
Nuno Miguel de Brito Delgado

BSc in Computer Science

A System’s Approach to Cache

Hierarchy-Aware Decomposition of

Data-Parallel Computations

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Orientador: Prof. Doutor Hervé Miguel Cordeiro

Paulino, Prof. Auxiliar, Universidade Nova

de Lisboa

Júri:

Presidente: Prof. Doutor António Maria Lobo César Alarcão Ravara

Arguentes: Prof. Doutor João Pedro Barreto

Vogais: Prof. Doutor Hervé Miguel Cordeiro Paulino

Maio, 2014

ii

iii

A System’s Approach to Cache Hierarchy-Aware Decomposition of Data-Parallel
Computations

Copyright © Nuno Miguel de Brito Delgado, Faculdade de Ciências e Tecnologia, Uni-
versidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

Dedico este trabalho à memória da minha avó Maria Celeste, que
tomava conta de mim quando eu era pequeno. Dedico também
este trabalho à memória do meu avô Alfredo, que fazia imensas

engenhocas e assim me inspirou para ser engenheiro.

vi

Agradecimentos

Em primeiro lugar, quero agradecer ao Prof. Hervé Paulino por toda a atenção disponibi-
lizada e apoio prestado ao longo do período de desenvolvimento desta dissertação, não
só a nível profissional como também pessoal.

Quero também agradecer ao Departamento de Informática da Faculdade de Ciências
e Tecnologia da Universidade Nova de Lisboa, pelas excelentes condições de trabalho que
me foram proporcionadas para o desenvolvimento deste trabalho, bem como por todas
as oportunidades de envolvimento nas activades de investigação e apoio pedagógico do
departamento, nas quais desenvolvi competências que me foram imensamente úteis ao
longo do desenvolvimento desta dissertação.

Por último mas não menos importante, gostava de agradecer à minha família e a
todos os meus amigos (alguns também colegas) por todo o apoio e contributo que me
prestaram ao longo deste período.

vii

viii

Abstract

The architecture of nowadays’ processors is very complex, comprising several computa-
tional cores and an intricate hierarchy of cache memories. The latter, in particular, differ
considerably between the many processors currently available in the market, resulting in
a wide variety of configurations. Application development is typically oblivious of this
complexity and diversity, taking only into consideration the number of available execu-
tion cores. This oblivion prevents such applications from fully harnessing the computing
power available in these architectures.

This problem has been recognized by the community, which has proposed languages
and models to express and tune applications according to the underlying machine’s hier-
archy. These, however, lack the desired abstraction level, forcing the programmer to have
deep knowledge of computer architecture and parallel programming, in order to ensure
performance portability across a wide range of architectures.

Realizing these limitations, the goal of this thesis is to delegate these hierarchy-aware
optimizations to the runtime system. Accordingly, the programmer’s responsibilities are
confined to the definition of procedures for decomposing an application’s domain, into
an arbitrary number of partitions. With this, the programmer has only to reason about
the application’s data representation and manipulation.

We prototyped our proposal on top of a Java parallel programming framework, and
evaluated it from a performance perspective, against cache neglectful domain decom-
positions. The results demonstrate that our optimizations deliver significant speedups
against decomposition strategies based solely on the number of execution cores, without
requiring the programmer to reason about the machine’s hardware. These facts allow
us to conclude that it is possible to obtain performance gains by transferring hierarchy-
aware optimizations concerns to the runtime system.

Keywords: Data-Parallelism, Hierarchical Parallelism, Domain Decomposition, Run-
time Systems

ix

x

Resumo

Ao longo dos últimos anos, o aumento do poder computacional dos CPUs tem sido alcan-
çado através do aumento do número de cores e não através do aumento da frequência
de relógio. Esta tendência levou à ascensão dos modelos multicore a modelo arquitec-
tural predominante nos computadores de hoje em dia. Estes CPUs têm o potencial de
aumentar a velocidade de programas que possam tirar partido de computação paralela.
Além dos seus múltiplos cores, estes apresentam hierarquias de cache complexas, com
diferentes configurações e afinidades aos cores existentes, abrindo assim as portas para
optimizações cientes destas hierarquias.

Simultaneamente, as frameworks de programação estão incrementalmente a passar
de modelos sequenciais para modelos paralelos, de modo a explorar na totalidade o po-
tencial adormecido destas arquitecturas. A incorporação de paralelismo é feita através
exposição explícita deste ao programador, ou através de transformações implícitas de
código que introduzem paralelismo automaticamente.

A introdução de paralelismo por si só, contudo, não garante que o hardware está a ser
utilizado no seu máximo. O mapeamento adequado de uma aplicação para a hierarquia
de cache subjacente é crucial para explorar ao máximo o poder computacional destas
arquitecturas. Os ganhos de desempenho derivam essencialmente da exploração tanto
da localidade temporal como da espacial, no acesso aos dados. Contudo, a gestão das
memórias cache é completamente transparente na programação de nível utilizador. Esta
responsabilidade recai tipicamente sobre a infraestructura de hardware, cuja função é
apenas garantir que dados acedidos recentemente estão mais próximos da unidade de
computação do que os restantes, dado que provavelmente serão acedidos novamente.

Este trabalho procura contribuir para o estado da arte nesta área, mais concretamente,
na programação eficiente de aplicações para processadores multicore. O escôpo do nosso
trabalho irá incidir sobretudo em optimizações guiadas pela hierarquia de cache do hard-
ware subjacente.

xi

xii

Palavras-chave: Paralelismo de Dados, Paralelismo Hierárquico, Decomposiçao do Do-
mínio, Sistemas de Execução

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Motivational Example . 2

1.2 Problem . 4

1.3 Proposed Solution . 5

1.4 Contributions . 6

1.5 Document Organization . 6

2 State of the Art 7

2.1 Hierarchical Parallelism . 7

2.2 Hierarchical Programming Models . 10

2.2.1 Sequoia . 10

2.2.2 Hierarchically Tiled Arrays . 14

2.2.3 Hierarchical Place Trees . 17

2.2.4 Hierarchical SPMD . 20

2.2.5 Unified Parallel C . 22

2.2.6 Fractal Component Model . 23

2.3 Hierarchical Work Distribution . 25

2.4 Discussion . 26

3 Hierarchical Domain Decomposition 29

3.1 Data-size Driven Decomposition . 30

3.2 Scheduling . 35

3.2.1 Contiguous Clustering (CC) . 37

3.2.2 Sibling Round-Robin (SRR) Clustering 37

3.3 On the Affinity between Workers and Cores 40

3.3.1 Lowest-Level-Shared-Cache Affinity Mapping 41

3.4 Concluding Remarks . 42

xiii

xiv CONTENTS

4 Implementation in the Elina Framework 43
4.1 The Elina Framework . 43

4.1.1 Parallel Programming in Elina . 44
4.1.2 Runtime System . 45
4.1.3 Elina Initialization . 46
4.1.4 Elina Execution Workflow . 47

4.2 Vertical Decomposition in Elina . 48
4.2.1 New Adapter Types . 48
4.2.2 New Adapter Implementations . 53
4.2.3 Supporting Dynamic Memory Allocation 54
4.2.4 Discussion . 55

5 Experimental Evaluation 57
5.1 Methodology . 57
5.2 Benchmarks . 58
5.3 Test Infrastructure . 59
5.4 Vertical vs Horizontal Decomposition . 59

5.4.1 Matmult, Transpose, Gaussian Blur 61
5.4.2 Saxpy, Series . 71
5.4.3 Breakdown . 71

5.5 Discussion . 73

6 Conclusions 77

List of Figures

1.1 Matrix Transposal Iteration Pattern . 3

1.2 Matrix Transposal Iteration Pattern (revised) 4

2.1 Memory Hierarchies examples, taken from [ACF93]. 8

2.2 Matmul::inner decomposition into subtasks, taken from [FHK+06]. 13

2.3 Pictorial view of an Hierarchically Tiled Array [BGH+06]. 15

2.4 HTA construction-(a). Mapping of tiles to processors-(b) [BGH+06]. 15

2.5 HTAs components access [BGH+06]. 16

2.6 A Hierarchical Place Tree example, taken from [YZGS10]. 18

2.7 Three different HPT abstractions a, b and c of the same machine. 18

2.8 PGAS Address Space Model [CDC+99]. 19

2.9 Team hierarchy example [KY12]. 20

2.10 Shared memory sorting algorithm using four threads [KY12]. 21

2.11 Fractal component types examples, taken from [BBC+06]. 24

2.12 3D renderer component model, taken from [BBC+06]. 24

3.1 Invalid (a) and valid (b) Stencil Partitions 31

3.2 Best case scenario of a partition’s line mapping onto cache lines 34

3.3 Worst case scenario of a partition’s line mapping onto cache lines 34

3.4 Block decomposition for the matrix multiplication problem 36

3.5 Contiguous Clustering: Worker-Tasks Mapping 37

3.6 Example Cache Hierarchy . 38

3.7 Task Clusters . 39

3.8 Sibling Round-Robin Clustering: Worker-Tasks Mapping 39

3.9 Operative System rescheduling a worker 41

3.10 Lowest Shared Cache Affinity Mapping . 42

4.1 The SOMD Execution Model . 45

4.2 The Elina Framework Architecture, taken from [SMP12] 46

xv

xvi LIST OF FIGURES

4.3 Elina Initialization Workflow . 47
4.4 Elina Execution Workflow . 47

5.1 Horizontal vs Vertical decomposition: workingset granularity 60
5.2 S1 Speedups: MatMult (Contiguous Clustering) 63
5.3 S1 Speedups: MatMult (SRR Clustering) . 63
5.4 S1 Speedups: MatTrans (Contiguous Clustering) 63
5.5 S1 Speedups: MatTrans (SRR Clustering) 64
5.6 S1 Speedups: GaussianBlur (Contiguous Clustering) 64
5.7 S1 Speedups: GaussianBlur (SRR Clustering) 64
5.8 S2 Speedups: MatMult (Contiguous Clustering) 65
5.9 S2 Speedups: MatMult (SRR Clustering) . 65
5.10 S2 Speedups: MatTrans (Contiguous Clustering) 65
5.11 S2 Speedups: MatTrans (SRR Clustering) 66
5.12 S2 Speedups: GaussianBlur (Contiguous Clustering) 66
5.13 S2 Speedups: GaussianBlur (SRR Clustering) 66
5.14 S3 Speedups: MatMult (Contiguous Clustering) 67
5.15 S3 Speedups: MatMult (SRR Clustering) . 67
5.16 S3 Speedups: MatTrans (Contiguous Clustering) 67
5.17 S3 Speedups: MatTrans (SRR Clustering) 68
5.18 S3 Speedups: GaussianBlur (Contiguous Clustering) 68
5.19 S3 Speedups: GaussianBlur (SRR Clustering) 68
5.20 S1 Speedups: Horizontal and Vertical (Contiguous Clustering) vs Sequential 69
5.21 S1 Speedups: Horizontal and Vertical (SRR Clustering) vs Sequential . . . 69
5.22 S2 Speedups: Horizontal and Vertical (Contiguous Clustering) vs Sequential 70
5.23 S2 Speedups: Horizontal and Vertical (SRR Clustering) vs Sequential . . . 70
5.24 S3 Speedups: Horizontal and Vertical (Contiguous Clustering) vs Sequential 70
5.25 S3 Speedups: Horizontal and Vertical (SRR Clustering) vs Sequential . . . 71
5.26 SAXPY and Series S1 best configuration speedups 72
5.27 SAXPY and Series S2 best configuration speedups 72
5.28 SAXPY and Series S3 best configuration speedups 73
5.29 S1 Breakdown: MatMult N=2000 . 73
5.30 S1 Breakdown: MatTrans N=10000 . 74
5.31 S3 Breakdown: MatMult N=4000 . 74
5.32 S3 Breakdown: MatTrans N=20000 . 75

Listings

1 Matrix Transposal Algorithm . 2
2 matmul::inner task, taken from [FHK+06] 12
3 matmul::leaf task, taken from [FHK+06] . 12
4 Matrix multiplication task configuration for a Cluster, taken from [FHK+06]. 14
5 Recursive matrix multiplication that exploits cache locality [BGH+06]. . . 16
6 DivideTeam method, taken from [KY12]. 21
7 Shared memory sort implementation with thread teams, taken from [KY12]. 22
8 The Distribution interface . 32
9 Matrix Multiplication Example . 45
10 The HierarchyReadDriver interface . 48
11 The HierarchyLevel class . 49
12 8-core Machine Hierarchy Representation 50
13 64-core Machine Hierarchy Representation 51
14 The WSEstimationDriver interface . 51
15 The AffinityMappingDriver interface . 52
16 The DomainDecompositionDriver interface 53
17 The SchedulingDriver interface . 54
18 Matrix Multiplication Example (Dynamic Memory Allocation Support) . . 56

xvii

xviii LISTINGS

1
Introduction

1.1 Motivation

Over the last years, the increase of CPU computational power has been sought through
horizontal scaling of processing cores rather than the increase of clock frequency. This
trend led to the rising of the multicore model as the de facto architectural model for
today’s computers. These CPUs have the potential to increase the overall speed of pro-
grams amenable to parallel computing. In addition to their multiple cores, these fea-
ture complex cache hierarchies with different configurations and affinities to the existing
cores, opening the doors for hierarchy-aware optimizations.

Simultaneously, programming frameworks are incrementally moving from sequen-
tial to parallel ones, to fully exploit the dormant potential of these architectures. The
incorporation of parallelism is carried forward either by explicitly exposing this paral-
lelism to the programmer, or by performing implicit code transformations that automat-
ically introduce parallelism.

The introduction of parallelism per se, however, does not guarantee that the hard-
ware is being used to its fullest. Adequately mapping an application onto the underlying
cache hierarchy is crucial to fully harness the computational power of these architectures.
These performance gains derive essentially from the exploitation of both temporal and
spatial cache locality in the access to data. However, the cache memory management
is completely transparent to user-level programming. This responsibility typically falls
upon the hardware infrastructure, whose function is only to guarantee that data accessed
recently is closer to the computing unit than the remainder, since it will likely be accessed
again.

This work seeks to contribute to the state-of-the-art in this area, more concretely, in

1

1. INTRODUCTION 1.1. Motivation

the efficient programming of applications for multicore processors. Our work scope will
focus on optimizations driven by the cache hierarchy of the underlying hardware.

1.1.1 Motivational Example

Although we have presented an overview of the challenges and potential performance
gains of hierarchical decomposition, an example can better illustrate the rationale behind
these gains and how large these can theoretically be.

Let’s consider a well-known linear algebra operation, the transposal of a matrix. The
mathematical properties of the operation are not the focus in the context of this thesis, so
we will rely solely on a Java implementation of the algorithm that performs the operation,
presented in Listing 1, as the base for our discussion.

1 void transpose(i n t [][] A, i n t [][] T) {

2 f o r (i n t i=0; i < A.length; i++)

3 f o r (i n t j=0; j < A[0]. length; j++)

4 T[i][j] = A[j][i];

5 }

Listing 1: Matrix Transposal Algorithm

It is worth noting that the arguments and reasoning afterwards presented assume that
the lines of bi-dimensional arrays are stored in row-major order in memory. Row-major
order describes methods for storing n-dimensional arrays in memory which store rows
contiguously in memory, in contrast with column-major order, which stores columns (for
bi-dimensional arrays) contiguously in memory rather than rows. To illustrate this con-
cept, consider the following matrix:

M =

[
1 2 3

4 5 6

]

If M was stored in a row-major order, the elements of M would be laid out contigu-
ously in memory as {1, 2, 3, 4, 5, 6}. On the other hand, ifM was stored in a column-major
order, its elements would be laid out as {1, 4, 2, 5, 3, 6}. Row-major order is prevalent in
most programming languages, including Java.

We can observe that when the algorithm iterates matrix A across its lines, T is iterated
across its columns. If A and T are square matrices with side N = 4, we will have the iter-
ation pattern illustrated in Figure 1.1. The value in each block of each matrix represents
its order number in the sequence of accesses to the matrix by the algorithm.

Since the granularity of data fetching from main memory into the cache is a cache
line, which is a sequence of contiguous bytes, accessing contiguous memory positions
sequentially exploits spatial cache locality and provides a better performance than non-
sequential memory accesses. Therefore we can observe that, in the context of the matrix
transposal algorithm, while the iteration of A promotes spatial cache locality, the iteration
of T does not. When a element of T is accessed, the contiguous elements in the same cache

2

1. INTRODUCTION 1.1. Motivation

1 2 3

5 6 7

9 10 11

4

8

12

13 14 15 16

A

1 5 9

2 6 10

3 7 11

13

14

15

4 8 12 16

A
T

Figure 1.1: Matrix Transposal Iteration Pattern

line are also brought into the cache, but since T is iterated across its columns, if T is large
enough, these elements will eventually be removed from the cache to make space for the
elements accessed afterwards by the algorithm. This results in a "waste" of cache hits that
could have resulted from sequential accesses across the lines of T.

Having each computation well mapped onto the underlying memory hierarchy can
provide applications with significant performance gains. If one divides computations
into tasks that execute with a reduced input workload fitting the smallest cache level, one
can expect to fully exploit both temporal and spatial cache locality during the execution
of each task.

Consider that all blocks of the matrices A and T have the same size in bytes. Now
imagine a hypothetical architecture with a cache line size of 2 blocks, and a cache size of
8 blocks. If we divide the original transposal operation into 4 transposal operations that
operate over different quadrants of the matrices, and a single CPU executes these opera-
tions starting from the top left quadrant of A and ending with the lower right quadrant,
we will have the iteration pattern depicted in Figure 1.2.

This hierarchy-aware iteration pattern prevents the cache hit "waste" of the original
iteration. When an element of T is accessed and the elements on the same cache line
brought into the cache, these will still reside on the cache once the iteration of T moves to
the next columns, where these elements reside. Considering the example of Figure 1.2,
once the element 1 of T is accessed, 3 will also be fetched into the cache since it belongs to
the same cache line. Even though the iteration of T will then access 2, it will afterwards
access 3 and it will be a cache hit since T was already brought into the memory; this
pattern will occur for every pair of quadrants of A and T. This results from the fact that
the number of elements iterated by each transposal operation fits the cache, hence no
elements will have to be removed from the cache during each operation, and therefore,
spatial locality will be exploited during the execution.

3

1. INTRODUCTION 1.2. Problem

1 2 5

3 4 7

9 10 13

6

8

14

11 12 15 16

A

1 3 9

2 4 10

5 7 13

11

12

15

6 8 14 16

A
T

Figure 1.2: Matrix Transposal Iteration Pattern (revised)

1.2 Problem

When performing hierarchy-specific optimizations, there are several aspects that one
may take into account and tackle:

• Cache sizes

• Cache layer sharing (dedicated or shared)

• Cache alignment

• Target cache level

• Sibling core couples

• Inclusive or exclusive data storing policy across layers

The greatest challenges in this context are how to perform these optimizations with the
minimal intervention from the programmer, who should not be concerned with complex
hierarchy details when developing his applications, and how to program applications in
a way they can be mapped onto different hierarchy configurations using the same source
code.

Several state-of-the-art approaches like Sequoia [FHK+06], Hierarchical Place Trees
[YZGS10], Hierarchically Tiled Arrays [BGH+06] and [TBA13] provide machine abstrac-
tions for the programmer to abstractly represent the hierarchy of the target machine. Us-
ing these abstractions, the programmer can choose where each computation takes place
and define the size of its input workload.

Despite providing an increased abstraction of the machine hierarchy, these languages
place a heavy burden on the programmer when defining the machine model and the com-
putation mappings and sizes, requiring previous knowledge from the former regarding
the memory layers that exist on the machine.

4

1. INTRODUCTION 1.3. Proposed Solution

In this thesis we propose a system-based approach to hierarchical parallelism where
these optimization parameters are inferred and automatically tuned by the runtime sys-
tem/compiler instead of being manually set by the programmer.

1.3 Proposed Solution

The popularity of Google’s MapReduce parallel programming framework [DG08] led to
the generalization of the MapReduce designation, which nowadays is more associated
with a programming paradigm, than to Google’s original programming model. This
programming paradigm is characterized by a workflow of three main stages: Split de-
composes the given input dataset into a system defined number of partitions, Map applies
a given computation, in parallel, to each of such partitions, generating a set of results
that may then be reduced by the last stage, Reduce, that produces the computation’s final
result.

In this work, we are particularly interested in the Split stage. Common domain de-
compositions split the input dataset into a predetermined number of partitions. Within
a single computing node, this number is usually bound to the number of worker threads
assigned to the operation (assume N to be the arity of such set). Ergo, the domain is
partitioned as evenly as possible between these N workers, spawning that many tasks.

This approach is cache hierarchy-neglectful and hence, in many cases, does not har-
vest the benefits provided by the (consistently growing amount of) cache hardware avail-
able in current computers, from laptops to high-end server nodes. Our proposal over-
comes this limitation by applying a vertical, cache-aware, decomposition strategy to the
Split stage that takes in account cache sizes and CPU cores affinities. As a result, the
number of partitions (that we generalize into working sets) will no longer be bound to
the number of workers available to perform the computation, but instead be a function
of the target machine’s cache hierarchy. The Split operation is, itself, divided into two
stages: the first performs the aforementioned vertical domain decomposition, while the
second generates the tasks that will actually be executed by the workers assigned to the
computation.

The starting point of this project will be Elina [SMP12], a middleware for parallel pro-
gramming that supports shared and distributed memory systems in the same framework.
Elina was developed with the purpose of being a modular platform, which led to the
concept of pluggable adapter and the composition of these into complex adapter hierar-
chies. The support for both task and data parallelism requires the existence of dedicated
adapters that provide concrete implementations of the pool(s) of workers and of domain
decomposition. We propose implementing new adapters for Elina that automatically
collect the underlying hardware platform specifications and decompose applications in
accordance with these. Using this approach, the application’s optimization process will
be automatically performed.

5

1. INTRODUCTION 1.4. Contributions

The statement of this thesis is: it is possible to obtain performance gains in the exe-
cution of data-parallel computations by systematically decomposing the computation’s
domain, in such a way that it leverages the benefits of the cache hardware, without re-
quiring additional attention from the programmer’s part.

1.4 Contributions

Our concrete contributions with this dissertation are the following:

• A collection of theoretical concepts and problems involved in hierarchy-based do-
main decomposition. These concepts are complemented with algorithms and heuris-
tics that attempt to solve these problems;

• A framework that allows programmers to have their applications automatically
and efficiently mapped onto a target machine’s memory hierarchy, with minimal
intervention from the former;

• An evaluation that reveals the speedup of a vertical domain decomposition ap-
proach against a horizontal, core-based domain decomposition approach.

1.5 Document Organization

The remainder of this document is organized as follows: Chapter 2 presents state-of-
the-art approaches to hierarchical parallelism, namely the models that represent these
hierarchies and the mapping of an application onto the formers; Chapter 3 introduces
data-size driven domain decomposition, presenting the involved challenges along with
algorithms and heuristics that solve or approximate a solution for these; Chapter 4 builds
upon these concepts to explain their transposal into the Elina framework, upon which
these were implemented; Chapter 5 presents the experimental results of the performed
evaluation of the work developed in this dissertation; finally, Chapter 6 closes this dis-
sertation with our conclusions about the developed work, ending with our expectations
about the possible future work in this topic.

6

2
State of the Art

This chapter presents the state-of-the-art on cache-hierarchy aware data parallelism, pre-
senting the languages, models and decomposition mechanisms that were proposed to
deal with the problems we are addressing in this thesis. Section 2.1 presents the hier-
archical parallelism model that serves as the basis for the representation of systems’ hi-
erarchies. Section 2.2 presents existing languages and respective models to express task
decomposition. Finally, Section 2.3 introduces hierarchical work distribution, namely the
Hierarchical Mapping Algorithm (HMA).

2.1 Hierarchical Parallelism

The Parallel Memory Hierarchy (PMH) [ACF93] model is a computational model that
builds on a single mechanism to model both the costs of interprocessor communica-
tion and memory hierarchy traffic into a tree of memory modules with processors at the
leaves. Figure 2.1 depicts some examples of machines modeled using the PMH model.

There are two main types of data movement on a computer: horizontal interprocessor
communication and vertical memory hierarchy traffic. PMH models both of these types
of data movement within the same framework, with the following traits:

• each child is connected to its parents by a unique channel;

• modules hold data;

• leaf modules are the only that perform computation;

• data in a module is partitioned into blocks - the unit of transfer on the channel con-
necting a module to its parents;

7

2. STATE OF THE ART 2.1. Hierarchical Parallelism

Figure 2.1: Memory Hierarchies examples, taken from [ACF93].

• all of the channels can be active at the same time, but two channels cannot move a
given block at the same time.

Each module m in the model is parameterized through four different parameters: blocksize
sm - number of bytes per block of m; blockcount nm - number of blocks that fit in m;
childcount cm - number of children of m; transfer time tm - number of cycles per block
transfer between m and its parents. When in the presence of a homogeneous system, all
modules at a given level of the tree will be parametrized through the same parameters.

Modeling the Computer In order to model a computer, the model requires a tree struc-
ture that represents the machine’s communication capabilities and memory hierarchy.
One has to take in account the fact that this structure defines the data bandwidth be-
tween different architectural components (processors, memory, disks, communication
controllers, etc.) of the computer.

A consequence of PMH’s tree structure is that each channel is the only connection
between two subgraphs in the model graph. Also if the channel has a low bandwidth, it
is impossible to create a high-bandwidth data path between two components that do not
belong to the same subgraph.

The most basic strategy for defining a graph G that represents the hierarchy tree is to
represent the components as nodes in the graph, and the data paths that connect them as
the graph’s edges. The weight of each edge is given by the bandwidth of the correspond-
ing data path.

After defining the graph G, the corresponding PMH model, M, can model can be
obtained by applying the following rules:

8

2. STATE OF THE ART 2.1. Hierarchical Parallelism

1. For each processor node in G, create a leaf module in M

2. Compute the "threshold bandwidth" b as the maximum weight of any edge to a
processor node

3. In G merge all pairs of nodes connected by edges of weight b or higher, and create a
parent module (a new "root") in M to represent the subgraph of G that was merged
with each processor module

4. Repeat the procedure until G is a single node

The resulting model M will have the sets of modules sorted from the root to the leafs by
the maximum bandwidth to a processor node.

Modeling Latency The bandwidth of a channel is not the only factor that defines the
time needed to move data from a module to another. The link between components is
commonly modeled using both the bandwidth B and the latency L of the channel connect-
ing these components, a model usually referred to as the L-B model.

The algorithm presented in the previous paragraph modeled the system having in ac-
count only the bandwidth of communication channels, hence it may be inaccurate when
metrics such as latencies or disk access times are relevant to the system. A PMH model is
unable to simultaneously represent a model based both on the channels bandwidth, and
the channels communication delay.

Modeling Contention In some architectures, it is common that a single communication
bandwidth B1 exists between pairs of processors on a slightly loaded bus or network. The
situation is slightly different when several processors are using the channel, reducing the
effective bandwidth to a lower value B2.

When modeling these architectures, the problem can be solved by giving each module
a bandwidth B2 with the parent module.

Modeling Real Computers When comparing a specific model against a "real computer"
methodological difficulties may arise. As a workaround to this problem, PMH defines
performance model, this kind of model is motivated by a real machine and represents an
abstraction of the machine’s performance characteristics. In [ACF93] two performance
models are presented:

• CM-5: 4-ary Fat Tree with 1024 processing nodes

• KSR1: features a two-level hierarchy of rings, a single address space implemented
on physically distributed memory, and high-performance RISC processors with
large registers and local caches

9

2. STATE OF THE ART 2.2. Hierarchical Programming Models

2.2 Hierarchical Programming Models

These ideas and concepts presented by PMH drove the proposal of hierarchy-awareness
on parallel applications, which can lead to significant performance gains, provided that
applications optimize data movement and the computation sizes according to the under-
lying hierarchy.

In order to efficiently define parallel applications with these concerns in mind, it is
mandatory to have language-level support. Over the last years, several languages, and
respective runtime systems, have been proposed to allow programmers to abstractly de-
fine hierarchy-aware applications. The remainder of this section will present the most
relevant state-of-the-art approaches.

2.2.1 Sequoia

The Sequoia [FHK+06, HPR+08] programming language was designed with the purpose
of facilitating the development of memory hierarchy aware parallel programs. One of the
main goals of this work is to provide the means to develop applications that are portable
across machines with different memory hierarchies.

2.2.1.1 Sequoia Model

Writing Sequoia programs involves abstractly describing hierarchies of tasks, which are
subsequently mapped onto the target machine’s memory system. The programmer is
required to reason about a parallel machine as a tree of distinct memory modules.

The basic program building block in Sequoia is the task, a side-effect-free function
with call-by-value parameter passing semantics. Through tasks the programmer is able
to express: parallelism, explicit communication, locality, isolation, algorithmic variants
and parameterization. These properties allow programs written in Sequoia to be portable
across machines, without sacrificing the possibility of tuning the application according to
the hardware specifications of each target machine.

Sequoia introduces the array blocking and task mapping constructs. These are first-
class primitives available to describe portable task decomposition. The mappar construct
is a task mapping construct used to designate parallel iteration, being used during a
task’s execution to create subtasks that execute in parallel.

Tasks execute isolatedly without any synchronization between cooperating threads.
This allows parallel tasks to be executed simultaneously using multiple execution units
or sequentially on a single processor. Furthermore, parameter passing during the cre-
ation of subtasks is the only inter-task communication mechanism available in Sequoia.
The isolation and the lack of other communication mechanisms increase the complexity
of expressing cooperative computations. Nevertheless, Sequoia programs feature an in-
creased code portability since tasks are programmed without any assumptions regarding
the communication mechanisms available in the underlying platform.

10

2. STATE OF THE ART 2.2. Hierarchical Programming Models

More than one implementation (variant) may exist for a given task. To express such
multiplicity; tasks are identified through the syntax taskname::variant_name. The ratio-
nale behind task variants is closely tied to the definition of recursive algorithms, the base
case and the general case can be considered as variants of the same task. In this context,
Sequoia identifies two task variants: inner tasks and leaf tasks. Inner tasks are responsible
for spawning subtasks, leaf tasks on the other hand, do not spawn subtasks and operate
directly upon workingsets residing within leaf levels of the memory hierarchy.

In the matrix multiplication example provided in the documentation, the base case
does not need to be the smallest task unit. The decision to apply either the general or the
base case pertains to the machine-specific mapping of the algorithm, which means that
the system may stop dividing the problem when it sees fit to do so.

The programmer is required to define tasks in a parametrized form. Parametrization
allows the decomposition strategy specified by a task variant to be applied in a variety
of contexts, making the task portable across machines and across levels of the memory
hierarchy within a single machine.

The programmer is additionally required to provide the compiler with the task map-
ping specification for the machine where the algorithm will be compiled and executed.
The task mapping specification is maintained separately from the Sequoia source, and de-
scribes the mapping and tuning of the algorithm for the target machine. This approach
places an additional burden over the programmer, requiring the latter to be responsi-
ble for mapping a task hierarchy onto the target machine. While an intelligent compiler
may be capable of automatically employing this process, Sequoia’s design empowers the
performance-oriented programmer to manage the main aspects of the mapping phase in
order to achieve maximum performance.

Task execution in Sequoia follows a Single Program Multiple Data (SPMD) parallel
programming model, where different processes execute the same program over different
data. Processes know their process ID and interact through collective operations sup-
ported by the runtime system.

Application Example: Matrix Multiplication

The multiplication of matrices A and B, to produce matrix C, can be divided into smaller
computations that operate over different subsets of the original matrices. This promotes
parallelism in order to achieve a better performance. In Sequoia, this matrix multiplica-
tion can be represented as a matmul task with two variants:

• inner: splits the input matrices into a set of blocks and creates parallel subtasks that
compute the partial product of the blocks.

• leaf: performs the matrix multiplication algorithm over the input matrices.

An illustrative example of this task division can be seen in Figure 2.2. A possible imple-
mentation for these tasks is shown in Listing 2 and Listing 3 respectively.

11

2. STATE OF THE ART 2.2. Hierarchical Programming Models

1 void task matmul :: inner (i n f l o a t A[M][P], i n f l o a t B[P][N],
2 i n o u t f l o a t C[M][N]){
3 // Tunable parameters specify the size of subblocks of A , B , and C.
4 tunab le i n t U;
5 tunab le i n t X;
6 tunab le i n t V;

8 // Partition matrices into sets of blocks using regular 2D chopping .
9 blkset Ablks = rchop (A, U, X);

10 blkset Bblks = rchop (B, X, V);
11 blkset Cblks = rchop (C, U, V);

13 // Compute all blocks of C in parallel .
14 mappar (i n t i=0 to M/U, i n t j=0 to N/V) {
15 mapreduce (i n t k=0 to P/X) {
16 // Invoke the matmul task recursively on the subblocks of A , B , and C.
17 matmul (Ablks [i][k], Bblks [k][j], Cblks [i][j]);
18 }
19 }
20 }

Listing 2: matmul::inner task, taken from [FHK+06]

1 void task matmul :: leaf (i n f l o a t A[M][P], i n f l o a t B[P][N],
2 i n o u t f l o a t C[M][N]) {
3 // Compute matrix product directly
4 f o r (i n t i =0; i<M; i ++)
5 f o r (i n t j =0; j<N; j ++)
6 f o r (i n t k =0; k<P; k ++)
7 C[i][j] += A[i][k] * B[k][j];
8 }

Listing 3: matmul::leaf task, taken from [FHK+06]

The matmul::inner task variant performs a two-dimensional chopping over the input
matrices. The programmer can use the tunable variables in order to control the amount of
data that composes a matrix block, in order to adapt the application for a given memory
hierarchy. The produced sets of blocks will be assigned to parallel subtasks in the mappar

construct, which contains in its body a mapreduce construct that is necessary in order to
reduce, through a sum operation, the results of subtasks upon which a given block of C
depends.

The matrix multiplication operation is performed by the matmul::leaf variant, which
should be choosen for execution when further task divisions would no longer provide
better expected results in the the memory hierarchy.

Configuration In addition to programming the tasks required to carry on the compu-
tation, the programmer also has to define a configuration for the application, relative to
the target memory hierarchy, in order to optimize its execution for the latter. Listing 4
presents a configuration to efficiently execute the matmul task in a cell processor.

The configuration file specifies that the instance executing at the cluster level is a
matmul::inner variant, which creates subtasks of the matmul_node_inst instance type.
Instances of matmul_node_inst type execute also execute a matmul::inner variant, and
so does matmul_L2_inst. Only when the task hierarchy reaches matmul_L1_inst is the

12

2. STATE OF THE ART 2.2. Hierarchical Programming Models

Figure 2.2: Matmul::inner decomposition into subtasks, taken from [FHK+06].

matmul::leaf variant executed.
The values assigned to tunable variables U, X and V are defined so that a matmul

working set entirely fits the L1 cache level, which leads to a better performance since
cache locality is maximally exploited during the execution of each task.

Irregular Parallelism In the previous examples, as well as the reasoning behind the
Sequoia principles, parallelism is assumed to be regular. Parallelism is regular if and
only if the two following conditions are met:

• The working set of each subtask is known in advance: All of the inputs of a task
have to be known at the time it is invoked. Also, in order to guarantee that the
invoked task has enough space to finish its computation, it is necessary to know at
least an upper bound for the size of the task’s result;

• The number of subproblems in a task is known beforehand: The number of par-
allel subtasks is fixed upon entry on the mappar construct. Control can only return
to the parent task once all the subtasks finish executing.

Irregular parallelism may arise in two common situations:

• A task requires only a small portion of a large data set, therefore due to performance
reasons the task should be given only the aforementioned portion.

• The output is so large compared to the input that the problem size a task can handle
is limited by the size of the output (the whole output has to fit the memory level
where the task is executing). Tasks could be able to off-load partial results to the
parent and then proceed with their execution.

13

2. STATE OF THE ART 2.2. Hierarchical Programming Models

1 i n s t a n c e {
2 name = matmul_cluster_inst
3 variant = matmul :: inner
4 runs_at = cluster_level
5 calls = matmul_node_inst
6 tunable U=1024 , X=1024 , V =1024
7 }
8 i n s t a n c e {
9 name = matmul_node_inst

10 variant = matmul :: inner
11 runs_at = node_level
12 calls = matmul_L2_inst
13 tunable U=128 ,X=128 ,V =128
14 }
15 i n s t a n c e {
16 name = matmul_L2_inst
17 task = matmul :: inner
18 runs_at = L2_cache_level
19 calls = matmul_L1_inst
20 tunable U=32 ,X=32 ,V =32
21 }
22 i n s t a n c e {
23 name = matmul_L1_inst
24 task = matmul :: leaf
25 runs_at = L1_cache_level
26 }

Listing 4: Matrix multiplication task configuration for a Cluster, taken from [FHK+06].

Sequoia constructs that support irregular parallelism are proposed in [BCSA11], namely
the call-up and spawn constructs. The Call-up construct provides subtasks with access to
their parent task’s heap, which can be used to modify data structures in the latter. Since a
task typically launches multiple subtasks, the call-up construct introduces concurrency
into the Sequoia programming model.

Spawn is a parallel construct that takes two arguments: a task call and a termination
test. A spawn invocation may launch an arbitrary number of subtasks of the provided
task call during its execution. The spawn construct terminates and moves computation
into after its scope when two conditions are met: the termination test evaluates true, and
all subtasks have finished executing.

2.2.2 Hierarchically Tiled Arrays

Hierarchically Tiled Arrays (HTA) [BGH+06] were proposed in 2006 as a new program-
ming paradigm for expressing parallelism and locality. This new programming model
relies on a new object type named tiled array. HTA programs are single-threaded pro-
grams where parallel computations are represented as array operations.

Semantics of Hierarchically Tiled Arrays Hierarchically Tiled Arrays (HTAs) are ar-
rays partitioned into tiles, which can in turn be either conventional arrays or further tiled
arrays. Figure 2.3 shows a recursively tiled HTA model. There are two different ways to
create an HTA. The first approach consists on partitioning an existing array into tiles us-
ing delimiters for each dimension the array posesses. As an example lets consider a 6× 6

14

2. STATE OF THE ART 2.2. Hierarchical Programming Models

Figure 2.3: Pictorial view of an Hierarchically Tiled Array [BGH+06].

matrix M, whose contents may be posteriorly assigned hta(M,[1 3 5],[1 3 5]) creates
a 3× 3 HTA that consists of tiles with 2× 2 elements of M each. Figure 2.4-(a) illustrates
this scenario along with the resulting tiles. An HTA may also be created as an empty

Figure 2.4: HTA construction-(a). Mapping of tiles to processors-(b) [BGH+06].

set of tiles by invoking the HTA constructor with the desired number of tiles. Invoking
hta(3,3) creates an HTA with 3× 3, whose contents may be posteriorly assigned.

After creating the desired tile topology, tiles can be distributed across processors with
an additional constructor argument, as depicted in Figure 2.4-(b). In the example shown
the 6 × 6 matrix is mapped on a 2 × 2 mesh of processors. The default implementation
used in [BGH+06] uses a block cyclic distribution of the HTA tiles, which assigns tile (i, j)
to processor (i mod n, j mod m) in a n×m processor mesh.

Accessing HTA Components The components of an HTA can be accessed in a way
analogous to the conventional array indexing, although some additional indexing nota-
tion is added in order to make it easier for programmers to express some more complex
accesses and to distinguish between scalar data and tiles accesses. Figure 2.5 presents
some examples of HTA components access. The expression C(5,4) indexes the scalar el-
ement in the fifth row and fourth column of C, as if C was a conventional array. Accessing

15

2. STATE OF THE ART 2.2. Hierarchical Programming Models

tiles is similar to accessing scalar elements, except that brackets are used instead of paren-
thesis, which results in the expression C{2,1} referring to the lower left tile of C. Regions
that do not respect the tiling of C can be accessed using expression like C(1:2,3:6), which
returns a plain standard 2× 4 matrix.

Figure 2.5: HTAs components access [BGH+06].

Communication Operations In HTA programs, communication is expressed using as-
signments on distributed HTA. Communication may also be expressed using other HTA
operations, such as permute, circshift and repmat operations.

The permute operation transposes HTAs, altering the shape imposed by previous
tilings. A variant named dpermute exists that performs a transposition solely over the
HTA data, keeping the tiling structure.

The Circular shift operation allows a HTA to be circularly shifted, altering its over-
all topology.

The repmat operation is an important communication operation that allows a HTA,
or part of it, to be replicated across processors.

Application Example: Matrix Multiplication An implementation of the conventional
matrix multiplication algorithm using HTA can be observed in Listing 5.

1 f u n c t i o n C = matmul (A, B, C)

2 i f (level(A) == 0)

3 C = C + A * B;

4 e l s e

5 f o r i=1: size(A,1)

6 f o r k=1: size(A,2)

7 f o r j=1: size(B,2)

8 C{i, j} = matmul(A{i,k}, B{k,j}, C{i,j});

9 end

10 end

11 end

12 end

Listing 5: Recursive matrix multiplication that exploits cache locality [BGH+06].

16

2. STATE OF THE ART 2.2. Hierarchical Programming Models

If A, B and C are tiled arrays, the matmul function can be applied in parallel to each triplet
of corresponding tiles using the parHTA function with the matmul function and the ma-
trixes to be multiplied as arguments, resulting in the expression:

C = parHTA(@matmul, A, B, C)

Note that the "+" and "*" operators are overridden to represent the scalar matrix mul-
tiplication, thereby making sense of the expression C = C + A * B at line 3. The level

function can be used to obtain, at runtime, the location of the given argument within the
tile hierarchy, returning 0 for a leaf (scalar matrix) and non-zero for tiles according to
their location in the hierarchy. Spatial locality is exploited since processors access data
sequentially in each tile.

2.2.3 Hierarchical Place Trees

Hierarchical Place Trees (HPT) [YZGS10] model, developed in 2010 by a team of re-
searchers from the Department of Computer Science of the Rice University, aims to over-
come the restrictiveness of Sequoia’s communication mechanisms. Communication in
Sequoia is limited to parameter passing during function calls.

HPT supports three different types of communication: implicit access, explicit in-out
parameters, and explicit asynchronous transfer. In addition, HPT allows dynamic task
scheduling, rather than static task assignment as in Sequoia.

Several concepts used in HPT were introduced by the X10 language [CGS+05], namely
the concept of place and activity (task).

Hierarchical Place Trees Model In the HPT model each memory module is abstracted
as a place, and therefore a memory hierarchy is abstracted as a place tree. Places are
tagged with annotations that indicate their memory type and size. A processor core is
abstracted as a worker thread, which in the HPT model can only be attached to leaf nodes
in the place tree. The removal of this last restriction has been considered in order to
accommodate processor-in-memory hardware architectures in the HPT model.

As in X10, a task can be directed to place PLi by using a statement of the form async

(PLi), which should be read as "move the current task to the place PLi asynchronously".
However, unlike X10, the destination place may be a leaf node or a non-leaf node in the
hierarchy. If the target of an async statement is a non-leaf place PLi, then the task can
be executed on any worker that belongs to the subtree rooted at PLi. A consequence of
this constraint is that a worker can only execute tasks from its ancestor places. It is also
assumed that if a task is suspended while executing at a worker w0, it can resume its
execution at any worker that belongs to the subtree of the task’s original target place.

As an illustrative example, consider the place tree presented in Figure 2.6; a task T
assigned to PL1 can only be executed by workers w0 or w1. Also, if T is suspended while
executing at w0, it is assumed that T can resume its execution at w1.

17

2. STATE OF THE ART 2.2. Hierarchical Programming Models

Figure 2.6: A Hierarchical Place Tree example, taken from [YZGS10].

Figure 2.7: Three different HPT abstractions a, b and c of the same machine.

Compilation and Mapping to a Real Architecture The steps required to program and
execute an application using the HPT Model are not a simple straightforward compila-
tion process. A machine-independent compilation step handles parallelism and locality,
which is abstractly expressed in the program to allow it to work with any configuration
specification, which is machine-dependent. The configuration specification consists of an
HPT model that represents the desired view of the system, and a mapping of the places
and workers in the HPT model onto the memories and processor cores in the target ma-
chine. This allows the same program to be executed with different configuration specifi-
cations.

It is common to use different configurations as abstractions for different hardware
systems, yet it is also possible to use different configurations as alternative abstraction of
the same physical machine. Consider the example of Figure 2.7; the model (a) mirrors
the machine’s structure, whereas in (b) all the memory is seen as a flat shared memory
with uniform access, and in (c) the memory is seen as a two-level memory hierarchy.

It is not easy to develop an interface for data distribution and transfer that is both
portable and can be efficiently implemented across different memory systems. In sym-
metric multiprocessing (SMP) machines, data distribution follows implicitly from the
computation mapping, whereas distributed memory machines and hybrid systems with
accelerators require explicit data distributions and transfers. In order to accommodate

18

2. STATE OF THE ART 2.2. Hierarchical Programming Models

this, HPT model builds on the idea of a PGAS, extending it with the idea that the parti-
tioning is not flat and may occur across a place tree hierarchy. Partitioned Global Address
Space (PGAS) is a parallel programming model where a global address space is assumed.
In the PGAS model each thread is given a global address space in addition to its local
address space, which can be accessed by other threads for communication, thereby pro-
viding a powerful abstraction to program distributed applications using shared memory
semantics. Figure 2.8 illustrates the PGAS model, showing each thread’s global and local
address spaces. As with distributed address spaces, each portion of the global address

Figure 2.8: PGAS Address Space Model [CDC+99].

space has affinity with a given thread, that thread benefits from locality of reference when
accessing data in its portion of the address space. Due to performance reasons, data lo-
cality is exposed to the programmer.

The HPT model provides three data transfer mechanisms: 1) data distribution with
implicit data transfer; 2) explicit copyin/copyout parameters, and 3) explicit asynchronous
data transfer.

All data structures that may be accessed implicitly using global addresses are required
to have a well-defined distribution across places. Furthermore, each scalar object is as-
sumed to have a single home place. Accessing any part of an object results in a data trans-
fer from the home place to the worker that is going to perform the access; the access cost
will depend on the distance between the home place and the worker.

Data can also be explicitly synchronously transferred using IN, OUT and INOUT, analo-
gous to a dataflow model. When a task is launched at its destination place, data specified
by IN and INOUT clauses will be copied into the temporary space of the destination place.
Once the task finishes its execution, the data specified by the OUT and INOUT parameters
will be copied back to their original locations.

Despite the powerful semantics of the presented mechanisms, there are situations
where it is desired to perform the data transfer asynchronously so that it may be per-
formed in parallel with computation in the caller and callee tasks. In order to support
such situations, HPT introduces the asyncMemcpy(dest,src) which can be used to initi-
ate an asynchronous data transfer between places.

19

2. STATE OF THE ART 2.2. Hierarchical Programming Models

2.2.4 Hierarchical SPMD

Early work that shares our concerns regarding the limitations of the SPMD model and
the tuning of parallel applications according to the target hierarchy is first presented in
[KY14]. The author also mentions the limitations of the Sequoia model, namely the lack of
more powerful communication mechanisms that was also addressed in Section 2.2.3, as
well as its intrusion to the programmer, who is obliged to provide hierarchical mappings
and tunable configurations for its programs.

Hierarchical Thread Teams One of the most important concepts introduced in Hier-
archical SPMD (HSPMD) is that of a team of threads, which was presented in [KY12].
Figure 2.9 shows a thread team hierarchy that results from the division of a initial team
of 12 threads labeled from 0...11 into 3 teams, with each subteam being further divided
into two uneven teams, with 3 threads and a single thread respectively. Thread teams are
supported by additional linguistic constructs for expressing data decomposition among
them.

Figure 2.9: Team hierarchy example [KY12].

Task Decomposition When implementing a task parallel program, different parts of an
algorithm may be assigned to different threads. The partition statement is introduced as
a syntactic construct to assign tasks to different subteams of threads:

partition(T) {B0 B1 ... Bn−1}

where T represents a thread team and each subteam of T is assigned a different codeblock
Bx for execution. Once a subteam finishes executing a partition branch, it rejoins the pre-
vious thread team. Execution only moves to the code after the partition statement, with
the whole team, when all the subteams executing the codeblocks finish their execution.

Data Decomposition Some algorithms can benefit from a domain rather than func-
tional decomposition. From all the features of these hierarchical additions, this is perhaps
the most interesting one in the context of this thesis.

20

2. STATE OF THE ART 2.2. Hierarchical Programming Models

The teamsplit statement, with the following syntax, allows a data centred decomposi-
tion to be expressed:

teamsplit(T) B

Once again T represents a team of threads and the construct causes each thread team
in T to execute the codeblock B. Each thread belonging to a subteam t of T executes in
the context of t, which means that the thread identifier obtained using the invokation
Ti.thisProc () is its offset in t.

An interesting motivational example for the teamsplit construct is the implementa-
tion of the shared memory sort algorithm. In the shared memory sort algorithm, data is
evenly distributed amongst the available threads and each thread executes the sequential
quicksort over its own data. The sorted subsets are then merged in parallel in multiple
phases, with the number of threads executing the merge being halved in each phase.
Figure 2.10 illustrates this algorithm executing with four threads.

Figure 2.10: Shared memory sorting algorithm using four threads [KY12].

Using a team hierarchy structured as a binary tree, the recursive nature of the sorting
can be intuitively expressed. Listing 6 presents the divideTeam function that creates such
hierarchy.

1 s t a t i c void divideTeam(Team t) {

2 i f (t.size () > 1) {

3 t.splitTeam (2) ;

4 divideTeam(t.child (0)) ;

5 divideTeam(t.child (1)) ;

6 }

7 }

Listing 6: DivideTeam method, taken from [KY12].

After creating the hierarchy using the divideTeam method, it can be passed as an argu-
ment to the sortAndMerge method depicted in Listing 7. The sortAndMerge method is
recursively called within teamsplit statements in order to travel to the bottom of the hi-
erarchy, where teams with a single thread reside. These threads execute a sequential sort
algorithm over their assigned chunk of data in parallel, returning to original thread team
upon finishing. At each level, the thread with rank 0 in its current team is responsible for
merging the results of the other threads, performing the merge previously illustrated in

21

2. STATE OF THE ART 2.2. Hierarchical Programming Models

1 s t a t i c single void sortAndMerge(Team t) {
2 i f (Ti.numProcs () == 1) {
3 allRes[myProc] = SeqSort.sort(myData) ;
4 } e l s e {
5 t e a m s p l i t (t) {
6 sortAndMerge(Ti.currentTeam ()) ;
7 }
8 Ti.barrier () ; // ensure prior work complete
9 i f (Ti.thisProc () == 0) {

10 i n t otherProc = myProc + t.child (0).size() ;
11 i n t [1d] myRes = allRes[myProc] ;
12 i n t [1d] otherRes = allRes[otherProc] ;
13 i n t [1d] newRes = target(t.depth() , myRes ,otherRes) ;
14 allRes[myProc] = merge(myRes , otherRes ,newRes) ;
15 }
16 }
17 }

Listing 7: Shared memory sort implementation with thread teams, taken from [KY12].

Figure 2.10.

2.2.5 Unified Parallel C

UPC [CDC+99] is a parallel extension of the C programming language ISO C99 that
adopts the SPMD programming model with a PGAS address space. Hierarchical ad-
ditions to the UPC language are proposed in [WMEG11].

The authors recognize that, although compiler and runtime optimizations increase
the efficiency of a program up to a certain degree, when dealing with architectures with
complex memory hierarchies the greatest performance gains can only be attained by op-
timizing the way the application uses these hierarchies. However, the increasing levels
of the hardware hierarchy and the wide variety of system architectures make it difficult
for compilers to perform efficient tunnings. Therefore, it is highly unlikely that compiler
or runtime systems will perform a good distribution of data and tasks across the hier-
archy to meet the user’s computational needs. This means that one should emphasize
enhancements of the programming model as much as improving the compiler or run-
time libraries.

Two complementary approaches to manage and express hierarchical parallelism at
the application level are studied in the paper.

Approach 1: Exploiting Hierarchical Parallelism Using Thread Groups The first ap-
proach manages the UPC language threads as sets of thread groups. Thread grouping is
performed according to the runtime thread distribution, which provides the programmer
with thread group identifiers that improve the language another level of parallelism. Us-
ing the runtime support, the programmer can specify where on a machine should specific
parts of the computation be executed, thereby allowing optimizations on data sharing
and communication between related threads to be expressed by placing these into the
same level or node in the hierarchy.

22

2. STATE OF THE ART 2.2. Hierarchical Programming Models

During runtime, the location of a thread within the hardware topology can be re-
trieved using a specific thread layout query function. Though the resolution is low, the
function can accurrately distinguish between a remote and a local thread. This func-
tionality allows a programmer to explicitly identify which UPC threads share the same
physical address space, enabling optimizations in the access to neighbours’s shared ar-
rays and henceforth.

Approach 2: UPC/sub-threads Hybrid Model The second approach proposes the di-
rect addition of nested parallelism in UPC using sub-threads. Sub-threads are layered
on each SPMD UPC thread and execute within the same partition of the shared address
space as the corresponding master thread.

Although this model is similar to the hybrid MPI/threads model, differences exist
that set these two models apart:

• Sub-threads in UPC can access remote distributed memory directly using the global
address space;

• Global shared arrays are the primary constructs for parallel programming.

UPC sub-threads represent a new level of parallelism that allows the natural parallelism
of algorithms to be captured, as UPC programs no longer have to cope with a single-
level of execution. Moreover, sub-threads allow local computational resources to be fully
exploited in distributed UPC applications.

2.2.6 Fractal Component Model

Hierarchical organization of parallel systems can also be found at integration level. The
Fractal model [BCL+06] is a powerful component programming model for diverse com-
plex applications. One of Fractal’s most relevant features in the context of hierarchical
parallelism is its composition model. Figure 2.11 illustrates some examples of Fractal
components.

The component A is a primitive component since it is not internally composed by any
other component. On the other hand, C is a composite component since it is composed
by other components that attend different server ports. The sub-components can them-
selves be primitive, composite or parallel components. Finally D is a parallel component
because its components do not connect between themselves, attend to the same server
port, and output to different client ports.

We can observe that the Fractal composition model allows complex parallel compo-
nent hierarchies to be created. As an example of a real world application modelled using
Fractal components, consider the graphical 3D renderer depicted in Figure 2.12.

Users are also represented as components, with User 2 being connected to the Dis-
patcher component, which in turn connects to the Renderers with both a client port for

23

2. STATE OF THE ART 2.2. Hierarchical Programming Models

Figure 2.11: Fractal component types examples, taken from [BBC+06].

Figure 2.12: 3D renderer component model, taken from [BBC+06].

24

2. STATE OF THE ART 2.3. Hierarchical Work Distribution

output and a server port to receive the input from the Renderers. The Renderers them-
selves are represented as a parallel component with 4 sub-components R1 to R4. From
the Dispatcher’s point of view, the Renderers function as a primitive component with a
client port and a server port, with the Renderer’s inside being a black box.

The Fractal model was later instanced in the ProActive [BBC+06] middleware, in the
context of its parallel implementation. Component hierarchies are defined using a XML
framework.

2.3 Hierarchical Work Distribution

Distributing parallel tasks across processors, in a way that maximally exploits locality of
access to data, is not the only concern to have into account when optimizing the execu-
tion of parallel applications. There is space for optimizations regarding communication
amongst tasks and the even distribution of computation across the available hardware
resources, so as to prevent unnecessary high latency communication and idle times on
computational resources, respectively.

The paper entitled "Hierarchical Mapping for HPC Applications" [CLZC11], pub-
lished recently in 2011, addresses the problem of distributing tasks of a parallel appli-
cation onto physical processors of a computational architecture in a way that not only
minimizes the communication costs, but also evenly distributes the computation across
the processors.

In this paper an algorithm called "Hierarchical Mapping Algorithm" (HMA) is pre-
sented, which given a hardware physical topology modeled as a graph, approximates
the optimal distribution of tasks across the topology with the aforementioned concerns
in mind. HMA provides better scalability than the static mapping method, which maps
tasks into computational resources based on static information. Such method requires a
large amount of detailed analysis that can be impraticable both in terms of design com-
plexity and execution time, and also requires the decomposition of the problem and the
topology of the host machine to be known beforehand.

The HMA targets large-scaled applications and uses the hierarchical mapping ap-
proach. Instead of using static information, HMA builds a graph representative of the
parallel tasks and communication based on profile information collected using the MPI
tracing tool. The algorithm was designed to support complex systems, therefore it can
handle:

• applications with irregular parallelism or complex communication patterns;

• computing systems with high dimensional interconnection;

• mapping efficiency in large scale computing systems.

The algorithm is composed of three stages: task partitioning, initial mapping and fine
tuning.

25

2. STATE OF THE ART 2.4. Discussion

Supernodes An important concept of the HMA is that of a supernode. Supernodes are
nodes in the hierarchy topology graph where tasks with strong relations are placed. In
the initial mapping phase, "supernodes" are mapped onto the host machine.

For a given k, the task partitioning part of the HMA algorithm clusters V into k groups
that form the set of supernodes {A1, A2, ...Ak}.

Graph Construction Before executing the algorithm, a weighted graph G(V,E,w) is
built based on profile information collected during run-time using the MPI tracing tool.
V is a set of tasks, E represents the communication relations between tasks, and w(u, v)

corresponds to the message size exchanged between the tasks u and v.

Task Partitioning During task partitioning the algorithm has two objectives. The first
objective is the cohesion criterion, which asserts that the communication traffic within a su-
pernode has to be higher than traffic between supernodes, thereby reducing the amount
of high latency communication. Second, there is the equality criterion, which means that
the size of each supernode should be as equal as possible.

Initial Mapping The initial mapping places all supernodes onto the same target host
machine. Then the algorithm resumes its execution with the criterion of minimizing the
communication costs among supernodes.

Fine Tuning Last in the HMA execution flow, the fine tuning phase employs various
optimization techniques that include the simplex method, the local search method, or the
simulated annealing, so as to improve the mapping generated during the initial mapping
phase.

2.4 Discussion

In the presence of multiple CPU cores, the most straightforward approach is to perform
a horizontal decomposition of the domain, splitting the original dataset into as many
partitions as the number of available workers.

Although this approach makes use of the parallelism available on the underlying
hardware architecture, it is based solely on the number of cores available in the machine.
Nonetheless, there are other traits that differentiate a particular architecture from others
featuring the same number of cores, namely its cache hierarchy. To fully harness the
computational power of a machine, one has to employ a decomposition strategy that
takes these hardware differences into account.

With this knowledge in mind, a vertical decomposition strategy can be considered to
take into account not only the number of processing cores, but also the target machine’s
cache hierarchy. We may call this a hierarchical decomposition.

26

2. STATE OF THE ART 2.4. Discussion

The presented state-of-the-art approaches present both means to model machines,
and to employ vertical decomposition, namely how to express it and program applica-
tions in a machine-independent manner.

The Sequoia language introduced the concept of task variants and tunable variables,
which along with a mapping specification provided by the programmer tune applications
according to the target machine(s).

HPT proposes modelling a system as a place tree and its processor cores as workers
attached to the leaves of the former, defining a view of the system. This view is subse-
quently mapped onto a real machine according to a configuration specification, provided
by the programmer.

Still, all these proposals place a heavy burden upon the programmer, who is required
to have a deep knowledge of the machine in hands when defining applications and the
mapping of these onto the target machine’s hardware.

27

2. STATE OF THE ART 2.4. Discussion

28

3
Hierarchical Domain Decomposition

Domain decomposition is the most common and natural of parallel decomposition strate-
gies in data-parallel computing. It consists on decomposing the original domain of an
operation into several partitions upon which different instances of the original operation
can be applied in a parallel fashion.

Chapter 2 presented the most recent efforts on hierarchical parallelism, and its ver-
tical take on domain decomposition. Common to all the presented approaches is the
additional burden they require from the programmer, in order to exploit vertical decom-
position, namely the mapping of applications onto the target machine’s hardware. The
programmer is therefore required to have knowledge of the hardware in hands, whereas
its focus should rely solely upon the application’s logic and data manipulation. Hence,
we believe that it is possible to automatically employ a vertical decomposition approach
that:

1. determines the optimal size for partitions of the original domain, to be assigned to
each individual task;

2. partitions the original domain into partitions with the pre-determined size;

3. orchestrates the whole execution from the invocation of the original operation to
the obtainal of its final result.

An automated approach removes hardware-related concerns from the programmer’s
shoulders, allowing him/her to focus solely on the application’s logic and data repre-
sentation and manipulation.

29

3. HIERARCHICAL DOMAIN DECOMPOSITION 3.1. Data-size Driven Decomposition

3.1 Data-size Driven Decomposition

When decomposing a domain D into a set P of partitions that fit a given target cache
level (TCL), one wants to find a number N of partitions into which D can be partitioned
so that the following property holds:

∀p ∈ P, size(p) = size(D)

N
≤ size(TCL) (3.1)

For that sake of generality, we assume that the original domain D may itself be the re-
sult of composition of multiple subdomains D0, ..., Dn−1. For instance, in the classic ma-
trix multiplication, one can implement a decomposition strategy that decomposed the 3
matrices involved, or decomposed the 3 individually and have a way of combining the
resulting individual partitions. To accommodate the latter case, formula 3.1 has te be
refined to

∀p ∈ P, size(p) =
n−1∑
i=0

size(Di)

N
≤ size(TCL) (3.2)

It is not always possible to achieve such a obvious solution. To that fact mostly con-
tributes the fact that even though size(D) may be a multiple of N , a non-zero remainder
Ri = size(Di) mod N may exist for some sub-domain Di. In these situations, one may
either produce a smaller dataset of size Ri, preserving property 3.2, or one may choose
to distribute the bytes of R amongst the regular-sized partitions, which may afterwards
contain more bytes than the size of the TCL, violating the property. The first solution can
not be applied if a non-zero remainder Ri exists only for some sub-domains of D, which
would cause a different number of partitions to be produced from each sub-domain.

Problem-specific constraints may impose further restrictions upon the number of par-
titions and/or the geometry of the decomposition as a whole. Stencil computations
present this kind of restrictions, both in terms of the number of elements and the ge-
ometry of a partition. A stencil computes an element in a n-dimensional grid at time t as
a function of adjacent elements of the grid at time t−1, ..., t−k. Consider a simple stencil
computation that computes the value of an element (i, j) in the grid at time t1 as

g1i,j =
g0i,j
2

+
g0i+1,j

16
+
g0i−1,j
16

+
g0i,j−1
16

+
g0i,j+1

16
+
g0i+1,j+1

16
+
g0i−1,j+1

16
+
g0i+1,j−1

16
+
g0i−1,j+1

16

where g0 and g1 denote the grid at time t0 and t1 respectively. Corner cases (elements
without 8 adjacent elements) are computed using different weights for the adjacent val-
ues.

The value of an element at time t1 is a function of the values of its 8 adjacent elements
plus itself at time t0. Therefore, each partition is required to have at least 9 elements and
must contain the elements that comply to the presented dependency constraint. Given
these restrictions, one can conclude that a valid partition of the grids g0 and g1 must
comprise at least 3 sequentially ordered columns and lines, all equally-sized. Figure 3.1

30

3. HIERARCHICAL DOMAIN DECOMPOSITION 3.1. Data-size Driven Decomposition

a b

t 0

Figure 3.1: Invalid (a) and valid (b) Stencil Partitions

illustrates an invalid (a) and a valid (b) partition of g0. Note that the computation to be
applied to each partition p of g0 only produces a result (to be placed in g1) for the inner
elements of p.

This kind of information must be supplied in the decomposition algorithms supplied
by the programmer, and is therefore included in the interface that regulates the imple-
mentation of such algorithms (Listing 8). Method getAverageLineSize is of particular
relevance. It validates whether the dataset may be split into the supplied number of par-
titions, and, when such condition holds, returns the average size (in number of elements)
of the first dimension of such partitions. We are assuming a row-major order memory
layout, which is typically the case in most programming languages, including Java, in
which we implemented our proposal. This information is therefore relevant to under-
stand the decomposition of a partition into cache lines. The use of the average value
conveys some extra information to the system when the size of the partitions is irregu-
lar. This situation may occur, for instance, in the aforementioned situation, where the
remainder R is positive and one chooses to distribute these bytes across regular-sized
partitions.

Algorithm 1 builds upon the information provided by the distributions to determine
the maximum size of a workingset that fits the given TCL. A workingset is defined as
the set of partitions, one from each sub-domain (handled by the respective distribution),
upon which an individual parallel task operates. To determine the maximum size of a
workingset, the algorithm continuously decreases the size of the partitions of each indi-
vidual sub-domain, so that their total size (workingSetSize at line 10) is valid with respect
to each distribution involved (line 8), and fits the TCL (line 11). The algorithm assumes
that the input argument TCL_PER_CORE is the amount of memory expected to be available

31

3. HIERARCHICAL DOMAIN DECOMPOSITION 3.1. Data-size Driven Decomposition

1 p u b l i c i n t e r f a c e Distribution <T> {

3 /**
4 * Partitions the input domain into nParts partitions.
5 * @param nParts the number of partitions to be produced
6 * @return the partitions
7 */
8 T[] partition(i n t nParts);

10 /**
11 * Returns the average size of a partition of T (in number of elements)
12 * @return size of P
13 */
14 f l o a t getAveragePartitionSize(i n t nParts);

16 /**
17 * Returns the average size of line of a partition of T (in number of elements)
18 * @return size
19 */
20 f l o a t getAverageLineSize(i n t nParts);

22 /**
23 * Returns the size of an element of T (in bytes)
24 * @return size
25 */
26 i n t getElementSize ();
27 }

Listing 8: The Distribution interface

for each core sharing a TCL, calculated as TCL_SIZE/CORES_PER_TCL.

Accordingly, the number of partitions (nParts), into which each domain can be de-
composed, ranges from the number of workers assigned to the execution (nWorkers) up
to a value n that represents a valid solution, meaning that should each domain Di be
decomposed into n partitions all these would fit the TCL. Values of nParts lower than
the number of available workers are not considered since these would not fully exploit
the parallelism available on the machine. Although this prevents any single worker from
having no tasks to execute, it does not guarantee that the number of tasks assigned to
each thread is evenly balanced. This kind of will be discussed in Section 3.2.

Since the size of each individual partition decreases with the increase of nParts,
which is continuously incremented in each iteration, the first valid value of nParts is
the optimal solution, that is, each partition has the maximum size that fits the TCL.

Central to the algorithm is the computation of the size of each individual partition
that compose a working set (lines 5 to 9). The procedure starts by invoking the method
getAverageLineSize to validate the current value of nParts. Depending on the returned
value, a different course of action is taken. Value 0 invalidates the current value of nParts
as a solution, causing the algorithm to procede to the next value.

A negative answer invalidates the current proposal for nParts, as well as any value
n′ > nParts causing the algorithm to stop since no valid solution will be found. When
this occurs over a distribution of a given domainD it means that shouldD be partitioned
into n or any number n′ > n partitions, each partition would not meet the geometri-
cal restrictions, or contain the minimal number of elements imposed by the considered

32

3. HIERARCHICAL DOMAIN DECOMPOSITION 3.1. Data-size Driven Decomposition

Algorithm 1: Working set size estimation
Input: TCL_PER_CORE - Size in bytes of the TCL per core
Input: CACHE_LINE_SIZE - Size in bytes of a cache coherence line
Input: nWorkers - Number of CPU cores available on the machine
Input: nDatasets - Number of datasets to be decomposed
Input: dists - Vector holding the distribution algorithms for each dataset
Input: ϕ - Function that determines the size of a partition

1 for nParts← nWorkers to∞ do
2 workingSetSize← 0;
3 valid← true;
4 for i← 0 to nDatasets do
5 partLineSize← dists[i].getAverageLineSize(nParts);
6 if partLineSize = -1 then return -1;
7 valid← (partLineSize > 0);
8 if valid = false then break;
9 partSize← ϕ(CACHE_LINE_SIZE, dists[i], partLineSize, nParts);

10 workingSetSize← workingSetSize+ partSize;

11 if valid and workingSetSize ≤ TCL_PER_CORE then return nParts;

problem.

A positive answer (> 0) is used to compute the size of a partition (in bytes) of the
current distribution. The actual calculus of the partition size is delegated on function ϕ,
which is supplied as a parameter in order to allow for different approaches to be em-
ployed. The definition of this function implies a trade-off between accuracy, computa-
tional overhead, and wasted cache space.

A simple definition of ϕ is one that computes the number of bytes in a partition,
without taking in consideration both the size of the target architecture’s cache line size
(CACHE_LINE_SIZE in the algorithm) nor the partition’s average line size:

ϕ(cacheLineSize,dist,partLineSize,nParts)=dist.getElementSize()×bdist.getAveragePartitionSize(nParts)+0.5c

The average size of a partition is rounded to the closest integer by adding 0.5 to the
result and subsequently applying the floor operator to the result. Rounding the result to
the closest integer guarantees that most of the partitions will conform to the computed
partition size. This definition of ϕ is oblivious to the granularity of data fetching from
main memory into the caches by cache controllers, which is that of a cache line’s size.
This means that even if the size of a contiguous sequence of bytes in a partition (the
line retrieved from the distribution algorithm) is a multiple of the cache line’s size, every
cache line spanned by the byte range of the partition’s line will be fetched into the cache.

To illustrate this problem, consider an architecture with a cache line size of 64 bytes,
and a partition line Lwith size 448 bytes. The best case scenario for the space occupied by
L in the cache occurs whenL is memory aligned and the size of its byte range is a multiple
of the cache line size, which is illustrated in Figure 3.2. In this situation, L occupies as

33

3. HIERARCHICAL DOMAIN DECOMPOSITION 3.1. Data-size Driven Decomposition

0 64 128 192 256 320 384 448 512 576

partition’s line byte range

Totally used cache line

Figure 3.2: Best case scenario of a partition’s line mapping onto cache lines

0 64 128 192 256 320 384 448 512 576

partition’s line byte range

Totally used cache line

Partially used cache line

Figure 3.3: Worst case scenario of a partition’s line mapping onto cache lines

much space in cache as its length in bytes, which equals 448 bytes = 7 cache lines. The
above definition of ϕ is accurate if and only if this situation holds for every line in every
partition. Other situations have to be considered, one of these being when a partition line
L is memory aligned, but its size is not a multiple of the cache line size, which results in
L occupying (44864 +1) cache lines in cache. The worst case scenario for the space occupied
by L in cache occurs when both L is not memory aligned and its byte range intersects one
additional cache line; suppose that L starts at address 96, as depicted in Figure 3.3. Given
these conditions, L will occupy (544−9664 + 2) cache lines in cache. This leads us to a more
conservative definition of ϕ, whose estimation may take these dimensions into account,
at the expense of more computational overhead:

ϕ(cacheLineSize,dist,partLineSize,nParts) =

cacheLineSize×d dist.getAveragePartitionSize(nParts)×dist.getElementSize()
partLineSize×cacheLineSize

e+1

The size of the partition’s first dimension is adjusted to the boundaries of the cache
line. Furthermore, an extra cache line is added to considerate the eventual misalignment
of the partition to such boundaries. This approach is likely to ensure that the entire work-
ing set fits the TCL, but its conservative nature may eventually waste more space than the
first approach. Since most programming languages allocate memory on memory aligned

34

3. HIERARCHICAL DOMAIN DECOMPOSITION 3.2. Scheduling

positions, one can expect a partition whose lines start on the first position of arrays to
follow a best case scenario if their size is also a multiple of the cache line size. However,
if the latter does not hold, these lines and all subsequent lines would conform to one of
the other two cases.

None of the presented strategies take into consideration the cache associativity, which
relates to the cache collisions of different memory addresses. We assume that if the size of
a workingset is lower than the amount of memory in the TCL, all data in the workingset
will co-exist on the TCL at some point in time. Although this is true in a fully associative
cache, it may not hold in a n-way associative cache when the workingset is not composed
of totally contiguous data. Furthermore, we assume a cache replacement algorithm of the
Least-Recently-Used (LRU) family.

3.2 Scheduling

Once an operation’s domain is decomposed into the multiple workingsets, the original
operation will be carried out multiples times, in parallel, upon each of these workingsets.
We will denote these pairs (instance of the operation and associated worksingset) as tasks.
The act of mapping tasks onto worker threads is called scheduling.

There are two main types of scheduling: static and dynamic. In the first, the set
of tasks assigned to a worker is statically defined before the latter begins its execution,
whereas in dynamic scheduling, this set of tasks is built dynamically throughout the exe-
cution, depending on non-deterministic factors. A simple example of a dynamic schedul-
ing situation occurs when workers fetch tasks from a shared task queue for execution,
until the queue is empty.

In the presence of a horizontal domain decomposition approach, each worker thread
is usually assigned a small set of tasks (typically comprising a single task) for execution.
When employing a hierarchical domain decomposition approach, this task assignment
strategy cannot be generally applied, since the amount of tasks will largely exceed the
number of available workers (which is ruled by the number of CPU cores).

As a concrete example, consider a block decomposition for the parallel computation
of the classic matrix multiplication problem, which is illustrated in Figure 3.4. A work-
ingset must comprise a block of each input matrix and space for the computed result
block, which will be placed in the output matrix. Note, however, that every block parti-
tion of the first matrix (A) must be paired with all the block partitions that compose a line
of the second (B). In the example of Figure 1, all block partitions of matrix A are paired
with three block partitions of matrix B, for instance block A1 with blocks B1 to B3.

Consider now a concrete instance of the problem where both A and B are 1024× 1024

square matrices of 4-byte-long integers. Moreover, assume a TCL with 64KBytes. The
workingsets resulting from the vertical decomposition of this input domain (comprising
three matrices) will feature three blocks whose cumulative size equals 65368 bytes. In
order to produce blocks with this size, each matrix will be divided into 14 × 14 = 196

35

3. HIERARCHICAL DOMAIN DECOMPOSITION 3.2. Scheduling

A1 A2

A3 A4

A5 A6

A7 A8

B1 B2 B3

B4 B5 B6

A1*B1
+

A2*B4

A1*B2
+

A2*B5

A1*B3
+

A2*B6
A3*B1
+

A4*B4

A3*B2
+

A4*B5

A3*B3
+

A4*B6
A5*B1
+

A6*B4

A5*B2
+

A6*B5

A5*B3
+

A6*B6
A7*B1
+

A8*B4

A7*B2
+

A8*B5

A7*B3
+

A8*B6

Figure 3.4: Block decomposition for the matrix multiplication problem

blocks. Since each block of A will have to be combined with 14 blocks of B, applying a
one-to-one mapping from working sets to tasks will result in a total of 14×14×14 = 2744

tasks.

Faced with this situation, one has to either launch more workers than the available
cores on the machine to match the number of tasks, enabling a 1-1 thread-to-task map-
ping; or somehow schedule these tasks onto the the available workers. The former op-
tion is not viable in this context because having the number of workers far exceeding the
number of computational resources penalizes performance, since the worker threads will
have to spend time sharing the CPUs (due to context-switching by the OS) rather than
executing tasks.

An alternative is to place all tasks in a shared queue and allow for the workers to
consume tasks from this queue. This approach would not be feasible though, due to
the small granularity of the tasks, which would cause workers to spend a considerable
amount of time waiting for synchronized access to the queue.

To avoid this overhead, our approach is to perform an initial distribution of the tasks
among the workers, so that each worker thread can be assigned a coarser grained task
that will sequentially operate upon those groups.

We advocate that this initial work distribution increases the overall performance of
the system. However, when in the presence of irregular computations, dynamic schedul-
ing techniques can help to balance the load. We have not explored these techniques even
though we considered them, namely the work-stealing and dynamic load balancing tech-
niques alluded in [jMIY11] and [ZMBK10] that already embedded some hierarchical con-
cerns.

In the static scheduling techniques we present, the challenge is to trade-off the effi-
ciency of the mapping against the overhead (temporal and spatial) that the determina-
tion of the next task to execute might impose on the overall execution. More complex
clustering strategies are expected to perform more calculations and require more control
variables, thus stealing space in the cache for the actual working sets.

It is worth noting that since the task scheduling is done statically during runtime, the
access to the global task set can be free of any synchronization mechanism, avoiding any

36

3. HIERARCHICAL DOMAIN DECOMPOSITION 3.2. Scheduling

t0	 t1	 t2	 t3	 t4	 t5	 t6	 t7	 t8	 t9	 t10	 t11	 t12	 t13	

Fits TCL

Worker 0 Worker 1 Worker 2 Worker 3

Tasks

Figure 3.5: Contiguous Clustering: Worker-Tasks Mapping

overhead that could result from synchronization mechanisms.

3.2.1 Contiguous Clustering (CC)

Our first implemented clustering strategy assigns an equally-sized contiguous cluster of
tasks to each worker. Given a set of workers W = {w0, w1, ...wn−1} and a set of tasks
T = {t0, t1, ..., tm−1} each worker wi is assigned a cluster of tasks ranging from task
(i× m

n) to task (((i+ 1)× m
n)− 1), where m

n represents the integer division of m by n.

Situations may arise where the size of T is not a multiple of the size of W , in other
words R = m mod n 6= 0 . To cope with these situations, workers {w0, ..., wR−1} are
assigned one extra task for execution.

Figure 3.5 illustrates the worker-tasks assignment when employing contiguous clus-
tering with 14 tasks and 4 workers. The rationale behind this strategy is twofold: 1)
introduce minimal overhead during scheduling, 2) exploit spatial locality between task
executions when contiguous tasks operate over contiguous data. The distributions we
implemented for the studied problems guarantee that, whenever possible (line transi-
tions in matrices pose exceptions), sequentially ordered partitions of a given domain
contain contiguous data.

3.2.2 Sibling Round-Robin (SRR) Clustering

Seeking to tackle more traits of cache hierarchies, we devised the Sibling Round-Robin
(SRR) clustering strategy. Whereas contiguous clustering is driven solely by the total
number of workers, which in our implementation by default equals the number of cores,
SRR clustering takes into consideration how these are distributed across the memory
hierarchy, more specifically, how these share the Last Level Cache(s) (LLC).

Consider a machine with two CPUs, illustrated in Figure 3.6, each CPU features 4
cores and its own L3 cache, which is also the LLC. If two or more workers run in cores
sharing data, the number of LLC misses decrements, reducing the number of accesses
to main memory. Once again, the matrix multiplication example is paradigmatic, as
multiple workingsets share blocks of both input matrices. Consider that the partition
algorithm iteratively combines each block of matrix A to its counterparts in matrix B,

37

3. HIERARCHICAL DOMAIN DECOMPOSITION 3.2. Scheduling

L3	

L2	 L2	

L1	 L1	 L1	 L1	

C0	 C1	 C2	 C3	

L3	

L2	 L2	

L1	 L1	 L1	 L1	

C4	 C5	 C6	 C7	

CPU 0 CPU 1

Figure 3.6: Example Cache Hierarchy

spawning a sequence of working sets with the following pattern:

(A1, B1), (A1, B2), . . . , (A1, Bp), (A2, Bp+1), (A2, Bp+2), . . . , (A2, B2∗p) . . .

whereAi andBi denote blocks of both matrices according to the layout depicted in Figure
3.4, and p corresponds to the number of blocks from B with which a block of A has to
be combined. Revisiting the example of Figure 3.4, if the working sets comprising blocks
(A1, B1), (A1, B2) and (A1, B3) are assigned to three different workers running on sibling
cores that share the same LLC cache, the number of LLC misses generated by accesses to
block A1 will be limited to the number of cache lines the block spans.

From the choice of having the number of workers match the number of cores fol-

lows that the set of workers W has the same cardinality as the set of cores Q =
n−1⋃
i=0

Qi,

where each set Qi represents a set of cores sharing a LLC. Hence W can be defined as

W =
n−1⋃
i=0

Wi, where each set Wi has the same cardinality as Qi. We will assume that the

cardinality |Qi| of every subset Qi ⊂ Q is the same.

The assignment of tasks to workers is composed of two distinct assignment levels:
Outer-cluster-assignment, the assignment of clusters to sets of workers; and Inner-cluster-
assignment, the assignment of tasks to workers inside a cluster.

Given a set of tasks T with cardinality |T |, the set will be clustered into clusters of
N = sizeLLC/sizeTCL tasks, producing a set of clusters C = {c0, c1, ..., ck−1}, where each
cluster will be assigned to a single set of workers. Each set of workers Wi ⊂ W =

{W0,W1, . . . ,Wn−1} will be responsible for executing a set of task clusters Ci ⊂ C such
that

Ci = {cj ∈ C|j mod n = i ∧ j < k − k mod n}

38

3. HIERARCHICAL DOMAIN DECOMPOSITION 3.2. Scheduling

Cluster	 0	

Fits LLC

Cluster	 1	 Cluster	 2	 Regular	 Clusters	 …	 Cluster	 3	

Worker Group
0

Worker Group
1

Worker Group
2

Assigned to

CC	 Cluster	

Worker Group
3

Figure 3.7: Task Clusters

t0	 t1	 t2	 t3	 t4	 t5	 t6	 t7	 t8	 t9	 t10	 t11	 t12	 t13	 t14	 t15	

Cluster 1 Cluster 2

Workers W0	 W1	 W2	 W3	 W4	 W5	 W6	 W7	

Tasks

Figure 3.8: Sibling Round-Robin Clustering: Worker-Tasks Mapping

Since the number of workingsets that fit the LLC may not be a multiple of the number
of cores sharing it, in order to prevent an uneven assignment of tasks to workers, the
size N of the clusters is adjusted to N = sizeLLC

sizeTCL
+ (QLLC − (sizeLLC

sizeTCL
mod QLLC)) tasks,

where QLLC denotes the number of cores that share the LLC. This adjusts the considered
number of working sets per LLC to the closest multiple of QLLC , greater than or equal to
the number of workings sets that actually fit the LLC.

Figure 3.7 illustrates a clustered set of tasks for a machine with 4 groups of sibling
cores sharing 4 different LLCs, along with the assignment of these to the worker groups.
Note the additional cluster named CC Cluster depicted in the figure. This cluster has size
equal to N × (|T | mod (N × n)) + |T | mod N tasks and is composed of the tasks that
could not form a cluster (|T | mod N) plus the clusters that could not be evenly assigned
to the worker groups (N × (|T | mod (N × n))). This prevents an excessively uneven
assignment of tasks to workers. The name of the cluster comes from the scheduling
strategy employed to assign its tasks to the workers, which is the CC clustering strategy
of Subsection 3.2.1.

The Inner-task-assignment of a cluster is performed in a round-robin fashion among
the group of workers (who are siblings among themselves) operating over the cluster,
which gives rise to the name of this strategy. Each worker wi on the worker group W ′ =
{w0, w1, ..., wn−1} that was assigned the cluster of tasks T = {t0, t1, ..., tk−1} will execute
the subset of T containing all tasks tj such that j mod n = i. Figure 3.8 illustrates the
inner-cluster-assignment of two clusters to two groups of workers.

The step across the tasks array that is performed by each worker is not regular, a
worker requires two loops to iterate over the whole set of tasks assigned to it, an outer

39

3. HIERARCHICAL DOMAIN DECOMPOSITION 3.3. On the Affinity between Workers and Cores

loop performs the outer-cluster-level iteration while an inner loop performs the inner-
cluster-level iteration. From this results that the SRR clustering strategy introduces addi-
tional scheduling-overhead when compared to contiguous clustering, since more control
variables and conditional statements are required to implement the nested loop.

3.3 On the Affinity between Workers and Cores

Another important aspect to explore when performing hierarchical optimizations per-
tains to the affinity between workers and processors’ cores. This is particularly important
when employing the SRR clustering strategy, which assumes that the workers operating
over a given task cluster execute on cores sharing a LLC. Therefore, it is important to map
the affinity between workers and cores according to the assumptions of the employed
clustering strategy. Note that this affinity mapping makes sense mostly on HPC, where
the entirety of the machine’s resources are available for use by the problem application
alone.

For this purpose, we devise a strategy that: enforces the assumptions of SRR cluster-
ing, provides workers with some degree of movement between cores and maximizes the
exploitation of previously built caches. The strategy assumes that the machine’s under-
lying cache hierarchy is strictly inclusive, which is the case in most modern CPU architec-
tures. In strictly inclusive caches, the content of a given cache level L is also contained in
every cache level L′ > L. Exclusive caches, on the other hand, guarantee that data is in
at most one of the L1, L2 and L3 caches, never in all at the same time.

To help understand the problems to handle and the rationale behind our strategy,
consider the situation depicted in Figure 3.9. We can observe that every worker already
has its current workingset in the L1 cache of the core where it is currently executing. If
for some reason the operating system reschedules workerw3 to core c4, two performance-
wise negative effects result: 1) w3 will experience full cache misses at every cache level,
2) worker w4’s cache in core c4 will be overwritten and will not be available for w4 if it
resumes execution on the same core.

The aforementioned problems could have been mitigated if workerw3 had been resched-
uled onto a core which shared cache level(s) with the core where it was executing, namely
cores 0, 1 and 2 (which are siblings of core 3) since subsequent memory accesses by w3

would initially be misses on L1, but could possibly be hits on L2, experiencing a faster
memory access than w3 would otherwise experience on core c4, since data would have
to be fetched all the way through the cache hierarchy from the RAM memory. One may
note that this option would also overwrite the data on the L1 cache of the core onto which
w3 would be scheduled, say core c2, trashing the workingset of worker w3. Although this
is true, if we also guarantee that w3 may only be afterwards scheduled onto cores 0, 1, 2
or 3, worker w3 will also benefit from the previously mentioned higher cache level hits.

On the other side of the coin, situations may arise where a core is free for a worker w
to execute, but w will not be scheduled onto the core because it has no affinity to it.

40

3. HIERARCHICAL DOMAIN DECOMPOSITION 3.3. On the Affinity between Workers and Cores

W0	
Data	

W1	
Data	

W2	
Data	

W3	
Data	

C0	 C1	 C2	 C3	

W4	
Data	

W5	
Data	

W6	
Data	

W7	
Data	

C4	 C5	 C6	 C7	

CPU 0 CPU 1

W0 W1 W2 W3 W4 W5 W6 W7

W0	
Data	

W1	
Data	

W2	
Data	

W3	
Data	

W4	
Data	

W5	
Data	

W6	
Data	

W7	
Data	

W0	
Data	

W1	
Data	

W2	
Data	

W3	
Data	

W4	
Data	

W5	
Data	

W6	
Data	

W7	
Data	 L3

Cache

L2
Cache

L1
Cache

OS Scheduling

Figure 3.9: Operative System rescheduling a worker

3.3.1 Lowest-Level-Shared-Cache Affinity Mapping

Our affinity mapping strategy builds upon groups of cores sharing cache levels, more
specifically, the lowest level shared caches. Given the rationale presented in the previous
section, having the affinity of w3 set to cores {0, 1, 2, 3} opens up the possibility that its
current workingset still resides at the L2 or L3 cache once w3 resumes execution. Setting
the affinity of w3 to cores {2, 3} will force data to be first searched in the L2 cache, and
only then in the L3 cache if it was not found in the L2 cache, providing a possibly faster
memory access while bringing w3’s workingset to the L1 cache.

The set of all the machine’s cores Q can be obtained by the union of the sets of cores

sharing each lowest level shared cache, hence Q =
n−1⋃
i=0

Qi where each set Qi has cardinal-

ity s and represents a set of sibling cores sharing a lowest level shared cache. Given the
set of workers W = {w0, ..., wm−1}, the set of cores Q′ to which a worker wj has affinity
is given by a function α which can be defined as α(wj) = Q(j/s), where the operator "/"
denotes the integer division.

Figure 3.10 depicts this affinity mapping strategy for 8 workers on a 8-core machine,
with the L2 cache being the lowest shared cache, shared by two cores each.

41

3. HIERARCHICAL DOMAIN DECOMPOSITION 3.4. Concluding Remarks

L2	 L2	

C0	 C1	 C2	 C3	

L2	 L2	

C4	 C5	 C6	 C7	

Lowest
Shared
Cache …
Cores

Workers W0	 W1	 W2	 W3	 W4	 W5	 W6	 W7	

Affinity

Figure 3.10: Lowest Shared Cache Affinity Mapping

3.4 Concluding Remarks

In this chapter we introduced data-size driven domain decomposition, presenting the
challenges involved and introducing the Distribution interface that regulates the defi-
nition of domain decomposition algorithms, which have to be provided by the program-
mer. Furthermore, we presented an iterative algorithm that estimates the appropriate
workingset size for tasks, based on the TCL of the underlying machine and an estima-
tion function ϕ whose defition implies a trade-off between performance, accurracy and
wasted cache space.

Subsequently, we proposed different scheduling strategies are presented to map a
number of parallel tasks greater than the number of CPU cores onto these cores. These
scheduling strategies present an additional trade-off between execution overhead and
cache hierarchy exploitation.

Finally, we explained the importance of the affinity between worker threads and CPU
cores in the hierarchical decomposition context and presented an affinity mapping strat-
egy that attempts to provide a faster memory access in HPC environments.

On the following chapter we will describe how all these proposals have been con-
cretized on top of the Elina Java parallel programming framework.

42

4
Implementation in the Elina

Framework

The implementation of the proposals elaborated in the scope of this dissertation was
performed on top of the Elina Framework [SMP12], a middleware designed with the
goal of efficiently supporting the execution of Java applications across heterogeneous
execution environments, namely heterogeneous clusters and nodes.

The main reason for choosing the Elina Framework as the basis for the implementa-
tion of our vertical decomposition strategies pertains to the platform’s modularity. Elina’s
architecture contains a layer of abstraction that allows different modules to be plugged
into the middleware on its initialization, adapting its behaviour to the specifies of the
application and/or of the underlying target hardware.

The possibility of altering Elina’s execution workflow through the insertion of plug-
gable modules allowed us to experiment different decomposition strategies, without al-
tering the applications’ source code.

4.1 The Elina Framework

Application development in Elina is centred on the concept of active objects [LS96] (re-
ferred as services in Elina), which provide a high-level flexible model for programming
parallel systems. Once defined, services are deployed according to a configurable pre-
defined distribution policy across the nodes where the computations will take place. It
is possible to explicitly compose services at language level, allowing the creation of new
services that inherit the interfaces of those composing them.

43

4. IMPLEMENTATION IN THE ELINA FRAMEWORK 4.1. The Elina Framework

4.1.1 Parallel Programming in Elina

Elina provides two different ways for programmers to express parallelism. A service can
have its interface’s methods annotated as tasks through the @Task annotation, inform-
ing the compiler that the method executes concurrently within a place. Alternatively,
programmers may choose to express parallelism through the explicit creation and sub-
mission of Elina tasks, via the framework’s API. Tasks in Elina may be distinguished into
regular and SOMD tasks, being the latter data-parallel tasks whose execution follows the
SOMD model to be described in the following subsection.

Task execution in Elina is asynchronous by default. The submission process returns a
future object, which can latter be used for data-centric synchronization. The realization of
this asynchronous invocation mechanism is delegated to the annotation processor, which
instrumentates the method to introduce implicit futures.

4.1.1.1 SOMD: Single Operation Multiple Data

The Single Operation Multiple Data (SOMD) [MP12] is an execution model that applies a
MapReduce-like approach to the execution of subroutines (methods in Java terminology).
The execution of a method in this context is carried out by multiple parallel execution
flows, each operating over a subset of the methods input data. Accordingly, the method’s
original input is partitioned into several subsets, which are then used as the input for the
same number of instances of the method (Method Instances, MIs from now on). Each
MI executes the method over its respective input, computing partial results which may
afterwards require a Reduction operation to produce the result for the initial invocation.
Figure 4.1 illustrates the SOMD execution model, from the original method’s invocation
to the obtainal of the method’s result.

A method defined as a task can be provided with additional annotations to employ a
SOMD execution model. Elina exposes the SOMD model to the programmer as a three
stage process, the description of each stage follows:

1. Distributing and Combining - input arguments are partitioned to produce a collec-
tion of partitions of the arguments. These partitions are then combined (one from
each input argument) to produce MIs’ workingsets;

2. Mapping - applies the annotated method concurrently over each workingset;

3. Reducing - results produced by the mapping stage are reduced to produce the orig-
inal method invocation’s result.

The Distributing and Combining and the Mapping stages are mandatory when employing
a SOMD execution. In turn, the Reduction stage is optional, existing only when the reduc-
tion of partial results into a single result is required by the problem. The specification
of the Distributing stage is independent of the Combining stage which, unless specified,
is assumed to be a 1-1 mapping between the partitions of the different input arguments.

44

4. IMPLEMENTATION IN THE ELINA FRAMEWORK 4.1. The Elina Framework

Callee

Partition stage Reduction stage

Place result
in future

Final result

Caller
Invocation

Return future

Map stage

Wait on future

Figure 4.1: The SOMD Execution Model

1 @Reduce(MatrixBlockSumReduction)
2 @Combine(class = MatrixBlockCombination , parameters="A,B")
3 int [][] matmult(@Dist(class="Index2DBlockDist") int [][] A, @Dist(class="Index2DBlockDist

") int [][] B) {
4 int [][] result = new int[A.length][B[0]. length];

6 for(int i=0; i<A.length; i++)
7 for(int j=0; j<B[0]. length; j++) {
8 result[i][j] = 0;
9 for(int k=0; k<A[0]. length; k++)

10 result[i][j] += A[i][k] * B[k][j];
11 }
12 return result;
13 }

Listing 9: Matrix Multiplication Example

When such does not hold, the programmer is required to provide a concrete specification
for the Combining stage.

Listing 9 presents the SOMD annotated code of the matrix multiplication problem.
Note that the code itself contains no references to the parallelism available on the target
machine’s hardware, let alone the cache hierarchy.

Matrices A and B are annotated as subject to Index2DBlockDist distributions (line 3).
The Index2DBlockDist distribution partitions the input matrix into equally sized blocks,
as depicted in Figure 3.4. The produced partitions of these two matrices are then com-
bined through a MatrixBlockCombination combination (line 2), which combines the par-
titions of matrices A and B according to pattern depicted in the result matrix of Figure 3.4.
Finally, the partial results from every MI are reduced through a MatrixBlockSumReduction,
which sums the values of partial results associated with a same block in the final result
matrix, as illustrated, once more, in the result matrix of Figure 3.4

4.1.2 Runtime System

Elina’s system architecture follows a layered model composed of several layers, as de-
picted in Figure 4.2. Applications execute on top of the Elina platform by requesting
services from the Interface Layer, which serves as the front door for applications to access
Elina’s functionalities.

The Core Layer holds all the technology independent logic of the middleware, in what

45

4. IMPLEMENTATION IN THE ELINA FRAMEWORK 4.1. The Elina Framework

Core Layer

TAL Layer
(instance
specific)

Interface Layer

TAL Layer
(instance
specific)

TAL Layer
(instance
specific)

Application Application Application Application

TAL Layer
(instance
specific)

TAL Layer
(system wide)

JVM

Node

JVM

Node

JVM

Node

JVM

Node

Figure 4.2: The Elina Framework Architecture, taken from [SMP12]

concerns, application deployment, work scheduling, data distribution, communication,
among others. The Technology Abstraction Layer (TAL) modules are responsible for im-
plementing a set of Java interfaces that determine the agreement between Elina and the
technologies to be used. This is an adapter layer that provides the means to adapt the
framework according to the target execution environment.

The TAL layer modules can be separated into two major categories: modules that
affect the whole system (system-wide), for instance the communication protocol between
nodes; and modules with a local system impact (instance-specific), which include the
modules for decomposition and affinity mapping, among others.

4.1.3 Elina Initialization

On Elina’s deployment, several initialization steps are performed. These include loading
the configurable adapters to instantiate the TAL layer, and initializing the modules of the
Core layer, which require the subsequent initialization of the TAL layer adapters they
require. In the particular context of our work, we highlight the launching of the pool of
worker threads and the mapping of the affinity of these accordingly. Figure 4.3 depicts
the initialization workflow of Elina’s relevant modules in the vertical decomposition con-
text.

46

4. IMPLEMENTATION IN THE ELINA FRAMEWORK 4.1. The Elina Framework

Adapter
Loading

Worker
Pool

Deployment

Affinity
Mapping

Core and TAL layers initialization

Figure 4.3: Elina Initialization Workflow

4.1.4 Elina Execution Workflow

The parallel execution of Elina tasks comprises several stages, from the actual invocation
of the annotated method (or with the explicit submission of the task) to the computation
of the final result. These stages are depicted in Figure 4.4.

Service Decomposi
tion

Combinatio
n Scheduling Reduction WSS

Estimation

Method invocation
Execute

Execute

Execute	

…

…

Figure 4.4: Elina Execution Workflow

Once a SOMD annotated method is invoked, a Workingset Size Estimation stage deter-
mines into how many partitions should the method´s input arguments be decomposed.
The Decomposition stage then takes place, decomposing each input argument by applying
the associated distribution according to the previously determined number of partitions.

The next stage applies the optional Combination step to the previous decomposition
of the input arguments, to produce the workingsets for parallel tasks to execute. The
Scheduling stage follows, assigning to workers a number of tasks for execution. All stages
up to this point execute sequentially.

Workers then enter a parallel Execution stage, where these execute the tasks assigned
to them, executing the original problem’s operation over each workingset.

Once the result of every execution of the problem’s operation over the workingsets is
produced, if previously defined, a Reduction stage occurs that produces the result of the
execution of the problem’s operation over the original input arguments.

47

4. IMPLEMENTATION IN THE ELINA FRAMEWORK 4.2. Vertical Decomposition in Elina

1 i n t e r f a c e HierarchyReadDriver {

3 /**
4 * Returns a HierarchyLevel object representative of the root of the memory hierarchy.
5 * @return Hierarchy root
6 */
7 HierarchyLevel getHierarchyRoot ();

9 }

Listing 10: The HierarchyReadDriver interface

4.2 Vertical Decomposition in Elina

Given the aforementioned modularity of the Elina Framework, most of the work de-
veloped during the duration of this thesis consisted on developing new adapters that
implement the strategies discussed in Chapter 3.

Most adapters feature a debug counterpart, which contains control code that delimits
the execution time of different stages of the Elina workflow. This allowed us to perform
the breakdown of the total execution time of an application from the invocation of the
SOMD execution until the return of its result. This breakdown is important to help us
understand the impact that each stage has in the overall execution time, which helped us
understand when the loss of performance was due to sequential stages (decomposition,
combining, reduction) taking more time when employing a vertical decomposition.

4.2.1 New Adapter Types

Although some aspects of vertical decomposition were introduced into Elina through the
simple implementation of new adapters for existing behaviours, namely the decomposi-
tion stage, other behaviours and workflow stages had to be added into the middleware’s
core. This resulted in the introduction of new adapters into the TAL layer, as well as
modifications on the Core layer to support the additional logic involved.

4.2.1.1 Hierarchy Read Adapter

Since our approach revolves around optimizations based on the cache hierarchies, we
required a way for the middleware to somehow obtain the information representative of
the underlying machine’s hierarchy. This necessity led to the definition of a new inter-
face HierarchyReadDriver, which is implemented by classes that produce the hierarchy
information for the middleware to use. The interface is presented in Listing 10.

We may observe that the method getHierarchyRoot in the HierarchyReadDriver inter-
face returns an object of type HierarchyLevel. This class is used to represent the hierarchy
information during runtime, and its relevant fields and methods are presented in Listing
11.

Although we have performed some experimentation on automatic hierarchy inferral,

48

4. IMPLEMENTATION IN THE ELINA FRAMEWORK 4.2. Vertical Decomposition in Elina

1 c lass HierarchyLevel {
2 // Fields
3 ...
4 /**
5 * HierarchyLevel object representative of the child level of the current level.
6 */
7 p r i v a t e HierarchyLevel child;

9 // Methods
10 /**
11 * Returns an array of arrays containing the sibling cores sharing memory on the

current level.
12 * @return Array of arrays of sibling cores in the current level
13 */
14 p u b l i c i n t [][] getSiblings ();

16 /**
17 * Returns the size (in bytes) of the current memory level.
18 * @return Size (in bytes)
19 */
20 p u b l i c long getSize ();

22 /**
23 * Returns the size (in bytes) of a coherency line in the current memory level.
24 * @return Coherency line size (in bytes)
25 */
26 p u b l i c i n t getCacheLineSize ();

28 /**
29 * Returns the child level of the current memory level.
30 * @return Child level
31 */
32 p u b l i c HierarchyLevel getChildren ();

34 /**
35 * Returns the Nth descendant level of the current memory level.
36 * @param N number of the descendant level
37 * @return The Nth descendant level
38 */
39 p u b l i c HierarchyLevel getLevel(i n t N);

41 /**
42 * Returns the bottom -most shared memory level , starting on the current level.
43 * @return The Bottom -most shared memory level
44 */
45 p u b l i c HierarchyLevel getBottomUpFirstShared ();

Listing 11: The HierarchyLevel class

the support for different operating systems posed problems since no universal tool ex-
isted to obtain the hierarchy information. Nevertheless, in Debian environments (which
powered the machines where we performed our experimentations) we manually retrieved
this information from the files located in the /sys/devices/system/cpu/cpu* directories.
We ended up implementing an adapter HierarchyReadImpl that reads the hierarchy in-
formation from a local JSON file. These JSON files are composed of nested objects with
the following fields:

• size - size of the memory level (in bytes)

• cacheLineSize - size of a cache coherency line (in bytes). This field is present only
if the memory level represents a cache level

49

4. IMPLEMENTATION IN THE ELINA FRAMEWORK 4.2. Vertical Decomposition in Elina

1 {
2 "siblings": [[0,2,4,6],[1,3,5,7]],
3 "size": 6291456 ,
4 "cacheLineSize": 64,
5 "child": {
6 "siblings": [[0] ,[1] ,[2] ,[3] ,[4] ,[5] ,[6] ,[7]] ,
7 "size": 524288 ,
8 "cacheLineSize": 64,
9 "child": {

10 "siblings": [[0] ,[1] ,[2] ,[3] ,[4] ,[5] ,[6] ,[7]] ,
11 "size": 65536,
12 "cacheLineSize": 64,
13 "child": n u l l
14 }
15 }
16 }

Listing 12: 8-core Machine Hierarchy Representation

• siblings - array of arrays of sibling cores sharing each copy of the memory level

• child - object containing the memory level information of the child level (can be
null if the current level is the bottom-most in the hierarchy)

Concrete examples of these JSON files are presented in Listings 12 and 13, which model,
respectively: a 8-core machine with dedicated L1 and L2 caches and two L3 caches shared
by 4 cores each; and a 64-core machine with dedicated L1 caches, thirty two L2 caches
shared by 2 cores each and eight L3 caches shared by 8 cores each. Note once more
that the definition of the HierarchyReadDriver interface allows for multiple definitions
of the adapter. The implementation of the getHierarchyRoot method can resort to any
means to build the HierarchyLevel object, including JNI calls to tools that retrieve CPU
information.

4.2.1.2 Workingset Size estimation Driver

Chapter 3 presented the problem of data-size driven decomposition, which we aimed to
perform for a data size dependant on the target machine’s TCL size. The original adapter
suite of Elina contained only horizontal decomposition adapters, which decomposed the
applications’ input arguments into as many partitions as the number of available work-
ers.

In the vertical decomposition context, it is necessary to determine the number of par-
titions into which each input argument should be split so that the cummulative size of
a partition from each argument fits the TCL. The algorithm that determines this number
of partitions was presented in Chapter 3, more concretly in Algorithm 1. To this end,
we defined a new adapter type, the Workingset Size Estimation adapter and the associated
interface WSEstimationDriver, presented in Listing 14.

We defined a simple realization of this interface that implements Algorithm 1, the
IterativeWSEstimator class.

50

4. IMPLEMENTATION IN THE ELINA FRAMEWORK 4.2. Vertical Decomposition in Elina

1 {
2 "siblings": [[0,1,2,3,4,5,6,7],[8,9,10,11,12,13,14,15],
3 [16,17 ,18,19 ,20,21 ,22 ,23] ,[24 ,25,26 ,27,28 ,29,30 ,31] ,
4 [32,33 ,34,35 ,36,37 ,38 ,39] ,[40 ,41,42 ,43,44 ,45,46 ,47] ,
5 [48 ,49 ,50 ,51 ,52 ,53 ,54 ,55] ,[56 ,57 ,58 ,59 ,60 ,61 ,62 ,63]] ,
6 "size": 6291456 ,
7 "cacheLineSize": 64,
8 "child": {
9 "siblings": [[0 ,1] ,[2 ,3] ,[4 ,5] ,[6 ,7] ,[8 ,9] ,[10 ,11] ,[12 ,13] ,[14 ,15] ,

10 [16 ,17] ,[18 ,19] ,[20 ,21] ,[22 ,23] ,[24 ,25] ,[26 ,27] ,[28 ,29] ,
11 [30 ,31] ,[32 ,33] ,[34 ,35] ,[36 ,37] ,[38 ,39] ,[40 ,41] ,[42 ,43] ,
12 [44 ,45] ,[46 ,47] ,[48 ,49] ,[50 ,51] ,[52 ,53] ,[54 ,55] ,[56 ,57] ,
13 [58 ,59] ,[60 ,61] ,[62 ,63]] ,
14 "size": 2097152 ,
15 "cacheLineSize": 64,
16 "child": {
17 "siblings":

[[0] ,[1] ,[2] ,[3] ,[4] ,[5] ,[6] ,[7] ,[8] ,[9] ,[10] ,[11] ,[12] ,[13] ,[14] ,[15] ,
18 [16] ,[17] ,[18] ,[19] ,[20] ,[21] ,[22] ,[23] ,[24] ,[25] ,[26] ,[27] ,[28] ,[29] ,
19 [30] ,[31] ,[32] ,[33] ,[34] ,[35] ,[36] ,[37] ,[38] ,[39] ,[40] ,[41] ,[42] ,[43] ,
20 [44] ,[45] ,[46] ,[47] ,[48] ,[49] ,[50] ,[51] ,[52] ,[53] ,[54] ,[55] ,[56] ,[57] ,
21 [58] ,[59] ,[60] ,[61] ,[62] ,[63]] ,
22 "size": 16384,
23 "cacheLineSize": 64,
24 "child": n u l l
25 }
26 }
27 }

Listing 13: 64-core Machine Hierarchy Representation

1 i n t e r f a c e WSEstimationDriver {

3 /**
4 * Returns the appropriate number of partitions for the provided arguments.
5 * @return the number of partitions
6 */
7 i n t getNparts(Distribution <?>[] distributions , HierarchyLevel hierarchy , SOMDTask <?>

task) throws IllegalArgumentException;

9 /**
10 * Returns the TCL size used during the algorithm ’s decisions.
11 * @return the TCL size used
12 */
13 i n t getTCLSize ();

15 }

Listing 14: The WSEstimationDriver interface

51

4. IMPLEMENTATION IN THE ELINA FRAMEWORK 4.2. Vertical Decomposition in Elina

1 i n t e r f a c e AffinityMappingDriver {

3 /**
4 * Sets the desired affinities for the worker pool managed by taskManager.
5 * @param taskManager TaskExecutorDriver object responsible for the worker pool
6 */
7 void setAffinities(TaskExecutorDriver taskManager);

9 }

Listing 15: The AffinityMappingDriver interface

4.2.1.3 Affinity Mapping Driver

Elina’s initial version performed only horizontal domain decomposition and performed
no hierarchy-aware optimizations. In the presence of horizontal decomposition, the affin-
ity between workers and CPU cores is not as relevant as in vertical decomposition, since
workingsets likely exceed the cache size by several orders of magnitude. Consequently,
workers are expected to overlap each other’s space in shared caches, causing the map-
ping to provide minimal benefits or no benefits at all.

Since we are studying vertical decomposition, the affinity between workers and CPU
cores takes a major toll, and, hence, we wanted to study its real impact in our approach.
To introduce this feature in Elina we defined the AffinityMappingDriver interface, which
regulates the implementation of adapters responsible for mapping worker pools onto the
underlying machine’s CPU cores. The interface is presented in Listing 15.

Two realizations of the AffinityMappingDriver were implemented. The first one im-
poses no restrictions on the affinity (AllAffinityMapper), and exists only to provide a
AffinityMappingDriver for horizontal decomposition. The second employs the strategy
discussed in Subsection 3.3.1 (JStackParsingAffinityMapper), resorting to the external
commands jstack (from which its name derives) and taskset to, respectively, obtain
the workers’ correspondence to OS threads and set the affinity of these according to the
underlying machine’s hierarchy. A more detailed description of these two commands
follows:

• jstack [option] pid - prints the Java stack trace of the Java threads associated with
the Java process with pid pid. The trace includes the mapping between Java threads
and OS threads.

• taskset [options] -p [mask] pid - sets the affinity of the process/thread identi-
fied by pid to the set of cores represented by the bitmask mask, where the nth bit
(counted from the right to the left) being at 1 enables affinity to the core n− 1. The
bitmask is provided in hexadecimal.

Note that while the jstack tool is cross-platform, the taskset command exists only in
(most) Linux distributions, hence this adapter can only be used in such systems.

We have also implemented the debug counterparts of these adapters, respectively, the
DebugAllAffinityMapper and DebugJStackParsingAffinityMapper.

52

4. IMPLEMENTATION IN THE ELINA FRAMEWORK 4.2. Vertical Decomposition in Elina

1 i n t e r f a c e DomainDecompositionDriver {

3 /**
4 * Decomposes the domains handled by the distributions stored in distr.
5 * @param distr array holding the distributions
6 * @param combin combination to be applied to the partitions returned by the

distributions
7 * @param task task that will be executed
8 * @param nWorkers number of workers that will execute the task
9 * @return Array of workingsets

10 */
11 <R> Object [][] decompose(Distribution <?>[] distr , Combination <?> combin , SOMDTask <R>

task , i n t nWorkers);

13 }

Listing 16: The DomainDecompositionDriver interface

4.2.2 New Adapter Implementations

The Decomposition and Scheduling stages were originally merged together in a single ex-
ecution stage, which performed both steps using a single adapter. This was reasonable
in the horizontal decomposition context since each worker computed a single task over a
single workingset.

In this vertical decomposition context we felt the need to have these two stages dis-
sociated. This dissociation would allow us to employ different scheduling strategies
when assigning the workingsets produced during the decomposition stage to the ex-
isting workers. These strategies correspond to the CC Clustering and the SRR Clustering
strategies presented in Chapter 3.

This dissociation resulted in the definition of two new adapters types, responsible for
the Decomposition and Scheduling stages. Nevertheless, these two stages already existed
in some way in Elina, hence we decided to consider these as new implementations for
existing adapter types.

4.2.2.1 Domain Decomposition Driver

The interface representative of the decomposition adapters, DomainDecompositionDriver,
is presented in Listing 16. A single method decompose exists in the interface. The distribu-
tions representative of the datasets to decompose are passed as arguments to the method,
along with the SOMDTask to execute and the number nWorkers of workers that will perform
the computation. The SOMDTask is required by the decomposition in order to deal with dy-
namic data allocation, which will be presented in Subsection 4.2.3. Although the number
of available workers is globally accessible in the middleware, one may be interested in
using only a subset of the pool of workers when employing a given computation, hence
the number of workers to use is supplied as a parameter.

Two decomposition adapters were implemented, one that performs horizontal de-
composition (HorizontalDomainDecomposer), and one that employs a vertical decompo-
sition (VerticalDomainDecomposer). The implementation of these two adapters is almost

53

4. IMPLEMENTATION IN THE ELINA FRAMEWORK 4.2. Vertical Decomposition in Elina

1 i n t e r f a c e SchedulingDriver <R> {

3 /**
4 * Schedules the workingsets for the task to be executed among the
5 * workers available on the middleware ’s worker pool.
6 * @param task task to be executed
7 * @param partitions partitions of the different input arguments
8 * @param red reduction to be applied to the partial results produced
9 * @param nWorkers number of workers that will execute

10 * @return Future for access to the final result once it is produced
11 */
12 IFuture <R> schedule(SOMDTask <R> task , Object [][] workingsets ,
13 Reduction <R> red , i n t nWorkers);

15 }

Listing 17: The SchedulingDriver interface

identical, the only difference pertains to the determination of the number of partitions
nParts to apply to the provided distributions. The HorizontalDomainDecomposer simply
uses the value of nWorkers, whilst the VerticalDomainDecomposer resorts to the config-
ured WSEstimationDriver to determine the appropriate value of nParts.

The respective breakdown variants of these adapters were also implemented, namely
the DebugHorizontalDomainDecomposer and the DebugVerticalDomainDecomposer adapters.

4.2.2.2 Scheduling Driver

The interface representative of the scheduling adapters, SchedulingDriver, is presented
in Listing 17. In the adapters we devised, the method schedule launches a single task
per worker, which is responsible for distributing the workingsets according to the clus-
tering strategies presented in Section 3.2. The arguments passed to the method include
the SOMDTask to execute, the workingsets that will be used as the input for independant
executions of the task, the reduction to employ, the array where partial results will be
placed by workers, and the number of workers that will participate in the computation.

Two scheduling adapters were implemented, one that employs the contiguous clus-
tering strategy (ContiguousScheduler), and one that employs the sibling round-robin
clustering strategy (SiblingRoundRobinScheduler). The respective breakdown variants
of these adapters were also implemented, namely the DebugContiguousScheduler and
the DebugSiblingRoundRobinScheduler adapters.

4.2.3 Supporting Dynamic Memory Allocation

The programming example presented in Listing 9 has no mention to the memory occu-
pied by the matrix result, which is allocated during the task’s execution. This poses
a problem in the vertical decomposition context, since the estimation computed by the
WSEstimationDriver will assume that only the partitions of A and B will fill the TCL.

54

4. IMPLEMENTATION IN THE ELINA FRAMEWORK 4.2. Vertical Decomposition in Elina

We have solved this problem, but not at the language level. We defined a new distri-
bution DynamicIndex2DBlockDist that determines the amount of memory (in bytes) allo-
cated internally by the task, given a number of partitions nParts and the dimensions of
the matrices A and B. This distribution does not produce actual partitions of any domain,
serving solely as a mean for the WSEEstimationDriver to take into account the amount of
data allocated dynamically by the task, during the estimation of the workingset size.

Although we devised a strategy to account for dynamically allocated memory, during
the evaluation process of vertical decomposition we faced another problem. Due to the
high amount of tasks and the small granularity of these, workers spent most of their time
prompting the Java memory manager, in order to allocate the result matrix required by
each individual task. This led to a performance loss, due to the sequential bottleneck
imposed by the memory manager. This was particularly noticeable when we were ex-
perimenting on the 64-core machine, where 43 was the observable ceiling for the active
thread acount.

To cope with this problem, we decided to preallocate the result matrices, treating
these as input arguments and combining them with the partitions of the other input ar-
guments. This required the definition of even another distribution 2DBlockAllocator,
one that resorts to the DynamicIndex2DBlockDist distribution to both determine the size
and produce the partitions corresponding to the result matrices of each individual task.

Internally, the 2DBlockAllocator distribution performs a simulation to determine the
number of partitions that would be generated by the WSEEstimationDriver, according
to the previous strategy. Once this number of partitions is determined, the distribution
resorts to the distributions of A and B and the combination MatrixBlockCombination to
obtain the final pairings of partitions of A and B, in order to preallocate the respective
result matrix for each of these pairings.

This allowed us to assess the performance of vertical decomposition without the bot-
tleneck imposed by the memory manager. Alternatively, we could have used a Java Vir-
tual Machine with per thread memory management.

Once again, no annotation support has yet been implemented to express pre-allocations,
however a possible solution could be to introduce a new annotation @Alloc which has
two parameters: the class that performs the allocation (class) and the class that deter-
mines the size of the allocated data (dynamicDataSize), depending on the number of par-
titions into which A and B are partitioned. Since the size of the allocated matrix depends
on the partitions created by the distributions of A and B, these have to be provided to the
dynamicDataSize class. The compiler would then instrumentate the code to dynamically
allocate the matrix C at the beginning of the task’s execution. The previously presented
matrix multiplication example would then be implemented as shown in Listing 18.

55

4. IMPLEMENTATION IN THE ELINA FRAMEWORK 4.2. Vertical Decomposition in Elina

1 @Reduce(MatrixBlockSumReduction)
2 @Combine(class = MatrixBlockCombination , parameters="A,B")
3 int [][] matmult(@Dist(class="Index2DBlockDist") int [][] A, @Dist(class="Index2DBlockDist

") int [][] B, @Alloc(class="2DBlockAllocator", dynamicDataSize="
DynamicIndex2DBlockDist", params=A,B) int [][] C) {

5 for(int i=0; i<A.length; i++)
6 for(int j=0; j<B[0]. length; j++) {
7 C[i][j] = 0;
8 for(int k=0; k<A[0]. length; k++)
9 C[i][j] += A[i][k] * B[k][j];

10 }
11 return C;
12 }

Listing 18: Matrix Multiplication Example (Dynamic Memory Allocation Support)

4.2.4 Discussion

Elina proved itself as a useful framework for experimentation on data parallel computa-
tions. The framework’s modularity was of major importance to our work, since it allowed
us to experiment different execution configurations without altering a single line in most
applications’ source code. The exception was the matrix multiplication problem, which
required major source code modifications to accomodate dynamically allocated memory,
as previously presented and discussed.

The dissociation of the Decomposition and Scheduling stages, performed during the
period of this dissertation, contributed greatly to the framework’s modularity and ease
of modification when experimenting different distribution and scheduling techniques.

Although we wanted all our adapters to be cross-platform, this goal could not be
achieved due to the lack of cross-platform means to: obtain machine hierarchy informa-
tion, obtain the correspondence between Java threads and OS threads, map the affinity
between threads and CPU cores.

The next chapter will present a performance evaluation of this prototype implemen-
tation, with special focus on the gains obtained by our vertical decomposition strategies
when compared to the previously existing horizontal approach.

56

5
Experimental Evaluation

In this chapter we present the evaluation we performed of our vertical decomposition
approach, implemented on the Elina framework. We will present the methology we em-
ployed for the evaluation, the benchmarks we used to assess the performance of vertical
decomposition against horizontal decomposition, the test infrastructure that we used for
the evaluation and finally, the experimental results we obtained.

5.1 Methodology

Our evaluation encompassed several different aspects, which correspond to the multiple
aspects covered by our automated approach:

1. Efficiency

2. Performance portability

3. Ideal TCL size

4. Impact of the different clustering strategies

The evaluated benchmarks can be separated into two major categories: the ones that fea-
ture both spatial and temporal locality, in which we expect performance gains resulting
from vertical decomposition; and benchmarks featuring only spatial locality, where ver-
tical decomposition is expected to introduce overhead only. These benchmarks will be
presented with further details in Section 5.2

The efficiency of our approach was assessed through a comparative performance
analysis against the pre-existing horizontal work distribution featured in Elina. For each

57

5. EXPERIMENTAL EVALUATION 5.2. Benchmarks

benchmark (and respective classes) and runtime system configuration, we present the
speedup of the execution time of the vertical decomposition execution of the benchmark,
against the execution time of the horizontal decomposition execution of the same. The
execution time for both approaches is the average execution time of 50 runs. Elina’s
portable programming model and runtime system allowed us to use the same source
code in both settings. We simply deployed the runtime system with different instances
of several modules.

To assess performance’s portability, we performed our evaluation across different ma-
chines, featuring distinct cache hierarchies and a different number of CPU cores. This
permitted us to evaluate the aptness of our runtime system for differing architectures.
These machines will be presented in-depth in Section 5.3.

In order to determine the ideal TCL size for the computations and the appropriate
clustering strategy, the benchmarks were executed with different runtime system config-
urations. These configurations are characterized by the clustering strategy (Contiguous
Clustering or SRR Clustering) and the TCL size, which ranges from the size of the L1
cache to the size of the L3 cache on each machine.

5.2 Benchmarks

Matrix multiplication (MatMult), of the form C = A × B, features temporal locality be-
cause the lines ofA and the columns ofB are iterated several times during the algorithm’s
execution, hence having all the lines and columns of A and B in the cache avoids having
to re-fetch lines and columns that have previously been in the cache but had to be re-
moved to accommodate new data, hence improving the cache hit-ratio and consequently
reducing the algorithm’s execution time.

Matrix transpose (MatTrans) benefits from data locality due to the algorithm’s iter-
ation sequence across the result matrix AT and the granularity of data fetch from main
memory into the cache; if A is iterated across its lines, AT is forcibly iterated across its
columns. Thus, when accessing a position in a column ofAT , a cache line will be brought
into the cache and its remaining data will not be used to produce cache hits, unless the
iteration of the current line of A stalls and proceeds to the next, before space is made for
the new cache lines fetched along the iteration of the current column of AT . By divid-
ing the original transposal into smaller transposals whose working set size fits the cache,
the aforementioned stall and transition to the next line occurs, thereby exploiting cache
locality.

The problem sizes for MatMult and MatTrans are defined by single parameter that
represents the side length of the matrices involved (only square matrices are considered).

Gaussian Blur (GaussianBlur) blurs an image (represented as a matrix) by convolving
the image with a Gaussian Function. The benchmark receives three parameters: an image
M , an integer R (blur window radius) and a scalar σ. Since σ is used only to produce
the weights matrix of the Gaussian Function, which we precompute before the parallel

58

5. EXPERIMENTAL EVALUATION 5.3. Test Infrastructure

execution of the algorithm, we use the same value σ = 1.5 for all problem sizes. We
represent the problem sizes for this benchmark in the form S-R, where S represents the
side length of the image matrix and R is the aforementioned radius parameter. This
benchmark is a Stencil, therefore featuring temporal locality throughout its execution.

SAXPY and JavaGrande-Series are benchmarks that iterate sequentially over data
without revisiting previously accessed data, thereby not benefiting from temporal lo-
cality. SAXPY receives three arguments: arrays x and y, scalar α and computes for each
same position y = α × x + y. Similarly, JavaGrande-Series computes the first N Fourier
coefficients of the function f(x) = (x+ 1)x on the interval [0,2].

5.3 Test Infrastructure

All measurements were performed on three shared-memory systems running the Elina
framework. The label and specifications of these systems follows:

• System 1 (S1) - [8-core node (8 hardware threads)] 2 Quad-Core AMD Opteron
Processor 2376 with three cache levels: a 64KBytes L1 data cache per core, a unified
512KBytes L2 cache per core, and a unified 6MBytes L3 cache per processor

• System 2 (S2) - [4-core node (8 hardware threads)] 2 Dual-Core Intel(R) Xeon(R)
CPU X3450 hyperthreaded with three cache levels: a 32KBytes L1 data cache per
core (2 hardware threads), a unified 256KBytes L2 cache per core (2 hardware threads),
and a unified 8MBytes L3 cache

• System 3 (S3) - [64-core node (64 hardware threads)] 4 16-Core AMD Opteron Pro-
cessor 6272 with three cache levels: 16KBytes L1 data cache per core; a unified
2MBytes L2 cache per two cores, and one unified 6MBytes L3 cache per eight cores

Systems 1 and 2 are powered by Debian with Linux kernel version 2.6.26-2- amd64. Sys-
tem 3 is powered by Debian with Linux kernel version 3.2.0-0.bpo.4-amd64. The installed
Java platform is OpenJDK 7 (version 1.7.0 21).

Systems S1 and S2 are both 8-core machines, but feature different sharing configura-
tions at every cache level. The L1 and L2 cache levels are shared between two logic CPU
cores in S2 due to hyperthreading, whilst in S1 both levels are dedicated to a single CPU
core. Additionally, while a single L3 cache exists for the whole S1, two distinct L3 caches
exist for each processor in S2, shared by 4 cores each.

The configuration of system S3 is the most unique among the three systems. This
machine features 64 cores, which contrasts with the 8 cores (real or virtual) of the other
machines. Additionally, diversity of cache sharing by the cores exists among levels.

5.4 Vertical vs Horizontal Decomposition

An important aspect that we had in account during our evaluation of vertical decompo-
sition against horizontal decomposition, pertains to the elimination of uneven workload

59

5. EXPERIMENTAL EVALUATION 5.4. Vertical vs Horizontal Decomposition

M M T M M T

W0

W1

W7

…

W0

W1

W7

…

…

…

…

W3

…

…

Horizontal Vertical

Lots of tasks

Workingset

Figure 5.1: Horizontal vs Vertical decomposition: workingset granularity

situations. To understand the problem and the rationale behind the solution, consider the
horizontal and vertical block decomposition of the matrix transpose problem, depicted
in Figure 5.1. Let’s further assume that 8 workers are employed to perform the computa-
tion. The horizontal decomposition approach would divide M and MT into 9 blocks, which
is the first integer greater than 8 whose square root is an integer. Hence, each workingset
would be composed of 1 block of M and 1 block of MT , resulting in 9 workingsets. Schedul-
ing these 9 workingsets across the 8 workers would result in the depicted situation, where
worker w0 has one more task for execution than the other workers.

Now consider the vertical decomposition approach, where both matrices will be di-
vided into a number of blocks n such that: a block of M plus a MT fit the TCL, the square
root of n is an integer. For the sake of presentability, we present both matrices partitioned
into 36 blocks, though the number of blocks is expected to be a lot bigger. In the presented
scheduling, workers w0 to w3 receive one more workingset than the remaining workers,
similarly to the horizontal decomposition situation.

Although both situations have some workers have more workingsets for tasks to op-
erate upon than the others, the granularity of the additional workingset is a lot smaller
in the vertical decomposition context than in the horizontal one. This may cause the ex-
ecution time of the horizontal approach to take at least twice the time to execute than it

60

5. EXPERIMENTAL EVALUATION 5.4. Vertical vs Horizontal Decomposition

Benchmark Class S1 S2 S3

MatMult 1000 16.9884 7.9839 −
1500 89.794 37.0932 −
2000 233.0346 105.4666 211.8696
3000 − − 820.2287
4000 − − 1893.1196

MatTrans 3500 0.4624 0.1905 −
5000 1.1473 0.4417 0.7591
10000 5.8783 2.5946 4.4231
20000 − − 25.1872

GaussianBlur 1000-15 8.9130 3.3650 3.8498
1000-20 15.4344 5.9149 6.7924
1000-25 23.7354 8.9523 10.2454

SAXPY 1000000 0.0027 0.0013 0.0024
10000000 0.0244 0.0129 0.0213
100000000 0.2493 0.1157 0.1388

Series 10000 9.9905 5.4257 11.9705
100000 102.1343 56.6607 120.5451
1000000 1664.5894 889.6919 1843.2300

Table 5.1: Benchmarks sequential execution time (seconds)

would had the number of blocks been a multiple of the number of workers. The vertical
approach is less prone to these effects due to the small granularity of the workingsets.

To avoid these situations, which could lead us to wrong conclusions regarding the
performance of horizontal decomposition, we implemented new distributions that al-
ways partition the problem’s domain into a number of partitions multiple of the number
of workers. These distributions are used only by horizontal decomposition specific ver-
sions of the benchmarks.

Table 5.1 presents the sequential execution time for the evaluated benchmarks on all
systems. These values are useful as a reference for the following subsections, which
present the speedup results for the decomposition strategies relative to one another.

5.4.1 Matmult, Transpose, Gaussian Blur

Figures 5.2 through 5.18 present the results for the MatMult, MatTrans and GaussianBlur
benchmarks. Our initial intuition was that for problems benefiting from data locality, the
optimal size for a workingset would be the size of the L1 data cache. However, cache
hierarchies such as the one featured in S3 have an enormous discrepancy between the
size of the L1 caches and the remaining cache levels. This drove us to experiment TCL
sizes that do not correspond to the size of any real cache level. To this end we ranged
the considered TCL size from the size of the L1 cache to the size of the L3 cache, on each
machine. Note that the speedup values for GaussianBlur with TCL sizes smaller than the
size of a blur window are not present in the charts, since a blur window is the minimal
workingset size for an individual blur computation.

61

5. EXPERIMENTAL EVALUATION 5.4. Vertical vs Horizontal Decomposition

S1 S2 S3
Benchmark Class CC SRRC CC SRRC CC SRRC
MatMult 1000 128k 128k 64k 64k - -

1500 L1 128k 64k 64k - -
2000 128k L1 64k 64k 256k 256k
3000 - - - - 128k 128k
4000 - - - - 128k 128k

MatTrans 3500 256k 192k 128k 64k - -
5000 192k 192k 64k 128k 32k 128k
10000 256k 192k 64k 128k 192k 256k
20000 - - - - 256k 192k

GaussianBlur 1000-15 192k 128k 192k 192k 128k 128k
1000-20 192k L1 192k 192k L2 L2
1000-25 128k L1 L2 128k 192k 192k

Table 5.2: Best performance TCL size configurations

The results are very insightful, as the optimal TCL size lies somewhere between the
size of the L1 and L2 caches. This optimal TCL size however, varies according to the
benchmark and respective classes. Furthermore, this also varies depending on the em-
ployed clustering strategy. Table 5.2 presents the summary of the best TCL size for each
benchmark and respective classes, on each system, for each clustering strategy.

As a first remark in the analysis of the speedup results, we may observe that for
the majority of the benchmarks and respective problem sizes, there is at least one TCL
configuration for each system such that employing vertical decomposition provides a
speedup greater than 1 against horizontal decomposition. The exception to this is the
GaussianBlur benchmark on S3 with parameters 1000-15, where individual tasks operate
over a small amount of data and are distributed amongst a large pool of threads. In
these conditions, any performance gains attained during the execution (which is short in
duration) are easily suppressed by the overhead that results from vertical decomposition
and task scheduling.

The major speedups occur for MatMult in systems S1 and S2, where the speedups
reach the 700% and 600% mark respectively. In S3 the speedups are not so significant,
peaking slightly above 300% (which is good nonetheless). These speedups represent
major performance boosts, which were attained through hierarchy-based optimization
rather than extra parallelization.

The lower magnitude of the speedups in S3 are not exclusive to the MatMult bench-
mark. The speedups of the MatTrans benchmark reach the 600% and 500% mark in sys-
tems S1 and S2 respectively, but reach only the 140-160% mark in S3. The explanation
that we have found for this behaviour pertains to the characteristics of S3’s hardware:
the L2 and L3 caches are considerably large, thereby reducing the overall number of LLC
misses; also, the parallelism available on S3 is much higher than on S1 and S2, which
reduces the computational weight assigned to each worker.

62

5. EXPERIMENTAL EVALUATION 5.4. Vertical vs Horizontal Decomposition

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

7.0	

8.0	

L1	 	 128k	 192k	 256k	 L2	 L3	

MatMult	 1000	

MatMult	 1500	

MatMult	 2000	

Figure 5.2: S1 Speedups: MatMult (Contiguous Clustering)

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

7.0	

8.0	

9.0	

L1	 	 128k	 192k	 256k	 L2	 L3	

MatMult	 1000	

MatMult	 1500	

MatMult	 2000	

Figure 5.3: S1 Speedups: MatMult (SRR Clustering)

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

L1	 	 128k	 192k	 256k	 L2	 L3	

MatTrans	 3500	

MatTrans	 5000	

MatTrans	 10000	

Figure 5.4: S1 Speedups: MatTrans (Contiguous Clustering)

63

5. EXPERIMENTAL EVALUATION 5.4. Vertical vs Horizontal Decomposition

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

L1	 	 128k	 192k	 256k	 L2	 L3	

MatTrans	 3500	

MatTrans	 5000	

MatTrans	 10000	

Figure 5.5: S1 Speedups: MatTrans (SRR Clustering)

0.8	

0.9	

1.0	

1.1	

1.2	

1.3	

1.4	

1.5	

1.6	

L1	 	 128k	 192k	 256k	 L2	 L3	

GaussianBlur	 1000-‐15	

GaussianBlur	 1000-‐20	

GaussianBlur	 1000-‐25	

Figure 5.6: S1 Speedups: GaussianBlur (Contiguous Clustering)

0.8	

0.9	

1.0	

1.1	

1.2	

1.3	

1.4	

1.5	

1.6	

1.7	

1.8	

L1	 	 128k	 192k	 256k	 L2	 L3	

GaussianBlur	 1000-‐15	

GaussianBlur	 1000-‐20	

GaussianBlur	 1000-‐25	

Figure 5.7: S1 Speedups: GaussianBlur (SRR Clustering)

64

5. EXPERIMENTAL EVALUATION 5.4. Vertical vs Horizontal Decomposition

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

7.0	

L1	 	 64k	 128k	 192k	 256k	 L2	 L3	

MatMult	 1000	

MatMult	 1500	

MatMult	 2000	

Figure 5.8: S2 Speedups: MatMult (Contiguous Clustering)

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

7.0	

L1	 	 64k	 128k	 192k	 256k	 L2	 L3	

MatMult	 1000	

MatMult	 1500	

MatMult	 2000	

Figure 5.9: S2 Speedups: MatMult (SRR Clustering)

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

7.0	

L1	 	 64k	 128k	 192k	 256k	 L2	 L3	

MatTrans	 3500	

MatTrans	 5000	

MatTrans	 10000	

Figure 5.10: S2 Speedups: MatTrans (Contiguous Clustering)

65

5. EXPERIMENTAL EVALUATION 5.4. Vertical vs Horizontal Decomposition

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

7.0	

L1	 	 64k	 128k	 192k	 256k	 L2	 L3	

MatTrans	 3500	

MatTrans	 5000	

MatTrans	 10000	

Figure 5.11: S2 Speedups: MatTrans (SRR Clustering)

0.8	

0.9	

1.0	

1.1	

1.2	

1.3	

1.4	

L1	 	 64k	 128k	 192k	 256k	 L2	 L3	

GaussianBlur	 1000-‐15	

GaussianBlur	 1000-‐20	

GaussianBlur	 1000-‐25	

Figure 5.12: S2 Speedups: GaussianBlur (Contiguous Clustering)

0.8	

0.9	

1.0	

1.1	

1.2	

1.3	

1.4	

L1	 	 64k	 128k	 192k	 256k	 L2	 L3	

GaussianBlur	 1000-‐15	

GaussianBlur	 1000-‐20	

GaussianBlur	 1000-‐25	

Figure 5.13: S2 Speedups: GaussianBlur (SRR Clustering)

66

5. EXPERIMENTAL EVALUATION 5.4. Vertical vs Horizontal Decomposition

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

L1	 	 32k	 64k	 128k	 192k	 256k	 512k	 L2	 L3	

MatMult	 2000	

MatMult	 3000	

MatMult	 4000	

Figure 5.14: S3 Speedups: MatMult (Contiguous Clustering)

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

L1	 	 32k	 64k	 128k	 192k	 256k	 512k	 L2	 L3	

MatMult	 2000	

MatMult	 3000	

MatMult	 4000	

Figure 5.15: S3 Speedups: MatMult (SRR Clustering)

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

1.4	

1.6	

1.8	

L1	 	 32k	 64k	 128k	 192k	 256k	 512k	 L2	 L3	

MatTrans	 5000	

MatTrans	 10000	

MatTrans	 20000	

Figure 5.16: S3 Speedups: MatTrans (Contiguous Clustering)

67

5. EXPERIMENTAL EVALUATION 5.4. Vertical vs Horizontal Decomposition

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

1.4	

1.6	

L1	 	 32k	 64k	 128k	 192k	 256k	 512k	 L2	 L3	

MatTrans	 5000	

MatTrans	 10000	

MatTrans	 20000	

Figure 5.17: S3 Speedups: MatTrans (SRR Clustering)

0.6	

0.8	

1.0	

1.2	

1.4	

1.6	

1.8	

L1	 	 32k	 64k	 128k	 192k	 256k	 512k	 L2	 L3	

GaussianBlur	 1000-‐15	

GaussianBlur	 1000-‐20	

GaussianBlur	 1000-‐25	

Figure 5.18: S3 Speedups: GaussianBlur (Contiguous Clustering)

0.6	

0.8	

1.0	

1.2	

1.4	

1.6	

1.8	

2.0	

L1	 	 32k	 64k	 128k	 192k	 256k	 512k	 L2	 L3	

GaussianBlur	 1000-‐15	

GaussianBlur	 1000-‐20	

GaussianBlur	 1000-‐25	

Figure 5.19: S3 Speedups: GaussianBlur (SRR Clustering)

68

5. EXPERIMENTAL EVALUATION 5.4. Vertical vs Horizontal Decomposition

0.0	

10.0	

20.0	

30.0	

40.0	

50.0	

60.0	

1000	 1500	 2000	 3500	 5000	 10000	 1000-‐15	 1000-‐20	 1000-‐25	

MatMult	 MatTrans	 GaussianBlur	

Ver9cal	

Horizontal	

Figure 5.20: S1 Speedups: Horizontal and Vertical (Contiguous Clustering) vs Sequential

0.0	

10.0	

20.0	

30.0	

40.0	

50.0	

60.0	

1000	 1500	 2000	 3500	 5000	 10000	 1000-‐15	 1000-‐20	 1000-‐25	

MatMult	 MatTrans	 GaussianBlur	

Ver9cal	

Horizontal	

Figure 5.21: S1 Speedups: Horizontal and Vertical (SRR Clustering) vs Sequential

Regarding the GaussianBlur benchmark, in general, the results are not as favorable
as in the other benchmarks. In all the evaluated systems, the peak speedups for the
major classes of the benchmark reside between the 130% and 190% marks. The reason for
these results is related to the irregular computational weight of the partitions generated;
some of the generated partitions contain the borders (corner cases) of the input matrices,
which contain additional elements to be computed. Hence, workers that are assigned
inner partitions will have a smaller workload compared to the remaining workers, whose
execution time will determine the overall execution time.

The difference in performance when employing Contiguous Clustering or SRR Clus-
tering is minimal in most cases. Although the performance peak for each clustering strat-
egy may be different, even the peak values have a small difference, which allows us to
conclude that the essential performance gains result from the base vertical decomposi-
tion strategy. GaussianBlur always benefited from SRR Clustering for higher values of
R since a larger blur window increases the amount of data that is shared by contiguous
blur tasks.

We also evaluated the benchmarks using a cache-line-aware partitioning function, but

69

5. EXPERIMENTAL EVALUATION 5.4. Vertical vs Horizontal Decomposition

0.0	

5.0	

10.0	

15.0	

20.0	

25.0	

1000	 1500	 2000	 3500	 5000	 10000	 1000-‐15	 1000-‐20	 1000-‐25	

MatMult	 MatTrans	 GaussianBlur	

Ver7cal	

Horizontal	

Figure 5.22: S2 Speedups: Horizontal and Vertical (Contiguous Clustering) vs Sequential

0.0	

5.0	

10.0	

15.0	

20.0	

25.0	

1000	 1500	 2000	 3500	 5000	 10000	 1000-‐15	 1000-‐20	 1000-‐25	

MatMult	 MatTrans	 GaussianBlur	

Ver7cal	

Horizontal	

Figure 5.23: S2 Speedups: Horizontal and Vertical (SRR Clustering) vs Sequential

-‐20.0	

0.0	

20.0	

40.0	

60.0	

80.0	

100.0	

120.0	

140.0	

160.0	

2000	 3000	 4000	 5000	 10000	 20000	 1000-‐15	 1000-‐20	 1000-‐25	

MatMult	 MatTrans	 GaussianBlur	

Ver:cal	

Horizontal	

Figure 5.24: S3 Speedups: Horizontal and Vertical (Contiguous Clustering) vs Sequential

the results we obtained did not improve the performance for any of the assessed cache
sizes, introducing only overhead and wasted cache space.

To close the results analysis, we present the speedups of both the horizontal decom-
position and vertical decomposition executions against the sequential execution of the
benchmarks, depicted in Figures 5.20 through 5.25. We present these speedups in order

70

5. EXPERIMENTAL EVALUATION 5.4. Vertical vs Horizontal Decomposition

-‐20.0	

0.0	

20.0	

40.0	

60.0	

80.0	

100.0	

120.0	

140.0	

160.0	

2000	 3000	 4000	 5000	 10000	 20000	 1000-‐15	 1000-‐20	 1000-‐25	

MatMult	 MatTrans	 GaussianBlur	

Ver:cal	

Horizontal	

Figure 5.25: S3 Speedups: Horizontal and Vertical (SRR Clustering) vs Sequential

to prove that the implemented horizontal decomposition does in fact employ parallelism,
and also to further illustrate the order of magnitude of the attained speedups. The former
is confirmed by the fact that all the horizontal decomposition bars have their peak above
1.

5.4.2 Saxpy, Series

Since these benchmarks iterate data sequentially (exploiting spatial locality) without re-
visiting data, no benefits are attained from enforcing temporal locality through the cre-
ation of workingsets fitting the TCL. Given these properties, one can only expect to intro-
duce overhead when employing vertical decomposition, due to the increased number of
tasks. Consequently, the best cache configuration for each machine is the one that mini-
mizes the number of created tasks in each system: L3 cache level for systems S1 and S3;
and the L2 cache for S3, due to having a larger amount of space for each core sharing a
L2 cache than a L3 cache.

Figures 5.26, 5.27 and 5.28 present the speedup charts for these benchmarks on sys-
tems S1, S2 and S3 respectively. The obtained speedups are close to 1 but present fluctu-
ations that result from the non-determinism on executions.

5.4.3 Breakdown

We present the breakdown of some relevant benchmark executions, in order to eval-
uate the impact that the Elina’s execution stages have on the overall execution time.
These breakdowns are presented in Figures 5.29 through 5.32, and represent the exe-
cution breakdowns for the best execution configuration of, respectively: MatMult with
N=2000 in S1, MatTrans with N=10000 in S1, Matmult with N=4000 in S3, and MatTrans
with N=20000 in S3. These two benchmarks, MatMult and MatTrans, are interesting in
the context of execution breakdowns because these correspond to problems, respectively,
with and without a reduction stage.

71

5. EXPERIMENTAL EVALUATION 5.4. Vertical vs Horizontal Decomposition

0.96	

0.97	

0.98	

0.99	

1	

1.01	

1.02	

1.03	

1.04	

1.05	

1.06	

1000000	 10000000	 100000000	 10000	 100000	 1000000	

SAXPY	 Series	

Figure 5.26: SAXPY and Series S1 best configuration speedups

0.97	

0.98	

0.99	

1	

1.01	

1.02	

1.03	

1.04	

1000000	 10000000	 10000000	 10000	 100000	 1000000	

Saxpy	 Series	

Figure 5.27: SAXPY and Series S2 best configuration speedups

Since in all the presented breakdowns, more than 99% of the total execution time cor-
responds to the execution of tasks, we can conclude that the achieved speedups result
from the exploitation of spatial and temporal locality on the access to data during the
execution. Vertical decomposition generates more tasks than horizontal decomposition,
which takes its toll on the reduction stage where more partial results have to be reduced.
To conclude, we can observe that the decomposition and scheduling stages do not have
a major impact on the overall execution time, pertaining to less than 1% of the total exe-
cution time in all the decomposition/scheduling configurations.

72

5. EXPERIMENTAL EVALUATION 5.5. Discussion

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1000000	 10000000	 100000000	 10000	 100000	 1000000	

SAXPY	 Series	

Figure 5.28: SAXPY and Series S3 best configuration speedups

0%	

0%	

0%	

0%	

0%	

0%	

1%	

10%	

100%	
Horizontal	 Ver0cal:	 CC	 Ver0cal:	 SRRC	

Execu0on	

Reduc0on	

Scheduling	

Decomposi0on	

Affinity	

Figure 5.29: S1 Breakdown: MatMult N=2000

5.5 Discussion

The results show that vertical decomposition, regardless of the employed clustering strat-
egy, provides significant speedups relative to horizontal decomposition. On the other
hand, the combination of decomposition strategy, clustering strategy, and TCL size that
produces the best speedup varies depending on the problem in hands, therefore it is not
possible to systematically use the same execution settings independently of the problem.
To mitigate this problem, one can augment the execution platform with a auto-learning
stage that, over time, learns the best configurations to be applied for each individual
problem and respective input sizes, applying these settings upon a request for execution
of the given problem.

73

5. EXPERIMENTAL EVALUATION 5.5. Discussion

0%	

0%	

0%	

0%	

1%	

10%	

100%	
Horizontal	 Ver0cal:	 CC	 Ver0cal:	 SRRC	

Execu0on	

Scheduling	

Decomposi0on	

Affinity	

Figure 5.30: S1 Breakdown: MatTrans N=10000

0%	

0%	

0%	

0%	

0%	

0%	

1%	

10%	

100%	
Horizontal	 Ver0cal:	 CC	 Ver0cal:	 SRRC	

Execu0on	

Reduc0on	

Scheduling	

Decomposi0on	

Affinity	

Figure 5.31: S3 Breakdown: MatMult N=4000

It may also be possible that the optimal execution settings, for each problem, can be
determined if more cache hierarchy information is taken into account, namely the size of
the cache groups.

74

5. EXPERIMENTAL EVALUATION 5.5. Discussion

0%	

0%	

0%	

0%	

1%	

10%	

100%	
Horizontal	 Ver0cal:	 CC	 Ver0cal:	 SRRC	

Execu0on	

Scheduling	

Decomposi0on	

Affinity	

Figure 5.32: S3 Breakdown: MatTrans N=20000

75

5. EXPERIMENTAL EVALUATION 5.5. Discussion

76

6
Conclusions

The work developed during the duration of this dissertation encompassed several differ-
ent aspects of vertical decomposition. Regarding the contributions that we have initially
defined for this dissertation, we have accomplished the entirety of these. In the first
place, Chapter 3 presented the concept and theory behind vertical decomposition, for
which we identified three aspects: workingset size estimation, scheduling and affinity
mapping. We devised algorithms for these aspects, discussing their accuracy and the
trade-offs involved when we presented multiple algorithms.

With the theoretical concepts explained and the algorithms presented, we moved to
the concrete implementation of these in our framework of choice for this dissertation, the
Elina framework. The original implementation of Elina lacked some modifiability we re-
quired to experiment our strategies, namely the different approaches to task scheduling.
Some of the implementation effort was spent altering Elina’s core logic and involved in-
terfaces, though in the end we made Elina a more powerful framework, particularly in
what pertains to optimizations at the multiple stages of data-parallel computations. With
this, we attained our objective of providing a framework for programmers to map appli-
cations onto a target machine’s hierarchy, automatically and with minimal intervention
from their part.

In our experimental evaluation we attempted to be exhaustive, tackling each dimen-
sion of our proposal: performance and portability. The results obtained confirmed that
our approach is performant, with speedups ranging from 130% to 700% compared to
horizontal decomposition. Moreover, our evaluation process employed machines with
differing hierarchies, giving strength to the performance portability of our approach.

To the best of our knowledge, the study we performed in Chapter 5 is the first com-
parison between the two parallel decomposition approaches: horizontal and vertical.

77

6. CONCLUSIONS

The other studies present in the literature [BGH+06, FHK+06] focus on the gains deliv-
ered by vertical decompositions relatively to the sequential executions of the problems,
something that, in our opinion, is not enough to prove the added value of vertical decom-
position relative to the straightforward horizontal decomposition. With this evaluation
we provided the last contribution that we defined for this dissertation.

During the implementation stage, problems sprouted and new challenges were un-
veiled as we progressed, especially those related to dynamic memory allocation. The
anomalies that resulted from the bottleneck of memory allocation were, at first, difficult
to understand, and even then the solution was not trivial.

We believe we have met the thesis statement of this dissertation. Significant perfor-
mance gains were obtained through the systematic decomposition of the computation’s
domain.

Vertical decomposition can be further extended to the cluster level, which is the focus
of future work. This transposition however, is not a trivial task, in the most part due
to the heterogeneity that is typical across the machines composing a cluster. This will
require the definition and implementation of a new kind of algorithms that estimate the
performance of machines, so as to determine the amount of workingsets that should be
assigned to each individual machine.

There is still space for optimizations at the single machine level though, particularly
in the subject of dynamic load balancing and work stealing techniques, which has a to-
tal lack of Elina currently. Although these were not of major importance in the studied
application problems, they will become crucial if perfomant results are to be achieved in
problems featuring irregular parallelism.

As a final remark, we have identified a limitation on vertical decomposition for which
we have yet to consider possible solutions: the support for constructs, such as synchro-
nization barriers. Data-parallel applications exist that require a synchronization step, for
instance, at the end of each iteration of a loop. Given that vertical decomposition pro-
duces more parallel tasks than the number of workers, and these tasks are clustered and
subsequently assigned these same workers, it is not possible to synchronize and keep
execution state information for each individual task at the same time.

78

Bibliography

[ACF93] Bowen Alpern, Larry Carter, and Jeanne Ferrante. Modeling parallel com-
puters as memory hierarchies. In In Proc. Programming Models for Massively
Parallel Computers, pages 116–123. IEEE Computer Society Press, 1993.

[BBC+06] Laurent Baduel, Francoise Baude, Denis Caromel, Arnaud Contes, Fabrice
Huet, Matthieu Morel, and Romain Quilici. Programming, composing, de-
ploying for the grid. In GRID COMPUTING: Software Environments and.
Springer Verlag, 2006.

[BCL+06] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. The fractal component model and its support in java.
Softw., Pract. Exper., 36(11-12):1257–1284, 2006.

[BCSA11] Michael Bauer, John Clark, Eric Schkufza, and Alex Aiken. Programming the
memory hierarchy revisited: supporting irregular parallelism in sequoia. In
Calin Cascaval and Pen-Chung Yew, editors, Proceedings of the 16th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPOPP
2011, San Antonio, TX, USA, February 12-16, 2011, pages 13–24. ACM, 2011.

[BGH+06] Ganesh Biksh, Jia Guo, Daniel Hoeflinger, Gheorghe Almasi, Basilio B.
Fraguela, María J. Garzarán, David Padua, and Christoph Von Praun. Pro-
gramming for parallelism and locality with hierarchically tiled arrays. In In
Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pages 48–57, 2006.

[CDC+99] William Carlson, Jesse M. Draper, David E. Culler, Kathy Yelick, Eugene
Brooks, and Karen Warren. Introduction to UPC and Language Specifica-
tion. Technical Report CCS-TR-99-157, IDA Center for Computing Sciences,
1999.

[CGS+05] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa,
Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10:

79

BIBLIOGRAPHY

An object-oriented approach to non-uniform cluster computing. In OOPSLA
’05: Proceedings of the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 519–538, New York,
NY, USA, 2005. ACM.

[CLZC11] I-Hsin Chung, Che-Rung Lee, Jiazheng Zhou, and Yeh-Ching Chung. Hier-
archical mapping for hpc applications. In Proceedings of the 2011 IEEE Inter-
national Symposium on Parallel and Distributed Processing Workshops and PhD
Forum, IPDPSW ’11, pages 1815–1823, Washington, DC, USA, 2011. IEEE
Computer Society.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. Commun. ACM, 51(1):107–113, 2008.

[FHK+06] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem,
Mike Houston, Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken,
William J. Dally, and Pat Hanrahan. Memory - sequoia: programming the
memory hierarchy. In Proceedings of the ACM/IEEE SC2006 Conference on
High Performance Networking and Computing, November 11-17, 2006, Tampa,
FL, USA, page 83. ACM Press, 2006.

[HPR+08] Mike Houston, Ji Young Park, Manman Ren, Timothy J. Knight, Kayvon Fa-
tahalian, Alex Aiken, William J. Dally, and Pat Hanrahan. In Siddhartha
Chatterjee and Michael L. Scott, editors, Proceedings of the 13th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPOPP
2008, Salt Lake City, UT, USA, February 20-23, 2008, pages 143–152. ACM,
2008.

[jMIY11] Seung jai Min, Costin Iancu, and Katherine Yelick. Hierarchical work steal-
ing on manycore clusters. In In Fifth Conference on Partitioned Global Address
Space Programming Models, 2011.

[KY12] Amir Ashraf Kamil and Katherine A. Yelick. Hierarchical additions to the
spmd programming model. Technical Report UCB/EECS-2012-20, EECS De-
partment, University of California, Berkeley, Feb 2012.

[KY14] Amir Kamil and Katherine Yelick. Hierarchical computation in the spmd
programming model. In Proceedings of the 26th International Workshop on Lan-
guages and Compilers for Parallel Computing, LCPC 2013, San Jose, CA, USA,
September 25-27, 2013, 2014. To appear.

[LS96] R. Greg Lavender and Douglas C. Schmidt. Active object: An object be-
havioral pattern for concurrent programming. In Pattern languages of pro-
gram design 2, pages 483–499. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1996.

80

BIBLIOGRAPHY

[MP12] Eduardo Marques and Hervé Paulino. Single operation multiple data - data
parallelism at subroutine level. In Geyong Min, Jia Hu, Lei (Chris) Liu, Lau-
rence Tianruo Yang, Seetharami Seelam, and Laurent Lefevre, editors, 14th
IEEE International Conference on High Performance Computing and Communi-
cation & 9th IEEE International Conference on Embedded Software and Systems,
HPCC-ICESS 2012, Liverpool, United Kingdom, June 25-27, 2012, pages 254–
261. IEEE Computer Society, 2012.

[SMP12] João Saramago, Diogo Mourão, and Hervé Paulino. Towards an adapt-
able middleware for parallel computing in heterogeneous environments. In
2012 IEEE International Conference on Cluster Computing Workshops, CLUSTER
Workshops 2012, Beijing, China, September 24-28, 2012, pages 143–151. IEEE,
2012.

[TBA13] Sean Treichler, Michael Bauer, and Alex Aiken. Language support for dy-
namic, hierarchical data partitioning. In OOPSLA, pages 495–514, 2013.

[WMEG11] Lingyuan Wang, Saumil Merchant, and Tarek El-Ghazawi. Exploiting hier-
archical parallelism using upc. In Proceedings of the 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and PhD Forum,
IPDPSW ’11, pages 1216–1224, Washington, DC, USA, 2011. IEEE Computer
Society.

[YZGS10] Yonghong Yan, Jisheng Zhao, Yi Guo, and Vivek Sarkar. Hierarchical place
trees: a portable abstraction for task parallelism and data movement. In Pro-
ceedings of the 22nd international conference on Languages and Compilers for Par-
allel Computing, LCPC’09, pages 172–187, Berlin, Heidelberg, 2010. Springer-
Verlag.

[ZMBK10] Gengbin Zheng, Esteban Meneses, Abhinav Bhatele, and Laxmikant V. Kale.
Hierarchical load balancing for charm++ applications on large supercomput-
ers. In Proceedings of the 2010 39th International Conference on Parallel Process-
ing Workshops, ICPPW ’10, pages 436–444, Washington, DC, USA, 2010. IEEE
Computer Society.

81

	Introduction
	Motivation
	Motivational Example

	Problem
	Proposed Solution
	Contributions
	Document Organization

	State of the Art
	Hierarchical Parallelism
	Hierarchical Programming Models
	Sequoia
	Hierarchically Tiled Arrays
	Hierarchical Place Trees
	Hierarchical SPMD
	Unified Parallel C
	Fractal Component Model

	Hierarchical Work Distribution
	Discussion

	Hierarchical Domain Decomposition
	Data-size Driven Decomposition
	Scheduling
	Contiguous Clustering (CC)
	Sibling Round-Robin (SRR) Clustering

	On the Affinity between Workers and Cores
	Lowest-Level-Shared-Cache Affinity Mapping

	Concluding Remarks

	Implementation in the Elina Framework
	The Elina Framework
	Parallel Programming in Elina
	Runtime System
	Elina Initialization
	Elina Execution Workflow

	Vertical Decomposition in Elina
	New Adapter Types
	New Adapter Implementations
	Supporting Dynamic Memory Allocation
	Discussion

	Experimental Evaluation
	Methodology
	Benchmarks
	Test Infrastructure
	Vertical vs Horizontal Decomposition
	Matmult, Transpose, Gaussian Blur
	Saxpy, Series
	Breakdown

	Discussion

	Conclusions

