
Pedro Miguel Rodrigues Cunha

Licenciado em Ciências da Engenharia Electrotécnica e de

Computadores

Implementing the SC-FDMA Transmission

Technique Using the GNURadio Platform

Dissertação apresentada para obtenção do Grau de Mestre em

Engenharia Electrotécnica e de Computadores, pela Universidade Nova

de Lisboa, Faculdade de Ciências e Tecnologia.

Orientadores : Prof. Doutor Luis Bernardo, FCT-UNL

Prof. Doutor Rui Dinis, FCT-UNL

Júri:

Presidente: Prof. Doutor Rodolfo Oliveira

Arguentes: Prof. Doutor João Oliveira

Vogais: Prof. Doutor Rui Dinis

Março, 2014

i

Implementing the SC-FDMA Transmission Technique Using the GNURadio

Platform

Copyright © Pedro Miguel Rodrigues Cunha, Faculdade de Ciências e Tecnologia, Uni-

versidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-

emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio

conhecido ou que venha a ser inventado, e de a divulgar através de repositórios cient́ıficos

e de admitir a sua cópia e distribuição com objectivos educacionais ou de investigação,

não comerciais, desde que seja dado crédito ao autor e editor.

ii

To all that are a part of my life.

ii

Acknowledgements

First, I would like to express my gratitude to my supervisor Luis Bernardo for all

the guidance, support and patience that he gave me along the realisation of this the-

sis; to my co-supervisor Rui Dinis for the scientific knowledge that he gave me to com-

plete this project. Without their support, this work could not be developed. Also,

to other teachers of the Telecommunications Section for their sympathy and academic

support. Last, thank you to FCT/MEC Femtocells (PTDC/EEA- TEL/120666/2010),

MANY2COMWIN (EXPL/EEI-TEL/0969/2013) and ADIN (PTDC/EEI-TEL/2990/2012)

projects for the financial support.

From the Department of Electrical Engineering, I would also like to give my special

thanks to my colleagues and friends Pedro Sardinha, António Furtado, João Silva, Nuno

Pereira, Filipe Martins, Carlos Ribeiro, Fernando Rosado, Diogo Rocha and Bruno Ribeiro

for their friendship and fellowship during my academic years.

To my closest friends Rui Cabrita, Pedro Anjos, Filipe Alves, Filipe Oliveira, Gonçalo

Mendonça and Catarina Branco for their friendship and times together through the years.

A special thanks, because I am very grateful for all the support, love and encourage-

ment my girlfriend Marta gave me during our time together in this last years, I appreciated

every moment. Thank you Marta.

I would like to express my gratitude to my grandmother Gertrudes for her love and

education she gave me in my first years, and to the rest of my family that support me in

my tough times and saw me grow up, specially my uncle José Paulo. Finally, from the

deep of my heart I would like to thank my parents for their love, education and support

they gave me during all my life.

To all, thank you very much.

iii

iv

Resumo

Com a evolução na área das telecomunicações, foram implementadas várias técnicas

de transmissão de dados. Na nova geração de comunicações móveis, Long Term Evolution

(LTE), o Orthogonal Frequency Division Multiplexing (OFDM) é usado para as trans-

missões de dados no downlink e o Single Carrier - Frequency Division Multiple Access

(SC-FDMA) é usado para as transmissões de dados no uplink, devido a permitir uma

maior eficiência energética na transmissão, com um menor rácio entre a potência de pico

e a potência média transmitida. Esta tese foca-se nestas duas técnicas de transmissão e

implementa um protótipo para o SC-FDMA utilizando a plataforma GNURadio.

O GNURadio é baseado no conceito Software-Defined Radio (SDR) e usa os equipa-

mentos USRP para fazer a transmissão de sinais. Numa primeira análise, examinou-se o

modulador OFDM que já estava implementado na plataforma GNURadio. Para criar o

SC-FDMA, modificou-se os blocos modulador e desmodelador do OFDM e implementou-

se módulos que trabalhassem com o novo sistema de preâmbulos (Zadoff-Chu), que real-

izassem novos algoritmos FFT e novas sincronizações.

Com o GNURadio-Companion GRC, testou-se ambas as modulações usando vários

tipos de ambientes, alterando a potência de rúıdo e o desvio da frequência. Por último,

realizaram-se experiências com os USRP em diferentes frequências, usando o cabo de

loop-back e as antenas.

O protótipo proposto foi implemento com sucesso. Comparando o modelador SC-

FDMA com o OFDM, os resultados dos testes mostram que a nova técnicas de transmissão

foi mais eficiente em altas frequências.

Palavras Chave: USRP, GNU Radio, OFDM, SC-FDMA.

v

vi

Abstract

With the evolution in the telecommunication field, several transmission techniques

have been implemented. With the new generation of mobile communications, Long Term

Evolution (LTE), the Orthogonal Frequency Division Multiplexing (OFDM) is used for the

downlink data transmission and the Single Carrier - Frequency Division Multiple Access

SC-FDMA) for the uplink data transmission and due to its more efficient energy efficiency,

due to the low peak-to-average power ratio. This thesis focuses on these two transmission

techniques and implements a SC-FDMA prototype in the GNURadio platform.

GNURadio is based on the Software-Defined Radio (SDR) concept and uses the USRP

equipment to do the signal transmission. In a first analysis, we examine the OFDM

modulator already implemented in the GNURadio platform. In order to create the SC-

FDMA, we have modified the OFDM modulator and demodulator blocks and implemented

modules that work with the new preamble system (Zadoff-Chu), to perform new FFT

algorithms and new synchronizations.

Using the GNURadio-Companion GRC software, we tested both modulations using

several types of environment, while changing the noise power and the frequency offset.

Last, we performed experiments using the USRP devices in different frequencies, using

the loop-back cable and the antennas.

The proposed prototype was successfully implemented. The tests comparing the SC-

FDMA modulator with the SC-FDMA, show that the new transmission technique per-

formed better at higher frequencies.

Keywords: USRP, GNURadio, OFDM, SC-FDMA.

vii

viii

Acronyms

ADC Analog to Digital Converter

DAC Digital to Analog Converter

FDM Frequency Division Multiplexing

FDE Frequency Domain Equalization

FFT Fast Fourier Transform

FPGA Field-Programmable Gate Array

GRC GNURadio Companion

IFDMA Interleaved FDMA

ICI Inter-Carrier Interference

IBI Inter-Block Interference

IFFT Inverse Fast Fourier Transform

ISI Inter-Symbol Interference

LTE Long Term Evolution

LFDMA Localized SC-FDMA

MC Multi-Carrier

MIMO Multiple-Input and Multiple-Output

ML Maximum Likelihood

MMSE Minimum Mean Square Error

ix

x ACRONYMS

OFDM Orthogonal Frequency Division Multiplexing

PAPR Peak-to-Average Power Ratio

PER Packet Error Rate

PSK Phase Shift Keying

PN Pseudorandom Noise

QAM Quadrature Amplitude Modulation

SC Single Carrier

SC-FDMA Single Carrier - Frequency Division Multiple Access

SDR Software Defined Radio

SNR Signal to Noise Ratio

USRP Universal Software Radio Peripheral

ZF Zero Forcing

Contents

Acknowledgements iii

Resumo v

Abstract vii

Acronyms ix

1 Introduction 1

1.1 Context . 1

1.2 Objectives and Major Contributions . 2

1.3 Dissertation Structure . 3

2 Theoretical Concepts 5

2.1 Software Defined Radio . 5

2.1.1 SDR principle and analog radios . 6

2.1.2 Universal Software Radio Peripheral (USRP) 6

2.1.3 Daughterboards . 7

2.1.4 GNURadio . 8

2.1.5 GNURadio Block Types . 9

2.1.6 GNURadio Tools . 10

2.2 Block Transmission Techniques . 11

2.2.1 Multi-Carrier and Single Carrier Modulations Comparison 11

2.2.2 Orthogonal Frequency Division Multiplexing 14

2.2.3 Single Carrier - Frequency Division Multiple Access 21

3 System Implementation 27

3.1 Dial Tone Example . 27

3.2 GNURadio Tools . 29

3.2.1 Creating New Blocks (gr modtool) 29

3.2.2 Filter Design Tool . 30

3.3 OFDM Block . 32

3.3.1 OFDM Modulator Block . 34

xi

xii CONTENTS

3.3.2 OFDM Demodulator Block . 37

3.4 SC-FDMA Block . 44

3.4.1 SC-FDMA Modulator Block . 45

3.4.2 SC-FDMA Demodulator Block . 49

3.4.3 Other Files . 53

4 Performance Analysis 55

4.1 Tests on GRC Using a Perfect Channel . 55

4.1.1 OFDM Transmission . 56

4.1.2 SC-FDMA Transmission . 62

4.2 Tests on GRC Using Different Noise and Frequency Offsets 67

4.2.1 Noise Tests Results . 69

4.2.2 Frequency Offset Tests Results . 71

4.3 Tests on USRP Hardware . 73

4.3.1 Results Using the Loop-back Cable 74

4.3.2 Results Using the Antennas . 75

5 Conclusions 77

5.1 Final Considerations . 77

5.2 Future Work . 79

Bibliography 80

Appendices 85

A Dial Tone Example 87

B Block Example Code 93

C OFDM Block Code 97

C.1 OFDM Modulator Block . 98

C.2 OFDM Demodulator Block . 104

D SC-FDMA Block Code 111

D.1 SC-FDMA Modulator Block . 112

D.2 SC-FDMA Demodulator Block . 118

List of Figures

2.1 SDR sender and receiver module diagram [Mar09]. 6

2.2 GNURadio block connections . 8

2.3 GRC interface. 11

2.4 Conventional FDM [Sil10] . 13

2.5 MC cyclic prefix [Sil10] . 16

2.6 OFDM modulator block [Sil10] . 18

2.7 OFDM demodulator block [Sil10] . 19

2.8 Sub-carrier allocation (Distributed mode and Localized mode) [HGMG06] . 22

2.9 SC-FDMA modulator block . 22

2.10 SC-FDMA demodulator block . 24

3.1 Dial Tone example - block diagram. 28

3.2 First Examples graphs - Upper graph - experiment 1. Bottom graph -

experiment 2. 29

3.3 GNURadio Filter Design tool interface. 31

3.4 Root Raised Cosine filter performance graphs 32

3.5 GRC OFDM blocks. 33

3.6 Block diagram of the OFDM modulator. 34

3.7 Data allocation inside each block. 35

3.8 Diagram of the OFDM demodulator. 37

3.9 Block diagram of ofdm receiver.py. 38

3.10 Result of the preamble block conversion. 39

3.11 State machine in the ofdm demod module. 43

3.12 Simplified SC-FDMA schematics. 44

3.13 Block diagram of the SC-FDMA modulator. 46

3.14 State machine in preambles block. 47

3.15 Block diagram of the SC-FDMA Demodulator. 49

3.16 Block diagram of scfdma recv. 50

3.17 GRC SC-FDMA blocks . 53

4.1 First 100 symbols of the inputted file. 56

4.2 OFDM schematics indicating which outputs are observed. 57

xiii

xiv LIST OF FIGURES

4.3 Pkt input module - data block outputted. 58

4.4 Preamble samples vector. 58

4.5 The absolute value of the preamble block symbols in the time-domain. . . . 59

4.6 The spectrum of the preamble block symbols after the sampler module. . . 60

4.7 Frames after being converted in fft demod module. 60

4.8 Constellation of a data block - QPSK symbols marked in red. 61

4.9 Frames after equalization inside the ofdm frame acq module. 61

4.10 SC-FDMA schematics indicating which outputs are observed. 62

4.11 Data block constellation - outputted from pkt input module. 63

4.12 Preamble sequence. 63

4.13 Spectrum of the symbols in a data block after mapping. 64

4.14 Absolute value of the preamble block symbols in the time-domain. 64

4.15 The absolute value of the preamble block symbols after the sampler module. 65

4.16 Preamble and data block after the fft demod module. 66

4.17 Preamble block after the equalization in the scfdma frame acq module. . . . 66

4.18 Constellation of a data block after being converted to the time-domain -

QPSK symbols marked in red. 67

4.19 Channel model block. 67

4.20 Transmission blocks with the Channel Model block in the GRC. 68

4.21 Data block after the equalization, with a noise voltage of 0.00001 in the

channel. 69

4.22 Data block after the equalization, with a noise voltage of 0.001 in the channel. 70

4.23 Data block after the equalization, with a noise voltage of 0.1 in the channel. 70

4.24 Unsuccessfully equalized data block in SC-FDMA. 71

4.25 Data block after the equalization, with a frequency offset of 683µHz in the

channel. 72

4.26 Data block after the equalization, with a noise voltage of 0.1 in the channel. 72

4.27 USRP setup using the loop-back cable. 74

4.28 USRP setup using the antennas. 75

A.1 Dial Tone example - block diagram . 87

B.1 Test diagram using the new block. 95

B.2 Cosine wave and its square. 95

List of Tables

3.1 First examples setups. 28

3.2 Parameters to design a Root Raised Cosine filter. 32

4.1 Parameters used in GRC tests of the modulation techniques. 56

4.2 Parameters to test the modulation techniques. 68

4.3 Parameters used by both modulation techniques. 73

4.4 Some parameters used for the SC-FDMA modulation. 73

4.5 OFDM experiments results using the loop-back cable. 74

4.6 SC-FDMA experiments results using the loop-back cable. 75

4.7 OFDM and SC-FDMA PER values. 75

4.8 OFDM and SC-FDMA results using the antennas and with a frequency of

2.48 GHz. 76

xv

xvi LIST OF TABLES

Chapter 1

Introduction

1.1 Context

For decades, the communications systems have been growing exponentially and over

time, filling the radio spectrum where they are implemented. On top of everything, the

public demanded for faster and more reliable communications systems. To serve this de-

mand, in 1980s the telecommunication community revisited a method that was conceived

by Robert W. Chang in 1966, the Orthogonal Frequency Division Multiplexing (OFDM).

Before this method was implemented, the total signal bandwidth was split into N non-

overlapping frequency sub-channels, and each sub-channel was modulated with an inde-

pendent symbol and then the N sub-channels were modulated in the frequency-domain.

With the application of Frequency Division Multiplexing (FDM) and subsequently, the

OFDM transmission technique, the carriers begun to overlap with each other, but they

did not create Inter Carrier Interference (ICI). To obtain this performance the carriers

have to be mathematically orthogonal between each other [NL08].

OFDM was the predominant method used until 1993, when H. Sari and his team pre-

sented in a conference paper [HSJ94], the advantages and drawbacks of OFDM modulation

technique; they also introduced a different transmission technique called Single Carrier -

Frequency Division Multiple Access (SC-FDMA). The authors proposed that SC-FDMA

could attain the performance of the OFDM transmission while easing the Peak-to-Average

Power Ratio (PAPR) and synchronization problems. SC-FDMA merge the characteristics

of a Single Carrier (SC) transmission and the multiple access similar to the OFDM trans-

1

2 CHAPTER 1. INTRODUCTION

mission technique. SC-FDMA tries to take advantage of the strengths of both techniques

[CS10].

The community has been fighting over the years between the two transmission tech-

niques, until a major development put the SC-FDMA transmission technique in the spot-

light. This happened when the Third-Generation Partnership Project (3GPP) started its

work to define the technical standards for the so-called Beyond 3G systems. At the end of

2008, the release 8 of the 3GPP standard adopted OFDM for the downlink and SC-FDMA

for the uplink [NL08]. In the release 11, the 3GPP standard adopted clustered SC-FDMA

as the LTE-Advanced uplink access scheme, otherwise known as discrete Fourier transform

spread OFDM (DFT-S-OFDM) [Tec11].

Parallel to the development of the new transmission techniques, the Software Defined

Radio (SDR) was proposed in 1992. This system uses software instead of hardware to

do the signal process and is used mainly for applications that run in multiple bands,

reducing the number of hardware components and its weight [Mit95]. One software based

on this concept is GNURadio. This environment does an excellent job creating new blocks

necessary for the signal processing and testing them in several environments, using the

software GNURadio-Companion (GRC). GNURadio already comes with several blocks

implemented, including the OFDM modulator and demodulator blocks.

1.2 Objectives and Major Contributions

As previously mention, GNURadio software comes with several signal processing

blocks implemented and one of them is the OFDM transmission technique. The main

objective of this project is to implementation the SC-FDMA transmission technique in

the same platform. The main objectives of this thesis are:

� Introduce the GNURadio software, presenting some of its features;

� Present the theory behind the transmission blocks, that are referred in this project;

� Explain the OFDM modulator and demodulator blocks implemented in GNURadio;

� Describe the implementation done to create the SC-FDMA blocks;

1.3. DISSERTATION STRUCTURE 3

� Test and compare the SC-FDMA and the OFDM modulator and demodulator blocks,

and see how they work and the differences between them.

The blocks developed in this project are implemented in GNURadio software, which

is open source. This way, the SC-FDMA transmission technique developed can be shared,

allowing other users to use or modify it.

1.3 Dissertation Structure

This dissertation is divided in five chapters and four appendices. Chapter 2 explains

the SDR concept and the software associated with it, GNURadio. It also, explains which

block types can be implemented and which tools exist in GNURadio. After, this chapter

describes the theory behind the transmission techniques handled in this thesis.

Chapter 3 provides three examples of the tools from GNURadio. First, the Dial Tone

example illustrates the use of the GRC tool; second, an example on how to create new

blocks in GNURadio is provided; and third, an example shows the use of the filter design

tool. After the examples, this chapter explains the OFDM modulator and demodula-

tor blocks, already implemented in GNURadio. Finally, the chapter explains the main

contribution of this dissertation: the implementation of the SC-FDMA blocks.

In chapter 4, the OFDM and SC-FDMA modulator and demodulator blocks are tested.

First, we test the transmission blocks and see the outputs of some modules within them,

in a noise and frequency distortion free environment. Second, using different noise and

frequency distortions, we see how the transmission techniques hold up in the tests and

measure the errors that occur. Lastly, we test the blocks using a real channel and see the

differences between them.

Chapter 5 summarizes the main analysis done in this project, shows the main contri-

butions of this work and refers to future work.

Appendix A explains the Dial Tone example using the GRC software. Appendix B

describes the modifications performed in the new module created in chapter 3.2.1, which

computes the square of the inputted signal. Appendix C and appendix D complement the

explanation performed in chapters 3.3 and 3.4, showing the main modules that build the

OFDM and SC-FDMA modulator and demodulator blocks, respectively.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Theoretical Concepts

In the telecommunications world there are several modulation types to do data trans-

mission. OFDM is used for that purpose in several systems such as the Digital Video

Broadcasting [ser09], Digital Audio Broadcast (DAB), Asymmetric Digital Subscriber Line

(ADSL)[Rum08], wireless broadband access technologies IEEE 802.16a/d/e [Bib04][IEE06]

and the new generation of the cellular system in the Long Term Evolution has a downlink

modulator [3GP06]. Another relevant modulation scheme is SC-FDMA adopted in the

Long Term Evolution for the uplink access [LAMRdTM08].

This chapter introduces the theoretical bases necessary to develop the SC-FDMA

module on the GNURadio. The first section 2.1 introduces SDR main concepts as well as

the hardware used by the system, the software GNURadio, the definition of the block types

and the tools used in this environment. The second part 2.2 briefly introduces the Multi

Carrier (MC) and Single Carrier (SC) modulations and their properties. The transmission

and receiver blocks also are characterized in both modulation types. Subsection 2.2.2

describes the OFDM scheme and 2.2.3 the SC-FDMA scheme.

2.1 Software Defined Radio

In 1992, Joe Mitola introduced the Software Defined Radio (SDR) concept to the

world. This new concept uses software instead of hardware to process signals which are

sent through antennas, in various frequencies. SDR is specially needed when there are

applications that use multiple bands, reducing the number of hardware components and

5

6 CHAPTER 2. THEORETICAL CONCEPTS

its weight [Mit95].

This section introduces the main elements of SDR, including USRP, daughterboards

(hardware components), GNURadio, block types and some software tools.

2.1.1 SDR principle and analog radios

Before SDR appears, traditional radio components (filters, modulators, mixers, ampli-

fiers, FFT, etc) had their own fixed function and needed to be implemented exclusively via

hardware. With SDR that principle was changed, almost all blocks are now implemented

through programming and processed by a computer, simplifying the creation of new radio

prototypes, as well as testing them and/or changing their configuration.

The signals must be analog to be transmitted through the air but SDR can only

process them in the digital domain. To achieve this, SDR converts the analog signals to

digital and vice-versa. The figure 2.1 shows that SDR uses an ADC to convert the antenna

signals to the digital domain and processes them using software. When SDR needs to send

any signals, they are converted through a DAC to the analog domain and are transmitted

in the desired radio frequency.

Software
Transmit RF
Front End

D
A

C

Receive RF
Front End A

D
C

Software

Figure 2.1: SDR sender and receiver module diagram [Mar09].

2.1.2 Universal Software Radio Peripheral (USRP)

USRP is a hardware designed to give general computers the ability to operate with high

bandwidth software radios, basically giving them the digital baseband and intermediate

frequency (IF) section of a radio communication systems. USRP does all of the waveform-

specific processing. The FPGA is an important part on the USRP, because it is in this

board where all the DACs and ADCs are connected. The FPGA also does the high

2.1. SOFTWARE DEFINED RADIO 7

bandwidth math, reducing the data rate to rates compatible with USB 2.0 [Ham08].

USRP is a flexible low-cost platform for SDR developed by Matt Ettus and his com-

pany, Ettus Research. They provide a vast variety of USRP models such as the Bus Series,

the Networked Series and the Embedded Series. The Bus Series (USRP1 and USRP B100)

provides a low-cost RF processing capability and designed for cost-sensitive applications

requiring exceptional bandwidth processing capability and dynamic range. This model

supports streams up to 8 MS/s and users may implement custom functions in the FPGA

fabric. The Networked series (USRP N200 and USRP N210) provides high-bandwidth,

high-dynamic range processing capability. It uses a Gigabit Ethernet interface and be-

cause of that, the devices can transfer up to 50 MS/s of complex baseband samples. The

Networked model uses a dual 14-bit, 100 MS/s ADC and dual 16-bit, 400 MS/s DAC.

Also, it is provided a MIMO expansion port which can be used to synchronize two de-

vices, making it the recommended solution for MIMO systems. Finally, the Embedded

series (USRP E100 and USRP E110) combine the same functionality of the other USRP

devices with an OMAP 3 embedded processor. This devices do not need to be connected

to an external PC to operate. The Embedded Series is designed for applications that

require stand-alone operation. The tests presented in this thesis were measured using a

Bus Series, specifically the USRP B100 [Res13].

2.1.3 Daughterboards

The USRP alone cannot send and receive signals through the antenna. It needs to

attach Daughterboards that serve as RF front ends. The daughterboards can belong to one

of on three classes: Receivers, Transmitters and Transceivers. The SBX was the chosen

to do the tests from a great diversity of daughterboards (BasicRX, BasicTX, SBX, WBX,

etc.). This board has a wide bandwidth transceiver, that provides up to 100 mW of output

power, and a typical noise figure of 5 dB. Due to the local oscillators for the receive and

transmit chains, that operate independently, the board allows dual-band operation. The

SBX is MIMO capable and can achieve a 40 MHz of bandwidth in frequencies between

400 MHz and 4,4 GHz. It is widely used in areas as WiFi, WiMax, S-band transceivers

and 2.4 GHz ISM band transceivers [Res13].

8 CHAPTER 2. THEORETICAL CONCEPTS

2.1.4 GNURadio

There are several free software that can be found for SDR, some focused in using

only the software to do the signals computation and USRP antennas to make the signals

transmission (GNURadio, SDR4all, etc.). Other software, like HPSDR, may use the

hardware component to do some of the computation [Mar09].

GNURadio was launched in 2001 by John Gillmore and Eric Blossom and is distributed

using the GNU General Public License. It is today one of the most advanced open source

project in the SDR area and an easy one to begin with. GNURadio target users are the

hobbyists, the academics and the researchers. Nowadays, GNURadio provides examples,

reference systems and applications for Global System for Mobile communications (GSM),

OFDM, High-definition television (HDTV) and other areas [Mar09].

GNURadio is divided in blocks that do the signal processing, they are written in C++,

it also uses flowgraphs that interconnects the blocks and configures them according to our

requirements, they are written in Python. GNURadio blocks work with a infinite flow of

data of a certain type like complex, short and float [Mar09].

The interface compiler, that allows the integration between C++ and Python lan-

guage, is called Simplified Wrapper and Interface Generator (SWIG). Figure 2.2 shows

the structure of a SDR application including the GNURadio and USRP [AM09].

Python Flow Graph
(created using the processing blocks)

SWIG (connects C++ blocks with python code)

Signal Processing Blocks in C++

USB

RF Front End

G
N

U
R

ad
io

U
SR

P

Figure 2.2: GNURadio block connections

2.1. SOFTWARE DEFINED RADIO 9

GNURadio is updated periodically and the version used in this thesis is 3.6.4.1. The

current stable version available is 3.7.0.1.

2.1.5 GNURadio Block Types

GNURadio offers four different types of blocks, implemented using C++: general,

synchronous, decimation and interpolation blocks. Using Python, the programmer can

create flowgraphs, where the earlier blocks are combined to create a hierarchical block.

A general block has a N:M ratio, which defines the relation between the number of

input items and the number of output items; the other blocks are just specializations of

this type of block. The main method of a general block is general work(), however, for

the other types is work(). One of the input parameters is ninput items, which is a vector

describing the length of each input buffer; noutput items outputs the same length of data

as the input buffer, but this behaviour can be changed using the forecast() method.

A synchronous block has a ratio of 1:1, allowing users to write blocks that consume

and produce the same number of items per port. Also, it can have any number of input

and output ports. This block is used to create source blocks, where there are not any

input ports, as well as sink blocks, where there are not output ports. The synchronous

block has the same length in items for all input and output buffers.

A decimation block has a ratio of N:1. This means that the number of input items

are a fixed multiple N of the number of output items. N is represented by the decimation

factor, which is a parameter of gr sync decimator constructor, given by

inputitems = noutput items ∗ decimation. (2.1)

On the other hand, an interpolation block has an 1:M ratio, meaning that the number

of output items is a fixed multiple of the number of input items. The interpolation factor

is provided as a constructor parameter of the gr sync interpolator and is given by

inputitems =
noutput items

interpolation
. (2.2)

10 CHAPTER 2. THEORETICAL CONCEPTS

Finally, the hierarchical blocks are written in Python. This type of block aggregates

other blocks and connects them using the connect function. The top block is the main

data structure of a flowgraph and all blocks are connected under this block. GNURadio

generates the top block automatically, when all the connections and configurations are

correct.

2.1.6 GNURadio Tools

GNURadio provides tools to help in project development, such as the GNURadio-

Companion (GRC), gr modtool and gr filter design.

GRC is an open-source Visual programming language that uses the GNURadio li-

braries, providing users an easy way to create GNURadio applications. Figure 2.3 gives

a general idea of its interface. The GRC uses drag-and-drop to interact and define con-

nections between the modules. GRC also provides information about the configuration of

the system parameters, about its correctness, saving time and avoiding mistakes. When

everything is set, GRC builds the python code, that runs the application. Thanks to

the graphical and to the user-friendly interface, GRC offers an easy way of inserting and

testing new modules in the system. However, GRC has some disadvantages and does not

give place for block customization besides the configuration of the parameters, therefore

GRC is not recommended for the implementation of a new module.

GRC is an interesting tool in an educational environment because it allows students

to create and change GNURadio applications in a very short learning period. But in a

research context, which needs more customization, GRC is not recommended because it

slows down the research process. Instead, the researchers need to create new custom made

blocks and add them to GRC, using the XML file that describes the module.

When creating new modules, it can be very difficult to create, compile and install all

the files and folders necessary. For that purpose, GNURadio has a tool that allows an easy

way to do it: the gr modtool. In the implementation chapter it is given a short tutorial on

how to build new blocks step-by-step.

In the signal processing world, it might exist interference between signals or even noise

that destroys the signal. This way, the developers use filters to reduce the interference

2.2. BLOCK TRANSMISSION TECHNIQUES 11

and have a cleaner signal. GNURadio provides several filters templates and a tool called

gr filter design and the users can design the filters using the parameters that GNURadio

provides. More information about this tool is available in the implementation chapter.

Figure 2.3: GRC interface.

2.2 Block Transmission Techniques

This section starts by providing a brief comparison between Multi-Carrier (MC) and

Single Carrier (SC) modulations, which are respectively, the base theoretical concept for

the OFDM and SC-FDMA. Afterwards, this section explains each transmission techniques

in detail.

2.2.1 Multi-Carrier and Single Carrier Modulations Comparison

The SC transmission is a linear modulation that uses a single carrier with a high

symbol rate. This way, the energy for each symbol is divided by the total transmission

band. To obtain this linearity, the complex envelope of an N-symbol burst (N have to be

even) must be written as

12 CHAPTER 2. THEORETICAL CONCEPTS

s(t) =

N−1∑
n=0

snr(t− nTs), (2.3)

where sn is the complex coefficient that matches the nth symbol, selected in a chosen con-

stellation (Phase Shift Keying (PSK), or a Quadrature Amplitude Modulation (QAM));

r(t) designates the support pulse with the proper constellation and Ts the symbol duration.

The Fourier transform to s(t) is given by,

S(f) = F {s(t)} =

N−1∑
k=0

snR(f)e−j2πfnTs. (2.4)

The transmission band for each data symbol sn, is equal to the band occupied by

R(f), which is the Fourier transform of r(t).

The MC transmission sends the N symbols in the frequency-domain, each in a different

sub-carrier, during the same interval of time (T). The multi-carrier signal assumes the

following spectrum,

S(f) =
N−1∑
k=0

SkR(f − kF), (2.5)

where Sk refers the kth frequency-domain symbol, N the number of the used sub-carriers

and F = 1
Ts

the spacing between sub-carriers. Doing the inverse Fourier transform to each

side of 2.5, leads to the dual of 2.4,

s(t) = F−1 {S(f)} =
N−1∑
k=0

Skr(t)e
−j2πkFt, (2.6)

which represents the complex envelope of the corresponding multi-carrier burst. Compar-

ing all the above equations, it is clear that the multi-carrier modulation is dual to single

carrier modulation and the same way around.

Frequency Division Multiplexing (FDM), besides being the simpler multi-carrier mod-

2.2. BLOCK TRANSMISSION TECHNIQUES 13

ulation method, gives no overlap between different sub-carriers in the spectrum. For the

bandwidth of each Sk to be a fraction 1
N of the total transmission band, the bandwidth

R(f) must be smaller than F (F is the bilateral bandwidth and F
2 the unilateral band-

width), as the figure 2.4 shows.

-2 -1 0 1 2-3 3

f/F

1

Figure 2.4: Conventional FDM [Sil10]

The Inter-Symbol Interference (ISI) is a problem in this method. To prevent it, the

pulse r(t) must verify the next orthogonality condition,

∫ +∞

−∞
r(t− nTs)r∗(t− n

′
Ts)dt = 0, n 6= n

′
. (2.7)

In the frequency-domain, the orthogonality condition between each sub-carriers is

∫ +∞

−∞
R(f − kF)R∗(f − k′F)df = 0, k 6= k

′
. (2.8)

Using of the Parseval’s Theorem in 2.8 we get

14 CHAPTER 2. THEORETICAL CONCEPTS

∫ +∞

−∞
|r(t)|2 e−j2π(k−k

′
)Ftdt = 0, k 6= k

′
. (2.9)

In the SC modulation case, if we use different pulses using r(t − nTs) with n =

....,−1, 0, 1, ..., it still prevails the orthogonality between the pulses, even if they overlap.

For example, using the pulse

r(t) = sinc

(
1

Ts

)
, (2.10)

with sinc(x) , sen(πx)
πx , the equation 2.7 is verified.

In the MC scheme the behaviour is identical and the orthogonality is still secure

between the sub-carriers, even when we use distinct R(f − kF) and they overlap. For

instance, the orthogonality between sub-carriers (expressions 2.8 and 2.9) still happens

when,

R(f) = sinc

(
1

F

)
, (2.11)

that is equal to have in the time-domain a rectangular pulse r(t), with period T = 1
F

[Sil10]. This way, the orthogonality condition 2.9 now is

∫ t0+T

0
e−j2π(k−k

′
)Ftdt = 0, k 6= k

′
. (2.12)

2.2.2 Orthogonal Frequency Division Multiplexing

OFDM is a MC data transmission technique, where the data is transmitted on N

narrowband parallel sub-carriers, each using a portion of the available bandwidth and

spaced each other by F > 1
TB

(TB is the period of an OFDM block). So each block

is N times bigger than the symbol period. The difference between OFDM and FDM is

that each sub-carrier, in the first scheme, is spaced in frequency by a minimum distance,

2.2. BLOCK TRANSMISSION TECHNIQUES 15

fulfilling the orthogonality between them. This way, the complex envelope of an OFDM

is given by,

s(t) =
∑
m

[
N−1∑
k=0

S
(m)
k ej2πkFt

]
r(t−mTB), (2.13)

which characterizes a sum of blocks with the duration TB > T , where T = 1
F (duration of

the useful part of the block) and they are transmitted at a rate of F > 1
TB

. The N data

symbols, Sk; k = 0, ..., N − 1, are sent during the mth block and the complex sinusoids,

ej2πkFt; k = 0, ..., N − 1, denote the sub-carriers.

Consider the mth OFDM block. It can be expressed as

s(m)(t) =

N−1∑
k=0

S
(m)
k r(t)ej2πkFt =

N−1∑
k=0

S
(m)
k r(t)ej2π

k
T
t, (2.14)

with r(t) being the transmitted impulse, where the time interval is bigger than T (TB =

T + TG),

r(t) =

 1, [−TG, T]

0, elsewhere
(2.15)

the guard interval and is larger than 0. Although condition 2.9 is not verified by a pulse

defined by 2.15, the orthogonality is still obtained in the time interval between [0, T],

which is the effective detection interval. Each sampling instant is given by

s(m)(t) =

N−1∑
k=0

S
(m)
k ej2πkFt, 0 6 t 6 TB. (2.16)

The symbol period must be longer than the delay spread through the time-dispersive

radio channel.

Using 2.6, the mth block should take the form

16 CHAPTER 2. THEORETICAL CONCEPTS

s(m)(t) =

N−1∑
k=0

S
(m)
k ej2πkFt =

N−1∑
k=0

S
(m)
k e

j2π k
TB

t
=

N−1∑
k=0

S
(m)
k ej2πkFt, 0 6 t 6 TB, (2.17)

with ej2πFkt; k = 0, ..., N − 1 representing the sub-carriers, Sk; k = 0, ..., N − 1 the mth

block data symbols, fk = k
TB

is the centre frequency of the kth sub-carrier and r(t) a

rectangular pulse with a bigger duration than 1
F and equal to 1 in the interval [−TG, T].

Doing the inverse Fourier transform to both sides of 2.17, we get

S(f) = F {s(t)} =
N−1∑
k=0

S
(m)
k sinc

[(
f − k

TB

)]
. (2.18)

The duration of each symbol is big enough to insert a guard interval between each

OFDM symbols, thus removing the Inter-Block Interference (IBI). To eliminate the Inter-

Carrier Interference (ICI) we need to add a cyclic prefix instead of a zero interval [Sil10].

Equation 2.17, defines a periodic function in t with a period T . The guard period is the

complex envelope of the final part of the MC block (figure 2.5). Therefore, the final part

of the OFDM is copied to the beginning of the transmitted frame, the guard interval,

creating a periodic signal and reducing the sensitivity to the time synchronization.

CP OFDM Block

s(t)

t

Figure 2.5: MC cyclic prefix [Sil10]

When the symbols enter the OFDM receiver scheme, they need to be synchronized

because they might suffer from a frequency and/or time offset, due the channel distortion

and delay. There are two types of synchronization: the maximum likelihood (ML) and

pseudonoise (PN). In wireless connections we need to add additional pilot tones to perform

2.2. BLOCK TRANSMISSION TECHNIQUES 17

the synchronization [vdBMSPOB97].

Assuming that there is a block containing the data samples plus the cyclic prefix,

with a size of NG+N , using the ML synchronization, we observe a 2N +NG size window,

that certainly contain one complete OFDM NG + N symbol. By performing a series of

operations, the ML gives the estimation of ε̂ML, which is the carrier offset, and θ̂ML that

represents the channel delay estimation [vdBMSPOB97].

PN synchronization searches for a training symbol with two identical halves in the

time-domain. The two halves remain identical after passing through the channel, except

for phase differences, caused by the carrier frequency offset. The training symbols have

the PN sequence in the even frequencies while the odd are zero by default. An accurate

estimation of the carrier frequency offset and of the symbol timing. PN allow a very fast

and low-overhead synchronization, which is necessary for wireless communications [SC97].

Transmission Scheme

When the data symbols enter in the OFDM transmission block, it is first converted in a

serial to parallel converter. Thus, they are transformed intoN size data blocks, represented

as Sk; k = 0, ..., N − 1, which are complex data symbols from a chosen constellation (PSK,

QAM, etc.). Taking 2.17 and sampling the OFDM symbols with a interval, Ta = T
N , we

get the samples,

sn ≡ s(t)|t=nTa = S(t)δ(t− nTa) =

N−1∑
k=0

Ske
j2π k

T
nTa , n = 0, 1, ..., N − 1, (2.19)

where F = 1
T . An IFFT is applied to the data blocks, to pass them to the time-domain,

so 2.19 can be written as

sn =
k=0∑
N−1

Ske
j 2πkn

N = IFFT {Sk} , n = 0, 1, ..., N − 1. (2.20)

Then, a cyclic prefix is added, with NG samples size, which are inserted at the be-

ginning of the data block. The cyclic prefix consists in a time-domain cyclic extension of

18 CHAPTER 2. THEORETICAL CONCEPTS

the OFDM block. It is bigger than the channel impulse response and is attached between

each block, transforming the multipath linear convolution into a circular one. With the

cyclic prefix, the data block is sn;n = −NG, ..., N − 1 and the time duration of the OFDM

symbol is NG + N times larger than the symbol of a SC modulation. The cyclic prefix

increases the cost and bandwidth, because it adds additional data. After adding the cyclic

prefix, the data is converted from parallel to serial, a DAC is applied and the data is sent

through a designated channel. The OFDM modulator block is depicted in figure 2.6.

Mapper IFFT Add CP

DAC

DAC

S ...

Figure 2.6: OFDM modulator block [Sil10]

Reception Scheme

Figure 2.7 illustrates the basic OFDM receiver block diagram.

2.2. BLOCK TRANSMISSION TECHNIQUES 19

ADC

ADC

Low-pass
Filter

Sync
Remove

CP

... FFT ... FDE
Decision
Device

Y

Figure 2.7: OFDM demodulator block [Sil10]

The signal that enters in the reception block, y(t), is the convolution of s(t) with the

channel response h(τ, t) plus the noise signal n(t), and comes in the form of

y(t) =

∫ +∞

−∞
s(t− τ)h(τ, t)dτ + n(t). (2.21)

The signal y(t) is then submitted to an ADC, converting it into the sequence yn, where

n = −NG,, N − 1, which corresponds to the sampled version of the received signal y(t)

with a sampling rate Ta = T
N . The signal received is then filtered, by a low-pass filter, and

enters in the synchronization block, which applies PN or ML synchronization [Ram08].

The received data symbols may overlap, due to multipath propagation, which leads to

a loss of orthogonality between sub-carriers. The usage of the cyclic prefix with a duration

TG longer than the channel impulse response avoids the overlapping. The sequence received

has N +NG samples due to the cyclic prefix in the NG first samples, which is extracted in

the next step. After this operation, the resulting samples are converted to the frequency-

domain using the FFT algorithm. The frequency-domain block Yk; k = 0,, N − 1, is

represented as

20 CHAPTER 2. THEORETICAL CONCEPTS

Yk =

N−1∑
k=0

yne
−j 2πkn

N , k = 0, 1, ..., N − 1. (2.22)

Since IBI is prevented using the cyclic prefix, the receiver works each sub-carrier

individually. Considering flat fading on each sub-carrier and null ISI, the symbols are

characterized in the frequency-domain by

Yk = HkSk +Nk, k = 0, ..., N − 1, (2.23)

where Nk represents the additive Gaussian channel noise and Hk the overall channel

frequency response for the kth sub-carrier.

The OFDM sub-carrier has a narrow bandwidth when the number of sub-carrier is

sufficiently large. A constant frequency-selective effect can occur, which is caused by the

fading effect due to multipath propagation. In this case, the equalizer has to multiply each

sub-carrier by a constant complex number. This equalization is simpler and consumes less

computational process if it is done in the frequency-domain rather than in the time-domain,

this is why the receiver uses an FFT to convert the N size blocks to the frequency-domain.

When the receiver obtains the Yk samples, the equalization occurs using a Frequency

Domain Equalization (FDE). It may consist in a simple one-tap equalizer under the zero

forcing (ZF) criteria, where the samples are outputted as

S̃k = FkYk. (2.24)

S̃k denotes the estimated data symbols, calculated from the multiplication of the

inputted symbols and the equalization coefficients, Fk; k = 0, ..., N − 1 defined by

Fk =
1

Hk
=

H∗k
|Hk|2

. (2.25)

2.2. BLOCK TRANSMISSION TECHNIQUES 21

After the equalization, the decision device works, and based on the constellation, does

the demodulation of the samples [Sil10].

2.2.3 Single Carrier - Frequency Division Multiple Access

In the 3rd generation in wireless telecommunication systems, OFDM was the official

modulation technique used for transmission, because it could achieve high bit rates. With

the evolution to the new generation, Long Term Evolution (LTE), Single Carrier - Fre-

quency Division Multiple Access (SC-FDMA), also referred as precoded-OFDM or DFT-

Spread OFDM, takes a step in and is the new modulation technique used for the uplink

wireless transmission. This technique uses different sub-carriers to transmit the symbols,

but this time, the transmission of the sub-carriers is done sequentially, rather than in

parallel, reducing the envelope fluctuations in the transmitted waveform [HGMG06].

The choice for SC-FDMA in LTE comes from the need to reduce the Peak-to-Average

Power Ratio (PAPR), which in OFDM is greater than SC-FDMA, making OFDM un-

favourable for the uplink transmission [Ahs09]. The wireless systems have severe multi-

path propagation, making SC-FDMA signals arrive at the base station with inter-symbol

interference, but the base station cancels the interference by applying an adaptive FDE.

The distribution of the sub-carriers, in SC-FDMA, can be done in two ways. The first,

called the localized SC-FDMA (LFDMA), uses a set of adjacent sub-carriers to transmit

the signals, confining the bandwidth to a fraction of the system bandwidth. The second

method is the distributed SC-FDMA (also known as the interleaved FDMA (IFDMA)), in

which the sub-carriers are distributed over the entire bandwidth, where each sub-carrier

is equidistant from one another. Figure 2.8 shows the different sub-carriers distribution

[HGMG06].

22 CHAPTER 2. THEORETICAL CONCEPTS

Terminal 1

Terminal 2

Terminal 3

Sub-carriers

Localized Mode

Sub-carriers

Distributed Mode

Figure 2.8: Sub-carrier allocation (Distributed mode and Localized mode) [HGMG06]

Transmission Scheme

Figure 2.9 shows the transmitter block, explained in this subsection.

N-size
DFT

Sub-
carrier

Mapping

M-size
IDFT

CP
adder /

PS
DAC/RF

Channel

Figure 2.9: SC-FDMA modulator block

Like in the OFDM transmitter, the SC-FDMA transmitter first converts a binary input

signal into a multilevel sequence of complex numbers sn, using the proper constellation

(BPSK, QPSK, 8PSK or 16/64QAM), which may differ, to match the current channel

conditions. Then the stream of complex numbers enters in a serial to parallel converter. We

get, in the end, the same result as the OFDM counterpart in equation 2.19. The passage

of the symbols from the time-domain to the frequency-domain (Sk) is done applying a

N size Fourier transform to the N symbols of the data blocks. Before going to the next

step, the preamble block is inserted between chunks of symbols. The sequence, used for

the preamble symbols, is the Zadoff-Chu coefficients, which is more efficiently than the

2.2. BLOCK TRANSMISSION TECHNIQUES 23

standard preamble used in OFDM [SB09]. The Chu-sequence used for the LTE systems

has the following formula,

sk = e
−jπRk(k−1)

N , k = 0, ..., N − 1, (2.26)

where R is the root of the Zadoff-Chu sequence and N the length. In order to perform a

good synchronization, this sequence is interleaved with zeros, like in the OFDM preamble

system, in order to perform a good synchronization [3GP08].

From this point on, the modulator performs the sub-carriers mapping, using either

IFDMA or LFDMA, mentioned above. The sub-carriers are mapped into blocks, with a

size M , where M must be greater than N and N = M
Q (Q is the bandwidth expansion

factor of the symbol sequence). The result of this mapping is expressed by S̃l (with

l = 0,,M − 1).

In the next step, it is performed a M − size inverse Fourier transform (IDFT) to S̃l,

converting the symbols to the time-domain, s̃m. A chosen frequency carrier is used to

carry all the modulated symbols, which are then sent sequentially.

Like in OFDM, the problem with IBI, caused by multipath propagation, is resolved by

adding the cyclic prefix, with a size larger than the length of the channel impulse response.

The additional symbols, at the beginning of the sequence, are also copied from the end of

the block, similarly to the OFDM, which converts a discrete time linear convolution into

a discrete time circular convolution. After adding the cyclic prefix, the signal is converted

from parallel to serial, it is applied a DAC and the signal is sent through a designated

channel [HGMG06].

Reception Scheme

To follow this sub-section, figure 2.10 shows the internal blocks of the demodulation

block.

The symbols received are submitted to an analog to digital converter (ADC). After

being converted, the symbols are filtered through a root-raised cosine. This filter is used

to attenuate the out-of-band signal energy, causing less interference and conserving more

24 CHAPTER 2. THEORETICAL CONCEPTS

power. Depending upon the rolloff factor of the filter pulse, which convolves with the

signal, the filter induces a distortion in the signal, causing an increase in PAPR. However,

this does not mean that the PAPR of the SC-FDMA is higher than the OFDM, because

even in the worst case scenario, the PAPR for the SC-FDMA is lower then the OFDM

signal [Han09].

Detect
Sub-carrier

Demapping/
Equalization

M-size
DFT

Remove
CP

ADC/RF

Channel

N-size
DFT

Figure 2.10: SC-FDMA demodulator block

Next, the signal enters in the synchronization block, which transforms the stream of

symbols into blocks, that have a M +NG size (NG is the guard size). The cyclic prefix is

removed, resulting in M size blocks, ready for the equalization, but before this, a M size

Fourier transform is applied to the data blocks, converting them from the time-domain to

the frequency-domain, to simplify the equalization. The resulting SC-FDMA blocks are

defined by the following equation,

Yk = HkSk +Nk, k = 0, ..., N − 1, (2.27)

whereHk is the overall channel frequency response for the kth sub-carrier andNk represents

the additive Gaussian channel noise. ISI can also occur in the SC modulation. Yk is

equalized to compensate this interference. The ZF criteria could be applied, as in OFDM.

However, for SC-FDE it is proposed the use of the minimum mean square error (MMSE),

which is more efficient because of the robustness against noise [Ahs09]. The coefficients

Fk have the following value,

2.2. BLOCK TRANSMISSION TECHNIQUES 25

Fk =
H∗k

α+ |Hk|2
, k = 0, ..., N − 1, (2.28)

where α represents the inverse of the Signal to Noise Ratio. Fk coefficients multiply the

data symbols to equalize them. After the equalization, a N size inverse Fourier transform

(IDFT) is used to obtain the time-domain. Finally, the symbols are demodulated by a

decision device.

26 CHAPTER 2. THEORETICAL CONCEPTS

Chapter 3

System Implementation

The GNURadio platform and the theory behind OFDM and SC-FDMA modulators

were described in the previous chapter. This chapter focuses on the implementation of the

SC-FDMA modulator and demodulator blocks and also shows how the tools in GNURadio

work.

This chapter is organized as follows: section 3.1 starts by presenting examples of

GRC software; section 3.2 shows how to create new blocks and design the filters, using the

gr modtool and gr filter design tools respectively; section 3.3 reveals how the OFDM tech-

nique is implemented in GNURadio, analysing the modulator and demodulator blocks; and

section 3.4 explains the SC-FDMA modulator and demodulator blocks implementation.

3.1 Dial Tone Example

This section presents the Dial Tone example implemented using the GNURadio plat-

form. This example produces an audio sound composed by two cosine signal sources and

by a noise signal source. The output is converted to an audio format using the audio sink

block, allowing the signal to be heard. Figure 3.1 shows the schematic for this example,

on the GRC. First, the Signal Source block creates cosine waves; the frequency is adjusted

using a WX GUI Slider, a variable slider that ranges from 0 to 1000; the amplitude of the

wave is set to 0.1. There are two Signal Sources: one with the default frequency of 350

Hz and another with 450 Hz. The Noise Source block creates a Gaussian noise; this block

also has a WX GUI Slider associated with the noise amplitude that ranges from 0 to 0.1

27

28 CHAPTER 3. SYSTEM IMPLEMENTATION

and has a default value of 0.005. The three source blocks are added, using an Add block,

and the output enters in the Audio Sink block. To analyse the signal in the time domain,

all blocks are connected to the channel plotter block WX GUI Scope Sink, which works

like an oscilloscope and shows the inputted signals in the graphical interface.

Figure 3.1: Dial Tone example - block diagram.

After connecting all the ports in the GRC schematic, the program generates the python

code listed in appendix A. Two experiments were done with the setups from table 3.1,

generating the graphs depicted in figure 3.2. They show four channels and each channel

represents an input signal. Channel 1 is the final signal, channel 2 is the signal from

signal source 1, channel 3 is the noise signal and channel 4 is the second source signal.

As observed in figure 3.2, the signal in channel 1 increases as the other two increase and

decreases if the other two diminish. The difference between the two graphs is the noise

added to the two source signals.

```````````Parameters
Setup

1 2

Signal Source 1 Frequency (Hertz) 450 100

Signal Source 2 Frequency (Hertz) 750 600

Noise Source Amplitude 5m 30m

Table 3.1: First examples setups.



3.2. GNURADIO TOOLS 29

Figure 3.2: First Examples graphs - Upper graph - experiment 1. Bottom graph - experi-
ment 2.

3.2 GNURadio Tools

GNURadio provides tools to assist the signal processing. First, the gr modtool eases

the creation of new modules in C++; this section has a step-by-step guide on how to create

new modules on GNURadio. The second part shows the gr filter design, how it works and

which filters can be designed by this tool. The operating system used to perform the tests

and the implementation is Ubunto 12.04.

3.2.1 Creating New Blocks (gr modtool)

Creating new blocks is a hard process. To smooth it, GNURadio offers a tool called

gr modtool, which creates all the folders and the skeleton files for C++.

The first step in the creation of a new block is to create a new module. In the terminal,

you may call:

1 $ gr modtool create



30 CHAPTER 3. SYSTEM IMPLEMENTATION

Then the terminal asks for the module name (let us call it exp) and generates a folder

with the name gr-exp. This folder contains all the necessary sub-folders and files to compile

the new blocks the user may add. In order to create new blocks, inside the folder gr-exp,

you may call:

1 $ gr modtool add

Now, the terminal asks which block type the user wants to create (it can be a sink,

source, sync, decimator, interpolator, general, hier, noblock). Next, the terminal asks

for the block name (let us call it “square ff”) and for the input arguments. Finally, the

terminal asks if the user wants to define test codes. When the terminal finishes creating

all the files and folders, it is time to program them. There are two main files that can

be modified to do the signal processing; square ff impl.cc and square ff impl.h (both in

lib folder). There is also an XML file (exp square ff.xml in the grc folder) that should be

modified to prepare the block for the GRC software. Appendix B shows the modification

performed in order to create a block that computes the square of the inputted signal.

With the files completely programmed, it is time to compile them; from the terminal

in the gr-exp folder, you should call:

1 $ mkdir build

2 $ cd build

3 $ cmake ../

4 $ make

5 $ sudo make install

6 $ sudo ldconfig

This sequence of commands creates a folder named build and compiles the files inside

it. While running the make command, there might exist some errors in the C++ code and

the terminal alerts for them. When everything is correct, the user can access the blocks

in GRC, and it is also possible to call the new blocks in python flowgraphs.

3.2.2 Filter Design Tool

The filter design tool (gr filter design) configures the filters available in GNURadio and

supports the graphical representation of the characteristics of the filter defined. GNURadio

has several types of filters already implemented, such as low pass, band pass, complex band



3.2. GNURADIO TOOLS 31

pass, band notch, high pass, root raised cosine and gaussian filters. To create the filter,

there are several window functions such as: Blackman, Blackman-Harris, Hamming, Hann,

Rectangular, Kaiser and Equiripple; these functions produce zero values outside of their

interval and all that is left is the part where they overlap with the signal.

The application has a friendly user-interface, represented in figure 3.3. On the upper

left side, the user can choose from the several filter types and windows functions. The

variables below change according to the user choice, and allow the configuration of the

filter’s and window’s parameters. The graph on the right shows the frequency response

and time domain representation of the filter as well as the phase and group delay.

Figure 3.3: GNURadio Filter Design tool interface.

As a second example, we show the root raised cosine filter, used in the implementation

of the SC-FDMA demodulator. The filter was implemented using the parameter values

in table 3.2. The performance graphs are shown in the figure 3.4, with the following

arrangement: on the upper side the left graph is the frequency domain graph and the

right one is the time domain graph; bellow on the left is the phase graph and on the right

is the time delay.



32 CHAPTER 3. SYSTEM IMPLEMENTATION

Root Raised Cosine Parameters

Sample Rate (sps) 2M
Filter Gain 1
Symbol Rate (sps) 1M
Roll-off Factor 0.01
Number of Taps 201

Table 3.2: Parameters to design a Root Raised Cosine filter.

Figure 3.4: Root Raised Cosine filter performance graphs

3.3 OFDM Block

GNURadio package already includes two OFDM blocks; the modulator and demodu-

lator blocks. Both are explained in detail in this section.

For an easy run, GNURadio comes with two benchmark applications: the bench-

mark tx.py that works with the sender block and the benchmark tx.py that works with

the receiver. Both benchmarks are written in python and are located in the GNURadio

digital examples folder. The files use the OFDM blocks and are ready to perform simple

experiments. The benchmarks have several changeable parameters necessary to perform

the experiments, such as: frequency, bandwidth and modulation (BPSK, QPSK, 8PSK



3.3. OFDM BLOCK 33

or 8/16/64/256 QAM). These parameters have to be equal in both, sender and receiver.

There are other parameters that only belong to benchmark tx.py, like the size and number

of packets that are transmitted. When using the benchmarks, the experiments require the

use of an USRP. This way, there is another parameter that defines the antenna used by

the system. When the user calls the benchmarks in the terminal, he must choose which

antenna is used; for the sender the user must write RX/TX and for the receiver RX2.

The benchmarks are in the top of the OFDM block hierarchy. Bellow them there

are other two python files. The transmit path.py file, which creates the schematic using

the OFDM modulator block and helps in the definition of some parameters; and the

receive path.py, that besides creating the schematic, has a module called probe that detects

if there is transmission.

To create the OFDM modulator and demodulator blocks, GNURadio uses the python

file called ofdm.py (located in the gr-digital/python folder), this file defines two classes:

the ofdm mod for the modulator and the ofdm demod for the demodulator. Figure 3.5

shows how the blocks appear in the GRC. The blocks have several parameters such as:

modulation, where users may choose a constellation (BPSK, QPSK, 8PSK or 8/16/64/256

QAM); FFT length (M), necessary for the IFFT and FFT algorithms; cyclic prefix length

and occupied tones (N).

Figure 3.5: GRC OFDM blocks.

The preamble sequence has a big role in the OFDM synchronization. It is generated

inside the file ofdm.py, using the variable known symbols 4512 3. This variable is a vector

with 4512 positions, each occupied with a value of 1 or −1. In the preamble sequence

creation, the values are interpolated with zeros. Then, inside other modules, the preamble

sequence is inserted in the right positions taking into account the occupied tones. These

sequences are used to perform the synchronization.



34 CHAPTER 3. SYSTEM IMPLEMENTATION

The next two subsections explain the OFDM modulator and demodulator classes in

detail. This way, our implementation of the SC-FDMA blocks can be easier to understand.

Appendix C shows the most relevant code of the OFDM blocks.

3.3.1 OFDM Modulator Block

The OFDM modulator block is created in the ofdm.py file, at the ofdm mod class.

This module defines two main functions: one for changing the options and other to create

messages, the send pkt function. Function send pkt creates data blocks with the inputted

data using the function make packet, from ofdm packet utils. The blocks have a header,

which is used at the receiver to check its validity, and a body. The created packets are

then put in a queue.

Figure 3.6 shows the OFDM modulator block schematic. Each module in the figure

represents a member of the ofdm mod class, and underneath them are the file names where

the modules are programmed. As we can see, the modulator is composed by the following

modules: pkt input, preambles, ifft, cp adder and scale. These modules are connected by

one OFDM data stream, except for the first two modules that are connect by an additional

data stream.

Msg 
queue

preambles ifft cp_adder scalepkt_input self

0

1

Label:
0 – OFDM data
1 – Stream of characteres

0 000

ofdm_mapper_bcv ofdm_insert_preamble gr.fft_vcc ofdm_cyclic_prefixer gr.mult iply_const_cc

Figure 3.6: Block diagram of the OFDM modulator.

Normally, in a python block where several modules are connected between them,

we use the function connect(self, <module >), so that the first module receives the data

directly from the block input port. Because the OFDM modulator receives input data from

a message queue, the first connection does not start with self, but with the first module,

pkt input. This module withdraws the messages from the message queue and works with

them. We can see how the modules are connected in ofdm mod class in appendix C list

C.3.

The pkt input module is defined in the C++ file digital ofdm mapper bcv.cc. This



3.3. OFDM BLOCK 35

module receives the messages as data input and has two output ports: one port outputs

the data blocks, with M symbols in each block; and the other port outputs a stream of

characters delimiting the block, one for each OFDM data symbol outputted. The character

outputted is 1 when it is the first symbol of the block and 0 for the remaining symbols.

The character stream is consumed by the next module, which uses them to insert the

preamble block in the right position. There are two important input parameters in this

module:

� d occupied carriers - sets the size of the d subcarrier map vector;

� d fft length - sets the size of the outputted data blocks.

As the number of blocks outputted is higher than the size of d subcarrier map, the

rest of the outputted data block is initialized with zeros. Figure 3.7 shows how the data

blocks are filled. We can see that each block has M symbols but only N symbols have

useful data, where M represents the FFT length and N the occupied tones length. When

the pkt input module is initialized, it calculates the sub-carriers tones and saves them in

the d subcarrier map vector. Later, the module uses the vector to map the data inside the

output data blocks.

000 000. . . 000 000. . .. . .-111-1-111-1
N

M

Figure 3.7: Data allocation inside each block.

As stated above, the pkt input module works using messages as inputted data, drawing

the messages from the message queue. The module uses the selected constellation (BPSK,

QPSK, 8PSK or 8/16/64/256 QAM) and modulates the symbols inside the messages.

There are some cases where the data is not enough to complete the data blocks, therefore

the module uses the function randsym to randomly generate data symbols to fill them.

Next is the preambles module, defined in the C++ file ofdm insert preamble.cc. The

main objective of this module is to add the preamble block to the stream. The preamble is a



36 CHAPTER 3. SYSTEM IMPLEMENTATION

known sequence of symbols constructed from a vector of ′1′ and ′−1′ previously generated.

The sequence enters has an input parameter and it is stored in d preamble vector. The

preambles module has two data input ports: in the first port enters the data blocks with M

symbols; and in the second port enters the stream of characters outputted by the previous

module. When the preambles module finds the character ′1′ in the stream, it adds one

preamble block and outputs the rest of the data blocks, until it finds the character ′1′

again. More details on this module are explained in the SC-FDMA modulator subsection,

which also uses it. The preambles module output ports have the same size as the previous

block, but only the port that outputs the data blocks is connected to the next block, the

ifft module.

The ifft module takes the data blocks and does the inverse Fourier transform, convert-

ing the symbols from the frequency-domain to the time-domain. IFFT and FFT blocks

are defined in the C++ file gr fft vcc.cc, which is a GNURadio generic block. The last

two modules were specifically developed for the OFDM computation.

In the next step the modulator adds the cyclic prefix. This operation is performed in

the cp adder module and is defined in the C++ file digital ofdm cyclic prefixer.cc. This

module uses the inputted data blocks and copies the last symbols of the block to the

begin. The length of the copied symbols is equal to the cp size parameter, which is an

input parameter. Now, the blocks have the length of the inputted data blocks plus the

length of the cyclic prefix. In the end, this module converts the blocks into a stream of

symbols in order to send them later.

The data symbols are submitted to a inverse Fourier transform, which modifies their

amplitude. The scale module compensates this deviation, multiplying the symbols by the

inverse of the square root of the FFT length. After this last operation, the scale module

connects to the self function, which is the output port for the OFDM modulator block.

From here the symbols are transmitted, either to the USRP sink block (hardware) or to

the Channel Model block (simulation). Either way, they are demodulated by a OFDM

demodulator block, which is described in the next subsection.



3.3. OFDM BLOCK 37

3.3.2 OFDM Demodulator Block

The OFDM demodulator block is also created in the ofdm.py file, this time in the

ofdm demod class. Figure 3.8 illustrates the demodulator block diagram. This block has

two modules: ofdm recv and ofdm demod. The demodulator uses the input port self to

receive the data, which comes in the form of complex numbers. Then, in the ofdm recv

module, the demodulator implement the functions (filter, synchronization, de-mapping and

equalization) necessary to recover the symbols. Finally, using the ofdm demod module,

the block demodulates the data symbols, comparing them with the constellation in use;

and possibly recovering the binary messages sent by the modulator.

Msg 
queue

ofdm_demodself
0

1

ofdm_recv

Label:
0 – OFDM data
1 – Stream of characteres

ofdm_receiver.py ofdm_frame_sink

Figure 3.8: Diagram of the OFDM demodulator.

The demodulator block receives the stream of complex data, coming from an USRP

sink or from a Channel Model, respectively for a hardware implementation and for a sim-

ulation on GRC software. The data enters in the ofdm recv module, which is created in a

different python file named ofdm receiver.py. Figure 3.9 shows the block structure in the

ofdm receiver.py. Each module in the figure represents its name in ofdm receiver.py and

the file name where the module is programmed. The ofdm recv block is composed by the

following modules: chan filt, ofdm sync, nco, sigmix, sampler, fft demod and ofdm frame acquisition.

The next lines cover these modules.



38 CHAPTER 3. SYSTEM IMPLEMENTATION

nco

sigmixofdm_syncchan_filterself
0

1

Label:
0 – OFDM data
1 – Stream of characteres

fft_demod

ofdm_frame_acqsampler

ofdm_sync_pn.py

gr.frquency_modulator

gr.mult iply_ccgr.firdes.low_pass

ofdm_sampler.cc

ofdm_sampler.cc

ofdm_frame_acquisition.cc

0

1

0
0

1

Figure 3.9: Block diagram of ofdm receiver.py.

The first module is chan filt, which is a low-pass filter with a Hamming Window. The

filter parameters depend on the FFT size (M) and the occupied tones (N) size. The filter

gain and sampling rate are fixed to 1, the cut-off frequency is BW = N
2M and the transition

width is TB = 0.08BW

After the filter, the data stream enters in the synchronization module ofdm sync.

There are several implementations for this module: the maximum likelihood synchro-

nization (ofdm sync ml), defined in the python code ofdm sync ml.py; the pseudoran-

dom noise numbers synchronization module (ofdm sync pn), defined in the python code

ofdm sync pn.py; the enhanced pseudorandom noise synchronization module (ofdm sync

pnac), defined in the python code ofdm sync pnac.py; and the fixed synchronization mod-

ule (ofdm sync fixed), defined in the python code ofdm sync fixed.py. This OFDM demod-

ulator block uses the ofdm sync pn module as the default module for the synchronization.

The module ofdm sync pn is based on the Schmidl and Cox algorithm [SC97]. This

algorithm searches for the beginning of the training symbols and calculates the frequency

offset. To run this algorithm, the preamble sequence must come with a predefined arrange-

ment. For this reason, when the modulator inserts the preamble block, the symbols were

originally put on the even carriers and the zeros on the odd carriers. The modulator’s ifft

module converts the preamble blocks to the time-domain and the resulting block have the

symbols distributed in two equal halves, as we see in figure 3.10.



3.3. OFDM BLOCK 39

IFFT

V 0 W 0 X ... 0 Y 0 Z 0

CP K K

Figure 3.10: Result of the preamble block conversion.

When the ofdm sync pn module obtains a preamble sequence, the first and second

half only differ on a phase shift. If the transmitting channel is constant during an interval

T , if we multiply the conjugate of each symbol in the first half with the corresponding one

in the second half, we cancel the effect of the channel and get the following phase,

φ = πT∆f. (3.1)

If we consider that half of the preamble block has L symbols, we can sum all the

symbols within a window of 2L symbols. Resulting in,

P (d) =

L−1∑
k=0

(
r∗d+krd+k+L

)
, (3.2)

where d is the time index. The module calculates the received energy for the second half,

using

R (d) =
L−1∑
k=0

|rd+k+L|2 . (3.3)

Last, ofdm sync pn calculates the timing metric expressed as,



40 CHAPTER 3. SYSTEM IMPLEMENTATION

M (d) =
|P (d)|2

(R (d))2
(3.4)

When the module calculates the timing metric, the result values are bellow 1. Now,

the module uses a peak detector to find the maximum value, which detects the starting

carrier of the data block. So, in one port the ofdm sync pn module outputs a stream of

′1′ and ′0′ characters, coming from the peak detector, where ′1′ represents the beginning

of the OFDM data blocks and the ′0′ the rest of the symbols.

Besides giving the start of the preamble block, this module gives the frequency offset

estimation (∆̂f) and uses it to correct the diverted symbols. This way, using 3.1 we can

estimate φ̂ as,

φ̂ = angle (P (d)) . (3.5)

Thus, getting

∆̂f =
φ̂

πT
. (3.6)

So, from the second output port in the ofdm sync pn module we get a stream of floats,

each representing a frequency offset. This port connects to the nco module [Pag06].

The nco module, defined in the C++ file gr frequency modulator fc.cc, is a frequency

modulator that generates a signal proportional to the frequency offset. The outputted

complex data multiplies with the outputted signal from the filter, thus making the fre-

quency correction of the signal; this multiplication is done in the sigmix, a simple multiplier

module.

Later, for the SC-FDMA demodulator we will use the same synchronization module

and the nco and sigmix modules, with a little modification in the peak detector.

After correcting the frequency, the data stream is sampled creating data blocks with

the FFT length (M) used in the transmitter. This process is done using the sampler



3.3. OFDM BLOCK 41

module, defined in the C++ file ofdm sampler.cc. The sampler module receives the data

stream coming from sigmix module and the character stream from the ofdm sync module,

removes the cyclic prefix and creates the data blocks. The module has two output ports:

the first outputs the data blocks and the second a stream of characters. In this case, the

character ′1′ indicates the preamble block and ′0′ the data blocks.

The next step is a Fourier transform done by the fft demod module. This module

converts the data blocks from the time-domain to the frequency-domain. The outputted

data enters in the first port of ofdm frame acquisition.

The ofdm frame acquisition module is defined in the C++ file digital ofdm frame acquisition.cc.

The module searches for the start of the OFDM data block based on the inputted charac-

ters. At the same time that the module finds an ′1′ character, the preamble block enters

in the other input port. Using this data block, the module searches for the start of the

occupied tones with the correlate function, because the carriers may or may not be shifted.

When the data blocks enter in the FDE module, they have the following expression,

Yk = HkSk +Nk, k = 0, ..., N − 1, (3.7)

where Yk represents the inputted samples, Nk the additive Gaussian channel noise, Sk the

known symbols and Hk the overall channel frequency response for the kth sub-carrier. To

calculate the frequency response, we use the expression,

Hk =
Yk
Sk
, k = 0, ..., N − 1, (3.8)

assuming that we ignore the additive noise. At this instant, when the following data blocks

enter in FDE module, we need to multiply them by Fk, to perform the equalization. This

way, we use the expression,

S̃k = FkYk, k = 0, ..., N − 1, (3.9)



42 CHAPTER 3. SYSTEM IMPLEMENTATION

where Fk = 1
Hk

or Fk = Sk
Yk

.

With this in mind, the ofdm frame acquisition module enters in the function calcu-

late equalizer and using the preamble block, calculates Fk, with the following formula,

d hestimate =
d known symbol

symbol
, (3.10)

where d hestimate is Fk, d known symbol is Sk and symbol is Yk.

After the preamble block, the next blocks have data symbols. Using the equation

3.9, these data blocks suffer a one-tap equalization on all sub-carriers by multiplying the

received samples by the values in d hestimate, using the expression

out = d hestimate ∗ coarse freq comp ∗ symbol (3.11)

where out is S̃k, d hestimate is Fk and symbol is Yk. When there is a carrier offset,

the function coarse freq comp obtains the complex value that restores the samples to the

original carrier, otherwise coarse freq comp will give the value of 1.

Eventually, the module finds a new character ′1′ and it starts the process again for

a new OFDM data block. The ofdm frame acquisition module only copies the occupied

sub-carriers from the data blocks and outputs only the necessary data.

This was the last stage of the ofdm recv module, which results in two output ports: one

port outputs the OFDM data blocks and the other port outputs a stream of characters that

indicate the start of the OFDM data block. These two output ports connect to the next

module, ofdm demod, which is defined in the C++ file digital ofdm frame sink.cc. This

module makes the demodulation of the data, comparing the symbols with the constellation

and works like the state machine, represented in figure 3.11.



3.3. OFDM BLOCK 43

SYNC 
SEARCH

HAVE 
HEADER

HAVE 
SYNC

Data demod done

Block found

Header found

ERROR

ERROR

Data 
Queue

Data

Figure 3.11: State machine in the ofdm demod module.

The state machine in ofdm demod module starts in state SYNC SEARCH. The module

waits in this state until a flag 1 is received in the second port, signalling the beginning

of an OFDM data block. Following this event, the module enters in the HAVE SYNC

state and ignores the preamble data, demodulating only the symbols corresponding to the

header. The header is build in a way that the first and the last half have the same data. If

the header is found, the module enters in the HAVE HEADER state, demodulates the rest

of the OFDM data and creates a new messages, returning in the end to the state SYNC

SEARCH. The resulting messages are queued and taken to the upper levels, if the data

is valid. Therefore, this module is constantly searching for the start of the next OFDM

data block.

This section presented how the OFDM modulator and demodulator blocks are im-

plemented in GNURadio. The next section explains how the SC-FDMA blocks were

implemented in this dissertation.



44 CHAPTER 3. SYSTEM IMPLEMENTATION

3.4 SC-FDMA Block

This section focuses on SC-FDMA modulator and demodulator blocks implementa-

tion. It explains the modifications performed in the existing OFDM blocks, which new

blocks were created and how the OFDM benchmark were adapted to the new modulation.

In the previous section, OFDM blocks were described from the upper layers, starting from

the benchmarks to the lower layer modules that did the signal processing. The implemen-

tation of the SC-FDMA blocks is presented in the reverse order. This section is divided in

three subsections: the first subsection explains the modulator; the second subsection the

demodulator; and the last one the modification done to the benchmarks and other files

(XML).

In the SC-FDMA implementation, we take advantage of some modules already imple-

mented in the OFDM as well as add new ones. Figure 4.16 shows in orange the modules

that were modified, in blue the new added modules and in black the remaining modules,

which are the same as the OFDM modules.

pkt_input fft scale_vec preambles mapper ifft cp_adder scale

(a) Modulator Block

chan_filter fir_filter_xxx_0 scfdma_sync

nco

sigmix

sampler fft_demod

scfdma_frame_acq ifft_demod scale

(b) Demodulator Block

Figure 3.12: Simplified SC-FDMA schematics.

Figure 3.12(a) shows the modulator block. The pkt input module was changed from

the original one and now, it modulates the symbols using the constellation and sends

them in data blocks, without inserting them in the occupied tones. We added the fft

and scale vec modules to convert the symbols to the frequency-domain and changed the

preambles module to insert the Zadoff-Chu sequence. The new mapper module inserts the



3.4. SC-FDMA BLOCK 45

samples in the right occupied tones. Finally, the remaining modules ifft, cp adder and

scale are the same as the OFDM modulator.

Figure 3.12(b) shows the demodulator block. The new filter was added in the chan filt

and fir filter xxx 0 modules, which now is a root-raised cosine. One part of the code was

modified in the peak detector of the scfdma sync module. The nco, sigmix, sampler and

fft demod are the same modules used in the OFDM demodulator. The scfdma frame acquisition

module was modified to use the Zadoff-Chu sequence and a new algorithm was imple-

mented to find the beginning of the occupied tones. Last, the ifft demod and scale are

added to convert the symbols back to the time domain in order to demodulate them.

The python file scfdma.py is the main file and has two classes scfdma mod and

scfdma demod, which define the modulator and demodulator blocks respectively. In the

scfdma.py file, the preamble sequence used is a Chu sequence and is calculated inside the

modules that need them. Therefore, the code used in ofdm.py to store the preamble is

not needed here. Appendix D shows the more relevant code implemented in order to

create the SC-FDMA modulator and demodulator blocks. Next sub-section describes the

modulator.

3.4.1 SC-FDMA Modulator Block

The most important input parameters in the SC-FDMA modulator block are: modu-

lation, occupied tones (N), FFT length (M) and cyclic prefix. The modulation parameter

selects the type of constellation used: BPSK, QPSK, 8PSK or 8/16/64/256 QAM. The

parameter occupied tones defines the data’s length stored in each data block, and defines

the size of the fft module. The FFT length parameter provides the total size of the trans-

mitted data blocks, and the length of the IFFT module. The cyclic prefix parameter sets

the size of the cyclic prefix that is added in the beginning of each data block. Figure 3.13

shows the schematic of the SC-FDMA modulator. As before, inside the boxes is the name

of the modules, below them are the names of the files where the modules are implemented.

From the figure, we can see that the modulator is composed by the following modules:

pkt input, fft, scale vec, preambles, mapper, ifft, cp adder and scale.



46 CHAPTER 3. SYSTEM IMPLEMENTATION

Msg 
queue

pkt_input
fft scale_vec

preambles

mapper ifft cp_adder scale self

scfdma_pkt_input.cc

0

gr.fft_vcc scfdma_scale.cc

0 0

scfdma_insert_preamble.cc1

0

1

0

scfdma_mapper.cc gr.fft_vcc ofdm_cyclic_prefix.cc gr.multiply_constant

0 0 0 0

Label:
0 – Data Frames
1 – Stream of characteres

Figure 3.13: Block diagram of the SC-FDMA modulator.

Like the OFDM modulator, this modulator also receives the symbols directly from

the source block and wraps them in messages using the function send pkt, this way this

function is still intact. The send pkt function takes the inputted symbols, coming from

the input port and uses the make packet function, from the ofdm packet utils, to create

the messages. Then, the messages are converted into strings and inserted in the message

queue.

The first module of the SC-FDMA modulator is pkt input and is defined in the C++

file scfdma pkt input impl.cc. Like in OFDM, the module withdraws the messages from

the queue, converts the symbols using the selected constellation and creates data blocks

with N symbols. In case there are not enough data to completely fill the block, it randomly

selects padding data to send. There are two output ports in this module: the first port

outputs the N size data block; and the second port outputs a stream of characters, where

1 represents the first symbol of the block and 0 the remaining symbols. This module is

similar to OFDM pkt input however, the later maps the symbols in M size data blocks, so

they can fit the IFFT module, instead of outputting all of them in a N size data block.

Before adding the preambles, the modulator needs to perform an FFT using the fft

module to pass the symbols to the frequency-domain.

To get the original amplitude values, the scale vec module divides the symbols in the

block by the square root of the block length (N). The preambles are inserted in the



3.4. SC-FDMA BLOCK 47

frequency domain, using the preambles module. This module is defined in the C++ file

scfdma insert preamble impl.cc and has two input ports, that are connected to the output

ports from the pkt input module. Preambles module works like the corresponding OFDM

module and it can be summarized in the state machine diagram, represented in figure

3.14.

IDLE

Waiting for first 
frame

PREAMBLE

Insert preamble

FIRST 
PAYLOAD

Loading the first 
frame

PAYLOAD

Loading the 
remaining data

in_flag = 1

d_nsymbols_output = 1
Preamble inserted

First frame sent

in_flag = 1

Send data frames while
in_flag = 0

Wait while
in_flag = 0

Figure 3.14: State machine in preambles block.

The block starts in the IDLE state and waits until the in flag (comming from the

character stream) has the value 1. The module goes to the PREAMBLE state, saves

the data block temporarily and starts outputting the preamble block through the output

port. When the preamble is fully outputted, the preambles module enters in the FIRST

PAYLOAD state, where it outputs the block that entered earlier. After this, the module

reaches the last state, PAYLOAD, and outputs the rest of the data blocks that enter, until

a new in flag comes with the value 1, going back to the PREAMBLE state. Overall, this

module and the OFDM counterpart are similar. The difference is in the sequence inserted



48 CHAPTER 3. SYSTEM IMPLEMENTATION

in the preamble. This time, the sequence is the Zadoff-Chu sequence calculated when the

module is created, instead of being entered as an input parameter. The sequence is still

intercalated with zeros to perform the synchronization. The output ports from preambles

are the same as OFDM, but the only output port used is the one with the SC-FDMA data

blocks.

An initial implementation did not inserted the zeros and used all M symbols for data.

Using this implementation made us lose some of the data in the modulation/demodulation

and introduced problems in the synchronization. Therefore, each data block has a length

of N but needs to be mapped to and M size data block in order to be sent, where

M denotes the size of the FFT length parameter. The mapper module is implemented

with that purpose in the C++ file scfdma mapper impl.cc. This module has two initial

parameters required for the block initialization (occupied tones and FFT length), and one

input port where the data blocks enter. In the initialization, the mapper module calculates

the position where the data symbols are inserted in the final block, and saves them in the

d subcarrier map vector. The formula and the code used is the same as the one used in

the pkt input module from OFDM. With the sub-carriers calculated, the module receives

the blocks and inserts each symbol in the sub-carrier of the M size block, earlier initialized

with 0. So, each outputted block has every position set to zero except the ones with the

data symbols.

From here on, this modulator works the same way as the OFDM modulator. The

data blocks have the right size for the IFFT algorithm, and that process is done using the

ifft module and the cyclic prefix is added with the cp adder module.

We saw in past experiences that the data from the IFFT module comes multiplied by

the square root of the blocks length (M). To scale back the data, the modulator uses the

scale module to divide the symbols by the square root of M . The scale module is the last

stage of the modulator and is connected to the self, which connects to the output port of

the SC-FDMA modulator.

Now the data is modulated, mapped, scaled and ready to be sent through the USRP

or a Channel Model. These symbols are demodulated at the receiver side, presented in

the next subsection.



3.4. SC-FDMA BLOCK 49

3.4.2 SC-FDMA Demodulator Block

Scfdma.py holds the class scfdma demod where the demodulator is created. It is

composed by two main modules connected: scfdma recv and scfdma demod. The first

module performs the synchronization, sampling and equalization; the second module de-

modulates the data and rearranges it in messages. Figure 3.15 shows how the modules in

scfdma demod connect. We can see that the self port connects to the scfdma recv module

and then, its output ports connect to the scfdma demod module; finally, the last module

is linked with a message queue.

Msg 
queue

scfdma_recvself
scfdma_receiver.py

0

Label:
0 – Data Frames
1 – Stream of characteres

scfdma_demod

scfdma_frame_sink.cc
1

Figure 3.15: Block diagram of the SC-FDMA Demodulator.

The SC-FDMA demodulator block has different input parameters, compared to the

OFDM demodulator. Besides the usual parameters (modulation, occupied tones (N), FFT

length (M) and cyclic prefix), it also has two new parameters: sample rate and symbol

rate. These two new parameters are used to define the root-raised cosine filter. Appendix

D in list D.7 shows the code where the modules are connected.

Scfdma recv Module

Scfdma recv module is defined in the python file scfdma receiver.py. This blocks is

the core of the demodulator, and it is here that almost all the operations occur except the

bit demodulation. Figure 3.16 represents the block diagram of scfdma recv. The block is

composed by the following modules: chan filt, fir filter xxx 0, scfdma sync, nco, sigmix,

sampler, fft demod, scfdma frame acquisition, ifft demod and scale. The next paragraphs

describe these modules.



50 CHAPTER 3. SYSTEM IMPLEMENTATION

self 1

0

Label:
0 – Data Frames
1 – Stream of characteres

chan_filter

gr.interp_fir_filter_ccf

fir_filter_xxx_0

gr.fir_filter_ccc

scfdma_sync

scfdma_sync_pn.py

nco
gr.frequency_modulator

sigmix

gr.multiply_cc

sampler

digital.ofdm_sampler

fft_demod

scfdma_frame_acq

scfdma_frame_acquis ition.cc

ifft_demos

1

0

1

0

1

0

1

0
gr.fft_vcc gr.fft_vcc scfdma_scale.cc

scale0

1

Figure 3.16: Block diagram of scfdma recv.

The first module is the filter, named chan filt, implemented in the object gr.interp fir filter ccf.

Unlike the OFDM filter, which is a low-pass filter, this demodulator uses a root-raised

cosine filter. This module calls the interpolation filter and has two parameters: the

first parameter is the number of interpolations, which we left with the value 5; the

other parameter is the definition of the root-raised cosine filter, which is the constant

firdes.root raised cosine. Section 3.2.2 explained how this filter works and showed the re-

sulting frequency and time graphs. This filter increases the amount of samples, due to the

interpolation. To compensate, we need to decimate the samples and get the real amount

of samples. With this purpose, we use a second filter in a module called fir filter xxx 0.

The decimator filter has two parameters as well: the first is the numbers of decimations

(equal to the number of interpolations) and the second is “(1, )” indicating there is no

filter associated.

The filter module is followed by the synchronization module scfdma sync, which uses

the PN synchronization created by Schmidl and Cox. One of the components is the peak

detector module pk detect and it has one problem; some data come with the value of Not

a Number (NaN), thus breaking the chain. To resolve this issue an if/else condition was

added, giving the value of 1 when the NaN appears.

After the synchronization, one of the output ports from the scfdma sync module enters

in the frequency modulator module, nco. This module is the same used in the OFDM

demodulator, and it creates a signal to compensate the frequency distortion. The data



3.4. SC-FDMA BLOCK 51

outputted from nco enters into the module sigmix to multiply with the data symbols from

the filtered signal. With the symbols corrected, they need to be sampled. Just as in the

OFDM demodulator, the SC-FDMA demodulator uses the sampler module defined in the

digital ofdm sampler.cc. The sampler module also removes the cyclic prefix resulting in

blocks with M symbols.

The data blocks are now in the time-domain. To equalize them they need to be in

the frequency-domain, so the demodulator uses the fft demod module to apply an FFT to

convert them.

Using the scfdma frame acq module, defined in the C++ file scfdma frame acquisition

impl.cc, the demodulator does the symbols equalization. This module is similar to the

ofdm frame acquisition module used in the OFDM demodulator. One difference between

the two modules is that the preamble sequence enters as an input parameter in OFDM;

and, in the SC-FDMA, the preamble sequence is calculated inside the module and saved in

the d known symbol variable, when the module is created.Scfdma frame acq has two data

input ports: in one port enters the data blocks and in the other port enters a stream of

characters, where 1 represents the preamble block and 0 the rest of the data blocks. With

the scfdma frame acq module running, when it receives the character 1, the module enters

in the function correlate and uses the preamble block to calculate where the occupied tones

begin. To help in the search process, the module creates a vector with N (occupied tones

length) samples of 1’s intercalated with 0’s, let us call it Uk, where,

Uk =

1, k = even

0, k = odd
, k = 0, ..., N − 1, (3.12)

and stores it in d symbol. Also, we need to define where the occupied tones should start

if there was no frequency offset, using the following operation,

s =
M −N

2
(3.13)

where M is equal to the FFT length parameter and N to the occupied tones parame-



52 CHAPTER 3. SYSTEM IMPLEMENTATION

ter. With all this in mind, the correlate function calculates the values of the following

expression,

N(d) =

N−1∑
k=0

Uk |Bk+d| , d = s− 20, ...., s+ 20. (3.14)

where Bk+d is the data from the preamble block and d is the analysed carrier at that

time. The index d that corresponds to the maximum value of N(d), d = s− 20, ...., s+ 20

is where the occupied tones start until the next preamble block. Now, it is time to

calculate the channel estimation to do the data equalization. Using the same principle

earlier described in the ofdm frame acq, the module calls the function calculate equalizer

to calculate the values, with the same expression as in 3.10. When the data blocks enter

in the scfdma frame acq module, they suffer a one-tap equalization by multiplying the

channel estimation values with the data symbols, getting the final values, like 3.11. With

the data blocks equalized they are outputted from the first output port; the second output

port transports the characters that symbolize the preamble and the data blocks.

The data blocks outputted from scfdma frame acq module are in the frequency domain

and have N samples, including only the occupied carries. To convert them to the time-

domain the demodulator uses the ifft demod module. As before, the scale module is used

to divide the inputted symbols by the square root of N to compensate the FFT amplitude

deviation. The output port from the scale module and the second output port from

scfdma frame acq module connect to the next module, scfdma demod.

Scfdma demod Module

The symbols are prepared to be demodulated by the scfdma demod module, imple-

mented in the C++ file scfdma frame sink impl.cc. This module resembles to ofdm demod

in the OFDM demodulator, and has the same behaviour defined by the state machine,

previously explained in section 3.3.2. The symbols in scfdma demod are stored in messages

and the block puts them in the message queue, so they can be later used by the upper

layers of software. The only difference between this module and the OFDM counterpart

is one code line that gets all the occupied tones instead of ignoring two in the middle, ap-

pendix D in list D.11 shows the difference. The next subsection explains the modification



3.4. SC-FDMA BLOCK 53

done in benchmarks and XML files, to adapt them to the new SC-FDMA blocks.

3.4.3 Other Files

There are important files that need to be rewritten, to adapted them to the SC-FDMA

blocks.

The XML files configure the blocks in the GRC. They are indispensable to run the

experiments, to check if the module is running correctly. The XML file for the modulator is

similar to the OFDM. The difference is that it calls scfdma.scfdma mod in the < make ><

/make > parameter instead of digital.ofdm mod. For the demodulator XML file, besides

changing the scfdma.scfdma demod, two new parameters are added: one for the sample

rate (samp rate) and another for the symbol rate (sym rate). These two new parameters

are used in the filter design. Figure 3.17 shows how the blocks appear in GRC.

Figure 3.17: GRC SC-FDMA blocks

The benchmarks files (benchmark rx.py and benchmark tx.py) and files related to them

(receive path.py and transmit path.py) were also modified. These files now call SC-FDMA

blocks and the functions associated to them.

With SC-FDMA blocks implemented, the next step was to test them. Next chapter

shows some testing results and compares the performance of SC-FDMA and OFDM.



54 CHAPTER 3. SYSTEM IMPLEMENTATION



Chapter 4

Performance Analysis

Last chapter described the implementation of the OFDM and the SC-FDMA trans-

mission techniques. This chapter evaluates the performance of SC-FDMA and compares

it with its counterpart, OFDM.

This chapter is composed by three sections: the first section shows the signals present

on several points of the OFDM and SC-FDMA modulation techniques and compares the

two modulations; the second section tests the two modulation techniques with the channel

model block (in the GRC software), with different noise and frequency offset configurations

for both modulations; the last section shows a set of performance results (Packet Error

Rate (PER)) for both transmission techniques using two USRP nodes connected through

a loop-back cable and wirelessly through antennas, for different frequencies.

4.1 Tests on GRC Using a Perfect Channel

This section shows the signals present on several points of the OFDM and SC-FDMA

modulations for the same parameters, considering a perfect channel without noise or fre-

quency offset. The purpose of these tests is to measure the data at specific points inside

the modulator and demodulator blocks. To compare the two modulation techniques, both

use the parameter values represented in table 4.1.

55



56 CHAPTER 4. PERFORMANCE ANALYSIS

Parameters

FFT Length 1024

Cycle Prefix Length 100

Constellation QPSK

Occupied Tones Length 256

Sample Rate 1 MHz

Table 4.1: Parameters used in GRC tests of the modulation techniques.

The inputted signal was also the same for both modulations. We created a file with

10000 random samples of ones and zeros, which was used at all the tests in the simulator;

when we get to the real channel the messages sent are created by the benchmark tx.py file.

The samples were generated in the GRC software, using a Random Source block and were

saved in a file. Figure 4.1 shows the first 100 symbols used to perform the tests.

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5
Input File Values

Position

V
al

ue

Figure 4.1: First 100 symbols of the inputted file.

This section is divided in two parts: the first part is devoted to OFDM transmission

and the second part to SC-FDMA.

4.1.1 OFDM Transmission

This section shows the signals present in the OFDM blocks, when they are tested

without noise or frequency offset. This section is divided in two parts: the first shows the

modulator of and the second the demodulator.



4.1. TESTS ON GRC USING A PERFECT CHANNEL 57

Figure 4.2 shows using a blue arrow which modules are observed in the modulator

and demodulator blocks.

pkt_input preambles ifft cp_adder

(a) Modulator Block

Filter
Synchronization 

Block
sampler fft_demod ofdm_frame_acq

(b) Demodulator Block

Figure 4.2: OFDM schematics indicating which outputs are observed.

As we can see, in the modulator block (figure 4.2(a)) this section examines the outputs

from pkt input, preambles and ifft modules and in the demodulator block (figure 4.2(b)) it

examines the outputs from sampler, fft demod and ofdm frame acq modules.

OFDM Transmitter

In the transmitter side, the modules take the inputted data from one file and modulate

the symbols using the QPSK constellation, generating the output represented in figure

4.3(a). Because we work with a QPSK there are four points in the constellation. The

values on zero represent the unoccupied carriers, which do not have any value. Pkt input

module also maps the data symbols in the correct occupied carriers. Figure 4.3(b) shows

the absolute value of the data symbols. Since we use a sample rate of Fs = 1MHz and a

FFT length of N = 1024, each bin occupies N
Fs

= 976Hz. The data blocks have the band

occupied between 375 to 625 kHz with the data samples and the rest of the band with

zeros.



58 CHAPTER 4. PERFORMANCE ANALYSIS

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
I&Q Constellation

Inphase

Q
ua

dr
at

ur
e

(a) Data block constellation

0 1 2 3 4 5 6 7 8 9 10

x 10
5

−1

−0.5

0

0.5

1

1.5

2
Absolute Value

Frequency (Hz)

V
al

ue

(b) Data block absolute value

Figure 4.3: Pkt input module - data block outputted.

The next module is preambles. This module adds the preamble blocks to the stream,

which are used in the synchronization and equalization processes later in the demodulator.

Figure 4.4 shows the distribution of the vector with the preamble samples, before it occupy

the preamble data block. We can see that the samples assume values of 1 or −1 and are

intercalated with zeros. This pattern is used later to perform the OFDM synchronization

and equalization.

0 50 100 150 200 250
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Symbols Value

Position

V
al

ue

Figure 4.4: Preamble samples vector.

The last module of the modulator is ifft. This module converts the data blocks from



4.1. TESTS ON GRC USING A PERFECT CHANNEL 59

the frequency-domain to the time-domain. Figure 4.5 shows the preamble in the time

domain. There are two graphs in the figure showing the absolute value of the symbols:

the first graph shows the first half of the preamble block and the second graph the other

half. We can see that the two halves are equal. This happens because the preamble block

has its data intercalated with zeros in the frequency-domain.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.2

0.4

0.6

0.8

1
Absolute Value − First Half

Frequency (Hz)

V
al

ue

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

x 10
5

0

0.2

0.4

0.6

0.8

1
Absolute Value − Second Half

Frequency (Hz)

V
al

ue

Figure 4.5: The absolute value of the preamble block symbols in the time-domain.

OFDM Receiver

After filtering the signal, and synchronize and correct the frequency offset, the de-

modulator uses the sampler module to sample the blocks and mark the cyclic prefix. The

blocks outputted from the sampler module are in the time-domain. Figure 4.6 shows the

absolute value of the samples in one preamble block outputted from this module, marked

as preamble to allow the following module to exclude them. We can see that both halves

are equal to each other. This is the same behaviour as in the preamble block outputted

from the ifft module of the modulator. Therefore, the synchronization was done correctly.



60 CHAPTER 4. PERFORMANCE ANALYSIS

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2
Absolute Value − First Half

Frequency (Hz)

V
al

ue

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

x 10
5

0

0.2

0.4

0.6

0.8

1

Absolute Value − Second Half

Frequency (Hz)

V
al

ue

Figure 4.6: The spectrum of the preamble block symbols after the sampler module.

The demodulator converts the data blocks from the time-domain to the frequency-

domain using the fft demod module. Figure 4.7(a) shows a preamble block and figure

4.7(b) shows a data block. In both figures, only the band between 375 to 625 kHz has

data samples with values much higher than zero. Figure 4.8 shows the a data block before

the equalization, it has a circular form because the samples are still modulated.

0 1 2 3 4 5 6 7 8 9 10

x 10
5

−1

−0.5

0

0.5

1

1.5

2
Absolute Value

Frequency (Hz)

V
al

ue

(a) Preamble block

0 1 2 3 4 5 6 7 8 9 10

x 10
5

−1

−0.5

0

0.5

1

1.5

2
Absolute Value

Frequency (Hz)

V
al

ue

(b) Data block

Figure 4.7: Frames after being converted in fft demod module.



4.1. TESTS ON GRC USING A PERFECT CHANNEL 61

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
I&Q Constellation

Inphase

Q
ua

dr
at

ur
e

Figure 4.8: Constellation of a data block - QPSK symbols marked in red.

Using the ofdm frame acq module, the demodulator equalizes the data blocks and

removes them from the occupied carries, outputting only the necessary data. Figure

4.9(a) shows the preamble block. We see that the values are 1 or −1 intercalated with

zeros. Figure 4.9(b) shows a data block. It can be seen that the symbols are in the right

position of the constellation, except for a small variations due to the operations earlier

performed (filter, synchronization, etc.). The data blocks occupy the full band between 0

and 1 MHz.

0 1 2 3 4 5 6 7 8 9 10

x 10
5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Symbols Value

Frequency (Hz)

V
al

ue

(a) Preamble block

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
I&Q Constellation

Inphase

Q
ua

dr
at

ur
e

(b) Data block constellation

Figure 4.9: Frames after equalization inside the ofdm frame acq module.



62 CHAPTER 4. PERFORMANCE ANALYSIS

4.1.2 SC-FDMA Transmission

This section shows some samples of the SC-FDMA blocks signals, when they are tested

without noise or frequency offset. This section is divided in two parts: the first shows the

modulator and the second the demodulator results.

Like in the OFDM technique, not all the blocks can be observed. Figure 4.10 shows

which modules are observed in the modulator and demodulator blocks; the blue arrow

indicates which outputs are observed in this section.

pkt_input fft preambles mapper ifft cp_adder

(a) Modulator Block

Filter
Synchronization 

Block
sampler fft_demod scfdma_frame_acq ifft_demos

(b) Demodulator Block

Figure 4.10: SC-FDMA schematics indicating which outputs are observed.

As we can see, at the modulator block (figure 4.10(a)) only the outputs of pkt input,

preambles, mapper and ifft modules are examined, and from the demodulator block (figure

4.10(b)) only the outputs of sampler, fft demod, scfdma frame acq and ifft demod modules

are examined.

SC-FDMA Transmitter

The transmitter block starts with the pkt input module. This modules takes the

inputted data from a file and modulates the symbols using the constellation. Figure 4.11

shows the points of the QPSK constellation. The outputted data blocks from pkt input

module occupy the full band from 0 to 1 MHz. After this module, the modulator converts

the data from the time-domain to the frequency-domain using the fft module.



4.1. TESTS ON GRC USING A PERFECT CHANNEL 63

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
I&Q Constellation

Inphase

Q
ua

dr
at

ur
e

Figure 4.11: Data block constellation - outputted from pkt input module.

The modulator inserts the preamble blocks in the stream, using the preambles module.

The preamble sequence is based on the Zadoff-Chu sequence (section 2.2.3). Figure 4.12

depicts the preamble block generated. We can we see that this preamble is different than

OFDM.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
I&Q Plot

Inphase

Q
ua

dr
at

ur
e

Figure 4.12: Preamble sequence.

After inserting the preamble blocks, the modulator maps the data blocks in the occu-

pied tones, leaving the rest of the block filled with zeros. Figure 4.13 shows a data block

after being mapped. The figure shows the absolute value of the symbols and as we can

see, only the band between 375 to 625 kHz is occupied with values higher than zero.



64 CHAPTER 4. PERFORMANCE ANALYSIS

0 1 2 3 4 5 6 7 8 9 10

x 10
5

−3

−2

−1

0

1

2

3

4

5

6
Absolute Value

Frequency (Hz)

V
al

ue

Figure 4.13: Spectrum of the symbols in a data block after mapping.

The last module observed is ifft. This module converts the data blocks from the

frequency-domain to the time-domain. Figure 4.14 shows the absolute value of a preamble

block outputted from this module. There are two graphs in the figure: the first graph

shows the first half of the preamble block and the second graph the other half. We can

see that the two halves are equal. This happens because the preamble block has its data

intercalated with zeros in the frequency-domain. This is the same behaviour as the OFDM

technique and it is also used in the synchronization at the receiver.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

−0.2

0

0.2

0.4

0.6

0.8

Absolute Value − First Half

Frequency (Hz)

V
al

ue

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

x 10
5

−0.2

0

0.2

0.4

0.6

0.8

Absolute Value − Second Half

Frequency (Hz)

V
al

ue

Figure 4.14: Absolute value of the preamble block symbols in the time-domain.



4.1. TESTS ON GRC USING A PERFECT CHANNEL 65

SC-FDMA Receiver

After filtering the signal, synchronize and correct the frequency offset, the demodulator

samples the blocks and marks the cyclic prefix, using the sampler module. The outputted

blocks are still in the time-domain. Figure 4.15 shows one preamble block outputted from

the sampler module. We can see that both halves have the same behaviour, indicating

that the synchronization was correctly done.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.005

0.01

0.015
Absolute Value − First Half

Frequency (Hz)

V
al

ue

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

x 10
5

0

0.005

0.01

0.015
Absolute Value − Second Half

Frequency (Hz)

V
al

ue

Figure 4.15: The absolute value of the preamble block symbols after the sampler module.

The demodulator converts the blocks outputted by the sampler from the time-domain

to the frequency-domain using the fft demod module. Figure 4.16(a) shows the I&Q plot

of a preamble block before the equalization at the fft demod module. Compared to the

figure 4.12, we see that the symbols are not in the same place. Figure 4.16(b) shows the

spectrum of a data block, where we can easily mark which positions belong to the occupied

tones and which are only zeros.



66 CHAPTER 4. PERFORMANCE ANALYSIS

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15
I&Q Plot

Inphase

Q
ua

dr
at

ur
e

(a) Preamble block

0 1 2 3 4 5 6 7 8 9 10

x 10
5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
Absolute Value

Frequency (Hz)

V
al

ue

(b) Data block

Figure 4.16: Preamble and data block after the fft demod module.

Using the scfdma frame acq module, the demodulator equalizes the data blocks and

removes the data from the occupied carriers, outputting only the raw data. Figure 4.17

shows a preamble block. Comparing with the figure 4.12, we now see that the symbols are

in the right position.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
I&Q Plot

Inphase

Q
ua

dr
at

ur
e

Figure 4.17: Preamble block after the equalization in the scfdma frame acq module.

The last step is to convert the blocks to the time-domain using the ifft demod module.

Figure 4.18 shows a data block after the conversion. We can see that the symbols are in

the right position of the constellation (QPSK), marked in red. There are some variations



4.2. TESTS ON GRC USING DIFFERENT NOISE AND FREQUENCY OFFSETS 67

but this behaviour is normal due to the operations that were earlier performed (filter,

synchronization, etc.), just like in the OFDM modulation, although less significant.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
I&Q Constellation

Inphase

Q
ua

dr
at

ur
e

Figure 4.18: Constellation of a data block after being converted to the time-domain -
QPSK symbols marked in red.

4.2 Tests on GRC Using Different Noise and Frequency Off-

sets

In this section, we add noise and frequency offset to the channel while testing the

transmissions techniques. These tests compare the overall performance between each

technique. This section is divided in two parts: the first part tests the system with

different noise powers and the second part tests the system applying frequency offsets.

During the tests, we used the Channel Model block between the modulator and the

demodulator blocks. Figure 4.19 shows the Channel Model block and lists its parameters.

The two main parameters used in the tests are: the Noise (measured in voltages) and the

Frequency Offset (measured in hertz).

Figure 4.19: Channel model block.



68 CHAPTER 4. PERFORMANCE ANALYSIS

Figure 4.20 shows the connections using the transmission techniques and the Channel

Model block. Figure 4.20(a) shows the testing schematic using the OFDM technique and

Figure 4.20(b) shows the schematic using the SC-FDMA technique.

(a) OFDM

(b) SC-FDMA

Figure 4.20: Transmission blocks with the Channel Model block in the GRC.

To compare the transmission techniques, we used a file with 10000 random binary

samples and the same parameters used in the previous tests, such as: FFT length, occupied

tones, constellations and cyclic prefix, with the values presented in table 4.2.

Parameters

FFT Length 1024

Cycle Prefix Length 100

Constellation QPSK

Occupied Tones Length 256

Table 4.2: Parameters to test the modulation techniques.

The data blocks have the same length of the FFT length parameter (1024), for this

reason the inputted file is divided in 144 data blocks. The bandwidth in these tests is also

Fs = 1MHz. We will see in the results sections that different noise voltages and frequency

offsets disturb the synchronization and subsequently the final results.



4.2. TESTS ON GRC USING DIFFERENT NOISE AND FREQUENCY OFFSETS 69

4.2.1 Noise Tests Results

In a environment with a noise voltage of 0.00001 (0.01µW ), the final samples in

the constellations do not diverge much from the original ones. Using this voltage, the

receiver in both transmissions can recover all the data blocks. Figure 4.21 shows the

final constellations of the same data block transmitted, for both transmissions techniques.

When we compare 4.21(a) and 4.21(b), we see that the SC-FDMA samples have less noise

associated.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
I&Q Constellation

Inphase

Q
ua

dr
at

ur
e

(a) OFDM

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
I&Q Constellation

Inphase

Q
ua

dr
at

ur
e

(b) SC-FDMA

Figure 4.21: Data block after the equalization, with a noise voltage of 0.00001 in the
channel.

When we increase the noise voltage to 0.001 (1µW ), all the data blocks are received

and recovered as well. Thus, we obtained the final constellations, shown in figure 4.22. Like

the last test, when we compare 4.22(a) and 4.22(b), we see that the SC-FDMA technique

recovers the samples with less noise associated.



70 CHAPTER 4. PERFORMANCE ANALYSIS

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
I&Q Constellation

Inphase

Q
ua

dr
at

ur
e

(a) OFDM

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
I&Q Constellation

Inphase

Q
ua

dr
at

ur
e

(b) SC-FDMA

Figure 4.22: Data block after the equalization, with a noise voltage of 0.001 in the channel.

In the last test , we increase the noise voltage to 0.1 (100µW ). In this environment,

the SC-FDMA does not hold up, because the initial preamble blocks receive too much

noise, which in turn disturb the final values, obtaining a PER of 13.2%, whereas in the

OFDM transmission, all the data blocks were received.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
I&Q Constellation

Inphase

Q
ua

dr
at

ur
e

(a) OFDM

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
I&Q Constellation

Inphase

Q
ua

dr
at

ur
e

(b) SC-FDMA

Figure 4.23: Data block after the equalization, with a noise voltage of 0.1 in the channel.

This way, some adjustments needs to be done in the preamble sequence. Figure

4.23 shows the constellation of the same data blocks received by the two transmission

techniques. Figure 4.24 shows one data block that was unsuccessfully equalized in the



4.2. TESTS ON GRC USING DIFFERENT NOISE AND FREQUENCY OFFSETS 71

SC-FDMA transmission. We can see from the last figure that the final values are shifted

from the original values, marked in red, which results in a bad demodulation.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
I&Q Constellation

Inphase

Q
ua

dr
at

ur
e

Figure 4.24: Unsuccessfully equalized data block in SC-FDMA.

In the final analysis, if we compare the graphs from the figures 4.21, 4.22 and 4.23, we

can see that when we increase the noise voltage, the difference between the samples after

the equalization and the original ones also increase.

4.2.2 Frequency Offset Tests Results

The tests with different frequency offsets considered the noise voltage equal to 0.00001,

thus, the noise does not disturb too much the received symbols. The frequency offset

changed according to the expression

frequency offset =
1

FFT length
∗ α. (4.1)

where α > 0 and 1
FFT length is the size of one sub-carrier. In the tests, we tested a low

offset below one sub-carrier, corresponding to α < 1 and one higher offset of α = 2.5.

For α = 0.7, the frequency offset was set to 683µHz. In this channel, both transmission

techniques have problems recovering the first data blocks. But, after those blocks they

stabilize and the demodulator is able to recover the remaining data blocks, achieving a

PER of 8% for both modulations. The constellations for both transmission techniques are



72 CHAPTER 4. PERFORMANCE ANALYSIS

shown in figure 4.25.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
I&Q Constellation

Inphase

Q
ua

dr
at

ur
e

(a) OFDM

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
I&Q Constellation

Inphase

Q
ua

dr
at

ur
e

(b) SC-FDMA

Figure 4.25: Data block after the equalization, with a frequency offset of 683µHz in the
channel.

For α = 2.5, the frequency offset is 2.441mHz. Like in the last tests, both transmission

techniques have problems recovering the first data blocks, but after them, the demodula-

tors recover the remaining ones. We also measured a PER of 8% for both modulations.

Figure 4.26 shows the constellations for the same data block.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
I&Q Constellation

Inphase

Q
ua

dr
at

ur
e

(a) OFDM

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
I&Q Constellation

Inphase

Q
ua

dr
at

ur
e

(b) SC-FDMA

Figure 4.26: Data block after the equalization, with a noise voltage of 0.1 in the channel.



4.3. TESTS ON USRP HARDWARE 73

In spite of having lost data blocks in some tests, the overall results for the SC-FDMA

transmission technique are similar to the ones with the OFDM transmission technique.

Furthermore, the SC-FDMA transmission achieve less noise after the equalization, com-

paring to the OFDM transmission.

4.3 Tests on USRP Hardware

In this section, we test both modulation techniques on the USRP hardware using

the loop-back cable and the antennas. The testing system is composed by two personal

computers each connected to one USRP through a USB cable. The USRP device used in

the experiments is the B100 system, from the bus series.

We used the benchmark tx.py to setup the transmitter and benchmark rx.py to setup

the receiver, and set the parameters for both modulations identical to the last experiments,

listed in table 4.3.

Parameters

FFT Length 1024

Cycle Prefix Length 100

Constellation QPSK

Occupied Tones Length 256

Table 4.3: Parameters used by both modulation techniques.

SC-FDMA also has two new parameters related to the filter design, symb rate and

samp rate. Symb rate needs to be a little higher than the bandwidth value and samp rate

is two times higher than the bandwidth. We set the bandwidth with 500 kHz. Table 4.4

shows the remaining parameters for the SC-FDMA modulation.

Parameters

Samp rate 1 MHz

Symb rate 530 kHz

Table 4.4: Some parameters used for the SC-FDMA modulation.

The benchmarks measure how many packets the receptor get and how many were

correct. This numbers provide us the value of the PER. We also calculate the Signal to



74 CHAPTER 4. PERFORMANCE ANALYSIS

Noise Ratio SNR at the beginning of the demodulator, using the expression,

SNR = 10 ∗ log
(
PS
PN

)
(4.2)

This section is divided is two parts: the first shows the results using the loop-back

cable and the second shows the results using the antennas.

4.3.1 Results Using the Loop-back Cable

In this test, we connect the two USRP devices with a loop-back cable, thus we have

less noise and can work with a broader frequency range. Figure 4.27 shows a picture of

the setup with the two USRP and the loop-back cable.

Figure 4.27: USRP setup using the loop-back cable.

We tested the two transmission techniques for three different frequencies (1, 2 and 2.5

GHz), and measured the number of packet received. OFDM and SC-FDMA experiment

results are presented in table 4.5 and table 4.6, respectively. The Packets Received column

gives the total of received packets and the Packets Right column gives the number of

packets that were successfully demodulated.

Packets Received Packets Right SNR (dB) PER (%)

F1 = 1GHz 89 87 83 3

F2 = 2GHz 125 40 66 68

F3 = 2.5GHz 218 10 58.9 96

Table 4.5: OFDM experiments results using the loop-back cable.

From table 4.5, we see that as we increase the frequency we get less packets right (i.e.



4.3. TESTS ON USRP HARDWARE 75

higher PER). Also, higher frequencies results in lower a SNR.

Packets Received Packets Right SNR (dB) PER (%)

F1 = 1GHz 163 131 83 19.6

F2 = 2GHz 113 91 63 20

F3 = 2.5GHz 138 116 45.4 16

Table 4.6: SC-FDMA experiments results using the loop-back cable.

Similarly to OFDM, in table 4.6 as we increase the frequency, SC-FDMA has lower

SNR. But when we compare the SC-FDMA to the OFDM modulation, we see that SC-

FDMA receives more data successfully and achieves better results for higher frequencies.

OFDM SC-FDMA
F1 = 1GHz 3 % 19.6%
F2 = 2GHz 68 % 20 %
F3 = 2.5GHz 96% 16%

Table 4.7: OFDM and SC-FDMA PER values.

In summary, the OFDM modulation technique achieves a better result in the first

frequency, whereas the SC-FDMA modulation technique is more stable for all the fre-

quencies.

4.3.2 Results Using the Antennas

In this tests, we send the data between the two USRPs using antennas. The noise

interference is more relevant and the frequency band is more restricted. Figure 4.28 shows

the setup with the two USRP and the antennas.

Figure 4.28: USRP setup using the antennas.



76 CHAPTER 4. PERFORMANCE ANALYSIS

We use the VERT2450 antennas, which supports frequency bands of 2.4 to 2.48 GHz

and 4.9 to 5.9 GHz. In order to performed the experiments, we set the frequency to 2.48

GHz. OFDM and SC-FDMA experimental results are presented in table 4.8.

Packets Received Packets Right SNR (dB) PER (%)

OFDM 371 33 44 91.1

SC-FDMA 236 184 30 22.1

Table 4.8: OFDM and SC-FDMA results using the antennas and with a frequency of 2.48
GHz.

In this results we see a lower SNR, due to the higher interference captured by the

antennas. Similarly to the loop-back cable experiments, the SC-FDMA results are better

than the OFDM for this higher frequency band. We see that the PER in the OFDM

modulation is much higher than in the SC-FDMA modulation.

In order to get better results and find a better setup, more tests could be done by

changing some parameters, such as: center frequency, FFT length, occupied tones, cyclic

prefix, constellation, bandwidth, filter design and preambles. Also, more results could

be obtained like the Bit Error Rate (BER) and a better SNR estimation, using a SNR

estimator in the demodulator.

In conclusion, although these results result from a small set of experiments using the

default parameters, the SC-FDMA implementation shown a acceptable performance, when

compared to the OFDM implementation, that came with the GNURadio platform.



Chapter 5

Conclusions

In this chapter, we summarize the work performed along this thesis and deliver some

final considerations. We also present future work that is achievable from this implemen-

tation or by changing it.

5.1 Final Considerations

This thesis focuses on the study and implementation of the SC-FDMA transmission

technique using the GNURadio platform. This objective was successfully executed and

now this platform has a new transmission technique.

Chapter 2 introduced the basics of the SDR. We saw that the USRP hardware sends

and receives signals through out the spectrum frequency using the antennas and also

converts the signals from the analog to the digital domain, while the GNURadio platform

works with the digital signals using software, in C++ and Phyton programming languages.

Besides introducing the platform, chapter 2 presented the theory behind the MC and SC

techniques and the OFDM and SC-FDMA transmissions.

In chapter 3, we implemented basic examples using the GRC, gr modtools and gr filter design

tools, leading to a better understating of the GNURadio platform and its potentials.

The GNURadio platform already came with the OFDM transmission blocks imple-

mented. In order to create the SC-FDMA blocks, we carefully examined which functions

each module did inside the OFDM blocks and redesigned them to create the new SC-

FDMA blocks. In the modulator, the modules that received modifications were: pkt input,

77



78 CHAPTER 5. CONCLUSIONS

which now outputs only the data without mapping in the occupied tones and preamble,

where we used a new preamble sequence, the Zadoff-Chu sequence. In the demodulator,

the modules that received modifications were: scfdma sync and scfdma frame acq, where

we created a new algorithm to find the occupied tones and used the new preamble se-

quence. Besides redesigning some modules, we added new ones, such as: fft, scale vec and

mapper in the modulator and ifft demod, scale and a new filter in the demodulator.

After creating the new SC-FDMA blocks, we modified the benchmark rx.py and bench-

mark tx.py files in order to get the SC-FDMA transmission to work in the USRP devices.

In chapter 4, we tested the two transmission techniques using different environments.

In the GRC we simulated the modulators using the Channel Model block. In a noise

and frequency offset free environment, both modulators hold up and get the final data

without any errors, except for a small distortion due to the synchronization and other

operations. When the noise power was increased, we saw that both transmissions could

achieve the same results, until we reach a point where the noise voltage distorted the

samples too much. Using a low noise power, we tested the effect of the frequency offset

for a value bellow or higher than the size of one sub-carrier. Both modulators lose the

first preamble block and its data blocks, but after the second preamble block stabilized.

From all the tests, when comparing the final constellation for the same data block in the

two transmission techniques, we saw that the SC-FDMA seems to achieve better results.

Finally, we tested the transmission techniques using the USRP hardware and the

benchmarks, first with the loop-back cable then with the antennas. In the first tests, we

saw that the OFDM transmission had better results in a lower frequency (1 GHz) achieving

a lower PER (3 %), but as we increase the frequency (to 2.5 GHz), the PER was much

higher (to 96%). In contrast, the SC-FDMA transmission had a higher PER (80.4%) in the

initial frequency but it almost did not decrease while the frequency increased. With the

antennas we got similar results: with a frequency of 2.48 GHz, the OFDM transmission got

a PER of 91.1% and the SC-FDMA transmission got 22.1%. Although, these results were

achieved in the selected frequencies and initial parameters, the SC-FDMA implementation

shown to have an acceptable performance when compared to the OFDM modulation.

As a final analysis, it is possible to tell that the GNURadio platform, an open source



5.2. FUTURE WORK 79

software, and the USRP devices, a low budget platform with high potential, provide a

great tool to develop and test new transmission techniques, study other signal processing

functions and implement prototypes to get real results measured in the environment.

Also, the main objective purposed by this study, implement the SC-FDMA transmission

technique was successfully executed and the tests performed with it were successful.

5.2 Future Work

The SC-FDMA transmission modules implemented still have some problems with the

synchronization when they are used in a the real channel. They need improvements in

order to be more accurate, such as using new types of preambles and other synchronization

methods. The implemented transmission needs more tests in the USRP to find the optimal

configuration using different parameters, such as: center frequencies, FFT length, occupied

tones, cyclic prefix, constellation, bandwidth, filter design and preambles. Also, other

results could be measured, like the Bit Error Rate and a better measurement of the SNR

could be obtained using an alternative SNR estimator.

For testing purposes, it would be interesting to implement a system that could obtain

the data files in a way that it would be easy to manipulate in other programs like MatLab.

Besides improving the SC-FDMA and the GNURadio platform, new ideas could be

implemented to improve the overall study in the telecommunication area, such as:

� Implementing the Single-Carrie Frequency-Domain-Equalization transmission tech-

nique, by removing the FFT modules from the modulator and redesigning some

modules. Eventually implementing a module using the IB-DFE transmission.

� Implement systems that work in other layers and use the GNURadio and the USRP

as the physical layer.

� Study the implementation in the encoder and decoders for the error corrections.

The GNURadio software is an open source with a lot of potential and the USRP

devices are low budget giving a great tool in the academic environments to develop new

ideas.



80 CHAPTER 5. CONCLUSIONS



Bibliography

[3GP06] 3GPP. 3rd generation partnership project; technical specification group

radio access network; physical layer aspects for evolved universal terres-

trial radio access. 3GPP TR 25.814, Set. 2006.

[3GP08] 3GPP. Evolved universal terrestrial radio access (e-utra) and evolved

universal terrestrial radio access (e-utran); overall description. ETSI TS

136 300, Apr. 2008.

[Ahs09] Borko Furht; Syed A. Ahson. Long Term Evolution: 3GPP LTE Radio

and Cellular Technology. Auerbach Publications, 2009.

[AM09] Norsheila Fisal Sharifah Kamilah Syed Yusof Rozeha A.Rashid

Arief Marwanto, Mohd Adib Sarijari. Experimental study of ofdm im-

plementation utilizing gnu radio and usrp - sdr. Malaysia International

Conference on Communications, 12(2):15–17, 2009.

[Bib04] Ieee standard for local and metropolitan area networks part 16: Air

interface for fixed broadband wireless access systems. IEEE 802.16-2004,

Oct. 2004.

[CS10] C. Ciochina and H. Sari. A review of ofdma and single-carrier fdma and

some recent results. Advances In Electronics And Telecommunications,

1(1):35 – 40, Apr. 2010.

[Ham08] Firas Abbas Hamza. The usrp under 1.5x magnifying lens! Proc. IEEE

CCNC 2007, pages 5–10, June 2008.

81



82 BIBLIOGRAPHY

[Han09] Burcu Hanta. Sc-fdma and lte uplink physical layer design. Ausgewahlte

Kapitel der Nachrichtentechnik, WS 2009/2010, Dec. 2009.

[HGMG06] Junsung Lim Hyung G. Myung and David J. Goodman. Single carrier

fdma for uplink wireless transmission. IEEE VEHICULAR TECHNOL-

OGY MAGAZINE, (1556-6072/06 IEEE):30 – 38, September 2006.

[HSJ94] G. Karam H. Sari and I. Jeanclaude. Channel equalization and carrier

synchronization in ofdm systems. in Int. Tirrenia Workshop on Digital

Communications, Tirrenia, Italy, Sep. 1993, in Audio and Video Digital

Radio Broadcasting Systems and Techniques, Elsevier Science Publishers,

1994.

[IEE06] IEEE. Part 16: Air interface for fixed and mobile broadband wireless

access systems amendment 2: Physical and medium access control layers

for combined fixed and mobile operation in licensed bands and corrigen-

dum 1. IEEE 802.16-2005, Feb. 2006.

[LAMRdTM08] Simone Frattasi Luis Angel Maestro Ruiz de Temino, Gilberto Berar-

dinelli and Preben Mogensen. Channel-aware scheduling algorithms for

sc-fdma in lte uplink. 978-1-4244-2644-7/08 IEEE, pages 1 – 6, Set.

2008.

[Mar09] Majó Marcos. Design and implementation of an ofdm-based communi-

cation system for the gnu radio platform, 2009.

[Mit95] Joe Mitola. The software radio architecture. 0163-6804/95 IEEE Com-

munication Magazine, May, 1995.

[NL08] Hazem H. Refai Nick LaSorte, W. Justin Barnes. The history of orthog-

onal frequency division multiplexing. 978-1-4244-2324-8 IEEE, 2008.

[Pag06] C. Pagès. A Vectorization of Synchronization Algorithms for OFDM Sys-

tems. Master’s thesis, Technische Universitat Dresden - Fakultat Elek-

trotechnik und Informationstechnik, 2006.



BIBLIOGRAPHY 83

[Ram08] Vijaya Chandran Ramasami. Orthogonal frequency division multiplex-

ing. ETSI TS 136 300, Apr. 2008.

[Res13] Ettus Research. USRP. USRP from https://www.ettus.com/, 2013.

[Rum08] Moray Rumney. 3gpp lte: Introducing single-carrier fdma. Agilent Mea-

surement Journal, Jan. 2008.

[SB09] C. Leung S. Beyme. Efficient computation of dft of zadoff-chu sequences.

IEEE TRANSACTIONS ON COMMUNICATIONS, pages 1613 – 1621,

Apr. 2009.

[SC97] T. M. Schmidl and D. C. Cox. Robust frequency and timing synchroniza-

tion for ofdm. IEEE Transactions on Communications, 45:1613 – 1621,

Dec. 1997.

[ser09] European Standard (Telecommunications series). Digital video broad-

casting (dvb); framing structure, channel coding and modulation for

digital terrestrial television. ETSI Standard: EN 300 744, Jan. 2009.

[Sil10] Fabio J. Silva. Design and Performance Evaluation of Turbo FDE Re-

ceivers. Master’s thesis, FCT-UNL, 2010.

[Tec11] Agilent Technologies. Introducing lte-advanced. March 2011.

[vdBMSPOB97] Jan-Jaap van de Beek; Magnus Sandell; Per Ola Borjesson. Ml estimation

of time and frequency offset in ofdm systems. IEEE TRANSACTIONS

ON SIGNAL PROCESSING, pages 1880–1885, Jul. 1997.



84 BIBLIOGRAPHY



Appendices

85





Appendix A

Dial Tone Example

This appendix shows the code generated in Dial Tone example (figure A.1). This

example creates an audio signal by adding two cosine waves and a noise signal. The first

lines define the libraries needed to run the application. From the 19tb line, comes the

definition of the dial tone class, which has several modules and variables associated. From

the 115tb line, the modules are connected, using the function connect. In the last part, the

class defines the links between the variables and the appropriated modules.

Figure A.1: Dial Tone example - block diagram

87



88 APPENDIX A. DIAL TONE EXAMPLE

1 #!/usr/bin/env python

2 ##################################################

3 # Gnuradio Python Flow Graph

4 # Title: Dial Tone

5 # Generated: Tue Nov 12 11:41:36 2013

6 ##################################################

7

8 from gnuradio import analog

9 from gnuradio import blocks

10 from gnuradio import eng notation

11 from gnuradio import gr

12 from gnuradio.eng option import eng option

13 from gnuradio.gr import firdes

14 from gnuradio.wxgui import forms

15 from gnuradio.wxgui import scopesink2

16 from grc gnuradio import wxgui as grc wxgui

17 from optparse import OptionParser

18 import wx

19

20 class dial tone(grc wxgui.top block gui):

21

22 def init (self):

23 grc wxgui.top block gui. init (self, title=”Dial Tone”)

24 icon path = ”/usr/share/icons/hicolor/32x32/apps/gnuradio−grc.png”

25 self.SetIcon(wx.Icon( icon path, wx.BITMAP TYPE ANY))

26

27 ##################################################

28 # Variables

29 ##################################################

30 self.samp rate = samp rate = 48000

31 self.noise amp = noise amp = .005

32 self.freq slider 2 = freq slider 2 = 450

33 self.freq slider 1 = freq slider 1 = 350

34

35 ##################################################

36 # Blocks

37 ##################################################



89

38 noise amp sizer = wx.BoxSizer(wx.VERTICAL)

39 self. noise amp text box = forms.text box(parent=self.GetWin(),

40 sizer= noise amp sizer,value=self.noise amp,

41 callback=self.set noise amp,label=”Noise Amp.”,

42 converter=forms.float converter(),proportion=0,)

43

44 self. noise amp slider = forms.slider(parent=self.GetWin(),

45 sizer= noise amp sizer, value=self.noise amp,

46 callback=self.set noise amp, minimum=0, maximum=.1,

47 num steps=1000, style=wx.SL HORIZONTAL, cast=float,proportion=1,)

48

49 self.Add( noise amp sizer) freq slider 2 sizer = wx.BoxSizer(wx.VERTICAL)

50

51 self. freq slider 2 text box = forms.text box(

52 parent=self.GetWin(),sizer= freq slider 2 sizer,

53 value=self.freq slider 2,callback=self.set freq slider 2,

54 label=”Frequency 2”,converter=forms.float converter(),proportion=0,)

55

56 self. freq slider 2 slider = forms.slider(parent=self.GetWin(),

57 sizer= freq slider 2 sizer,value=self.freq slider 2,

58 callback=self.set freq slider 2,minimum=0,

59 maximum=1000,num steps=1000,style=wx.SL HORIZONTAL,

60 cast=float,proportion=1,)

61

62 self.Add( freq slider 2 sizer) freq slider 1 sizer = wx.BoxSizer(wx.VERTICAL)

63 self. freq slider 1 text box = forms.text box(parent=self.GetWin(),

64 sizer= freq slider 1 sizer,value=self.freq slider 1,

65 callback=self.set freq slider 1,label=”Frequency 1”,

66 converter=forms.float converter(),proportion=0,)

67

68 self. freq slider 1 slider = forms.slider(parent=self.GetWin(),

69 sizer= freq slider 1 sizer,value=self.freq slider 1,

70 callback=self.set freq slider 1,minimum=0,aximum=1000,

71 num steps=1000, style=wx.SL HORIZONTAL, cast=float,proportion=1,)

72

73 self.Add( freq slider 1 sizer)

74



90 APPENDIX A. DIAL TONE EXAMPLE

75 self.wxgui scopesink2 0 = scopesink2.scope sink f(

76 self.GetWin(),title=”Scope Plot”,sample rate=samp rate,

77 v scale=1,v offset=0,t scale=1, ac couple=False,

78 xy mode=False,num inputs=4,trig mode=gr.gr TRIG MODE AUTO,

79 y axis label=”Counts”,)

80

81 self.Add(self.wxgui scopesink2 0.win)

82 self.gr add xx 0 = gr.add vff(1)

83 self.blocks throttle 0 = blocks.throttle(gr.sizeof float*1, samp rate)

84 self.analog sig source x 1 = analog.sig source f(samp rate, analog.GR COS WAVE, freq slider 2,

.1, 0)

85 self.analog sig source x 0 = analog.sig source f(samp rate, analog.GR COS WAVE, freq slider 1,

.1, 0)

86 self.analog noise source x 0 = analog.noise source f(analog.GR GAUSSIAN, noise amp, 0)

87

88 ##################################################

89 # Connections

90 ##################################################

91 self.connect((self.analog noise source x 0, 0), (self.gr add xx 0, 1))

92 self.connect((self.analog noise source x 0, 0), (self.wxgui scopesink2 0, 2))

93 self.connect((self.analog sig source x 1, 0), (self.wxgui scopesink2 0, 3))

94 self.connect((self.analog sig source x 0, 0), (self.wxgui scopesink2 0, 1))

95 self.connect((self.analog sig source x 1, 0), (self.gr add xx 0, 2))

96 self.connect((self.analog sig source x 0, 0), (self.gr add xx 0, 0))

97 self.connect((self.gr add xx 0, 0), (self.blocks throttle 0, 0))

98 self.connect((self.blocks throttle 0, 0), (self.wxgui scopesink2 0, 0))

99

100

101 def get samp rate(self):

102 return self.samp rate

103

104 def set samp rate(self, samp rate):

105 self.samp rate = samp rate

106 self.analog sig source x 1.set sampling freq(self.samp rate)

107 self.wxgui scopesink2 0.set sample rate(self.samp rate)

108 self.blocks throttle 0.set sample rate(self.samp rate)

109 self.analog sig source x 0.set sampling freq(self.samp rate)



91

110

111 def get noise amp(self):

112 return self.noise amp

113

114 def set noise amp(self, noise amp):

115 self.noise amp = noise amp

116 self. noise amp slider.set value(self.noise amp)

117 self. noise amp text box.set value(self.noise amp)

118 self.analog noise source x 0.set amplitude(self.noise amp)

119

120 def get freq slider 2(self):

121 return self.freq slider 2

122

123 def set freq slider 2(self, freq slider 2):

124 self.freq slider 2 = freq slider 2

125 self.analog sig source x 1.set frequency(self.freq slider 2)

126 self. freq slider 2 slider.set value(self.freq slider 2)

127 self. freq slider 2 text box.set value(self.freq slider 2)

128

129 def get freq slider 1(self):

130 return self.freq slider 1

131

132 def set freq slider 1(self, freq slider 1):

133 self.freq slider 1 = freq slider 1

134 self. freq slider 1 slider.set value(self.freq slider 1)

135 self. freq slider 1 text box.set value(self.freq slider 1)

136 self.analog sig source x 0.set frequency(self.freq slider 1)

137

138 if name == ’ main ’:

139 parser = OptionParser(option class=eng option, usage=”%prog: [options]”)

140 (options, args) = parser.parse args()

141 tb = dial tone()

142 tb.Run(True)

Listing A.1: Dial tone python code.



92 APPENDIX A. DIAL TONE EXAMPLE



Appendix B

Block Example Code

Section 3.2.1 describes how to create a block using the tool gr modtool. To complement

that section, this appendix shows the relevant files generated by the tool and covers the

modifications done to them, in order to create a block that computes the square of the

inputted signal. In last part, this appendix shows the tests that the block was submitted.

First, let us describe the modification performed in the file square ff impl.cc. There

are several functions inside this file, but as we know, the main function is general work.

Here, the inputted items, pointed by the *in pointer, multiply with themselves and are

outputted, pointed by the *out pointer. Sometimes the header file needs to be adapted,

but in this example square ff impl.h did not needed any change.

1 int square ff impl::general work (int noutput items,

2 gr vector int &ninput items,

3 gr vector const void star &input items,

4 gr vector void star &output items)

5 {

6

7 const float *in = (const float *) input items[0];

8 float *out = (float *) output items[0];

9

10 for(int i = 0; i < noutput items; i++) {

11 out[i] = in[i] * in[i];

12 }

13

14 // Tell runtime system how many input items we consumed on

93



94 APPENDIX B. BLOCK EXAMPLE CODE

15 // each input stream.

16 consume each (noutput items);

17

18 // Tell runtime system how many output items we produced.

19 return noutput items;

20 }

Listing B.1: Square ff impl.cc - general work.

The other file changed was exp square ff.xml. This file links the source files and the

GRC application, and is automatically created by gr modtool. The only change made was

in the < sink >< /sink > and < source >< /source > fields, where we declare the sink

and source ports.

1 <?xml version=”1.0”?>

2 <block>

3 <name>square ff</name>

4 <key>exp square ff</key>

5 <category>exp</category>

6 <import>import exp</import>

7 <make>exp.square ff()</make>

8 <sink>

9 <name>in</name>

10 <type>float</type>

11 </sink>

12 <source>

13 <name>out</name>

14 <type>float</type>

15 </source>

16 </block>

Listing B.2: XML code for block example.

After compiling the code, we test it in GRC. The test consists in squaring a cosine

wave and show the result in a WX GUI Scope Sink block. Figure B.1 shows the block

diagram and figure B.2 shows the resulted graphs, where channel 1 is the cosine wave and

channel 2 the its square.



95

Figure B.1: Test diagram using the new block.

Figure B.2: Cosine wave and its square.



96 APPENDIX B. BLOCK EXAMPLE CODE



Appendix C

OFDM Block Code

Section 3.3 describes the OFDM modulator and demodulator blocks. This appendix

shows the main functions and code lines that are referred in the description.

The first file mention is ofdm.py. This file consists in two classes (ofdm mod and

ofdm demod) and a vector named known symbols 4512 3, list C.1 shows the two classes

and the vector initialization.

1 (....)

2 # /////////////////////////////////////////////////////////////////////////////

3 # mod/demod with packets as i/o

4 # /////////////////////////////////////////////////////////////////////////////

5 class ofdm mod(gr.hier block2):

6 ”””

7 Modulates an OFDM stream. Based on the options fft length, occupied tones, and

8 cp length, this block creates OFDM symbols using a specified modulation option.

9 ”””

10 (....)

11 class ofdm demod(gr.hier block2):

12 ”””

13 Demodulates a received OFDM stream. Based on the options fft length, occupied tones, and

14 cp length, this block performs synchronization, FFT, and demodulation of incoming OFDM

15 symbols and passes packets up the a higher layer.

16 ”””

17 (....)

18 # Generating known symbols with:

19 # i = [2*random.randint(0,1)−1 for i in range(4512)]

97



98 APPENDIX C. OFDM BLOCK CODE

20 known symbols 4512 3 = [−1, −1, 1, −1, 1, 1, −1, −1, 1, −1, 1, 1, −1, 1, −1, −1, 1,(....)]

Listing C.1: Ofdm.py classes and vector.

C.1 OFDM Modulator Block

In the modulator block, one of the key features is the message queue defined in the

function send pkt. This function uses ofdm packet utils.make packet to make packets and

stores them in the queue.

1 def send pkt(self, payload=’’, eof=False):

2 ”””

3 Send the payload.

4

5 @param payload: data to send

6 @type payload: string

7 ”””

8 if eof:

9 msg = gr.message(1) # tell self. pkt input we’re not sending any more packets

10 else:

11 # print ”original payload =”, string to hex list(payload)

12 pkt = digital.ofdm packet utils.make packet(payload, 1, 1,

13 self. pad for usrp,

14 whitening=True)

15

16 #print ”pkt =”, string to hex list(pkt)

17 msg = gr.message from string(pkt)

18 self. pkt input.msgq().insert tail(msg)

Listing C.2: Send pkt function code.

List C.3 shows which modules are created and the connections between them, in order

to create the modulator block.

1 self. pkt input = ofdmfic swig.ofdmfic mapper bcv(rotated const,

2 msgq limit,

3 options.occupied tones,

4 options.fft length)



C.1. OFDM MODULATOR BLOCK 99

5

6 self.preambles = digital.ofdm insert preamble(self. fft length,

7 padded preambles)

8

9 self.ifft = gr.fft vcc(self. fft length, False, win, True)

10 self.cp adder = digital.ofdm cyclic prefixer(self. fft length,

11 symbol length)

12 self.scale = gr.multiply const cc(1.0 / math.sqrt(self. fft length))

13

14 self.connect((self. pkt input, 0),(self.preambles, 0))

15 self.connect((self. pkt input, 1),(self.preambles, 1))

16 self.connect(self.preambles,self.ifft, self.cp adder, self.scale,self)

Listing C.3: Module creation and connections.

During the OFDM modulator description, there are some important code lines to

point out. In the digital ofdm mapper bcv.cc file, the first part is the method to find the

occupied tones and it is implemented in the constructor, and the second part is the main

algorithm to fill the data frames, located in the work method.

1 (....)

2

3 digital ofdm mapper bcv::digital ofdm mapper bcv(

4 const std::vector<gr complex> &constellation, unsigned int msgq limit,

5 unsigned int occupied carriers, unsigned int fft length) :

6 gr sync block(”ofdm mapper bcv”, gr make io signature(0, 0, 0),

7 gr make io signature2(1, 2, sizeof(gr complex) * fft length*2,

8 sizeof(char))), d constellation(constellation), d msgq(

9 gr make msg queue(msgq limit)), d msg offset(0), d eof(false), d occupied carriers(

10 occupied carriers), d fft length(fft length), d bit offset(0), d pending flag(

11 0), d resid(0), d nresid(0) {

12 (....)

13 // find out how many zeros to pad on the sides; the difference between the fft length and the

subcarrier

14 // mapping size in chunks of four. This is the number to pack on the left and this number plus any

15 // residual nulls (if odd) will be packed on the right.

16 diff = (d fft length / 4 − carriers.length()) / 2;

17



100 APPENDIX C. OFDM BLOCK CODE

18 unsigned int i, j, k;

19 for (i = 0; i < carriers.length(); i++) {

20 char c = carriers[i]; // get the current hex character from the string

21 for (j = 0; j < 4; j++) { // walk through all four bits

22 k = (strtol(&c, NULL, 16) >> (3 − j)) & 0x1; // convert to int and extract next bit

23 if (k) { // if bit is a 1,

24 d subcarrier map.push back(4 * (i + diff) + j); // use this subcarrier

25 }

26 }

27 }

28

29 (....)

30 }

31 int digital ofdm mapper bcv::work(int noutput items,

32 gr vector const void star &input items,

33 gr vector void star &output items) {

34 (....)

35

36 // need new data to process

37 if (d bit offset == 0) {

38 d msgbytes = d msg−>msg()[d msg offset];

39 //printf(”mod message byte: %x\n”, d msgbytes);

40 }

41 if (d nresid > 0) {

42 // take the residual bits, fill out nbits with info from the new byte, and put them in the symbol

43 d resid |= (((1 << d nresid) − 1) & d msgbytes)

44 << (d nbits − d nresid);

45 bits = d resid;

46

47 out[d subcarrier map[i]] = d constellation[bits];

48 i++;

49

50 d bit offset += d nresid;

51 d nresid = 0;

52 d resid = 0;

53 //printf(”mod bit(r): %x resid: %x nresid: %d bit offset: %d\n”,

54 // bits, d resid, d nresid, d bit offset);



C.1. OFDM MODULATOR BLOCK 101

55 } else {

56 if ((8 − d bit offset) >= d nbits) { // test to make sure we can fit nbits

57 // take the nbits number of bits at a time from the byte to add to the symbol

58 bits = ((1 << d nbits) − 1) & (d msgbytes >> d bit offset);

59 d bit offset += d nbits;

60

61 out[d subcarrier map[i]] = d constellation[bits];

62 i++;

63 } else { // if we can’t fit nbits, store them for the next

64 // saves d nresid bits of this message where d nresid < d nbits

65 unsigned int extra = 8 − d bit offset;

66 d resid = ((1 << extra) − 1) & (d msgbytes >> d bit offset);

67 d bit offset += extra;

68 d nresid = d nbits − extra;

69 }

70

71 }

72 (....)

73

74 while (i < d subcarrier map.size()) { // finish filling out the symbol

75 out[d subcarrier map[i]] = d constellation[randsym()];

76

77 i++;

78 }

79

80 (....)

81

82 return 1; // produced symbol

83 }

Listing C.4: Digital ofdm mapper bcv.cc main code lines.

Now, the modulator needs to insert the preambles, this way the demodulator can do

the synchronization and the equalization. List C.5 shows the general work method, in

the file digital ofdm insert preamble.cc, this method finds the right moment, based on the

characters inputted, and inserts the preamble frame.

1 int



102 APPENDIX C. OFDM BLOCK CODE

2 digital ofdm insert preamble::general work(int noutput items,

3 gr vector int &ninput items v,

4 gr vector const void star &input items,

5 gr vector void star &output items)

6 {

7

8 (....)

9

10 while (no < noutput items && ni < ninput items){

11 switch(d state){

12 case ST IDLE:// this is first symbol of new payload

13 (....)

14 break;

15

16 case ST PREAMBLE:

17 (....)

18 break;

19

20 case ST FIRST PAYLOAD:

21 // copy first payload symbol from input to output

22 memcpy(&out sym[no * d fft length],

23 &in sym[ni * d fft length],

24 d fft length * sizeof(gr complex));

25 (....)

26 break;

27

28 case ST PAYLOAD:

29 (....)

30 // copy a symbol from input to output

31 memcpy(&out sym[no * d fft length],

32 &in sym[ni * d fft length],

33 d fft length * sizeof(gr complex));

34 (....)

35 break;

36

37 default:

38 std::cerr << ”digital ofdm insert preamble: (can’t happen) invalid state, resetting\n”;



C.1. OFDM MODULATOR BLOCK 103

39 enter idle();

40 }

41 }

42

43 consume each(ni);

44 return no;

45 }

Listing C.5: Digital ofdm insert preamble.cc main code lines.

The last method is related to the cyclic prefix adder, this module is located in the

digital ofdm cyclic prefixer.cc file and list C.6 shows the work method.

1 int

2 digital ofdm cyclic prefixer::work (int noutput items,

3 gr vector const void star &input items,

4 gr vector void star &output items)

5 {

6 gr complex *in = (gr complex *) input items[0];

7 gr complex *out = (gr complex *) output items[0];

8 size t cp size = d output size − d input size;

9 unsigned int i=0, j=0;

10

11 j = cp size;

12 for(i=0; i < d input size; i++,j++) {

13 out[j] = in[i];

14 }

15

16 j = d input size − cp size;

17 for(i=0; i < cp size; i++, j++) {

18 out[i] = in[j];

19 }

20

21 return d output size;

22 }

Listing C.6: Digital ofdm cyclic prefixer.cc work method.



104 APPENDIX C. OFDM BLOCK CODE

C.2 OFDM Demodulator Block

The OFDM demodulator block is defined in the ofdm demod class, also located in

the ofdm.py file. This class calls two modules: the ofdm recv module, that executes

the filtering, synchronization, sampling and equalization processes; and the ofdm demod

module that demodulates the symbols in bits and rebuilds the messages received. List

C.7 shows the ofdm recv and ofdm demod modules creation, and the connections between

them.

1 class ofdm demod(gr.hier block2):

2 (....)

3 self.ofdm recv = ofdm receiver(self. fft length,

4 self. cp length,

5 self. occupied tones,

6 self. snr, preambles,

7 options.log)

8

9 (....)

10 self.ofdm demod = digital swig.ofdm frame sink(rotated const, range(arity),

11 self. rcvd pktq,

12 self. occupied tones,

13 phgain, frgain)

14

15 self.connect(self, self.ofdm recv)

16 self.connect((self.ofdm recv, 0), (self.ofdm demod, 0))

17 self.connect((self.ofdm recv, 1), (self.ofdm demod, 1))

18 (....)

Listing C.7: OFDM demodulator block creation and the connections.

The module ofdm recv is built in another python file called ofdm receiver.py. List C.8

shows the main code lines within this file. The first part is the filter implementation,

the second is the selection for the synchronization module, where the pseudorandom noise

synchronization is selected by default, then comes the creation of the remaining modules

and last the connections between them.

1 class ofdm receiver(gr.hier block2):

2 (....)



C.2. OFDM DEMODULATOR BLOCK 105

3 bw = (float(occupied tones) / float(fft length)) / 2.0

4 tb = bw*0.08

5 chan coeffs = gr.firdes.low pass (1.0, # gain

6 1.0, # sampling rate

7 bw+tb, # midpoint of trans. band

8 tb, # width of trans. band

9 gr.firdes.WIN HAMMING) # filter type

10 self.chan filt = gr.fft filter ccc(1, chan coeffs)# Set up blocks

11

12 (....)

13 SYNC = ”pn”

14 if SYNC == ”ml”:

15 nco sensitivity = −1.0/fft length # correct for fine frequency

16 self.ofdm sync = ofdm sync ml(fft length,

17 cp length,

18 snr,

19 ks0time,

20 logging)

21 elif SYNC == ”pn”:

22 nco sensitivity = −2.0/fft length # correct for fine frequency

23 self.ofdm sync = ofdm sync pn(fft length,

24 cp length,

25 logging)

26 (....)

27 self.nco = gr.frequency modulator fc(nco sensitivity) # generate a signal proportional to

frequency error of sync block

28 self.sigmix = gr.multiply cc()

29 self.sampler = digital swig.ofdm sampler(fft length, fft length+cp length)

30 self.fft demod = gr.fft vcc(fft length, True, win, True)

31 self.ofdm frame acq = digital swig.ofdm frame acquisition(occupied tones,

32 fft length,

33 cp length, ks[0])

34

35 self.connect(self, self.chan filt) # filter the input channel

36 self.connect(self.chan filt, self.ofdm sync) # into the synchronization alg.

37 self.connect((self.ofdm sync,0), self.nco, (self.sigmix,1)) # use sync freq. offset output to

derotate input signal



106 APPENDIX C. OFDM BLOCK CODE

38 self.connect(self.chan filt, (self.sigmix,0)) # signal to be derotated

39 self.connect(self.sigmix, (self.sampler,0)) # sample off timing signal detected in sync alg

40 self.connect((self.ofdm sync,1), (self.sampler,1)) # timing signal to sample at

41

42 self.connect((self.sampler,0), self.fft demod) # send derotated sampled signal to FFT

43 self.connect(self.fft demod, (self.ofdm frame acq,0)) # find frame start and equalize signal

44 self.connect((self.sampler,1), (self.ofdm frame acq,1)) # send timing signal to signal frame start

45 self.connect((self.ofdm frame acq,0), (self,0)) # finished with fine/coarse freq correction,

46 self.connect((self.ofdm frame acq,1), (self,1)) # frame and symbol timing, and equalization

Listing C.8: Ofdm receiver.py main code.

Inside ofdm recv there are several modules, but the main module that needs descrip-

tion is the ofdm frame acq. This module does the equalization of the data frames. In

the method general work, when the module finds the character 1 in the signal in variable,

the module uses the preamble frame and estimates the shift between the carriers in the

correlate function; and calculates the one-tap equalization in the calculate equalizer func-

tion. When the next frames enter, the symbols in them are multiplied with the one-tap

equalization and shifted the necessary carriers, until the module finds the next character

1. List C.9 shows the main code for the ofdm frame acq module.

1 void digital ofdm frame acquisition::correlate(const gr complex *symbol,

2 int zeros on left) {

3 (....)

4 // sweep through all possible/allowed frequency offsets and select the best

5 int index = 0;

6 float max = 0, sum = 0;

7 for (i = zeros on left − d freq shift len;i < zeros on left + d freq shift len; i++) {

8 sum = 0;

9 for (j = 0; j < d occupied carriers; j++) {

10 sum += (d known phase diff[j] * d symbol phase diff[i + j]);

11 }

12 if (sum > max) {

13 max = sum;

14 index = i;

15 }

16 }



C.2. OFDM DEMODULATOR BLOCK 107

17

18 // set the coarse frequency offset relative to the edge of the occupied tones

19 d coarse freq = index − zeros on left;

20 }

21

22 void digital ofdm frame acquisition::calculate equalizer(

23 const gr complex *symbol, int zeros on left) {

24 unsigned int i = 0;

25 d hestimate[0] = d known symbol[0]

26 / (coarse freq comp(d coarse freq, 1)

27 * symbol[zeros on left + d coarse freq]);

28 for (i = 2; i < d occupied carriers; i += 2) {

29 d hestimate[i] = d known symbol[i]

30 / (coarse freq comp(d coarse freq, 1)

31 * (symbol[i + zeros on left + d coarse freq]));

32 d hestimate[i − 1] = (d hestimate[i] + d hestimate[i − 2])

33 / gr complex(2.0, 0.0);

34 }

35 (....)

36 }

37

38 int digital ofdm frame acquisition::general work(int noutput items,

39 gr vector int &ninput items, gr vector const void star &input items,

40 gr vector void star &output items) {

41 const gr complex *symbol = (const gr complex *) input items[0];

42 const char *signal in = (const char *) input items[1];

43

44 (....)

45 if (signal in[0]) {

46 d phase count = 1;

47 correlate(symbol, zeros on left);

48 calculate equalizer(symbol, zeros on left);

49 signal out[0] = 1;

50 } else {

51 signal out[0] = 0;

52 }

53



108 APPENDIX C. OFDM BLOCK CODE

54 for (unsigned int i = 0; i < d occupied carriers; i++) {

55 out[i] = d hestimate[i] * coarse freq comp(d coarse freq, d phase count)

56 * symbol[i + zeros on left + d coarse freq];

57 }

58

59 (....)

60 return 1;

61 }

Listing C.9: Self.ofdm frame acq block main code.

The last module to be revised is the ofdm demod. This module receives the OFDM

data frames and demodulates the symbols, using the constellation in use. The work method

has the functions described in chapter 3.3.2, they work like a state machine and they are

in listed in C.10. The main state is the STATE HAVE HEADER and it is here that the

function demapper is called and demodulates the symbols.

1 unsigned int digital ofdm frame sink::demapper(const gr complex *in,

2 unsigned char *out) {

3 (....)

4 //while(i < d occupied carriers) {

5 while (i < d subcarrier map.size()) {

6 (....)

7 while ((d byte offset < 8) && (i < d subcarrier map.size())) {

8 (....)

9 if ((8 − d byte offset) >= d nbits) {

10 d partial byte |= bits << (d byte offset);

11 d byte offset += d nbits;

12 } else {

13 d nresid = d nbits − (8 − d byte offset);

14 int mask = ((1 << (8 − d byte offset)) − 1);

15 d partial byte |= (bits & mask) << d byte offset;

16 d resid = bits >> (8 − d byte offset);

17 d byte offset += (d nbits − d nresid);

18 }

19 printf(”demod symbol: %.4f + j%.4f bits: %x partial byte: %x byte offset: %d resid: %x nresid:

%d\n”,

20 in[i−1].real(), in[i−1].imag(), bits, d partial byte, d byte offset, d resid, d nresid);



C.2. OFDM DEMODULATOR BLOCK 109

21 }

22 if (d byte offset == 8) {

23 //printf(”demod byte: %x \n\n”, d partial byte);

24 out[bytes produced++] = d partial byte;

25 d byte offset = 0;

26 d partial byte = 0;

27 }

28 }

29 (....)

30 }

31

32 int digital ofdm frame sink::work(int noutput items,

33 gr vector const void star &input items,

34 gr vector void star &output items) {

35 (....)

36 switch (d state) {

37 case STATE SYNC SEARCH: // Look for flag indicating beginning of pkt

38 (....)

39 break;

40 case STATE HAVE SYNC:

41 // only demod after getting the preamble signal; otherwise, the

42 // equalizer taps will screw with the PLL performance

43 bytes = demapper(&in[0], d bytes out);

44 (....)

45 break;

46 case STATE HAVE HEADER:

47 bytes = demapper(&in[0], d bytes out);

48 (....)

49 break;

50 default:

51 assert(0);

52 } // switch

53 return 1;

54 }

Listing C.10: Self.ofdm frame acq block main code.



110 APPENDIX C. OFDM BLOCK CODE



Appendix D

SC-FDMA Block Code

Section 3.4 focus on the SC-FDMA modulator and demodulator blocks, to assist the

description done in that section, this appendix shows the main functions and code lines

that are referred in the description.

One of the first file mention is the python file scfdma.py, this file consists in two classes

(scfdma mod and scfdma demod), and list D.1 shows them.

1 (....)

2 # /////////////////////////////////////////////////////////////////////////////

3 # mod/demod with packets as i/o

4 # /////////////////////////////////////////////////////////////////////////////

5 class scfdma mod(gr.hier block2):

6 ”””

7 Modulates an SC−FDMA stream. Based on the options fft length, occupied tones, and

8 cp length, this block creates SC−FDMA symbols using a specified modulation option.

9

10 Send packets by calling send pkt

11

12 This modulator will use parts of the OFDM−mod but without the FFT component, this component

13 will go to the demodulator

14 ”””

15 (....)

16 class scfdma demod(gr.hier block2):

17 ”””

18 Demodulates a received SCFDMA stream. Based on the options fft length and

19 cp length, this block performs synchronization, frequency correlation, FFT, FDE, IFFT and

111



112 APPENDIX D. SC-FDMA BLOCK CODE

demodulation of incoming SCFDMA

20 symbols and passes packets up the a higher layer.

21

22 The input is complex baseband. When packets are demodulated, they are passed to the

23 app via the callback.

24 ”””

25 (....)

Listing D.1: Scfdma.py classes.

D.1 SC-FDMA Modulator Block

The modulator block also work with messages as data input, but the function that

creates them is the same as the one in OFDM. List D.2 shows the creation of the modules

and the connections between them in the modulator block.

1 #Some differences have been made in this block

2 self. pkt input = scfdma swig.scfdma pkt input(rotated const,msgq limit,self. occupied tones)

3 self.fft = gr.fft vcc(self. occupied tones, True, win, True)#Need to add this FFT Block to work like a

precoded SC−FDMA

4 self.scale vec = scfdma swig.scfdma scale(self. occupied tones)#Scale up all the signals in the block.

Input: Block length

5 self.preambles = scfdma swig.scfdma insert preamble(self. occupied tones)

6 self.mapper = scfdma swig.scfdma mapper(rotated const,msgq limit,options.occupied tones,options.

fft length)

7 self.ifft = gr.fft vcc(self. fft length, False, win, True)

8 self.cp adder = digital.ofdm cyclic prefixer(self. fft length,symbol length)

9 self.scale = gr.multiply const cc(1.0 / math.sqrt(self. fft length))

10

11 self.connect((self. pkt input, 0),self.fft,self.scale vec,(self.preambles, 0))

12 self.connect((self. pkt input, 1),(self.preambles, 1))

13 self.connect(self.preambles,self.mapper,self.ifft,self.cp adder,self.scale,self)

Listing D.2: Module creation in the SC-FDMA modulator and the connection between

them.

During the SC-FDMA modulator description, there are some important code lines to

point out. List D.3 shows the lines related to the file scfdma pkt input impl.cc. The first



D.1. SC-FDMA MODULATOR BLOCK 113

method is the constructor and it shows that the algorithm to find the occupied tones is

not here any more, because this module does not maps the symbols like OFDM. The

second method is work and is the main method where the module fills the data frames.

1 scfdma pkt input impl::scfdma pkt input impl(

2 const std::vector<gr complex> &constellation, unsigned int msgq limit,

3 unsigned int fft length) :

4 gr sync block(”scfdma pkt input”, gr make io signature(0, 0, 0),

5 gr make io signature2(1, 2, sizeof(gr complex) * fft length,

6 sizeof(char))), d constellation(constellation), d msgq(

7 gr make msg queue(msgq limit)), d msg offset(0), d eof(false), d fft length(

8 fft length), d bit offset(0), d pending flag(0), d resid(0), d nresid(

9 0), d save num(0) {

10 d nbits = (unsigned long) ceil(

11 log10(float(d constellation.size())) / log10(2.0));

12 }

13

14 int scfdma pkt input impl::work(int noutput items,

15 gr vector const void star &input items,

16 gr vector void star &output items) {

17 (....)

18 while ((d msg offset < d msg−>length()) && (i < d fft length)) {

19 //in the OFDM (i < d fft length) was (i < d subcarrier map.size()) so it will have the limit of the

20 //occupied carries, now the length is the size of the FFT

21 // need new data to process

22 (....)

23 if (d nresid > 0) {

24 (....)

25 out[i] = d constellation[bits];

26 //OFDM out[d subcarrier map[i]] = d constellation[bits];

27 //aux = out[d subcarrier map[i]];

28 //now it doesn’t have the d subcarrier map[i] so it’s all straightforward

29 (....)

30

31 } else {

32 if ((8 − d bit offset) >= d nbits) { // test to make sure we can fit nbits

33 (....)

34 out[i] = d constellation[bits];



114 APPENDIX D. SC-FDMA BLOCK CODE

35 myfile << (int) bits << endl;

36 //OFDM out[d subcarrier map[i]] = d constellation[bits];

37 //aux = out[d subcarrier map[i]];

38 //now it doesn’t have the d subcarrier map[i] so it’s all straightforward

39 (....)

40 }

41 (....)

42 while (i < d fft length) { // finish filling out the symbol with the size of the FFT

43 (....)

44 out[i] = d constellation[rand];

45 //OFDM out[d subcarrier map[i]] = d constellation[randsym()];

46 //aux = out[d subcarrier map[i]];

47 //now it doesn’t have the d subcarrier map[i] so it’s all straightforward

48 (....)

49 }

50 (....)

51 return 1; // produced symbol

52 }

Listing D.3: Main code lines in the scfdma pkt input impl.cc file.

The second module implemented is the module used to scale the symbols, when they

suffer a FFT or IFFT transformation. In the constructor method, the module estimates

the value which the symbols are multiplied; and in the general work method, the module

gets the inputted symbols and multiplies them with the value. List D.4 shows the scale

module file.

1 scfdma scale impl::scfdma scale impl(unsigned int mult)

2 : gr block(”scfdma scale”, gr make io signature(1, 1, sizeof(gr complex) * mult),

3 gr make io signature(1, 1, sizeof(gr complex) * mult)), d mult(

4 mult) {

5 d div = 1.0 / sqrt(d mult);

6 }

7

8 int scfdma scale impl::general work (int noutput items,

9 gr vector int &ninput items,

10 gr vector const void star &input items,

11 gr vector void star &output items)



D.1. SC-FDMA MODULATOR BLOCK 115

12 {

13 const gr complex *in = (const gr complex *) input items[0];

14 gr complex *out = (gr complex *) output items[0];

15

16 gr complex aux;

17

18 for (int i = 0; i < d mult; i++) {

19 aux = in[i];

20 out[i] = gr complex(aux.real() * d div, aux.imag() * d div);

21 }

22 // Do <+signal processing+>

23 // Tell runtime system how many input items we consumed on

24 // each input stream.

25 consume each(1);

26

27 // Tell runtime system how many output items we produced.

28 return 1;

29 }

Listing D.4: Main code lines in the scfdma scale impl.cc file.

Now, the modulator inserts the preambles using a preamble module. In OFDM, the

preambles enter as an input vector, but this time they are estimated inside the constructor

method of the module, in the scfdma insert preamble impl.cc file. List D.5 shows the

general work method, which finds the right moment, based on the characters inputted,

and inserts the preamble frame.

1 scfdma insert preamble impl::scfdma insert preamble impl(int fft length) :

2 gr block(”scfdma insert preamble”,

3 gr make io signature2(1, 2, sizeof(gr complex) * fft length,

4 sizeof(char)),

5 gr make io signature2(1, 2, sizeof(gr complex) * fft length,

6 sizeof(char))), d fft length(fft length), d state(

7 ST IDLE), d nsymbols output(0), d pending flag(0) {

8 /*creates the CHU−sequence*/

9 unsigned int i = 0;

10 d preamble.resize(d fft length);

11



116 APPENDIX D. SC-FDMA BLOCK CODE

12 std::fill(d preamble.begin(), d preamble.end(), 0.0);

13 do {

14 d preamble[i] = gr expj(−M PI * pow(i, 2) * 7 / d fft length);

15 i += 2;

16 } while (i < d fft length);

17

18 enter idle();

19 }

20

21 int scfdma insert preamble impl::general work(int noutput items,

22 gr vector int &ninput items v, gr vector const void star &input items,

23 gr vector void star &output items) {

24

25 (....)

26

27 while (no < noutput items && ni < ninput items){

28 switch(d state){

29 case ST IDLE:// this is first symbol of new payload

30 (....)

31 break;

32

33 case ST PREAMBLE:

34 (....)

35 break;

36

37 case ST FIRST PAYLOAD:

38 // copy first payload symbol from input to output

39 memcpy(&out sym[no * d fft length],

40 &in sym[ni * d fft length],

41 d fft length * sizeof(gr complex));

42 (....)

43 break;

44

45 case ST PAYLOAD:

46 (....)

47 // copy a symbol from input to output

48 memcpy(&out sym[no * d fft length],



D.1. SC-FDMA MODULATOR BLOCK 117

49 &in sym[ni * d fft length],

50 d fft length * sizeof(gr complex));

51 (....)

52 break;

53

54 default:

55 std::cerr << ”digital ofdm insert preamble: (can’t happen) invalid state, resetting\n”;

56 enter idle();

57 }

58 }

59

60 consume each(ni);

61 return no;

62 }

Listing D.5: Main code lines in the scfdma insert preamble impl.cc file.

After the preambles module comes the mapper module. This module maps the sym-

bols from the inputted frames in bigger frames, this way, the modulator can do the IFFT.

List D.6 shows the general code lines in the mapper modules.

1 scfdma mapper impl::scfdma mapper impl(

2 const std::vector<gr complex> &constellation, unsigned int msgq limit,

3 unsigned int occupied carriers, unsigned int fft length) :

4 gr block(”scfdma mapper”,

5 gr make io signature(1, 1,sizeof(gr complex) * occupied carriers),

6 gr make io signature(1, 1, sizeof(gr complex) * fft length)),

7 d constellation(constellation), d msgq(gr make msg queue(msgq limit)),

8 d msg offset(0), d eof(false), d occupied carriers(occupied carriers),

9 d fft length(fft length), d bit offset(0), d pending flag(0), d resid(0), d nresid(0) {

10 (....)

11

12 // find out how many zeros to pad on the sides; the difference between the fft length and the

subcarrier

13 // mapping size in chunks of four. This is the number to pack on the left and this number plus any

14 // residual nulls (if odd) will be packed on the right.

15 diff = (d fft length / 4 − carriers.length()) / 2;

16

17 unsigned int i, j, k;



118 APPENDIX D. SC-FDMA BLOCK CODE

18 for (i = 0; i < carriers.length(); i++) {

19 char c = carriers[i]; // get the current hex character from the string

20 for (j = 0; j < 4; j++) { // walk through all four bits

21 k = (strtol(&c, NULL, 16) >> (3 − j)) & 0x1; // convert to int and extract next bit

22 if (k) { // if bit is a 1,

23 d subcarrier map.push back(4 * (i + diff) + j); // use this subcarrier

24 }

25 }

26 }

27 (....)

28 }

29 int scfdma mapper impl::general work(int noutput items,

30 gr vector int &ninput items, gr vector const void star &input items,

31 gr vector void star &output items) {

32 const gr complex *in = (const gr complex *) input items[0];

33 gr complex *out = (gr complex *) output items[0];

34 unsigned int i = 0,j = 0;

35 // Build a single symbol:

36 // Initialize all bins to 0 to set unused carriers

37 memset(out, 0, d fft length * sizeof(gr complex));

38 for(int i = d subcarrier map[0];i < d subcarrier map[0]+d occupied carriers;i++){

39 out[i] = in[i−d subcarrier map[0]];

40 }

41 this−>consume(0, 1);

42 return 1; // produced symbol

43 }

Listing D.6: Main code lines in the scfdma mappr impl.cc file.

D.2 SC-FDMA Demodulator Block

The SC-FDMA demodulator block is defined in the class scfdma demod inside the

scfdma.py file. This class calls the module that does the demodulation, scfdma recv;

and the block that converts the symbols in bits and rebuilds the messages received,

scfdma demod. List D.7 shows the creation of the modules, in the scfdma demod class;

and the connections between them.



D.2. SC-FDMA DEMODULATOR BLOCK 119

1 class scfdma demod(gr.hier block2):

2 (....)

3 self.scfdma recv = scfdma receiver(self. fft length,

4 self. cp length,

5 self. occupied tones,

6 self. samp rate,

7 self. sym rate,

8 self. snr,

9 options.log)

10 (....)

11 self.scfdma demod = scfdma swig.scfdma frame sink(rotated const, range(arity),

12 self. rcvd pktq,self. occupied tones,

13 phgain, frgain)

14

15 self.connect(self, self.scfdma recv)

16 self.connect((self.scfdma recv, 0),(self.scfdma demod, 0))

17 self.connect((self.scfdma recv, 1),(self.scfdma demod, 1))

18 (....)

Listing D.7: Creation of the modules in the SC-FDMA demodulator and the connections

between them.

The block scfdma recv is built in another python file, scfdma receiver.py. List D.8

shows the main code lines in this file. First, the definition init now has two more

parameters, samp rate and sym rate, they are used in the filter design. Second, is the

synchronization module definition, this time we only use the pseudorandom noise module.

Then, comes the creation of the remaining blocks and the connections between the module.

1 class scfdma receiver(gr.hier block2):

2 (....)

3 def init (self, fft length, cp length, occupied tones, samp rate, sym rate, snr, logging=False):

4

5 (....)

6 #Root Raised Cosine Filter, for it has to be manually implmented FIXME: Try to create one

automatically

7 self.chan filt = gr.interp fir filter ccf(7, firdes.root raised cosine(

8 1, samp rate, sym rate, 0.05,201))



120 APPENDIX D. SC-FDMA BLOCK CODE

9 self.fir filter xxx 0 = gr.fir filter ccc(7, (1, ))

10

11 win = []

12 win2 = [1 for i in range(occupied tones)

13 if SYNC == ”pn”:

14 nco sensitivity = −2.0/fft length # correct for fine frequency

15 self.scfdma sync = scfdma sync pn(fft length,

16 cp length,

17 logging)

18 # Set up blocks

19 self.nco = gr.frequency modulator fc(nco sensitivity) # generate a signal proportional to

frequency error of sync block

20 self.sigmix = gr.multiply cc()

21 self.sampler = digital.ofdm sampler(fft length, fft length+cp length)

22 self.fft demod = gr.fft vcc(fft length, True, win, True)

23 self.coarse freq = scfdma swig.scfdma coarse freq(fft length)

24 self.ifft demod = gr.fft vcc(occupied tones, False, win2, True)

25 self.scale = scfdma swig.scfdma scale(occupied tones)

26 self.scfdma frame acq = scfdma swig.scfdma frame acquisition(occupied tones,

27 fft length,

28 cp length,20)

29

30 self.connect(self,self.chan filt) # filter the input channel

31 self.connect(self.chan filt,self.fir filter xxx 0,self.scfdma sync) # into the synchronization alg.

32 self.connect((self.scfdma sync,0),self.nco,(self.sigmix,1)) # use sync freq. offset output to

derotate input signal

33 self.connect(self.fir filter xxx 0, (self.sigmix,0)) # signal to be derotated

34 self.connect(self.sigmix,(self.sampler,0)) # sample off timing signal detected in sync alg

35 self.connect((self.scfdma sync,1), (self.sampler,1)) # timing signal to sample at

36

37 self.connect((self.sampler,0),self.fft demod) # send derotated sampled signal to FFT

38 self.connect(self.fft demod,(self.scfdma frame acq,0)) # find frame start and equalize signal

39 self.connect((self.sampler,1),(self.scfdma frame acq,1)) # send timing signal to signal frame start

40 # do the fine/coarse freq correction,

41 self.connect((self.scfdma frame acq,0),self.ifft demod,self.scale,(self,0)) # finished with IFFT and

scaling,

42 self.connect((self.scfdma frame acq,1),(self,1)) # frame and symbol timing, and equalization



D.2. SC-FDMA DEMODULATOR BLOCK 121

43 (....)

Listing D.8: Main code lines in the scfdma receiver.py file.

The file that has the synchronization implemented, had a problem, one of the peak detector fb

module, sometimes received values as Not a Number. To solve the problem, list D.9 shows

the code lines that were added to the module.

1 int scfdma peak detector fb impl::work(int noutput items,

2 gr vector const void star &input items,

3 gr vector void star &output items) {

4 (....)

5 if (iptr[i] > d avg * d threshold factor rise) {

6 state = 1;

7

8 } else {

9

10 if(isnan(iptr[i]) == true){//NEW CODE − problem when the value is a NaN

11 d avg = (d avg alpha) * 1 + (1 − d avg alpha) * d avg;

12 }else{

13 d avg = (d avg alpha) * iptr[i] + (1 − d avg alpha) * d avg;

14 }

15 i++;

16 }

17 }

18 (....)

19 }

Listing D.9: Code lines added in the scfdma peak detector fb impl.cc file.

Inside the scfdma recv block, the main module that needs a description is module

that does the equalization. This module works like the one in the OFDM. The differences

between the modulation techniques are: the preamble sequence this time is calculated

inside the constructor method, using the Zudoff-Chu sequence; and the algorithm used to

find the occupied carriers shift, in the function correlate. List D.10 shows the code lines

inside the file where this module is implemented.

1 scfdma frame acquisition impl::scfdma frame acquisition impl(

2 unsigned occupied carriers, unsigned int fft length, unsigned int cplen,



122 APPENDIX D. SC-FDMA BLOCK CODE

3 unsigned int max fft shift len) :

4 gr block(”scfdma frame acquisition”,

5 gr make io signature2(2, 2, sizeof(gr complex) * fft length,

6 sizeof(char) * fft length),

7 gr make io signature2(2, 2,

8 sizeof(gr complex) * occupied carriers, sizeof(char))), d occupied carriers(

9 occupied carriers), d fft length(fft length), d cplen(cplen), d freq shift len(

10 max fft shift len), d coarse freq(0), d phase count(0), d save num(

11 0) {

12

13 d symbol.resize(d occupied carriers);

14 d known phase diff.resize(d occupied carriers);

15 d hestimate.resize(d occupied carriers);

16 //Creates the Chu−Sequence and saves it

17 unsigned int k = 0;

18 d known symbol.resize(d occupied carriers);

19 std::fill(d known symbol.begin(), d known symbol.end(), 0.0);

20 do {

21 d known symbol[k] = gr expj(

22 −M PI * pow(k, 2) * 7 / d occupied carriers);

23 k += 2;

24 } while (k < d occupied carriers);

25

26 std::fill(d symbol.begin(), d symbol.end(), 0);

27 for (int i = 0; i < d occupied carriers; i=i+2) {

28 d symbol[i] = 1;

29 }

30

31 void scfdma frame acquisition impl::correlate(const gr complex *symbol,

32 int zeros on left) {

33 // sweep through all possible/allowed frequency offsets and select the best

34 int index = 0;

35 float max = 0, sum = 0;

36 for (int i = zeros on left − 20; i < zeros on left + 20; i++) {

37 sum = 0;

38 for (int j=0;j<d occupied carriers;j++){

39 sum = sum + abs(symbol[i+j])*d symbol[j];



D.2. SC-FDMA DEMODULATOR BLOCK 123

40 }

41 if (sum>max){

42 max=sum;

43 index = i;

44 }

45 }

46 // set the coarse frequency offset relative to the edge of the occupied tones

47 d coarse freq = index − zeros on left;

48 }

49

50 void scfdma frame acquisition impl::calculate equalizer(

51 const gr complex *symbol, int zeros on left) {

52 //Frequency Domain Equalizer

53 unsigned int i = 0;

54

55 gr complex gr = gr complex(1.0, 0.0);

56 // Set first tap of equalizer

57 d hestimate[0] = d known symbol[0]

58 / (coarse freq comp(d coarse freq, 1)*symbol[i + zeros on left + d coarse freq]);

59

60 // set every even tap based on known symbol

61 // linearly interpolate between set carriers to set zero−filled carriers

62 // FIXME: is this the best way to set this?

63 for (i = 2; i < d occupied carriers; i += 2) {

64

65 d hestimate[i] = d known symbol[i]

66 / (coarse freq comp(d coarse freq, 1)*symbol[i + zeros on left + d coarse freq]);

67

68 d hestimate[i − 1] = (d hestimate[i] + d hestimate[i − 2])

69 / gr complex(2.0, 0.0);

70

71 }

72 (....)

73 }

74

75 int scfdma frame acquisition impl::general work(int noutput items,

76 gr vector int &ninput items, gr vector const void star &input items,



124 APPENDIX D. SC-FDMA BLOCK CODE

77 gr vector void star &output items) {

78 const gr complex *symbol = (const gr complex *) input items[0];

79 const char *signal in = (const char *) input items[1];

80

81 gr complex *out = (gr complex *) output items[0];

82 char *signal out = (char *) output items[1];

83

84 int unoccupied carriers = d fft length − d occupied carriers;

85 int zeros on left = (int) ceil(unoccupied carriers / 2.0);

86

87 if (signal in[0]) { //When it founds a preamble

88 d phase count = 1;

89 correlate(symbol, zeros on left); //search for the difference in the position

90 calculate equalizer(symbol, zeros on left); //calculates de equalizer

91 signal out[0] = 1;

92 } else {

93 signal out[0] = 0;

94 }

95 //gr complex gr = gr complex(1.0, 0.0);

96 for (unsigned int i = 0; i < d occupied carriers; i++) {

97 out[i] = d hestimate[i] * symbol[i + zeros on left + d coarse freq]* coarse freq comp(d coarse freq,

d phase count);

98 //applies the FDE to the other symbols

99 }

100 d phase count++;

101 if (d phase count == MAX NUM SYMBOLS) {

102 d phase count = 1;

103 }

104 consume each(1);

105 return 1;

106 }

Listing D.10: Main code lines in the scfdma frame acquisition impl.cc file.

The last module to be revised is the scfdma demod, the only difference between this

module and the one in OFDM, is in the demapper function, listed in the list D.11.

1 unsigned int scfdma frame sink impl::demapper(const gr complex *in,

2 unsigned char *out) {



D.2. SC-FDMA DEMODULATOR BLOCK 125

3

4 (....)

5 while(i < d occupied carriers) {

6 //while (i < d subcarrier map.size()) {

7 (....)

8 /*this while used to be d subcarrier map.size() now it is the d occupied carriers,

9 * it causes missing data*/

10 while((d byte offset < 8) && (i < d occupied carriers)) {

11 //while ((d byte offset < 8) && (i < d subcarrier map.size())) {

12 (....)

13 }

14 (....)

15 }

16 (....)

17 }

Listing D.11: Main code lines in the scfdma frame sink impl.cc file.



D.2. SC-FDMA DEMODULATOR BLOCK 131



136 APPENDIX D. SC-FDMA BLOCK CODE


	Acknowledgements
	Resumo
	Abstract
	Acronyms
	Introduction
	Context
	Objectives and Major Contributions
	Dissertation Structure

	Theoretical Concepts
	Software Defined Radio
	SDR principle and analog radios
	Universal Software Radio Peripheral (USRP)
	Daughterboards
	GNURadio
	GNURadio Block Types
	GNURadio Tools

	Block Transmission Techniques
	Multi-Carrier and Single Carrier Modulations Comparison
	Orthogonal Frequency Division Multiplexing
	Single Carrier - Frequency Division Multiple Access


	System Implementation
	Dial Tone Example
	GNURadio Tools
	Creating New Blocks (gr_modtool)
	Filter Design Tool

	OFDM Block
	OFDM Modulator Block
	OFDM Demodulator Block

	SC-FDMA Block
	SC-FDMA Modulator Block
	SC-FDMA Demodulator Block
	Other Files


	Performance Analysis
	Tests on GRC Using a Perfect Channel
	OFDM Transmission
	SC-FDMA Transmission

	Tests on GRC Using Different Noise and Frequency Offsets
	Noise Tests Results
	Frequency Offset Tests Results

	Tests on USRP Hardware
	Results Using the Loop-back Cable
	Results Using the Antennas


	Conclusions
	Final Considerations
	Future Work

	Bibliography
	Appendices
	Dial Tone Example
	Block Example Code
	OFDM Block Code
	OFDM Modulator Block
	OFDM Demodulator Block

	SC-FDMA Block Code
	SC-FDMA Modulator Block
	SC-FDMA Demodulator Block


