s tk

〉 of mk is equal to

Qk =
n
∑

i=1

qi

3.6 Distance between Macro Node Requests

We already mentioned that each request r is associated with a geographic location pr . And for every
pair of requests ri and r j the distance between them is defined as:

tpi , p j

Since Euclidean distance is a symmetric property it is equal in both ways

tpi , p j
= tp j , pi

Nevertheless, real distances may not be symmetrical (they might use different edges in the digraph).
Indigo accepts non-symmetrical distance matrices. And we take advantage of this as follows.
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To encode a macro node as a single request one has to find a way to encode the geographical
distance between macro nodes. Since a macro node is just a sequence of requests one can represent
the distance to a macro node as the distance to the first request of this macro node. In the same way,
the distance from a macro node to other objects can be measured as the distance from the last request
of this macro node. Formally we define it as:

Definition 6. If rmk
= 〈Ek , Lk , Sk ,Qk , p f i r s tk

, pl a s tk
〉 and rml

= 〈El , Ll , Sl ,Ql , p f i r s tl
, pl a s tl

〉 are
two macro node requests, then the distance between these two requests is computed as :

t ′k ,l = tpl a s tk
, p f i r s tl

t ′l ,k = tpl a s tl
, p f i r s tk

Now the distance between two macro node requests is the distance between the location of the
last request in the macro node mk and the location of the first request in the macro node ml and vice
versa.

Also, for all macro node requests rmk
the distance from the macro node request to itself is 0.

t ′k ,k = 0

3.7 Constructing Macro Nodes

We start the macro node creation process by creating a macro node mk of size 1 for every request
k ∈ R. The properties of the macro node request rmk

of this macro node mk are equal to the original
request k.

Ek = ek

Lk = lk

Sk = sk

Qk = qk

p f i r s tk
= pk

pl a s tK
= pk

After having constructed the set of all macro node requests, we subsequently combine two macro
node requests into a single new macro node request. This new request then represents servicing all
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the requests in both macro nodes. Next we show how to compute the properties of the new macro
node request after combining two macro nodes.

3.7.1 Joining two Macro Nodes

In future visualizations instead of displaying all the request sequence of a macro node, we depict the
macro node by drawing its macro node request. This simplification does not remove any important
details since the time window of the macro node request adequately characterizes it, and more so
allows to simplify the visualizations.

There are three distinct cases of joining two macro nodes. We examine each case separately and
show how to decide if the two macro nodes can be combined and, whenever possible, what is the
resulting macro node request that characterizes servicing both macro nodes.

The three cases are based on the temporal relationship between the two macro nodes we are
considering to combine together. To avoid repetition, we analyze all cases by considering two macro
node requests rmk

= 〈Ek , Lk , Sk ,Qk , p f i r s tk
, pl a s tk

〉 and rml
= 〈El , Ll , Sl ,Ql , p f i r s tl

, pl a s tl
〉 to form

a combined macro node request rmk′
= 〈Ek ′ , Lk ′ , Sk ′ ,Qk ′ , p f i r s tk′

, pl a s tk′
〉

3.7.2 Case one - unfeasible clustering

As the first case we consider the situation where the earliest departure time Ek + Sk of the first macro
node request rmk

= 〈Ek , Lk , Sk ,Qk , p f i r s tk
, pl a s tk

〉 plus the travel time t ′k ,l to reach the macro node
request rml

= 〈El , Ll , Sl ,Ql , p f i r s tl
, pl a s tl

〉 exceeds the latest arrival Ll . Formally we can state this
condition as:

Ek + Sk + t ′k ,l > Ll

Figure 3.4 demonstrates this case.
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Time

Distance

Ek Lk

El Ll
Ek + Sk + t ′k ,l

Figure 3.4: Second macro node is before the first macro node

Whenever two macro nodes fulfill this condition, combining them is impossible.

3.7.3 Case two - clustering with extra waiting time

In our second case, we consider the temporal situation when the earliest arrival of the second macro
node request El is later then the latest departure Lk + Sk plus travel time t ′k l between the macro node
requests. Formally we write this condition as:

Lk + Sk + t ′k ,l < El

Figure 3.5 illustrates case two.

Time

Distance

w+

Ek Lk

El Ll
Lk + Sk + t ′k ,l

Figure 3.5: Second macro node is after the first macro node
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In this case, even if we service the first macro node as late as possible at time Lk then we will still
incur a waiting time cost w+ between macro nodes mk and ml .

To guarantee that the waiting time between the macro node requests is minimal, the first
macro node request must be started as late as possible. Hence, the result of combining rmk

=
〈Ek , Lk , Sk ,Qk , p f i r s tk

, pl a s tk
〉 and rml

= 〈El , Ll , Sl ,Ql , p f i r s tl
, pl a s tl

〉 is equal to the macro node
rmk′
= 〈Ek ′ , Lk ′ , Sk ′ ,Qk ′ , p f i r s tk′

, pl a s tk′
〉, where the properties of rm′

k
are defined as follows:

Ek ′ = Lk

Lk ′ = Lk

Sk ′ = Sk + Sl +w++ t ′k ,l

Qk ′ =Qk +Ql

p f i r s tk′
= p f i s tk

pl a s tk′
= pl a s tl

In fact, to guarantee minimal waiting time, the time window of the new macro node request
collapsed to the interval [Lk , Lk], that is a single point interval. The motivation for collapsing the
time window of the combined request is as following. The vehicle always has to wait the waiting
time w+. However, starting to service the macro node mk at some time earlier than Lk would only
cause additional waiting time to be added to the unavoidable waiting time w+. Collapsing the time
window leads to an overall smallest total waiting time spent inside the macro node.

3.7.4 Case three - clustering with overlapping time windows

Case one analyzed a second macro node before the first one. Case two analyzed a second macro
node well after the first one. Case three is the remaining case, when there is some overlap between
the macro node request time windows. Therefore the condition of case three can be defined as the
negation of the condition of cases one and two. Negation of the condition of case one is that the
latest arrival time of the second macro node request must be greater or equal to the earliest departure
time plus the travel time of the first macro node request. Formally it can be written as:

Ll ≥ Ek + Sk + t ′k ,l

The negation of the condition of case two would be that the earliest arrival of the second macro
node request is earlier then the latest departure plus travel time of the first macro node request.
Formally we write that as:

El ≤ Lk + Sk + t ′k ,l
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To show the result of combining two macro nodes, we further distinguish four different cases.
Two cases of temporal relationship between the earliest arrival times of both macro nodes and two
cases of temporal relationship between the latest arrival times of both macro nodes.

3.7.4.1 New earliest arrival time

Let us consider case 3.1 where the earliest arrival time of the second macro node request El is later
than the earliest departure time of the first macro node Ek + Sk plus the travel time between the
nodes t ′k ,l . Formally this condition can we written as:

El > Ek + Sk + t ′k ,l

Figure 3.6 demonstrates the relationship between the early arrival times of both macro nodes.

Time

Distance

w+

Ek Lk

El Ll
Ek + Sk + t ′k ,l

Figure 3.6: Earliest arrival of the second macro node is after the earliest departure of the first macro
node

In order to avoid introducing extra waiting time w+, which will result in a longer overall ser-
vicing time of the combined macro node, we will push forward the earliest arrival time Ek to avoid
introducing the waiting time w+.

To avoid the waiting time between the two macro nodes the earliest arrival time of the combined
macro node request is equal to

Ek ′ = El − (Sk + t ′k ,l )

Figure 3.7 shows the previous example with the narrowed earliest arrival time of the new combined
macro node.
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Time

Distance

Ek Lk

El Ll

El − (Sk + t ′k ,l )

Figure 3.7: Earliest arrival Ek ′ of the new combined macro node

The other case (case 3.2) of the relationship of earliest arrival time between the two macro nodes
is when the earliest arrival time of the second macro node is earlier than the earliest departure time of
the first macro node plus the travel time between them. Formally we write it as:

El ≤ Ek + Sk + t ′k ,l

See Figure 3.8 for an illustration of the time relationship in case 3.2.

Time

Distance

Ek Lk

El Ll
Ek + Sk + t ′k ,l

Figure 3.8: Early arrival of second macro node before the early departure of first macro node

Since El ≤ Ek + Sk + t ′k ,l we do not introduce any waiting time if we service the first macro node
request at time Ek . Therefore the earliest arrival time of the combined macro node does not need to
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be narrowed, and the earliest arrival time of the combined macro node stays the same as the earliest
arrival time of the first macro node.

Ek ′ = Ek

Cases 3.1 and 3.2 can be handled by a single formulation

Ek ′ = max(Ek , El − (Sk + tk ,l ))

3.7.4.2 New latest arrival time

Similarly, we also have two cases for the relationship between the latest arrival time of the two macro
node requests.

In case 3.3 the latest arrival time of the second macro node request Ll is earlier than the latest
departure time of the first macro node request Lk + Sk plus the travel time between t ′k ,l . Formally it
can be written as:

Ll < Lk + Sk + t ′k ,l

We illustrate this case in Figure 3.9

Time

Distance

Ek Lk

El Ll
Lk + Sk + t ′k ,l

Figure 3.9: Latest arrival of second macro node is before the latest departure of the first macro node

Servicing the first macro node request at its latest arrival time Lk would make it impossible to
service the second macro node within its time window [El , Ll ]. Therefore the combined macro node
request has to narrow its latest arrival time such that both macro node requests can be feasible. The
value of the latest arrival time of the combined macro node request can be calculated as

Lk ′ = Ll − (Sk + t ′k ,l )
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Figure 3.10 illustrates the new narrowed latest arrival time of the combined macro node request.

Time

Distance

Ek Lk

El Ll

Ll − (Sk + t ′k ,l )

Figure 3.10: Latest arrival Lk ′ of the new combined macro node

As case 3.2 is the opposite of case 3.1, the next case 3.4 is the opposite of case 3.3. In case 3.4 we
have that the latest arrival time of the second macro node request Ll to occur later then the latest
departure of the first macro node request Lk + Sk plus travel time t ′k ,l . Formally we can write it as :

Ll ≥ Lk + Sk + t ′k ,l

This condition is illustrated in Figure 3.11

Time

Distance

Ek Lk

El Ll
Lk + Sk + t ′k ,l

Figure 3.11: Latest arrival of the second macro node request is after the latest departure of the first

The latest arrival time of the second macro node request does not narrow the latest arrival time
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of the combined macro node request. Therefore we can set the latest arrival time of the combined
macro node request as the latest arrival of the first macro node request.

Lk ′ = Lk

Similar to the single formulation to handle cases 3.1 and 3.2, we introduce a single formulation to
handle cases 3.3 and 3.4

Lk ′ = mi n(Lk , Ll − (Sk + t ′k ,l ))

3.7.5 Combined macro node request properties

To summarize the full analysis that we performed for all three cases. The resulting properties of the
combined macro node request can be computed as follows.

Case one is the only unfeasible case. Therefore the condition to decide if two macro nodes can be
combined is the negation of the condition in case one. Therefore two macro nodes can be feasibly
combined, if they obey the following condition:

Ll ≥ Ek + Sk + t ′k ,l

If the two macro nodes obey the stated feasibility condition, then the properties of the resulting
macro node request can be computed as

Ek ′ = mi n(Lk , max(Ek , El − (Sk + t ′k ,l )))

Lk ′ = mi n(Lk , Ll − (Sk + t ′k ,l ))

Sk ′ = Sk + Sl + t ′k ,l +w+

where w+ = max(0, El − (Lk + Sk + t ′k ,l ))

Qk ′ =Qk +Ql

p f i r s tk′
= p f i r s tk

pl a s tk′
= pl a s tl

3.7.6 Vehicle fleet constraints

Until now we have ignored that the VRPTW problem description also defines constraints on the
available vehicle fleet, and our macro nodes must respect the constraints imposed by the vehicle fleet.
Since we are assuming a homogeneous vehicle fleet, the fleet can be described by:

• Maximal capacity of the vehicles Qmax
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• Vehicle working time interval [Ev , Lv]

To respect the capacity constraint we simply check that we never combine two macro nodes
whose combined demand quantity exceeds the vehicle capacity.

Qk +Ql <Qmax

To respect the time window constraint we have to check two things.

1. That the latest arrival time at a macro node request is not narrowed beyond the time a vehicle
can’t arrive to it.

2. That the latest departure time from a macro node request is not later then the working time
window of a vehicle.

Hence, when combining two macro node requests rmk
= 〈Ek , Lk , Sk ,Qk , p f i r s tk

, pl a s tk
〉 and rml

=
〈El , Ll , Sl ,Ql , p f i r s tl

, pl a s tl
〉 into macro node request rmk′

= 〈Ek ′ , Lk ′ , Sk ′ ,Qk ′ , p f i r s tk′
, pl a s tk′

〉. This
macro node request must satisfy the following two conditions.

Ev + td e pot , p f i r s tk′
≤ Lk ′

and
Lk ′ + Sk ′ + tpl a s tk′

,d e pot ≤ Lv

The first condition ensures that if a vehicles departs from the depot as early as it can (i.e. at time
Ev ) and travels the distance until the macro node in time td e pot , p f i r s tk′

it will still be able to service

the macro node, because it arrives before the latest arrival time Lk ′ .
The second condition ensures that departing at the latest feasible time Lk ′ + Sk ′ and taking the

traveling time needed to go back to the depot. A vehicle still arrives back to the depot before its
finishing time Lv .

3.8 Summary

To summarize, in this chapter we motivated treating macro nodes as sequences, and how such
sequences can be represented by a single request. Then we explained how to decide if two macro
nodes can be connected, and what is the resulting request that represents both macro nodes.
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4
Cluster Construction

The previous chapter introduced the theoretical foundations for combining requests into macro nodes
and encoding these macro nodes as individual requests. This chapter discuses the practical aspects
of implementing the before-mentioned clustering algorithm. Also, it will introduce and provide
motivation for several heuristic metrics which allow to compare the adequacy of combining two
macro nodes together.

4.1 Clustering Algorithm

Our approach for macro node construction is based on the idea that one macro node is appended to
the end of another macro node. This approach is similar to the way insertion heuristics construct
routes. We adopted the idea used by insertion heuristics but instead of building routes we modify it
to construct macro nodes.

Analysis from the previous chapter allows to decide when two macro nodes can be feasibly
combined. This guarantees that any macro node that we construct is always serviceable by a vehicle.

4.1.1 Pseudo Algorithm

Algorithm 1. presents the idea behind the insertion heuristics. We initialize a partial route by selecting
a random seed request. Then, during every iteration, we examine the cost of all unrouted requests
and extend the current partial route with the request that minimizes the cost function. Once no
more requests can be added to the current partial route, this partial route is finalized into a route
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and a new partial route is started by selecting a random seed. The algorithm terminates once every
request is assigned to a route.

Algorithm 1 Pseudo-Algorithm of the insertion heuristic
C ←Request Set
R←; . R is the set of routes
while |C | ≥ 0 do
〈r 〉← Initial seed node from C
C ←C \ {r }
do

c ′← argminc∈C COST(r, c) if FEASIBLE(r, c)
C ←C \ {c ′}
r ← r + 〈c ′〉

while c ′ 6= ;
R← R∪{r }

end while

There are two parameters that drive the insertion heuristic. The first parameter is the seed request
selection criteria and the second parameter is the cost function of appending a customer c at the
end of a partial route r . Next we show how to modify these two parameters to adapt the insertion
heuristic to construct macro nodes.

Algorithm 2 Pseudo-Algorithm for constructing macro nodes based on the insertion heuristic
function CLUSTER(Customer set, target size)

S←;
for all c ∈Customer set do

S← S ∪MACRONODEREQUEST(c)
end for
while |S | ≥ target size do

k , l ←mink∈S, l∈S HEURISTIC(k , l ) if FEASIBILE(k , l )
if k 6= ; & l 6= ; then

k ′← MERGE(k,l )
S← S \ {k , l}
S← S ∪{k ′}

else
return S

end if
end while
return S

end function

Algorithm 2. presents the general principal behind our clustering algorithm. Algorithm 2 can be
described as follows. We first create a macro node request for each request (the set of all the macro
node requests is denoted by S). Then during each iteration we pairwise compare all macro nodes in
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the set S and compute the heuristic function of combining these macro nodes. The pair with the
lowest value is then merged into a single macro node. We repeat this process until either, the macro
node request count is reduced to the target size, or there are no more merges possible. It is very
important to stress that the clustering process may not reduce the instance size to the desired target
size.

The difference between our clustering algorithm and the insertion heuristic presented in Al-
gorithm 1 is that while the insertion heuristic works by constructing one route at a time (when a
route can not be extended, the algorithm starts a new route), our algorithm initially creates many
macro nodes and tries to extend them all simultaneously. Our algorithm stops combining macro
nodes when the amount of macro node requests has decreased to some intended target size. Also, the
heuristic function that evaluates appending a request onto a route is different from the cost function
of appending one macro node onto another.

4.1.2 Neighborhood Candidate Lists

There is a simple optimization approach one can use to speed up the clustering algorithm. Since
in every iteration we scan through all pairs of macro node requests to compute their merge cost,
this leads to a quadratic complexity for every iteration. In fact only macro node requests which are
nearby, should be considered for merging, but instead we are repeatedly examining merging options
that would produce bad results. Therefore we can perform a single prepossessing step where for each
request we compute its neighborhood set (i.e. the set of closest requests). Then instead of computing
merging cost of a macro node with every other macro node, we will only compute the merge cost
with macro nodes included in the neighborhood set.

Computing the neighborhood set is a costly operation, therefore we want to do it only once.
However after merging macro node requests, some of the requests that we have marked as in the
neighborhood set will become internal nodes of some macro node. Therefore when we are examining
the neighborhood set to compute the merge cost, we have to examine the neighborhood set of the
last request of the macro node. And in the neighborhood set of the last request we have to ignore
requests that are not the first request of some macro node, because we can only connect two macro
nodes by their tail and head.

We can motivate this approach, by assuming that if we can not find a good merge within the
top-k closest neighbors then this macro node request should not be clustered further. See Figure 4.1
for an example where the top-6 neighbor set does not have a feasible merge option for request i .

Given this new idea, we can rewrite our clustering algorithm as shown in the Algorithm 3, we
have precomputed the neighbor list for each request.
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Algorithm 3 Final Clustering Algorithm
function CLUSTER(Customer set, target size, neighborhood)

S←;
for all c ∈Customer set do

S← S ∪MACRONODEREQUEST(c)
end for
C l u s t e r H ead Se t ←Customer set
while |S |> target size do

k_b e s t ←;
l _b e s t ←;
cos t_b e s t =∞
for all k ∈ S do

for all l ∈ nei g h b o r hood (k) do
if l ∈C l u s t e r H ead Se t then

if FEASIBILE(k, l) then
cos t ← HEURISTIC(k , l )
if cos t < cos t_b e s t then

cos t_b e s t ← cos t
k_b e s t ← k
l _b e s t ← l

end if
end if

end if
end for

end for
if k_b e s t 6= ; & l _b e s t 6= ; then

k ′← MERGE(k_b e s t ,l _b e s t )
S← S \ {k_b e s t , l _b e s t}
S← S ∪{k ′}
C l u s t e r H ead Se t ←C l u s t e r H ead Se t \ {l _b e s t}

else
return S

end if
end while
return S

end function
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Figure 4.1: Example of neighborhood without any merge options

4.1.3 Computational Complexity

In algorithm 3 every iteration of the while loop reduces the size of our macro node request set by
one, because we merge two macro node requests into one. This means that if our initial request count
was N and our reduced problem size should be m then this loop will execute N −m iterations.

The body of the while-loop consists of a double for-cycle. The outer for-cycle iterates over all
macro node requests in the set S. The inner for-cycle iterates over all the k-neighbors of the tail
customer of the current macro node request. Therefore the two for-cycles have a O(|S |∗k) complexity,
since FEASIBILE is a constant time operation O(1).

The resulting complexity of the whole algorithm is then O((N−m)∗ (|S |∗k)). The cardinality of
the set S changes every iteration. More specifically, it decreases by one, starting from N and finishing
at m.

Since during every iteration we have to execute |S | ∗ k many operations and we have N −m many
iterations, we can compute the total number of operations executed as the sum

N ∗ k +(N − 1) ∗ k +(N − 2) ∗ k + . . .+m ∗ k

We notice that every term in the sum is multiplied by k. Therefore we can rewrite this sum as

k ∗ (N +(N − 1)+ (N − 2)+ . . .+m)

This sum can be rewritten as the mean value of the first and last element multiplied by the number
of elements in the sum.

k ∗ N +m
2
∗ [N −m]
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After simplifying, this expression is equal to

k ∗ (N
2−m2

2
)

Since m ∼N and we are interested in the big O notation complexity, the term O(N 2−m2) =
O(N 2). Then the final complexity of the clustering algorithm is equal to

O(k ∗N 2)

4.2 Clustering Heuristics

In this section, we discuss how to compute the HEURISTIC function that evaluates the profitability
of merging two macro node requests together. The particular cost heuristics we have chosen to use
have historically showed good results for VRPTWs and are easy to implement and extend for the
macro node case.

4.2.1 Distance Heuristic

The distance heuristic between two macro node requests is simply the distance (travel time) between
the last request of the first macro node and the first request of the second macro node.

Definition 7. Let rmk
= 〈Ek , Lk , Sk ,Qk , p f i r s tk

, pl a s tk
〉 and rml

= 〈El , Ll , Sl ,Ql , p f i r s tl
, pl a s tl

〉 be
two macro node requests. Then the distance heuristic between them is equal to

he u r i s t i cd i s t = t ′k ,l

Time

Distance

he u r i s t i cd i s t

Figure 4.2: Ilustration of the distance heuristic between two macro node requests
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4.2.2 Waiting Time Heuristic

The waiting time heuristic between two macro nodes is the waiting time the vehicle must incur
between the last request of the first macro node and the first request of the second macro node.

Definition 8. Let rmk
= 〈Ek , Lk , Sk ,Qk , p f i r s tk

, pl a s tk
〉 and rml

= 〈El , Ll , Sl ,Ql , p f i r s tl
, pl a s tl

〉 be
two macro node requests. Then the waiting time heuristic between them is equal to

he u r i s t i cwai t = max(El − (Lk + Sk + t ′k ,l ), 0)

Time

Distance

he u r i s t i cwai t

Figure 4.3: Ilustration of the waiting time heuristic between two macro node requests

4.2.3 Flexibility Heuristic

The flexibility heuristic represents the amount of narrowing of the time window of the combined
macro node after we have merged two macro nodes together.

Definition 9. Let rmk
= 〈Ek , Lk , Sk ,Qk , p f i r s tk

, pl a s tk
〉 and rml

= 〈El , Ll , Sl ,Ql , p f i r s tl
, pl a s tl

〉 be
two macro nodes. Then the flexibility heuristic between them is equal to

he u r i s t i c f l e x = δE +δL

Where
δE = max((El − Sk − t ′k ,l )− Ek , 0)

and
δL = max(Lk − (Ll − Sk − t ′k ,l ), 0)
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Time

Distance

δE δL

Figure 4.4: Ilustration of the flexibility cost between two macro node requests

4.2.4 General Heuristic

The resulting heuristic we use in our application is a linear combination of the above mentioned
heuristics.

Definition 10. If rmk
= 〈Ek , Lk , Sk ,Qk , p f i r s tk

, pl a s tk
〉 and rml

= 〈El , Ll , Sl ,Ql , p f i r s tl
, pl a s tl

〉 are
two macro node requests then the generalized heuristic is equal to

he u r i s t i cG(rmk
, rml
) = γ he u r i s t i cd i s t (rmk

, rml
)+βhe u r i s t i cwai t (rmk

, rml
)+αhe u r i s t i c f l e x (rmk

, rml
)

where α,β,γ ≥ 0

4.3 Summary

In this chapter we gave detailed pseudo-code of our approach of combining two macro nodes. We
gave a formal complexity analysis of our clustering algorithm. We introduced the concept of a request
neighborhood set, an optimization technique that allowed us to avoid unnecessary computations. In
addition, we introduced a heuristic function that allows us to evaluate the goodness of combining
two macro nodes. This heuristic is based on distance, waiting time and time window width.
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Experimental Results

5.1 Benchmark Data Set

Empirical analysis is the most common way how Operations Research (OR) and Artificial Intelligence
(AI) communities evaluate heuristic quality. Empirical analysis uses an extensive set of problem
instances, benchmark instances, which should have the following properties:

• Must represent a wide range of possible case.

• Must represent common patterns of practical problems

[12] presents a widely adopted benchmark set. This set contains instances of 200, 400, 600, 800
and 1000 requests. Every instance has a central depot, vehicle capacity constraints, time windows on
the delivery and total route duration restrictions.

Each group of instances of a fixed size consists of six different classes of problems, namely R1, C1,
RC1, R2, C2 and RC2. Each class contains 10 problems over a service area defined on a 500x500 grid.

Request coordinates are generated as follows. For the R1 and R2 classes data is selected from
a uniform distribution, for the C1 and C2 classes coordinates are generated to produce clusters of
nearby customers. Classes RC1 and RC2 contain a mix of clustered and random coordinates.

All problems of a particular class have the same customer locations and the same vehicle capacities.
The only difference is the percentage of customers with time window constraints (i.e. 25%, 50%, 75%
and 100% time window density).
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Classes R1, C1 and RC1, have a short scheduling horizon, narrow time windows and small vehicle
capacities, which allows only a few requests to be serviced by the same vehicle. On the contrary,
classes R2, C2 and RC2, have a long scheduling horizon enabled by long route duration together
with large vehicle capacities, thus allowing individual vehicles to service many customers.

5.1.1 Very large instances

Since the literature does not contain any instances larger than the [12], and since our work is designed
to handle cases of very large instances, we had to create very large instances of size 10’000 request on
our own.

To achieve this we combined ten of the 1’000 request problems from [12] into a single 10’000
problem. We did this for every one of the 6 classes (R1, C1, ....), obtaining 6 problems of size ten
thousand.

5.2 Numerical Results

In the previous chapter we discussed the global heuristic function, which measures the goodness of
combining two macro nodes. The global heuristic function is a linear combination of three different
heuristic functions - the distance, the waiting and the flexibility. Parameters α, β and γ , determine
the weight of these different functions in the global heuristic function.

In order to find the best values for α, β and γ , we evaluated the performance of clustering over
the whole benchmark set with different combinations of values of alpha, beta and gamma (parameter
scanning). Bellow is the table that lists the combinations that we evaluated

α β γ

0.0 0.0 1.0
0.0 1.0 1.0
0.1 1.0 1.0
1.0 0.0 1.0
1.0 1.0 1.0
1.0 0.1 1.0

Values for the combinations were selected as follows. The weight of the distance γ is always set to
1.0 and the weight of the waiting β and flexibility α where evaluated at values 0.0, 0.1 and 1.0.

The motivation for always setting the weight of the distance heuristic to 1.0 is that combining
two macro nodes that are far apart is usually a bad idea, hence this parameter favors joining macro
nodes that are nearby.

In contrast, the degree of importance of minimizing waiting time or keeping macro node request
time windows wide is not obvious. In order to test the importance of these factors, we set their
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weight to either 0.0 which turns it off, or to 0.1 which enables a small influence, or to 1.0 which turns
the heuristic fully on.

It is important to point out, that individual heuristics inside the global heuristic are not normalized.
First of all, they all have the same dimension - time units. Secondly, their effect on the degradation of
the objective function is comparable, as their values have largely similar orders of magnitude (e.g.
making a request one hour less flexible, or introducing an extra one hour waiting time, or even
spending one more hour traveling)

5.2.1 Evaluation metrics

For each combination we present a number of characteristic properties, that describe its performance.
We are interested in the following performance metrics

• Number of vehicles needed to route the problem

• Sum of duration of all routes

• Objective function

• Time needed to solve the problem

The objective function is computed according to the following formula

Number of vehicle ∗ 1000000+ total route duration

The value 1000000 was selected to be large enough to force the solver to try first to optimize the
vehicle count and then optimize the total route duration.

We note that we don’t display the absolute value of these metrics, but instead the relative value of
the metric w.r.t. the value of an unclustered instance as obtained from the Indigo solver. For example,
a value of 1.1 as the vehicle number metric indicates that, comparing to the unclustered solution, the
clustered solution needed 10% more vehicles.

5.2.2 Reduction limit

Before running the numerical experiments, we need to decide how much to reduce the original
instance, since any instance is only reducible up to some value, and we need to decide what is the
smallest reduction size that we will attempt to perform while clustering.

One way to find such a limit is to look at how many vehicles Indigo needed to solve this problem
without doing any clustering. If we could reduce the problem to a number of macro nodes that is
less than the number of vehicles required by Indigo we immediately get a solution that is better than
Indigo’s since a macro node can always be serviced by a single vehicle. Since it is unlikely that the
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greedy macro node construction approach can produce a solution that is better than Indigo’s, the
number of vehicles needed by Indigo is the reduction limit that we assume.

Figure 5.1 shows the mean value of the number of vehicles needed for the 1000 request instances
to solve a problem for each problem class.

c1 c2 r1 r2 rc1 rc2
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Figure 5.1: Mean number of vehicles needed by class

Figure 5.1 shows that Indigo needs on average 100 vehicles for class C1, 40 vehicles for class C2,
90 vehicles for class R1, 20 vehicles for class R2, 90 vehicles for class RC1, and 20 vehicles for class
RC2. We take the upper limit of these numbers, and we do not attempt to reduce any instance more
than 10x times, that is from 1000 requests to 100 macro node requests.

5.2.3 Reduction range

To better understand the effects of clustering on the performance of Indigo, for each 1000 request
instance, we tried several reduction sizes. First we tried to reduce the problem from 1000 requests to
800 macro nodes, then to 500 macro nodes, then to 200 macro nodes and then to 100 macro nodes.
For each reduction we record the four characteristic metrics introduced earlier (number of vehicles,
total route duration, objective function, execution time).

In this way, we can see how the reduction amount influences the performance of Indigo relative
to not doing any reduction.

5.2.4 Reduction rate

Not every instance in the benchmark set can be reduced to the target size of 800, 500, 200, 100 macro
nodes. To measure the amount of successfully reduced instances we introduce the metric - reduction
rate. Reduction rate indicates how many problems of a given class were successfully reduced to the
desired size. A reduction rate of 0.8 for class C2 at reduction size 500, would indicate that only 80%
of instances in class C2 could be reduced to the size 500.
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In all the future plots, whenever we show a mean value of the four characteristic metrics, we show
the mean value of those instances that were succesfully reduced to the reduction size. So the mean
value of 1.1 at reduction size 200 means that out of all the instances that were succesfully reduced to
200, the mean value is 1.1. Also, we show a plot indicating the reduction rate for every class at every
reduction size.

5.2.5 Performance of all metrics over all heuristics

In Figure 5.2 we display how each heuristic, averaged over all the instances in all the classes, performed
relative to other heuristics.
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Figure 5.2: Relative performance of different combinations

Before analyzing data provided by Figure 5.2 we introduce a shorthand notation for displaying the
weights of a heuristic. We abbreviate a heuristic α= 0.1,β= 0.1,γ = 0.1 as vector (0.1,0.1,0.1) s.t.
the first argument is the weight of α, the second argument is the weight of β and the third argument
is the weight of γ . This notation allows us to avoid explicitly writing the names - alpha, beta, gamma,
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and instead use the position in the vector as the identifier.
We first look at the vehicle number subplot. This subplot shows that the two heuristics (0.0,0.0, 1.0)

and (1.0,0.0,1.0) introduce a large degradation for the required vehicle count (increased to 380%
and 170% respectively). Since the objective function is determined by the vehicle count, a similar
degradation happens with the objective function.

These are the only heuristics with waiting weight 0. We can conclude that, turning off the waiting
factor causes large degradation of the objective function. Intuitively, this means that clustering
requests, with significant waiting times between them, does not lead to good overall solutions.

If we examine the objective function subplot, we can see that the overall average best heuristic is
(0.1,1.0, 1.0). This heuristic produces a 5% degradation, if the reduction size is set to 100 macro node
requests, and only a 2% degradation, if the reduction size is set to 200 macro node requests.

If we examine the execution time subplot, we can see the same speed up for all heuristics. The
reduction to 100 macro node requests, results in a 3x time speed (33% of the original execution time).

All the subsequent plots do not display information regarding the worst performing heuristics
(1.0,0.0, 1.0) and (0.0,0.0, 1.0). We ignore them since they clearly are bad candidates and their presence
makes plots harder to read.

5.2.6 Objective function broken by class

Figure 5.3 shows the relative performance of all heuristics broken down into 6 subplots, one for each
class (C1, C2, R1, R2, RC1, RC2).

Out of the remaining four heuristics, the worst performing heuristic is (0.0,1.0, 1.0). This heuristic
has the flexibility weight set to 0. In classes C1, C2 and RC2 this heuristic experiences the largest
degradation relative to the other heuristics (it is roughly 10% worse). In the remaining classes this
heuristic performs only slightly worse then others (3% worse).

The heuristic (0.1,1.0, 1.0) performs best in classes C1, C2, RC1, RC2. If we change the flexibility
weight of this heuristic from 0.1 to 1.0 then the resulting heuristic gives the best results in the
remaining classes R1 and R2 (marginally better by 1%).

We can conclude that the overall best objective function is achieved with heuristic (0.1,1.0,1.0)
and for the random classes R1 and R2 we have a small improvement of 1% if we increase flexibility
weight to 1.0.
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Figure 5.3: Objective function broken down by class

5.2.7 Route duration broken by class

Similarly, how Figure 5.3 shows the break down by class for the objective function, Figure 5.4 shows
the break down by class for the total route duration.
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Figure 5.4: Route duration broken down by class

The conclusions we reached, when analyzing different heuristics for the objective function
degradation carry over for the route duration degradation.

Namely, the heuristic (0.1,1.0,1.0) gives the shortest routes in classes C1, C2, RC1, RC2, while
the heuristic (1.0,1.0,1.0) gives marginally better results for classes R1 and R2 (1% better).

5.2.8 Total execution time broken by class

Figure 5.5 shows the relative speed up Indigo achieved with the help of clustering.
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Figure 5.5: Execution time broken down by class

We already saw in Figure 5.2 that overall all heuristics gave a similar speed up of 3x. However, if
we break down these results by class, we can observe, that classes RC1 and R1 get a speed up of only
2.5x, while the class RC2 gets a speed up of 3.3x.

5.2.9 Reduction rate broken by class

Figure 5.6 show the reduction rate of each combination broken down by classes.
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Figure 5.6: Reduction rate broken down by class

We can see that the reduction rate is mostly identical for all heuristics and is equal to 0.9 for most
of the reduction values, except at 100 for classes C1, R1 and RC1 the reduction rate becomes 0 for all
heuristics.

We remind that according to Figure 5.1 classes C1, R1 and RC1 need on average 100 vehicles to
solve the instance. Since our greedy clustering approach is inferior to Indigo’s final results, it is likely
that clustering can not find a reduction of size 100.

5.2.10 Detailed Figures for the best performing heuristic

In Figures 5.7 we present a detailed break down of performance metrics, for the best performing
heuristic (0.1,1.0,1.0), broken down over each of the problem classes (C1, C2, R1, R2, RC1, RC2)
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and the overall average of all classes.
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Figure 5.7: Characteristic metrics for α= 0.1,β= 1.0,γ = 1.0

Figure 5.7 shows that for some classes our reduction was able to help Indigo produce better
solutions. Namely, for class C1 Indigo was able to find solutions that were 10% more efficient than if
no clustering was performed. For class C2 even better improvements of 15% to objective value was
reached after clustering. Class RC1 did not receive any degradation to the objective function during
clustering. Classes R1 and R2 received a 8% degradation to the objective value after clustering. Class
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RC2 suffered the worst degradation, with a 20% degradation to the objective function.
Figure 5.8 shows the reduction rate for each clustering target, broken down by each problem class

and the average over all classes.
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Figure 5.8: Reduction rate for α= 0.1,β= 1.0,γ = 1.0

We can see that the average reduction rate for this heuristic is around 0.9, with a sharp reduction
rate fall at 100 macro nodes for classes C1, R1 and RC1.

We can conclude that we found a heuristic, that showed a 5% degradation over all classes, and for
the clustered classes showed solution improvements. Independent of the effects to the objective value,
this heuristic allowed Indigo to find solutions 3x faster than without clustering.

5.2.11 Very large instances

In Figure 5.9, we show the numerical results of clustering the ten thousand request problems. We
had six instances, one instance for each class (C1, R1, C2, R2, RC1, RC2). The reduction sizes during
clustering were 8000, 5000, 2000, 1000. Due to the very large execution time it takes to solve a ten
thousand request problem (100x longer than a 1k instance, 11 hours comparing to 7 minutes), we
only evaluated the heuristic that showed best results for the 1k instances, namely (0.1,1.0,1.0).
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Figure 5.9: Characteristic metrics for α= 0.1,β= 1.0,γ = 1.0 for 10k instances

The results show a similar picture to the results of the 1k instances. The R1, R2, RC1 and RC2
classes suffered a slight degradation. Problems R1 and RC1 received a 1% degradation and problems
R2 and RC2 received a 5% degradation. However, problems C1 and C2 received an average of 10%
improvement.

We have to be more critical, when interpreting these results, since the structure of the instances
may lead to a more favorable results, because the problems were constructed by combining together
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10 independent instances and overlaying all the requests together. This could lead to more cluster
formation due to the increased request density and therefore problems that are more suitable for
clustering.

On the other hand, the execution time improvement are not connected to the structure of the
problem, but just its size. In the case of the 10k problems, we see a clear linear reduction in execution
time. A 5x reduction of size resulted in a 5x speed up.

Figure 5.10 shows the reduction rate for the ten thousand problems.
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Figure 5.10: Reduction rate for α= 0.1,β= 1.0,γ = 1.0 10k instances

The reduction rate is, also, similar to the reduction rates with the 1k instances. Namely, all classes
were successfully reduced to 5x of the original size. However classes C1, R1, R2 and RC1 could not
be reduced to 10x.
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Conclusions and Future Work

The Vehicle Routing Problem is a well studied combinatorial optimization problem with many
real practical applications. The variant of VRP that we considered is the VRPs with hard time
windows. Literature is full with different methods for solving this type of VRPs. Exact methods
for solving VRPs with optimalitty are based on Mixed Integer Programming (MIP) and are only
capable of solving instances with no more than 100 requests. Approximation methods do not provide
any guaranties on the solution quality, but are more efficient computationally. Empirical results
show that approximation methods are capable of achieving solutions with quality within 1% of
optimalitty. However, even approximation methods are computationally expensive due to the large
search neighborhoods.

The idea of clustering as a mean to help reduce the size of the search neighborhood was successfully
applied to VRPs without time windows, however very little work has been done to apply clustering
to VRPs with time windows. Introducing time windows makes it harder to reason if a cluster of
requests is serviceable by a vehicle, since requests inside the cluster might be nearby in space and time,
but due to the relationship of time windows no possible route is possible that accommodates all the
requests of this cluster. In fact, introducing time windows to VRP makes it NP-Complete to decide if
a solution for a problem exists at all.

We acknowledge the problem of treating clusters as sets of requests and the uncertainty if such
a set can be routed at all. To address the uncertainty of deciding if a set of requests has a route that
services all the requests, instead we try to identify sequences of requests (macro nodes). Since a
sequence imposes a fixed servicing order on the requests, it is easy to decide, if a macro node can be
serviced or not.
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Having identified requests that are nearby in space and time we can connect them in a sequence.
We can then use a VRP solver to decide how to combine sequences into routes. Since the order of
visits is fixed inside the sequence, the solver only needs to decide how to combine the sequences
together to form the final solution. Two things become obvious when we try to do this. First, since
the order inside the sequences is fixed and the solver can not change it while finding the solution, the
quality of the final solution might degrade as the result of constructing bad sequences. And second,
since the solver now needs to consider much less objects when routing, finding a solution becomes
faster. The degree of quality reduction and the degree of speed up then shows the usefulness of the
proposed clustering method.

In order to use a solver to route request sequences (macro nodes) we need to be able to encode a
macro node as a single request. Then we can encode all the macro nodes into individual requests,
thus constructing a new instance that is smaller and that can be given to any solver as input. The
final solution is the solution obtained from the solver where we expand the macro nodes into the
sequence of visits that they represent.

To construct the macro nodes we propose a greedy strategy that starts by assuming every request
forms a sequence of size one. At every iteration we select two macro nodes and connect them together.
In this way, we can control how big the reduced problem will be, since every iteration decreases the
size by one. Also, we propose heuristics that guide the macro node combination process. These
heuristics consider distance, waiting time and time window width of the macro nodes.

To evaluate the amount of speed up and the amount of solution quality degradation we imple-
mented our algorithm and used a state of the art solver Indigo to route the macro nodes. We executed
it over a well recognized benchmark set. This benchmark set consists of three classes of problems: a
class of clustered problems whose requests form geographical clusters; a class of random problems,
whose requests are randomly scattered; a class that combines both clustered and random locations.
All classes have two versions of the problems, one with large capacity and another with small capacity
vehicles. Using the problems from the benchmark set, we combined several instances to create new
instances of 10x size, and confirmed that the results obtained with 1000 request instances carry over
to 10000 request instances.

Numerical results showed, that for 1000 request instances clustering resulted in an average of
5% degradation of the objective function and a speed up of 3x, if compared to running the solver
without any clustering. However, the degradation rate of the objective function was different for
different classes of problems. The worst degradation happened with the semi random semi clustered
class with large capacity vehicles. Degradation in this class was 20%. The degradation of random
class was equal to 8%. The degradation of the semi random semi clustered class with small capacity
vehicles was around 2%. However for the class of problems, where the requests form geographical
clusters, not only did we experience no degradation, but instead clustering enabled the solver to find
better solutions. The small capacity clustered class received a 5% improvement and the large capacity
clustered class received a 15% improvement.
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Similarly, numerical results obtained for the 10000 request instances showed an average degradation
of 5% over all classes with an average degradation of 6% in the random and semi random classes and
an average improvement of 10% in the clustered classes. The execution speed up was, also, linear,
however the slope of the speed up was better, since a 5x reduction in size resulted in a 5x speed up
(versus 3x speed up in 1000 request case).

The degradation rate depends on the amount of requests that we joined together in macro nodes.
The more requests we join together the less freedom the solver has to find the optimal solution and
therefore the more degradation we introduce. However, the more requests we join together the
better execution time improvement we receive. This trade off between the speed up and the objective
function is not linear. Our results showed that if we perform only a 5x size reduction of the original
problem (on average each macro node represents servicing 5 requests), the degradation rate of the
objective function is not as bad and on average over all classes is only 2%. However if we perform a
7.5x or a 10x reduction in size there is a sharp increase in the degradation rate, that moves the average
to 5%.

We can see several improvements for our approach, that one can explore in the future. First of all,
the heuristic function that we proposed to combine macro nodes together is very simple and can be
extended. The Operations Research and Artificial Intelligence communities have developed a large
set of heuristics one can use to evaluate the goodness of putting a request in a route.

And second, our strategy of combining two requests is greedy - we are always combining the
best pair. One can expect better results if we introduced some stochastic element, and sometimes
allow a second best combination. Since once a pair of requests is connected, this decision is never
revised, and what seemed like the best option locally can lead to worse results globally. Introducing
randomness can help search escape local minima.
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