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Abstract

The main theme of this thesis is the calibration of a short rate model under the
risk neutral measure.

The problem of calibrating short rate models arises as most of the popular
models have the drawback of not fitting prices observed in the market, in par-
ticular, those of the zero coupon bonds that define the current term structure of
interest rates.

This thesis proposes a risk neutral Gaussian short rate model based on Gaus-
sian processes for machine learning regression using the Vasicek short rate model
as prior. The proposed model fits not only the prices that define the current term
structure observed in the market but also all past prices. The calibration is done
using market observed zero coupon bond prices, exclusively. No other sources of
information are needed.

This thesis has two parts. The first part contains a set of self-contained fin-
ished papers, one already published, another accepted for publication and the
others submitted for publication. The second part contains a set of self-contained
unsubmitted papers. Although the fundamental work on papers in part two is
finished as well, there are some extra work we want to include before submitting
them for publication.

Part I:

• Machine learning Vasicek model calibration with Gaussian processes

In this paper we calibrate the Vasicek interest rate model under the risk neu-
tral measure by learning the model parameters using Gaussian processes
for machine learning regression. The calibration is done by maximizing the
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likelihood of zero coupon bond log prices, using mean and covariance func-
tions computed analytically, as well as likelihood derivatives with respect to
the parameters. The maximization method used is the conjugate gradients.
We stress that the only prices needed for calibration are market observed
zero coupon bond prices and that the parameters are directly obtained in
the arbitrage free risk neutral measure.

• One Factor Machine Learning Gaussian Short Rate

In this paper we model the short rate, under the risk neutral measure, as a
Gaussian process, conditioned on market observed zero coupon bonds log
prices. The model is based on Gaussian processes for machine learning,
using a single Vasicek factor as prior.

All model parameters are learned directly under the risk neutral measure,
using zero coupon bonds log prices only.

The model supports observations of zero coupon bounds with distinct ma-
turities limited to one observation per time instant. All the supported ob-
servations are automatically fitted.

• Brownian Bridge and other Path Dependent Gaussian Processes Vectorial
Simulation

The iterative simulation of the Brownian bridge is well known. In this paper
we present a vectorial simulation alternative based on Gaussian processes
for machine learning regression that is suitable for interpreted program-
ming languages implementations.

We extend the vectorial simulation of path dependent trajectories to other
Gaussian processes, namely, sequences of Brownian bridges, geometric Brow-
nian motion, fractional Brownian motion and Ornstein-Ulenbeck mean re-
version process.

• Bonds Historical Simulation Value at Risk

Bonds historical returns can not be used directly to compute Value at Risk
(VaR) by historical simulation because the maturities of the yields implied
by the historical prices are not the relevant maturities at time VaR is com-
puted.

In this paper we adjust bonds historical returns so that the adjusted returns
can be used directly to compute VaR by historical simulation.



viii

The adjustment is based on using implied historical yields to mark to model
the bonds at the times to maturity relevant for the VaR computation.

We show that the obtained VaR values agree with the usual market trend of
shorter times to maturity being traded with smaller yields, hence, carrying
smaller risk and consequently having a smaller VaR.

Part II:

• Machine Learning Gaussian Short Rate

In this paper we model the short rate, under the risk neutral measure, as
a Gaussian process conditioned by the logarithm of market observed zero
coupon bonds prices. The model is based on Gaussian processes for ma-
chine learning, using N addictive Vasicek factors as prior.

The model automatically fits all observed zero coupon bond log prices, in
particular those that define the current term structure of interest rates.

The number of factors needed is equal to the maximum number of zero
coupon bonds maturities observed in a single time instant.

All model parameters are learned directly under the risk neutral measure,
using zero coupon bonds log prices, exclusively.

• Interest Rate Market Changes Detection

In this paper we check for interest rate market changes, using the distri-
bution of the likelihood ratio criterion, to test if a covariance matrix, Σ , is
equal to a given matrix, Σ0.

We start by transforming the original test into the equivalent test Σ = I .
Then, the test Σ = I is decomposed into two conditional independent tests,
namely, the sphericity test Σ = σ2I , and the test σ2 = 1, given that the
data are spherical. The distribution moments and characteristic function
are obtained. The characteristic function inversion is done numerically.

We apply the covariance matrix test to check interest rate market changes
using Euribor real data. We model the Euribor with a one factor machine
learning Gaussian short rate model, using the Vasicek short rate model as
prior, and assuming Vasicek short rate noise in the observations. In the
beginning we calibrate the model to get a reference parameters set. Then,
in the presence of newer data, we recalibrate the model and get a newer
parameters set. We check the validity of the reference parameters set, us-
ing the statistical test applied to the model observations covariance matrix
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computed with both sets of parameters. Whenever the newer covariance
matrix is not equal to the reference one, we say that the market conditions
have changed.

Keywords: Short rate; Arbitrage free risk neutral measure; Gaussian processes
for machine learning; Calibration; Zero coupon bond.



Resumo

O tema principal desta dissertação é a calibração de um modelo de taxa de
juro infinitesimal short rate.

O problema da calibração de modelos de taxa de juro infinitesimal coloca-se,
na medida em que a maioria dos modelos mais populares não se ajusta às curvas
de taxas de juro observadas no mercado.

Nesta dissertação propõe-se um modelo Gaussiano de taxa de juro infinitesi-
mal na mediada de risco neutral, baseado em processos Gaussianos para apren-
dizagem automática. O modelo proposto ajusta-se não só à curva actual de taxas
de juro observada no mercado, como a todas as curvas observadas no passado. A
calibração é efectuada recorrendo única e exclusivamente a preços de obrigações
sem cupão, observados no mercado. Não são necessárias quaisquer outras fontes
de informação.

Esta dissertação tem duas partes. A primeira parte contém um conjunto de
artigos finalizados e auto-contidos, um deles já publicado, outro aceite para pu-
blicação e os restantes submetidos a publicação. A segunda parte contém um con-
junto de artigos auto-contidos, não submetidos a publicação. Apesar do trabalho
fundamental dos artigos da segunda parte estar também finalizado, pretende-se
ainda incluir nesses artigos algum trabalho extra, antes de os submeter a publi-
cação.

Parte I:

• Machine learning Vasicek model calibration with Gaussian processes

Neste artigo calibra-se o modelo de taxa de juro de Vasicek, na medida de
risco neutral, usando aprendizagem automática com processos Gaussianos
para determinar os parâmetros do modelo. A calibração é efectuado por
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maximização da verosimilhança do logaritmo de preços de obrigações sem
cupões, usando funções média e covariância determinadas analiticamente,
e usando também as derivadas da verosimilhança em ordem aos parâme-
tros. O método de maximização utilizado é o método dos gradientes conju-
gados. Os únicos preços necessários para efectuar a calibração são preços de
obrigações sem cupões e os parâmetros são obtidos diretamente na medida
de riso neutral.

• One Factor Machine Learning Gaussian Short Rate

Neste artigo modela-se a taxa de juro infinitesimal, na medida de risco neu-
tral, como um processo Gaussiano, condicionado ao logaritmo dos preços
de obrigações sem cupões, observados no mercado. O modelo é baseado em
aprendizagem automática com processos Gaussianos, usando como modelo
à priori um único factor que segue o modelo de Vasicek.

Todos os parâmetros do modelo são obtidos diretamente na medida de risco
neutral, usando apenas o logaritmo dos preços de obrigações sem cupões.

O modelo suporta obrigações sem cupões com diferentes maturidades, li-
mitado a uma observação em cada instante de tempo. O modelo ajusta-se
automaticamente a todas as observações suportadas.

• Brownian Bridge and other Path Dependent Gaussian Processes Vectorial
Simulation

A simulação iterativa da ponte Browniana é bem conhecida. Neste artigo
apresenta-se uma alternativa vetorial, baseada em aprendizagem automá-
tica com processos Gaussianos, que é apropriada para implementações com
linguagens de programação interpretadas.

A simulação vectorial de trajectórias dependentes do caminho é extendida a
outros processos Gaussianos, nomeadamente, sequências de pontes Brow-
nianas, movimento Browniano geométrico, movimento Browniano fracio-
nário e processo de reversão à média de Ornstein-Ulenbeck.

• Bonds Historical Simulation Value at Risk

Os retornos históricos de obrigações não podem ser usados diretamente
para calcular o Value at Risk (VaR) por simulação histórica, porque as ma-
turidades das taxas implícitas nos preços históricos não são as maturidades
relevantes à data do cálculo do VaR.
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Neste artigo os retornos históricos são ajustados de forma a poderem ser
usados directamente no cálculo do VaR, por simulação histórica.

O ajustamento é baseado na utilização das taxas implicítas nos preços his-
tóricos para calcular os preços das obrigações nos instantes correpondentes
às maturidades relevantes para o cálculo do VaR.

Mostra-se que os valores de VaR obtidos estão de acordo com a tendên-
cia usual observada no mercado, caracterizada pelas maturidades mais cur-
tas serem transacionadas com taxas menores, correspondendo a um menor
risco e, consequentemente exibindo um VaR menor.

Parte II:

• Machine Learning Gaussian Short Rate

Neste artigo modela-se a taxa de juro infinitesimal, na medida de risco neu-
tral, como um processo Gaussiano, condicionado ao logaritmo dos preços
de obrigações sem cupões, observados no mercado. O modelo é baseado em
aprendizagem automática com processos Gaussianos, usando como modelo
à priori a soma de N factores que seguem o modelo de Vasicek.

O modelo ajusta-se automaticamente ao logaritmo de todos os preços de
obrigações sem cupões observados, em particular àqueles que definem a
estrutura de termo das taxas de juro atual.

O número de fatores é igual ao número máximo de preços de obrigações
sem cupões, observados num mesmo instante.

Todos os parâmetros do modelo são obtidos diretamente na medida de risco
neutral, usando apenas o logaritmo dos preços de obrigações sem cupões.

• Interest Rate Market Changes Detection

Neste artigo detetam-se alterações no mercado de taxas de juro, usando a
distribuição do critério da razão de verosimilhanças para testar se uma ma-
triz de covariância, Σ, é igual a uma dada matriz, Σ0.

Começa-se por transformar o teste original no teste equivalente Σ = I . Em
seguida o teste Σ = I é decomposto em dois testes condicionalmente in-
dependentes, nomeadamente, o teste de esfericidade, Σ = σ2I , e o teste
σ2 = 1, assumindo dados esféricos. São obtidos os momentos e a função ca-
racterística da distribuição. A inversão da função característica é efectuada
numericamente.
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O teste à matriz de covariância é aplicado na deteção de alterações do mer-
cado de taxas de juro, usando dados reais da Euribor. O modelo usado
para a Euribor é o modelo de taxa de juro infinitesimal de aprendizagem
automática, com um factor Vasicek como modelo à priori, assumindo ruído
Vasicek nas observações. Inicialmente, calibra-se o modelo e obtém-se um
conjunto de parâmetros de referência. Em seguida, na presença de novos
dados, recalibra-se o modelo e obtém-se um novo conjunto de parâmetros.
A validade dos parâmetros de referência é aferida, usando o teste estatístico
aplicado à matriz de covariância das observações, calculada com ambos os
conjuntos de parâmetros. Sempre que a nova matriz de covariância não seja
igual à de referência, dizemos que as condições do mercado mudaram.

Palavras-chave: Taxa de juro infinitesimal; Medida de risco neutral livre de arbi-
tragem; Processos Gaussianos para aprendizagem automática; Calibração; Obri-
gação sem cupões.
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1
Introduction

1.1 Interest rate basics

The financial instrument used in this thesis is the zero coupon bond.
A T -maturity zero coupon bond is a contract that guarantees its holder the

payment of one currency unit at time T . No intermediate payments prior to time
T exist (no coupons). The price at time t < T of the T -maturity zero coupon bond
is denoted by p(t, T ).

Given three time instants t < S < T , consider the usual construction of con-
tracting, at time t, a deterministic rate of return over the period S to T , using zero
coupon bonds, namely (Björk 2004):

At time t Sell one S-maturity zero coupon bond by p(t, S) currency units. With
that amount buy p(t, S)/p(t, T ) T -maturity zero coupon bonds. The result-
ing net investment at time t equals zero.

At time S Pay one unit of currency to the S-maturity zero coupon bond holder.

At time T Receive p(t, S)/p(t, T ) currency units for holding the T -maturity zero
coupon bonds.

The final result of this construction is that of contracting at time t, an invest-
ment of one currency unit at time S, that returns p(t, S)/p(t, T ) currency units
at time T . In interest rate terms this contract locks at time t the continuously

1



1. INTRODUCTION 1.2. Calibration problem

compounded interest rate R, over the future period S to T , which is the solution
of:

1eR(T−S) =
p(t, S)

p(t, T )
. (1.1)

Such interest rate is called the continuously compounded forward rate and is
given by

R(t, S, T ) = − log p(t, T )− log p(t, S)

T − S
. (1.2)

Assuming that p(t, T ) is differentiable w.r.t. T , the instantaneous forward rate
f(t, T ) is given by

f(t, T ) = −∂ log p(t, T )

∂T
. (1.3)

The instantaneous short rate, or simply the short rate, is defined by

r(t) = f(t, t). (1.4)

The importance of the short rate relies on the fact that on an arbitrage free
market, the price, at time t < T , of any T -maturity contingent claim with payoff
Φ(r(T )), is given by

π(t, T ) = EQ
[
e−

∫ T
t r(s)ds × Φ(r(T ))

]
(1.5)

where the expectation is to be taken under the arbitrage free risk neutral mea-
sure Q.

In particular, the price of a T -maturity zero coupon bond, in which case Φ(r(T )) =

1, is given by

p(t, T ) = EQ
[
e−

∫ T
t r(s)ds

]
. (1.6)

1.2 Calibration problem

A large number of arbitrage free risk neutral models of the short rate exist, be-
ing the most popular ones (Björk 2004): the Vasicel model (Vasicek 1977); the
Cox-Ingersoll-Ross model (Cox, Ingersoll Jr, and Ross 1985); the Dothan model
(Dothan 1978); the Black-Derman-Toy model (Black, Derman, and Toy 1990); the
Ho-Lee model (Ho and LEE 1986); and the Hull-White model (J. Hull and White
1990b).

2
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Figure 1.1: Vasicek zero coupon bond price mean (dashed) and two standard de-
viation band (light gray), along with a zero coupon bond prices sequence (solid)
available until the current time.

The idea is to model the short rate dynamics directly under the risk neutral
measure. This immediately raises the problem of obtaining the models param-
eters under the risk neutral measure while fitting the contingent claims prices
observed in the market, in particular those of zero coupon bonds.

As noted by (Pang 1998) there are relatively few papers dedicated to this prob-
lem. Regarding the popular models mentioned above, the only one that explicitly
deals with the calibration problem is the Hull-White model.

To illustrate this problem let’s consider a zero coupon bond prices trajectory
and the Vasicek short rate model under the risk neutral measure. Under this
model zero coupon bond prices are given by

p(t, T ) = eA(t,T )−B(t,T )r(t) (1.7)

where A(t, T ) and B(t, T ) are deterministic functions of the model’s parame-
ters. Zero coupon bond prices mean and covariance functions are given by closed
forms.

Now suppose that the model parameters were obtained under the risk neutral
measure from the zero coupon bond prices trajectory.

Figure 1.1 illustrates both the zero coupon bond prices trajectory and the
model’s zero coupon bond prices mean and covariance functions.

The calibration problem can be summarized by the following two issues:

1. As it can be observed in Figure 1.1, the current zero coupon bond model’s
price, given by the current model’s mean, does not match the one observed
in the market. This situation is quite uncomfortable.

2. Using Equation 1.7, one can solve for the current short rate value r(t), using
the current zero coupon bond price p(t, T ). Then, Equation 1.7 shows that
the current price of all other zero coupon bonds with distinct maturities
is given by a deterministic function of the obtained short rate value. This

3



1. INTRODUCTION 1.3. Gaussian processes for machine learning regression

means that the current term structure of interest rates obeys a fixed shape
imposed by the model. This situation is highly unrealistic.

An additional description of this problem can be found in (Rainer 2009).

1.3 Gaussian processes for machine learning regres-

sion

Given a Gaussian process prior and a set of observations data, Gaussian processes
for machine learning regression framework uses the conditional distribution of a
Gaussian random vector (T. W. Anderson 2003) to construct the posterior process
on data. The posterior process on data is the stochastic process whose trajectories
are those of the prior process restricted to the ones that pass through the observed
data. The posterior process is also Gaussian. Its mean and covariance functions
are used as regression and regression confidence functions, respectively.

Consider the Gaussian process prior y = g(x) defined by

g(x) ∼ GP (m(x), cov(xi,xj)) (1.8)

where the mean and covariance functions, m(x) and cov(xi,xj), are families
of functions parametrized by the parameters vector Φ.

Consider also, data D = (X,y), where matrix X collects a set of vectors
{x�1,x�2, · · · ,x�n} where the value y� = g(x�) was observed, and vector y collects
the corresponding set of observed values {y�1, y�2, · · · , y�n}.

The posterior Gaussian process on data, y = gD(x), is defined by

gD(x) ∼ GP (mD(x), covD(xi,xj)) . (1.9)

where mean and covariance function, mD(x) and covD(xi,xj), are given by
(Rasmussen 2004)

mD(x) = m(x) + K>X,xK
−1(y −m) (1.10)

and

covD(xi,xj) = cov(xi,xj)−K>X,xiK
−1KX,xj . (1.11)

Vector m is the prior training set mean vector, matrix K is the prior training
set covariance matrix and vector KX,x is a prior covariance vector between every
training vector and x.

4
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Figure 1.2: (a) A Gaussian process mean (dashed), two standard deviations band
(gray) along with some simulated trajectories. (b) the same for the corresponding
conditioned on data Gaussian. The conditioning data is a set of samples (dots) of
the highlighted trajectory (solid).

Figure 1.2 illustrates both the prior process and the conditioned on data pro-
cess.

Parameters Φ are obtained directly from data by maximizing the prior likeli-
hood of the data given the parameters. Given that the process is Gaussian, closed
forms of the derivatives of the likelihood w.r.t. each parameter are available and
can be used by the maximization procedure.

A natural problem that arises under this framework is the selection of prior
mean and covariance functions to use.

1.4 Thesis contribution

The main contribution of this thesis is the proposal of a risk neutral short rate
model developed by merging arbitrage free interest rate theory with Gaussian
processes for machine learning.

From arbitrage free interest rate theory we use the Vasicek model under the
risk neutral measure as prior. Under this model, zero coupon bond log prices are
Gaussian. Their mean and covariance functions are given by closed forms.

From Gaussian processes for machine learning we use the conditioned on data
regression model. Under this framework the model parameters are learned di-
rectly from data and the resulting model automatically fits all the data.

Putting the two pieces together:

• we addressed the problem of obtaining the risk neutral short rate model

5
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Figure 1.3: One factor machine learning Gaussian short rate model for maturity
T = 1: zero coupon bond prices mean (dashed), two standard deviations band
(gray), a zero coupon bond prices sequence (solid), and the conditioning data
(dots).

parameters under the risk neutral measure by using the Gaussian processes
for machine learning regression, learning parameters from data procedure,
with market observed zero coupon log prices;

• we addressed the risk neutral short rate model problem of fitting zero coupon
bond prices observed in the market problem by using the Gaussian pro-
cesses for machine learning regression conditioned on data model;

• we addressed Gaussian processes for machine learning problem of choos-
ing priors mean and covariance functions by using a log normal risk neu-
tral short rate model with mean and covariance functions given by closed
forms.

The proposed model is a risk neutral measure Vasicek short rate prior condi-
tioned on zero coupon bond prices.

All the parameters of the proposed model are obtained directly under the risk
neutral measure using market observed zero coupon bond log prices, exclusively.
No other data sources are needed.

The model automatically fits, by its construction, all zero coupon bond prices
observed in the market, in particular those that define the current term structure
of interest rates.

Figure 1.3 illustrates the proposed model. It is the adaptation of Figure 1.2(b)
to the setup in Figure 1.1 (to highlight the conditioning on data mechanism, only
a subset of the available zero coupon bond prices is used).

As it can be observed in Figure 1.3, the proposed model solves the first cali-
bration issue. The current zero coupon bond model’s price, given by the current
model’s mean, exactly matches the one observed in the market. Regarding the
second calibration issue, the addition of several short rate factors, while main-
taining the conditioning on data procedure, solves it as well.

6
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1.5 Thesis structure

This thesis has two parts. The first part contains a set of self-contained finished
papers, one already published, another accepted for publication and the others
submitted for publication. The second part contains a set of self-contained unsub-
mitted papers. Although the fundamental work on papers in part two is finished
as well, there are some extra work we want to include before submitting them for
publication.

All the work is supported by a large set of Wolfram Mathematica (Wolfram
Research 2009) (Wolfram Research 2011) (Wolfram Research 2012) packages and
notebooks. Facing the impossibility to present all those program in this thesis, we
have chosen to include in Appendix A the public sections of two core packages,
one symbolic and another numeric.

Part I

Machine learning Vasicek model calibration with Gaussian pro-

cesses

This paper was the first step towards merging arbitrage free short rate theory
with Gaussian processes for machine learning regression.

Using the zero coupon bond log prices of a single T -maturity bond, we have
obtained the values of the Vasicek short rate model parameters directly under the
risk neutral measure.

The main contributions of this paper are:

• Obtain the Vasicek zero coupon bond log prices mean and covariance func-
tions closed forms;

• Show, by simulation, that the risk neutral model parameters are properly
obtained from the zero coupon bond log prices, by maximizing the likeli-
hood of the log prices given the parameters;

• Calibrate the model for a real zero coupon bond.

7
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One Factor Machine Learning Gaussian Short Rate

In this paper we have recognized the conditioned on zero coupon bonds log
prices short rate model, with the Vasicek short rate model as prior, as an alter-
native short rate model by itself.

The main contributions of this paper are:

• Obtain the model’s deterministic time dependent stochastic differential equa-
tion parameters;

• Show, by simulation, that the risk neutral model parameters are properly
obtained from several zero coupon bond log prices with distinct maturities,
by maximizing the likelihood of the log prices given the parameters, as long
as there is only one price observation in each time instant.

Brownian Bridge and other Path Dependent Gaussian Processes

Vectorial Simulation

Both the iterative and the vectorial procedures for simulating the Wiener pro-
cess are widely known, and described in reference books such as Glasserman
2003. However, regarding the Brownian bridge, only the iterative procedure is
described.

In this paper we model the Brownian bridge using the Gaussian processes
for machine learning regression framework, using the Wiener process, W (t), as
prior, and the single observation, W (1) = 0, the Brownian bridge condition, in
the training set.

The main contributions of this paper are:

• Use the bridge mean vector and the covariance matrix, computed in a set of
sampling instants, to simulate the bridge trajectories with the same vectorial
procedure used to simulate any Gaussian vector;

• Extend the vectorial simulation procedure to other Gaussian processes pri-
ors, and for more than one conditions, by developing a general path depen-
dent Gaussian process trajectories vectorial simulation framework;

• Show that the vectorial simulation procedure is relevant concerning the ex-
ecution times of implementations with the interpreted programming lan-
guages widely used in today’s research and development.

8
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Bonds Historical Simulation Value at Risk

In several simulation situations spread across this thesis, in order to evaluate the
existence of numerical problems, we have scaled zero coupon bond prices by
using the implied yield at a certain time, to compute the bond price at another
time, assuming the bond was held to maturity (mark to model).

This scaling procedure proved to be an important tool in the context of histor-
ical simulation value at risk (VaR) for portfolios with bonds.

In a joint work with Prof. Manuel Esquível and Prof. Pedro Corte Real, we
have sold the authors wrights of an historical simulation value at risk implemen-
tation, for portfolios with bonds (among other securities), to a private bank, by
50.100,00 EUR. That implementation was based on this paper.

The main contributions of this paper are:

• Adjust bonds historical returns so that the adjusted returns can be used di-
rectly to compute VaR by historical simulation;

• Using real bond prices, to show that the developed method provides results
consistent with the usual market observed trend, in which shorter times
to maturity imply smaller yields, carrying smaller risk and consequently
having smaller VaR;

• Using real bond prices, to show that the developed method strongly pre-
serves the market implicit correlations between the instruments in the port-
folio.

Part II

Machine Learning Gaussian Short Rate

Using a single Vasicek short rate factor, under the risk neutral measure, the ma-
chine learning Gaussian short rate model can’t solve the term structure fitting
issue mentioned in Section 1.2. In this paper a sum of Vasicek short rate factors is
proposed in order to solve that problem.

The main contributions of this paper are:

• Propose a sum of Vasicek short rate factors, under the risk neutral measure,
as a prior to Gaussian processes for machine learning regression;

• Obtain the zero coupon bond mean and covariance functions of the prior.

9
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Interest Rate Market Changes Detection

A common problem that arises in mathematical finance when using models with
parameters estimated from market data, available until a certain time, is that of
checking the necessity of using new parameters as newer data become available.

In this paper we use a covariance matrix statistical test to evaluate the neces-
sity of using new parameters of a machine learning Gaussian short rate model of
the Euribor, as newer data become available. Whenever we detect such necessity,
we say that the market conditions have changed.

The main contributions of this paper are:

• Obtain the likelihood ratio criterion to test if a covariance matrix, Σ , is equal
to a given matrix, Σ0, as a decomposition of simpler tests.

• Propose a machine learning Gaussian short rate model with Vasicek short
rate noise in the observations.

• Using real data, model the Euribor with the proposed model and apply the
changes detection procedure to the credit crisis years of 2007 and 2008.

10
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2
Machine learning Vasicek model

calibration with Gaussian processes

2.1 Preamble

With the exception of this preamble and minor notation changes, this chapter con-
tains the paper Machine learning Vasicek model calibration with Gaussian processes,
joint work with Prof. Manuel Esquível and Prof. Raquel Gaspar, published in
journal Communications in Statistics-Simulation and Computation, volume 41,
number 6, pages 776 to 786, year 2012, by Taylor & Francis.

This paper was the first step towards merging arbitrage free short rate theory
with Gaussian processes for machine learning regression.

Using the zero coupon bond log prices of a single T -maturity bond, we have
obtained the values of the Vasicek short rate model parameters directly under the
risk neutral measure.

The main contributions of this paper are:

• Obtain the Vasicek zero coupon bond log prices mean and covariance func-
tions closed forms;

• Show, by simulation, that the risk neutral model parameters are properly
obtained from the zero coupon bond log prices, by maximizing the likeli-
hood of the log prices given the parameters;

12
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• Calibrate the model for a real zero coupon bond.

Abstract

In this paper we calibrate the Vasicek interest rate model under the risk neutral
measure by learning the model parameters using Gaussian processes for machine
learning regression. The calibration is done by maximizing the likelihood of zero
coupon bond log prices, using mean and covariance functions computed analyt-
ically, as well as likelihood derivatives with respect to the parameters. The max-
imization method used is the conjugate gradients. We stress that the only prices
needed for calibration are market observed zero coupon bond prices and that the
parameters are directly obtained in the arbitrage free risk neutral measure.

Keywords: Vasicek interest rate model; Arbitrage free risk neutral measure;
Calibration; Gaussian processes for machine learning; Zero coupon bond prices.

2.2 Introduction

Calibration of interest rate models under the risk neutral measure typically entails
the availability of some derivatives such as swaps, caps or swaptions.

In this paper we present an alternative method for calibrating Gaussian mod-
els, namely, the Vasicek interest rate model (Vasicek 1977), which requires zero
coupon bond prices only.

The presented method has the following features:

• The only prices needed for calibration are zero coupon bond prices.

• All the model parameters are directly obtained in the risk neutral measure.

• The calibration method does not require a discrete model approximation
nor the establishment of an objective measure dynamics.

The method is based on Gaussian processes for Machine Learning, and its
main drawback is his applicability to Gaussian models only.

One key issue in using Gaussian processes for machine learning is to have
enough prior information on the data, in order to specify mean and covariance
functions. Under the Vasicek interest rate model, the risk neutral zero coupon
bond prices follow a log normal distribution, which can easily be transformed

13
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into a Gaussian process by taking the logarithm of the zero coupon prices. The
mean and covariance functions of this Gaussian process can be computed analyt-
ically making it suitable for Gaussian processes for machine learning regression.

2.3 Vasicek interest rate model

In the Vasicek model, the interest rate follows an Ornstein-Uhlenbeck mean-
reverting process, under the risk neutral measure, defined by the stochastic dif-
ferential equation

dr(t) = k(θ − r(t))dt+ σdW (t) (2.1)

where k is the mean reversion velocity, θ is the mean interest rate level, σ is the
volatility and W (t) the Wiener process. Parameters k and σ are positive.

Let s ≤ t. The solution of equation 2.1 is (Brigo and Mercurio 2006)

r(t) = r(s)e−k(t−s) + θ
(
1− e−k(t−s))+ σe−kt

∫ t

s

ekudW (u). (2.2)

The interest rate r(t), conditioned on Fs, is normally distributed with mean

E {r(t)|Fs} = r(s)e−k(t−s) + θ
(
1− e−k(t−s)) (2.3)

and variance

V ar {r(t)|Fs} =
σ2

2k

(
1− e−2k(t−s)) .

Zero coupon bonds are interest rate derivatives, therefore, their market prices
are observed in the risk neutral measure. The Vasicek model has affine term struc-
ture, which means that the T maturity zero coupon bond prices p(t, T ), observed
in the risk neutral measure, are given by (Björk 2004)

p(t, T ) = eA(t,T )−B(t,T )r(t) (2.4)

where

A(t, T ) =

(
θ − σ2

2k2

)
(B(t, T )− T + t)− σ2

4k
B2(t, T )

and

B(t, T ) =
1

k

(
1− e−k(T−t)) .
14
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Equation 2.4 shows that the zero coupon bond prices p(t, T ) are log normal
and consequently log(p(t, T )) are normal.

2.3.1 Zero coupon bond log prices mean function

Since
log(p(t, T )) = A(t, T )−B(t, T )r(t) (2.5)

the mean function µ(t, T ) of log(p(t, T )) is given by

µ(t, T ) = E {log(p(t, T ))|Fs}

= E {A(t, T )−B(t, T )r(t)|Fs}

= A(t, T )−B(t, T )E {r(t)|Fs}

Considering the initial instant s = 0, and using equation 2.3 for E {r(t)|Fs}
we get

µ(t, T ) = A(t, T )−B(t, T )
(
r0e
−kt + θ

(
1− e−kt

))
=

(
θ − σ2

2k2

)(
t− T − ek(t−T ) − 1

k

)
−
σ2
(
ek(t−T ) − 1

)2

4k3

−
e−kT

(
ek(T−t) − 1

) (
θ
(
ekt − 1

)
+ r0

)
k

(2.6)

where r0 stands for the initial interest rate value, the value of the interest rate r(t),
at t = 0.

2.3.2 Zero coupon bond log prices covariance function

The covariance function cov(t1, t2, T ) of log(p(t, T )) is given by

cov(t1, t2, T ) = E {(log(p(t1, T ))− µ(t1, T ))

(log(p(t2, T ))− µ(t2, T )) |Fs}

= E {log(p(t1, T )) log(p(t2, T ))|Fs} − µ(t1, T )µ(t2, T ) (2.7)
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2. VASICEK CALIBRATION 2.3. Vasicek interest rate model

Using equation 2.5, the term E {log(p(t1, T )) log(p(t2, T ))|Fs}, is given by

E {log(p(t1, T )) log(p(t2, T ))|Fs}

= E {(A(t1, T )−B(t1, T )r(t1))

(A(t2, T )−B(t2, T )r(t2))|Fs}

= A(t1, T )A(t2, T )

−A(t1, T )B(t2, T )E {r(t2)|Fs}

−B(t1, T )A(t2, T )E {r(t1)|Fs}

+B(t1, T )B(t2, T )E {r(t1)r(t2)|Fs} (2.8)

Using the Vasicek SDE solution equation 2.2, with s = 0, the termE {r(t1)r(t2)|Fs}
is given by

E {r(t1)r(t2)|Fs}

= E

{(
r0e
−kt1 + θ

(
1− e−kt1

)
+ σe−kt1

∫ t1

0

ekudW (u)

)
(
r0e
−kt2 + θ

(
1− e−kt2

)
+ σe−kt2

∫ t2

0

ekudW (u)

)}
= r2

0e
−k(t1+t2) + r0e

−kt1θ
(
1− e−kt2

)
+θ
(
1− e−kt1

)
r0e
−kt2 + θ2

(
1− e−kt1

) (
1− e−kt2

)
+σ2e−k(t1+t2)E

{∫ t1

0

ekudW (u)

∫ t2

0

ekudW (u)

}
. (2.9)

In order to compute E
{∫ t1

0
ekudW (u)

∫ t2
0
ekudW (u)

}
, we first consider t1 < t2.

In this case, we have

E

{∫ t1

0

ekudW (u)

∫ t2

0

ekudW (u)

}
= E

{(∫ t1

0

ekudW (u)

)(∫ t1

0

ekudW (u) +

∫ t2

t1

ekudW (u)

)}
= E

{(∫ t1

0

ekudW (u)

)2
}
. (2.10)
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2. VASICEK CALIBRATION 2.4. Gaussian processes for machine learning

In case t2 < t1, we have

E

{∫ t1

0

ekudW (u)

∫ t2

0

ekudW (u)

}
= E

{(∫ t2

0

ekudW (u) +

∫ t1

t2

ekudW (u)

)(∫ t2

0

ekudW (u)

)}
= E

{(∫ t2

0

ekudW (u)

)2
}
. (2.11)

Given equations 2.10 and 2.11, we get

E

{∫ t1

0

ekudW (u)

∫ t2

0

ekudW (u)

}

= E


(∫ min(t1,t2)

0

ekudW (u)

)2
 .

Finally, using Itô isometry

E

{∫ t1

0

ekudW (u)

∫ t2

0

ekudW (u)

}

= E


(∫ min(t1,t2)

0

ekudW (u)

)2


=

∫ min(t1,t2)

0

E
{(
eku
)2
}
du

=

∫ min(t1,t2)

0

e2kudu

=
1

2k

(
e2k min(t1,t2) − 1

)
. (2.12)

Using equations 2.6, 2.7, 2.8, 2.9 and 2.12, the covariance function cov(t1, t2, T )

of log(p(t, T )) is given by

cov(t1, t2, T ) =
1

2k3
e−k(2T+t1+t2)

(
e2k min(t1,t2) − 1

)
(
ekT − ekt1

) (
ekT − ekt2

)
σ2 (2.13)

2.4 Gaussian processes for machine learning

The goal of Gaussian processes for machine learning is to find the non linear
unknown mapping y = f(x), from data (X,y), using Gaussian distributions over
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2. VASICEK CALIBRATION 2.4. Gaussian processes for machine learning

functions1 (Rasmussen and Williams 2005)

GP ∼ N (µ(x), cov(x1,x2)).

The pair (X,y) is the training set. The matrix X collects a set of n vectors x

where the value y = f(x) was observed. The corresponding y values are collected
in vector y.

The set of vectors x? where the values y? = f(x?) were not observed, is col-
lected in matrix X?. The matrix X? is the test set.

Under the Vasicek interest rate model the zero coupon bonds log prices log(p(t, T ))

are normal

GP ∼ N (µ(t, T ), cov(t1, t2, T ))

where µ(t, T ) is given by equation 2.6 and cov(t1, t2, T ) is given by equation 2.13.
Since T , the bond maturity, is a bond feature, in this case the mapping we are

interested in is the scalar mapping

y = f(t)

where y stands for the zero coupon bonds log prices. This reduces the training
set to the pair of vectors (t,y), and the test set to vector t?.

Since the process is Gaussian (Rasmussen and Williams 2005)[
y

y?

]
∼ N

([
µ

µ?

]
,

[
K K?

KT
? K??

])

and

p(y?|t?, t,y) ∼ N
(
µ? + KT

? K−1(y − µ),K?? −KT
? K−1K?

)
where µ and µ? are mean vectors of train and test sets, K is the train set covari-
ance matrix, K? the train-test covariance matrix and K?? the test set covariance
matrix.

The conditional distribution

p(y?|t?, t,y)

1See (Rasmussen 2004) for a short introduction to the Gaussian distributions over functions
framework.
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2. VASICEK CALIBRATION 2.4. Gaussian processes for machine learning

corresponds to the posterior process on the data

GPD ∼ N (mD(t), covD(t1, t2))

where
mD(t) = m(t) + KT

t,tK
−1(y − µ) (2.14)

and
covD(t1, t2) = cov(t1, t2)−KT

t,t1
K−1Kt,t2 (2.15)

where Kt,t is a covariance vector between every training instant and t.
Equation 2.14 is the regression function while equation 2.15 is the regression

confidence. Equations 2.14 and 2.15 are the central equations of Gaussian pro-
cesses for machine learning regression.

In order to learn the model parameters Θ = {r0, k, θ, σ} from data, the likeli-
hood of the training data given the parameters (closed form) (Rasmussen 2004)

L = log p(y|t,Θ)

= −1

2
log |K| − 1

2
(y − µ)T K−1 (y − µ)− n

2
log(2π)

is maximized, based on the derivatives ofLwith respect to each of the parameters
(closed forms).

Note that, since we want to learn the parameters in the arbitrage free risk
neutral measure, the initial interest rate value r0, is considered a parameter, like
k, θ and σ, to be learned from the zero coupon bond log prices.

Denoting each of the parameters in set Θ by Θi, and since

∂

∂Θi

log |K| = tr

(
K−1 ∂K

∂Θi

)
and

∂

∂Θi

K−1 = −K−1 ∂K

∂Θi

K−1

19



2. VASICEK CALIBRATION 2.4. Gaussian processes for machine learning

the derivatives ∂L
∂Θi

are given by

∂L

∂Θi

= −1

2
tr

(
K−1 ∂K

∂Θi

)
+

1

2
(y − µ)T K−1 ∂K

∂Θi

K−1 (y − µ)

+ (y − µ)T K−1 ∂µ

∂Θi

.

In order to compute the vector of derivatives, ∂µ
∂Θi

, and the matrix of deriva-
tives ∂K

∂Θi
, the derivatives of the mean function µ(t, T ) (equation 2.6), and the

derivatives of the covariance function cov(t1, t2, T ) (equation 2.13) with respect
to the parameters are used, namely:

∂µ(t, T )

∂r0

=
e−kT − e−kt

k
;

∂µ(t, T )

∂k
=

e−k(t+2T )

4k4

(
4k2(kt+ 1)e2kT (r0 − θ)

−4k2(kT + 1)(r0 − θ)ek(t+T ) + 4σ2ek(2t+T )(k(t− T )− 3)

−σ2e3kt(2k(t− T )− 3) + σ2ek(t+2T )(4k(t− T ) + 9)
)

;

∂µ(t, T )

∂θ
=

e−kt − e−kT + kt− kT
k

;

∂µ(t, T )

∂σ
= −

σ
(
2k(t− T )− 4ek(t−T ) + e2k(t−T ) + 3

)
2k3

;

∂cov(t1, t2, T )

∂r0

= 0;
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2. VASICEK CALIBRATION 2.5. Simulation results

∂cov(t1, t2, T )

∂k
=

1

2k4
e−k(t1+t2+2T )

(
ek(t1+t2)(3 + 2kT ) + e2kT (3 + k(t1 + t2))

−ek(t1+T )(3 + k(t2 + T ))− ek(t2+T )(3 + k(t1 + T ))

+ek(t1+2min(t1,t2)+T )(3 + k(t2− 2min(t1, t2) + T ))

+ek(t2+2min(t1,t2)+T )(3 + k(t1− 2min(t1, t2) + T ))

+ek(t1+t2+2min(t1,t2))(−3 + 2k(min(t1, t2)− T ))

+e2k(min(t1,t2)+T )(−3− k(t1 + t2− 2min(t1, t2)))
)
σ2;

∂cov(t1, t2, T )

∂θ
= 0;

∂cov(t1, t2, T )

∂σ
=

1

k3
e−k(t1+t2+2T )

(
ekT − ekt1

) (
ekT − ekt2

)
(
e2kmin(t1,t2) − 1

)
σ.

2.5 Simulation results

In order to test the proposed calibration method we used equations 2.2 and 2.5,
with fixed parameters values, to simulate 1000 sequences of zero coupon bond
log prices.

The parameters values used were: initial interest rate r0 = 0.5; mean interest
rate level θ = 0.1; mean reversion velocity k = 2; and volatility σ = 0.2.

We considered the zero coupon bond maturity of one year, T = 1, and simu-
lated one year daily prices sequences by considering 260 prices per sequence (5
working days prices per week, 52 weeks per year).

Figure 2.1 illustrates a simulated sequence of zero coupon bond log prices, as
well as the mean and variance functions.

We applied the calibration procedure by maximizing the likelihood of each
one of the zero coupon bond log prices sequences, using Wolfram Mathematica 7
(Wolfram Research 2009) conjugate gradients implementation with default con-
figuration parameters.

Figure 2.2 illustrates the 50 bins parameters histograms obtained from the
1000 calibrations performed, and Table 2.1 shows the corresponding mean, stan-
dard deviation and 95% confidence intervals.

As it can be observed, all parameters 95% confidence intervals contain the
fixed parameter value used. Despite this fact, results in Table 2.1 also show that
while the 1000 calibrations sample mean estimations, given by the parameters
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Figure 2.1: Zero coupon bond log prices simulated sequence (solid black), mean
(dashed black) and two standard deviations interval (light gray).
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Figure 2.2: Learned parameters 50 bins histograms.

Parameter Value Mean Std. Dev. 95% CI
r0 0.5 0.527 0.482 -0.418 to 1.472
k 2.0 2.098 0.855 0.419 to 3.776
θ 0.1 0.083 0.443 -0.786 to 0.952
σ 0.2 0.203 0.039 0.126 to 0.280

Table 2.1: Parameters r0, k, θ and σ, 1000 calibrations mean, standard deviation
and 95% confidence interval.
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2. VASICEK CALIBRATION 2.6. Calibration to real data

r0 k θ σ
Learned 0.212 2.925 0.025 0.195
Std. Dev. 0.110 1.897 0.022 0.119

Table 2.2: Learned parameters r0, k, θ and σ, for a real, two year maturity, zero
coupon bond, calibrated with approximately one year of available prices.

means showed in third column of Table 2.1, are quite accurate, the confidence in-
tervals for each individual calibration are quite large. Therefore calibration with
the proposed method should include as much zero coupon bond prices sequences
as possible. Care should be taken when calibrating the model with just one price
sequence, because the estimation errors can be quite large.

2.6 Calibration to real data

In real life there are only a few zero coupon bonds and their great majority is
traded over the counter (OTC). Those bonds are traded between two market play-
ers instead of openly being traded in an exchange and data is scarce. Zero coupon
bond prices can also be implicitly extracted from the prices of other fixed income
products, but in this case the prices would be theoretical and dependent on the
assumptions underlying the term structure fitting.

We had, thus, two choices: either use actual market data on one of the few
zero coupon bonds actually traded on the market and rely on OTC quotes, or
use the price on other fixed income products and extract from those theoretical
zero coupon bond prices. We chose the first approach. At the time we looked
for data there was a two year maturity zero coupon in the OTC market live for
approximately one year. We took this bond and used a quote service that delivers
market prices aggregated from different dealers responsible for trading (market
makers) this particular bond.

Table 2.2 shows the parameters learned and standard deviations obtained
from the square root of the diagonal of the inverse Fisher information matrix,
as a measure of the calibration errors. Figure 2.3 illustrates the corresponding
mean and variance functions, along with the log prices sequence itself. It should
be noted that the learned parameters along with equations 2.14 and 2.15 allow the
plot in Figure 2.3 of the learned mean and the learned two standard deviations
interval, not only in the time interval where there are available prices, but for the
all t between the initial time t = 0 and maturity t = T .

As it can be observed in Figure 2.3, the mean and variance functions adjust
quite well to the particular price sequence used. However, the large standard
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Figure 2.3: Real, two year maturity, zero coupon bond log prices sequence (solid
black), learned mean (dashed black) and learned two standard deviations interval
(light gray).

deviations obtained do confirm that the errors in the learned parameters can be
quite large when calibrating with just one price sequence.

2.7 Conclusions

In this paper we presented a calibration procedure of the Vasicek interest rate
model under the risk neutral measure by learning the model parameters using
Gaussian processes for machine learning regression with zero coupon bond log
prices mean and covariance functions computed analytically.

Compared with other calibration procedures, in this one all the parameters
are obtained in the arbitrage free risk neutral measure and the only prices needed
for calibration are zero coupon bond prices. On the other hand, this calibration
procedure makes no discrete model approximation and makes no simplifications
that possibly allow arbitrage opportunities, as it happens when calibrating using
interest rate trees (Brigo and Mercurio 2006). It also does not require the establish-
ment of an objective measure dynamics for the interest rate, as it happens when
applying the classical maximum likelihood estimation directly to the interest rate
(Brigo and Mercurio 2006).
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3
One Factor Machine Learning

Gaussian Short Rate

3.1 Preamble

With the exception of this preamble and minor notation changes, this chapter con-
tains the paper One Factor Machine Learning Gaussian Short Rate, joint work with
Prof. Manuel Esquível and Prof. Raquel Gaspar, which is submitted for publi-
cation in the journal Communications in Statistics-Simulation and Computation,
by Taylor & Francis. The current submission status is "under revision".

In this paper we have recognized the conditioned on zero coupon bonds log
prices short rate model, with the Vasicek short rate model as prior, as an alterna-
tive short rate model by itself.

The main contributions of this paper are:

• Obtain the model’s deterministic time dependent stochastic differential equa-
tion parameters;

• Show, by simulation, that the risk neutral model parameters are properly
obtained from several zero coupon bond log prices with distinct maturities,
by maximizing the likelihood of the log prices given the parameters, as long
as there is only one price observation in each time instant.
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3. ONE FACTOR 3.2. Introduction

Abstract

In this paper we model the short rate, under the risk neutral measure, as a Gaus-
sian process, conditioned on market observed zero coupon bonds log prices. The
model is based on Gaussian processes for machine learning, using a single Va-
sicek factor as prior.

All model parameters are learned directly under the risk neutral measure,
using zero coupon bonds log prices only.

The model supports observations of zero coupon bounds with distinct matu-
rities limited to one observation per time instant. All the supported observations
are automatically fitted.

We derive the model’s SDE and model the Euribor using real data.

Keywords: Gaussian short rate, Gaussian processes for machine learning, risk
neutral measure.

3.2 Introduction

In our previous work (Sousa, Esquível, and Gaspar 2012) we calibrated the Va-
sicek (Vasicek 1977) short rate model, for a single T maturity zero coupon bond,
directly under the risk neutral measure, using zero coupon bond prices only. The
method is based on conditioning the Vasicek zero coupon bond log prices Gaus-
sian process, to market observed zero coupon bond log prices, using the Gaussian
processes for Machine Learning framework (Rasmussen and Williams 2005). In
this paper we recognize the conditioned on market observed zero coupon log
prices underlying Gaussian process as an alternative one factor Gaussian short
rate model by itself. We extend the calibration method to several T maturity
zero coupon bonds, limited to one observation per time instant, and derive the
model’s stochastic differential equation.

Consider the Gaussian process g(x), with mean function m(x) and covariance
function cov(xi,xj),

g(x) ∼ GP (m(x), cov(xi,xj)) . (3.1)

Consider also, data D = (X,y), where the matrix X collects a set of vectors
{x�1,x�2, · · · ,x�n} where the value y� = g(x�) was observed, and vector y collects
the corresponding set of observed values {y�1, y�2, · · · , y�n}.
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3. ONE FACTOR 3.3. Short rate prior

The process, gD(x), defined by all trajectories of g(x) that pass through data D
is also Gaussian (Rasmussen and Williams 2005), with mean function mD(x) and
covariance function covD(xi,xj),

gD(x) ∼ GP (mD(x), covD(xi,xj)) . (3.2)

The process g(x) is called the prior, gD(x) is called the conditioned on data pro-
cess, D is called the training set and mD(x), covD(xi,xj) are given by (Rasmussen
2004)

mD(x) = m(x) + K>X,xK
−1(y −m) (3.3)

and

covD(xi,xj) = cov(xi,xj)−K>X,xiK
−1KX,xj (3.4)

where, m is the prior training set mean vector, K is the prior training set co-
variance matrix and KX,x is a prior covariance vector between every training
vector and x.

The "One Factor Machine Learning Gaussian Short Rate" is a single factor ar-
bitrage free Vasicek short rate prior, conditioned on market observed zero coupon
bonds log prices.

3.3 Short rate prior

The model’s prior is that, under the arbitrage free, risk neutral measure, the short
rate, r(t), follows a Vasicek Ornstein-Uhlenbeck mean-reverting process, defined
by the stochastic differential equation (SDE) (Vasicek 1977):

dr(t) = k(θ − r(t))dt+ σdW (t). (3.5)

Parameter k is the mean reversion velocity, parameter θ is the mean interest
rate level, parameter σ is the volatility andW (t) is the Wiener process. Parameters
k and σ are strictly positive.

Let s be the initial time, with 0 < s < t. The solution of Equation 3.5 is given
by (Brigo and Mercurio 2006)

r(t) = r(s)e−k(t−s) + θ(1− e−k(t−s)) + σe−kt
∫ t

s

ekudW (u). (3.6)
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3. ONE FACTOR 3.3. Short rate prior

The initial short rate value, r(s), is considered as an extra model parameter
since its value must be obtained under the risk neutral measure.

3.3.1 Short rate mean and covariance

Given Equation 3.6 the short rate prior mean and covariance functions, mr(t) and
covr(t1, t2), are given by

mr(t) = r(s)e−k(t−s) + θ(1− e−k(t−s)) (3.7)

and

covr(t1, t2) = σ2e−k(t1+t2) 1

2k

(
e2kmin(t1,t2) − e2ks

)
. (3.8)

3.3.2 Zero coupon bond log prices mean and covariance

Under the risk neutral measure, the price p, at time t, of a zero coupon bond that
pays 1 at maturity T , is given by (Björk 2004)

p(t, T ) = E
[
e−

∫ T
t r(u)du

]
. (3.9)

Under the Vasicek model p(t, T ) is given by

p(t, T ) = eA(t,T )−B(t,T )r(t) (3.10)

where

B(t, T ) =
1

k

(
1− e−k(T−t)) (3.11)

and

A(t, T ) =

(
θ − σ2

2k2

)
(B(t, T )− T + t)− σ2

4k
B2(t, T ). (3.12)

It is clear from Equation 3.10 that model has an affine term structure and that
the logarithm of the zero coupon bonds prices is Gaussian

log p(t, T ) ∼ GP (mp(t, T ), covp(ti, Ti, tj, Tj)) . (3.13)
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Since the logarithm of zero coupon bonds prices is given by

log p(t, T ) = A(t, T )−B(t, T )r(t) (3.14)

the mean and covariance mp(t, T ) and covp(t1, T1, t2, T2) are given by

mp(t, T ) = A(t, T )−B(t, T )mr(t) (3.15)

=

(
θ − σ2

2k2

)(
1− e−k(T−t)

k
− T + t

)
−
σ2
(
1− e−k(T−t))2

4k3

−
(
1− e−k(T−t)) (r(s)e−k(t−s) + θ

(
1− e−k(t−s)))

k
(3.16)

and

covp(t1, T1, t2, T2)

= B(t1, T1)B(t2, T2)covr(t1, t2) (3.17)

=
σ2e−k(t1+t2)

(
1− e−k(T1−t1)

) (
1− e−k(T2−t2)

) (
e2kmin(t1,t2) − e2ks

)
2k3

. (3.18)

3.4 One Factor Machine Learning Gaussian Short Rate

Let:

• x = [t T ]>;

• y = log p(x) = log p(t, T );

• mp(x) = mp(t, T );

• covp(xi,xj) = covp(ti, Ti, tj, Tj).

Following Section 3.2, let matrix X collect a set of vectors x� where the values
of zero coupon log prices were observed, and let vector y collect the correspond-
ing values y� = log p(x�). Recall from Section 3.2 that D = (X,y) is the training
set.

29



3. ONE FACTOR 3.4. One Factor Machine Learning Gaussian Short Rate

The "One Factor Machine Learning Gaussian Short Rate" is the Gaussian short
rate process, rD(t), underlying the zero coupon bond prices

pD(t, T ) = E
[
e−

∫ T
t rD(u)du

]
(3.19)

where log pD(t, T ) = log pD(x) is the conditioned on zero coupon bonds log
prices Gaussian process

log pD(x) ∼ GP (mpD(x), covpD(xi,xj)) (3.20)

using log p(x) as prior.
Given equations 3.3 and 3.4, mpD(x) and covpD(xi,xi) are given by

mpD(x) = mp(x) + K>X,xK
−1(y −m) (3.21)

and

covpD(xi,xj) = covp(xi,xj)−K>X,xiK
−1KX,xj (3.22)

where

• m is the prior mean on the training set. It results from applying mp(x) func-
tion (Equation 3.16) on all X collected vectors;

• K is the prior covariance matrix on the training set. It results from applying
covp(xi,xj) function (Equation 3.18) on all pairs of X collected vectors;

• KX,x is the prior covariance between every vector in the training set and
x. It results from applying covp(xi,xj) function (Equation 3.18) on all pairs
composed by each X collected vector, and the x vector.

3.4.1 Properties

1. The model supports a single observation y on each vector x = [t T ]>.

Given Equation 3.18, the observation of more than one log price y, of a T
maturity zero coupon bond, at time t, would result in two equal lines in
matrix K, which would not be invertible, as required by Equations 3.21 and
3.22.

2. The model only supports the observation of a single T maturity zero coupon
bond log price on each time t.
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3. ONE FACTOR 3.4. One Factor Machine Learning Gaussian Short Rate

As in the previous property, given Equation 3.17, the observation of more
than one T maturity zero coupon bond log price, on each time t, would
result in two equal lines in matrix K.

3. Despite the parameters values, all supported observations are automatically
fitted.

Given Equation 3.21, the model mean,mpD(x), on each training observation,
y� = log p(x�), equals y�:

mpD(x�) = y�. (3.23)

Furthermore, given Equation 3.22, the model variance on each training ob-
servation equals zero:

covpD(x�,x�) = 0. (3.24)

3.4.2 SDE

In order to obtain the "One Factor Machine Learning Gaussian Short Rate" SDE
we assume, at a first moment, that the conditioned on data short rate follows,
under the arbitrage free, risk neutral measure, the deterministic time dependent
parameters SDE of the generalized Hull and White1 model.

Then, writing the generalized Hull and White model zero coupon bond log
prices mean and covariance functions, making them equal to the corresponding
"One Factor Machine Learning Gaussian Short Rate" functions, and solving in
order to the deterministic time dependent parameters, we get the SDE parameters
and confirm our initial assumption.

Let the "One Factor Machine Learning Gaussian Short Rate" short rate, rD(t),
follow, under the arbitrage free, risk neutral measure, the generalized Hull and
White model SDE (J. Hull and White 1990a)

drD(t) = (θ(t)− α(t)rD(t))dt+ σ(t)dW (t). (3.25)

The solution of Equation 3.25 is

rD(t) = rD(s)eH(s)−H(t) + e−H(t)

∫ t

s

eH(u)θ(u)du+ e−H(t)

∫ t

s

eH(u)σ(u)dW (u) (3.26)

1The generalized Hull and White model is also known as the extended Vasicek model, as it is
a Vasicek model extended with time dependent parameters.
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3. ONE FACTOR 3.4. One Factor Machine Learning Gaussian Short Rate

where

H(t) =

∫ t

0

α(u)du. (3.27)

Under this assumption:

1. The short rate mean,mrD(t), and covariance, covrD(t1, t2), functions are given
by

mrD(t) = rD(s)eH(s)−H(t) + e−H(t)

∫ t

s

eH(u)θ(u)du (3.28)

and

covrD(t1, t2) = e−H(t1)−H(t2)

∫ min(t1,t2)

s

e2H(u)σ2(u)du; (3.29)

2. The zero coupon bond prices are given by (Bingham and Kiesel 2004)

pD(t, T ) = eAD(t,T )−BD(t,T )rD(t) (3.30)

where

BD(t, T ) = eH(t)

∫ T

t

e−H(u)du (3.31)

and

AD(t, T ) =

∫ T

t

∫ s

t

e−H(u)−H(s)

∫ u

t

e2H(v)σ2(v)dvduds

−
∫ T

t

e−H(u)

∫ u

t

eH(v)θ(v)dvdu; (3.32)

3. The model is affine and the zero coupon bond log prices, log pD(t, T ), are
Gaussian

log pD(x) ∼ GP (mpD(x), covpD(xi,xj)) (3.33)

4. The zero coupon bond log prices mean and covariance are given by

mpD(t, T ) = AD(t, T )−BD(t, T )mrD(t) (3.34)
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3. ONE FACTOR 3.4. One Factor Machine Learning Gaussian Short Rate

and

covpD(t1, T1, t2, T2) = BD(t1, T1)BD(t2, T2)covrD(t1, t2). (3.35)

3.4.2.1 Parameter α(t)

In order to get parameter α(t) we first note that, under the risk neutral measure,
the initial value of the short rate conditioned on data, rD(s), equals the prior initial
value, r(s), because the observations that distinguish the two processes occur, by
definition of the initial time, at times greater than s.

Then, expanding the zero coupon bond log prices mean conditioned on data,
mpD(t, T ), in Equations 3.34 and 3.21, and making the term with rD(s) equal to
the term with r(s) we get

BD(t, T )rD(s)eH(s)−H(t) = B(t, T )r(s)e−k(t−s) (3.36)

BD(t, T )r(s)eH(s)−H(t) = B(t, T )r(s)e−k(t−s). (3.37)

Making the exponential functions of s equal

⇔ eH(s)−H(t) = e−k(t−s)

⇔
∫ t

s

α(u)du = k(t− s)

⇔ α(t) = k (3.38)

Therefore,

H(t) =

∫ t

0

α(u)du =

∫ t

0

kdu = kt. (3.39)

Also, substituting Equation 3.39 in Equation 3.31 shows thatBD(t, T ) becomes
equal to B(t, T )

33
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BD(t, T ) = eH(t)

∫ T

t

e−H(u)du

= ekt
∫ T

t

e−kudu

=
1

k

(
1− e−k(T−t))

= B(t, T ). (3.40)

3.4.2.2 Parameter σ(t)

Given Equations 3.35 and 3.40, and setting covpD(t1, T1, t2, T2), in Equations 3.35
and 3.22, equal

B(ti, Ti)B(tj, Tj)covrD(ti, tj) =

covp(ti, Ti, tj, Tj)−K>X,[tiTi]>K−1KX,[tjTj ]> . (3.41)

Inserting Equation 3.17,

B(ti, Ti)B(tj, Tj)covrD(ti, tj) = B(ti, Ti)B(tj, Tj)covr(ti, tj)

−K>X,[tiTi]>K−1KX,[tjTj ]>

⇔ covrD(ti, tj) = covr(ti, tj)−
K>

X,[tiTi]>

B(ti, Ti)
K−1

KX,[tjTj ]>

B(tj, Tj)

(3.42)

KX,[t T ]> is a vector of prior covariances, covp(ti, Ti, tj, Tj), between every T �

maturity zero coupon bond log price at time t� in the training set, and a T matu-
rity zero coupon bond log price at time t. Given equation 3.17,

covp(t
�, T �, t, T )

B(t, T )
=

B(t�, T �)B(t, T )covr(t
�, t)

B(t, T )

⇔ covp(t
�, T �, t, T )

B(t, T )
= B(t�, T �)covr(t

�, t). (3.43)

Therefore
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covrD(ti, tj) = covr(ti, tj)−V>X,tiK
−1VX,tj

(3.44)

where each element v[t� T �]>,t of vector VX,t is given by

v[t� T �]>,t = B(t�, T �)covr(t
�, t). (3.45)

Given Equations 3.29 and 3.44

e−k(ti+tj)

∫ min(ti,tj)

s

e2kuσ2(u)du =
σ2e−k(ti+tj)

2k

(
e2kmin(ti,tj) − e2ks

)
−V>X,tiK

−1VX,tj . (3.46)

Equation 3.46 applies to every ti and tj , in particular if ti = tj = t

e−2kt

∫ t

s

e2kuσ2(u)du =
σ2e−2kt

2k

(
e2kt − e2ks

)
−V>X,tK

−1VX,t (3.47)

Therefore

∫ t

s

e2kuσ2(u)du =
σ2

2k

(
e2kt − e2ks

)
−

V>X,t
e−kt

K−1 VX,t

e−kt

=
σ2

2k

(
e2kt − e2ks

)
−U>X,tK

−1UX,t (3.48)

where each element u[t� T �]>,t of vector UX,t is given by

u[t� T �]>,t =
B(t�, T �)

e−kt
covr(t

�, t)

=
B(t�, T �)

e−kt
σ2e−k(t�+t) 1

2k

(
e2kmin(t�,t) − e2ks

)
= B(t�, T �)σ2e−kt

� 1

2k

(
e2kmin(t�,t) − e2ks

)
(3.49)

Differentiating both sides of Equation 3.48 w.r.t. t
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e2ktσ2(t) =
d

dt

(
σ2

2k

(
e2kt − e2ks

)
−U>X,tK

−1UX,t

)
= σ2e2kt − 2U>X,tK

−1 d

dt
UX,t

= σ2e2kt − 2U>X,tK
−1QX,t (3.50)

where each element q[t� T �]>,t of vector QX,t is given by

q[t� T �]>,t = 1R+(t� − t)B(t�, T �)σ2e−kt
�
e2kt. (3.51)

Therefore

σ2(t) = σ2 − 2U>X,tK
−1RX,t (3.52)

where each element r[t� T �]>,t of vector RX,t is given by

r[t� T �]>,t = 1R+(t� − t)B(t�, T �)σ2e−kt
�

(3.53)

and

σ(t) =
(
σ2 − 2U>X,tK

−1RX,t

) 1
2 . (3.54)

3.4.2.3 Parameter Θ(t)

Expanding mpD(t, T ) in Equations 3.34 and 3.21

AD(t, T )−BD(t, T )mrD(t) = mp(t, T ) + K>X,[t T ]>K−1(y −m) (3.55)

using Equations 3.34 (AD(t, T )), 3.40 (BD(t, T ) equal to B(t, T )), 3.28 (mrD(t)),
3.38 (α(t) = k) and 3.16 (mp(t, T )), canceling the terms B(t, T )r(s)e−k(t−s) on both
sides (Equation 3.36), keeping the terms with Θ(t) in the left hand side and mov-
ing all other terms to the right hand side, equality of Equation 3.55 becomes
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−
∫ T

t

e−ku
∫ u

t

ekvθ(v)dvdu− 1− e−k(T−t)

k
e−kt

∫ t

s

ekuθ(u)du (3.56)

= −
∫ T

t

∫ s

t

e−k(u+s)

∫ u

t

e2kvσ2(v)dvduds (3.57)

+

(
θ − σ2

2k2

)(
1− e−k(T−t)

k
− T + t

)
(3.58)

−
σ2
(
1− e−k(T−t))2

4k3
(3.59)

−1− e−k(T−t)

k
θ
(
1− e−k(t−s)) (3.60)

+K>X,[t T ]>K−1(y −m). (3.61)

Differentiating the left hand side in Expression 3.56 w.r.t. T

d

dT

(
−
∫ T

t

e−ku
∫ u

t

ekvθ(v)dvdu− 1− e−k(T−t)

k
e−kt

∫ t

s

ekuθ(u)du

)
= −e−kT

∫ T

t

ekvθ(v)dv − e−kT
∫ t

s

ekuθ(u)du (3.62)

Equation 3.62 applies to every t ≤ T , in particular, if t = T becomes

(
d

dT

(
−
∫ T

t

e−ku
∫ u

t

ekvθ(v)dvdu− 1− e−k(T−t)

k
e−kt

∫ t

s

ekuθ(u)du

))∣∣∣∣
t=T

= −e−kT
∫ T

s

ekuθ(u)du. (3.63)

Regarding the right hand side part in Expression 3.57, differentiating w.r.t. T ,
and making t = T , cancel this part

(
− d

dT

∫ T

t

∫ s

t

e−k(u+s)

∫ u

t

e2kvσ2(v)dvduds

)∣∣∣∣
t=T

=

(
−
∫ T

t

e−k(u+T )

∫ u

t

e2kvσ2(v)dvdu

)∣∣∣∣
t=T

= 0. (3.64)

Proceeding with the right hand side part in Expressions 3.58, 3.59 and 3.60,
differentiating w.r.t. T , and making t = T ,
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(
d

dT

((
θ − σ2

2k2

)(
1− e−k(T−t)

k
− T + t

)
−
σ2
(
1− e−k(T−t))2

4k3

−1− e−k(T−t)

k
θ
(
1− e−k(t−s))))∣∣∣∣

t=T

= θ
(
e−k(T−s) − 1

)
. (3.65)

Regarding the part in Expression 3.61, recall that each element k[t� T �]>,[t T ]> of
vector KX,[t T ]> is given by the covariance covp(xi,xj), in Equation 3.17, between
each vector [t� T �]> in the training set, and [t T ]>

k[t� T �]>,[t T ]> = B(t�, T �)B(t, T )covr(t
�, t). (3.66)

Given that

(
d

dT
B(t, T )

)∣∣∣∣
t=T

= 1, (3.67)

differentiating w.r.t. T , and making t = T , the part in Expression 3.61

(
d

dT

(
K>X,[t T ]>K−1(y −m)

))∣∣∣∣
t=T

= N>X,TK−1(y −m) (3.68)

where each element, n[t� T �]>,T , of vector NX,T is given by

n[t� T �]>,T = B(t�, T �)covr(t
�, T )

=

(
1− e−k(T �−t�))

k
σ2e−k(t�+T ) 1

2k

(
e2kmin(t�,T ) − e2ks

)
. (3.69)

Grouping together the results in Equations 3.63, 3.65 and 3.68

−e−kT
∫ T

s

ekuθ(u)du = θ
(
e−k(T−s) − 1

)
+ N>X,TK−1(y −m)

⇔
∫ T

s

ekuθ(u)du = −θeks + θekT −
N>X,T
e−kT

K−1(y −m). (3.70)
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Differentiating w.r.t. T , Equation 3.70

ekT θ(T ) = kθekT − d

dT

(
N>X,T
e−kT

K−1(y −m)

)
(3.71)

and given that

d

dT

(n[t� T �]>,T

e−kT

)
=

d

dT

((
1− e−k(T �−t�))

k
σ2e−kt

� 1

2k

(
e2kmin(t�,T ) − e2ks

))

= 1R+(t� − T )

(
1− e−k(T �−t�))

k
σ2e−kt

�
e2kT , (3.72)

θ(T ) is given by

θ(T ) = kθ − Z>X,TK−1(y −m) (3.73)

where each element z[t� T �]>,T of vector ZX,T is given by

z[t� T �]>,T = 1R+(t� − T )

(
1− e−k(T �−t�))

k
σ2e−kt

�
ekT . (3.74)

Finally, since Equation 3.73 applies to all T > s, it can be rewritten as a func-
tion of t

θ(t) = kθ − Z>X,tK
−1(y −m). (3.75)

3.4.3 Learning the parameters

The prior parameters, r(s), θ, k and σ, are obtained, directly under the risk neutral
measure, by maximizing the prior log likelihood, L, of the market observed zero
coupon bonds log prices in the training set D, given the parameters

L = −1

2
log |K| − 1

2
(y −m)T K−1 (y −m)− n

2
log(2π) (3.76)

using the closed forms of the log likelihood derivative w.r.t. to each of the
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Parameter Fixed Value Mean Std. Dev. 95% CI
r(0) 0.035 0.035 0.0016 0.032 to 0.038
k 0.26 0.26 0.027 0.20 to 0.031
θ 0.08 0.081 0.006 0.070 to 0.093
σ 0.04 0.039 0.0014 0.037 to 0.042

Table 3.1: Prior parameters r(0), k, θ and σ, mean, standard deviation and 95%
confidence interval, learned from 1000 simulated data calibrations.

parameters (Sousa, Esquível, and Gaspar 2012).

3.5 Simulation

In order to evaluate the ability of learning parameters from data, we executed the
following simulation procedure:

1. Fix the initial time to zero, and the time period to 1 year. Fix the time incre-
ment to 1/260 (assuming quotes on 5 working days per week, 52 weeks per
year);

2. Fix the set of possible maturities to 7, 14 and 21 days, and 1 to 12 months
(assuming 30 days months);

3. Fix the set of prior parameters to r(0) = 0.035, k = 0.26, θ = 0.08 and
σ = 0.04 (the approximate values obtained in the real data case described in
Section 3.6);

4. Use Equations 3.7 and 3.8 simulate one prior short rate trajectory;

5. Use Equation 3.14 to compute one, randomly selected maturity, zero coupon
bond log price for each day;

6. Learn the prior parameters using the simulated data, the method described
in Section 3.4.3 and the Conjugate Gradient method, available in Wolfram
Mathematica 9 (Research 2013);

7. Repeat the previous steps 4 to 6, for 1000 trajectories.

Figure 3.1 shows the learned parameters histograms and Table 3.1 the corre-
sponding mean, standard deviation, and 95% confidence intervals.

As it can be observed in Table 3.1, all the confidence intervals include the
corresponding fixed value in step 3.
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Figure 3.1: Prior parameters histograms, learned from simulated data.

For purposes of illustration, Figure 3.2 shows the short rate SDE deterministic
time dependent parameters, α(t), θ(t) and σ(t), of Equations 3.38, 3.75, and 3.54,
respectively, of one of the simulated trajectories, computed from the learned prior
parameters and the simulated data. These are the deterministic time dependent
parameters of the short rate SDE in Equation 3.25 that exactly fit the simulated
zero coupon bond log prices observations in the training set (the additional ver-
sion of σ(t), in the vicinity of 1.0, shows the detailed evolution of σ(t), which can
not be observed with the original time scale).

3.6 Real data

In this section we model the Euribor rates, quoted by the Portuguese bank Caixa
Geral de Depósitos (CGD), which belongs to the Euribor panel banks. All the
data used is publicly available at the Euribor Internet site2.

We choose the crisis years of 2007 and 2008 as the period to model.
Given the model limitation in Property 2, Section 3.4.1, we randomly selected

one of the 15 Euribor maturities to get one observation for each day in the chosen
period. The selected Euribor rates were converted to the equivalent zero coupon
bond log prices and used as the training set.

Table 3.2 shows the prior parameters learned from the real data used as the
training set.

2 http://www.euribor-ebf.eu/
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Figure 3.2: Short rate SDE deterministic time dependent parameters α(t), θ(t) and
σ(t), for one of the simulated trajectories.

Prior Parameter r(0) k θ σ
Learned Value 0.0349 0.2661 0.0826 0.0381

Table 3.2: Euribor model prior parameters, learned from one randomly selected
maturity quote per day, from CGD bank, during 2007 and 2008.
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Figure 3.3: Short rate SDE deterministic time dependent parameters α(t), θ(t)
and σ(t), for the Euribor, quoted by CGD during 2007 and 2008, using a single
randomly selected maturity per day.

Figure 3.3 illustrates the short rate SDE deterministic time dependent param-
eters, α(t), θ(t) and σ(t), in Equation 3.25, computed from the learned prior pa-
rameters and data, using Equations 3.38, 3.75, and 3.54, respectively.

3.7 Conclusions

In this paper we propose to model the short rate, under the arbitrage free risk neu-
tral measure, as a conditioned on zero coupon bonds log prices Gaussian process.

All model parameters are learned directly under the risk neutral measure,
using zero coupon bonds log prices only.

The model supports observations of zero coupon bonds with distinct maturi-
ties limited to one observation per time instant. All the supported observations
are automatically fitted.
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4
Brownian Bridge and other Path

Dependent Gaussian Processes
Vectorial Simulation

4.1 Preamble

With the exception of this preamble and minor notation changes, this chapter con-
tains the paper Brownian Bridge and other Path Dependent Gaussian Processes Vecto-
rial Simulation, joint work with Prof. Manuel Esquível and Prof. Raquel Gaspar,
which is submitted for publication in the journal Communications in Statistics-
Simulation and Computation, by Taylor & Francis. The current submission status
is "minor changes".

Both the iterative and the vectorial procedures for simulating the Wiener pro-
cess are widely known, and described in reference books such as Glasserman
2003. However, regarding the Brownian bridge, only the iterative procedure is
described.

In this paper we model the Brownian bridge using the Gaussian processes
for machine learning regression framework, using the Wiener process, W (t), as
prior, and the single observation, W (1) = 0, the Brownian bridge condition, in
the training set.

The main contributions of this paper are:
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4. VECTORIAL SIMULATION 4.2. Introduction

• Use the bridge mean vector and the covariance matrix, computed in a set of
sampling instants, to simulate the bridge trajectories with the same vectorial
procedure used to simulate any Gaussian vector;

• Extend the vectorial simulation procedure to other Gaussian processes pri-
ors, and for more than one conditions, by developing a general path depen-
dent Gaussian process trajectories vectorial simulation framework;

• Show that the vectorial simulation procedure is relevant concerning the ex-
ecution times of implementations with the interpreted programming lan-
guages widely used in today’s research and development.

Abstract

The iterative simulation of the Brownian bridge is well known. In this paper we
present a vectorial simulation alternative, based on Gaussian processes for ma-
chine learning regression, that is suitable for interpreted programming languages
implementations.

We extend the vectorial simulation of path dependent trajectories to other
Gaussian processes, namely, sequences of Brownian bridges, geometric Brown-
ian motion, fractional Brownian motion and Ornstein-Ulenbeck mean reversion
process.

4.2 Introduction

Interpreted programming languages like Sage, Octave, Mathematica and Matlab
are currently important frameworks in research and development.

In these programming languages it is crucial to use vectorial algorithms in-
stead of iterative ones, in order to achieve the execution speeds of compiled lan-
guages. This is because vectorial operations are typically supported by built-in
functions which are implemented by optimized machine code.

The iterative simulation of the Brownian bridge is well known (Glasserman
2003) (Group 2012). In this paper we present a vectorial simulation alternative
based on Gaussian processes for machine learning regression that, is suitable for
interpreted programming languages implementations.

We extend the vectorial simulation of path dependent trajectories to other
Gaussian processes, namely, sequences of Brownian bridges, geometric Brown-
ian motion, fractional Brownian motion and Ornstein-Ulenbeck mean reversion
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4. VECTORIAL SIMULATION 4.3. Brownian bridge iterative simulation

process, by developing a Gaussian path dependent trajectories simulation vecto-
rial framework.

We illustrate the flexibility of the path dependent vectorial simulation proce-
dure, by creating a 2D Wiener process representation of a Norbert Wiener photo-
graph.

Simulation of Gaussian processes immediately spread with computers avail-
ability and became an important tool in many science areas, such as, mathematics
(Kloeden and Platen 1992), finance (Glasserman 2003), engineering (Kasdin 1995),
hydrology (Mandelbrot 1971) and geology (Alabert 1987), among many others.

In particular, the simulation of Brownian bridges, geometric Brownian mo-
tion, fractional Brownian motion and Ornstein-Ulenbeck mean reversion process,
play an important role in Monte Carlo methods (Moskowitz and Caflisch 1996),
securities pricing (Broadie and Glasserman 1997), communication networks (Pax-
son 1997) and particles motion (Gillespie 1996), respectively.

A wide range of path dependent Gaussian trajectories simulation methods
exist, spanning from the earlier, based on sampling the unconditional distribution
(Hoffman and Ribak 1991), Cholesky factorization (Davis 1987) or FFT (Dietrich
and Newsam 1996), to the more recent efforts of implementing the old methods
in the emerging parallel architectures (Garland, Le Grand, Nickolls, J. Anderson,
Hardwick, Morton, Phillips, Zhang, and Volkov 2008) (Ltaief, Tomov, Nath, and
Dongarra 2010) (Volkov and Demmel 2008).

In this paper we use the Cholesky method. Despite having known limitations
(Jean-François 2000), it allows the extension to the path dependent case and we
show that it is relevant concerning the execution speed of interpreted program-
ming languages implementations.

4.3 Brownian bridge iterative simulation

A Brownian bridge is a standard Brownian motion W conditioned to W (1) =

0. The Brownian bridge condition W (1) = 0 can be generalized to other time
instants greater than zero and to other values besides zero.

The standard Brownian motion W , defined in R+
0 , is also called a Wiener pro-

cess (Björk 2004) and has the following properties:

1. W (0) = 0;

2. W has independent increments, i.e. if r < s ≤ t < u then W (u) −W (t) and
W (s)−W (r) are independent random variables;
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4. VECTORIAL SIMULATION 4.3. Brownian bridge iterative simulation

3. For s < t the random variable W (t) −W (s) has the Gaussian distribution
N (0,

√
t− s);

4. W has almost surely continuous trajectories.

In addition, the Wiener process is a Gaussian process with mean functionm(t)

and covariance function cov(s, t):

m(t) = 0, (4.1)

cov(s, t) = min(s, t). (4.2)

In order to illustrate the iterative simulation of a Brownian bridge trajectory
B, consider that at some step we have 0 < u < s < t < 1, B(u) = α, B(t) = β and
we want to simulate the value B(s) (Glasserman 2003). Given the Wiener process
properties, the random vector [B(u)B(s)B(t)]T is Gaussian with mean vector and
covariance matrix:  B(u)

B(s)

B(t)

 ∼ N

 0

0

0

 ,
 u u u

u s s

u s t


 (4.3)

Therefore the conditional distribution B(s)|B(u), B(t) is given by:

B(s)|B(u), B(t) ∼ N
(

(t− s)α + (s− u)β

t− u
,
(s− u)(t− s)

t− u

)
(4.4)

Thus, the value B(s) is simulated by:

B(s) =
(t− s)α + (s− u)β

t− u
+

√
(s− u)(t− s)

t− u
Z, (4.5)

where Z ∼ N (0, 1) is an increment independent of all Z values previously
used in the simulation.

Finally, the iterative simulation of a Brownian bridge trajectory consists of
starting with u = 0, t = 1, B(0) = 0, B(1) = 0 and iteratively filling a trajectory
sample at time s (between u and t) with Equation 4.5, then moving one of the
end points to the simulated sample and repeating the process until all trajectory
samples are filled.

Figure 4.1 shows a sequence of 500 simulated independent Gaussian N (0, 1)

increments (white noise), and the corresponding simulated Wiener process and
Brownian bridge trajectories (sampled uniformly 500 times between zero and
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Figure 4.1: Simulated trajectories of: (a) white noise; (b) the corresponding
Wiener process; (c) the corresponding Brownian bridge.

one). The Brownian bridge trajectory was simulated by the iterative procedure
above.

4.4 Gaussian processes for machine learning

The goal of Gaussian processes for machine learning regression is to find the non
linear unknown mapping y = f(x), from data (X,y), using Gaussian distribu-
tions over functions (Rasmussen and Williams 2005):

GP ∼ N (m(x), cov(x1,x2)). (4.6)

The Gaussian process defined by m(x) and cov(x1,x2), in Equation 4.6, is the
prior process.

The pair (X,y) is the training set. The matrix X collects a set of n vectors x

where the value y = f(x) was observed. The corresponding y values are collected
in vector y.

The set of vectors x? where the values y? = f(x?) were not observed, is col-
lected in matrix X?. The matrix X? is the test set.

The regression function is the mean function of the process defined by all the
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4. VECTORIAL SIMULATION 4.4. Gaussian processes for machine learning

trajectories of the prior process that passes through the training set. The regres-
sion confidence is the corresponding covariance function. The regression mean
and the regression confidence define the posterior process on data.

As presented in the previous section, the Wiener process is a scalar Gaussian
process

W ∼ N (m(t), cov(s, t)) (4.7)

where m(t) is given by Equation 4.1 and cov(s, t) by Equation 4.2.
In this case the mapping f is the scalar mapping y = f(t), where y is the value

of W at time t. This reduces the training set to the pair of vectors (t,y), and the
test set to vector t?.

Since the process is Gaussian (Rasmussen and Williams 2005)[
y

y?

]
∼ N

([
m

m?

]
,

[
K K?

KT
? K??

])
(4.8)

and
p(y?|t?, t,y) ∼ N

(
m? + KT

? K−1(y −m),K?? −KT
? K−1K?

)
(4.9)

where m and m? are mean vectors of training and test sets, K is the training
set covariance matrix, K? the training-test covariance matrix and K?? the test set
covariance matrix.

The conditional distribution

p(y?|t?, t,y) (4.10)

corresponds to the posterior process on the data

GPD ∼ N (mD(t), covD(s, t)) (4.11)

where
mD(t) = m(t) + KT

t,tK
−1(y −m) (4.12)

and
covD(s, t) = cov(s, t)−KT

t,sK
−1Kt,t (4.13)

where Kt,t is a covariance vector between every training instant and t.
Equation 4.12 is the regression function while Equation 4.13 is the regression

confidence. Equations 4.12 and 4.13 are the central equations of Gaussian pro-
cesses for machine learning regression.
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Figure 4.2: Gaussian processes for machine learning regression with the Wiener
process as prior:(a) prior process mean (dashed), prior process two standard de-
viations band (gray) and the training set (circles); (b) regression function (dashed)
and two standard deviations regression confidence band (gray); (c) training set
simulated trajectory; (d) simulated Wiener process trajectories passing through
the training set.

Figure 4.2 shows an example of Gaussian processes for machine learning re-
gression using the Wiener process as the prior process and the set of 500 time
instants, uniformly distributed between zero and one, as the test set.

4.5 Browning bridge vectorial simulation

The vectorial simulation of Brownian bridge trajectories is as achieved by joining
Sections 4.3 and 4.4 .

Considering:

1. the Wiener process W with mean and covariance functions given by Equa-
tions 4.1 and 4.2;
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2. the training set with the single pair (t, y) = (1, 0) corresponding to the Brow-
nian bridge condition W (1) = 0;

3. the test vector t? = [t1, t2, . . . , tn]T where t1, t2, . . . , tn are the time instants
where to sample the Brownian bridge trajectory.

The Brownian bridge process B is Gaussian and the random vector B = B(t?)

is also Gaussian

B ∼ N (mD, covD) (4.14)

where mD is B mean vector and covD is B covariance matrix. The element i
of vector mD is given by

mDi = mD(ti) (4.15)

and the element i, j of matrix covD is given by

covDi,j = covD(ti, tj). (4.16)

Functions mD(ti) and covD(ti, tj) are those of Equations 4.1 and 4.2.
Therefore a Brownian bridge trajectory can be simulated as any other Gaus-

sian vector (Glasserman 2003), using:

B = mD + CZ (4.17)

where C is the Cholesky decomposition of covD and Z is a sample of the
Gaussian random vector N (0, I).

Figure 4.3 shows some Brownian bridge trajectories simulated with the vec-
torial Equation 4.17. The solid black one was simulated with the Gaussian in-
crements of Figure 4.1. Since Equation 4.17 is just a vectorial alternative to the
iterative procedure of section 4.3, the solid black trajectory is, as it would be ex-
pected, equal to the Brownian bridge trajectory of Figure 4.1.

4.6 Execution time comparison

In order to compare the execution times of the iterative Brownian bridge simu-
lation procedure of Section 4.3 and the vectorial procedure of Section 4.5, under
an interpreted language framework, we implemented both using the Mathemat-
ica 8 language (Wolfram Research 2011) and tested the two alternatives on two
different stages:
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Figure 4.3: Brownian bridge trajectories simulated with the vectorial Equation
4.17: (a) prior process mean (dashed), prior process two standard deviations band
(gray) and the training set (circle); (b) regression function (dashed) and two stan-
dard deviation regression confidence band (gray); (c) Brownian bridge simulated
trajectories.

Stage 1 Inspired by the order of magnitude of typical setups found in financial
markets, such as 250 daily prices per year, and stock indices with up to 500
stocks, we defined the reference task of generating 1000 Brownian bridges
sampled uniformly 1000 times. This would correspond to simulate 4 years,
of daily prices, of an index as bigger as twice the S&P500.

Stage 2 In order to evaluate the performance sensitivity to the task specification,
we varied both the number of samples per trajectory and the number of
trajectories.

Table 4.1 describes the execution system, the reference task and the execution
times obtained for both alternatives on Stage 1.

As it would be expected, the Brownian bridge vectorial simulation with the
Mathematica 8 language is faster than the iterative alternative. In the particular
case of the reference task, approximately 10 times faster. As mentioned before,
this is because vectorial operations are supported by built-in functions, which are
implemented by optimized machine code.

Tables 4.2 and 4.3 describe the execution times obtained for both alternatives
on Stage 2.
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(a) System

CPU Intel Core2 CPU 6300 1.86GHz
Memory 4GB

OS Linux x86 (32bit)
Language Mathematica 8.0.4.0

(b) Task

Simulation Brownian bridge trajectories
Number of trajectories 1000

Number of samples per trajectory 1000 (uniformly)

(c) Execution Times (in seconds)

Iterative 32.31
Vectorial 3.49

Table 4.1: Iterative and vectorial execution times comparison for the reference
task.

Number of Execution time (s) Improvement
samples Iterative Vectorial (times faster)

10 0.26 0.003 86.67
100 3.39 0.04 84.75

1000 32.42 3.93 8.25
10000 305.43 Out of Memory –

100000 2989.15 Out of Memory –

Table 4.2: 1000 trajectories execution time sensitivity to the number of samples.

Number of Execution time (s) Improvement
trajectories Iterative Vectorial (times faster)

10 0.29 3.32 11.45 (slower)
100 3.40 3.36 1.01

1000 32.24 3.91 8.24
10000 300.28 8.48 35.41

100000 2981.13 Out of Memory –

Table 4.3: 1000 samples per trajectory execution time sensitivity to the number of
trajectories.
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Table 4.2 shows, in a clear way, the main limitation of the vectorial simulation
procedure, which is memory space. Simulation of all trajectories at a time, using
Equation 4.17, requires memory space for the number-of-samples-by-number-of-
samples square matrix C and for the number-of-samples-by-number-of-trajectories
rectangular matrix Z. As the number of trajectories and the number of samples
per trajectory grow, the memory space becomes a severe limitation of the vecto-
rial simulation procedure.

Table 4.3 shows that, for a small number of trajectories (up to 100) with a rea-
sonable number of samples (1000), the vectorial simulation procedure is useless,
due to the overhead execution time for computing matrix C.

4.7 Extensions

It is clear by the Brownian bridge vectorial simulation construction that the sim-
ulation procedure can be naturally extended in the following 3 ways:

1. considering a condition different from W (1) = 0 (either in the time instant
and its value);

2. considering more than one condition (sequences of bridges);

3. considering other Gaussian processes besides the Wiener process (consider-
ing mean and covariance functions different from the Wiener process ones).

The first two ways were already illustrated by Figure 4.2(d), where there were
a total of four conditions, different from the Brownian bridge condition.

Regarding the third way, Figures 4.4, 4.5 and 4.6 illustrate the same example
of Figure 4.2, but now for geometric Brownian motion, fractional Brownian mo-
tion and Ornstein-Ulenbeck mean reversion process. We chose these processes
for their importance in modeling stock prices and interest rates. The simulation
procedure is the same as the one in the example of Figure 4.2, except that the
appropriate mean and covariance functions are used.

In the geometric Brownian motion case, the simulation was done for the un-
derlying log normal process, which is a Gaussian process with mean and covari-
ance functions given by:

m(t) =

(
µ− σ2

2

)
t (4.18)
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and

cov(s, t) = σ2 min(s, t) (4.19)

where µ is the drift and σ the volatility. The geometric Brownian motion trajec-
tories were obtained by taking the exponential of the log normal ones and multi-
plying by the process initial value x0. The values used in the simulation examples
of Figure 4.4 were: x0 = 0.5; µ = 1.0 and σ = 1.0.

In the fractional Brownian motion case the mean and covariance functions are
given by:

m(t) = 0 (4.20)

and

cov(s, t) =
1

2

(
|s|2H + |t|2H − |s− t|2H

)
(4.21)

where H is the Hurst index. The value used in the simulation examples of
Figure 4.5 was: H = 0.3.

In the Ornstein-Ulenbeck mean reversion process case, the mean and covari-
ance functions are given by:

m(t) = x0e
−kt + θ(1− e−kt) (4.22)

and

cov(s, t) =
σ2

2k
e−k(s+t)

(
e2kmin(s,t) − 1

)
(4.23)

where x0 is the process initial value, k is the mean reversion velocity, θ is
the mean reversion level and σ the volatility. The values used in the simulation
examples of Figure 4.6 were: x0 = 0.5; k = 2.0; θ = 0.1 and σ = 0.5.

4.8 Illustration

In this section we illustrate the great flexibility of the path dependent vectorial
simulation procedure by constructing a 2D Wiener process single path represen-
tation of a Norbert Wiener photo. The steps taken to construct the representation
are the following:

1. Choose a white background photo.
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Figure 4.4: Gaussian processes for machine learning regression with geometric
Brownian motion as prior: (a) prior process mean (dashed), prior process two
standard deviations band (gray) and the training set (circle); (b) regression func-
tion (dashed) and two standard deviation regression confidence band (gray); (c)
path dependent simulated trajectories (passing through the training set).
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Figure 4.5: Gaussian processes for machine learning regression with fractional
Brownian motion as prior: (a) prior process mean (dashed), prior process two
standard deviations band (gray) and the training set (circles); (b) regression func-
tion (dashed) and two standard deviation regression confidence band (gray); (c)
path dependent simulated trajectories (passing through the training set).
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Figure 4.6: Gaussian processes for machine learning regression with the Ornstein-
Ulenbeck mean reversion process as prior: (a) prior process mean (dashed), prior
process two standard deviations band (gray) and the training set (circles); (b)
regression function (dashed) and two standard deviation regression confidence
band (gray); (c) path dependent simulated trajectories (passing through the train-
ing set).
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2. Obtain a binarized with dithering version of the photo.

3. Obtain a possible sequence of nearest black pixels: starting at a random
black pixel, find its nearest black pixel neighbor; repeat the procedure from
the found neighbor, not considering the pixels already processed, until reach-
ing the last unprocessed pixel.

4. Consider the black pixels coordinates, x and y, as the conditioning con-
straints.

5. For the sequence of the x coordinate constraints, simulate a Wiener pro-
cess trajectory, by sampling uniformly 50 times each successive pair of con-
straints.

6. Repeat the previous step for the y coordinate (using increments indepen-
dent from those used for the x coordinate).

7. Plot the y coordinate trajectory as a function of the x coordinate trajectory.

Figure 4.7 shows the resulting image.

4.9 Conclusions

The contribution of the present paper is twofold:

1. It presents a vectorial alternative to the iterative simulation of Brownian
bridge trajectories, which is based on Gaussian processes for machine learn-
ing regression, and is relevant regarding the execution speed of interpreted
programming languages implementations. The main limitation of the pre-
sented alternative is memory space;

2. It extends in a natural way the vectorial simulation of path dependent tra-
jectories to other Gaussian processes, such as sequences of Brownian bridges,
geometric Brownian motion, fractional Brownian motion and Ornstein-Ulenbeck
mean reversion process.
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Figure 4.7: 2D Wiener process single path representation of a Norbert Wiener
photo.
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5
Bonds Historical Simulation Value at

Risk

5.1 Preamble

With the exception of this preamble and minor notation changes, this chapter
contains the paper Bonds Historical Simulation Value at Risk, joint work with Prof.
Manuel Esquível, Prof. Raquel Gaspar and Prof. P. Corte Real, which is submitted
for publication in the Journal of Banking and Finance, by Elsevier. The current
submission status is "under revision".

In several simulation situations spread across this thesis, in order to evaluate
the existence of numerical problems, we have scaled zero coupon bond prices by
using the implied yield at a certain time, to compute the bond price at another
time, assuming the bond was held to maturity (mark to model).

This scaling procedure proved to be an important tool in the context of histor-
ical simulation value at risk (VaR) for portfolios with bonds.

In a joint work with Prof. Manuel Esquível and Prof. Pedro Corte Real, we
have sold the authors wrights of an historical simulation value at risk implemen-
tation, for portfolios with bonds (among other securities), to a private bank, by
50.100,00 EUR. That implementation was based on this paper.

The main contributions of this paper are:
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5. BONDS V@R 5.2. Introduction

• Adjust bonds historical returns so that the adjusted returns can be used di-
rectly to compute VaR by historical simulation;

• Using real bond prices, to show that the developed method provides results
consistent with the usual market observed trend, in which shorter times
to maturity imply smaller yields, carrying smaller risk and consequently
having smaller VaR;

• Using real bond prices, to show that the developed method strongly pre-
serves the market implicit correlations between the instruments in the port-
folio.

Abstract

Bonds historical returns can not be used directly to compute Value at Risk (VaR)
by historical simulation because the maturities of the yields implied by the his-
torical prices are not the relevant maturities at time VaR is computed.

In this paper we adjust bonds historical returns so that the adjusted returns
can be used directly to compute VaR by historical simulation.

The adjustment is based on using implied historical yields to mark to model
the bonds at the times to maturity relevant for the VaR computation.

We show that the obtained VaR values agree with the usual market trend
of shorter times to maturity being traded with smaller yields, hence, carrying
smaller risk and consequently having a smaller VaR.

5.2 Introduction

Despite all criticisms (Pritsker 2006), historical simulation is by far the most pop-
ular VaR method (Pérignon and Smith 2010).

It is well known that VaR computation, by historical simulation, of bond port-
folios differs in important ways from VaR computation of stock portfolios (Darbha
2001). Essentially, this is because the maturities of the yields implied by bonds
historical prices are not the relevant maturities, at time VaR is computed. They
are greater than the relevant maturities because they correspond to historical past
times when the time to maturity was greater than it is when VaR is computed.
Since time to maturity is a critical factor of bonds risk, this moves away the possi-
bility of using bonds historical returns, directly in VaR computation by historical
simulation.
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The popular method to overcome this issue of cash flow mapping in risk
factors, besides ignoring the portfolio specific VaR, being subjective, complex
(Alexander 2009) and using lots of information sources, ruins the objectivity and
the simplicity of the historical simulation method.

In this paper we develop a method of adjusting bonds historical returns so
that they can be used directly in VaR computations by historical simulation.

The method is based on computing the returns of the prices obtained by mark-
ing to model the bonds at the times to maturity relevant for the VaR computation.
The historical prices implied yields are used as if the bonds were in a hold-to-
maturity portfolio.

We show that the developed method provides results consistent with the usual
market observed trend, in which shorter times to maturity imply smaller yields,
carrying smaller risk and consequently having smaller VaR. We also show that the
developed method strongly preserves the market implicit correlations between
the instruments in the portfolio.

5.3 Time to maturity adjusted bond returns

Consider the VaR computation at day nV aR, with time horizon N days, and con-
fidence level α percent, of a portfolio with an alive zero coupon bond with matu-
rity T > nV aR +N and principal P . See the time line in Exhibit 5.1 for a graphical
representation of these instants. Clearly, the relevant maturities for this VaR com-
putation are T − nV aR and T − (nV aR +N).

Following the general historical simulation1 method (J. C. Hull 2008), the bond’s
N days market observed historical returns should be used to compute VaR. De-
noting by p(n), the historical price of the bond, at day N < n < nV aR, and denot-
ing by HR(n,N) the N days historical return at day n, defined as in (J. C. Hull
2008), the N days possibly overlapping historical returns are given by:

HR(n,N) =
p(n)− p(n−N)

p(n−N)
+ 1

=
p(n)

p(n−N)
, n = N + 1, · · · , nV aR − 1 (5.1)

1VaR historical simulation method is referred by some authors as non-parametric VaR.
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1 n VaR n VaR + N Tn - N n

Historical prices

Time Hin daysL

VaR relevant maturities

Historical maturities

Figure 5.1: VaR computation time line. The gray zone represents the time inter-
val where there are historical prices available. The dashed part of the historical
maturities arrows means that those arrows can extend to all the gray zone.

These market observed historical returns should be applied to the bond mar-
ket value at day nV aR as follows:

p(nV aR)HR(n,N) = p(nV aR)
p(n)

p(n−N)
, n = N + 1, · · · , nV aR − 1 (5.2)

The resulting values define an empirical distribution of possible N days bond
profits and losses, at time nV aR. The VaR should be the potential loss of the 1 −
α/100 quantile of this empirical distribution.

But the historical price sequence p(n) for 1 ≤ n < nV aR, used in Equation (5.2),
implies a sequence of daily compounded yields2 r(n), given by:

r(n) =

(
P

p(n)

) 1
T−n

− 1 (5.3)

And the problem with this general approach is that the maturities of these
implied historical yields are T − n, which are greater than the relevant maturities
for the VaR computation (as can be observed in Exhibit 5.1). This is why the
bond’s historical returns can not be used directly in VaR computation.

Nevertheless, the implied historical yields, for times 1 ≤ n < nV aR, provide
bond valuation at future times nV aR and nV aR +N by marking to model the bond

2Daily compounding is used because typical VaR time horizons are specified in days.
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with constant daily yield, as if it was part of a held to maturity portfolio.
Denoting by v(m,n) the future value at time nV aR ≤ m < T of the bond,

bought at time 1 ≤ n < nV aR, at historical price p(n), v(m,n) is given by the
valuation of the future cash flow at maturity time, with daily compounded yield
r(n), implied by price p(n):

v(m,n) =
P

(1 + r(n))T−m
=

P(
P
p(n)

)T−m
T−n

(5.4)

The possibility of a default event is assumed to be implicitly incorporated in
the price p(n) itself.

In this paper we adjust the historical returns of Equation 5.1 in the following
way:

Step 1 for each historical price p(n), in Equation 5.1, we compute the correspond-
ing future value v(nV aR+N, n), at time nV aR+N , matching the VaR relevant
maturity T − (nV aR +N);

Step 2 for each historical price p(n − N), in Equation 5.1, we compute the cor-
responding future value v(nV aR, n − N), at time nV aR, matching the VaR
relevant maturity T − nV aR;

Step 3 we adjust each historical return, in Equation 5.1, for the VaR relevant ma-
turities by replacing p(n) by v(nV aR +N, n) and p(n−N) by v(nV aR, n−N).

Denoting by AHR(n,N, nV ar) the N days adjusted historical return, at day n,
adjusted for time nV ar, and using Equation 5.4, AHR(n,N, nV ar) is given by:

AHR(n,N, nV ar) =
v(nV aR +N, n)

v(nV aR, n−N)

=

(
P

p(n−N)

) T−nV aR
T−(n−N)

(
P
p(n)

)T−(nV aR+N)

T−n

, n = N + 1, · · · , nV aR − 1 (5.5)

Note that eachAHR(n,N, nV ar) value if fixed by historical market prices p(n−
N) and p(n), thus capturing the market changes between times n − N and n,
while being adjusted to the VaR computation relevant maturities T − nV aR and
T − (nV aR +N) thus avoiding the pull-to-par effect.
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Our proposal is to use the adjusted historical returnsAHR(n,N, nV ar) directly
in the VaR computation. Therefore the VaR is given by the potential loss of the 1−
α/100 quantile of the following time to maturity adjusted empirical distribution:

p(nV aR)

(
P

p(n−N)

) T−nV aR
T−(n−N)

(
P
p(n)

)T−(nV aR+N)

T−n

, n = N + 1, · · · , nV aR − 1 (5.6)

5.4 Extensions

In this section we discuss the usage of the proposed adjustment to other scenar-
ios beside computing the VaR of portfolios with zero coupon bonds at time the
historical sequence of prices ends.

5.4.1 Coupon bonds

The extension to portfolios with coupon bonds is straight forward. In order to
compute the future value of a coupon bond at time m, based on the market price
of the bond at time n < m, two differences from the zero coupon bond case arise:

1. the yield to maturity at time n is computed using the bond’s dirty price and
accounting for all future cash flows after time n;

2. the value of the bond at time m accounts for all future cash flows after time
m.

Then, the adjusted historical returns are defined by Equation (5.5) as in the
case of a zero coupon bond and the VaR is computed in the same way.

5.4.2 Adjusting for past times

Consider a bond B that has already expired. Consider also a new bond, B1, from
the same issuer, equal to bond B, i.e., with the same type, principal, maturity,
number of coupons and coupon rate (if applicable), etc. The VaR of a portfolio
containing bond B1 is to be computed by historical simulation at day nV aR = 1 of
bond’s B1 life. Suppose that the only historical prices available from bond’s B1

issuer are those of bond B.
In this limit situation, the VaR computation relevant maturities are T − 1 and

T − (1 +N), which, as can be observed in Exhibit 5.2, are greater than the maturi-
ties of the historical implied yields of bondB (with exception of the return at time
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n VaR=1 n VaR + N Tn - N n

Historical prices

Time Hin daysL

VaR relevant maturities

Historical maturities

Figure 5.2: VaR computation time line for nV aR = 1. The gray zone represents the
time interval where there are historical prices available. The dashed part of the
historical maturities arrows means that those arrows can extend to all the gray
zone.

N + 1 where the maturities are equal). Therefore, the adjustment of the historical
returns of bond B is now for past times, corresponding to greater maturities.

The adjustment method proposed in section 5.3 can still be applied in this
situation. In the computation of the v(nV aR +N, n), nV aR +N is now smaller than
n and in the computation of v(nV aR, n−N), nV aR is also smaller than n−N . But
the time to maturity adjustment works as in the case of the future times.

In the general situation of nV aR lying across the life of bond B1 the bond B

historical returns corresponding to maturities greater than the VaR relevant ma-
turities T − nV aR and T − (nV aR +N), will be adjusted for future times, while the
ones corresponding to maturities smaller than the VaR relevant maturities will
be adjusted for past times. This ensures the adjustment of all bond B historical
returns for the VaR relevant maturities.

5.5 Application

In this section we illustrate the usage of the bond adjusted historical returns of
Equation (5.5), by computing the VaR of the simplest possible portfolio, namely,
a portfolio with a unique real zero coupon bond. We use a sequence of real his-
torical prices of an alive zero coupon bond and compute the VaR at time the
historical prices sequence ends.
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5. BONDS V@R 5.5. Application

The VaR parameters used are:

Time horizon N = 30 days3;

Confidence level α = 99%.

We first present the used portfolio. Then we detail the adjustment of a single
historical return for purposes of illustrating the adjustment process. Finally, we
adjust all the available historical returns and compute the VaR.

Additionally we illustrate the adjustment for past values by computing the
VaR at the time the historical prices sequence begins. As if the used bond was
already expired and the VaR of a portfolio with a new bond, from the same issuer,
equal to the expired one, was to be computed at the starting time of the new bond.

5.5.1 Portfolio

The portfolio used for VaR computation has a single instrument: the real alive
zero coupon bond, B, with principal P = 1000, maturing at day T = 731. Exhibit
5.3 shows the available real historical prices at day VaR is computed, nV aR =

372. The prices were obtained from a quote service that delivers market prices
aggregated from different dealers responsible for trading (market makers) this
particular bond.

The prices in Exhibit 5.3 imply the market observed yields presented in Ex-
hibit 5.4. Recall from Exhibit 5.4 that each day corresponds to a different time to
maturity.

Exhibit 5.4 clearly shows the usual trend observed in the market, in which
shorter time to maturities are traded with smaller yields.

5.5.2 Adjustment of a single return

In order to illustrate the historical returns adjustment process, in this section, the
computations of a single return are detailed. We picked a bond’s B, N = 30

days, historical return approximately in the middle of the sequence of available
historical prices. The historical return picked was the one at day n = 190, which,
according to Equation 5.1, is determined by the historical prices p(n) = p(190)

and p(n − N) = p(190 − 30) = p(160). Exhibit 5.5 shows the maturities of the
corresponding implied yields as well as the maturities at time VaR is computed.

3We use a time horizon of 30 days instead of other typical values, such as 1 or 10 days, because
the difference between computation steps 1 and 2 becomes much more clear graphically.
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Figure 5.3: Real historical prices of a zero coupon bond with principal P = 1000
maturing at day T = 731. The prices are in percentage of the principal.
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Figure 5.4: Daily compounded annualized implied yields from the historical
prices of Exhibit 5.3, as a function of both time and time to maturity.
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5. BONDS V@R 5.5. Application

(a) Historical Return Maturities
Day Days to Maturity

n = 190 T − n = 731− 190 = 541
n−N = 190− 30 = 160 T − (n−N) = 731− 160 = 571

(b) VaR Relevant Maturities
Day Days to Maturity

nV aR = 372 T − nV aR = 731− 372 = 359
nV aR +N = 372 + 30 = 402 T − (nV aR +N) = 731− 402 = 329

Figure 5.5: (a) HR(n = 190, N = 30) historical return maturities. (b) VaR com-
puted at time nV aR = 372 relevant maturities.

Comparing Exhibit 5.5 (a) and (b), it is clear that the historical return underly-
ing maturities are greater than the VaR relevant maturities.

The adjustment of the historical return at day n = 190, with Equation 5.5,
matching the VaR relevant maturities, is detailed in Exhibit 5.6.

The prices that determine this historical return are highlighted in Exhibit 5.7
with the circles. The corresponding future values, used to compute the adjusted
return, are highlighted with the squares.

As it can be observed from Exhibit 5.6 the adjusted return is closer to one than
the historical return. This is in accordance with the trend observed in Exhibit 5.4.
Once the yields of shorter times to maturity tend to be smaller, the returns at time
to maturity T − (nV aR + N) = 372 + 30 = 329 should be closer to one (smaller)
than those at time to maturity 541.

5.5.3 Portfolio VaR

The N = 30 time horizon, α = 99% confidence level, VaR, of the described portfo-
lio, is computed at day nV aR = 372 using the empirical distribution of the N = 30

adjusted returns of Equation (5.5). In order to obtain this distribution the ad-
justment of the single return detailed in the previous section is repeated for all
available historical returns, following the steps described in section 5.3.

Step 1 Exhibit 5.8 shows the future value v(nV aR +N, n), at time nV aR +N = 402,
given each historical price p(n) for N = 30 < n < nV aR(= 372), matching
the VaR relevant maturity T − (nV aR +N) = 329;

Step 2 Exhibit 5.9 shows the future value v(nV aR, n − N), at time nV aR = 372,
given each historical price p(n) for 1 < n < nV aR −N(= 342), matching the
VaR relevant maturity T − nV aR = 359;
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(a) Historical Return
Day Price Day-Time Horizon Price Return
n p(n) n−N p(n−N) HR(n,N) = p(n)

p(n−N)

190 95.03 160 94.75 1.00296

(b) Step 1
Day Price Yield (%) Future Day Future Value
n p(n) r(n) nV aR +N v(nV aR +N, n)

190 95.03 3.499 402 96.947

(c) Step 2
Day Price Yield (%) Future Day Future Value
n−N p(n−N) r(n−N) nV aR v(nV aR, n−N)

160 94.75 3.507 372 96.666

(d) Step 3
v(nV aR +N, n) v(nV aR, n−N) AHR(n,N, nV ar) = v(nV aR+N,n)

v(nV aR,n−N)

96.947 96.666 1.00291

Figure 5.6: (a) N = 30 days market observed historical return at day n = 190.
(b) Day n = 190 implied yield and future value at time nV aR + N = 402. (c) Day
n = 160 implied yield and future value at time nV aR = 372. (d) The adjusted
historical return for time nV aR = 372.
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Figure 5.7: The prices that determine the N = 30 days historical return at time
n = 190, the corresponding future prices at times nV aR = 372 and nV aR+N = 402,
along with the historical prices sequence. The arrows represent future values.
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Figure 5.8: Step 1 – Future values v(nV aR + N, n) at time nV aR + N = 402, along
with the historical prices sequence.
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Figure 5.9: Step 2 – Future values v(nV aR, n −N) at time nV aR = 372, along with
historical prices sequence.
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Figure 5.10: Future values v(m,n), at times m = nV aR + N = 402 (Step 1) and
m = nV aR = 372 (Step 2), along with the historical prices sequence. The future
values are plotted as a function of the time n, of the historical price p(n), that fixed
the future value.

For purposes of comparison, Exhibit 5.10 shows the real, market observed
historical prices, and also, the corresponding future values, v(m,n) of Equation
(5.4), at days m = 402 (Step 1) and m = 372 (Step 2). In this figure, the future
values are plotted as a function of the day n of the historical price p(n) which fixes
the future value v(m,n). The values highlighted in Exhibit 5.7 with the circles and
squares are highlighted again in Exhibit 5.10, but now plotted as a function of n,
too.

Step 3 Exhibit 5.11 shows the sequence of the adjusted historical returns for nV aR =

372, computed from the future values of Steps 1 and 2, and the historical re-
turns sequence for purposes of comparison.

Exhibit 5.12 shows the histograms of the adjusted and historical returns of
Exhibit 5.11.

Finally, Exhibit 5.13 shows the VaR value computed from the empirical dis-
tribution of the overlapping adjusted returns of Equation (5.6), along with the
possible loss corresponding to 1 − α/100 quantile of the overlapping historical
returns empirical distribution of Equation (5.2), for comparison purposes. It also
shows the correlation coefficient between the original and the adjusted returns.

Exhibit 5.11 shows that the adjusted returns are closer to one (are smaller) than
the historical ones. This can be observed again in Exhibit 5.12 where the adjusted
returns histogram is more concentrated towards one than the historical returns
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Figure 5.11: Step 3 – Sequence of adjusted historical returns for nV aR = 372 along
with the corresponding historical returns sequence.
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Figure 5.12: Adjusted returns for nV aR = 372 and the historical returns his-
tograms.

Time horizon Confidence level VaR Possible Loss Correlation
N = 30 α = 99% −1.222 % −2.147 % 0.988

Figure 5.13: Time horizon N = 30, confidence level α = 99%, bond B VaR, com-
puted at day nV aR = 372 by historical simulation using adjusted historical re-
turns.
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Figure 5.14: Step 1 – Past values v(nV aR+N, n) at time nV aR+N = 31, along with
the historical prices sequence.

histogram. This results in a VaR value smaller than the possible loss correspond-
ing to the 1 − α/100 quantile of the historical returns empirical distribution (see
Exhibit 5.13). Again, this result conforms with Exhibit 5.4 which shows a clear
decreasing trend in implied yields as time to maturity decreases.

5.5.4 Adjusting for past times

In this section we repeat the VaR computation of the previous section, for nV aR =

1, as if the bond B was already expired, a new bond B1 equal to bond B was
issued by the same issuer, the VaR of a portfolio with bondB1 was to be computed
by historical simulation and the only historical prices available from the bonds
issuer were those of bond B, presented in Exhibit 5.3.

Following section 5.4.2 the past values, v(m,n), of Equation (5.4), with m =

1 ≤ n, are used to compute the adjusted historical returns of Equation (5.5) and
the VaR is computed from the resulting empirical distribution.

Exhibits 5.14 to 5.18 illustrate the VaR computations and Exhibit 5.19 presents
the results.

It can be observed from Exhibit 5.18 that the adjusted returns are now less
concentrated towards one than the historical returns. This results in a VaR value,
showed in Exhibit 5.19, which is now greater than the possible loss corresponding
to the 1 − α/100 quantile of the historical returns empirical distribution. Again,
this is in accordance with Exhibit 5.4 and the fact that VaR relevant maturities

75



5. BONDS V@R 5.5. Application

0 50 100 150 200 250 300 350

88

90

92

94

96

98

Day

P
ri
c
e
H%
L

Historical p rices

Day 190 retu rn p rices

Past p rices at d ays 1 and 31

Past p rices at d ay 1

Figure 5.15: Step 2 – Past values v(nV aR, n − N) at time nV aR = 1, along with
historical prices sequence.
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Figure 5.16: Past values v(m,n), at times m = nV aR + N = 31 (Step 1) and m =
nV aR = 1 (Step 2), along with the historical prices sequence. The past values are
plotted as a function of the time n, of the historical price p(n), that fixed the past
value.
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Figure 5.17: Step 3 – Sequence of adjusted historical returns for nV aR = 1 along
with the corresponding historical returns sequence.
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Figure 5.18: Adjusted returns for nV aR = 1 and the historical returns histograms.

Time horizon Confidence level VaR Possible Loss Correlation
N = 30 α = 99% −2.791 % −2.147 % 0.980

Figure 5.19: Time horizon N = 30, confidence level α = 99%, bond B VaR, com-
puted at day nV aR = 1 by historical simulation using adjusted historical returns.
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are now greater then the times to maturity underlying the available historical
returns4.

5.6 Conclusions

Bond historical returns can not be used directly to compute VaR by historical
simulation because the maturities of the yields implied by the historical prices
are not the relevant maturities at time VaR is computed.

In this paper we adjust bonds historical returns to the VaR relevant maturities
so that the adjusted returns can be used directly to compute VaR by historical sim-
ulation while preserving the market conditions underlying the historical prices
sequences. The adjustment is based on using implied historical yields to mark to
model the bonds at the times to maturity relevant for the VaR computation.

The proposed method has the following features:

• Time to maturity adjusted bond returns are used directly in the VaR histor-
ical simulation computation.

• VaR of portfolios with bonds can be computed by historical simulation keep-
ing the simplicity of the historical simulation method.

• Portfolio’s specific VaR are obtained.

• VaR values obtained are consistent with the usual market trend of shorter
times to maturity being traded with smaller yields, therefore carrying smaller
risk and having a smaller VaR.

• The only source of information used is the market, through the bonds his-
torical prices.

• The correlation between each bond returns and the returns of the other in-
struments in the portfolio is strongly preserved.

• The VaR for the desired time horizon is computed directly with no VaR time
scaling approximations.

We left for future work the research of the non-linear mathematical proper-
ties of the developed method, and also back-testing the method with benchmark
portfolios.

4With the exception of the single historical return at time n = 31, where the maturities are
equal.

78



Part II

Unsubmitted Papers

79



6
Machine Learning Gaussian Short

Rate

6.1 Preamble

Using a single Vasicek short rate factor, under the risk neutral measure, the ma-
chine learning Gaussian short rate model can’t solve the term structure fitting
issue mentioned in Section 1.2. In this paper a sum of Vasicek short rate factors is
proposed in order to solve that problem.

The main contributions of this paper are:

• Propose a sum of Vasicek short rate factors, under the risk neutral measure,
as a prior to Gaussian processes for machine learning regression;

• Obtain the zero coupon bond mean and covariance functions of the prior.

Abstract

In this paper we model the short rate, under the risk neutral measure, as a Gaus-
sian process conditioned by the logarithm of market observed zero coupon bonds
prices. The model is based on Gaussian processes for machine learning, using N
addictive Vasicek factors as prior.
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The model automatically fits all observed zero coupon bond log prices, in
particular those which define the current term structure of interest rates.

The number of factors needed is equal to the maximum number of zero coupon
bonds maturities, observed in a single time instant.

All model parameters are learned directly under the risk neutral measure,
using zero coupon bonds log prices, exclusively.

6.2 Introduction

The one factor machine learning Gaussian short rate model presented in (Sousa,
Esquível, and Gaspar 2013) has the limitation of supporting a single T -maturity
zero coupon bond log price in each time instant. Consequently it can not fit the
current term structures of interest rates, observed in the market.

In this paper we extend the one factor machine learning Gaussian short rate
model, considering a sum of N Vasicek factors as prior. The extended model
supports a maximum of N distinct zero coupon bond prices in each time instant.
Therefore it can fit the current term structures of interest rates observed in the
market.

All the model parameters are obtained directly under the risk neutral model
through maximization of the likelihood of market observed zero coupon bond log
prices given the parameters. Besides zero coupon bond prices, no other sources
of information are needed.

6.3 Short rate prior

The short rate prior, r(t), is a sum of N Vasicek factors, under the arbitrage free
risk neutral measure:

r(t) =
N∑
j=1

rj(t) (6.1)

Each Vasicek factor rj(t) follows an Ornstein-Uhlenbeck mean-reverting pro-
cess, under the risk neutral measure, defined by the stochastic differential equa-
tion (SDE):

drj(t) = kj(θj − rj(t))dt+ σjdWj(t). (6.2)

For each factor j, parameter kj is the mean reversion velocity, θj is the mean
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6. MACHINE LEARNING GAUSSIAN SHORT RATE 6.3. Short rate prior

interest rate level, σj is the volatility and Wj(t) the Wiener process. Parameters kj
and σj are positive.

The factors Wiener processes Wj(t) are correlated with correlation coefficient
ρij :

ρijdt = dWi(t)dWj(t). (6.3)

Parameters ρij are −1 < ρij < 1.
Since, for 0 < s < t, the SDE solution of Equation 6.2 is:

rj(t) = rj(s)e
−kj(t−s) + θj(1− e−kj(t−s)) + σje

−kjt
∫ t

s

ekjudWj(u) (6.4)

the short rate is given by:

r(t) =
N∑
j=1

(
rj(s)e

−kj(t−s) + θj(1− e−kj(t−s)) + σje
−kjt

∫ t

s

ekjudWj(u)

)
(6.5)

6.3.1 Short rate prior mean

Each factor mean, mrj(t), is given by:

mrj(t) = E[rj(t)] = E

[
rj(s)e

−kj(t−s) + θj(1− e−kj(t−s)) + σje
−kjt

∫ t

s

ekjudWj(u)

]
rj(s)e

−kj(t−s) + θj(1− e−kj(t−s)) + σje
−kjtE

[∫ t

s

ekjudWj(u)

]
= rj(s)e

−kj(t−s) + θj(1− e−kj(t−s)). (6.6)

Therefore the short rate mean, mr(t), is given by

mr(t) = E [r(t)] = E

[
N∑
j=1

rj(t)

]
=

N∑
j=1

E [rj(t)]

=
N∑
j=1

mrj(t)

=
N∑
j=1

(
rj(s)e

−kj(t−s) + θj(1− e−kj(t−s))
)

(6.7)
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6.3.2 Short rate prior covariance

Each factor covariance, covrj(t1, t2), is, by definition:

covrj(t1, t2) = E[(rj(t1)−mrj(t1))(rj(t2)−mrj(t2))].

The term (rj(t)−mrj(t)) is given by

rj(t)−mrj(t) = σje
−kjt

∫ t

s

ekjudWj(u).

Therefore each factor covariance is given by

covrj(t1, t2) = E

[(
σje
−kjt1

∫ t1

s

ekjudWj(u)

)(
σje
−kjt2

∫ t2

s

ekjudWj(u)

)]
= σ2

j e
−kj(t1+t2)E

[(∫ t1

s

ekjudWj(u)

)(∫ t2

s

ekjudWj(u)

)]

= σ2
j e
−kj(t1+t2)E

(∫ min(t1,t2)

s

ekjudWj(u)

)2


= σ2
j e
−kj(t1+t2)

∫ min(t1,t2)

s

E
[(
ekju

)2
]

du

= σ2
j e
−kj(t1+t2)

∫ min(t1,t2)

s

e2kjudu

= σ2
j e
−kj(t1+t2) 1

2kj

(
e2kj min(t1,t2) − e2kjs

)
(6.8)

The short rate covariance, covr(t1, t2), is, by definition:

covr(t1, t2) = E[(r(t1)−mr(t1))(r(t2)−mr(t2))].

The term (r(t)−mr(t)) is given by

r(t)−mr(t) =
N∑
j=1

(
σje
−kjt

∫ t

s

ekjudWj(u)

)
.

The short rate covariance is given by
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covr(t1, t2)

= E

[(
N∑
j=1

(
σje
−kjt1

∫ t1

s

ekjudWj(u)

))( N∑
j=1

(
σje
−kjt2

∫ t2

s

ekjudWj(u)

))]

=
N∑
j=1

covrj(t1, t2) +
N∑
i=1

N∑
j=i+1

(
covri,rj(t1, t2) + covrj ,ri(t1, t2)

)
(6.9)

where covri,rj(t1, t2) is the covariance between factors ri and rj .
The covariance covri,rj(t1, t2) is given by:

covri,rj(t1, t2)

= E

[(
σie
−kit1

∫ t1

s

ekiudWi(u)

)(
σje
−kjt2

∫ t2

s

ekjudWj(u)

)]
= σiσje

−kit1−kjt2E

[(∫ min(t1,t2)

s

ekiudWi(u)

)(∫ min(t1,t2)

s

ekjudWj(u)

)]

= σiσje
−kit1−kjt2

∫ min(t1,t2)

s

e(ki+kj)uρijdu

= ρij
σiσje

−kit1−kjt2

ki + kj

(
e(ki+kj) min(t1,t2) − e(ki+kj)s

)
(6.10)

Finally,

covr(t1, t2)

=
N∑
j=1

σ2
j e
−kj(t1+t2) 1

2kj

(
e2kj min(t1,t2) − e2kjs

)
+

N∑
i=1

N∑
j=i+1

(
ρij
σiσje

−kit1−kjt2

ki + kj

(
e(ki+kj) min(t1,t2) − e(ki+kj)s

)
+ ρji

σjσie
−kjt1−kit2

kj + ki

(
e(kj+ki) min(t1,t2) − e(kj+ki)s

))
=

N∑
j=1

σ2
j e
−kj(t1+t2) 1

2kj

(
e2kj min(t1,t2) − e2kjs

)
+

N∑
i=1

N∑
j=i+1

ρij
σiσj
ki + kj

(
e(ki+kj) min(t1,t2) − e(ki+kj)s

) (
e−kit1−kjt2 + e−kjt1−kit2

)
(6.11)
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6.4 Zero coupon bond prices prior

Under the risk neutral measure, the price, at time t, of a zero coupon bond that
pays 1 at maturity T , is given by

p(t, T ) = E
[
e−

∫ T
t r(u)du

]
, (6.12)

where the expectation E is to be taken under the risk neutral measure Q.
Since r(t) is a Gaussian process and that

∫ T
t
r(u)du is also a Gaussian process,

the bond prices are the expected value of the exponential of a Gaussian random
variable.

It is known that if

X ∼ N (m, v2)

then

E
[
eX
]

= em+ 1
2
v2

Therefore, in order to get the bond prices we need to compute the mean,mx(t),
and variance, varx(t) of

x(t) = −
∫ T

t

r(u)du

6.4.1 x(t) mean

The mean, mx(t), is given by

mx(t) = E[x(t)] = E

[
−
∫ T

t

r(u)du

]
= E

[
−
∫ T

t

N∑
j=1

rj(u)du

]

= −
N∑
j=1

∫ T

t

E [rj(u)] du

=
N∑
j=1

−
∫ T

t

mrj(u)du

Denoting by mxj(t) the integral of factor j mean
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mxj(t) = −
∫ T

t

mrj(u)du

= −
∫ T

t

(
rj(t)e

−kj(u−t) + θj(1− e−kj(u−t))
)

du

= −rj(t)
1

kj

(
1− e−kj(T−t)

)
− θj(T − t) + θj

1

kj

(
1− e−kj(T−t)

)
Finally

mx(t) =
N∑
j=1

(
−rj(t)

1

kj

(
1− e−kj(T−t)

)
−θj(T − t) + θj

1

kj

(
1− e−kj(T−t)

))
(6.13)

6.4.2 x(t) variance

The variance varx(t) is, by definition

varx(t) = E
[
(x(t)−mx(t))

2]
The term (x(t)−mx(t)) is given by

x(t)−mx(t)

= −
∫ T

t

r(u)du− E
[
−
∫ T

t

r(u)du

]
= −

∫ T

t

r(u)du−
∫ T

t

−E [r(u)] du

= −
∫ T

t

r(u)−mr(u)du

= −
∫ T

t

(
N∑
j=1

σje
−kju

∫ u

t

ekjsdWj(s)

)
du

The variance of x(t) is given by
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varx(t) = E
[
(x(t)−mx(t))

2]
= E

(−∫ T

t

(
N∑
j=1

σje
−kju

∫ u

t

ekjsdWj(s)

)
du

)2


= E

[(
−
∫ T

t

(
N∑
j=1

σje
−kju

∫ u

t

ekjsdWj(s)

)
du

)
(
−
∫ T

t

(
N∑
j=1

σje
−kjv

∫ v

t

ekjsdWj(s)

)
dv

)]

=

∫ T

t

∫ T

t

E

[(
N∑
j=1

σje
−kju

∫ u

t

ekjsdWj(s)

)
(

N∑
j=1

σje
−kjv

∫ v

t

ekjsdWj(s)

)]
dudv

=

∫ T

t

∫ T

t

covr(u, v)dudv

=

∫ T

t

∫ T

t

(
N∑
j=1

covrj(u, v) +
N∑
i=1

N∑
j=i+1

(
covri,rj(u, v) + covrj ,ri(u, v)

))
dudv

=
N∑
j=1

∫ T

t

∫ T

t

covrj(u, v)dudv

+
N∑
i=1

N∑
j=i+1

∫ T

t

∫ T

t

covri,rj(u, v) + covrj ,ri(u, v)dudv (6.14)

According to the one factor model, the first sum in the previous equations is
given by:

N∑
j=1

∫ T

t

∫ T

t

covrj(u, v)dudv

=
N∑
j=1

(
σ2
j

2k3
j

(
2kj(T − t) + 4e−kj(T−t) − e−2kj(T−t) − 3

))
(6.15)

The covariance covri,rj(u, v), in Equation 6.14, is a function of min(u, v). In
order compute the double integral, we first split the inner integral in the intervals
from t to v, and from v to T . In the first interval we have min(u, v) = u while in
the second min(u, v) = v. A similar step is taken in the one factor model, in order
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to compute the double integral over covrj(u, v).

∫ T

t

∫ T

t

covri,rj(u, v) + covrj ,ri(u, v)dudv

=

∫ T

t

∫ v

t

covri,rj(u, v) + covrj ,ri(u, v)dudv

+

∫ T

t

∫ T

v

covri,rj(u, v) + covrj ,ri(u, v)dudv

=

∫ T

t

∫ v

t

ρij
σiσj
ki + kj

(
e(ki+kj) min(u,v) − e(ki+kj)t

) (
e−kiu−kjv + e−kju−kiv

)
dudv

+

∫ T

t

∫ T

v

ρij
σiσj
ki + kj

(
e(ki+kj) min(u,v) − e(ki+kj)t

) (
e−kiu−kjv + e−kju−kiv

)
dudv

=

∫ T

t

∫ v

t

ρij
σiσj
ki + kj

(
e(ki+kj)u − e(ki+kj)t

) (
e−kiu−kjv + e−kju−kiv

)
dudv

+

∫ T

t

∫ T

v

ρij
σiσj
ki + kj

(
e(ki+kj)v − e(ki+kj)t

) (
e−kiu−kjv + e−kju−kiv

)
dudv

=
2ρijσiσje

−(ki+kj)(t+3T )

k2
i k

2
j (ki + kj)

(
−e(ki+kj)(t+3T )

(
k2
i (kjt− kjT + 1) + kikj(kjt− kjT + 1) + k2

j

)
+kikj

(
−e2(ki+kj)(t+T )

)
+ kj(ki + kj)e

2ki(t+T )+kj(t+3T ) + ki(ki + kj)e
ki(t+3T )+2kj(t+T )

)
(6.16)

Therefore:

N∑
i=1

N∑
j=i+1

∫ T

t

∫ T

t

covri,rj(u, v) + covrj ,ri(u, v)dudv

=
N∑
i=1

N∑
j=i+1

2ρijσiσje
−(ki+kj)(t+3T )

k2
i k

2
j (ki + kj)(

−e(ki+kj)(t+3T )
(
k2
i (kjt− kjT + 1) + kikj(kjt− kjT + 1) + k2

j

)
+kikj

(
−e2(ki+kj)(t+T )

)
+ kj(ki + kj)e

2ki(t+T )+kj(t+3T ) + ki(ki + kj)e
ki(t+3T )+2kj(t+T )

)
(6.17)

Finally
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varx(t)

=
N∑
j=1

(
σ2
j

2k3
j

(
2kj(T − t) + 4e−kj(T−t) − e−2kj(T−t) − 3

))

+
N∑
i=1

N∑
j=i+1

(
2ρijσiσje

−(ki+kj)(t+3T )

k2
i k

2
j (ki + kj)(

−e(ki+kj)(t+3T )
(
k2
i (kjt− kjT + 1) + kikj(kjt− kjT + 1) + k2

j

)
+kikj

(
−e2(ki+kj)(t+T )

)
+ kj(ki + kj)e

2ki(t+T )+kj(t+3T ) + ki(ki + kj)e
ki(t+3T )+2kj(t+T )

))
(6.18)

Given Equations 6.4, 6.13 and 6.18:

p(t, T ) = e
∑N
j=1 Aj(t,T )−

∑N
j=1Bj(t,T )rj(t)+

∑N
i=1

∑N
j=i+1 Cij(t,T ) (6.19)

where

Bj(t, T ) =
1

kj

(
1− e−kj(T−t)

)
(6.20)

and

Aj(t, T ) =

(
θj −

σ2
j

2k2
j

)
(Bj(t, T )− T + t)−

σ2
j

4kj
B2
j (t, T ) (6.21)

and

Cij(t, T )

=
ρijσiσje

−(ki+kj)(t+3T )

k2
i k

2
j (ki + kj)

(
−e(ki+kj)(t+3T )

(
k2
i (kjt− kjT + 1) + kikj(kjt− kjT + 1) + k2

j

)
+kikj

(
−e2(ki+kj)(t+T )

)
+ kj(ki + kj)e

2ki(t+T )+kj(t+3T ) + ki(ki + kj)e
ki(t+3T )+2kj(t+T )

)
(6.22)

It is clear from Equation 6.19 that the model has an affine term structure and
that the logarithm of the zero coupon bonds prices is a Gaussian process.
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6.4.3 Zero coupon bond log prices prior mean

The logarithm of zero coupons bonds prices is given by

log p(t, T ) =
N∑
j=1

Aj(t, T )−
N∑
j=1

Bj(t, T )rj(t) +
N∑
i=1

N∑
j=i+1

Cij(t, T ) (6.23)

The mean function, mp(t, T ), of log p(t, T ) is given by

mp(t, T ) = E[log p(t, T )]

= E

[
N∑
j=1

Aj(t, T )−
N∑
j=1

Bj(t, T )rj(t) +
N∑
i=1

N∑
j=i+1

Cij(t, T )

]

=
N∑
j=1

Aj(t, T )−
N∑
j=1

Bj(t, T )E [rj(t)] +
N∑
i=1

N∑
j=i+1

Cij(t, T )

=
N∑
j=1

Aj(t, T )−
N∑
j=1

Bj(t, T )mrj(t) +
N∑
i=1

N∑
j=i+1

Cij(t, T )

6.4.4 Zero coupon bond log prices prior covariance

The covariance function, cov(t1, T1, t2, T2), of log p(t, T ) is, by definition

cov(t1, T1, t2, T2)

= E [(log p(t1, T1)−mp(t1, T1)) (log p(t2, T2)−mp(t2, T2))] (6.24)

The term log p(t, T )−mp(t, T ) is given by

log p(t, T )−mp(t, T )

=
N∑
j=1

Aj(t, T )−
N∑
j=1

Bj(t, T )rj(t) +
N∑
i=1

N∑
j=i+1

Cij(t, T )

−
N∑
j=1

Aj(t, T ) +
N∑
j=1

Bj(t, T )mrj(t)−
N∑
i=1

N∑
j=i+1

Cij(t, T )

= −
N∑
j=1

Bj(t, T )(rj(t)−mrj(t)) (6.25)

90



6. MACHINE LEARNING GAUSSIAN SHORT RATE 6.5. Machine learning Gaussian short rate

Therefore

cov(t1, T1, t2, T2)

= E

[(
−

N∑
j=1

Bj(t1, T1)(rj(t1)−mrj(t1))

)
(
−

N∑
j=1

Bj(t2, T2)(rj(t2)−mrj(t2))

)]

= E

[
N∑
i=1

N∑
j=1

Bi(t1, T1)Bj(t2, T2)(ri(t1)−mri(t1))(rj(t2)−mrj(t2))

]

=
N∑
i=1

N∑
j=1

Bi(t1, T1)Bj(t2, T2)E
[
(ri(t1)−mri(t1))(rj(t2)−mrj(t2))

]
=

N∑
i=1

N∑
j=1

Bi(t1, T1)Bj(t2, T2)covri,rj(t1, t2) (6.26)

In matrix terms, given vectors BN(t1, T1), BN(t2, T2), and matrix MN(t1, t2)

BN(t1, T1) = [B1(t1, T1) B2(t1, T1) · · · BN(t1, T1)] (6.27)

BN(t2, T2) = [B1(t2, T2) B2(t2, T2) · · · BN(t2, T2)]> (6.28)

MN(t1, t2) =


covr1,r1(t1, t2) covr1,r2(t1, t2) · · · covr1,rN (t1, t2)

covr2,r1(t1, t2) covr2,r2(t1, t2) · · · covr2,rN (t1, t2)
...

... . . . ...
covrN ,r1(t1, t2) covrN ,r2(t1, t2) · · · covrN ,rN (t1, t2)

 (6.29)

the covariance function is given by

cov(t1, T1, t2, T2) = BN(t1, T1)MN(t1, t2)BN(t2, T2) (6.30)

6.5 Machine learning Gaussian short rate

As in (Sousa, Esquível, and Gaspar 2013), let:

• x = [t T ]>;
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• y = log p(x) = log p(t, T );

• mp(x) = mp(t, T );

• covp(xi,xj) = covp(ti, Ti, tj, Tj);

• matrix X collects a set of vectors x� where the values of zero coupon log
prices were observed;

• vector y collects the corresponding values y� = log p(x�).

The machine learning Gaussian short rate is the Gaussian short rate process,
rD(t), underlying the zero coupon bond prices

pD(t, T ) = E
[
e−

∫ T
t rD(u)du

]
(6.31)

where log pD(t, T ) = log pD(x) is the conditioned on zero coupon bonds log
prices Gaussian process

log pD(x) ∼ GP (mpD(x), covpD(xi,xj)) . (6.32)

Functions mpD(x) and covpD(xi,xj) are given by

mpD(x) = mp(x) + K>X,xK
−1(y −m) (6.33)

and

covpD(xi,xj) = covp(xi,xj)−K>X,xiK
−1KX,xj (6.34)

where

• mp(x) is given by Equation 6.24.

• covp(xi,xj) is given by Equation 6.26.

• m is the prior mean on the training set. It results from applying mp(x) func-
tion (Equation 3.16) on all X collected vectors;

• K is the prior covariance matrix on the training set. It results from applying
covp(xi,xj) function (Equation 3.18) on all pairs of X collected vectors;

• KX,x is the prior covariance between every vector in the training set and
x. It results from applying covp(xi,xj) function (Equation 3.18) on all pairs
composed by each X collected vector, and the x vector.
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6.6 Conclusions

In this paper we extend the one factor machine learning Gaussian short rate
model by considering a sum of N Vasicek factors as prior. The prior zero coupon
bond log prices mean and covariance functions are obtained.

The extended model supports a maximum of N distinct zero coupon bond
prices in each time instant. Therefore it can fit the current term structures of
interest rates, observed in the market. We show, using simulated data, calibration
examples of term structures with distinct shapes.

All the model parameters are obtained directly under the risk neutral model
by maximizing the likelihood of market observed zero coupon bond log prices
given the parameters. Besides zero coupon bond prices, no other sources of in-
formation are needed.
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7
Interest Rate Market Changes

Detection

7.1 Preamble

A common problem that arises in mathematical finance when using models with
parameters estimated from market data, available until a certain time, is that of
checking the necessity of using new parameters as newer data become available.

In this paper we use a covariance matrix statistical test to evaluate the neces-
sity of using new parameters of a machine learning Gaussian short rate model of
the Euribor, as newer data become available. Whenever we detect such necessity,
we say that the market conditions have changed.

The main contributions of this paper are:

• Obtain the likelihood ratio criterion to test if a covariance matrix, Σ , is equal
to a given matrix, Σ0, as a decomposition of simpler tests.

• Propose a machine learning Gaussian short rate model with Vasicek short
rate noise in the observations.

• Using real data, model the Euribor with the proposed model and apply the
changes detection procedure to the credit crisis years of 2007 and 2008.
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Abstract

In this paper we check for interest rate market changes, using the distribution of
the likelihood ratio criterion, to test if a covariance matrix, Σ , is equal to a given
matrix, Σ0.

We start by transforming the original test into the equivalent test Σ = I . Then,
the test Σ = I is decomposed into two conditional independent tests, namely, the
sphericity test Σ = σ2I , and the test σ2 = 1, given that the data are spherical. The
distribution moments and characteristic function are obtained. The characteristic
function inversion is done numerically.

We apply the covariance matrix test to check interest rate market changes us-
ing Euribor real data. We model the Euribor with a one factor machine learning
Gaussian short rate model, using the Vasicek short rate model as prior, and as-
suming Vasicek short rate noise in the observations. In the beginning we calibrate
the model to get a reference parameters set. Then, in the presence of newer data,
we recalibrate the model and get a newer parameters set. We check the validity of
the reference parameters set, using the statistical test applied to the model obser-
vations covariance matrix computed with both sets of parameters. Whenever the
newer covariance matrix is not equal to the reference one, we say that the market
conditions have changed.

Keywords: Covariance matrix test, Conditionally independent tests, Spheric-
ity test, Identity matrix test.

7.2 Introduction

Let Y be a p×1 multivariate Normal random vector, with mean µY and variance-
covariance matrix ΣY :

Y ∼ Np(µY ,ΣY ). (7.1)

If we are interested in testing the null hypothesis

H0 : ΣY = Σ0 ,

since Σ0 is positive definite, Σ−1
0 exists and also Σ

−1/2
0 , and thus we may transform
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the original random vector Y to

X = Σ
−1/2
0 Y,

where
X ∼ Np(µ,Σ),

with Σ = Σ
−1/2
0 ΣY Σ

−1/2
0 .

Therefore, testing H0 : ΣY = Σ0 is equivalent to test

H0 : Σ = Σ
−1/2
0 Σ0Σ

−1/2
0 = Ip . (7.2)

The test of the null hypothesis H0 in (7.2) can be decomposed by testing H01 :

Σ = σ2Ip (the sphericity test) in the first place, and then, if H01 is not rejected,
testing H02|01 : σ2 = 1. This decomposition is denoted by

H0 = H02|01 ◦H01. (7.3)

Using this decomposition, the statistic for testing Σ = Σ0, is obtained. Then,
the moments and characteristic function of the corresponding distribution are
also obtained.

7.3 Likelihood ratio test statistic

Given a sample of size n+ 1 of the random vector X, the likelihood ratio criterion
to test H01 : Σ = σ2Ip, the sphericity test, is (T. W. Anderson 2003)

Λ1 =
|A| 12 (n+1)

(1
p
trA)

1
2
p(n+1)

, (7.4)

where A is the matrix of sums of squares and cross products of deviations to the
sample mean x̄. Namely,

A =
n+1∑
k=1

(xk − x̄)(xk − x̄)′ (7.5)

and

x̄ =
1

n+ 1

n+1∑
k=1

xk. (7.6)
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Using the maximum likelihood estimator of σ2, under H01 : Σ = σ2Ip (see
Appendix B), the likelihood ratio criterion to test H02|01 : σ2 = 1, given that Σ =

σ2Ip, is

Λ2 =

(
trA

p(n+ 1)

) 1
2
p(n+1)

e
1
2

(p(n+1)−trA), (7.7)

so that the likelihood ratio criterion to test H0 in (7.2) is (T. W. Anderson 2003)

Λ0 = Λ1Λ2 =

(
e

n+1

) 1
2
p(n+1) |A| 12 (n+1)

e
1
2

trA
. (7.8)

However, according to (T. W. Anderson 2003) and (Sugiura and Nagao 1968)
the test based on Λ0 in (7.8) is biased. In order to have an unbiased test, as sug-
gested by (Sugiura and Nagao 1968), we will use the statistic

Λ∗ =

(
e
n

) 1
2
pn |A| 12n

e
1
2

trA
.

7.4 Moments of Λ∗

Since the matrix A has a Wishart distribution W (A|Σ, n), the moments E{Λh
∗} of

Λ∗ are given by

E{Λh
∗} =

∫
Λh
∗fA(a; Σ, n) da ,

where

fA(a; Σ, n) =
|a| 12 (n−p−1)e−

1
2

tr(Σ−1a)

2
1
2
pnπp(p−1)/4|Σ| 12n

∏p
j=1 Γ(1

2
(n+ 1− j))

is the p.d.f. of a W (A|Σ, n) distribution.
E{Λh

∗} thus becomes

E{Λh
∗} =

( e
n

) 1
2
pnh
∫

|A| 12 (n+nh−p−1)e−
1
2

tr((Σ−1+hI)A)

2
1
2
pnπp(p−1)/4|Σ| 12n

∏p
j=1 Γ(1

2
(n+ 1− j))

da ,

where we recognize the numerator of the integrand as a the numerator of the
p.d.f. of a W (A|(Σ−1 +hI)−1, n+ (n+ 1)h) distribution. Multiplying and dividing
the whole expression by the denominator ofW (A|(Σ−1 +hI)−1, n+(n+1)h) p.d.f.
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and rearranging the terms, we obtain

E{Λh
∗}

=

(
2e

n

) 1
2
pnh

∏p
j=1 Γ(1

2
(n+ nh+ 1− j))

|Σ| 12n|Σ−1 + hI| 12 (n+nh)
∏p

j=1 Γ(1
2
(n+ 1− j))∫

fA(a; (Σ−1 + hI)−1, n+ nh) da︸ ︷︷ ︸
=1

=

(
2e

n

) 1
2
pnh

∏p
j=1 Γ(1

2
(n+ nh+ 1− j))

|Σ| 12n|Σ−1 + hI| 12 (n+nh)
∏p

j=1 Γ(1
2
(n+ 1− j))

.

Finally, since under H0 in (7.2) Σ = I ,

E{Λh
∗} =

(
2e

n

) 1
2
pnh

(1 + h)−
1
2
p(n+nh)

p∏
j=1

Γ(1
2
(n+ nh+ 1− j))

Γ(1
2
(n+ 1− j))

. (7.9)

7.5 Characteristic function of W = − log Λ∗

If we take W = − log Λ∗, the characteristic function of W is, from (7.9), given by

φW (t) = E{eitW} = E{e−it log Λ∗} = E{Λ−it∗ }

=

(
2e

n

)− 1
2
pnit

(1− it)−
1
2
p(n−nit)

p∏
j=1

Γ(1
2
(n− nit+ 1− j))

Γ(1
2
(n+ 1− j))

.
(7.10)

7.6 Market changes detection

A common problem that arises in mathematical finance when using models with
parameters estimated from market data, available until a certain time, is that of
checking the necessity of using new parameters as newer data become available.

In this section we use the Σ = Σ0 test to evaluate the necessity of using new
parameters of a machine learning Gaussian short rate model of the Euribor (Euro
Interbank Offered Rate), as newer data become available.

We use the Euribor data available online at the Euribor-EBF site (Euribor-EBF
2013). We model the short rate, using the 1, 6 and 12 months Euribor rates, daily
quoted by the 48 banks in the Euribor contributor banks panel, during 2007 and
2008, the credit crisis years.

The machine learning Gaussian short rate model has as inputs the logarithm
of zero coupon bonds. Therefore, all the Euribor quotes are first converted to
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Figure 7.1: Euribor rates with maturities of 1, 6 and 12 months, quoted by the
Euribor contributor banks in 2007 and 2008.

the corresponding 1, 6 and 12 months maturity zero coupon bonds prices. Then,
the logarithm of the prices is taken. The model parameters are obtained using
periods of 5 consecutive days.

All the computations were done using Wolfram Mathematica 8 (Wolfram Re-
search 2011).

7.6.1 Euribor data

Figure 7.1 shows the 1, 6 and 12 months maturity Euribor raw rates quoted by
all the Euribor contributor banks1 in 2007 and 2008. Figure 7.2 shows the corre-
sponding zero coupon bonds log prices.

In our model each 5 consecutive days period is a random vector. Every matu-
rity in each of the 5 days is a marginal random variable. Since there are 3 matu-
rities in each day, the random vector dimension is 15. Therefore, the number of
variables is p = 15.

The Mardia goodness of fit test (Mardia 1970)(Mardia 1974) was used to test
the data normality. The test was first carried over each univariate marginal ran-
dom variable, and then over each random vector.

Table 7.1 shows the normality goodness of fit test results for the univariate
marginal random variables.

The small percentage of normal variables, observed in Table 7.1 forces us to

1During 2007 and 2008 the number of banks in the Euribor contributors panel that supplied
quotes varied, day by day, ranging from 39 to 48 banks.
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Figure 7.2: Zero coupon bond log prices with maturities of 1, 6 and 12 months,
computed from the corresponding Euribor rates, quoted by the Euribor contrib-
utor banks in 2007 and 2008.

# Variables # Normal Variables Normal Variables (in %)
1533 49 3.20

Table 7.1: Marginals random variables normality distribution fit test results.

conclude that the data are not normal. Given this fact, the model is applied not di-
rectly to Euribor zero coupon log prices, computed from the Euribor rates quoted
by the contributor banks, but to randomly selected portfolios of banks. The con-
struction of randomly selected portfolios of banks, definitely makes sense from a
diversification point of view, and should provide normal data (due to the central
limit theorem) as required by our model.

We have chosen to construct 16 randomly selected portfolios of 24 banks. The
number of portfolios results in a number of observations of n + 1 = p which is
required by the test statistics. The number of banks in each portfolio was empiri-
cally defined to maximize the number of normal random variables obtained.

Figure 7.3 shows the 1, 6 and 12 months maturity zero coupon bonds portfo-
lios log prices obtained.

Table 7.2 shows the normality goodness of fit test results for the portfolios
marginal random variables as well as for the random vectors.

The large percentage of random variables and random vectors in Table 7.2
allows us to assume that the portfolios data are normal, as required by our model.
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Figure 7.3: Zero coupon bond portfolios log prices with maturities of 1, 6 and 12
months, computed from the corresponding Euribor rates, quoted by the Euribor
contributor banks in 2007 and 2008. The number of portfolios at each time and
each maturity is 16. Each portfolio price is the average of 24 randomly selected
zero coupon bonds, computed from the quoted contributor banks rates.

Portfolios Marginal Variables
# Variables # Normal Variables Normal Variables (in %)

1533 1382 90.15

Portfolios Vector Variables
# Vectors # Normal Vectors Normal Vectors (in %)

507 507 100.00

Table 7.2: Portfolios normality fit test results.

7.6.2 Short rate model

The short rate model considered is a one factor machine learning Gaussian short
rate, under the risk neutral measure, with noise in the observations.

Under the one factor machine learning Gaussian short rate (Sousa, Esquível,
and Gaspar 2013), the short rate prior, r(t), follows an Ornstein-Uhlenbeck mean-
reverting process, under the risk neutral measure, defined by the stochastic dif-
ferential equation (Vasicek 1977):

dr(t) = k(θ − r(t))dt+ σdW (t). (7.11)

The parameter k is the mean reversion velocity, θ is the mean interest rate
level, σ is the volatility and W (t) the Wiener process. Parameters k and σ are
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positive.
Considering the vector x = [t T ]>, where t is time and T is zero coupon bond

maturity, the short rate, rD(t), is the Gaussian process underlying the conditioned
on zero coupon log prices Gaussian process with mean and covariance functions
given by

mD(x) = m(x) + KT
X,xK

−1(y − µ) (7.12)

and
covD(xi,xj) = cov(xi,xj)−KT

X,xi
K−1KX,xj (7.13)

where m(x) is the zero coupon bonds log prices prior mean

m(x) = m

([
t

T

])

=

(
θ − σ2

2k2

)(
1− e−k(T−t)

k
− T + t

)
−
σ2
(
1− e−k(T−t))2

4k3

−
(
1− e−k(T−t)) (r(0)e−kt + θ

(
1− e−kt

))
k

, (7.14)

cov(xi,xj) is the zero coupon bonds log prices prior covariance

cov(xi,xj) = cov

([
ti

Ti

]
,

[
tj

Tj

])

=
σ2e−k(ti+tj)

(
1− e−k(Ti−ti)

) (
1− e−k(Tj−tj)

) (
e2kmin(ti,tj) − 1

)
2k3

, (7.15)

matrix X collects all the vectors x where zero coupon bond log prices were
observed, KX,x is the covariance vector between every observation and x, K is the
covariance matrix between observations, y is the vector of observed zero coupon
log prices and µ is the mean vector of observations.

This model requires a single observation of zero coupon bond prices for each
time/maturity pair. Otherwise, matrix K would have some equal lines, and
would not be invertible.

To support several zero coupon bond prices for each time/maturity pair, as it
is the case with Euribor data, we will assume noise in the observations, following
the machine learning procedure in (Rasmussen and Williams 2005).
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But the proposal of constant variance noise in (Rasmussen and Williams 2005)
makes no sense in the context of a risk neutral short rate model, as it would result
in zero coupon bond log prices with non zero variance at maturity. And this
would constitute a no arbitrage violation once the prices at maturity must equal
the face value with zero variance.

To overcome this issue our proposal is to assume addictive independent Gaus-
sian Vasicek zero coupon bond log prices process noise in the observations.

The proposed noise mean interest rate level is θn = 0 because the noise is
modeling the dispersion around the short rate only, not the mean. The proposed
mean reversion velocity is kn = 1 because the noise observations are independent
of each other, providing no characterization of a reversion velocity. The only extra
parameter introduced is the noise volatility, σn.

Given this noise model, the covariance function, covo(xi,xj), between obser-
vations is given by:

covo(xi,xj) = covo

([
ti

Ti

]
,

[
tj

Tj

])

=
σ2e−k(ti+tj)

(
1− e−k(Ti−ti)

) (
1− e−k(Tj−tj)

) (
e2kmin(ti,tj) − 1

)
2k3

+
σ2
n

(
1− e−(Ti−ti)

)2
(1− e−2ti)

2
δij (7.16)

where δij is the Kronecker delta, which is one if i equals j, and zero otherwise.
We have considered the initial time sufficiently far away, so that the initial

short rate value r(0), in Equation 7.14, has no numerical influence in the model.
This allows us to ignore parameter r(0). All remaining parameters are obtained
by maximizing the likelihood of observed zero coupon bond log prices using
the conjugate gradients method and the closed forms of the derivatives of the
likelihood with respect to the parameters.

7.6.3 Experimental procedure

In order to evaluate whether or not new parameters should be used as newer data
become available, the following experimental procedure was followed.

Setup

• Set the confidence level to 0.05.
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Initialization

• Obtain the initial reference model parameters using the first five days
period data.

Evaluation

• Slide the 5 days period window 1 day.

• Obtain new model parameters using the new five days period data.

• Compute new period data observations covariance matrix, Σ, using
the new parameters.

• Compute new period data observations covariance matrix, Σ0, using
the reference parameters.

• Apply the test Σ = Σ0 to obtain the corresponding p-value.

Update

• Substitute the reference parameters by the new parameters.

• Proceed to the Evaluation step while there are more data.

The inversion of the characteristic function of Equation 7.10 was done numer-
ically using the algorithm in (Abate and Valkó 2004).

Figure 7.4 illustrates the proposed model for a particular 5 day period. The
data adjustment clearly stands out.

7.6.4 Results

Figure 7.5 shows the parameters sequences obtained, while Figure 7.6 shows the
covariance matrix test results p-values sequence.

Compared with the parameters sequences, that exhibit some smoothness dur-
ing relatively large periods of time, the covariance matrix test results are quite
unstable. Recall that whenever the p-value is less than the confidence level we
say that the market conditions have changed. In general, the detected changes
are mixed with no changes detections. No clear periods of changes or no changes
were obtained, suggesting an over-fitting behavior. An exception to this is the
end of 2007 where a clear period of changes detections is observable. This was
the period when the Bank of Canada, the Bank of England, the European Central
Bank, the Federal Reserve, and the Swiss National Bank announced joint actions
to address high pressures in short-term funding markets (Bank 2007), thus con-
firming that it was a worldwide turbulent period.
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Figure 7.4: Euribor’s 5 day short rate model zero coupon bond log prices: data
(red); mean (blue); 2 standard deviation surface (green).

7.7 Conclusions

In this paper we obtained the statistic for testing if a covariance matrix is equal
to a given matrix, as the decomposition of simpler tests. We also obtained the
moments and the characteristic function of the test distribution.

We proposed the extension of the one factor machine learning Gaussian short
rate model by assuming noise on the observations. The proposed model is suit-
able for situations where there are several prices for a zero coupon bond at the
same time, such as the quotes provided by the Euribor banks panel.

We modeled the Euribor during the 2007 and 2008 years, the credit crisis years,
with the proposed model, using sliding 5 days periods of data. We used the
covariance matrix test to detect Euribor market changes.

The market changes detection results obtained are quite unstable suggesting
an over-fitting behavior. Nevertheless the turbulent short-term funding period of
the end of 2007 stands out as a period of consecutive market changes.
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Figure 7.5: Short rate model parameters sequences.
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8
Conclusions and Future Work

8.1 Thesis contributions

The main contribution of this thesis is the proposal of a Gaussian short rate
model, under the risk neutral measure. The model is a conditioned on zero
coupon bond log prices Gaussian process, based on Gaussian processes for ma-
chine learning regression, with N addictive risk neutral Vasicek short rate factors
as prior. It has the following features:

• All model parameters are obtained directly in the risk neutral measure us-
ing market observed zero coupon bond prices,exclusively. No other sources
of information are needed;

• The model automatically fits by its construction all the zero coupon bond
prices observed in the market, in particular, those that define the current
term structure of interest rates;

• The number of factors needed equals the maximum number of distinct ma-
turities observed in a single time.

Other contributions also emerged during this research and development, namely:

• The proposal of a path dependent Gaussian trajectories vectorial simulation
framework;
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• The proposal of a historical simulation value at risk methodology for bonds;

• The detection of interest rate market changes with a statistical test to a co-
variance matrix;

• The extension of the proposed short rate model to the case where there are
more than one price of T -maturity zero coupon bonds at time t, considering
Vasicek short rate noise in the observations.

8.2 Future work

Regarding the unsubmitted papers in part II of this thesis, the additional work
we plan to include before submitting them to publication, is composed by the
following improvements.

• Machine Learning Gaussian Short Rate

– Proceeding in the same way in (Sousa, Esquível, and Gaspar 2013) ob-
tain the stochastic differential equation parameters of the short rate.

– Obtain the derivatives with respect to the parameters of the likelihhod
of the training data given the parameters.

– Show, by simulation, that the risk neutral parameters are properly ob-
tained from zero coupon log prices.

– Use the model with real data.

• Interest Rate Market Changes Detection

All the development of the statistical test presented in this paper, as a de-
composition of simpler conditional independent tests, has the purpose of
factorizing the test statistic in two parts. One that can be inverted analyti-
cally and another that can not. The part that can’t be analytically inverted,
can be approximated by Gamma densities mixture to produce a near exact
test distribution the same way other near exact distribution were developed
(Marques and Coelho 2008)(Coelho and Marques 2010).

Preliminary results show that the numerical inversion of the characteristic
function of the near exact distribution perform faster and more accurate
than the numerical inversion used in this paper.

The additional work to include in this paper is to formalize the near-exact
distribution and use it in the presented application.
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A
Wolfram Mathematica Sources

Listing A.1: Public section of "VasicekPackage" symbolic package.

BeginPackage [ " VasicekPackage ‘ " ]

(∗ in t h i s p a c k a g e Zcb means " Zero Coupon Bond" ∗ )

VasicekShortRateMean : : usage = " VasicekShortRateMean [ t0 , r0 , t , k ,
\[ Theta ] ] g ives the Vasicek shor t r a t e mean at time t , given the
i n i t i a l time t0 , the i n i t i a l shor t r a t e r0 , the mean shor t r a t e
l e v e l \[ Theta ] and the mean revears ion v e l o c i t y k . " ;

VasicekShortRateCovariance : : usage = " VasicekShortRateCovariance [ t0 ,
t1 , t2 , k , \[ Sigma ] ] gives the Vasicek shor t r a t e covar iance
beteween times t1 and t2 , given the i n i t i a l time t0 , the mean
revears ion v e l o c i t y k and the v o l a t i l i t y \[ Sigma ] . " ;

VasicekBFunction : : usage = " VasicekBFunction [ t , T , k ] i s the a u x i l i a r y
Vasicek B ( t , T ) funct ion . "

VasicekAFunction : : usage = " VasicekAFunction [ t , T , k , \[ Theta ] ,
\[ Sigma ] ] i s the a u x i l i a r y Vasicek A( t , T ) funct ion . "

VasicekLogZcbMeanByDefinition : : usage =
" VasicekLogZcbMeanByDefinition [ t0 , r0 , t , T , k , \[ Theta ] , \[ Sigma ] ]
gives the mean of the logarithm of the p r i c e of a T maturity zero
coupon bond at time t , given the i n i t i a l time t0 , the i n i t i a l shor t
r a t e value r0 , the mean i n t e r e s t r a t e l e v e l \[ Theta ] , the mean
revears ion v e l o c i t y k and the v o l a t i l i t y \[ Sigma ] . "
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VasicekLogZcbMean : : usage = " VasicekLogZcbMean [ t0 , r0 , t , T , k ,
\[ Theta ] , \[ Sigma ] ] i s a F u l l S i m p l i f y vers ion of
VasicekLogZcbMeanByDefinition [ t0 , r0 , t , T , k , \[ Theta ] , \[ Sigma ] ] . "

VasicekLogZcbCovarianceByDefinit ion : : usage =
" VasicekLogZcbCovarianceByDefinit ion [ t0 , t1 , t2 , T1 , T2 , k ,
\[ Sigma ] ] gives the covar iance a t t imes t1 and t2 of the logarithm
of the p r i c e of a T1 maturity zero coupon bond and a T2 maturity
zero coupon bond given the i n i t i a l time t0 , the mean revears ion
v e l o c i t y k and the v o l a t i l i t y \[ Sigma ] . "

VasicekLogZcbCovariance : : usage = " VasicekLogZcbCovariance [ t0 , t1 , t2 ,
T1 , T2 , k , \[ Sigma ] ] i s a F u l l S i m p l i f y vers ion of
VasicekLogZcbCovarianceByDefinit ion [ t0 , t1 , t2 , T1 , T2 , k ,
\[ Sigma ] ] . "

Begin [ " ‘ Pr ivate ‘ " ]

(∗ P r i v a t e c o n t e x t t o b i g t o p r i n t ∗ )

End [ ]

EndPackage [ ]

Listing A.2: Public section of "OneFactorWithNoiseShortRate" numeric package.

BeginPackage [ " OneFactorWithNoiseShortRate ‘ " ]

SetData : : usage = " SetData [ tListN , TListN , yListN ] s e t s a l l the
i n t e r n a l packed arrays needed to l ea rn the model parameters . The
argument tLis tN i s the l i s t of time i n s t a n t s . The argument TListN i s
the l i s t of maturity times . The argument yListN i s the l i s t of zero
coupon bond log p r i c e s . Each t r i p l e t { tVectorN [ [ k ] ] , TVectorN [ [ k ] ] ,
yVectorN [ [ k ] ] } i s a T maturity zero coupon bond log p r i c e y a t time
t . Al l arguments l i s t s must be l i s t s of machine numbers with the same
length . " ;

Test InternalPackedArrays : : usage = " Tes ts i f i n t e r n a l v a r i a b l e s are
packed arrays . " ;
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ComputeMeanVector : : usage = " ComputeMeanVector [ r0 , kr ,
the tar , sigmar , sigman ] computes the mean vector . " ;

GetMeanVector : : usage = " GetMeanVector [ ] re turns the
i n t e r n a l mean vector . " ;

ComputeCovarianceMatrix : : usage = " ComputeCovarianceMatrix [ r0 , kr ,
the tar , sigmar , sigman ] computes the covar iance matrix . " ;

GetCovarianceMatrix : : usage = " GetCovarianceMatrix [ ] re turns the
i n t e r n a l covar iance matrix . " ;

ComputeLikelihood : : usage = " ComputeLikelihood [ r0 , kr , the tar , sigmar ,
sigman ] re turns the l i k e l i o o h d of the previous seted data given the
parameters arguments . " ;

ComputeLikelihoodNumericWrapper : : usage =
" ComputeLikelihoodNumericWrapper [ r0 , kr , the tar , sigmar , sigman ]
i s a numeric wrapper f o r ComputeLikelihood [ r0 , kr , the tar , sigmar ,
sigman ] . Maximizing the l i k e l i h h o d using FindMaximum should use t h i s
wrapper in order to avoid symbolic computations ( t h a t grow memory to
i n f i n i t e ) . " ;

ComputeLikelihoodDr0 : : usage = " ComputeLikelihoodDr0 [ r0 , kr , the tar ,
sigmar , sigman ] re turns the l i k e l i o o h d d e r i v a t i v e w. r . t . r0 . " ;

ComputeLikelihoodDkr : : usage = " ComputeLikelihoodDkr [ r0 , kr , the tar ,
sigmar , sigman ] re turns the l i k e l i o o h d d e r i v a t i v e w. r . t . kr . " ;

ComputeLikelihoodDthetar : : usage = " ComputeLikelihoodDthetar [ r0 , kr ,
the tar , sigmar , sigman ] re turns the l i k e l i o o h d d e r i v a t i v e
w. r . t . t h e t a r . " ;

ComputeLikelihoodDsigmar : : usage = " ComputeLikelihoodDsigmar [ r0 , kr ,
the tar , sigmar , sigman ] re turns the l i k e l i o o h d d e r i v a t i v e
w. r . t . sigmar . " ;

ComputeLikelihoodDsigman : : usage = " ComputeLikelihoodDsigman [ r0 , kr ,
the tar , sigmar , sigman ] re turns the l i k e l i o o h d d e r i v a t i v e
w. r . t . sigman . " ;

ComputeLikelihoodDr0NumericWrapper : : usage = " The numeric wrapper f o r
ComputeLikelihoodDr0 . " ;

ComputeLikelihoodDkrNumericWrapper : : usage = " The numeric wrapper f o r
ComputeLikelihoodDkr . " ;

ComputeLikelihoodDthetarNumericWrapper : : usage = " The numeric wrapper f o r
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ComputeLikelihoodDthetar . " ;

ComputeLikelihoodDsigmarNumericWrapper : : usage = " The numeric wrapper
f o r ComputeLikelihoodDsigmar . " ;

ComputeLikelihoodDsigmanNumericWrapper : : usage = " The numeric wrapper
f o r ComputeLikelihoodDsigman . " ;

ConditionedOnDataMeanFunction : : usage =
" ConditionedOnDataMeanFunction [ t , T , r0 , kr , the tar , sigmar , sigman ]
re turns the condit ioned on data mean value on time t , maturity T . " ;

ConditionedOnDataCovarianceFunction : : usage =
" ConditionedOnDataCovarianceFunction [ t1 , T1 , t2 , T2 , r0 , kr , the tar ,
sigmar , sigman ] re turns the condit ioned on data covar iance value
between time t1 , maturity T1 and time t2 , maturity T2 . " ;

Se tObservat ionsFactor : : usage = " SetObservat ionsFactor [ factorNumber ]
s e t s the f a c t o r to be multiplyed by the covar iance matrix , in case of
independent vec tor observat ions " ;

Begin [ " ‘ Pr ivate ‘ " ]

(∗ P r i v a t e c o n t e x t t o b i g t o p r i n t ∗ )

End [ ]

EndPackage [ ]
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B
Maximum likelihood estimator of σ2

in test H02|01

In this appendix we deduce the maximum likelihood estimator of σ2, in case the
null hypothesis H02|01 : σ2 = 1, given that H01 : Σ = σ2Ip was not rejected, is
rejected.

Let X be a p×1 multivariate Normal random vector, with meanµ and variance-
covariance matrix σ2Ip:

X ∼ Np(µ, σ2Ip). (B.1)

Given a sample of n+ 1 vectors x1, ...,xn,xn+1 of X, the likelihood function L
is

L =
n+1∏
k=1

1

(2π)
1
2
p|σ2Ip|

1
2

e−
1
2

(xk−µ)′(σ2Ip)−1(xk−µ). (B.2)

Since the random vector X is Normal with a diagonal covariance matrix, the
its components are independent. As so, we can rewrite L as

L =
n+1∏
k=1

p∏
l=1

1√
2πσ2

e−
1
2

(xkl−µl)
2

σ2 , (B.3)

where xkl is the l component of vector xk and µl is the l component of vector
µ.
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The logarithm of the likelihood function is

logL =
n+1∑
k=1

p∑
l=1

(
−1

2
log(2πσ2)− 1

2

(xkl − µl)2

σ2

)
. (B.4)

Since logL is an increasing function of L, the values of µl and σ2 that maxi-
mizes logL also maximizes L.

Denoting by µ̂m (m = 1, ..., p) the value of µm that maximizes logL, and by
σ̂2 the value of σ2 that maximizes logL, µ̂m and σ̂2 can be found by setting the
partial derivatives of logL w.r.t µ̂m and w.r.t. σ̂2, respectively, equal to zero.

The derivative of logL w.r.t x̂m is

∂ logL

∂µ̂m
=

n+1∑
k=1

xkm − µ̂m
σ̂2

(B.5)

=

∑n+1
k=1 xkm − (n+ 1)µ̂m

σ̂2
. (B.6)

Setting the derivative of logL w.r.t x̂m equal to zero yields

µ̂m =

∑n+1
k=1 xkm
n+ 1

. (B.7)

The derivative of logL w.r.t σ̂2 is

∂ logL

∂σ̂2
=

n+1∑
k=1

p∑
l=1

(
− 1

2σ̂2
+

1

2

(xkl − µ̂l)2

(σ̂2)2

)
(B.8)

= −p(n+ 1)

2σ̂2
+

1

2

∑n+1
k=1

∑p
l=1(xkl − µ̂l)2

(σ̂2)2 . (B.9)

Setting the derivative of logL w.r.t σ̂2 equal to zero yields

σ̂2 =

∑n+1
k=1

∑p
l=1(xkl − µ̂l)2

p(n+ 1)
. (B.10)

Recognizing µ̂m as the m component of the sample mean vector x̄ (equation
7.6), we can rewrite µ̂m and σ̂2 as:

µ̂m = x̄m (B.11)
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σ̂2 =

∑p
l=1

∑n+1
k=1(xkl − x̄l)2

p(n+ 1)
(B.12)

=

∑p
l=1 All

p(n+ 1)
(B.13)

=
1

p(n+ 1)
trA, (B.14)

where matrix A is defined by equation 7.5.
Equation B.14 defines the maximum likelihood estimator of σ2, in case the null

hypothesis H02|01 : σ2 = 1, given that H01 : Σ = σ2Ip was not rejected, is rejected.
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