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Abstract 
 
 

The increasing application of viral particles in vaccination and gene-based therapies, has led to the 

development of alternative and improved purification processes. Traditional purification methods 

include chromatographic techniques, however the chromatographic matrices used present limitations 

specially when aimed at the purification of large molecules. This work presents the preparation of 

chitosan-based monoliths using clean processes and easy functionalization techniques intending to 

improve Adenovirus serotype 5 (Ad5) purification. 

Monoliths were prepared by blending chitosan (CHT) with glycidylmethacrylate (GMA) or poly(vinyl 

alcohol) (PVA), using two preparation techniques, freeze-drying and a scCO2 – assisted drying 

process, and were subsequently functionalized with Q ligands by three different methods. In addition, 

monoliths blended with magnetic nanoparticles were also prepared using the same strategies to 

confer them a controlled magnetic response. The monoliths produced were characterized in terms of 

ligand immobilization yield, and evaluated for Ad5 purification. Two types of monoliths showed 

potential: the CHT/PVA(50:50) prepared by freeze drying and functionalized by the alternative plasma 

technique (M2) and the CHT/PVA(50:50) 7% monolith prepared by scCO2 – assisted drying process 

and functionalized by the epoxyactivation technique (M1). The amount of ligand Q immobilized on the 

supports was monitored by titration assays, among which the CHT/PVA(50:50) 7% M2 prepared by 

scCO2 – assisted drying process exhibited the highest immobilization yield (91%). Among the results 

for Ad5 purification, the CHT/PVA(50:50)M2 and the CHT/PVA(50:50)7% M1 resulted in a 40% and 

14% of the viral particles, respectively. Protein-binding assays were conducted using bovine serum 

albumin (BSA) and lysozyme, to evaluate the anionic-exchange capacity of the supports.  

The results make us believe in the potential of the produced monoliths to be applied in 

chromatographic techniques. However further improvements are necessary to enhance virus binding 

and recovery, to obtain an improved purification process. 

 

 

 

Keywords: biopharmaceuticals, purification, monoliths, porous structure, virus particles, Q ligands 
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Resumo 
 

 

O aumento da aplicação de vírus em terapias genéticas levou á necessidade de desenvolver 

processos alternativos de purificação. As técnicas tradicionais de purificação incluem a cromatografia. 

No entanto, os suportes tradicionalmente usados apresentam limitações quando aplicados na 

purificação de macromoléculas. Este trabalho de investigação propõe a preparação de monólitos de 

quitosano, recorrendo a processos verdes e técnicas de funcionalização simples, com o objectivo de 

melhorar a purificação de Adenovirus serotype 5 (Ad5). 

Os monólitos foram preparados através de uma mistura de quitosano (CHT) com metacrilato de 

glicidilo (GMA) ou álcool polivinílico (PVA), recorrendo a duas técnicas, liofilização e secagem 

assistida com CO2 supercrítico (scCO2), com posterior funcionalização com ligandos Q, por três 

métodos distintos. Prepararam-se ainda monólitos contendo partículas magnéticas, de modo a lhes 

conferir capacidade de resposta a estímulos magnéticas. Os monólitos produzidos foram ainda 

caracterizados em termos do rendimento de imobilização do ligando e da sua eficiência na purificação 

de Ad5. Identificaram-se dois tipos de monólitos com maior potencial: o CHT/PVA(50:50) preparado 

por liofilização e funcionalizado através da técnica alternativa de plasma (M2), e o 

CHT/PVA(50:50)7%, preparado por secagem assistida com scCO2, e funcionalizado por 

epoxiativação (M1). A quantidade de ligando imobilizado nos suportes, foi determinada por ensaios 

de titulação, tendo-se obtido maior rendimento de imobilização (91%) para o CHT/PVA(50:50)7%. 

Entre os resultados obtidos na purificação do Ad5, o CHT/PVA(50:50)M2 e o CHT/PVA(50:50)7% M1, 

apresentaram valores de recuperação de cerca de 40% e 14%, respectivamente. De modo a avaliar a 

capacidade de troca aniónica dos suportes, também foram realizados testes de ligação de proteínas. 

Em síntese, defendemos que os resultados obtidos demonstram o potencial dos monólitos produzidos 

na aplicação em técnicas cromatográficas. No entanto, para atingir um processo de purificação 

melhorado, devem ser considerados futuros aperfeiçoamentos que favoreçam o acoplamento do vírus 

e a sua recuperação. 
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1. Introduction 

 

1.1 Viruses and their application in gene therapy 

 

The search for new therapeutic approaches with a higher efficiency for the treatment of human 

diseases is an area of great investment. One type of treatment that has been applied, with a large 

growth in the last decade, is gene therapy.
1
 With the aim of tackling genetic diseases and slowing 

down the progression of tumours, gene-based therapies have been developed to make this possible 

through the insertion of genes into target cells. With the development of this technique, there are 

several on-going clinical trials for treatment of several diseases such as cancer, cardiovascular and 

infectious diseases, among others (Figure 1.1,A). However, the introduction of genes into cells will 

differ accordingly which application is targeted. For example, among the cancer treatments some 

strategies involve the use of tumour suppressor genes, vaccination implemented with tumours cells 

engineered to express immunostimulatory, vaccines composed by naked DNA, vaccination with 

recombinant viral vectors encoding tumour antigens and other gene-based therapies with viruses.
2
 In 

the end, all of these strategies and other specific to each target disease have one thing in common, 

they are only possible while using a good delivery system to introduce the genes into the cells. Among 

the virus properties, the major advantage is that they own a specific system to deliver DNA to cells, 

which makes them very suitable to be applied in this field.
3
 When implemented in therapy, viruses 

have the ability to enter a specific target and replicate within the cells, causing cell lysis and 

subsequently killing the infected tumour cells. Therefore, there are several types of vectors that can be 

used as genetic vehicles and can be divided into two different groups, such as viral or non-viral 

vectors.
4
  

Non-viral vectors are vectors constituted by naked DNA with the advantage of being non-pathogenic 

and with an easy and economical production. The increasing use of non-viral vectors in the past years 

is due to the production of high levels of gene expression when applied through a direct injection to 

tissues. However, these vectors are not as efficient has viral vectors.
4,5

 Viral vectors are vectors that 

take advantage of the infectious and replication system of viruses. Despite their infectivity, extensive 

research throughout the years led to the development of safer and more efficient viral vectors, being 

Retrovirus and Adenovirus, the two types of vectors more used for gene therapy. 
6
 Retroviruses are 

characterized by comprising an enveloped single-stranded positive RNA genome, which is segmented 

and can only replicate by inverse transcription. One example of a retrovirus well known is HIV (Human 

Immunodeficiency Virus) that causes AIDS.
7
 A great number of clinical trials have been implemented 

with the aim of tackling this infectious disease, however severe adverse events were observed during 

these trials, indicating a necessary improvement towards the manufacturing of safer vectors and 

leading to a decline in the use of this kind of vector.
3,8

 On the other hand, Adenoviruses are 

characterized by being non-enveloped virus with a non-segmented double stranded positive DNA. 
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With a 90-110 nm structure, adenoviral vectors can carry a larger DNA load than retroviruses, 

resulting in higher efficiencies of transduction and higher levels of gene expression, delivering genes 

to a wide variety of dividing and nondividing cells. One example of an Adenovirus is the Human 

Adenovirus serotype 5 (Ad5), the most studied Adenovirus for gene therapy.
9
 Despite the possibility of 

eliciting a strong immune response, adenovirus also have the advantage of being easy to produce in 

culture, allowing its production in large quantities while staying stable during some essential steps as 

concentration and purification. All of these advantages make the Adenovirus the most commonly used 

vector in gene therapy (Figure 1.1,B).
2
 

          

Figure 1.1 - Graphic representation of the principal target diseases aimed by gene therapy clinical trials (A) and 

respective types of vectors used in these clinical trials (B) during the year of 2012.
2
 

 

As it was discussed each type of vector has its strength as well as weakness, so it is necessary their 

modification in the laboratory to make the vector suited for each specific application in gene therapy. 

Consequently, new viral vectors are produced or modified by replacing, altering or augmenting a gene 

to provide a missing function, replace a defective gene in the target cell, or modulate an immune 

response, among others. However, for a good and proper implementation of these vectors, it is 

required products with a high purity to optimize their application in clinical trials.
10

 Within the several 

stages of vectors manufacturing, purification is the most important one, assuring the elimination of 

impurities and other species from virus solution while trying to maintain the yield.  

With the implementation of these vectors in gene therapy and the increasing number of clinical trials, 

there is a demand for large-scale purification processes. It is necessary the development of simpler 

and faster purification processes that allow the purification of bigger quantities while achieving the 

required purity of the vectors and maintaining the infectivity for live attenuated vaccines. It is also 

important that these processes be both reproducible and economically viable.
2,4–7,11
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During virus purification processes, there are some features that should be taken into account. 

Viruses, in general, are characterized by being large particle sizes, having a low diffusion rate and a 

complex molecular surface. All of these factors will influence the yield and implementation of any 

process.  

There are several purification methods that can be used to purify virus, though the traditional methods 

commonly implemented are centrifugation and column chromatographic techniques.
11

 Centrifugation 

was the technique mostly used for Adenovirus purification, using a combination of density gradient 

centrifugation and ultracentrifugation. However this procedure could take days and can lead to co-

precipitation of impurities with a density similar to the virus, making these procedures not suitable for 

large-scale purification.
12

 

Column chromatographic techniques consist of separation processes using a column with a stationary 

phase that will serve as media to purify our target molecule from a complex mixture (mobile phase). 

Among the several columns chromatographic techniques there are some methods more used for virus 

purification, such as Affinity Chromatography, Anion Exchange Chromatography and Fixed-Bed 

Chromatography.
11,13

 Though, these techniques were usually applied using resins or porous beads as 

supports media and despite the advantages of these kind of media
14

 they are not ideal for the 

separation of large biomolecules such as virus, proteins or DNA, resulting in a low mass transfer. The 

shape of the beads will also contribute for a large void volume between the packed particles (Figure 

1.2) that combined with the large size of viruses, the use of this kind of media will result in a poor 

purification performance with a low binding capacity. Taking into account all these drawbacks, the 

traditional methods are often described as being time consuming, expensive and difficult to scale 

up.
2,15

 As an alternative, it was developed a new membrane technology with decreased mass transfer 

resistance, allowing the processing of higher volumes, the purification of large biomolecules and the 

production of therapeutic proteins through the use of a membrane as chromatographic media. Another 

advantage of this type of media is that the production of membranes for these methods is very simple, 

reducing the cost of the stationary phase and subsequently reducing the cost of downstream 

processes.
16

 However, there are some physical properties of membranes that require improvement 

such as thickness, ligand density and pore size distribution for certain applications. These factors led 

to the development of different types of membranes, which include mixed-matrix membranes and 

monoliths. The respective characteristics to these several chromatography stationary phases are 

represented in Table 1.1.
17

 However, the several advantages of using monoliths as chromatographic 

media, led to this being the method of choice for bioseparations of large molecules, with an increasing 

application for the last decade. Among the several benefits of using monoliths, it is possible to control 

the obtained structure by varying the conditions of the preparation methods, resulting in processes 

with higher yields and throughputs that when traditional methods are applied.
15,18,19
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Table 1.1 - Comparison of characteristics of current chromatography stationary phases.
17

 

 

 

 

 

 

 

 

1.2 Monoliths for Purification Processes 
 

 

Monoliths are characterized as single integrated units with a highly interconnected network with 

different sizes. They can be produced from different materials and be made with diverse shapes, 

selected according to the envisaged application.
20

 

The first attempt of creating this new kind of supports as a “single-piece” stationary phase was during 

the late 1960s and 1970s.
21

 However these preparations were not very successful and later 

approaches emerged in the late 1980s, when compressed soft gels called “continuous beds” were 

developed and successfully used in chromatographic separations, followed by the production of rigid 

macroporous polymers monoliths based in a molding process, in early 1990s.
22

 These successful 

preparations defined the beginning of the development of this type of continuous media, being 

nowadays a kind of support suitable for a wide range of applications in several fields such as in 

biotechnology, food technology, tissue engineering and other pharmaceutical industries.
23

 The 

development of monoliths led to the improvement of procedures such as organic synthesis, separation 

processes, solid-phase extraction and decontaminations.
24

 They have also been used as bioreactors 

and have been applied as supports for a variety of applications including Hydrophobic interaction 

Chromatography 
25

, Affinity Chromatography 
26

, High Performance Membrane Chromatography 
27

, 

HPLC
28

, Capillary Electrochromatography 
29

, Ion Exchange Chromatography 
30

 and molecular 

imprinting 
31

.  

However, the major application of monoliths is in the gene therapy and vaccination fields, being the 

method of choice for the purification of large particles, such as viruses, proteins or plasmid DNA or 

VLP’s.
28,32,33,34,35

 When inserted into a column and used as chromatographic media, monoliths will fill 

the volume of the column completely, operating as a single large particle. As membranes, monoliths 

also have a low resistance to mass transfer and a low back pressure, and due to their design, 

monolithic supports take the advantage of a convective mass transport that overcomes a diffusional 

flow, not being limited by the sizes of molecules, higher flow rates and shorter times are 

obtained.
14,16,21,22,36,37
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High Moderate Moderate Low 
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Figure 1.2 – Comparison of the flow in chromatography columns using beads and monoliths as media.
36

 

 

It already have been reported some cases related to successful purification of virus using monoliths, 

such as the purification of Adenovirus (Ads), Tomato mosaic virus (ToMV) and Influenza virus, among 

others.
38,39,40

 In both cases, the use of monoliths led to a decrease of the process duration, for 

example, the ToMV purification decreased from a 5-day procedure to an 8h procedure. 

All of the monoliths characteristics lead to the improvement of purification processes, with a easier 

implementation and production, these supports result in a more economical manufacturing and a 

faster response to sudden demands, which is suitable for the increasing demand of viral vectors for 

clinical applications of gene therapy and vaccination processes.
1,6,7,13,41

 

However, the performance of monoliths as supports in chromatographic processes depends of several 

features that have to be controlled and improved to reach the desired resolution of the purification 

process. Among these features, the materials, the conditions and the preparation methods selected 

are some of which will affect the final structure and performance of the monolith. Also it is important to 

each monolith to own proper characteristics, such as an inert surface, available chemical groups, a 

good mechanical stability and a structure with a high porosity and interconnectivity.
23,28

 It is very 

important to find an optimal balance between surface area, porosity and pore size distribution of the 

monoliths, that depend of the preparation properties applied, which can be controlled to obtain specific 

results more suitable to each application.
42

 The Table 1.2 describes the general features of 

chromatographic media used for large molecules separation processes. 

 

Table 1.2 – General features of chromatographic media used for the separation of large biomolecules.
42

 

 

 

 

 

 

 

Feature Dimension 

Surface area 10 – 400 m
2
/cm

3
 

Functional Group 10 – 500 μmol/cm
3
 

Porosity 
(εp) 

Nonporous 0 

Porous 0.25 – 0.75 

Pore size 
Conventional 10 – 100 nm 

Monolith 1000 – 5000 nm 

Monoliths  Beads s 
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Considering the material composition, monoliths can be classified into two categories: organic 

monoliths and silica-based monoliths.
14,43

 Silica-based monoliths are generally prepared by a sol-gel 

process, which leads to a good network with high permeability and mechanical stability, and with a 

surface that can be easily modified.
44,45

 This type of support has several applications, though the most 

successful and highly reported ones relate to HPLC and Capillary Electrochromatography 

processes.
29

 However, nowadays the most common type of monoliths used, are the organic monoliths 

that are composed of polymer-based materials. These materials can be agarose, polymethacrylates, 

polyacrylamides, chitosan or cryogels.
7,28

 In the recent past years, monoliths made with polymers and 

polymer blends (synthetic polymers) have received a lot of attention, in particular the chitosan-based 

monoliths.
25,41

 

Chitosan is obtained from partial deacetylation of chitin, a biodegradable polysaccharide extracted 

from crustacean shells, and is characterized by owning positive attributes such as low toxicity and 

biological properties, being biocompatible with antimicrobial activity and anti-tumour properties. 

Besides being ecologically safe, this polymer also has several possibilities for structure modifications 

to acquire the desired properties, making this type of material a valuable polymer with multiple 

potentials also to be applied in biomedical, pharmaceutical and cosmetic fields.
46

 

The preparation of the polymeric monoliths begins with a polymerization mixture, consisting of 

monovinyl monomers, a crosslinking agent, an initiator and a pore-forming solvent. Usually, the 

polymerization is a radical polymerization, which can occur by UV irradiation or heat.
22

 In the case of 

synthetic polymers such as cryogels, macroporous structures prepared by cryogelation at sub-zero 

temperatures, it occurs a free radical polymerization where the porogen will be the ice crystals formed 

during the gelation process. The freezing temperature will define the size of the pores obtained, as 

with a higher freezing temperature, larger pores will be obtained, and smaller pores are obtained while 

using lower temperatures.
47

 

The monomers used in the polymeric mixture are going to provide the monolith with some properties 

such as mechanical stability and functional groups. For example, one of the most common monomers 

used is glycidylmethacrylate (GMA), that can be used as blending or as a crosslinker, will introduce 

epoxy groups to the monolith matrix, through which further functionalization can be made.
48

 

Another recent strategy for monoliths improvement is the preparation of monoliths with magnetic 

properties.
49,50

 The blending of magnetic nanoparticles (MNP’s) within the casting solutions will 

enhance the monoliths performance due to magnetic responsive particles.  

To work as chromatographic media for several techniques, such as ion-exchange, affinity or 

hydrophobic chromatography, it is require the chemical interaction between the support and the target 

molecule we want to purify. For this purpose, it is necessary the functionalization of the monoliths 

through the coupling of ligands to achieve the desired chromatographic properties. Ion-exchange 

chromatography is the most applied technique for virus purification, in which the common ligands used 

for coupling include quaternary amine (Q) and diethylaminoethyl (DEAE) ligands, as strong and weak 

anion-exchangers respectively, and sulfonated (S) and carboxyl (C) as strong and weak cation-

exchangers, respectively. However, the immobilization of each type of ligand can be implemented by 

different methods.
17
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Another important feature that will affect the final structure of monoliths is the preparation methods 

and respective conditions in which this preparation takes place. There are several methods that can 

be applied, being the most used freeze-drying, from which is obtained a good interconnectivity within 

the macroporous structure. However, conditions such as temperature, pressure and concentration of 

the mixture will affect the obtained structure and can be adapted to achieve the desired porous 

structure.
51

 

All these advantages and characteristics of monoliths led to the commercial interest of several 

companies worldwide. Nowadays there are several types of monoliths commercialized, from 

compressed hydrophilic gels, silica rods to macroporous polymers that can acquire different shapes 

such as discs, columns or tubes.
42

 Currently, four main companies invest mainly in the manufacturing 

of monoliths for bioseparations, among which the most marketed and used monoliths are the CIM 

(Convective Interactive Media) supports that are commercialized by BIA Separations.
26

 The 

commercially available monoliths by these companies are summarized in Table 1.3, with their 

respective features and separation modes for which they are best suitable.  

 

Table 1.3 - List of current commercially available monoliths for bioseparations.
23

 

 

 

 

 

 

 

 

 

 

 

 

 

With the potential of these supports combined with the increasing demand of large-scale purification 

processes, it is necessary to develop the scalability of the monoliths. For the implementation of the 

monoliths at an industrial scale, it is essential the adaptation of their features so that a chemical and 

mechanical stability is achieved and the processes yield maintained. For many, scale-up is considered 

a limitation for monoliths development, however in the past years, some improvements have been 

made, and for example, some scale-up trials were accomplished while connecting columns in parallel 

or in series, offering a bigger volume capacity to the system. Additionally, it was also accomplished the 

scale-up of a disk monolith of 0.34 mL capacity to a successful 8 L radial column.
47

 However, this is a 

current process and further development is necessary to assure the stability of these scale-up 

columns.  

 

Product Manufacturer Material 
Separation 

mode 
Macro Pore 
Size (nm) 

CIM BIASeparations Polymethacrylate 

Ion exchange, 
Hydrophobic 
interaction, 
Reversed 

phase, 
Bioaffinity 

0.03 – 1.5 

UNO Bio-Rad Polyacrylate Ion exchange 1 

Chromolith Merck Modified Silica 
Reversed 

phase 
≥ 2 

Seprasorb Sepragen Modified Cellulose Ion exchange 50-300 

SWIFT Isco Polymethacrylate 
Ion exchange, 

Reversed 
phase 

1.5 
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1.3 Aims of the work 
 

This work is aimed to prepare and functionalize different types of monoliths to work as ion exchange 

media to improve the process of virus purification. While combining the monoliths supports produced 

with biopolymers materials, our strategy is to functionalize these monoliths for a better binding to the 

target virus within conditions that will make this a more sustainable process. Our target virus will be 

Adenovirus Serotype 5 (Ad5). To this aim our work is structured by different stages that complement 

the whole production of the monoliths and their application as chromatographic media. (Figure 1.3) 

The development of the monoliths started by choosing the materials from a previous work, where the 

monoliths were aimed for Ad5 purification, among which the chitosan (CHT) based monoliths stood 

out when blended with PVA or GMA, resulting in lower bindings and higher recoveries of this virus, 

being around 80% of the virus load recovered. These are good materials to be implemented due to 

their biological properties, such as being biocompatible, biodegradable and non-toxic. In addition to 

these polymer blends, a crosslinker, a catalyst, an initiator and a pore-form solvent will also be present 

in the casting solutions, forming the polymerization mixture. However, our casting solutions will also 

differ in some aspects such as the concentration, the presence or absence of the crosslinker or if 

magnetic nanoparticles (Mg) are blended in the casting solutions. We designate our monoliths as 

smart structures due to their ability to react to the conditions implemented during the purification 

process, when materials are present, such as chitosan that reacts to the pH changes, and the MNP’s 

that are implemented to enhance the monoliths performance while an external magnetic field will be 

applied. 

Another important feature that will affect the final structure of monoliths is the preparation methods 

and respective conditions in which this preparation takes place. The monoliths will be prepare through 

environment friendly methods, such as freeze-drying and drying assisted with scCO2, which will result 

in monoliths with different structures offering diverse benefits to each casting. Freeze-drying is a 

commonly used technique, in which the material is frozen and then sublimated providing the material 

with a good porous structure. It has advantages of obtaining dried monoliths using low temperatures 

with no damage to their structure. However, the use of methods assisted with supercritical fluids has 

been increasing in the last decades due to their many advantages when implemented. Besides being 

a simple method, CO2 properties make this component a suitable supercritical fluid for the preparation 

of polymeric porous structures, resulting in a completely dry final product, free of solvents and with the 

possibility of adjusting the pore size distribution obtained in the end. 

Another advantage of the biomaterials selected is that the monolith’s castings will offer several 

possibilities for mechanical and chemical modifications. This combined with the virus charge 

properties, we can functionalize the monoliths to enhance the virus binding to the supports and 

improve our purification process. The functionalization is going to be made with quaternary amine (Q) 

ligands that are characterized by being strong anion exchangers, meaning that will remain fully 

charged over a broad pH range, resulting in a faster and easier development of separation processes. 

Two types of Q ligands that have different terminations are going to be immobilized by three different 

methods. A commonly used method for ligand immobilization consists on an Epoxyactivation of the 
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supports, introducing epoxy groups on the matrix where the ligand is going to be coupled, which will 

be designated as epoxyactivation technique. The second method implemented, the alternative plasma 

technique, consists of a single-step solvent free technique. Through Plasma treatment, introducing 

radicals in the monoliths surface for a subsequent amination, where the ligand is then going to be 

coupled. The last method, the Direct Immobilization Technique, consists of a single-step 

immobilization process where the ligands are introduced directly in the casting, no needing any further 

modifications after polymerization. To enhance the ligand immobilization, it were also implemented 

some assays were the ligand was added in excess (5 eq. to activation content) to make sure that the 

immobilization occurs. 

Once the monoliths are ready and functionalized, they were tested as chromatographic media for virus 

purification with samples of an Ad5 virus. The ligand immobilized was quantified by a precipitation 

titration. Aside these tests, it was also implemented a proof of concept, to evaluate if the monoliths 

work as ionic exchange chromatographic media, using a protein mixture composed by Lysozyme and 

BSA by taking advantage of their charge properties among the pH medium. These tests were 

quantified through a BCA test and SDS-Page analysis to evaluate the partition of the proteins among 

the purification stages. 

 

 
 
 
 
 

 
 
 
 
In addition to the evaluation of the produced monoliths as chromatographic media, it is also essential 

to study the morphological and mechanical properties of the supports to evaluate if the properties 

have the desired values and assure an optimal performance. As it was mentioned before, it is 

important a balance between the pore size distribution and the mechanical stability of each monolith, 

therefore there are several methods that can been implemented to study these properties such as 

scanning electron microscopy (SEM) to obtain high resolution images of the porous structure, mercury 

intrusion porosimetry (MIP) to evaluate the porosity and average size diameter of the pores within the 

monolithic structure and mechanical studies to measure the strength of the support, among others. 

Figure 1.3 – Work scheme of this thesis. 
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Despite the importance of these evaluations, it was not possible to implement them throughout the 

duration of this work. However, in previous reported works from which we based the production of the 

supports, the chitosan-based monoliths were characterized and the features of the monoliths 

produced were studied, such as pore size distribution, biodegradability, swelling and water flux, the 

porosity and mechanical stability. To test the biodegradability and swelling capacity, the monoliths 

were studied for several weeks, among which their stability was studied by placing the supports in 

different pHs, among which all chitosan-based monoliths showed good swelling properties and a 

significant water uptake. It was also observed the supports capacity to own a pH memory and ability to 

respond to the medium, as it is expected to obtain in our produced smart macroporous structures. In 

addition, the porosity and compressive modulus of these previous monoliths were also reported. All 

these properties are represented in Table 1.4, and it is expected to obtained similar results on the 

monoliths produced in this work. In turn, the monoliths prepared by assisted drying with scCO2 were 

not previously characterized.  

 

Table 1.4  – Morphological and mechanical properties of chitosan-based monoliths. These results are from 

reported works, where Chitosan/Poly(vinyl alcohol) (CHT/PVA), Chitosan/Glycidylmethacrylate (CHT/GMA) and 
Chitosan/Poly(vinyl alcohol) (CHT/PVA) blended with magnetic nanoparticles (Mg) monoliths were prepared by 

freeze-drying.
49
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Preparation 
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TFreezing 
(ºC) 

Average 
Pore 
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Diameter 
(μm) 

Porosity 
(%) 

Permeability 
(L/m

2.
h.atm) 

Compressive 
Modulus (kPa) 

Dry Hydrated 

CHT/PVA(50:50) 
Freeze 
Drying 

-80 53±5 70±5 294±15 0.41±0.5 0.2±5 

CHT/GMA 
Freeze 
Drying 

-80 123±5 75±5 390±5 0.26±0.5 n.a. 

CHT/PVA(50:50) 
Mg 

Freeze 
Drying 

-80 88±5 86±2 120±9 1.8±0.2 0.5±0.2 

 

 

The thesis is organized in four main chapters. Firstly, the Introduction chapter followed by the 

Experimental chapter, where it will be comprised all the experimental work for the monoliths 

preparation such as materials, preparation methods, ligands and respective immobilization methods 

and protein-binding tests assays. Subsequently, the results obtained during all these stages will be 

discussed in the third chapter, with their comparison to some previous works done and literature 

results. Finally, the Conclusions chapter will include the review of our obtained results and the 

discussion of the future perspectives that can be applied as continuation of our work to which could 

result in the improvement of the virus purification process.  
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2 Experimental 
 

2.1 Materials 
  

Chitosan (75-85% deacetylated, medium molecular weight), poly(vinyl alcohol) (Mw = 89.000-98.000, 

99% hydrolysed), glycidyl methacrylate, methylenebisacrylamide (purity >99%), N,N,N’,N’ 

tetramethylehtylenediamine, ammonium persulfate (purity ≥ 98%), sodium thiosulfate (purity ≥ 99%), 

tris(hydroxymethyl)amino methane (Tris-Base), epichlorohydrin, 1,6-hexanediamine (purity ≥ 98%), 

phenol, potassium cyanide and pyridine were supplied by Sigma Aldrich. Iron (III) chloride 

hexahydrate (FeCl3.6H20), iron (II) chloride tetrahydrate (FeCl2.4H20), bichinchoninic acid solution, 

copper (II) sulfate solution, Coomassie Brilliant Blue R, Mercaptoethanol, Bovine Serum Albumin, 

Lysozyme from chicken egg white, (2-aminoethyl)trimethylammonium chloride hydrochloride (purity ≥ 

99%) and glycidyltrimethylammonium chloride hydrochloride were also purchased from Sigma Aldrich. 

Ninhydrin (purity >99%) and ammonium hydroxide solution (NH4OH) were supplied from Fluka. Glacial 

acetic acid (purity≥ 99%) was purchased from Pronalab. Acetone (purity ≥ 99,5%), methanol (purity ≥ 

99%), bromphenol blue sodium salt and isopropanol were purchased from Roth. Glycine was supplied 

by Acros. Sodium hydroxide (NaOH), ethanol, hydrogen chloride (HCl) and sodium chloride (NaCl) 

were purchased from Panreac. Sodium dodecyl sulphate (SDS) was supplied by BioRad. 

Nitrogen, argon (Ar) and carbon dioxide (CO2, purity≥ 99,9%) were supplied by Air Liquid. All reagents 

were used without any further purification. 

 

2.2 Methods 
 

The monoliths were prepared by the implementation of two different methodologies commonly used: 

freeze-drying and gel drying using supercritical CO2 (scCO2). 

 

2.2.1 Native Monoliths Preparation by Freeze-Drying 
 

The monoliths were first prepared by dissolving different ratios of chitosan (CHT) (50-90%) with 

poly(vinyl alcohol) (PVA) (50%) and glycidyl methacrylate (GMA) (10%) in acidified water (1% v/v with 

acetic acid) and stirred with heating (50-80°C) until the castings solutions become completely 

homogeneous. Then methylenebisacrylamide (MBA), the crosslinking agent (2% w/w), was added 

with continuous agitation for 90 min at 80°C. Afterwards, the casting solution was introduced into 

plastic tubes (length 3 cm, width 1 cm) with simultaneous addition of the initiator N,N,N’,N’ 

tetramethylehtylenediamine (TEMED) (23 μL) and the catalyst ammonium persulfate (APS) (42 μL) 

under agitation at 0°C, for 30 min. Then the tubes where frozen for 12h at -80°C and later lyophilized 

(Christ Alpha 1-4 Freeze Dryer). At the end, dried and slightly shrunken monoliths were obtained as 

can be seen on Figure 2.1. 
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Figure 2.1 – Example of native CHT/PVA monoliths prepared by Freeze-Drying. 

 

2.2.2  Native Monoliths Preparation by scCO2 gel drying method 
 

The monoliths were prepared by dissolving two CHT/PVA casting solutions, as described previously, 

in which the polymeric mixture concentrations differ (3 and 7%). However, it was also prepared 

monoliths with these same castings but without MBA in the mixtures. 

The castings were then introduced into several steel containers (length 1 cm, width 2 cm) and were 

frozen for 12h at -20°C. Then it was implemented a water-acetone substitution by immersing the 

frozen monoliths into acetone at -20°C for 48h. Afterwards, the monoliths were dried using scCO2 

following a procedure already described in detail elsewhere 
52,53

 with few modifications. 

The frozen monoliths were introduced into four steel containers, which were then introduced in the 

high-pressure cell. An example of a steel container can be seen on Figure 2.2. Subsequently, the 

vessel was closed and immersed in a visual thermostated water bath (40°C), heated by means of a 

controller (Hart Scientific, Model 2200) that maintains the temperature within ±0,01°C. The CO2 was 

added using a Gilson 305 piston pump until the desired pressure was achieved (16 MPa) and the 

operation was performed in a continuous mode with a flow rate of 10 mL/min. Once the desired 

pressure was reached, the supercritical solution passes through a back pressure regulator (Jasco 

880-81 Plus) which separates the CO2 from the acetone. The pressure inside the system was 

monitored with a pressure transducer (Setra Systems Inc., Model 204) with a precision of ±100 Pa.  

All the experiments were carried out for 4h. At the end, the vessel was depressurized during 4-5min 

and dried monoliths with no shrinkage were obtained as can be seen on Figure 2.2. The schematic 

representation of the installation in which the monoliths where prepared can be seen on Figure 2.3. 

 

  

 

Figure 2.2 – Example of native CHT/PVA monoliths prepared by scCO2 – assisted drying process. 
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Figure 2.3 - Schematic representation of the installation used for the preparation of monoliths using scCO2, 

consisting of: the high-pressure cell containing monoliths in the steel containers (1), a backpressure regulator (2), 
the thermal bath (3), the temperature and pressure controllers (4), the flow pump (5), the cryostat (6) and the CO2 

bottle (7). 

 

 

2.2.3 Magnetic Monoliths Preparation 

 

Previously to the preparation of the casting solutions and the monoliths preparation it was performed 

the synthesis of magnetic nanoparticles (MNP’s) by co-precipitation method. An iron solution of FeCl3 

and FeCl2 in 25 mL of distilled water was prepared containing a Fe
3+

/Fe
2+

 molar ratio of 2.  In a 

volumetric flask an aqueous solution of ammonium hydroxide (200 mL, 25% solution) was purged with 

N2 for 15 min. Afterwards the iron solution was added drop wise with maximum agitation (2000 rpm) 

under an inert atmosphere, and the reaction was kept for 2h. Finally the magnetic particles were 

washed with distilled water using a permanent magnet and re-suspended in an accurate volume of 

200 mL of distilled water.  At the end, a solution of magnetic particles with a concentration of 10 

mg/mL was obtained. 

Once the castings solutions and the batch of magnetic particles were both prepared, a corresponding 

volume of MNP’s (      
 
 ⁄                ) was re-suspended and added to the castings. 

The magnetic castings solutions were stirred (250 rpm) during 24h at 80°C and 48h at 40°C for the 

CHT-PVA and CHT-GMA solutions, respectively, making sure homogeneous solutions were obtained. 

Finally, the casting solutions were added to the specific supports of each preparation method, freeze-

drying or scCO2 – assisted drying process, whose procedures were performed as mentioned before 

on sections 2.2.1 and 2.2.2, from which were obtained monoliths as can be seen on Figure 2.4. On 

Table 2.1 it is described the several monoliths developed by the two different preparation methods 

used. 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) (7) 
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Figure 2.4 - Example of CHT-PVA monoliths blended with magnetic particles prepared by freeze-drying (A) and 

scCO2 – assisted drying process (B). 

 

 
Table 2.1 - List of the native monoliths produced. The monoliths differ in some features such as the castings, 

Chitosan/ Poly(vinyl alcohol) (CHT/PVA), Chitosan/Glycidylmethacrylate (CHT/GMA), CHT/PVA with magnetic 
particles blending (Mg), the concentration of the polymeric mixture (3% or 7%), if MBA was or wasn’t added to the 

casting solution and if it were prepared by freeze-drying or scCO2 – assisted drying process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Ligand Immobilization  
 

The functionalization of the monoliths was performed through the immobilization of quaternary amine 

(Q) ligands onto the matrix of the monoliths. The monoliths structure presented several available 

functional groups (e.g. amine and hydroxyl groups) that can be used to carry out different 

functionalization techniques. Thereby the immobilization of ligands on the monoliths’ surface followed 

three different methods, which will be designated as: the epoxyactivation technique (method 1, M1), 

the alternative plasma technique (method 2, M2) and the direct immobilization technique (method 3, 

M3). These methods have already been described in the literature.
54,55

 

Afterwards the functionalized monoliths were evaluated in terms of the ligand immobilization yields 

and their performance on the purification of virus particles was compared. 

Casting Preparation TFreezing (ºC) 

CHT/GMA Freeze Drying -80 

CHT/PVA (50:50) 3% 
(With MBA) 

scCO2 -20 

CHT/PVA (50:50) 3% 
(Without MBA) 

scCO2 -20 

CHT/PVA (50:50) 7% 
(With MBA) 

scCO2 -20 

CHT/PVA (50:50) 7% 
(Without MBA) 

scCO2 -20 

CHT/PVA (50:50) Mg Freeze Drying -80 

CHT/PVA (50:50) 3% Mg 
(With MBA) 

scCO2 -20 

CHT/PVA (50:50) 3% Mg 
(Without MBA) 

scCO2 -20 

A B 
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2.3.1 Method 1 – Epoxyactivation Technique 
 

In this method, the monoliths were epoxyactivated for further coupling with (2-

aminoethyl)trimethylammonium chloride hydrochloride (NH2-Q) ligand, by taking advantage of the free 

hydroxyl groups at the monolith surface. 

The epoxyactivation was performed by adding 1 mL of 10 M NaOH solution (40 mL/kg of moist gel) to 

the monoliths and incubated for 30 min at 30°C with agitation (200 rpm). Afterwards 1 mL of 

epichlorohydrin (72 μL/kg of moist gel) was added and incubated again for 3 h at 36°C with the same 

agitation. In the end, the monoliths were washed five times with 10 mL of distilled water with agitation 

for 1 min. The extent of epoxyactivation was determined by adding 3 mL of 1.3 M sodium thiosulfate to 

the epoxy-activated monoliths followed by incubation at room temperature, for 20 min. This mixture 

was then neutralized with HCl (0.1 M). The amount of HCl added corresponded to the number of 

moles of OH
-
 released (10 μmoles per 100 μL added).  

Prior to the immobilization of the ligand onto the epoxyactivated monoliths, a certain quantity of the 

ligand (5 molar excess to epoxy content) was dissolved in 5 mL distilled water and then the amine salt 

form of the ligand was neutralized with 1M NaOH (1 eq. to epoxy content). Afterwards, the ligand 

immobilization occurred overnight at 40°C with agitation (200 rpm). The complete schematic 

representation of the functionalization of the monoliths through this method can be seen in Figure 2.5. 

After the immobilization, the monoliths went through a cleaning procedure to eliminate any remains of 

non-absorbed ligands. Firstly, we started by washing the monoliths with distilled water until neutral pH. 

Then the monoliths were introduced in a Varian column (with 3 mL capacity) and incubated with 

distilled water to allow swelling (2 mL.cm
-1

 of support). Then, they were washed again by a procedure 

that consisted of three different steps: 

1) Regeneration Buffer (0.1 M NaOH 30% Isopropanol) and distilled water alternated (2 mL 

each, 5x);  

2) Elution Buffer (20 mM Tris-base, 1 M NaCl pH 8, 5 mL); 

3) Binding Buffer (20 mM Tris-base, 150 mM NaCl pH 8, 10 mL). 

At the end the monoliths were stored with binding buffer until tested. 
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Figure 2.5 - Schematic representation of the monoliths functionalization through Epoxyactivation Technique. This 

method consists in the epoxyactivation the monoliths surface, with the addition of epichlorohydrin (1) epoxy 
groups will be introduced in the monolith’s surface for subsequently coupling with the NH2-Q ligand (2). 

 

2.3.2 Method 2 – Alternative Plasma Technique 
 

The alternative plasma technique (Figure 2.6) for ligand immobilization is based on the activation of 

the monoliths surface through Argon-plasma treatment followed by in situ amination for further ligand 

immobilization 
54

.  

The Plasma treatment was performed according to the following procedure: the system was heated at 

a temperature of 150°C with agitation. Then the monoliths were inserted in the chamber and the Argon 

was applied for 1/2 min to inert the chamber atmosphere. Then the monoliths were activated with 

Argon (5 min), introducing radicals onto their surface, followed by an amination with 1,6-

hexanediamine. Due to the heating of the system, which is maintained at 150°C, the gaseous 1,6-

hexanediamine is vaporized to the plasma chamber that is under vacuum and amination occurs for 30 

min. The extent of the amine groups was determined through the Kaiser Test. This test is based on 

the reaction of ninhydrin with primary amines resulting in a mixture with a characteristic dark blue 

colour. This was performed by adding three solutions (A - 80% crystalline phenol in ethanol (w/v)), B - 

2% aqueous solution of potassium cyanide (0.001 M) in pyridine (v/v) and C - 5% ninhydrin in ethanol 

(w/v)) (50 μL of each one) to the aminated monoliths samples (1.5 mL).  

A calibration curve was also assessed with diluted standard solutions of glycine (0-0.5 μmol/mL).  

All the samples were then placed in a water bath at 100°C for 10 min. The absorbance of the samples 

was measured in a microplate format by adding 200 μL of each sample in each well of a 96-well 

transparent microplate, which was previously heated at 60°C for 20 min. The absorbance was then 

measured at 560 nm in a microplate reader (Tecan Infinite F200).  

(1) 

(2) 
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Then, a certain quantity of glycidyltrimethylammonium chloride hydrochloride (GQ) ligand (5 molar 

excess to amination extent) was dissolved in 10 mL of distilled water, neutralized by adding 1M NaOH 

(1eq. to amination extent) and then added to the aminated monoliths. Finally the immobilization 

occurred overnight at 40°C with agitation (200 rpm). The complete schematic representation of the 

functionalization of the monoliths through this method can be seen in Figure 2.7. 

After the immobilization, the monoliths went through a clean procedure to eliminate any remains of 

non-absorbed ligands. The procedure was performed as already described in section 2.3.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 – Schematic representation of the installation for the functionalization of the monoliths through plasma 

treatment, consisting of: an Argon bottle (1), the flask containing 1,6-hexanediamine and respective heating (2) 
and the plasma installation where the monoliths are inserted for the treatment (3). 

 

 

 

 

 

 

 

 

 

 

 

(1) 
(2) 

(3) 
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Figure 2.7– Schematic representation of the functionalization of the monoliths through Method 2, Alternative 

Plasma technique, which consists in applying Argon to the monoliths to introduce radicals onto the monolith’s 
surface (1), followed by an amination with 1,6-hexanediamine for subsequent GQ ligand coupling (3). 

 

2.3.3 Method 3 – Direct Immobilization Technique 
  

The direct ligand immobilization technique was based on the direct addiction of the ligand to the 

casting solution. 
55

 

The monolith’s casting preparation was performed as already described in section 2.2.1, with the 

addition of the selected ligand. The ligand GQ was added directly in the CHT/PVA casting solution 

with agitation at 80°C for 2h and the ligand NH2-Q was added directly in the casting CHT/GMA with 

agitation at 50°C for 2h. To estimate the amount of each ligand that should be added to the castings, a 

Kaiser Test was performed to determine the extent of the amination of the monoliths only composed 

by CHT-PVA or CHT-GMA, which was performed has already mentioned in section 2.3.2.  

After the direct immobilization of the ligands, it was added the crosslinking agent MBA (2% w/w) with 

agitation until the solutions were completely homogeneous. Afterwards the casting was introduced in 

plastic tubes (length 3 cm, width 1 cm) to be frozen for 12h at -80°C and later lyophilized (Christ Alpha 

1-4 Freeze Dryer) until dry.  

(1) 

(2) 

(3) 



 19 

After the immobilization, the monoliths went through a clean procedure to eliminate any remains of 

non-absorbed ligands. The procedure was performed as already described in section 2.3.1. On Table 

2.2 it is described the several functionalized monoliths developed, with the respective immobilization 

methods implement and the different preparation methods used. 

 

 
Table 2.2 – List of the functionalized monoliths produced. The monoliths differ in some features such as the 

castings, Chitosan/Poly(vinyl alcohol) (CHT/PVA), Chitosan/Glycidylmethacrylate (CHT/GMA), CHT/PVA with 
MNP’s blending (Mg), the concentration of the polymeric mixture (3% or 7%), if MBA was or wasn’t added to the 
casting solution and if were prepared by freeze-drying or scCO2 – assisted drying process. The functionalization 
was through different methods (M1 – Epoxyactivation technique, M2 – Alternative plasma technique, M3 – Direct 

immobilization technique) with two ligands (GQ and NH2Q). 

 

Casting 
Preparation 

Methods 
TFreezing 

(°C) 
Immobilization 

Methods 
Ligand 

CHT/PVA  
(50:50) 
(No lig. 
excess) 

Freeze Drying -80 

M1 NH2Q 

M2 GQ 

M3 GQ 

CHT/PVA  
(50:50) 
(Lig.in 

excess) 

Freeze Drying -80 

M1 NH2Q 

M2 GQ 

M3 GQ 

CHT/GMA 
(No lig. 
excess) 

Freeze Drying -80 

M1 NH2Q 

M2 GQ 

M3 NH2Q 

CHT/GMA 
(Lig.in 

excess) 
Freeze Drying -80 

M1 NH2Q 

M2 GQ 

M3 NH2Q 

CHT/PVA  
(50:50) 3% 
(No MBA) 

scCO2 -20 
M1 NH2Q 

M2 GQ 

CHT/PVA  
(50:50) 3% 
(With MBA) 

scCO2 -20 
M1 NH2Q 

M2 GQ 

CHT/PVA  
(50:50) 7% 
(No MBA) 

scCO2 -20 
M1 NH2Q 

M2 GQ 

CHT/PVA  
(50:50) 7% 
(With MBA) 

scCO2 -20 
M1 NH2Q 

M2 GQ 

CHT/PVA 
Mg  (50:50) 

Freeze Drying -80 
M1 NH2Q 

M2 GQ 

 

2.4 Ligand Quantification of the functionalized monoliths  
 

The ligands quantification was assessed through a precipitation titration, performed as described in 

the literature 
56

 with a few modifications. The chloride ion capacity of the monoliths was determined by 

an argentometric titration with AgNO3 (0.1 M) combined with a silver ring electrode. With the addition 

of the titrant, the Ag
+
 reacts with the Cl

-
 present in the solution and particles of AgCl precipitate, 
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resulting in a mist appearance solution. The amount of AgNO3 added corresponded to the number of 

moles of Cl
-
 released (100 μmoles per 100 μL added). 

 

2.5 Protein Binding for Anion Exchange Chromatography 
 

In order to verify the capacity of the functionalized monoliths to act as an anion exchange 

chromatographic support, protein-binding assays were conducted. The monoliths used on these 

assays were the CHT-PVA(50:50) prepared by freeze-drying and the monoliths (7%) prepared with 

scCO2. The functionalization of these monoliths was made with the GQ and NH2-Q ligand, through 

method 1 and 2 respectively, which are strong anion exchanger and will transform our solid supports 

into positively charged monoliths.  

The protein binding assays were performed with a mixture of proteins, consisting of Lysozyme and 

BSA (Bovine Albumin Serum). Each round of the assays involved regeneration, equilibration, loading, 

washing and elution. All the steps were performed under gravitational force. The regeneration was 

conducted by adding 1 mL of regeneration buffer (0.1M NaOH, 30% (v/v) isopropanol) alternated with 

1 mL of distilled water, 2 times. Next, it was added 1 mL of elution buffer (20 mM Tris-base, 1 M NaCl 

pH8) in a total of 2 times. Afterwards, the equilibration step was carried out adding 1 mL of the binding 

buffer (20 mM Tris-base, 150 mM NaCl pH8), 7 times. In the last step of equilibration, the samples 

were collected on a 96-well microplate UV-half area (VWR) and then the absorbance was measured 

at 280 nm, to confirm that the A280 nm reached ≤ 0.005.  

Then 1 mL of the protein mixture (1 mg/mL, constituted by 0.5 mg/mL of each protein diluted in 1 mL 

of binding buffer) was loaded on the column and the flow-through was collected in 1.5 mL 

microcentrifuge tubes. Afterwards, the column was washed with 4 mL of binding buffer, and the 

samples obtained between the washes were collected in 1.5 mL microcentrifuge tubes. Bound protein 

was eluted by adding 6 mL of elution buffer (20 mM Tris-base, 1 M NaCl pH8), and the samples taken 

between each addition were also collected in 1.5 mL microcentrifuge tubes. After elution, the columns 

were well regenerated and stored at 4°C with binding buffer.  

All the fractions collected (loaded, washed and eluted) were quantified by the BCA assay and SDS-

PAGE analysis.   

Additionally, the protein-binding assay was also attempted by a second approach. It was performed 

with a similar procedure to that described above but with some modifications, aiming to optimize the 

process and try to obtain a higher binding of the protein. Firstly, the regeneration was conducted by 

alternating the regeneration buffer with distilled water, 5 times, followed by elution buffer in a total of 5 

times. Afterwards, the equilibration step was carried out 8 times, which samples were collected and 

measured at 280 nm has described above. Then 1 mL of the protein mixture (1 mg/mL) was loaded on 

the column and incubated overnight, stored at 4°C. The flow-through was then collected in a 1.5 mL 

microcentrifuge tube. Afterwards, the column was washed with 5 mL of binding buffer followed by 

elution, consisted by adding 5 mL of elution buffer 1 (20 mM Tris-base, 1 M NaCl pH8), followed by 5 

mL of elution buffer 2 (100 mM Tris-base, 1 M NaCl pH8). All the samples between each wash and 
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elution were collected in 1.5 mL microcentrifuge tubes. After elution, the columns were well 

regenerated and stored at 4°C with binding buffer.  

All the fractions collected (loaded, washed and eluted) were quantified by the BCA assay and SDS-

PAGE analysis.   

2.5.1 BCA Test 
 

The quantification of total protein was assessed through the colometric BCA assay. Two calibrations 

curves of BSA were performed using the Binding buffer and Elution buffer. The BSA range of 

concentration in the calibration curve was 0.2-1 mg/mL.  

To perform the assay, 25 µL of each sample was added (calibration curve and protein sample) to a 

96-well microplate. Then, a solution of a BCA reagent was prepared by mixing 50 parts of reagent A 

(bichinchoninic acid solution) with 1 part of reagent B (copper (II) sulfate solution). A volume of 200 µL 

of this BCA reagent was added to the samples in each well of the microplate, and then incubated at 

37°C for 30 min. At the end, the samples absorbance was measured at 560 nm and read in a 

microplate reader (Tecan Infinite F200). 

 

2.5.2 SDS-Page Analysis of Protein Binding 
 

To evaluate the partition of the proteins mixture obtained in the several steps of the protein tests and 

verify which protein bonded to the supports we have performed a SDS-Page analysis. An SDS-Page 

analysis consists of evaluating the mobility of a protein in a gel that is submitted to an electric current. 

The analysis was made in a 12.5% acrylamide gel. 

The preparation of a 12.5% acrylamide gel combines the preparation of two different gels, a running 

gel and a stacking gel, that correspond to the bottom and top of the gel casing respectively. Firstly, the 

running gel was prepared by assemble in a tube 0.75 mL of solution I (3M Tris-HCl pH 8.8), 2.08 mL 

of Solution III (30% acrylamide and bis-acrylamide solution 19:1), 0.05 mL 10% SDS, 2.1 mL distilled 

water, 38 µL of 10% APS and 2.5 µL of 99% TEMED, which was introduced into the glass plates of 

the gel casing. Then, 1 mL of 2-butanol 99% was added on the top of the casing to promote a 

homogeneous and flat surface of the gel and polymerization occurred for 30 min. In the end, the 2-

butanol was removed and the gel was washed with distilled water. 

Afterwards, the stacking gel was prepared by assemble in a tube 0.45 mL of solution II (0.5 M Tris-HCl 

pH 6.8), 0.3 mL of Solution III (30% acrylamide and bis-acrylamide solution 19:1), 18 µL 10% SDS, 

0.94 mL distilled water, 13.5 µL of 10% APS and 2 µL of 99% TEMED. Then the running gel was 

introduced into the gel casing together with the frame with wells and polymerization occurred again for 

30 min.  

Then the different samples obtained from the protein binding tests were prepared. To each volume of 

the samples (10 µL) it was added a volume of sample buffer (5 µL) (5 mL of 0.5 M Tris-HCl pH 6.8, 2 

mL of 100% glycerol, 4 mg bromphenol blue sodium salt, 8 mL of 10% SDS, 1 mL β-mercaptoethanol 

and distilled water up to a final volume of 20 mL). Then, the samples were spin down and boiled in a 



 22 

hot water bath (100°C) for 2 min. In conjunction with the samples, it was also prepared by the same 

procedure a low molecular weight protein marker (NZYTech).  

In the end, all the samples were ready to be introduced into each well of the 12.5% acrylamide gel.  

Then the running apparatus was assembled and the gel casings were introduced into the running 

module that was subsequently filled with the electrophoresis buffer (0.25 M Tris Base, 1.92 M Glycine, 

0.1% SDS pH 8.3). The samples (15 µL) were then introduced into each well of the casing and the 

12.5% acrylamide gel ran for 1h at 100 V and 250 mA.  

In the end, the gels were stained with a Coomassie solution (1 g Coomassie Brilliant Blue R, 15 mL 

glacial acetic acid, 90 mL methanol and distilled water up to 200 mL) for 30 min, and subsequently 

treated overnight with a distained solution (75 mL glacial acetic acid, 450 mL of methanol and distilled 

water up to 1 L).  
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3 Results and Discussion 
 

3.1 Native chitosan-based monoliths 
 

Taking notice of all properties and benefits of using monoliths as a chromatographic media, in this 

work it were prepared and functionalized different types of monoliths able to work as anion exchange 

media and improve the virus purification process. 

For the past decade, viruses have been greatly applied in the gene therapy and vaccination fields. 

With the aim to prevent and slow down the progression of diseases, gene therapy takes advantage of 

viruses infectious system to act has gene delivery systems carrying the therapeutic genes into cells. 

The most used gene delivery systems are viral vectors, such as Adenovirus and Retrovirus
3
, which 

application in clinical trials has been increasing, creating a demand for the development of alternative 

purification techniques that allow the process of larger volumes of vectors with high purity and sterility, 

while being cost-effective. 
27

  

Biomolecules such as viruses, plasmid DNA and proteins are characterized by being large size 

particles with complex molecular surfaces, which limits their purification using traditional methods such 

as centrifugation and chromatographic techniques. Despite the many advantages of using 

chromatographic methods, the traditional media used, such as resins or porous beads, owned small 

pores that when combined with the large size molecules resulted in low mass transfers and 

subsequently, in long process times.
11

 The need to overcome these limitations, led to the development 

of an alternative range of chromatographic supports with decreased mass transfer resistance, allowing 

the purification of higher process volumes. One of these alternative supports are monoliths, which 

have been applied in various types of processes, such as Affinity or Hydrophobic Chromatography, 

among others. However their major application has been in Ion Exchange Chromatography 

implemented for the purification of large biomolecules aimed at the gene-based therapies.
11,17

 

Monolithic materials are characterized by having a macroporous structure with highly interconnected 

network of pores that can range different sizes. The large porous structure obtained in these supports 

offer several advantages to bioseparations. Advantages such as their design that take advantage of a 

predominant convective mass transport, a low back pressure and improved mass transfer, contribute 

for higher flow rates and shorter process times. 
14,19

 

However, to optimize the purification process, the supports should possess several features, such as 

to have an inert surface that is needed to prevent degradation by impurities 
42

, to have available 

groups on the matrix given by the materials if further modification is necessary and to be mechanically 

stable with a high porosity and interconnectivity. 
17

 To achieve a good porosity structure, it is crucial to 

find an optimal balance between the surface area, the porosity and the pore size distribution of the 

support to be suitable for the target application.
6,11,18

 For example, for the purification of large 

molecules like Adenovirus, which have an 90-100 nm structure, the monoliths should retain a good 

macroporous structure with a pore average range of interest between 1000 and 5000 nm (Table 1.2). 

However, we have to take into account that when the monolithic structure is constituted by large 

pores, less surface area will be available, and consequently will result in a lower binding capacity. 
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Therefore it is essential to try to obtain an equilibrium between these features to achieve a high 

purification yield. So far, several successfully purification processes of viruses and other large 

biomolecules using monoliths have been reported, with recovery yields ranged from 50% to 90%. 
16,39

 

 

The strategy followed in this work was the preparation and functionalization of different chitosan-based 

monoliths blended with synthetic polymers to work as anion exchange media to improve Ad5 

purification. To obtain the correct macroporous structure for this process, we must be aware of the 

several factors during monoliths production that will affect their structure and subsequently their pore 

size distribution. These factors include the materials to be used and their ratio, the preparation 

methods, the temperature, the concentration of the casting solution and the yield and method of 

functionalization applied to the supports. However, it is also important to improve the purification 

process attempting to make it a more sustainable and environmental friendly process.  

The first issue when preparing monoliths is the materials selection. Firstly, we used information from a 

previous work
50

 which consisted of testing different types of native monoliths with different castings for 

Ad5 purification. As the monoliths were not functionalized, the ideal supports were the ones that 

resulted in a lower binding (%) and a higher recovery (%) of this virus. Among the several castings 

tested, the better results were obtained by the chitosan-based monoliths blended with poly(vinyl 

alcohol) (PVA) and glycidylmethacrylate (GMA), prepared by freeze-drying, resulted in a recovery of 

approximately 80% of the Ad5 load sample. 

 

Table 3.1 - Recovery values of adenovirus vectors, using chitosan-based monoliths as chromatographic media. 
These results are from a reported work, where Chitosan/Poly(vinyl alcohol) (CHT/PVA), 

Chitosan/Glycidylmethacrylate (CHT/GMA) and CHT/PVA blended with magnetic nanoparticles (Mg) monoliths 
were prepared by freeze-drying, resulting in an average of 80% of the virus sample. 

50
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

As was already discussed before (see Introduction, section 1.2), chitosan-based monoliths have been 

receiving increasing attention in the past few years due to the benefits achieved while being 

implemented.
57

 Chitosan (CHT) is a biopolymer obtained from chitin, a biodegradable polysaccharide 

extracted from crustacean shells. Besides being abundant in nature, they are also characterized by 

owning positive attributes such as being biocompatible, biodegradable and non-toxic. Another 

important advantage of using this biomaterial is the obtained structure that offers several possibilities 

for mechanical and chemical modifications.
46

 However, the addition of other polymers to the material 

composition can result in supports with more suitable properties for each target application, such as 

mechanical stability and a more adequate porous structure. The selected monoliths casting is 

Casting Solutions 
Preparation 

Method 
TFreezing 

(ºC) 
Virus 

Recovery (%) 

CHT/PVA(50:50) Freeze Drying -80 79±2 

CHT/GMA Freeze Drying -80 84 

CHT/PVA(50:50) Mg Freeze Drying -80 81±7 
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constituted by polymer blends, with the addition of PVA or GMA to the chitosan. PVA is a synthetic 

polymer with good physical and chemical properties with many applications in the biomedical industry. 

Besides being a non-toxic and biocompatible material, it is also a hydrophilic polymer with a good film-

forming ability.
57

 GMA is a monomer commonly used due to the presence of epoxy groups on its 

structure. When co-polymerized with chitosan it will also increase the tensile strength of the monolith. 

23,54
 This is an important factor to consider since the monoliths porous structure can be highly sensitive 

and be damaged during experimental assays.
24,31

 

During the castings preparation, the polymerization occurred by heat, in which it was also added to the 

polymeric mixture a crosslinking agent, MBA (N,N-methylenebisacrylamide), a catalyst (APS) and an 

initiator (TEMED). The addiction of the initiator and the catalyst will initiate the reticulation, opening the 

epoxy groups that are present and the monomer MBA will promote the network formation with a higher 

crosslinking of the polymers. However, monoliths with no MBA in the casting solution were also 

produced. The schematic representation of the chemical composition of each casting solution is in 

Figure 3.1 along with the final porous structure that was obtained in a previous work 
54

 using the same 

type of castings, which is expected to be obtained in the produced monoliths.  

The monoliths represented in the SEM images were previously prepared by a freeze-drying method, a 

highly reported method 
58

 that is going to be applied for the virus-aimed monoliths. Lyophilisation or 

freeze-drying consists of a dehydration process where the water present in the material is removed by 

sublimation, involving a pre-congelation of the material (<0°C) followed by a drying step. During this 

process, the frozen material will pass through a vacuum chamber, where the temperature will be 

increased gradually and the surrounding pressure will be decreasing, allowing the frozen water to 

pass directly into the gas state without passing through the liquid state. This method has the 

advantage to make less damage to the materials when compared to other procedures, while operating 

at a lower temperature. The vacuum will result in a faster sublimation, resulting in an unchanged 

structure of the material. Although it is a friendly-environment process, has the drawback of being a 

longer process when compared to other methods. 
59

 

In general, freezing and lyophilisation results in monoliths with an open microstructure with high 

interconnectivity. As it can be observed by the SEM images in Figure 3.1, the difference of the 

polymers blend in each casting results in two different final porous structures, being expected to obtain 

more spherical pores in the CHT/PVA monoliths, while with CHT/GMA casting it is expected more 

larger and elongated pores due to the higher viscosity of the casting solution. Similarly to the 

monoliths produced, the monoliths from the SEM images were frozen at -80°C before drying, to obtain 

an average pore size diameter between 20 and 100 μm.
54

 The porous structure is mainly defined by 

the solidification rate of the crystals. While implementing a lower freezing temperature, the gelation 

process will be faster and smaller pores will be obtained. 
58
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Figure 3.1 – Schematic representation of the polymerization mixture that composes each casting solution for the 

native chitosan-based monoliths produced. A mixture of polymers blends, Chitosan/PVA (A) or Chitosan/GMA 
(B), constituted each mixture with the addition of a cross-linker (MBA), an initiator (APS) and a catalyst (TEMED). 
As can be observed by the SEM images, the variation of the polymers components in the solution resulted in two 
distinctive types of macroporous structures. The images were adapted from a previous work from which we based 

our monolith production strategy; to leading to structures with an average pore size distribution of 53±5 μm and 
123±5 μm for the native CHT/PVA monolith and CHT/GMA monolith, respectively. 

54
 

 

However, there are several other techniques that can be used for the preparation of polymeric porous 

structures, among which scCO2 - assisted drying methods have been increasingly used in the last 

decades. 
23,53

 Due to their improvement in polymer synthesis replacing the use of organic solvents 

during polymerization, this greener process also improves the stability of the supports and gives the 

possibility of adjusting the pore size distribution to the desired application. 
23,24,31,52

.   

CHT-GMA Casting CHT-PVA Casting 

TEMED APS 

MBA 

(B) CHT-GMA

PVA GMA 

CHT 

(A) CHT-PVA  
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Carbon dioxide has the advantage of being inexpensive, nontoxic and non-flammable. Due to its 

relative low critical temperature and pressure (TC =31°C and PC=73.8 bar) and positive properties 

described, it is the most common solvent used as a supercritical fluid. Combining the low viscosity of a 

gas and the high density of a liquid, CO2 makes the separation of the solvent a very efficient and 

simple process, leaving no solvent remains in the polymer structure. 
23,31,52

 For the monoliths 

preparation, the casting solutions were frozen in specific containers at a higher freezing temperature (-

20°C), followed  by the drying step using CO2. However, this solvent has a low affinity to water (that is 

included in the castings), making the drying process of the support impossible, being crucial to 

implement a water substitution to prevent the collapse of the monolith, to a solvent to which CO2 has 

high affinity like acetone, that was the one implemented.
23

 Another key factor of the formation of the 

monoliths is the depressurization time of the CO2 from the system in the end of the process that is 

used to control the final porous structure obtained by ranging different times. When shorter times are 

implemented the monolith’s structure will be “destroyed” and bigger pores will be obtained. 
53

  

The monoliths prepared by this method are characterized by resulting in smaller spherical structures. 

It has been reported the preparation of chitosan-based monoliths in which it was obtained porous 

structures with an average pore size between 0.5 and 20 μm and a porosity of 40%, approximately. 

Despite the formation of smaller pores, the average pore size is within our interest size range, thus 

chitosan-based monoliths for Ad5 purification, are also going to be prepared by this method 
49

. The 

CHT/PVA monoliths were prepared using the same polymerization mixture composition previously 

described, except that these are going to be more diluted in the casting solution with concentrations of 

3% and 7%. This way the preparation of monoliths in the same molds but with lower concentrations of 

casting solution will result in structures with bigger pores more suitable for viruses processing. This 

factor combined with the subsequently gelation process at - 20°C result in bigger pores due to the 

slow congelation, resulting in a larger macroporous structure suitable for larger biomolecules. At the 

end, a depressurization time of 4/5 min was implemented, to assure that dried monoliths were 

obtained with no damage. To the best of our knowledge, neither one of the monoliths produced with 

these diluted castings have been previously tested. 

The monoliths produced were evaluated for the purification of Ad5 samples. The results will be 

discussed further ahead. Despite the production of monoliths with magnetic particles prepared by 

scCO2 - assisted drying process, these monoliths were not tested for Ad5 purification. 

 

3.2 Functionalized chitosan-based monoliths  
 

Virus particles own several properties from which we can benefit to improve their separation and 

purification, such as their size and charge. 
14

 Taking advantage of these characteristics we can 

functionalize the support surface to have a good selective binding to the virus, transforming the 

support into an ion exchange chromatography (IEC) media. IEC is the most common technique used 

for the purification of viruses.
60

 

The functionalization of supports such as monoliths or membranes can be made with several types of 

ligands, depending on the application of the support and properties of the protein that we want to 
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separate 
61,62

. Since the aim is to purify Ad5, which is a negatively charged virus, an anion-exchange 

chromatography (AEC) will be performed using quaternary amine ligands (Q). This type of ligand 

transforms the polymeric supports into positive charged monoliths retaining the anions from the 

negatively charged virus. This type of ligand is characterized by being a strong anion exchanger, 

which designation doesn’t refer to the strength with which the functional groups bind to the proteins 

but to the capacity of remaining fully charged over a broad pH range, having no variation in the ion 

exchange capacity of the support, which results in a faster and easier development of separation 

processes.  

The required functionalization for the supports is introduced by taking advantage of the several 

functional groups that may be present on the monoliths structure. With the polymeric castings 

composed by CHT, PVA and GMA, two types of reactive groups will be present and available at their 

surface, hydroxyl (-OH) and amine (-NH2) groups. Therefore, three different methodologies already 

reported are going to be applied to immobilize two different Q ligands to their surface. 
54,52,55

 

The first method, the epoxyactivation technique (M1), consists on an epoxy activation of the monoliths. 

Taking advantage of the hydroxyl groups available, epoxy groups will be introduced onto the 

monolithic matrix for further amination with the ligand (2-aminoethyl)trimethylammonium chloride 

(NH2Q). The final functionalized structure of the monoliths obtained by this method is represented in 

Figure 3.2, which reaction scheme can be found in section 2.3.1, Figure 2.5. 

The epoxy activation densities for each monolith functionalized is represented in Figure 3.3. The 

results obtained were significantly higher compared to the ones reported in the literature 
54

, especially 

the monoliths CHT/PVA (50:50) prepared by scCO2-assisted drying process, which had 3 or 4 times 

the epoxyactivation yield obtained by the monoliths prepared by freeze-drying. These results are a 

consequence of the type of porous structure obtained in each monolith. For monoliths prepared by 

freeze-drying, which own a large porous structure, the higher pore size distribution and porosity will 

result in the decrease of surface area available for immobilization, leading to lower ligand densities. In 

contrast, the monoliths prepared by scCO2 - assisted drying process will have a smaller porous 

structure with a narrower pore size distribution that will increase the surface area available, and 

consequently enhance the immobilization yield. 

 

 

 

 

Figure 3.2 – Schematic representation of the final chemical surface of functionalized chitosan-based monolith, 

which immobilization was implemented using the epoxyactivation technique with NH2-Q ligand coupling. 
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Figure 3.3 – Epoxyactivation average values, and respective standard deviation values, obtained for the several 

immobilizations implemented (n) on monoliths functionalized through method 1, the epoxyactivation technique. 
Among the functionalized monoliths are: CHT/PVA(50:50)(n=3), CG(n=3),  and CHT/PVA(50:50) Mg (n=2),   

monoliths prepared by freeze-drying and CHT/PVA(50:50) 3% and 7% (CO2(3%) e (7%)) (n=2 each),  monolith  
prepared scCO2 - assisted drying process. 

 

 

The second method, the alternative plasma technique (M2), consists of introducing radicals onto the 

support surface, through Argon-plasma treatment for subsequent amination with 1,6-hexanediamine. 

The amination will introduce amine groups to the monolithic surface where glycidyltrimethylammonium 

chloride (GQ ligand) is going to be coupled. One advantage of using Q ligands is that they are soluble 

in water, not needing to add any organic solvents during the ligands immobilizations. The final 

functionalized structure of the monoliths obtained by this method is represented in Figure 3.4, which 

reaction scheme can be found in section 2.3.2, Figure 2.7. 

The amination yields obtained by plasma treatment were significantly lower for all chitosan-based 

monoliths (Figure 3.5) when compared to reported results.
54

 However, these results may be due to the 

large porous structure obtained within the preparation of the monoliths. With a higher pore size 

distribution and porosity, the surface area available for immobilization decreases, leading to lower 

ligand densities. Another fact that may affect the immobilization yield is the heating of the system. 

Since the amine has a high vapor enthalpy (ΔHvap=49,3 kJ/mol), it will result in a low vapor pressure at 

120 ºC, that when a insufficient heating is applied it will result in a low vaporization of the 1,6-

hexanediamine, leading to a low amination efficiency and subsequently, a low ligand immobilization 

yield.63
 

 

 

 

Figure 3.4 – Schematic representation of the final chemical surface of functionalized chitosan-based monolith, 

which immobilization was implemented using the alternative plasma technique with GQ ligand coupling. 
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Figure 3.5 – Amination average values, and respective standard deviation values, obtained for the several 

immobilizations implemented (n) on monoliths functionalized through method 2, the Alternative Plasma 
Technique. Among the functionalized monoliths are: CHT/PVA(50:50)(n=4), CG(n=5),  and CHT/PVA(50:50) 

Magnetic (n=2),   monoliths prepared by freeze-drying and CHT/PVA(50:50) 3% and 7% (CO2(3%) e (7%)) (n=2 
each),  monolith  prepared by scCO2 - assisted drying process. 

 

 

The third and last method (M3) consisted of introducing the ligands directly during casting preparation 

and agitation. This method was based on a reported work 
55

 with some modifications, since the type of 

cross-linker used was different, as we added MBA instead of Glutaraldehyde to our castings. This 

method has the advantage of combining the casting preparation and immobilization into one single 

step, not needing any further modifications after polymerization and preparation by freeze-drying.  

To estimate the amount of each ligand to be added to the castings, a Kaiser Test was performed, has 

already mentioned in section 2.3.2. The Table 3.2 indicates the amination values obtained with the 

test for the monoliths only composed by CHT/PVA or CHT/GMA; these values correspond to the 

quantity of ligand added to the casting solutions of the monoliths, in assays where the immobilization 

was implemented with no ligand in excess. Subsequently, the immobilizations were also performed 

with ligand added in excess, adding 5 times the values represented.   

To our knowledge, this type of monoliths has never been previously tested. 

 

Table 3.2 – Amination extent obtained through Kaiser Test, which corresponds to the quantity of ligand added 

during functionalization through method 3, the direct immobilization technique. 

 

Casting 
Amination extent  
(μmol/g support) 

CHT/PVA (50:50) 279 

CHT/GMA 185,4 

 

 

Another approach for the monoliths production was the implementation of magnetic properties onto 

the supports. With the incorporation of magnetic nanoparticles in the monoliths, the separation or 

purification process is enhanced due to the presence of a magnetic field in some stages of the 

0

20

40

60

80

100

120

140

160

180

200

CP(50:50) CG CP(50:50)
Mg

CO2(3%) CO2(7%)

(μ
m

o
l/

g
 s

u
p

p
o

rt
) 



 31 

process. This tactic has been already reported
49,50

, in which resulted in a good improvement for the 

respective purposes of each work. The preparation of the magnetic castings solutions followed the 

same procedures, as well the preparation and functionalization techniques applied to monolithic 

structures as described, except with the addition of magnetic nanoparticles in the casting solutions.  

All the functionalized monoliths produced were tested for the purification of Ad5 samples. The results 

will be discussed further ahead. 

The ligand immobilization yields were performed only for the two polymeric monoliths that showed a 

better performance, CHT/PVA(50:50) prepared by freeze-drying and CHT/PVA(50:50)(7%) prepared 

by scCO2 - assisted drying process. The ligand quantification was performed by a precipitation titration 

with AgNO3 (0.1 M). The AgNO3 is added until a sudden change of pH is observed, indicating the 

precipitation of Cl
-
 that was present in the monolithic samples. The respective titration volumes added 

to each monolith can be seen in Appendix 4 (Table 6.4 to Table 6.7). The following table (Table 3.3) 

shows the yields obtained for each immobilization (the epoxyactivation (M1) and the plasma 

alternative techniques (M2)), and the respective ligand densities obtained through the titration. 

Approximately 40% of the ligand was successfully coupled to each support, with the CHT/PVA(50:50) 

7% casting achieving the highest immobilization yield, with a 91% of ligand coupled. This result is 

coherent with the expected porous structure, which has a higher surface area available to ligand 

immobilizations. Native monoliths were also tested. As expected, since the monoliths were not 

functionalized, no precipitate was observed during the titrations.  

 

 
Table 3.3 – Immobilization yields and ligand densities for native CHT/PVA(50:50) monoliths prepared by freeze-

drying and native CHT/PVA(50:50) (7%) monoliths prepared by scCO2 - assisted drying process, and the 
respective functionalized through the two immobilization methods implemented, the epoxyactivation (M1) and the 

plasma alternative techniques (M2). 

 

 

 

 

 

Casting 
Ligand 

Immobilized 

Activations 
yields  

(μmol/g support) 

Immobilization 
yields  

(μmol/g support) 

Ligand 
Immobilized (%) 

CHT/PVA(50:50) N - - No precipitate - 

CHT/PVA(50:50) M1 NH2Q 530 200 37 

CHT/PVA(50:50) M2 GQ 58 20 48 

CHT/PVA(50:50) (7%) N - - No precipitate - 

CHT/PVA(50:50) (7%) M1 NH2Q 2850 2600 91 

CHT/PVA(50:50) (7%) M2 GQ 40,50 20 51 
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3.3 Monolithic supports applied for Ad5 purification 
 

Once the monoliths were prepared and functionalized, they were applied as chromatographic media 

for Ad5 purification.  

Ad5 is one example of an Adenovirus that has been greatly applied within the gene therapy and 

vaccination fields, due to the high efficiency transduction and high level of expression obtained. It is 

essential to improve their purification to try to respond to the sudden demands created by their 

increasing application. Our strategy is to improve the Ad5 purification using the produced chitosan-

based monoliths as supports. The monoliths were prepared and functionalized using several 

methodologies, which were tested to verify which type of support leads to a better purification of Ad5. 

Firstly, as a control, monoliths with no functionalization were tested. Since, native monoliths are not 

functionalized, a full recovery of Ad5 is expected, meaning the virus does not bind to the monoliths 

surface. The results obtained for Ad5 recovery (%) using the monoliths produced, are represented in 

Figure 3.6. Two types of monoliths showed a good recovery for the viruses (100%), although this can 

be related to the fact that the casting solutions of these monoliths didn’t contained MBA, a cross linker 

that promotes chain growth and network formation.
64

 Unexpectedly, all the others monoliths showed a 

low recovery for Ad5 when compared to a previous reported results (80%), among which the 

CHT/PVA(50:50) (7%) demonstrated the best Ad5 recovery, of 50%. These results led to believe that 

the presence of MBA promoted the network formation with a high crosslinking of the polymers, 

resulting in the possibility of virus to be retained within the network. 

 

Figure 3.6 -  Comparison of the results for Ad5 sample purification (1E11 TP/mL) using several types of native 

monoliths, expressing the percentage of virus recovered in the flowthrough and elution stages. The monoliths 
tested differ in some properties such as: the castings, CHT/PVA (CP) prepared by freeze-drying, CO2 (3%) and 

(7%) which have a CHT/PVA casting but were prepared by scCO2 - assisted drying process and the casting 
solutions that do not contain MBA (NM) and with MBA (WM). 

 

Subsequently, the functionalized monoliths were tested for Ad5 purification. The results obtained for 

Ad5 recovery (%) using the several produced monoliths are represented in Figure 3.7, Figure 3.8 and 

Figure 3.9, which shows the comparison between monoliths made of CHT/PVA(50:50) casting, with 
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the CHT/GMA and magnetics casting (Mg), monoliths prepared by freeze-drying and prepared using 

scCO2, respectively. 

Since the monoliths are functionalized, it is expected the binding of Ad5 to the positively charged 

monolith, and later the unbinding when an elution buffer is applied. 

During the monoliths functionalization, it is important to try to enhance the coupling of the ligand onto 

the monolith matrix; therefore during the immobilization process it is crucial the addition of ligand in 

excess (5 eq. to activation content) to make sure that the immobilization occurs. However, monoliths 

with no ligand in excess (1 eq. to activation content) were produced and also tested. As can be 

observed in Figure 3.7, the addition of the ligand is necessary to obtain an improved purification of the 

virus, as can be confirmed by comparing the performance of the CHT/PVA monoliths prepared by 

freeze-drying and functionalized by the three different methods (M1, M2, M3). The best example is the 

CHT/PVA(50:50) monolith, which functionalization was implemented through the alternative plasma 

technique with GQ ligand coupling (M2), in which the addition of ligand in excess led to an increased 

recovery of Ad5 in elution, from 3.7% to a 40%. 

 

 

Figure 3.7 – Recovery results for Ad5 purification (1E11TP/mL) using the native and functionalized 

CHT/PVA(50:50) monoliths prepared by freeze-drying, expressing the percentage of virus recovered in 
flowthrough and elution stages. Three methods were implemented for their functionalization (M1-Epoxyativaction 

technique, M2-Alternative Plasma technique, M3-Direct Immobilization technique), within which the ligand 
immobilizations were made with no ligand in excess (NE) and with ligand in excess (E). 

 
 

In addition, within the CHT/PVA monoliths prepared by scCO2 - assisted drying process as can be 

observed in Figure 3.8, the presence of MBA in the casting also led to an increase of the % of Ad5 

recovered, among which the monoliths with a 7% concentration functionalized by the epoxyactivation 

technique (M1) obtained a higher elution recovery of 14%. Although there was a slight recovery of Ad5 

in the flowthrough, meaning that didn’t bind, it was this type of monolithic casting who presented a 

smaller % of Ad5 during this stage. 
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Figure 3.8 – Recovery results for Ad5 purification (1E11TP/mL) using the native and functionalized 

CHT/PVA(50:50) monoliths prepared by scCO2 - assisted drying process, expressing the percentage of virus 
recovered in flowthrough and elution stages. Two methods were implemented for their functionalization (M1-

Epoxyativaction technique, M2-Alternative Plasma technique), within which the casting solutions contain MBA 
(WM) or do not contain MBA (NM). 

 
 

Then, the monoliths that showed a better performance for the Ad5 purification, from the CP(50:50) 

monoliths prepared by freeze-drying and scCO2, were compared to native and functionalized 

CHT/GMA monoliths and the monoliths blended with magnetic particles (Mg) (Figure 3.9). The 

CHT/GMA immobilization was also implemented with no ligand in excess followed by immobilization 

with ligand in excess. In contrast with the previous monoliths, the CHT/GMA monolithic supports did 

not show an improved performance, recovering only 3.6% of the Ad5 sample. In turn, the magnetic 

monoliths also didn’t show a good performance for Ad5 purification as expected. Despite showing 

some binding to the virus, it didn’t elute. This could be due to the use of a weak magnetic force during 

the elution stage. While using the magnetic monoliths, no leaching of MNP’s was observed during 

their application as chromatographic media. 

Furthermore, the monoliths functionalized with the direct immobilization of the ligand (M3), of both 

castings (Figure 3.7 and Figure 3.9) did not show a suitable performance to be applied for virus 

purification. In addition to the low binding of virus, all the monoliths prepared showed a very stiff 

structure with which was not possible to obtain a good gravitational flow of the sample applied, even 

when higher pressure was applied. 

In Appendixes, Figure 6.2, it can be observed the comparison of the Ad5 purification performance for 

all native and functionalized monoliths produced. 
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Figure 3.9 – Comparison of the monoliths that had a better performance purifying Ad5 (1E11 TP/mL) with the 

CHT/PVA (CP) casting prepared by freeze-drying and scCO2 - assisted drying process, with the native and 
functionalized monoliths with a CHT-GMA casting (CG) monoliths and CP blended with magnetic particles 

(CPMg). The monoliths tested differ in some properties, such as being functionalized by different techniques (M1-
Epoxyactivation technique, M2-Alternative Plasma technique, M3-Direct Immobilization technique), within which 

the immobilizations were made with no ligand in excess (NE), with ligand in excess (E). 

 
 
Considering the expected structure and the immobilization yields obtained by the techniques applied 

(Table 3.3), the results obtained in the Ad5 purification process are consistent. The monoliths which 

showed a better performance for the Ad5 process purification, were the monoliths CHT/PVA(50:50) 

functionalized by the Alternative Plasma technique (M2) prepared by freeze-drying and CHT/PVA 

(50:50) monoliths with a 7% concentration functionalized by the epoxyactivation technique (M1) 

prepared by scCO2. Monoliths prepared by freeze-drying are characterized by obtaining larger porous 

structure. Despite the lower surface area available that led to a lower immobilization yield through M2 

(34%), the porous structure was suited for large molecules such as Ad5. In contrast, monoliths 

prepared by scCO2 - assisted drying process, are expected to obtain a smaller porous structure, 

leading to a structure with a higher surface area available for ligand immobilization, which is consisting 

with the immobilization yield obtained through M1 (91%), resulting in a good support to be applied for 

virus purification. 

Another fact to consider is the available groups introduced through each functionalization to the 

monoliths surface. Since the ligand immobilizations were not 100% effective, there will be epoxy and 

amine groups available and there may occur nonspecific interactions between these available groups 

and the impurities present in the sample to purify, which can contribute to a lower purification yield.  

 

3.4 Protein Binding Tests  
 

Apart from the Ad5 purification tests, it was also implemented a proof of concept to evaluate the 

capacity of the functionalized monoliths to work as anion exchange chromatographic media for 

purification processes. Among the several monoliths produced, only the two types that revealed a 
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higher binding to Adenovirus particles were selected for to the protein binding tests, the CHT/PVA 

(50:50) and the monoliths with a 7% concentration, prepared by freeze-drying and scCO2 - assisted 

drying process, respectively. However, to analyse the properties of the magnetic monoliths, the 

CHT/PVA (50:50) magnetic monolith was also tested. 

The protein binding assays were performed with a mixture of proteins, consisting of Lysozyme and 

BSA (Bovine Serum Albumin). Lysozyme is a protein obtained mostly from chicken egg white, while 

BSA is obtained from cows. These proteins are highly commercialized having numerous biochemical 

applications and several assays for their purification have already been reported. 
21,30

  

The proteins were selected to understand if the functionalized monoliths could behave as ligand 

exchangers. As they present different isoelectric points, they were used as model proteins. The 

isoelectric point (pI) corresponds to the pH at which a molecule or surface carries no electrical charge, 

and depending on the surrounding pH, the net surface charge of proteins can change. 
65

 Ad5 

purification was performed with a pH8 medium, and the same condition was applied for the protein-

binding tests. When the solution pH is higher than the isoelectric point of BSA (pI = 4.7), it will have a 

negative charge, contrarily at pH lower than pI the protein charge will be positive. This is an example 

of a good protein for an anion exchange chromatography, in which the negative charge of the protein 

will bind to the positive charged surface of the monoliths functionalized with Q ligands. Lysozyme (pI 

=11.35) in contrast with BSA, when present within a solution with a pH 8, it will be positively charged 

and will not bind to the positively charged surface of the monoliths. Since, our medium will have 

exactly a pH 8, with a mixture of these two proteins we will expect to verify the BSA binding to the 

support and the flow through of the lysozyme.  

Despite the results of Ad5 purification indicate a better performance for a specific method for each 

type of casting, the monoliths tested for these assays were functionalized by the two immobilization 

methods previously discussed, the epoxyactivation technique with the NH2-Q ligand and the 

alternative plasma technique with the GQ ligand.  

Several steps, such as regeneration, equilibration, loading, wash and elution, composed the protein-

binding assays. Due to the charged properties of the proteins used, it is expected that the BSA 

bonded during loading stage will unbind during elution due to the increased ionic strength of a buffer 

using NaCl. All the samples of each stage were collected and the samples absorbance was measured 

at 280 nm a wavelength. Additionally, a second approach to the protein-binding assay was also 

attempted aiming to optimize the process and try to obtain a higher binding of the protein. Among the 

modifications, the protein was incubated overnight at 4°C, in order to enhance the contact of the 

protein mixture with the positively charged support. Then, to guarantee the complete flowthrough of 

the lysozyme, the number of washes was increased, followed by the addition of a second elution 

buffer with a higher ionic strength, in elution stage, to assure the elution of the BSA that might still be 

bonded to the monolithic support. The graphical chromatographic assays obtained implementing the 

two approaches for the monoliths CHT/PVA(50:50) , can be observed in Appendix 5, Figure 6.3 to 

Figure 6.7. 

However, to quantify the total protein bonded and eluted, it was assessed a colometric BCA assay, 

which samples absorbance were measured at 560 nm wavelength. With the values obtained, it was 
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possible to determine the percentage (%) of protein present in the flowthrough, washes and elution 

steps compared to the protein quantity present in load sample, which are represented in Table 3.4. 

Since the protein mixture was composed by BSA and lysozyme with a concentration of 1 mg/mL (0.5 

mg/mL of each protein), and the loading was performed within a pH8, it was expected the binding of 

50% of the protein mixture corresponding to the BSA ratio.  

Initially, the native CP(50:50) monolith showed an abnormal binding. Since native monoliths are not 

functionalized, it is not expected any binding to proteins. Despite firstly showing some binding, when 

implemented the modifications related to the second approach, a lower binding was obtained for this 

kind of monoliths.  The functionalized monoliths initially showed a lower binding than expected, 

however with the optimization of the process, higher binding were obtained for all chitosan-based 

monoliths, approximately 50% as it was expected. In Table 3.4 are also represented the binding 

capacities of the tested monoliths while implementing the two different approaches. As can be 

observed, the 2
nd

 approach resulted in an optimization of the process, where was obtained higher 

protein binding capacities, with an increase of protein binding.  

 

Table 3.4 – Protein binding results obtained through the colometric BCA assay, expressing the percentage of 

recovered (%) and the total protein binding capacities of using conventional and magnetic CHT/PVA (50:50) 
monoliths prepared by freeze-drying and CHT/PVA (50:50) (7%) monoliths prepared by scCO2-assited drying 

process. The tests were implemented for native and functionalized monoliths using two techniques (M1- 
Epoxyactivation technique, M2-Alternative Plasma technique). 

Casting Solutions 
Protein Binding (%) 

 
Protein binding capacity 

(mg/g support) 

1
st

 Approach 2
nd

 Approach 1
st

 Approach 2
nd

 Approach 

CHT/PVA 
(50:50) 

Native 70 36 58 17 

M1 41 56 36 27 

M2 0 39 0 21 

CHT/PVA 
(50:50) Mg 

Native 36 42 29 43 

M1 - 56 - 33 

M2 0 54 0 45 

CHT/PVA 
(50:50) 
(7%) 

Native - 50 - 17 

M1 - 39 - 24 

M2 - 57 - 26 

 

 

For a further evaluation of the partition of the proteins mixture obtained in the several steps of the 

protein tests, it was performed an SDS-Page analysis, which consists of evaluating the mobility of the 

proteins in a 12.5% acrylamide gel that is submitted to an electric current. However, to accomplish this 

assessment it is necessary the usage of a staining solution to highlight the lines and a low molecular 

weight protein marker (Mk) to compare the obtained protein bands. This analysis was made using a 

Coomassie solution and the samples of the Load (L), Flowthrough (FT), Wash (W) and Elution (El) 

stages previously obtained in the protein-binding tests. 

Initially, this analysis was implemented for the conventional CHT/PVA (50:50) monoliths and for the 

CHT/PVA (50:50) magnetic (Mg) monoliths, prepared by freeze-drying. In Figure 3.10 are represented 

the gels obtained using both native and functionalized monoliths with GQ ligand, functionalized by the 
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alternative plasma technique, of each type of monolith. Two main lines can be observed in the gels, 

the top line corresponding to the BSA (MW= 66,5 kDa) and the lower line to the lysozyme (MW = 14,3 

kDa).  Through this analysis it is possible to see the partition of both proteins, as can be observed (A 

and B); both proteins are present in the flowthrough and first washes. This was as expected since the 

supports were not functionalized. However, comparing the two types of casting, we can conclude the 

CHT/PVA (50:50) Mg had a better performance since it can be observed more highlighted lines of 

both proteins in the different stages. These results are no in concordance to the ones obtained by 

BCA test, however colometric assays have associated errors that may influence the results. 

 

 

 

 
Figure 3.10 – Staining gels obtained by SDS-Page analysis of the protein binding results using as 

chromatographic media: conventional and magnetic CHT/PVA (50:50) monoliths (A and B) and functionalized 
conventional and magnetic CHT/PVA (50:50) monoliths (C and D), by the alternative plasma technique (M2). The 

protein mixture was composed of BSA (MW= 66,5 kDa) and lysozyme (MW = 14,3 kDa) and the staining was 
made with a Coomassie solution. The samples tested corresponded to the Load (L), Flowthrough (FT), Wash (W) 

and Elution (El) stages and were compared to a low molecular weight protein marker (Mk). 
 
 

In the gels obtained for the functionalized monoliths (C and D), it can be observed some binding of the 

BSA to the supports since there is a more highlighted wash lines of lysozyme. This is expected due to 

the positively charged Q ligand present in the monolith surface and the negatively charge of the BSA 

at pH 8. Despite the evident flowthrough of BSA in both gels, it is visible that some protein did bind to 

supports, since there is elution of this protein. In return, lysozyme is positively charged at pH 8 and 

should not be retained by the Q ligand, however it can be observed in both gels a slightly binding to 

the CHT/PVA (50:50) monolith. 
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Then, the same analysis was implemented for the samples collected during the 2
nd

 approach assay, in 

which, in addition to the conventional and to the CHT/PVA (50:50) Mg monoliths, it was also tested the 

native and functionalized CHT/PVA (50:50) 7% monoliths prepared by scCO2-assisted drying process. 

However, the gels obtained from these results didn’t differ much from the previous tested monoliths as 

expected. All the chitosan-based native monoliths showed a better performance, resulting in a higher 

flowthrough of the proteins during washing step. These results support the results obtained by the 

BCA test, where when applied the 2
nd

 approach for the protein binding tests, a lower percentage of 

protein mixture bound to the monoliths.  

For the functionalized monoliths, the results were also similar to the previous assay, continuing to 

show a slightly binding to the lysozyme. However, they also show BSA binding to the positively 

charged support, among which the two functionalized monoliths prepared by scCO2 showed a slightly 

higher BSA elution. These results confirm the BCA test for this kind of monoliths, showing a higher 

protein binding percentage. 

Despite the BSA binding to the monoliths indicate their potential application as anion-exchange 

chromatography media, further modifications are necessary to obtain a more suitable and optimized 

process. 
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4 Conclusions  
 

 
Comparing the results obtained in the Ad5 purification with the protein-binding tests, it is visible a 

consistency between the monoliths performance. Among the several types of monoliths produced and 

tested, both preparation methods are adequate to prepare monoliths with the necessary large porous 

structure for virus purification.  When native monoliths were tested for Ad5 purification, the CHT/PVA 

(50:50) prepared by scCO2 – assisted drying process exhibited the performance: the monoliths 

prepared without crosslinker (no MBA added to the casting solution) showed a 100% flowthrough of 

the virus, while the crosslinked monoliths, presented 50% of virus in the flowthrough. The addition of 

MBA (crosslinking agent) promotes a porous structure with smaller average pore size diameter that 

may lead to the entrapment of the virus within the monolithic network.  Then, the monoliths 

functionalization was implemented by three different methods, among which the epoxyactivation 

technique showed to be more suitable for virus purification since higher ligand immobilization yields 

were obtained, and 91% of the ligand was bonded to the supports prepared by scCO2 – assisted 

drying process. This result can be explained considering the structure of monoliths prepared by this 

method; as the matrix exhibit smaller average pore size a higher surface area is available for ligand 

immobilizations, increasing the support performance in chromatographic applications.  

After the immobilizations, the functionalized monoliths were also tested for Ad5 purification. 

Comparing the results obtained for the functionalized monoliths, despite not having high yield 

performances, two types of monoliths stand out, the CHT/PVA (50:50) monoliths with a 7% 

concentration functionalized by the epoxyactivation technique (M1) and prepared by scCO2 and the 

CHT/PVA (50:50) alternative plasma technique prepared by freeze-drying. However, contrary to what 

was expected with the higher ligand immobilization yield achieved, the CHT/PVA (50:50) 7% monolith 

resulted in a 17% flowthrough of the virus and a subsequently 14% elution of the bonded viral 

particles. Since the immobilization yield was high, a higher binding of the virus was expected, however 

it was not observed the complete elution of the virus what leads us to consider that some 

improvements in this stage of the process have to be implemented, such as the increase of the ionic 

strength of the buffer used. In turn, in the CHT/PVA (50:50) monoliths functionalized using the 

alternative plasma technique and prepared by freeze-drying, it was verified that only 34% of the 

immobilized ligand actually was bonded to the monoliths. Despite the lower value, this immobilization 

yield achieved is consistent to the monolith structure expected. As was previously discussed, 

monoliths prepared by this technique own a larger porous structure and consequently a lower surface 

area is available for immobilization, explaining the lower binding of the ligand. However, it was 

obtained a higher Ad5 binding to the monolithic support, despite the 60% in flowthrough, 40% of the 

virus bonded and eluted. 

On the other hand, the monoliths functionalized by the direct immobilization of the ligand (M3) did not 

show a suitable performance to be applied for virus purification. When used as chromatographic 

supports, low bindings of the virus were achieved and due to their stiff structure no gravitational flow 

could be obtained. 
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As the immobilization of the ligand was not 100% effective, some of the chemical groups, as epoxy 

and amine groups, introduced to the support during functionalization steps can stay available, to 

establish nonspecific interactions with the impurities present in the Ad5 sample that was purified. 

These interactions will also contribute for the decrease of the purification yield.  

Subsequently, protein-binding tests were also performed. Despite, the initial non-specific binding that 

occurred to non-functionalized monoliths, after optimization of the process, the binding to the supports 

decreased. In turn, for the functionalized monoliths, it was verified the anionic-exchange capacity of 

the supports, binding approximately 50% of the protein mixture. 

 

The results obtained in this work led us to consider that in addition to the environmental advantages of 

the implemented strategies used to prepare these smart porous monolithic supports, the combined 

methods proposed, once optimized will allow the tuning of morphological properties and 

chromatographic performance of the monoliths for bioseparations purposes. Besides these chitosan-

based monoliths being ecologically safe, they have a low cost production with no pressure needed 

during their implementation. However, further improvement is necessary to try to enhance the virus 

binding and recovery to obtain an improved purification process. To make further considerations about 

the monoliths performance it is also essential to evaluate the mechanical and morphological properties 

of the monoliths produced, to assure that the expected results were obtained and that these supports 

are suitable to be applied for virus purification, which was not possible to conduct during the duration 

of this work.  

Another factor to consider for the improvement of this process is the blending of magnetic particles in 

the CHT/PVA (50:50) 7% monolith. Despite the preparation of native CHT/PVA (50:50) 3% monoliths, 

they were not tested and with the reasonable results for the 7% casting, the introduction of magnetic 

properties can enhance the performance as a chromatographic support. Also, it may be important the 

tuning of the quantity of the MBA to be added, in order to obtain a better flow.  

In addition, during Plasma treatment, the power of the amination can also be increased to try to 

enhance the amination of the monoliths. Also, further testing of the monoliths under controlled 

pressure and flow is also a future goal for testing these types of supports. Since scale-up is an 

important factor for the development of alternative purification processes, it is necessary to optimize 

features such as flow-rate, flow of feed solution and the continuous activation of the supports. 
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6 Appendixes 

6.1 Appendix 1  
 

 
Table 6.1 - Epoxyactivation values obtained during several assays with the two methods implemented for ligand 

immobilization (M1- the epoxyactivation technique, M2 - the Alternative Plasma technique), for different types of 
monoliths. The monoliths were prepared with different castings such as: Chitosan/Poy(vynil alcohol) (CHT/PVA), 

Chitosan/Glycidylmethacrylate (CHT/GMA) and CHT/PVA with MNP’s blending (Mg), which were prepared by 
freeze-drying; and CHT/PVA casting with two different concentration of polymeric mixture (3% or 7%) were 

prepared by scCO2 – assisted drying process. These results are represented in Figure 3.3. 

 
 

 
 
 

 
Table 6.2 - Amination values obtained during several assays with the two methods implemented for ligand 

immobilization (M1- the epoxyactivation technique, M2 - the Alternative Plasma technique), for different types of 
monoliths. The monoliths were prepared with different castings such as: Chitosan/Poy(vynil alcohol) (CHT/PVA), 

Chitosan/Glycidylmethacrylate (CHT/GMA) and CHT/PVA with MNP’s blending (Mg), which were prepared by 
freeze-drying; and CHT/PVA casting with two different concentration of polymeric mixture (3% or 7%) were 

prepared by scCO2 – assisted drying process. These results are represented in IFigure 3.5 

 

 

Method 2 - Plasma Activation 
NH2 (μmol/g support) 

Castings 
Preparation 

Method 
Exp.1 Exp.2 Exp.3 Exp.4 Average ± Std.Dev 

CP(50:50) Freeze-Drying 120,47 89,4 57,07 52,37 80 ± 27 

CG Freeze-Drying 148,47 92,09 188,58 - 143 ± 40 

CP(50:50) Mg Freeze-Drying 120,47 89,4 - - 95 ± 6 

CP(50:50) 3% scCO2 51,91 59,32 - - 55 ± 4 

CP(50:50) 7% scCO2 36,42 40,5 43,24 - 40 ± 3 

 

 

 

 

 

 

  

Method 1- Epoxyactivation 
(μmol/g support) 

Castings 
Preparation 

Method 
Exp.1 Exp.3 Exp.3 Average ± Std.Dev 

CP(50:50) Freeze-Drying 225 435 530 400 ± 127 

CG Freeze-Drying 345 470 930 582 ± 252 

CP(50:50) Mg Freeze-Drying 650 - - 650 ± 0 

CP(50:50) 3% scCO2 1540 1860 - 1700 ± 160 

CP(50:50) 7% scCO2 2130 2050 - 2090 ± 40 
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6.2 Appendix 2 
 
 
Table 6.3 – List of the native and functionalized monoliths tested for Ad5 sample purification. The monoliths differ 

in some features such as the castings, Chitosan/Poy(vynil alcohol) (CHT/PVA), Chitosan/Glycidylmethacrylate 

(CHT/GMA), CHT/PVA with MNP’s blending (Mg), the concentration of the polymeric mixture (3% or 7%), if MBA 

was (WM) or wasn’t added (NM) to the casting solution, if ligand was added in excess (Ex) during immobilizations 

or not (NE), and if were prepared by freeze-drying or scCO2 – assisted drying process. The functionalization was 

made through different methods (M1 – Epoxyactivation technique, M2 – Alternative plasma technique, M3 – 

Direct immobilization technique) with two ligands (GQ and NH2Q). These results are represented in Figure 3.6 to 

Figure 3.9. 

Casting 
Solutions 

Preparation 
Methods 

TFreezing 
(°C) 

Immobilization 
Methods 

% Ad5 Recovered 
(avergade±SEM) 

Flow-through 
and wash 

Elution 

CHT/PVA (50:50) 
3% 

(NM) Native 
scCO2 -20 - 107.0±5.3 0.5±0.3 

CHT/PVA (50:50)  
3% (NM) 

scCO2 -20 

M1 - - 

M2 91.7±1.9 6.7±1.7 

CHT/PVA (50:50) 
3% 

(WM) Native 
scCO2 -20 - 21.3±1.1  0.41±0.1 

CHT/PVA (50:50)) 
3% (WM) 

scCO2 -20 

M1 25.8±1.3 0.86±0.1 

M2 41.6±2.1 2.12±0.1 

CHT/PVA (50:50) 
7% 

(NM) Native 
scCO2 -20 - 99.1±4.7 0.5±0.3 

CHT/PVA (50:50) 
7% 

(NM) 
scCO2 -20 

M1 108.1±7.4 6.7±1.7 

M2 - - 

CHT/PVA (50:50) 
7% 

(WM) 
Native 

scCO2 -20 - 49±2.5 0.10±0.1 

CHT/PVA (50:50) 
7% 

(WM) 
scCO2 -20 

M1 16.8±0.8 14.06±0.7 

M2 30±1.5 3.03±0.2 

CHT/PVA (50:50) 
Native 

Freeze 
Drying 

-80 - 14.9±0.7 0.34±0.1 

CHT/PVA (50:50) 
(NE) 

Freeze 
Drying 

-80 

M1 131.4±7.4 0.9±0.1 

M2 108.7±8.2 3.4±0.5 

M3 104.8±5.8 1.9±0.2 

CHT/PVA (50:50) 
(Ex) 

Freeze 
Drying 

-80 

M1 100.7±9.7 9.8±2.0 

M2 59.7±6.1 37.1±1.1 
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Casting 
Solutions 

Preparation 
Methods 

TFreezing 
(°C) 

Immobilization 
Methods 

% Ad5 Recovered 
(avergade±SEM) 

Flow-through and 
wash 

Elution 

CHT/GMA 
(NE) 

Freeze-
Drying 

-80 

M1 96.8±8.8 2.7±0.4 

M2 93.3±3.9 2.0±0.2 

M3 - - 

CHT/GMA 
(Ex) 

Freeze-
Drying 

-80 

M1 73.9±1.17 1.9±0.0 

M2 103.1±1.7 3.6±0.9 

M3 116.9±10.2 3.5±0.2 

CHT/PVA 
Mg 

Native 

Freeze 
Drying 

-80 - 19.1±1.0 0.46±0.1 

CHT/PVA 
Mg 

(Lig.excess) 

Freeze 
Drying 

-80 

M1 16.1±0.9 0.49±0.1 

M2 11.7±0.6 0.85±0.1 
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6.3 Appendix 3 

 
 

 
 

Figure 6.1 – Comparison of the results for Ad5 purification (1E11 TP/mL) using several types of monoliths 

prepared by Freeze-drying, expressing the percentage of virus recovered in flowthrough and elution stages. The 
monoliths differ in some properties, such as being functionalized by different techniques (M1-Epoxyativaction 

technique, M2-Alternative Plasma technique, M3-Direct Immobilization technique), within which were made with 
no ligand in excess (NE), with ligand in excess (Ex), and casting contain without MBA (NM) and with MBA (WM). 
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Figure 6.2 - Comparison of the results for Ad5 purification (1E11 TP/mL) using the native and functionalized monoliths produced with the CHT/PVA and CHT/GMA casting, 

expressing the percentage of (%) of virus recovered in flowthrough and elution stages. The monoliths were prepared by two techniques, freeze-drying (CP and CG) and scCO2 
– assisted drying process (CO2), and differ in some properties, such as being functionalized with different techniques (M1-Epoxyativaction technique, M2-Alternative Plasma 
technique, M3-Direct Immobilization technique), within which immobilizations were made with no ligand in excess (NE), with ligand in excess (E), and the casting solutions 

without MBA (NM) and with MBA (W).
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6.4 Appendix 4 
 

 
Table 6.4 –Titration curve values obtained with the precipitation titration with AgNO3 (0.1 M) to the CHT/PVA 

(50:50) monolith functionalized using the epoxyactivation technique (M1) prepared by freeze-drying. With the 
addition of AgNO3 it was observed a sudden change of potential, indicating that approximately 200µmoles of 

ligand was immobilized. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHT/PVA(50:50) M1 

0.1 M AgNO3 
Vadded (µL) 

E (mV)/100 dE/dV 

0 7  

20 7 0 

80 6,9 -0,00167 

120 6,8 -0,0025 

170 6,7 -0,002 

200 6,5 -0,0067 

240 6,2 -0,0075 

290 6,1 -0,002 

330 5,95 -0,0038 

370 5,85 -0,0025 

410 5,8 -0,0013 

450 5,8 0 

500 5,8 0 

550 5,75 -0,001 

600 5,75 0 
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Table 6.5 – Titration curve values obtained with the precipitation titration with AgNO3 (0.1 M) to the CHT/PVA 

(50:50) monolith functionalized using the plasma alternative technique (M2) prepared by freeze-drying. With the 
addition of AgNO3 it was observed a sudden change of potential, indicating that approximately 20µmoles of 

ligand was immobilized. 

 

 

CHT/PVA(50:50) M2 

0.1 M AgNO3  
Vadded (µL) 

E (mV)/100 dE/dV 

0 7 0 

20 6,7 -0,015 

80 6,5 -0,0033 

120 6,35 -0,0038 

170 6,2 -0,003 

220 6,1 -0,002 

270 6,05 -0,001 

320 6 -0,001 

370 5,95 -0,001 

420 5,95 0 

480 5,9 -0,00083 

520 5,9 0 

560 5,9 0 

670 5,9 0 

720 5,9 0 

780 5,9 0 
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Table 6.6 – Titration curve values obtained with the precipitation titration with AgNO3 (0.1 M) to the CHT/PVA 

(50:50) 7% monolith functionalized using the epoxyactivation technique (M1) prepared by scCO2 – assisted drying 
process. With the addition of AgNO3 it was observed change of potential, indicating that approximately 

2600µmoles of ligand was immobilized. 

 

 

CHT/PVA(50:50) 7% M1 

0.1 M AgNO3  
Vadded (µL) 

E (mV)/100 dE/dV 

0 7 0 

100 7 0 

200 7 0 

300 7 0 

400 7 0 

700 7 0 

900 7 0 

1100 6,9 -0,0005 

1200 6,9 0 

1400 6,85 -0,00025 

1540 6,85 0 

1700 6,8 -0,000313 

1900 6,8 0 

2100 6,8 0 

2300 6,7 -0,0005 

2400 6,6 -0,001 

2500 6,5 -0,001 

2600 6,2 -0,003 

2700 5,85 -0,0035 

2800 5,65 -0,002 

2900 5,65 0 

3000 5,6 -0,0005 

3100 5,6 0 

3200 5,6 0 

3400 5,5 -0,0005 

3500 5,5 0 
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Table 6.7 – Titration curve values obtained with the precipitation titration with AgNO3 (0.1 M) to the CHT/PVA 

(50:50) 7% monolith functionalized using the plasma alternative technique (M2) prepared by scCO2 – assisted 
drying process With the addition of AgNO3 it was observed a change of potential, indicating that approximately 

20µmoles of ligand was immobilized. 

 

 

CHT/PVA(50:50) 7% M2 

0.1 M AgNO3  
Vadded (µL) 

E (mV)/100 dE/dV 

0 7 0 

20 6,6 -0,02 

80 6,5 -0,00167 

120 6,35 -0,00375 

160 6,15 -0,005 

220 6,05 -0,00167 

260 6 -0,00125 

320 5,9 -0,00167 

380 5,9 0 

420 5,85 -0,00125 

460 5,85 0 

520 5,8 -0,00083 

560 5,8 0 

660 5,8 0 

780 5,8 0 

880 5,8 0 
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6.5 Appendix 5 
 

 

 

 

 

 

 

 

 

 
Figure 6.3 – Graphical representation of chromatographic performance for native (A) and functionalized 

CHT/PVA (50:50) monoliths functionalized by epoxyactivation technique (M1) (B) and the plasma alternative 
technique (M2) (C) prepared by freeze-drying. The chromatographic procedure represented consists of the 

loading, washes and elution stages of the protein-binding tests, which absorbance was measured at 280 nm. 
These tests were implemented applying the 1

st
 approach of the assay (See sections 2.5 and 3.4). 
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Figure 6.4 - Graphical representation of chromatographic performance for native (A) and functionalized CHT/PVA 

(50:50) magnetic monoliths functionalized by the plasma alternative technique (M2) (B) prepared by freeze-
drying. The chromatographic procedure represented consists of the loading, washes and elution stages of the 

protein-binding tests, which absorbance was measured at 280 nm. These tests were implemented applying the 1
st
 

approach of the assay (See sections 2.5 and 3.4).  
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Figure 6.5 – Graphical representation of chromatographic performance for native (A) and functionalized 

CHT/PVA (50:50) monoliths functionalized by epoxyactivation technique (M1) (B) and the plasma alternative 
technique (M2) (C) prepared by freeze-drying. The chromatographic procedure represented consists of the 

loading, washes and elution stages of the protein-binding tests, which absorbance was measured at 280 nm. 
These tests were implemented applying the 2

nd
 approach of the assay (See sections 2.5 and 3.4). 
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Figure 6.6 – Graphical representation of chromatographic performance for native (A) and functionalized 

CHT/PVA (50:50) 7% monoliths functionalized by epoxyactivation technique (M1) (B) and the plasma alternative 
technique (M2) (C) prepared by scCO2 – assisted drying process. The chromatographic procedure represented 

consists of the loading, washes and elution stages of the protein-binding tests, which absorbance was measured 
at 280 nm. These tests were implemented applying the 2

nd
 approach of the assay (See sections 2.5 and 3.4). 
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Figure 6.7 – Graphical representation of chromatographic performance for native (A) and functionalized 

CHT/PVA (50:50) magnetic monoliths functionalized by epoxyactivation technique (M1) (B) and the plasma 
alternative technique (M2) (C) prepared by freeze-drying. The chromatographic procedure represented consists 
of the loading, washes and elution stages of the protein-binding tests, which absorbance was measured at 280 

nm. These tests were implemented applying the 2
nd

 approach of the assay (See sections 2.5 and 3.4). 
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