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e de admitir a sua cópia e distribuição com objectivos educacionais ou de investigação,

não comerciais, desde que seja dado crédito ao autor e editor.



ii



Acknowledgements

I would like to first and foremost thank my mentor and teacher, Rodolfo Oliveira,

whose availability and helpful criticism helped me learn everything needed to complete this

dissertation. I would like to thank João Porém, who has kept me company throughout all

these years. Also, a big thank you to all my colleagues at FCT including but not limited to
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Sumário

Está em curso uma mudança no paradigma de controlo de transmissões de rádio. Tare-

fas que já foram exclusivas de certas classes de hardware são cada vez mais realizadas por

sistemas de software. Uma mudança completa para o domı́nio do software é previśıvel,

criando um verdadeiro conceito de Software Defined Radio. Ao mesmo tempo que esta

mudança ocorre, o espectro radioeléctrico encontra-se saturado e quase completamente

licenciado. No entanto, o espectro raramente é utilizado na sua totalidade ao longo do

tempo, permitindo o seu uso oportuńıstico enquanto os utilizadores licenciados não o uti-

lizam. Esta é uma parte da noção de Rádio Cognitivo, um tipo de rádio que permitirá

acesso oportuńıstico ao espectro. Estes dois novos paradigmas podem ser combinados para

produzir um rádio flex́ıvel e fiável, ultrapassando dessa forma alguns problemas relaciona-

dos com a escassez de espectro dispońıvel. Esta dissertação começa uma exploração nesta

área combinando estes dois paradigmas através do uso de um Detetor de Energia imple-

mentado através de um dispositivo do tipo Universal Software Radio Peripheral e da suite

GNURadio. O desempenho do sistema é avaliado calculando as Probabilidades de Deteção

e Falso Alarme em cenários reais e comparando-os com os valores teóricos calculados. Um

método para definir limites de decisão para sinais de banda estreita é também testado

com base em trabalhos de Teoria da Informação, utilizando os algoritmos Akaike Infor-

mation Criteria e Minimum Description Length. Os resultados foram obtidos através de

uma transmissão real utilizando dois dispositivos USRP comunicando entre si, um agindo

como utilizador licenciado e outro como utilizador secundário, oportuńıstico. Finalmente,

realça-se o trabalho tecnológico desenvolvido na dissertação, o qual permite testar de uma

forma rápida outros parâmetros através dos scripts desenvolvidos, apresentando-se como

uma ferramenta de trabalho para futuros trabalhos de investigação.

Palavras Chave: Sistemas de Rádio Cognitivo, Detecção baseada em Energia,

Rádio Definido por Software.
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Abstract

A change in paradigm when it comes to controlling radio transmissions is in course.

Tasks usually executed in an exclusive class of hardware systems are increasingly controlled

by software systems. A deep change to the software domain is foreseeable, creating a true

Software Defined Radio. At the same time this change occurs, the radioelectric spectrum

is almost completely licensed. However, the spectrum is rarely used to its full extent

over time, enabling its opportunistic use while the licensed devices do not communicate.

This is a part of the notion of Cognitive Radio, a new kind of radio capable of using

the spectrum in an opportunistic way. These two new paradigms in radio access can be

combined to produce a flexible and reliable radio, overcoming the issues with radioelectric

spectrum scarcity. This dissertation starts an exploration in this area by combining these

two paradigms through the use of an Energy Detector implemented in a Universal Software

Radio Peripheral device and using the GNURadio suite. The performance of such a system

is tested by calculating the Probabilities of Detection and False Alarm in real scenarios

and comparing them to the expected theoretical values. A method for defining thresholds

for narrowband signals is also tested based on works in Information Theory concepts, i.e.,

the Akaike Information Criteria and the Minimum Description Length. The results are

tested for a real transmission using two USRP platforms communicating with each other,

one acting as the licensed user and the other acting as the secondary, opportunistic user.

Finally, we highlight the technological work developed in this dissertation, which may

support future research works through the use of the developed scripts, allowing a faster

method to test algorithms with different parameterization.

Keywords: Cognitive Radio Systems, Spectrum Sensing, Software-Defined Ra-

dio.
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Chapter 1

Introduction

1.1 Introduction

Over the last 40 years, technology has validated Moore’s law [Moo06]. The number

of components on a chip has consistently doubled every 18 months. This breakthrough in

technology allows a processor to have capacities thought impossible just a few years ago,

which opens the possibility to assign functions to processors that were only assigned to

application specific hardware up until now [SRLM12]. This dissertation explores the use

of processors and more specifically, software architectures to solve traditional problems

in the radio domain. This technology, called Software Defined Radio, is the focus of this

dissertation, which is adopted to assess spectrum sensing techniques.

1.2 Motivation

The Software Defined Radio, introduced by Mitola [Mit95], opened up a whole new

world of possibilities regarding the use of radio equipments. In a world where the main

agents were specifically built on circuits, the SDR contested this dogma. The main idea

is to delegate some of the hardware specific tasks to software, namely baseband frequency

operations, such as the generation and detection of signals [Wir].

SDR’s main objective is to add flexibility to a radio communication device, providing

it with the necessary autonomy to modify radio transmission parameters through the

simple loading of a script.

1



2 CHAPTER 1. INTRODUCTION

This flexibility allows a device to better adapt to different kinds of communication.

This is something of the utmost importance in military radios [Ulv10] for example, where

the need to change communication patterns in case the transmission integrity or privacy

is compromised by the ”enemy” is a reality.

Another advantage is the SDR’s time-to-market. At the manufacturer level, when

a new wireless architecture (e.g. transmitter/receiver scheme) is required, less hardware

and more software development is needed to implement new features, greatly decreasing

the development time. Thus, time-to-market is greatly reduced while innovation grows

[PRL+12].

The Cognitive Radio is an evolution in the paradigm of spectrum usage. It relies on

the fact that a Secondary, unlicensed user can identify if the spectrum is being accessed by

a Primary, licensed user. The reliability of this method must be high, since the interference

caused to the licensed users must be avoided. Knowing if the spectrum is being used or

not allows the Secondary User to control its transmission power and frequency occupation,

therefore using a licensed frequency and increasing spectrum usability.

The main objective of this work is to evaluate the actual performance of SDR tech-

nology to perform Spectrum Sensing.

1.3 Objectives and Contributions

The first objective of this dissertation is validating through practical SDR experiments

the Probabilities of Detection and False Alarm that characterize the ability of an Energy

Detector to successfully identify the presence/absence of a Primary User in the sensed

spectrum. For this end, a script that tests these probabilities was designed using the

GNURadio software suite. This test allows the characterization of the Energy Detector

within a range of different SNR values.

The second objective of the dissertation is the evaluation of two information criteria

models as a method of detecting a narrowband transmission in the spectrum through

a power difference in a periodogram. These models are the Akaike Information Criteria

(AIC) and the Minimum Description Length (MDL). While these algorithms are generally

used with eigenvalues as an input, in this case the periodogram values were considered as
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eigenvalues, avoiding the need of a square matrix to compute eigenvalues and increasing

the flexibility of the scheme, allowing for an arbitrary number of FFT samples to be

collected.

The practical validation of the theoretical values of PD and PFA for a predefined sens-

ing time have already contributed to the article presented in DOCeis 2014[MD14], titled

Practical Assessment of Energy-based Sensing through Software Defined Radio Devices.

1.4 Structure of the dissertation

This work is divided into five chapters. The first chapter contains the global intro-

duction, motivation and objectives for the dissertation. The second chapter describes first

theme of the dissertation, the Software Defined Radio and its state of the art regarding

technologies and models. The third chapter details the use of the Cognitive Radio for

spectrum access and its mathematical models. The fourth chapter contains the practical

experiments done in the course of the dissertation and the fifth chapter contains the global

and final conclusions regarding the work, as well as the future work suggested.
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Chapter 2

Software Defined Radio

2.1 Introduction

Reconfigurability is the main characteristic at the core of the SDR concept. Over the

years, the evolution of telecommunications has brought technologies such as GSM (Global

System for Mobile Communication), UMTS (Universal Mobile Telecommunications Sys-

tem) or more recently LTE (Long Term Evolution) to life.

Although the communication schemes supporting each technology are different, their

objective remains the same: transmit and receive voice and data. SDR proposes to unite

some of these technologies in a single device, switching between them as needed. This

proposition is achieved by adding flexibility to the radio equipment. Reconfigurability,

however, is practically non-existent nowadays as radio tasks are handled by application-

specific hardware devices. The SDR concept, however, allows for radios to be configurable,

even programmable in software to a large extent, with the help of software-controlled

technologies. The need for this concept stems from the different transmission quality and

QoS needs nowadays when performing a vertical handover from one radio standard to

another (e.g. Switching from GSM to LTE on a phone).

A system that satisfies these flexibility needs via software controlled components is an

SDR.

5



6 CHAPTER 2. SOFTWARE DEFINED RADIO

Front-End RF

ADC/DCA

Processor

Figure 2.1: The basic schema of a SDR architecture

2.2 Hardware Architecture of an SDR

A basic Schema of SDR is presented in Figure 2.1. In the figure the Processor is

represented as a single block. However, it can comprise several processors working in

parallel. Theoretically there could be only one processor computing all the code. In

practice the work of processing a signal is too demanding most of the time for a single

processor, so the processor block can include an array of components that are built to

manage waveforms and the processing needs associated with them.

Some of the hardware solutions featuring mostly multi-core processors are presented

in [PRL+12]. There is still no ideal solution for the programmable processing associated

with SDR. The technology has not allowed the SDR to reach the needed flexibility [Mit00],

which joins a wide band of workable frequencies with the use of a GPP (Global Purpose

Processor). This optimal state would require high processing speed, most probably in

parallel, coupled with flawless component design [PRL+12]. This is not feasible nowadays.

Another issue with SDR is the power consumption [PRL+12]. Since GPPs are not

built specifically for DSP (Digital Signal Processing), the power consumption is higher

than in ASICs (Application Specific Integrated Circuits), which limits the options when

designing portable radios that implement SDR technologies.



2.2. HARDWARE ARCHITECTURE OF AN SDR 7

RF TX
Interface

RF RX
Interface

1..n

.....

.....

1..n

ProcessorDUC DDC ADCDAC

Figure 2.2: Basic Schematic of an SDR Architecture

2.2.1 General Hardware Architecture

The hardware architecture of a SDR system may vary, depending on its flexibility.

There might be a need to change only one or all of the operational aspects of the ra-

dio. Thus, the hardware technology may change as well. A general design of an SDR is

presented in Figure 2.2.

As can be seen in Figure 2.2, there may be more than one antenna attached to the RF

front-end. This is due to the fact that by switching transmission protocols and supporting

MIMO transmission, SDR systems can work in different frequencies covered by different

antennas. Thus, SDR systems must have capabilities of switching antennas when they

need to switch the operational frequency.

There are three distinct blocks for Downlink and Uplink.

Downlink Structure

The Downlink is responsible for receiving and decoding data. The first block in

this chain is the RF front-end. This block is ideally reconfigurable for a wide range of

frequencies and holds the interface between the Intermediate Frequency (IF) and Radio

Frequency (RF) parts of the system. It generally consists of a Band-Pass Filter to eliminate

undesired frequencies, a Low-Noise Amplifier to amplify the desired signal and a Mixer,

responsible for converting the signal from RF to IF by mixing it with the Local Oscillator

signal.

The next block is the ADC (Analog Digital Converter). This converter is responsible

for sampling the analog signal after its processing by the RF block. It converts the analog

signal into a digital representation, through the parametrization of the sample rate. Note
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that for most of the signals, this conversion is only technologically possible because the

central frequency of the original RF signal was decreased to the feasible (IF) levels in the

RF front-end.

After the ADC the digital signal enters the Digital Down Converter (DDC), illustrated

in Figure 2.3.

IF Quadrature
Sinusoid

sin cos

X

X

Low-Pass Filter

Low-Pass Filter

Downsampler

Downsampler

Iout

Qout

Iin

Qin

Figure 2.3: Digital Down Converter generic schematic

The DDC is responsible for bringing the signal down to baseband in order to be

processed by the software. It is composed by an IF Sinusoid Multiplier, a Low-Pass Filter

and a Downsampler. The Multiplier brings the signal down to baseband where digital

signal processing is more feasible. The Low-Pass filter eliminates undesired clones created

by the multiplication. Finally, the Downsampler throttles data so that it will achieve the

necessary rate to pass through the BUS connecting it to the processor.

After this conversion the signal is brought to the processor, where it will be processed

by software.

Uplink Structure

The Uplink is responsible for generating and transmitting data. This data, as opposed

to Downlink, is generated in the processor and transmitted through the BUS. It is then

sent to the DUC (Digital Up Converter) (Figure 2.4).

IF Quadrature
Sinusoid

sin cos

Interpolator

X

X

Iout

Qout

Iin

Qin

Interpolator

To DAC

Figure 2.4: Digital Up Converter generic schematic

The DUC is responsible for increasing sample rate and converting the baseband signal
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up to IF frequencies. It consists of an Interpolator to increase the sample rate and a

Multiplier to convert the signal. At this stage no filter is needed because the signal will

be filtered in the RF block.

The signal is then passed to the DAC (Digital to Analog Converter), which does the

opposite of the ADC. It transforms the parameterized signal into an analog signal through

interpolation, readying it for up-conversion to RF and transmission by the RF block.

The RF block then takes this IF analog signal, converts it to RF, filters it to match

only the desired frequencies and transmits it. This block is responsible for power control

of the transmission.

2.2.2 USRP Case Study

The Universal Software Radio Peripheral (USRP) is a front end device designed for

SDR purposes. USRPs consist of a motherboard and several possible daughterboards [Ett].

The motherboard contains an FPGA for signal processing, Digital to Analog Converters,

Analog to Digital Converters, an interface to access the GPP linked to it and a power

control device. The daughterboards contain the RF part of the device, converting the

baseband signal to the desired frequency and transmitting it over an antenna.

The USRP is controlled by the USRP Hardware Driver, UHD. The UHD contains

firmware to work with the built-in FPGA and the signal converters. The USRP uses

the strategy described in Subsection 2.2.3, delegating all redundant and high bandwith

operations to the FPGA [RYZ11] to reduce sample rate sent to the peripheral processing

unit. This unit could be a GPP, as mentioned before, and is connected to the USRP

via an interface (e.g., USB or Gigabit Ethernet). The UHD ensures that the data is sent

through the USB and returned after processed. Figure 2.5 shows the general architecture

of the system.

There are, of course, several limitations in terms of the technology adopted in USRP

devices. One of them is the main connection method to the processor, which adopts the

USB 2.0 standard. It has been calculated that its data rate is of approximately 32MS/s

(MegaSamples/second) and its bandwidth can not exceed 12MHz [RYZ11].

This means that higher bandwidth systems, like all 802.11 protocols, can not be
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PC

FPGA

USRP

UHD

Instructions

Processor

RF Front-end

(Daughterboard)

UHD

Figure 2.5: URSP connectivity to a PC and processing options

implemented using the USRP. This is one of its greatest shortcomings.

USRP Structure

The structure of a USRP device is kept as simple as possible. Nevertheless, some

explanation might be required to explain how its components work and connect to each

other.

FPGA

D
aughterboard Interface

D
aughterboard

UHD
Data

Streaming
PC

Interface

DAC

ADC

DDC +
Decimator

Interpolator
+DUC

Figure 2.6: USRP basic structure. Changes apply between different models.

As can be seen in Figure 2.6, the intensive tasks of the DDC and DUC described in

Section 2.2.1 are left to the FPGA. The FPGA comes with pre-defined scripts for handling

this kind of operations. On each utilization, these scripts are loaded in the device and

their operating parameters are properly defined (decimation and interpolation rate). It
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is up to the user to change these settings according to the objectives. The figure also

shows the ADC and DAC components, responsible for the Analog/Digital conversions.

The performance of all these components varies from USRP model to model.

The UHD Data Stream controls the information from/to the PC and the PC Interface

exchanges data between the devices through it. This interface can be a USB for some

USRP models or a Gigabit Ethernet connection for others.

The daughterboards implement the RF front-end of the USRP. Several types of daugh-

terboards are available, each one with their specific frequency range. The portfolio of dif-

ferent daughterboards allows the use of the USRP in most of the commonly used frequency

ranges, all in the same device (same motherboard with different daughterboards).

2.2.3 Processing Options

The paradigm change associated with SDR brings challenges not faced before. One

of them is finding the optimal hardware design for signal processing. There are many

different options to handle the signal processing, and the main trade-offs involved in their

choice are the level of performance and flexibility. In this section we will explore several

systems already proposed for signal processing.

Application Specific Integrated Circuits

Application Specific Integrated Circuits (ASICs) are the de facto devices adopted in

Digital Signal Processing. ASICs are circuits designed and built for one purpose specifically

and can not be reprogrammed, meaning they are not a good choice for more flexible

solutions. ASICS are, therefore, not compliant with the notion of SDR. However, some

authors [SIW06] suggest that similar operations between waveforms should be studied and

applied in ASICs whenever possible, in detriment of waveform global portability.

Reconfigurable Processing Elements

Field Programmable Gate Arrays (FPGA) are powerful programmable hardware sys-

tems. These kind of systems allow the user to reconfigure its hardware in a matter of

milliseconds, being almost instantaneous in reconfiguring itself in several scenarios, such
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as the need of processing a different waveform. These are widely used pieces of machinery

for digital systems, with the downside of consuming more energy and occupying more

space than ASICs.

The processing capabilities of FPGAs are similar to ASICs’, but FPGAs are on average

3.2 times slower than ASICs [KR07]. This is much of the tradeoff between a fixed and

programmable processing unit and one of the technical challenges with SDR, the processing

speed.

An advantage of using FPGAs is their massive use nowadays. There are many useful

toolsets already available in the market to work with SDR and FPGAs. One of these tools

translates c-code into FPGA code, i.e. Very High Speed Integrated Circuits Hardware

Description Language (VHDL)[LBJ06]. This implies the possibility of side-processing

done by FPGAs alongside General Purpose Processors (Subsection 2.2.3). It could be

especially useful for mathematical intensive computations.

Global Purpose Processor

These are everyday processors one might find in almost every piece of electronic equip-

ment nowadays. The implementation of the functions associated with waveforms is done

at a much higher level than the hardware-based solutions. This implies higher latency but

much higher flexibility.

The recent evolution of the GPP has migrated from increasing its clock speed to

increasing the parallelism between components and increasing the number of processors

in a single socket. This means a more suited type of processing for digital signals, due to

the need of multiple and redundant operations when dealing with radio.

Currently there are four types of data processing associated with GPPs: Single In-

struction Single Data (SISD), Multiple Instruction Single Data (MISD), Single Instruction

Multiple Data (SIMD) and Multiple Instruction Multiple Data (MIMD).

SISD processors were the first to appear: instructions are taken from the stack and

only those are executed in only one set of data per cycle. This is however a low efficiency

way of processing, as it relies only on higher clock rates to improve the computation speed.

Single Instruction Multiple Data processors handle instructions according to a de-
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fined order, but only once at a time independently of how many processors are available.

This opens the possibility to distribute common processes through different processors,

imposing parallelism on the system when needed. An example of the application of such a

feature would be sensing (verifying data being transmitted) through two different anten-

nas, for two different frequency ranges. This would imply Fourier Transforms computed

in parallel with two data sets, one per antenna. It would therefore benefit from the SIMD

advantages.

MIMD processors distribute data and instructions through different processors as long

as they are in line to be executed. This allows more flexibility in executing parallel tasks,

allowing for a greater variation in parallel operations. Most of the processors available

today are MIMD.

Despite its advantages, GPPs exhibit high energy consumption. These processors were

not built for portable devices, at least not as small as a cell phone. Therefore, a battery

would not last enough time to make GPPs a good choice to use in portable devices.

On the other hand, GPPs are most appropriate for academic and amateur applications.

Most people own a computer, and that is a fact that plays strongly in GPPs’ favor.

Also, a GPP can be used together with an FPGA, for example, to compensate for any

shortcomings it might have.

2.3 Software Architecture of an SDR

The Software Architecture of an SDR system specifies the way the software is orga-

nized to handle the data received from the antenna and the way it generates the data for

transmission. It is inevitably a complex system, taking into account that all operational

circumstances must be tackled. Three examples will be given in this section.

2.3.1 Software Communications Architecture

The Software Communications Architecture (SCA) [SCA] is a framework created by

the Joint Program Executive Office (JPEO), an organization established in the United

States, having the design of new SDR radio systems for the US Armed Forces in mind.

The advantages brought by the use of this kind of software framework come from the
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features listed in Section 1.2, namely the ability and speed to adapt to different radio

parameters. The need to change the pattern of communication when it is compromised

is a reality in the theater of war. Thus, JPEO created this framework which consists of

a set of rules to obey when constructing a robust radio system compatible with SDR.

SCA is not the only framework available, as seen later in the section, but it is a reference

architecture that must be studied due to its importance in the current state of the art.

Hardware Board

Board Support Package

Operating System and Network Stack

CORBA SCA Core Framework

Logical Bus (Middleware)

C1 C2 C3 C4 }

A
pplications

} O
perational E

nvironm
ent

Figure 2.7: SCA Architecture, with the correspondent Core Framework.[Adapted from
[SCA]]

Figure 2.7 presents the general structure of the framework. Each application repre-

sented in the figure(i.e. C1, C2, C3, C4 ) is a waveform. Waveform is the generic term for

a complex radio structure. An example of a waveform is represented in Figure 2.8.

USRP CHAN
FILT

FM
DEM

AUDIO FILT +
DECIM. (5)

AUDIO FILT +
DECIM. (2)

MONO
2

STER

Figure 2.8: SCA Waveform Example, with high granularity

Software Communications Architecture defines how these waveforms are handled.

The hardware itself is generic. This is one of the objectives of SCA, hardware abstrac-
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tion and independence by using common instructions in the hardware, supported by the

Board Support Package.

The Operating System must be a Real Time Operating System, compatible with

POSIX [Pos]. The Core Framework (CF) components have complete access to the OS, in

order to call the services needed to execute the application.

The CF and the Common Object Request Broker Architecture (CORBA) standard

are probably the most important parts of SCA. CORBA is used due to its flexibility,

allowing the CF to distribute applications with platform independence and openness.

This is achieved by using an Object Request Broker, or ORB, to manage applications and

resources.

While ORBs are mainly supported by GPPs, special ORBs for working with SCA

that provide a faster access to resources have been designed. These ORBs use DSPs and

FPGAs in order to raise the system’s portability [Hum06]. However, since all resources

rely on CORBA to be handled, there is a significant overhead associated with each appli-

cation. This is due to CORBA’s characteristics such as message marshalling and location

variation for resources. So, on one hand there is the mobility and flexibility earned by

using CORBA. On the other, CORBA may degrade the computational time required to

execute a given task. This issue can be mitigated by switching transport protocols with

TCP/IP, CORBA’s default protocol, which minimizes overhead [Doh02][BCMR02]. Also,

CORBA has known issues with computation and memory resources, diminishing its pop-

ularity in some domains [Ulv10]. This fact raises the question: should SCA continue to

exclusively use CORBA?

The CF is defined by a set of interfaces that dictate how waveforms and their compo-

nents are put together. Its description is lengthy and goes beyond the scope of this the-

sis. However, all the interfaces are defined by CORBA’s Interface Description Language.

Therefore, working with SCA is much like working with CORBA, only with specific classes

and not the whole array.
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OSSIE

Open-Source SCA Implementation-Embedded (OSSIE) is a project started by Wire-

less @ Virginia Tech, with the intent to distribute and facilitate access to the SCA frame-

work. Most of the interfaces present in SCA are part of OSSIE [SCA]. However, some of

them are already configured, which means that OSSIE is not as flexible as SCA is due to

its complexity

OSSIE is written in C++ and uses omniORB and Xerces XML for parsing. It is

developed for Linux. There is also the OSSIE Waveform Workshop, a set of tools designed

to ease the work of a radio engineer.

2.3.2 GNURadio

GNURadio (GR) is an open source project that consists of a software-only approach

for radio applications design. It can be connected to hardware for real world use or

simulated in a conditioned environment.

GNURadio implements simple modules described by C++. Digital Signal Processing

(DSP) is almost all done in software, hence there is a need to separate and categorize these

modules.

GNURadio provides signal generators (sources), receivers (sinks) and intermediate

blocks (filters). These blocks are linked through Python, defining the final schema to be

tested. Python does nothing more than connect these blocks, which has generated some

discussion regarding efficiency and the need for this extra layer of Python [TT09].

The general structure of the GNURadio architecture is represented in Figure 2.9. As

depicted in the figure, graphical blocks and connections are built in Python, as opposed

to all other DSP blocks which are built in C++.

Since GR is an open source project any user, amateur or professional, can contribute

to extend the existing libraries, even to change the way GR works from its root.

2.3.3 A Comparison of SCA (OSSIE) and GNURadio

There are several available papers about using each of these systems to build a practical

radio application. Due to its professional nature and roots, OSSIE has a higher complexity
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Figure 2.9: GNURadio blocks and applications, divided by layer.

and, therefore, difficulty. Its greatest advantages come from seamless distributed process-

ing thanks to CORBA [BCMR02] and its numerous layers of security [MBF05]. However,

some of its drawbacks are also due to CORBA.

In a comparative study between OSSIE and GR [ALRD+08] both systems are eval-

uated according to different features that are independent of the hardware schemes that

can be adopted. The main conclusion highlighted in the study is that OSSIE requires

more processing power and memory usage, exhibiting 5 times more CPU load and 2 times

more memory for the same waveform.

It is also important mentioning that in a GNURadio environment the latency is 25

times shorter than that present in OSSIE. This larger latency in OSSIE is mostly due to the

overhead introduced by CORBA. Therefore, for low budget (low hardware capacity) and

non-commercial tests on waveforms, GNURadio seems like the most appropriate setup.

2.4 Conclusions

The use of the SDR proves to be an efficient method of changing communication

parameters as needed. This technique is not yet in an ideal state due to low efficiency

of Global Purpose Processors, but coupling this processing with FPGA processing for

repetitive tasks that need a higher processing speed is proven to be a good solution.

Given that FPGA processing methods are reconfigurable, the flexibility is maintained and

the processing is executed faster. The hardware solutions prove to be effective even if

there is margin for evolution. The USRP is shown to be a good compromise between
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price and functionality. Since the platform allows for a great flexibility with the change of

daughterboards, the platform is guaranteed to be a good choice for experiments.

The software solutions regarding SDR are still limited but flexible and complete. With

investment in the area and the contribution of the open source community, solutions like

SCA and GNURadio will see an evolution in the future and will permit model designing

and testing for a wide array of platforms and communication patterns. Since SCA is

a more complex solution, for low budget operations and investigations GNURadio will

probably be chosen as a testing platform for most academic experiments, enlarging the

user base and the number of contributions to the system.

Given the constant evolution in telecommunication technologies and the lower Time-

To-Market SDR entails, it will be a good choice when testing and implementing new

communication paradigms in the near future.



Chapter 3

Cognitive Radio

3.1 Introduction

The radioelectric spectrum is a scarce resource. With the exponential increase verified

in the last years in consumer electronics, there is a dangerous spectrum shortage right now.

This fact needs to be overcome. However, as noted in [MSB06], most of the spectrum is

underused, but most of the bands are allocated to several licensed users. This means

that there is an opportunity to use those bands while they are vacant. One of the most

recent and important applications for the use of this opportunity is the dynamic use and

allocation of radio spectrum. The radios that can accomplish this are called Cognitive

Radios (CR).

Cognitive Radio, a term introduced in [MMJ99], proposes to analyze the radio spec-

trum, estimate the state of the channels, predict what is going to happen and manage

it’s spectrum, transmissions and power according to that information. Simon Haykin has

defined for Cognitive Radio as follows [Hay05].:

Cognitive radio is an intelligent wireless communication system that is aware of its

surrounding environment (i.e., outside world), and uses the methodology of understanding-

by-building to learn from the environment and adapt its internal states to statistical vari-

ations in the incoming RF stimuli by making corresponding changes in certain operating

parameters (e.g., transmit-power, carrier-frequency, and modulation strategy) in real-time,

with two primary objectives in mind:

19
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� highly reliable communications whenever and wherever needed;

� efficient utilization of the radio spectrum.

Because of these characteristics, a CR needs reconfigurability. This is achieved by using

SDR platforms, introduced in Chapter 2.

Cognitive Radio has been studied widely in [MMJ99] and [Mit00] and it improves the

band’s utilization. In this dissertation we will focus on the first part of a cognitive radio

operation: the Spectrum Sensing.

3.2 Spectrum Analysis

The basis of the cognitive radio lies on the analysis of the spectrum, also known as

Spectrum Sensing. A CR must know the level of occupancy of the radio spectrum in order

to take action, and in order to do this it must sweep large ranges of frequencies. This

raises the first problem: How does a radio effectively sweep such a large range of spectrum?

This dissertation evaluates a response to the question by using a Software Defined Radio

platform.

There are two classes of spectrum users, Primary Users (PUs) and Secondary Users

(SUs). A PU has licensed access to the spectrum while an SU needs to use it opportunis-

tically in order not to interfere with any PU. Consider the scenario illustrated in Figure

3.1. SU A wants to communicate with SU B but it first has to check if there is spectrum

available for its transmission. It is a simple case of A-B transmission.

Considering that radios C and D are communicating in a part of the band sensed

by the SUs, the spectrum should appear to these SUs as shown in Figure 3.2. After the

sensing period and the conclusion that Channel 2 is being used, the SUs would switch to

Channel 1 and transmit their data.

Spectrum sensing warrants thought. What should be the value of the Noise Floor, or

Decision Threshold, presented in Figure 3.2? How will a SU be absolutely sure that no one

is transmitting on a given frequency? How big a range of frequencies can be sensed in real

time? Methods for this depend on what frequencies the CR is sensing, since modulations

change for a given technology and technologies change for different frequencies. The
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Figure 3.1: Secondary Users A, B and Primary Users C,D.

objective is, however, being able to utilize all the spectrum, so one technique is unlikely

to work for all technologies and frequencies.

There are limits concerning Spectrum Sensing. Due to the sample rate being entirely

connected to the range of frequencies analyzed (Nyquist’s theorem), the rate at which data

can be gathered, transferred and processed is linked to the frequencies that a cognitive

radio can analyze. For example, in a USRP device connected by USB 2.0, the theoretical

limit is closely tied to the connection’s top speed at 35MB/s. The antenna configuration is

another important point. For sub-optimal receiving areas, an antenna might detect a non-

existent transmission. The problem is minimized when an array of antennas cooperating

in sweeping the frequencies is adopted.

The spectrum sensing technique studied in this dissertation is the Energy Detection,

which was theoretically characterized in [Urk67]. It relies on energy sensing and threshold

comparison in order to detect the presence of a transmission.

According to [ALL10], the ability to detect a signal involves the evaluation of two

hypothesis:

H0 : y(t) = n(t)

H1 : y(t) = n(t) + s(t)
(3.1)
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Figure 3.2: RF Spectrum, as sensed by A and B.

where y(t) represents the received signal, s(t) denotes the transmitted signal and n(t)

represents the noise experienced during the signal reception.

The noise vector n(t) is assumed to be additive, white and Gaussian (AWGN) with

zero mean and variance σ2n. For the purpose of this work, the signal s(t) is also assumed

to be a Gaussian random variable with variance σ2s .

In other words,

Y ∼


N(µn, σ

2
n), H0

N(µs + µn, σ
2
s + σ2n), H1

(3.2)

The probabilities associated with detecting a transmission are the Probability of De-

tection (PD) and Probability of False Alarm (PFA). These are defined as follows:

PD(γ) = Pr[Y > γ|H1] (3.3)

PFA(γ) = Pr[Y > γ|H0], (3.4)

γ is a decision threshold used to compare the received energy.

Assuming NS samples collected during the detection, PD and PFA can be rewritten

as [LFO+13]:
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PD(γ) = Q(
γ −NS + θ)√

2(NS + 2θ)
) (3.5)

PFA(γ) = Q(
λ−NS√

2NS
) (3.6)

where θ =
∑Ns

k=1(µs/(1 +σs))
2 =

∑NS
k=1 θ

′ and the Q function is the tail probability of the

standard normal distribution:

Q(x) =
1√
2π

∞∫
x

exp(−u
2

2
)du (3.7)

In this dissertation it is assumed that there is a priori knowledge of the signal and noise

probability distributions. The purpose of this kind of testing is evaluating the performance

of an SDR device, in this case a USRP, when performing these tasks.

Proposed Energy-Based Detection Model

The proposed model in this dissertation is called a periodogram. This model com-

putes the Fast Fourier Transform (FFT) of the samples collected by the USRP, translating

them into the frequency domain.

N1 NS NTNS+1

TS
SU TD

SU

... ... ... ... ... ...

Figure 3.3: Secondary User Frame

In the proposed model the SU has a frame structure that distinguishes two differ-

ent tasks: Sampling and Transmission. Sampling happens during the TSUS period, which

depends on the number of Sensing Samples and the Sampling Rate of the SU. The trans-

mission may occur during the TSUD , if the SU detects the spectrum is not occupied. To

detect the state of the spectrum, the SU collects NS samples and calculates their FFT:
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Xk =

NFFT∑
n=0

xne
−i2πk n

N , k = 0, ...NS − 1 (3.8)

This spectrum description can allow for some criteria to be used. In this model, these

values are averaged, for an average power per sample (Yn). Given that the FFT size is

equal to the number of sensing samples, NS , the average is calculated by

Yn =
1

NS

NS−1∑
k=0

|Xk|2 (3.9)

Each of these Yn values is then compared against the decision threshold, γ, to decide

if a PU is present or absent.

To validate the detection there is a previous knowledge of whether the PU is present

or absent. In the validation, the practical PD and PFA values are calculated directly from

the comparison done in the energy detected, being its output given by Bn and Cn. To

compute PD it is assumed that:

Bn =
0, Yn < γ|H1

1, Yn > γ|H1

(3.10)

To compute PFA, Cn is defined as follows:

Cn =
0, Yn < γ|H0

1, Yn > γ|H0

(3.11)

Each of the probabilities is then calculated by:

PD = 1
M

∑M
n=0Bn

PFA = 1
M

∑M
n=0Cn

(3.12)

where M is the number of decisions. There are some trade-offs to consider when using this

approach. Parameters such as the ratio between NS and NT , the desired frequency band

and the desired PD and PFA values.
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Decision Threshold Estimation in Presence of a Signal

The aforementioned methods work for cases where the noise power and the presence or

absence of a PU are known. However, in cases where the SU knows the PU is transmitting

but has no means of knowing the noise values, the threshold can not be calculated by

inspection. Some methods were already defined to calculate the value for this threshold

when no prior knowledge about noise is available.

The methods studied in this dissertation are the Minimum Description Length (MDL)

and the Akaike Information Criteria (AIK), derived from [WP98] and [WK85]. These

algorithms also depend on the presence of a signal. Both algorithms use eigenvalues to in

the decision process. However, in this case the eigenvalues are considered to be the values

of a sorted periodogram, calculated by:

Pk = |Xk|2 (3.13)

It is then considered that the eigenvalue of the k-th FFT is

λi = Pk (3.14)

The AIC and MDL values are then calculated by [SMS12]:

AIC(k) = (N − k)Llog(α(k)) + k(2N − k) (3.15)

and:

MDL(k) = (N − k)Llog(α(k)) + k/2(2N − k)log(L) (3.16)

where:

α(k) =

∑N
i=k+1 λi
N−k

(
∏N
i=k+1 λi)

1
N−k

(3.17)

and N represents the periodogram FFT size, L denotes the number of times the peri-

odogram was averaged, k is the model number and λi represents the eigenvalues, approx-
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imated by Pk.

Both algorithms evaluate the periodogram and draw conclusions in regard to its shape.

The value k is the model number and it ranges from the values 1 to N (FFT Size). For

each of these values there is an MDL and AIC corresponding value. The model number

with the lowest AIC and MDL value is defined as the threshold for the signal power in the

averaged periodogram. Up to that k value, a primary user is considered as being active

(detected). From k to N a channel is declared as idle, allowing the calculation of the

average noise power.

These two models were tested for a periodogram generated in MATLab. The peri-

odogram represents a sine wave centered at 30 Hz and sideband AWGN Noise with its

power centered at 1. This periodogram is presented in Figure 3.4.
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Figure 3.4: Sine wave with sideband Gaussian Noise

The AIC and MDL results, calculated with Equations 3.15 and 3.16 are presented in

Figure 3.5. The minimum value for both of these methods is present in k = 18. This

means that in the sorted periodogram (Figure 3.6), all values up to the 18th FFT Bin

contain a signal and all values upwards contain noise, allowing for the calculation of the

noise figure.
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Figure 3.5: AIC and MDL values for a Sine wave with Gaussian Noise
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Figure 3.6: Sorted Sine wave periodogram with Gaussian Noise

With this data, the noise figure was calculated through averaging all points in Figure

3.6 from the value kAIC where AIC(kAIC) = min(AIC) and kMDL where MDL(kMDL) =

min(MDL) upwards. The results are presented in Table 3.1.

Waveform Real Noise Figure Noise Estimation

(AIC)

Noise Estimation

(MDL)

Sine+Noise 1.00 1.00 (kAIC=18) 1.00 (kMDL=18)

Table 3.1: MDL, AIC Noise values estimation

The results approximate the noise figure. Since this approach is based on models that
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take into account the relationship between the power throughout the whole spectrogram

and not particular waveforms, the estimation is very accurate. It correctly identifies the

peak as being the signal, singles out the power values for that peak and averages the other

samples in the periodogram for a perfect estimation of the noise figure.

There is a parameter that can be varied with a high effect on the output, L. In this

experiment, L was set to 1000. The ideal value for this parameter would always depend

on a case by case scenario, since the bandwidth and the amplitude of the sensed wave

influence the output of the criteria.

3.3 Conclusions

The Cognitive Radio is a necessary evolution for smart spectrum usage. While com-

plex solutions might present a good option in some cases, a simple solution like an Energy

Detector might be useful for situations where there is a noticeable difference between the

noise and signal values. A model for energy detection was presented considering a noise

and signal normal distribution for simplicity. The extension of such a model for other sig-

nal types might come from calculating other kinds of distribution regarding signal values.

Two models regarding signal detection that follow information theory and use FFT values

as eigenvalues were presented and tested with theoretical cases. The result using these

models was positive, detecting existing narrowband signals in the spectrum.



Chapter 4

Experiments on EBS

Parametrization

4.1 Testbed Description

The proposed EBS model was tested on a setup with two USRP B100 connected to a

PC with the following specifications:

� OS: Ubuntu 12.04 64 bit

� Memory: 4GB DDR3

� Processor: Intel Core i5-2320 @ 3.00GHz x 4

� Hard Drive: 320GB @ 7200rpm

The GNURadio version installed was the 3.7.1 and the USRP driver was UHD 003.005.003,

the latest versions available at the time of the experiment.

The two USRPs consist of a motherboard with a Xilinx Spartan 3A 1400 FPGA,

64MS/s dual ADC, 128MS/s dual DAC and USB 2.0 connection. These motherboards

used as a front-end device an SBX 400-4400 MHz Rx/Tx Daughterboard, with two RF

ports: a transceiver (TX/RX) and a receiver (RX2). The daughterboard provides up to

100mW of output power and a typical noise figure of 5dB.

The USRPs were connected to each other (TX/RX to RX2) through a coaxial cable

and two 30dB, 50Ohm attenuators to achieve lower SNR when transmitting.

29
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4.2 Experiment Description

The experiment consisted of three steps, described in detail in the following Subsec-

tions:

1. Determine, noise and signal data, determine thresholds

2. Collect data with regard to calculated thresholds

3. Detector characterization

The main objective is the comparison between the theoretical distribution of proba-

bility and the real distribution, by calculating the practical PD and PFA using the USRP

in real-time.

To achieve that, a python script was built in which the USRP parameters are defined.

The steps were done as follows:

4.2.1 Noise and Signal Data Computation

The script allows the user to select parameters such as:

� Frequency (Hz) - Operational frequency of the SU and the PU (in case of PU trans-

mission);

� Sample Rate (Samples/s) - The sample rate at which the SU and the PU receive

and transmit data. The observed spectrum bandwidth follows Nyquist’s rule, Fs/2;

� Packet Size (Samples) - The number of samples of a packet (NF );

� Sensing Samples (Samples) - The number of sensing samples in a packet (NS);

� Transmitter Gain (dB) - The output gain on the PU in case of transmission;

� Receiver Gain (dB) - The gain of the SU;

� Sensing Time (s) - The required for calibration;

� Noise File Name (String) - The name of the file where noise data is stored;

� Signal File Name (String) - The name of the file storing PU’s signal data;
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FFT N pts. |  |² Average N
points

Save Average 
To File

Figure 4.1: Secondary User GNURadio block diagram

Noise
Source

Throttle USRP
Sink

Figure 4.2: Primary User GNURadio block diagram

The script then does two data collections: one where the PU is transmitting and one

where it is not. The GNURadio design blocks for the PU and the SU are illustrated in

Figures 4.1 and 4.2.

The µ, σ values of a normal approximation of the values present in the averaged

periodogram are then calculated through the use of the Python NumPy library.

Three files are obtained: a binary file containing the signal spectrogram averages, a

binary containing the noise spectrogram averages and a file containing the parameters

used in the transmission.

The decision threshold range is defined on the lower bound by the minimum value

of the noise spectrogram and on the higher bound by the maximum vale of the signal

spectrogram.

4.2.2 Data gathering with parametrized thresholds

This part of the script loads the .dat files associated with noise and signal and the

properties.p file related with the operational parameters. In this part of the experiment,

a threshold block is added to the signal processing unit. This threshold was set for a PFA

value of 5%, according to the theoretical PFA curve. For each previously defined threshold

the block diagram in Figure 4.3 is executed and the results registered, first with the PU

transmitting and then with the PU silent.

USRP Y
Samples

Keep N
in Y

FFT N pts. |  |² Average N
points

Threshold

Figure 4.3: Secondary User Threshold block diagram
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4.2.3 Detector Characterization

The Energy Detector was characterized by calculating its Probability of Miss-Detection,

PMiss = (1− PD), after setting a threshold value (in this experiment, at PFA = 5%) and

changing the transmitter power, thus changing the SNR. The script allows the user to

choose what range of SNR is desired in comparison with the original, as well as the num-

ber of periodogram averages that should be collected. It then calculates the PMiss values

for each experiment and its corresponding value of SNR, increasing the SNR value for each

iteration. This allows the evaluation of the Energy Detector’s performance under a wide

range of SNR.

4.3 Experimental Results

The first experiment was done assuming the following set of parameters:

Frequency
(GHz)

NS NT Sample
Rate

SU
Gain
(dB)

PU
Gain
(dB)

SNR
(dB)

Primary AWGN
Amplitude

1.3 256 5120 1,000,000 10 10 -6.5 0.0001

Table 4.1: USRP Parameters for Experiment

The histogram of the collected data and the approximated normal distribution calcu-

lated with basis in this collected data for noise and signal characterization can be seen in

Figure 4.4.
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Figure 4.4: Histogram and Normal Distribution of First USRP Experiment
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These distributions allowed the PD and PFA values to be calculated through Equations

(3.5) and (3.6). These are the theoretical values. The next test consisted of sweeping these

threshold values from the minimum noise energy value to the maximum signal energy

value. Each of these thresholds was tested for 2.5 seconds of sensing. The resulting

PD and PFA are represented in Figure 4.5. As can be seen, the practical value also
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Figure 4.5: PD and PFA for the first Experiment

approaches the theoretical one. The detector was then characterized for a range of SNR.

For this same experiment, the threshold value at which the theoretical value of PFA is

5% was inspected from Figure 4.5. This value was then set as the threshold for the

characterization experiment. The SNR was swept and the PMiss values were computed

varying the NS/NT ratio. The results are depicted in Figure 4.6. As can be seen, the

probability of miss-detection decreases as the SNR increases. Moreover, the utilization

of more sensing samples per frame (higher NS/NT increases the performance in terms

of miss-detection but also increases the sensing overhead per frame. As can be seen in

Figure 4.7, which presents a zoom of the data presented in Figure 4.6 near 0 dB, if the goal

is to use the sensing to achieve approximately 0% in terms of probability of miss-detection

(PMISS), that is, always detect the PU, using a ratio NS/NT of 10% gives the user a gain
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−5 −4 −3 −2 −1 0 1 2 3

0

2

4

6

8

10

12

14

16

18

20
x 10

−3

X: −2.816
Y: 0

X: −0.6605
Y: 0

X: 1.435
Y: 0

X: 2.537
Y: 0.008403

SNR (dB)

P
M

is
s

N
S
/N

T
= 1.25%

N
S
/N

T
= 2.5%

N
S
/N

T
= 5%

N
S
/N

T
= 10%

Figure 4.7: PMiss detail for a range of SNR



4.4. NOISE FLOOR ESTIMATION EXPERIMENT 35

of 2.155dB over a ratio of 5%.

While the PMiss performance of the detector is stable and reaches the desired results,

the PFA performance deviates from the initial desired value of 5%, as illustrated in Figure

4.8. This is due to the difference between the approximated normal distribution and the

histogram in regards to the noise and signal figures (Figure 4.4). While theoretically the

noise value for all experiments would be the same, with lower NS/NT values there is a

slight deviation. For a real PFA of 5%, only the NS/NT = 10% ratio ensures a safe

interval.
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Figure 4.8: PFA for a range of SNR

4.4 Noise Floor Estimation Experiment

The noise floor estimation techniques presented in Subsection 3.2 were evaluated in a

real scenario. FFT values were computed during a given amount of time and then their

AIC and MDL noise estimation were computed using the computed FFT values. This was

done with the same USRP parameters as in Section 4.3.

4.4.1 First Experiment - Gaussian Noise

The First Experiment was conducted without considering PU’s transmission and was

performed in a Gaussian noise channel to observe the results generated by the algorithms
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where only Gaussian noise is considered. The power figures needed to be normalized for

the algorithm to work, since the product of the low range of power values received by the

USRP would invariably produce results converging to -infinite. The averaged periodogram

of the first channel sampling is illustrated in Figure 4.9.
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Figure 4.9: Periodogram for a Gaussian Noise transmission

The figure shows the filtering done by the USRP itself. While the amplitude of the

Gaussian noise is high, the algorithm still determines the whole signal to be noise by both

the AIC and MDL criteria. This is justified by the fact that the minimum value of both

models (AIC and MDL) occurs at k = 0, hence no part of the data is detected as being a

signal). This can be seen in Figure 4.10.

The conclusion that the whole spectrum contains noise is correct in this case. However,

for a small window and signals where that window is fully occupied by, the algorithm will

not detect the signal as it should, requiring a higher sample rate for the signal to be

noticeable in the spectrum.
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Figure 4.10: AIC and MDL values for a Gaussian Noise transmission
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Figure 4.11: Sorted periodogram for a Gaussian Noise transmission
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4.4.2 Second Experiment - Sine Wave

The Second Experiment consisted of transmitting a single sine wave from one USRP to

the other. The periodogram is represented in Figure 4.12 and the results for the criteria

are represented in Figure 4.13. Figure 4.14 represents the sorted periodogram of the

transmission.
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Figure 4.12: Periodogram for a Sine wave transmission

As can be seen in Figure 4.13, the division between the noise and signal values is at

k=7, due to the fact that only 7 bins in the FFT contain the signal values. This means

that in the ordered periodogram the power of the noise value is the average for all samples

at k=7 bins. The Sine Wave was correctly detected due to the high sample rate with

regards to the signal’s spectral occupation. This demonstrates that for a signal whose

power is noticeable on the spectrum, the algorithm shows good results.

4.4.3 Third Experiment - Three-Tone Wave

The third experiment consisted of transmitting a three-tone wave, consisting of a

sum of three Sine waves. The experiment’s objective was to obtain more information on
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Figure 4.13: AIC and MDL values for a Sine wave transmission
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Figure 4.14: Sorted periodogram for a Sine wave transmission
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how the models would react to a higher number of narrowband signals present in the

periodogram. The periodogram is presented in Figure 4.15.
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Figure 4.15: Periodogram for a Three-Tone wave transmission

As can be seen in 4.16, the values for the number of bins start to variate for the two

algorithms. For the MDL model, the value at which the minimum can be located is k=15.

For the AIC model, this value is k=18. This means that for the MDL model, every value

in the ordered periodogram from the bin number 15 upwards is classified as noise and for

the AIC model every bin starting at the number 17 is also noise. An average between the

two can be used later for a better approximation.

Figure 4.17 represents the ordered periodogram for the third experiment. A conclu-

sion can be made that the models react properly to the increase of signals present in

the periodogram, since the value of k is higher than the one where only one sine was

transmitted.
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Figure 4.16: AIC and MDL values for a Three-Tone wave transmission
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Figure 4.17: Sorted periodogram for a Three-Tone wave transmission
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4.5 Conclusions

This chapter presented experiment results regarding threshold calculation through

inspection, comparison between theoretical and practical probabilities of detection and

false alarm, and testing of the theory information criteria AIC and MDL. The practical

values of PD and PFA approached the theoretical values. The characterization of the

energy detector showed that for a relatively high SNR the energy detector may be used

as an effective and accurate detection method. The use of the theory information criteria

allowed the detection of narrowband signals, which implies it might be a good way to

detect a signal by itself.



Chapter 5

Conclusions

5.1 Final Considerations

This work was produced with the objective of testing the feasibility of using an SDR

system for Spectrum Sensing for cognitive radios. While the processing tools available

nowadays do not allow for communication and processing as fast as application specific

circuits, the solutions existent nowadays present a good compromise between speed and

flexibility. The use of an FPGA for some functions allows the GPP to focus on other non-

priority functions, presenting a good solution for the majority of communication schemes.

The performance by the USRP devices while the tests were being run shows that they

technically provide the required features for testing systems. The software suite GNURa-

dio is still underdeveloped and recommended mostly for practical testing in laboratory.

However, there has been a big push by the open source community to improve the overall

system and allow it to be more accessible for new users. The proposed solution for an

Energy Detector showed useful for certain circumstances. The theoretical and practical

values for the probabilities of detection and false alarm showed a good convergence for

a low sensing time. This was, however, for an AWGN signal, where the whole spectrum

shows increased power. For narrowband signals, the energy detector might underper-

form. However, for these narrowband signals, the MDL and AIC solutions were tested

and proven to be useful. These algorithms, originally used with eigenvalues, when used in

FFT values showed that the signals were correctly detected and a good noise floor estima-

tion was achieved. The objective of building a know-how regarding the GNURadio, USRP

43
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and SDR systems in general was also accomplished. An easy-to-use script was built using

the GNURadio platform, still allowing for change in the algorithms and further testing

on different circumstances by rewriting the Python code of the script. This allows for an

easier use for future work in the area.

5.2 Future Work

The coupling of the two studied detection techniques could be used. The SUs could

collect the data, calculate the FFT, and then apply both detection methods for both

narrow and wideband signals, allowing for a more robust system. This could be achieved

by changing the scripts built during the dissertation.

A conclusion can also be made regarding different signal types and the use of the

Energy Detector. For this dissertation the signal was considered to be Gaussian. However,

by adding options to the PU signal type, more characterizations can be made.
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Abstract: The Cognitive Radio is a solution proposed for the increasing 

demand of radio spectrum. Usually cognitive radios are adopted by the non-

license wireless users, which have a certain degree of cognition in order to only 

access to a given frequency band when the band is sensed idle. However, these 

bands and their use must be assessed, to avoid interfering with licensed users 

(primary users). The way to assess band’s occupancy is by discerning between 

just noise or noise plus signal. In this paper, energy-based sensing (EBS) is 

considered through the use of a classical energy detector. The work proposes 

and describes an implementation of an energy detector using a software defined 

radio (SDR) testbed and, after computing the probability of detection and false 

alarm from a real set of samples obtained with the SDR devices, we successfully 

validate a theoretical model for the probabilities. EBS’ performance is validated 

for several points of operation, i.e. for different signal-to-noise-ratio (SNR) 

values. These findings may be useful for building an EBS detector that defines 

its own decision threshold in real time given the target probabilities, since the 

formal probabilities are successfully validated. Moreover, our contribution also 

includes a detailed description of the implemented blocks using GNU Radio’s 

open-source software development toolkit. 

Keywords: Software Defined Radio, Energy Sensing, System Performance. 

1   Introduction 

Cognitive Radio (CR) has been proposed as an effective answer to alleviate the 

increasing demand for radio spectrum [1]. CR nodes, usually denominated Secondary 

Users (SUs) due to its non-licensed operation, must be aware of the activity of the 

licensed users, denominated Primary Users (PUs), in order to dynamically access the 

spectrum without causing them harmful interference. 

Spectrum Sensing (SS) aims at detecting the availability of vacant portions (holes) 

of spectrum and has been a topic of considerable research over the last years [1]. It 

plays a central role in CR systems. The traditional SS techniques include Waveform-

based sensing (WBS) [2], a coherent technique that consists on correlating the 

received signal with a priori known set of different waveform patterns; Matched 

Filter-based sensing (MFBS) [3], an optimal sensing scheme where the received 

signal is also correlated with a copy of the transmitted one; and Cyclostationarity-

based sensing (CBS) [4], a technique that exploits the periodic characteristics of the 



received signals, i.e., carrier tones, pilot sequences, etc. MFBS assumes prior 

knowledge of the primary's signal, while WBS assumes that the received signal 

matches with one of the patterns previously known. This means that these sensing 

techniques are not feasible in some bands, where several communication technologies 

may operate without a priori knowledge. On the other hand, CBS is impracticable for 

signals that do not exhibit cyclostationarity properties. 

Energy-based sensing (EBS) [5], [6] is the simplest spectrum sensing technique 

and its main advantage is related with the fact that it does not need any a priori 

knowledge of PU's signal. At the same time, it is well known that EBS can exhibit 

low performance in specific comparative scenarios [7], or when noise's variance is 

unknown or very large. EBS has been studied in several CR scenarios, namely on 

local and cooperative sensing schemes [1]. More recently, several EBS schemes 

adopting sub-Nyquist sampling have been proposed, which are advantageous in terms 

of the sensing duration [8]. 

This work evaluates the performance of the EBS technique in a real Software 

Defined Radio (SDR) platform. EBS’ theoretical probabilities of detection and false 

alarm are compared with practical ones obtained with the SDR system. The 

comparison indicates that the theoretical probabilities are successfully validated. 

2   Relationship to Collective Awareness Systems 

As it is well known, collective systems massively rely on communication that is most 

of the times supported by wireless links. Wireless communication technologies allow 

high level of device’s mobility, and are indicated for scenarios where mobility is 

required. Simultaneously, wireless technologies avoid the use of physical (wired) 

connections, being an effective solution for collective awareness systems relying on 

mobile players. As mentioned in the introduction, Cognitive Radio was proposed as a 

solution to alleviate the increasing demand for radio spectrum and, consequently, as 

more radio spectrum becomes available more wireless devices can be used. 

Consequently, CR will help the development of novel collective awareness systems 

by increasing the number of wireless devices that may access the network. 

3   Energy-based Sensing 

This work considers a cognitive radio network with a pair of PUs accessing the 

channel and a pair of SUs that access the channel in an opportunistic way. SUs are 

equipped with a single radio transceiver. However, because SUs are unable to 

distinguish SUs and PUs’ transmissions, SU’s operation cycle includes the sensing 

and transmission periods, which facilitates the synchronization of the sensing task. 

Sensing and transmission period durations are represented by   
  and   

   

respectively, as illustrated in Figure 1. 

 



 

Fig. 1.SU’s frame structure representing SU’s operation cycle. 

The SU’s frame,   
     

     
  , contains    slots, where each slot duration is 

given by the channel sampling period adopted in the spectrum sensing task. The first 

   slots define the sensing period duration, and the remaining ones (     to  ) 
represent the transmission period duration. To distinguish between occupied and 

vacant spectrum bands, SUs sample the channel during the sensing period   
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for each sample k two hypotheses can be distinguished 
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Therefore, for a single SU, the probability of detection   
    and the probability of 

false alarm    
    are represented by 
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where  ( ) is the complementary distribution function of the standard Gaussian. 

In the testbed L time samples are used to determine the fast Fourier Transform (FFT). 

The FFT is represented in L frequency bins and       FFTs are computed during the 

sensing period (  
  ). During this period, the average energy received per sample,   , 

is defined as 
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where    is the sum of the power of each individual FFT bin, given by 
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The decisions performed in the testbed are according to the following conditions, 

               
              

(7) 



              
               

where    contributes for the measured probability of detection, while    represents 

the case of false alarm. 

 

4   System Implementation 
 

4.1  Testbed 

 

The EBS was implemented using the GR (GNURadio) [9] system and the USRP [10] 

(Universal Software Radio Peripheral) platform. These tools are compliant with the 

notion of SDR (Software Defined Radio), mostly due to their flexibility when it 

comes to DSP (Digital Signal Processing). This flexibility opens up options when 

dealing with Digital Signal Processing. In this case, a range of FFT sizes can be 

chosen, instead of a fixed one like in most DSP devices. This allows for a variation in 

the     ⁄  ratio. 

The setup consisted of two USRP B100 devices connected to one computer. The 

USRPs are connected by a coaxial cable and two 30dB attenuators to achieve the 

desired signal-to-noise (SNR) values. One USRP implements a Primary User while 

the other behaves as the Secondary user, sensing for the presence of the first one. The 

basic blocks of the GR system are written in C++. These blocks link directly with the 

USRP and its FPGA. Python is used as a “glue” to connect these blocks and as a 

controller to the system flow (issuing start and stop commands). The script used to 

build the EBS was entirely written in python, also making use of the language's math 

tools. 

 

4.2   EBS Structure 

A conventional EBS consists of a low pass filter, an A/D converter, a square-law 

device and an integrator (see Fig. 1). The detector model used in this work consists of 

an A/D converter followed by an L-Point FFT (6).The FFT provides the windowing 

needed to filter out unnecessary frequency bands. This data is then averaged (see Fig. 

3), and the sensing output is determined according to       or       conditions (eq. 

7). 

 
 

Fig. 2.Typical Energy-based Detector 

 

 
 

Fig. 3. FFT Energy-Based Detector 

 

 
Fig. 4.GNURadio Blocks 



4.3   Primary User Signal 

 

The Primary signal is assumed to obey a Normal Distribution with higher amplitude 

than the noise distribution for sake of simplicity. The generation of its signal is 

achieved using the blocks in Fig.5. 

 

 
Fig. 5. PU signal generator 

 

5  Comparison Results 
 

5.1   Calibration and Parameter Calculation 

This subsection validates the noise  ( )  and PU’s signal  ( ) . The USRP’s 

parameters used in the validation are shown in Table 1. 

 
Table 1. USRP Configuration 

Freq. 

(GHz) 

L Sample Rate 

(Sps/s) 

SU Gain 

(dB) 

PU Gain 

(db) 

SNR 

(dB) 

Primary 

Amplitude 

1.3 256 1,000,000 0 17 0.11 0.05 

 

Noise ( ( )) and Signal plus Noise ( ( )   ( )) signals were sampled during a 10 

second interval. The histogram of the received energy is plotted in Fig. 6. In this 

figure the green curve approximates the noise distribution, while the red one 

approximates the noise plus signal distribution. Since the overlapping area of the 

approximate distributions is negligible, a decision threshold can be defined to identify 

the two conditions with low error.  

 
Fig. 6.Histogram of Signal and Signal plus Noise data and respective normal 

approximations. P is the number of occurrences. 



5.2   Practical Probabilities 

 

Taking the x-axis values of Fig. 6 as a hypothetical range for the decision threshold, 

the probabilities    and     were computed from the conditions expressed in equation 

(7). Basically,    was computed as the ratio of the number of times the condition    

was observed over the total number of decisions.    was similarly computed as the 

ratio of the number of times the condition    was observed over the total number of 

decisions. These probabilities are shown in Fig. 7, where the achieved results are 

compared with the theoretical ones. 

 

 
Fig.7.Theoretical and practical probabilities   and     (  

         ) 

 

As can be seen, the registered practical values approach the theoretical ones. This 

is, however, for a very long sensing period (512 ms). Fig. 8 shows the results 

achieved for a shorter sensing period (  =512000, which corresponds to   
   

      ). In this case the practical results underperform the case of longer sensing 

period, but the practical results roughly follow the theoretical trend. 

 

 
Fig. 8. Theoretical and Real Probabilities (  

          ) 



5.3   Performance Evaluation 

 

With the knowledge of the signal and noise statistics, a threshold can be defined so 

that the desired conditions (a certain pair of   and    ) can be achieved. By 

inspecting the theoretical curves for the probabilities, a threshold was defined where 

the     wasset to 5%. Since     only depends on noise power, and not on noise plus 

signal, its value should remain constant for any SNR value.   does not follow the 

same rationale, since it depends on SNR (eq. 3). The following test evaluates the 

detection performance for a fixed decision threshold (3.7E-07) and varying the SNR 

from -10 to 2 dB. Different sensing periods were also tested, from 0.0125s to 0.512s. 

The obtained results are shown in Fig 9. 

 

 

 
Fig. 9.  evolution for SNR [-10,2] dB. 

 

 

As can be seen, the statistic test for sensing period durations longer than 0.05s start 

to be redundant, since they present almost the same performance. At 0dB we observe 

that the detector performance is high, and for   
         the miss-detection 

probability is lower than 10%. Due to lack of space we do not present false alarm 

probabilities for the same scenario, but for sensing period durations longer than 0.05s 

we have observed that the false alarm probability is always lower than 5%, which 

confirms the expected performance for the adopted decision threshold.  

 

 

 

6   Conclusions 
 

In this work we have addressed the assessment of energy detection for cognitive radio 

systems. We started to characterize the performance of an energy detector through 

practical USRP devices. The theoretical performance was successful validated 

through practical results. For higher SNR values, the detection probability is high 

even for short sensing periods, achieving detection probabilities that approach 1. For 



lower SNR values a higher sensing time is required but even in these cases good 

performance can be achieved. 
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