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Abstract 

 

 

Carbon dioxide (CO2) is the greenhouse gas which can be found at higher 

concentrations in the atmosphere. This is mainly due to emission of CO2 from anthropogenic 

sources as the flue gases fossil fueled power stations.  

Adsorption processes are considered as a viable alternative to perform the capture of 

the CO2 emitted from flue gases. The development of adsorption-based technologies depends 

on the knowledge of the adsorption equilibrium properties of the flue gas components over 

potential adsorbent materials This work consisted in the characterization of two activated 

carbons: ANGUARD 6, 1 mm, in the form of extruded (Sutcliffe Speakman Carbons Ltd., UK) 

and a honeycomb monolith (Mast Carbon International Limited, UK). Surface chemistry 

characterization of both carbons was performed. Characterization of the surface area, pore 

volumes and pore size distribution was also performed for the ANGUARD 6 sample.  

Adsorption equilibrium of carbon dioxide (CO2), nitrogen (N2) and butane (C4H10) at 

303.15K, 323.15K and 353.15K in a pressure range of 0-35 bar was measured on ANGUARD 

6. Adsorption equilibrium of CO2 on the activated carbon honeycomb monolith was also 

measured in the same temperature and pressure ranges as for the ANGUARD 6 sample. The 

Sips isotherm model was employed to fit the experimental data and the model could fit the data 

successfully. The isosteric heats of adsorption for each of the studied species were also 

determined. 

 

Keywords: adsorption equilibrium, activated carbon, carbon dioxide, gravimetric 

method.  
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Resumo 

 

 

O dióxido de carbono é um gás com efeito de estufa que pode ser encontrado em 

maiores concentrações na atmosfera. Este facto deve-se, principalmente, a emissões de 

origem antropogénica nas quais se inclui a emissão de gases de chaminé de centrais de 

produção de energia a partir de combustíveis fósseis. 

Processos de adsorção são considerados como uma opção viável para aplicação na 

captura de CO2 de gases de chaminé. O desenvolvimento de processos de separação por 

adsorção depende no conhecimento das propriedades de equilíbrio de adsorção dos 

componentes dos gases de chaminé por potenciais adsorventes. 

Este trabalho consistiu na caracterização de dois carvões activados: ANGUARD 6, 1 

mm, em forma de extrudados (Sutcliffe Speakman Carbons Ltd., UK) e um monólito de 

estrutura tipo “favo de mel” (Mast Carbon International Limited, UK). A química de superfície de 

ambos os carvões foi caracterizada. Caracterização da área superficial, volume de poros e 

distribuição de tamanho de poros foi efectuada para a amostra de ANGUARD 6. 

Foi estudado o equilíbrio de adsorção de dióxido de carbono (CO2), azoto (N2) e butano 

(C4H10) a temperaturas de 303.15K, 323.15K e 353.15K, na gama de pressão de 0 a 35 bar, na 

amostra de ANGUARD 6. Equilíbrio de adsorção de CO2 no monólito de carvão activado foi 

também estudado, na mesma gama de pressão e temperatura. O modelo de isotérmica de Sips 

foi utilizado para descrever os dados obtidos experimentalmente. Os calores isostéricos dos 

vários adsorbatos estudados foram também determinados. 

 

Palavras-chave: equilíbrio de adsorção, carvão activado, dióxido de carbono, método 

gravimétrico.  
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Chapter 1 

  

1. Introduction 

 

1.1. Motivation 

 

Carbon dioxide (CO2) is naturally present in the atmosphere as part of the Earth's 

carbon cycle (the natural circulation of carbon among the atmosphere and life beings). But since 

the Industrial Revolution, human activities have been altering the carbon cycle, by adding more 

CO2 to the atmosphere. It is now estimated that around 90% of the carbon dioxide present in 

the atmosphere is from anthropogenic origin [1].  

According to the Inventory of U.S Greenhouse Gas Emissions and Sinks (1990-2011) 

electricity production (38%), transportation of people and goods (31%) and industry (14%) are 

the sectors that most contribute to the emission of carbon dioxide to the atmosphere. This 

results from the burning of fossil fuels like coal, oil and natural gas [2]. Since carbon dioxide is a 

greenhouse gas, which can contribute to global climate change, it is imperial to reduce its 

emissions. In the past few decades many projects and possible solutions have been proposed 

to mitigate this problem.  This includes improvements in energy efficiency and utilization of 

renewable and greener sources of energy [3]. 

Nowadays, CCS (CO2 Capture and Storage) is starting in several power plants [4]. CCS 

process consists in the capture of the carbon dioxide resulting from the burning of fossil fuels. 

CCS can be performed using pre-combustion or post-combustion techniques [5]. Then, after 

being separated from other gases, CO2 is compressed and transported through a net of 

pipelines or ships so it can be injected in underground geological formations, where it will be 

safely storage for several years. It is estimated that CCS process can reduce the emissions of 

carbon dioxide by 90% [6]. 

The leading technology for implementation of post-combustion CO2 capture is an 

absorption-based capture process where the flue gas resulting from the burning of fossil fuels 

(mainly constituted by carbon dioxide, nitrogen and water vapor) is fed to reactor that contains a 

solvent, usually amines. This process is called amine scrubbing [7]. The solvent will react with 

the CO2 and then is pumped to another tank where carbon dioxide and the solvent will be 

separated (amine regeneration), so the solvent can be recycled to the first tank and the gas 
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compressed. Despite being a mature process, amine scrubbing presents some drawbacks. 

Amine regeneration is very energy intensive, corrosion problems as well as the emission of 

carcinogenic compounds. Therefore, alternative processes are needed to overcome these 

difficulties [8]. 

Adsorption-based separation processes are present important alternatives for CO2 

capture from flue gases. Among this processes, Pressure Swing adsorption (PSA) is an 

important option. In this process the pressurized flue gas stream is passed through a porous 

solid that preferentially adsorbs CO2. After this, by decreasing the pressure, CO2 is desorbed 

and ready to be compressed [9]. 

The PSA performance and the power consumption of PSA is highly related with the 

adsorbents used. This is why the development of adsorbents with high adsorption capacities, 

high selectivity and good regenerability for CO2 adsorption/desorption is so important in the 

design of the adsorption process. Many adsorbents have been studied for PSA application, 

including zeolites, activated carbons and, more recently metal organic frameworks. Among 

these materials activated carbons combine the advantages of being robust and also 

unexpansive materials [10]. 

 

 

1.2. Thesis Structure 
 

This thesis is divided in five chapters: 

 

Chapter 1: Introduction 

The content of this chapter intends to advertise the reader about the problems related with the 

growing emissions of carbon dioxide to the atmosphere and how adsorption can be a viable 

alternative solution to help solve this problem. 

This chapter also summarizes the organization of this work. 

 

Chapter 2: Background 

This chapter begins with a small review of adsorption-related concepts and the techniques 

traditionally employed in adsorption equilibrium studies. Finally, some of the adsorbent 

materials available in the market are described. Since activated carbons were the materials 

employed in this work, a more detailed section is devoted to this type of materials. 
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Chapter 3: Adsorbent Characterization 

This chapter briefly explains the characterization methods used (Point of Zero Charge – PZC - 

method, Bohem titrations, N2 adsorption at 77K (BET Surface Area Method, t-Plot Method, 

Horvath-Kawazoe Method and Density Functional Theory Method) and Mercury Porosimetry 

and summarizes the results obtained for the activated carbons studied. 

 

Chapter 4:  Adsorption Equilibrium  

In this chapter adsorption equilibrium data for carbon dioxide, nitrogen and butane on activated 

carbons are presented.  

The apparatus and experimental procedure employed are described. Then, an explanation is 

given about the equations behind the several amounts adsorbed considered. The concepts of 

absolute, excess and net amount adsorbed are discussed and the corresponding results 

obtained are presented. The experimental data obtained was fitted with the Sips isotherm model 

and the obtained results are presented and discussed. 

 

Chapter 5: Conclusions and Suggestions for Future Work 

In this chapter all the conclusions obtained along this study are presented and some 

suggestions are left to the future. 
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Chapter 2 

 

2. Background 

2.1. Adsorption  

2.1.1. Definition 

Adsorption can be defined as the process where some atoms, ions or molecules 

present in a given fluid, gas or a liquid (adsorptive), adhere to the surface of a solid material 

(adsorbent). Due the increase of the adsorptive compound concentration, the solid material will 

be enriched with the molecules of the fluid phase. This molecules adsorbed on the surface of 

the solid material can be referred as adsorbate.  

The reverse process, called desorption, can be defined as the removal of adsorbate 

from the adsorbent. Desorption can be promoted by the decreasing the pressure and/or 

increasing the system temperature [11]. 

 

2.1.2. Some Applications 

Adsorption phenomena is related with important technology processes used nowadays, 

not only because some adsorbents are used in large scale as desiccants, catalysts or catalyst 

supports but also because adsorption can be used in areas so diverse like separation of gases, 

purification of liquids and pollution control, like the removal of aqueous contaminants from 

groundwater [12]. This phenomenon is also useful for the determination of the surface area and 

pore size distribution of a diverse range of powders and porous materials [13]. 

 

2.1.3. Chemisorption and Physisorption 

Adsorption can be defined according to the nature of the interactions 

adsorbate/adsorbent. Adsorption can be divided in two types: Chemisorption and Physisorption. 

Chemisorption consists in the adsorption of molecules of a fluid on the surface of a solid caused 

by covalent or ionic bonding. In physisorption the fluid molecules are retained due to Van der 

Waal forces (including dipole–dipole, dipole-induced dipole and London forces). Due to their 

different nature, physisorption and chemisorption can be distinguished by [11], [13]: 
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a) Since in chemisorption the molecules of the fluid phase react with the adsorbent 

molecules, its original form is not kept. On the other hand, in physisorption, the 

molecules are adsorbed and desorbed without any chemical reaction. 

 

b) Physisorption has a relatively low degree of specificity and for that adsorbate molecules 

can be linked to other adsorbate molecules and to the adsorbent, forming multilayers. 

On the other hand, chemisorption is dependent on the reactivity of the adsorbent and 

adsorptive, so adsorbate molecules can only linked to specific sites of the adsorbent 

surface, being confined to a monolayer.  

 

c) The energy of chemisorption has the same order of magnitude as the energy change in 

a comparable chemical reaction. Physisorption is always exothermic, but the energy 

involved is, generally, not much higher than the energy of condensation of the 

adsorptive. 

 

2.1.4. Adsorption Isotherms 

The relation, at constant temperature, between the amount adsorbed and the 

equilibrium pressure (for gases) is known by adsorption isotherm. When the adsorptive pressure 

stabilizes, the equilibrium is reached, which means that the quantity of molecules adsorbed and 

the molecules in the fluid phase will not vary with time 

In order to describe this relation there are several models of isotherms. However the 

isotherm models of Freudlich, Langmuir and BET (Brunauer, Emmett and Teller) are the most 

commonly observed [14]. A typical gas adsorption isotherm is represented by a plot of the 

amount adsorbed versus the adsorptive pressure. The pressure can also be expressed as a 

ratio of the adsorptive pressure, P, to the saturated vapor pressure,   . 

Despite the multitude of different  gas-solid systems available, the majority of the 

isotherms obtained can be conveniently grouped into six classes according to the International 

Union of Pure and Applied Chemistry (IUPAC) classification which is based on the original 

Brunauer, Deming, Deming and Teller (BDDT) classification (1940) [13] . The different types 

can be seen in Figure 2.1. 
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Figure 2.1 - IUPAC gas physisorption isotherm classification [13]. 

 

The different adsorption isotherm types are related with the adsorbent and adsorbate 

properties. The differences between them can be listed as follow. 

 

Type I - Observed in the physical adsorption of gases on microporous solids, in which 

the pore size is not much greater that the molecular diameter of the adsorbate molecule. This 

type of adsorption isotherm is common in activated carbons and black carbons [15]. 

 

Type II – Typically observed in non-porous or macroporous adsorbents. An inflexion 

point, or knee, is indicated by point B in Figure 2.1. This point indicates the stage at which the 

monolayer coverage is complete and multilayer adsorption begins to occur [16].  

 

Type III – Observed in macroporous solids. This isotherm is convex to the ( /  ) axis 

over its entire range and therefore does not exhibit a point B. This feature is indicative of weak 

adsorbent/adsorbate interactions. These kinds of isotherms are not common [13], [16]. 

 

Type IV – Characteristic of mesoporous adsorbents, this kind of adsorption isotherm 

possess a hysteresis loop (which means that the adsorption isotherm is different from the 

desorption isotherm). Type IV isotherms are common but the exact shape of the hysteresis loop 

varies with the system properties [13], [15]. 

 

Type V – Like the previous type, this isotherm is observed mesoporous solids and 

possesses a hysteresis loop. As Type III isotherm this kind of isotherm indicatives weak 

adsorbent/adsorbate interactions. This type of isotherms is relatively rare [13], [15]. 
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Type VI – Usually observed on porous solids with uniform surfaces, this kind of 

isotherm is relatively rare and is associated with layer-by-layer adsorption on a highly uniform 

surface [13]. 

 

This type of isotherm classification is only applicable to the adsorption of a single-

component gas within its condensable range of temperature. Such measurements are 

extremely useful for the characterization of porous materials [13].  

  

2.1.5. Measuring Adsorption Isotherms 

In order to determine the adsorption isotherms and the energies associated with the 

adsorption phenomena, experimental measurements must be made. Depending on the gas-

solid system in study and the operational conditions there are several gas adsorption methods 

to quantify the amount adsorbed. The most used are the volumetric and gravimetric methods.  

 

2.1.5.1. The Volumetric Method 

The name volumetric method dates from the Emmett and Brunauer (1937) [13] 

experiments which were made using a mercury burette and a manometer. This technique is 

based on the measurement of the gas pressure in a calibrated constant volume at a known 

temperature. 

A typical volumetric apparatus, shown in Figure 2.2, possess two different chambers: 

one for the adsorbent sample is placed and other for the calibrated charge volume. Initially, the 

adsorbent contained in the adsorption cell (or chamber) is activated under the appropriate 

conditions in order to remove the previously adsorbed species. Both the column and the 

reservoir are maintained at the desired temperature. After this, the reservoir is charged with the 

gas to a predetermined pressure. The valve between the reservoir and the column is then 

opened, and the adsorption equilibrium is established between the solid and the gas; the final 

equilibrium pressure is recorded [17]. 

 

One big advantage of the volumetric technique is that the apparatus is less costly than 

the gravimetric method. Volumetric units only require high precision pressure transducers and 

high precision volume measurements. On the other hand, modern gravimetric units provide 

more precise measurements than the ones obtained by volumetric method. 
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Figure 2.2 - Generic volumetric apparatus [17]. 

 

2.1.5.2. The Gravimetric Method 

The determination of the amount adsorbed by the gravimetric method using a spring 

balance was first use by McBain and Bakr in 1926. The apparatus consisted in an adsorbent 

bucket attached to the lower end of a fused silica spring, which was suspended within a vertical 

glass tube. Nowadays, spring balances have been substituted by suspension magnetic 

balances (MSB) [13]. 

The process is initiated by placing the adsorbent sample inside a basket. The material is 

then activated preferentially in-situ, in vacuum at a desired temperature. After the sample is 

cleaned from impurities, the first measurement will give weight of the pair basket + clean 

adsorbent sample. After this, adsorbate is fed to the adsorption chamber and the sample is then 

allowed to equilibrate at the desired pressure and temperature (at a gas molar density). The 

signal from the microbalance is recorded under equilibrium conditions (pressure and 

temperature are constant). The change in the microbalance signal is a result of adsorption 

occurring on the solid surface and the total buoyancy force [17]. A generic gravimetric 

apparatus is shown in Figure 2.3.  

 

The gravimetric technique has some advantages and disadvantages. The primary 

disadvantage is the cost; microbalances are very expensive. In spite of that, this equipment has 

a high precision and accuracy which made it very useful for high-quality research work and pore 

analysis. That is the reason why the gravimetric method was chosen for this experimental work. 
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Figure 2.3 - Generic gravimetric apparatus [17]. 

 

 

2.2. Adsorbates 

The following gases were selected for the present work since they are adsorbates with 

interest in typical adsorption applications. Moreover, those gases are of extreme importance in 

the mitigation of the greenhouse gas emissions.  

 

2.2.1. Carbon Dioxide 
 

Carbon dioxide, CAS number [124-38-9], CO2, Mr 44.010 g/mol, with a boiling point of -

329.72K (56.57ºC) and a melting point of 193.33K (-78.92ºC) is a colorless, odorless, non-

flammable gas with a sour taste. At normal temperature, the carbon dioxide molecules are 

relatively stable and do not readily break down into simpler compounds. However, the 

substance is very sensitive to high temperatures, ultraviolet light, and electrical discharge [18]. 

 

Like it was referred in Chapter 1, the majority of the carbon dioxide present in the 

atmosphere is a result of human activities as energy production, transportation of people and 

goods and from the industrial processes [2]. Several measures and protocols, like the Kyoto 

Protocol [19], to reduce the emissions of greenhouse gases that lead to global warming, are 

being applied nowadays. Despite this fact, the emissions of CO2 to the atmosphere grow each 

day. According to data from the  Mauna Loa Observatory and the NOAA-ESRL (National 

Oceanic & Atmospheric Administration, from U.S Department of Commerce), last year (data 

from February 2013) the concentration of carbon dioxide present in the atmosphere was 396.88 

ppm and this year, by the same time was 397.38 ppm instead of the 350 ppm, which is the goal 

imposed since 1988 [20]. 

 

http://www.research.noaa.gov/
http://www.research.noaa.gov/
http://www.research.noaa.gov/
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2.2.2. Nitrogen 

When two molecules of elemental nitrogen, N (atomic number 7, Ar 14.0067 g/mol) form 

a stable diatomic molecule they origin a molecular substance named nitrogen, CAS number 

[7727-37-9], N2, Mr 28.0134 g/mol. At atmospheric pressure and room temperature, nitrogen is 

a colorless, odorless, noncombustible gas. Nitrogen has a boiling point of 77K (at 1.01 bar) and 

a melting point of 63.29K (−209.86 ºC). 

Nitrogen, which means “lifeless” in Greek, was named by Lavoisier. This molecule is 

obtained from air and is one of its major constituents (78%). In industry, cryogenic (low-

temperature) processes, adsorption processes (such as PSA – Pressure Swing Adsorption), 

and membrane separation are used to separate nitrogen from air [18]. Also, N2 is one of the 

main components of flue gases and, therefore, the knowledge of its adsorption properties is 

extremely important for the modelling of adsorption-based processes for CO2 capture from flue 

gases [1]. 

 

2.2.3. Butane 

Butane, CAS number [106-97-8], C4H10, Mr 58.122 g/mol, with a boiling point of 

273.65K (0.5ºC) is a gaseous hydrocarbon with a colorless and odorless aspect. This substance 

currently known as n-butane (to indicate that the carbon atoms are linked in a straight chain) 

occurs in natural gas and in crude oil. It is formed in large quantities, by catalytic cracking in the 

refining of petroleum to produce gasoline. Commercially, n-butane can be added to gasoline to 

increase its volatility [21]. Removal of butane from natural gas and biogas is extremely 

important, reason why the study of its adsorption equilibrium is of major importance for the 

design of adsorption based processes [22]. 

 

 

2.3. Adsorbents 

2.3.1. General Adsorbents 

Adsorbents are porous solid materials which have the ability to adsorb molecules from a 

liquid or gas [14]. According to IUPAC [23], the pore size generally specified as pore width (the 

available distance between two opposite walls) of a porous material can be classified as: 

Micropore – Pore of internal width less than 2 nm; 

Mesopore - Pore of internal width between 2 and 50 nm; 

Macropore - Pore of internal width greater than 50 nm. 

 

http://www.britannica.com/EBchecked/topic/454269/petroleum
http://www.britannica.com/EBchecked/topic/226565/gasoline
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The potential of adsorbents has been studied since the 18th century [14] and the 

applications for the use of adsorbents have grown with the years. For this reason, it became 

necessary to design new adsorbents in order to face the specificity of the processes, which they 

are applied. Some of the most important application for adsorbents are:  

 

a) Gas separation processes like the upgrading of biogas [24]; 

b) Cleaning processes, sewage gas purification [25], removal of contaminants from 

groundwater through adsorption [12] and the cleaning of industrial effluents [26]; 

c) Gas storage processes like Adsorbed Natural Gas (ANG) [22]; 

 

According to the gas adsorption process, a proper selection of the adsorbent must be 

made. Nowadays there are several adsorbents available. Some of them are listed next. 

 

The name activated alumina is generally applied to an alumina adsorbent prepared by 

the heat treatment of some hydrated alumina (i.e. a crystalline hydroxide, oxide-hydroxide or 

hydrous alumina gel) [13].  This material presents a good mechanical resistance and can be 

used in moving bed applications [27]. The surface chemistry of activated alumina, as well as its 

pore structure, can be modified by the use of a controlled thermal treatment [28]. 

 

Silica Gel has a granular and amorphous form. It is produced by heating a gel, product 

of the acidification of a solution of sodium silicate. This glassy material is highly porous and it is 

used to dry liquids and gases and also to recover hydrocarbons [27]. In addition, its surface can 

be modified by reacting (or grafting) with a monomolecular layer of organic ligand. These 

modified silica gels can be applied in several chromatographic applications [28]. 

Zeolites, also referred to as molecular sieves, are microporous crystalline solids with 

well-defined structures. Generally they contain silicon, aluminum and oxygen in their framework 

and cations, water and/or other molecules within their pores. Many zeolites occur naturally as 

minerals as others are synthetic. The major use of zeolites are in petrochemical cracking, ion-

exchange (water softening and purification), and in the separation and removal of gases and 

solvents [29]. 

Metal-Organic Frameworks (MOFs) are crystalline materials composed of two 

components: metal ions or ion clusters and organic molecules known as linkers. The choice of 

metal and linker has significant effects on the structure and properties of the particular MOF. 

These materials have broad potential for industrial applications because of their attributes: large 

surface-areas and the flexibility with which their structures can be varied [30]. These structures 

can be used in studies for high-density storage of gases, including methane (natural gas) and 

hydrogen. [31], [32], [33] .  
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Once the adsorbents used in this work are two activated carbons, a special section will be 

dedicated to these materials. 

 

2.3.2. Activated Carbon 

2.3.2.1. Historical Aspects 

The first known use for carbon dates from Egyptian time, where this material was used 

for oil purification and medicinal purposes. By the early 19th century both wood and bone 

charcoal were used in large-scale for the decolorization and purification of cane sugar [27], [28], 

[34]. 

However, it was only in the beginning of the First World War (WWI) that the potential of 

activated carbon was really capitalized upon. The advent of gas warfare necessitated the 

development of suitable respiratory devices for personnel protection. Granular activated carbon 

was used to this end as, indeed, it still is today [35]. By the late 1930’s there was considerable 

industrial-scale use of carbon for gaseous and liquid phase application. During the Second 

World War (WWII), a more sophisticated chemically impregnated carbon for entrapment of 

nerve gases was produced [34]. 

 

2.3.2.2. Structure and Precursor Materials 

Among all the adsorbents used in industry, activated carbon, also called activated 

charcoal, is one of the most used. This microporous adsorbent can be obtained from several 

carbon containing materials. Its high surface area (activated carbons can have BET-areas 

larger than 2000 m
2
/g) [13] and its microporore volume, associated with the presence of variety 

of functional groups on its surface, make activated carbon materials powerful adsorbent. The 

structure of carbon it is basically comprised by graphitic plates, as showed in Figure 2.4. The 

vertices and the edges can accommodate a range of elements such as oxygen, nitrogen and 

hydrogen which comprises the surface functional groups. Its graphite structure is very important 

from the adsorption capacity point of view, because it provides space on the slit-pore channels 

to accommodate adsorbate molecules [36], [37]. 
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Figure 2.4 - Hexagonal structure of graphite [13]. 

 

Depending on the raw materials used for its production, several types of activated 

carbon can be obtained. Almost all materials containing high fixed carbon content can 

potentially be activated. The most used carbonaceous source materials are coal (anthracite, 

bituminous, sub-bituminous and lignite), coconut shell, peanut shell, wood, peat, coals, 

petroleum coke, bones and fruit nuts. Among these, anthracite and bituminous coals have been 

the major sources employed [27], [28], [38], [39].  

 

2.3.2.3. Carbonization and Activation 

The process for the production of activated carbon usually involves three steps: a) Raw 

material preparation, b) Carbonization and c) Activation. In order to achieve the desired pore 

structure and mechanical strength, the activation conditions must be carefully controlled. There 

are two kinds of activation: physical activation and chemical activation. In both a step of 

carbonization is required. This step allows the pure carbon to be extracted by pyrolysis [12], 

[40].  

In physical activation, once the material is carbonized it is exposed to oxidizing gases 

like carbon dioxide, oxygen or steam, under a temperature usually between 1073.15K and 

1273.15K. This activation step serves to create porosity allowing the tailoring of the desired size 

distribution and surface area.  

In chemical activation the material is first impregnated with chemicals agents such as 

phosphoric acid or zinc chloride and then is carbonized [12], [28], [41].  

 

During the manufacturing process, macropores are the first to be formed. This occurs 

due the oxidation of weak points (edge groups) on the external surface area of the raw material. 

Mesopores are then shaped and are, essentially, secondary channels formed in the walls of the 

macropore structure. Finally, the micropores are molded by attack of the planes within the 

structure of the raw material. All activated carbons contain micropores, mesopores, and 

macropores (Figure 2.5) within their structures but the proportion vary according with the 

precursor material and the activation conditions [39]. 
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Figure 2.5 - Schematic representation of an activated carbon porous matrix [42]. 

 

 

2.3.2.4. Applications 

Due to its unique adsorptive characteristics, activated carbon plays an important role in 

many liquid and gas phase applications [43]. Some of the processes that use this adsorbent are 

listed as following: 

 

Because of its large surface area, purity and relative hardness, activated carbon is an 

ideal carrier for catalytic metals, for example in batteries [44]. In the environmental field, 

adsorption over activated carbon it is used for several applications. Some of these applications 

are effluent treatment of industrial and municipal waste waters, air purification and capture of 

volatile organic compounds (VOC’s) from diverse streams, and the removal of pesticides from 

contaminated soils [12], [44]. In medicine, activated carbons can be employed in poisoning 

treatments. Through its ingestion, this material prevents the poison from being absorbed in the 

stomach. Sometimes, several doses of activated charcoal are needed to treat severe poisoning 

[45].  

Activated carbons present a great option for gas storage, especially for natural gas. 

Because they have a large microporous volume, are efficiently compacted into a packed bed, 

and can be cheaply manufactured in large quantities [22], [46]. This procedure permits storing 

the gas at lower pressures, improving the safety criteria and reducing the compression costs 

associated to the traditional storage methods [22]. 

 

Cane and sugar syrups require decolorization before being ready for final use.  

Activated carbons are specially processed to develop pore structures that readily adsorb plant 

pigments from the sugar (polyphenols) [47]. 

 

In summary, the characteristics of activated carbons make this type of materials one of 

the best adsorbents that can be used in adsorption processes. Not only because of it high 

surface areas and micropore volumes, but also because activated carbons can be produced in 

several morphologies (beds, pellets, monoliths, fibers, etc. [8]). Activated carbons are also 
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available at low, prices, and being present in industry for so long, they are considered a robust 

material for adsorption applications. In Table 2.1 it is possible to see some typical 

characteristics of activated carbons. 

 

 

Table 2.1 - Typical characteristics of activated carbons [36]. 

True density 2.2 g/cm
3
 

Particle density 0.73 g/cm
3
 

Total porosity 0.71 
Macropore porosity 0.31 
Micropore porosity 0.40 
Macropore volume 0.47 cm

3
/g 

Micropore volume 0.44 cm
3
/g 

Specific surface area 1200 m
2
/g 

Mean macropore radius 800 nm 
Mean micropore half width 1-2 nm 

 

 

In the next chapter, the adsorbents characteristics of the two activated carbons used in 

this work will be properly study by using standard procedures.  
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Chapter 3 

3. Adsorbent Characterization 

3.1. Introduction 

The design of a separation or purification process by adsorption begins with the choice 

of a suitable adsorbent. The success or failure of the process is strictly related with the 

performance of the adsorbent in both adsorption equilibria and kinetics. To satisfy these two 

requirements the adsorbent must have [36]: 

a) A reasonable high surface and a micropore volume, so it can have a good adsorption 

capacity; 

b)  Relatively large pore network: If the pore size is too small the transport of the gas 

molecules to the particle interior can take too long influencing the kinetics; 

c) An easy desorption: If the adsorbent does not have properties that allow an easy 

desorption, it will be necessary to expose the material to high temperatures or extremely 

low pressure for its regeneration. This will contribute to reduce the adsorbent life due to 

thermal ageing [15] and increases the energy consumption related to adsorbent 

regeneration. 

Therefore, in order to evaluate the adsorbent, adsorbent characterization must be 

performed. Density, surface area, pore size distribution, pore volume, and the surface chemistry 

are usually determined. In this study, an activated carbon, ANGUARD 6 (ANG 6), in the form of 

extrudates with 1mm diameter, supplied by Sutcliffe Speakman Carbons Ltd. (UK) was 

characterized at FCT/UNL using N2 adsorption at 77K, Mercury porosimetry, Bohem Titration 

Method, Point of Zero Charge Method (PZC) and Thermogravimetric Analysis (TGA).  

During the realization of this work, another carbonaceous material became available 

and, therefore, was possible to perform the PZC and Bohem titrations analysis for this sample. 

This material consists in an activated carbon honeycomb monolith (ACHM) purchased from 

Master Carbon International Limited (UK). The monolith is cylindrical and presents 20 mm of 

external diameter and 300 cells per square inch. Erro! Auto-referência de marcador inválida. 

shows the two carbon samples. 

 

 

 

 

 

Figure 3.1 - Activated carbons used in this study: ANGUARD 6 (on the left) and 
activated carbon honeycomb monolith (ACHM). 
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3.2. Characterization Methods 

3.2.1. Point of Zero Charge (PZC) 

3.2.1.1 General Description 

The surface of a carbon particle is basic or acidic depending on the functional groups 

that are in majority on its surface. When a small amount of well crushed activated carbon is 

mixed with water, the ions H
+
 and OH

-
 from the dissociation of the functional groups are given to 

the solution until the acid/base equilibrium is achieved. PZC (Point of Zero Charge) is a widely 

used method to determine the surface nature of a carbonaceous adsorbent and can be defined 

as the pH value at which a solid submerged in an electrolyte exhibits zero net electrical charge 

[12], [48].  

 

3.2.1.2. Experimental Procedure 

 

Conditions: 

An aqueous solution with 0.5 g of well crushed ANGUARD 6 and 50 mL of distillated 

water was prepared. The glass container in which the solution was kept covered with an 

aluminum sheet to prevent the oxidation of the carbon. After that, the solution was subject to 

agitation during 48 hours, at 200 rpm. Thereafter, the agitation was stopped and the solution 

allowed standing. Then, using a graduated pipette an aliquot was collected from the solution 

and its pH value was determined using a digital pHmeter, CRISON 2001. 

To secure the data reproducibility, three PZC experiments were made. In the first two, 

the carbon was allowed to settle in the bottom of the vessel and the aliquots were collected from 

the solution above the settled carbon. However, for the third experiment the solution was 

subject to centrifugation and the supernatant removed. This procedure enhanced the time 

needed to read pH in the digital pHmeter employed, since there were less carbon particles in 

suspension. 

 PZC analysis was also performed for the activated carbon monolith. Since the amount 

of material available for the experiments was less than for ANGUARD 6, the experimental 

protocol had to be modified. This way, half the quantity of activated carbon and distilled water 

were employed. Also, after the agitation step the carbon solutions were centrifuged.   

.   
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3.2.1.3. Experimental Results and Data Analysis 

The results obtained from PZC experiments for ANGUARD 6 and the ACHM are 

presented in Table 3.1 and Table 3.2 respectively. 

Table 3.1 - PZC results obtained for ANGUARD 6. 

Experiment Weight of ANG 6 (g) pH value 

1* 0.513 7.08 at 293.55K 
2* 0.512 7.06 at 292.35K 
3** 0.513 6.81 at 293.15K 

*without centrifugation, ** with centrifugation, pH of distillated water: 5.35 at 293.55K. 

 

Table 3.2 - PZC results obtained for the ACHM. 

Experiment Weight of ANG 6 (g) pH value 

1* 0.256 6.15 at 293.15K 
2* 0.254 6.67 at 293.15K 
3* 0.257 6.50 at 293.15K 

* with centrifugation, pH of distillated water: 4.89 at 293.15K. 

 

From the results obtained, the average pH value obtained for ANGUARD 6 was 6.98 

and for the ACHM the average pH was 6.44. It can be concluded that the surface of both 

activated carbons is amphoteric, which means that the acid and basic surface functional groups 

are in equilibrium.  

 

3.2.2. Bohem Titration Method 

3.2.2.1 General Description 

Many properties of carbon materials, in particular their adsorption behavior are 

influenced by the chemisorbed oxygen. The oxygen present on the surface of an activated 

carbon can bond with several elements such as oxygen, nitrogen, hydrogen and sulphur to form 

functional groups. According to the activation method used, the functional groups present in the 

surface of a carbon can be different. Acidic and basic surface sites usually coexist, but the 

concentration of basic sites decreases with the increasing acid character of the surface and 

vice-versa. The functional groups usually found in activated carbons are: carboxyl, carboxylic 

anhydride, lactone, lactol, phenol, carbonyl (acidic groups) and chromene, ketone and pyrones 

(basic groups) [15], [48] . Some of these functional groups can be seen in Figure 3.2 and 

Figure 3.3. 
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Figure 3.2 - Simplified schematic of some acidic surface groups on an activated carbon [28]. 

 

Figure 3.3 - Schematic of some possible basic groups on an activated carbon [28]. 

 

The Boehm titration method permits the identification of the functional groups present in 

the carbon surface. For this purpose, a small amount of activated carbon is mixed with some 

strong bases in order to neutralize the phenols, lactonic groups and carboxylic acids. These 

basic substances are NaOH, Na2CO3 and NaHCO3. Sodium hydroxide (NaOH) is the strongest 

base and neutralizes all the Brönsted acids, while sodium carbonate (Na2CO3) neutralizes 

carboxylic acids and lactonic groups (e.g. lactone) and sodium bicarbonate (NaHCO3) 

neutralizes carboxylic acids. The number of basic sites is calculated from the amount of HCl 

required to the titration [48].  

 

3.2.2.2. Experimental Procedure 

For determination of the acidic and basic surface functional groups of ANGUARD 6 

three laboratorial experiments were performed. The experimental procedure was initiated by the 

preparation of the basic and acidic solutions. 

Solutions preparation: 

Four solutions (three basic and one acidic) of 100 mL with concentration of 0.05 M were 

prepared. For this purpose NaOH (Akzo Nobel, Eka Chemicals), Na2CO3 (Riedel-de-Häen, 

99.5%), NaHCO3 (VR–V. Reis, Lda.) and HCl (Riedel-de-Häen, 37%) and distillated water (with 

a pH of 5.35 at 293.55K) were used. The solutions were stored and used along the three 

experiments in glass containers. 

 



21 
 

RUN A Procedure: 

From each solution, 10 mL were extracted to glass containers and 1.0 g of well crushed 

ANGUARD 6 was added. The glass containers were covered with an aluminum sheet to 

prevent the oxidation of the carbon particles through the exposure to humid air. The solutions 

were subjected to a period of agitation of 48 hours, at 200 rpm. 

After this period, the agitation was stopped and the solutions were left to settle, during 

10 to 15 minutes. In order to remove most of the carbon particles the solutions were decanted 

several times. Then, aliquots were extracted with a graduated pipette and their pH values were 

measured. Finally, the basic and acidic titrations were made, using as titrants an aqueous 

solution of NaOH (0.1 M) and an aqueous solution of HCl (0.1 M). Two drops of phenolphthalein 

were used as pH indicator. 

 

RUN B Procedure: 

 The conditions and procedure used in this experiment were the same as the ones used 

for RUN A, with the difference that after the agitation, the solutions were centrifuged to obtain a 

better separation between the two phases (liquid and solid). 

 

RUN C Procedure: 

From each solution, 10 mL were extracted and 1.0 g of non-crushed ANGUARD 6 was 

added. The glass containers were covered with aluminum sheet to prevent the oxidation of the 

carbon particles through the exposure to air humidity. The solutions were subjected to a period 

of agitation of 24 hours, at 200 rpm. 

Thereafter, the agitation was stopped and the solutions were subject to centrifugation. 

The aliquot was then extracted and the pH values were measured. Finally, the basic and acidic 

titrations were made, using as titrants aqueous solutions of NaOH (0.1 M) and HCl (0.1 M). 

Again, phenolphthalein was employed as pH indicator. 

The calculations used for this analysis can be consulted in APPENDIX A.1.  

 

3.2.2.3. Experimental Results and Data Analysis  

The first attempt to perform these experiments was made using the Bohem titration 

general procedure. Therefore, in the first experiment (RUN A), after the agitation was stopped, 

the basic solutions with the carbon were left to settle for a period of time (10-15 minutes). Then 

a volume from the supernatant was extracted to use in the pH measurement. This procedure is 
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inefficient because not only the waiting for the carbon mixture to settle adds substantial time to 

the experiment but also the carbon particles left in the supernatant add difficulty the pH lecture.  

The mass, volume and concentrations values obtained for the four experimental 

procedures can be seen in APPENDIX A.2, Table A.1 to Table A.3 (for ANGUARD 6) and in 

Table A.4 (for the ACHM). The values of      for each functional group per gram of adsorbent 

are presented in Table 3.3 and Table 3.4. 

After the analysis of the results obtained for the four experiments, it was observed that 

the values of     for the lactones were always negative. Since there is no such thing as 

negative number of moles, the values were considered to be zero. This means that the surface 

of both activated carbons is not characterized by lactonic groups. 

Along the four experiments it could be seen that the values for the quantity of basic 

groups are always larger than the values for the quantities of carboxylic groups and phenols 

isolated. But the overall quantity of the acidic groups is similar to the quantity of basic groups. 

This is consistent with the PZC results, which showed that both ANGUARD 6 and the ACHM 

have an amphoteric surface. In sum, the surface of both activated carbons is characterized by 

basic groups (chromene, ketone and pyrones) and by acidic groups (carboxylic groups and 

phenols, but not by lactonic groups). 
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Table 3.3 - Values of nCFS for RUN A, RUN B, RUN C and RUN D. 

    

RUN A (ANGUARD 6) 

  nCFs Carboxilic Acids Lactones Phenols Total Basic Groups 

  (moles/g of ANG6) (moles/g of ANG6) (moles/g of ANG6) (moles/g of ANG6) (moles/g of ANG6) 

NaOH 2.03E-04 2.61E-04 0 5.42E-05 3.61E-04 

NaHCO3 2.61E-04         

Na2CO3 1.49E-04   Total Acidic groups = 3.16E-04   

HCl 3.61E-04   (moles/g of ANG6)     

            

RUN B (ANGUARD 6) 

  nCFs Carboxilic Acids Lactones Phenols Total Basic Groups 

  (moles/g of ANG6) (moles/g of ANG6) (moles/g of ANG6) (moles/g of ANG6) (moles/g of ANG6) 

NaOH 2.21E-04 3.64E-04 0 1.77E-04 4.43E-04 

NaHCO3 3.64E-04         

Na2CO3 4.35E-05   Total Acidic groups = 5.41E-04   

HCl 4.43E-04   (moles/g of ANG6)     

            

RUN C (ANGUARD 6) 

  nCFs Carboxilic Acids Lactones Phenols Total Basic Groups 

  (moles/g of ANG6) (moles/g of ANG6) (moles/g of ANG6) (moles/g of ANG6) (moles/g of ANG6) 

NaOH 1.90E-04 2.65E-04 0 1.83E-04 3.87E-04 

NaHCO3 2.65E-04         

Na2CO3 7.68E-06   Total Acidic groups = 4.48E-04   

HCl 3.87E-04   (moles/g of ANG6)     
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Table 3.4 - (Continued) Values of nCFS for RUN A, RUN B, RUN C and RUN D. 

RUN D (ACHM) 

  nCFs Carboxilic Acids Lactones Phenols Total Basic Groups 

  (moles/g of ACHM) (moles/g of ACHM) (moles/g of ACHM) (moles/g of ACHM) (moles/g of ACHM) 

NaOH 1.17E-04 1.32E-04 0 8.45E-05 3.04E-04 

NaHCO3 1.32E-04         

Na2CO3 3.30E-05   Total Acidic groups = 2.17E-04   

HCl 3.04E-04   (moles/g of ACHM)     
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3.2.3. Thermogravimetric Analysis (TGA) 

3.2.3.1 General Description 

Thermogravimetric analysis (TGA) is a procedure that allows the evaluation of the 

physical and chemical properties of materials with the increase in temperature. Usually, the 

weight of the analyzed sample is measured while the temperature is increased. The results are 

generally plotted in a curve of the weight percentage versus temperature. Through this analysis 

is possible to know the percentage of the impurities or volatile components, including humidity, 

lost in the degassing process of an adsorbent. It is also possible to know which is the maximum 

temperature to which an adsorbent can be subjected without contributing for its decomposition 

[49]. This analysis can be performed in equipments that combine extremely precise balance and 

a programmable furnace for temperature control.  

 

3.2.3.2. Experimental Results and Data Analysis  

A sample of ANGUARD 6 (8.4720 mg) was analyzed by TGA (TGA model Q50 V6.7 

Build 203, Universal V4.4A TA Instruments - USA) to determine the temperature interval over 

which the sample decomposes. This was done by recording the weight loss as a function of 

increasing temperature. The analysis was performed under a nitrogen atmosphere at a heating 

rate of 278.15K/min (5ºC/min). 

The TGA profile obtained is showed Figure 3.4: 

 

 

Figure 3.4 – TGA analysis of ANGUARD 6. 

The TGA curve showed that the weight of ANGUARD 6 decreases steeply at 323.15K 

(50ºC), and from about 323.15K to 823.15K (50ºC to 550ºC) the weight decreases slowly. After 
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873.15K (600ºC) the sample starts to decompose so it is clearly not advisable to heat the 

adsorbent sample in the activation process more than 823.15K (550ºC). Employing adsorbent 

activation temperatures between 323.15K and 473.15K (50ºC and 200ºC) the weight decrease 

is around 3 to 4%. 

 

3.2.4. Nitrogen adsorption at 77K 

3.2.4.1 General Description 

Nitrogen adsorption at 77K was performed for the activated carbon ANGUARD 6. The 

experiment was performed using a static volumetric apparatus (ASAP 2010, Micromeritics 

Adsorption Analyzer, USA) in a range of relative pressure 10
-6

<P/P0<0.99. The sample weight 

used in the experiment was 0.1418 g. The data from the isotherm was then analyzed using the 

software DataMaster
TM

, V4.00 (2004). The data obtained from the isotherm of N2 at 77K 

measured are presented in APPENDIX A.3, Table A.5. Figure 3.5 shows the isotherm 

obtained. 

 

Figure 3.5 - Adsorption isotherm of N2 at 77K for ANGUARD 6. 

 

3.2.4.1.1. BET Surface Area Method 

Brunauer, Emmett and Teller (BET) method is commonly used to determine the surface 

area of porous materials. Brunauer, Emmett and Teller (1938) extended the Langmuir 

mechanism to multilayer adsorption and obtained an isotherm equation (BET equation). It is 

assumed that the adsorbate molecules can settle on the adsorbent surface or on the top of 

another adsorbate molecule [13]. 
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The first step is to determine the monolayer capacity,   
  through the BET Equation 

[13], [50]: 

 

      
  

 

  
   

  
   

   
   

  
 

  
 

 

 
(Equation 3.1) 

 

 

Where,    is the amount adsorbed in cm
3
/g,   is the absolute pressure in mmHg,    is 

the saturation pressure in mmHg and   is the BET constant. 

By simplifying Equation 3.1, a linear relation can be established between 
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(Equation 3.2) 

 

 

This relation can be plotted, where the slope is s =  
   

   
  

  and the intercept is a = 
 

  
   

 . 

By solving these two equations simultaneously, it can be obtained: 

  
   

 

   
 

(Equation 3.3) 

 

 

   
 

 
   

 

(Equation 3.4) 

 

 

To guarantee the linear region of a BET plot it is recommended to restrict the values of 

relative pressure to a range of 0.05-0.3      . However, the advisable procedure is to obtain, by 

a statistical analysis, the best linear fit for the initial part of the isotherm [13]. 

Then, next step is to calculate the BET surface area,       , the surface area that will 

be available for adsorption, using    
 that was obtained from Equation 3.3: 

 

          
        (Equation 3.5) 

 

Where    is the Avogadro’s number and   is the cross-sectional area that each 

adsorbate molecule occupy in the completed monolayer. For the nitrogen adsorption at 77 K the 

value of       is normally assumed to be 0.162 nm
2
. The value of   is dependent on the nature 

of the adsorbent-adsorbate and adsorbate-adsorbate interactions, the structure of the adsorbent 

surface, and the operational temperature [13]. 
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By restricting the relative pressure range between 0.025 to 0.31      , DataMaster
TM

 

generated a BET Surface Area Report and a BET Surface Area Plot, shown in APPENDIX A.4, 

Figure A.1. 

The recommended procedure is to obtain the best linear fit for initial part of the 

isotherm. Using only the experimental points in the BET relative pressure range, the fitting 

obtained was not so good. By extending the relative pressure range, using the previous point 

(      = 0.025), the correlation coefficient obtained was higher (0.9976), indicating a better 

fitting. 

According to the BET theory, the BET constant   is related exponentially to the enthalpy 

(heat) of adsorption in the first adsorbed layer [51]. Because of this, the   value must be 

positive. If the value is negative this means that the relative pressure range chosen is not 

adequate [13]. Since the value for   obtained for this analysis was  =106.50 (>0), the choice of 

the relative pressure range was assumed to be adequate. Also, since the BET theory is an 

extension of the Langmuir mechanism to multilayer adsorption, to consider the    
  value 

reliable, it is necessary that the knee of the isotherm is fairly sharp (i.e. the BET constant   is 

not less than ~100) (12).The BET surface area obtained for ANGUARD 6 is 1699.79 m²/g which 

is within the typical range for activated carbons (between 300 and ∼ 4000 m
2
/g) [28].  

 

3.2.4.1.2. t-plot Method 

The t-plot method was proposed by Lippens and Boer in 1965. This method allows the 

determination of micropore volume, external surface and micropore area. The experimental 

from the isotherm is redrawn in a t-curve, i.e., a plot of the quantity of gas adsorbed as a 

function of t, the standard multilayer thickness on the reference non-porous material at the 

corresponding     . These t-values are calculated using a thickness equation (Equation 3.6). 

When the shape of the reference t-curve and experimental isotherm do not coincide, that is an 

indication that a non-linear region was reached. From the point where the non-linear region 

begins, a line is drawn (extrapolated) to intercept the yy axe (t=0). The values of external 

surface area and micropore volume can be determined from the intercept and slope obtained 

[13]. 

DataMaster
TM

 V4.00 uses Harkins and Jura Equation (1944) to determine the values of 

thickness [52]. 

 ( ̇)   
√

     

         (
  

 
)
 

(Equation 3.6) 
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Through the slope, s, of the extrapolation is possible to calculate the external surface 

area in m
2
/g and from the intercept, a, the micropore volume in cm

3
/g [16]. 

                (Equation 3.7) 

 

              (Equation 3.8) 

 

The micropore area, in m
2
/g can be calculated through the difference between the BET 

surface area and the external surface area. 

                  (Equation 3.9) 

  

According to the literature [16] the t-plot method is valid for a relative pressure range of 

0.08 to 0.75     . The results obtained for  ANGUARD 6 can be seen in APPENDIX A.5, 

Figure A.2. By restricting the relative pressures to the range recommended, the obtained 

correlation coefficent was close to 1, which indicates a good fitting. According to the results 

found in the literature [13], the values obtained are in acordance with the values for several 

activated carbons. Table 3.5 presents a resume of micropore volume, external surface area and 

micropore surface area for the activated carbon ANGUARD 6: 

Table 3.5 - Results obtained from t-plot method for ANGUARD 6. 

Micropore Volume 

(cm
3
/g) 

External surface area 

(m
2
/g) 

Micropore surface area  

(m
2
/g) 

0.94 52.50 1647.29 

 

3.2.4.1.3. Horvath-Kawazoe (HK) Method 

Horvath and Kawazoe (HK) described a semi-empirical, analytical method for the 

determination of effective pore size distributions from N2 adsorption isotherms in microporous 

materials. In its original form, the HK analysis was applied to nitrogen isotherms determined on 

molecular sieve carbons, over the assumption that these adsorbents contained slit-shaped 

graphitic pores. However, nowadays it can be applied to other adsorbents with different pore 

geometries like zeolites [13], [16].  

 

Horvath and Kawazoe found that the average potential could be related to the free 

energy change of adsorption, creating a relation between filling pressure and the effective pore 

width. Since the analysis is about an activated carbon, the following equation is based in the 

slit-pore geometry [16]: 
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(Equation 3.10) 

 

 

Much of the physical parameters present in this equation can be easily found in the 

literature [28], [53], [54]. The nomenclature for equations Equation 3.10 to Equation 3.14 can 

be found in List of Symbols (Page XXI to Page XXIII). Others like the dispersion constants and 

the inter-nuclear distances must be calculated employing [16], [55]: 
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(Equation 3.12) 
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DataMaster
TM

  analysis allowed obtaining the results presented in Table 3.6: 

Table 3.6 - Results obtained by HK method for ANGUARD 6. 

Maximum Pore Volume 

(cm
3
/g) 

Medium Pore Diameter 

 ̇ 

0.98 18.4 

 

The Horvath-Kawazoe detailed report for ANGUARD 6 is present in APPENDIX A.6., 

Figure A.3. The micropore size distribution can be seen in Figure 3.6.  
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Figure 3.6 - Micropore size distribution obtained from Horvath-Kawazoe Method for ANGUARD 6. 

 

The pore size distribution results obtained from HK Method for ANGUARD 6 shows that 

most of the pores lie in the micropore region (<20  ̇), but also reveals the existence of small 

mesopores for pore widths slighty higher than 20  ̇.  

 

3.2.4.1.4. Density Functional Theory (DFT) Method 

Density functional theory (DFT) is a quantum mechanical modelling method mostly used 

in physics and chemistry areas. In chemistry, it has a great use for predicting a great variety of 

molecular properties like molecular structures, vibration frequencies, atomization energies, 

ionization energies, electric and magnetic properties, reactions paths, etc. [56] . 

In adsorption science, this statistical method attempts to extend the accuracy of pore 

size distribution analysis in both micropore and mesopore range [15]. DFT and Gibbs Ensemble 

Monte Carlo molecular simulation (GEMC) represent an alternative to the classical methods, 

like the HK method. Usually, for activated carbon it is assumed that the material is composed of 

non-interconnected, slit-shapes pores with chemically homogeneous graphitic surfaces. 

 

The pore size distribution obtained from DFT method is shown in Figure 3.7. The DFT 

report for ANGUARD 6 can be seen in APPENDIX A.7, Figure A.4. 
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Figure 3.7 - Pore size distribution obtained from DFT Method for ANGUARD 6. 

 

As it was seen for the HK Method, the DFT analysis confirms that the sample adsorbent 

is mostly microporous, but the existence of mesopores with pore widths slightly above 20  ̇ is 

confirmed. 

 

3.2.5. Mercury Porosimetry 

3.2.7.1 General Description 

Mercury porosimetry characterizes the porosity of a given material by applying various 

levels of pressure to a sample immersed in mercury. The pressure required to intrude mercury 

into the sample pores is inversely proportional to the size of the pores. This indicates that at 

first, macropores and mesopores are filled with mercury and just then, the mercury enters in the 

micropores. In spite of the pressure applied, this method is reserved to the analysis of the 

characteristics of larger pores, instead of the smaller pores [57]. 

 

3.2.7.2. Experimental Procedure 

To perform this analysis, the sample is first loaded into a penetrometer and then, the 

penetrometer is sealed and placed in a low pressure port, where the sample is evacuated to 

remove air and moisture. The penetrometer’s cup is then automatically backfield with mercury. 

As pressure increases, mercury intrudes into the sample’s pore, beginning with the pores that 

have the large diameter. The instrument automatically collects low pressure measurements over 

a range of pressures specified by the operator. Then, the penetrometer is moved to the high 

pressure chamber, where high pressure measurements are taken [57]. 
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3.2.7.3. Experimental Results and Data Analysis 

A sample of ANGUARD 6 (0.1380 g) was subjected to mercury intrusion porosimetry, 

using a mercury porosimetry penetrometer (model AutoPore IV 9500 V1.07) from Micromeritics 

Instrument Corporation (USA). 

The intrusion data summary from Hg porosimetry can be consulted in APPENDIX A.8, 

Figure A.5. The intrusion-extrusion cycle can be seen in Figure 3.8. 

 

Figure 3.8 - Experimental mercury intrusion-extrusion cycle for ANGUARD 6. 

 

The curves give the volume of mercury (mL Hg/g of carbon sample) penetrated at a 

given external pressure P into the measuring cell. The curve represented by the symbols 

(−+−+−) indicates the intrusion curve and the other curve, represented by the symbols 

(−⊖−⊖−) shows the extrusion curve. The results obtained in the mercury porosimetry analysis 

are summarized in Table 3.7.  

 

Table 3.7 - Results obtained from Mercury Porosimetry for ANGUARD 6. 

Total Intrusion 

Volume 

(cm
3
/g) 

Bulk Density 

(g/ cm
3
) 

Apparent Density 

(g/ cm
3
) 

Porosity 

(%) 

0.87 0.56 1.10 48.87 
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The total intrusion volume is the volume of mesopores and macropores (in case of 

ANGUARD 6, the percentage of macropores it is very little, which can be seen in Figure 3.6 

and Figure 3.7). Bulk density is the ratio between the mass of the sample to the sum of all the 

volumes of the solid material (open, closed and blind pores), apparent density is the ratio 

between the mass of the sample to sum of all the volumes, excluding open pores (closed and 

blind). Figure 3.9 illustrates the definition of bulk and apparent densities. The percentage of 

porosity is calculated through the Equation 3.15 [58]. 

 

           
    

   

      
(Equation 3.15) 

 

 

Where     is the total porosity, determined by difference between the bulk volume,     

and the skeletal volume,    , (which only considers the blind pores) [58]. 

 

 

Figure 3.9 - Illustration of bulk, apparent and skeletal densities [58]. 

 

Since the micropore volume was obtained through the HK method, it is now possible to 

calculate the total pore volume for the carbon sample. By summing the micropore volume (0.98 

cm
3
/g) and the total intrusion volume obtained by mercury porosimetry, the total pore volume for 

ANGUARD 6 is 1.85 cm
3
/g. 

 

3.3. Summary 
 

With the purpose of summarizing the information obtained through the several methods 

reported in this chapter (excluding PZC method, Bohem Titration method and TGA), APPENDIX 

A.9, is presented. 
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Based on the information collected for the chemistry surface both activated carbons, 

ANGUARD 6 and the ACHM, proved to have amphoteric surfaces, characterized by acidic 

(except lactonic groups) and basic groups.  

The thermogravimetric analysis showed that when heated until 323.15K (50ºC), the 

weight of ANGUARD 6 decreases steeply, loosing at least 3% of its weight. Between 323.15K 

to 823.15K (50ºC to 550ºC), the weight decreases slowly and after 873.15K (600ºC), the carbon 

sample starts to decompose. 

Through the BET Surface Area Method it was determined that ANGUARD 6 has a high 

surface area,       =1699.79 m²/g, a micropore volume of 0.98 cm
3
/g. The pore size 

distribution, resulting from the Horvath-Kawazoe (HK) and Density Functional Theory (DFT) 

methods, determined the existence of micropores, but also a small amount of mesopores with 

pore widths slightly above 20 ̇. The total pore volume of ANGUARD 6 was calculated by the 

sum of the micropore volume (0.98 cm
3
/g) and the volume obtained from Mercury Porosimetry 

(0.87 cm
3
/g) as a total of 1.85 cm

3
/g. The high surface area and high micropore volume 

obtained are good indicators that ANGUARD 6 will have a good adsorption capacity. 
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Chapter 4 

 

4. Adsorption Equilibrium  

4.1. Introduction 

Adsorption equilibrium data is determinant information to understand an adsorption 

process. No matter how many components are present in the system, the adsorption 

equilibrium of pure components knowledge is essential to determine how much of those 

components can be adsorbed on a solid adsorbent. This information can be used in the 

modelling and optimization of adsorption separation processes [36].  

 

4.2. Experimental Description 

Adsorption equilibrium of carbon dioxide (CO2), nitrogen (N2) and butane (C4H10) at 

303.15K, 323.15K and 353.15K and helium (He)  pycnometry at 353.15K, in a range of 0 – 35 

bar, were measured using an activated carbon, ANGUARD 6, as adsorbent.  Additionally, a 

structured activated carbon was purchased (an activated carbon honeycomb monolith) and, 

therefore, adsorption data of carbon dioxide was also measured. 

The adsorption equilibrium data were measured gravimetrically using a high-pressure 

magnetic suspension balance (MSB) model ISOSORP 2000, from Rubotherm GmbH 

(Germany), with automated online data acquisition in an in-house-developed Labview software 

[59]. The advantage of the MSB is the possibility of accurately contactless weighing the 

adsorbent samples, under nearly all environments. Instead of hanging the sample containing 

baskets directly at the balance, the sample is coupled to a suspension magnet, achieving a 

constant vertical position in a closed measuring cell. Using this freely suspension coupling, the 

measuring force is transmitted contactless from the adsorption chamber to a Sartorius 

microbalance, located outside, under ambient atmosphere.  

Also, the MSB available in the group’s laboratory includes two baskets to allow the 

measurement of adsorption equilibrium information for two adsorbents at the same time. The 

device has a resolution of 0.01 mg, uncertainty lower than 0.002% of the measured value, and a 

reproducibility of less than 0.03 mg to a maximum load of 25 g [60]. 

All gases employed were obtained from Air Liquide (Portugal) and Praxair (Portugal). 

The purities of the gases employed are: CO2 > 99.998%, N2 > 99.995%, C4H10 > 99.95% and 

He > 99.999%. Figure 4.1 shows the MSB and its components.  
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Figure 4.1 - Magnetic suspension balance components [60]. 

 

4.2.1. Adsorbent Sample Pre-Treatment 

Prior to adsorption experiments, the adsorbents employed must be degassed (or 

activated). This procedure ensures the removal of any adsorbed impurities and moisture. 

The information obtained for the ANGUARD 6 carbon by thermogravimetric analysis 

(TGA) showed that the activated carbon should be activated at temperatures between 323.15K 
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and 473.15K (50ºC and 200ºC). Within this range of temperatures the amount of loss weight is 

3 to 4%. The TGA for the ACHM was not performed yet; reason why the temperature of 

activation employed was the same as for the ANGUARD 6 carbon.  

The ANGUARD 6 and ACHM samples were activated in situ at a temperature of 

323.15K for a minimum of 4 hours, under vacuum. The heating up to 323.15K was performed at 

a rate of 278.15K/min. 

 

4.2.2. Experimental Apparatus 

The measurements were carried out in the apparatus showed in Figure 4.2. The gas 

enters the sealed chamber of the MSB and the pressure is registered at the exit line of the 

apparatus, by several high accuracy sensors (PT), each one for a given pressure range. The 

temperature is controlled using a double-jacket connected to a thermostatic bath (BATH). The 

temperature is acquired using thermocouple (4-wire Pt100 probe) (T). A vacuum pump and a 

set of valves (ball and check valves) are also coupled to the system in order to manage the 

entrance and exit of gas, as well as the selection of the pressure transducer to use in each 

measurement. The apparatus working range is limited to 150 bar and 373.15K. A complete 

description of the equipment is given in APPENDIX C. 

The adsorption laboratory apparatus is composed by four main units: a) Feed system 

unit; b) Gravimetric unit with data acquisition; c) Pressure measuring and d) Temperature 

measuring and control unit. 

 

Feed Unit: 
 

The feed unit is composed by a 1/8” OD SS tubing system prepared with a secondary 

vacuum line and two feed lines, one for an inert, and another for the studied component. 

The vacuum line is connected to a vacuum pump Edwards 5C. There is also a HiP pressure 

generator to be applied whenever the desired pressure is higher than the available feed 

pressure. 

 

 
Gravimetric Unit: 
 

The gravimetric unit is composed by the MSB, with acquisition of the weight values from 

the microbalance, and simultaneous pressure data acquisition with a National Instruments PCI-

6023E Board. Acquisition is made using Labview construction, where the measurements are 

monitored in order to see when equilibrium conditions have been reached.  
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Figure 4.2 - Schematic diagram of the experimental apparatus used in the equilibrium 
measurements. 

 

Temperature Measuring and Control Unit: 
 

The temperature control unit is composed by: 

 

a) a refrigerator F32-HL from Julabo GmbH (Germany), keeping the temperature within 0.1 

K of the set-point value; 

c) a 4-wire Pt100 temperature probe, connected to the control unit of the MSB four-wire 

Pt100 probes (RS Amidata, Spain), for temperature measurement on the measuring 

cell. 

 

 
Pressure Measuring and Control Unit: 
 

The pressure was monitored by several pressure transducers (PT) of different ranges, 
granting good measurement accuracy: 

 
1. MKS Baratron Type 627D Absolute Pressure Transducer,  from MKS Baratron, used in 

the pressure range of 2.00E-05 bar-1.32 bar; 

2. PT PX01C1-150A5T pressure sensor (OM2), from Omegadyne Inc., used in the range 

of 0-10 bar; 

Pressure Generator 

Vacum Pump 
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3. PT PX01C1-500A5T pressure sensor (OM3), from Omegadyne Inc., used in the range 

of 0-35 bar; 

4. PT PX03C1-3KA5T pressure sensor (OM4), from Omegadyne Inc., used in the range of 

0-69 bar. 

 

 

4.2.3. Experimental Procedure 

The equilibrium adsorption data of carbon dioxide, CO2, nitrogen N2 and butane C4H10 

and helium pycnometry was measured according to standard procedures: 

 

a) Isothermal pressurization of the adsorption chamber of the MSB containing the carbon 

sample with the pure gas up to the desired pressure, after previously preparation of the 

system (3-4 g previously weighed several times using an analytical balance and an 

average of these measurements was used to determine an initial mass of the sample; 

this mass was confirmed at the initial start-up condition of the MSB); 

 

b) With the in-house developed program [59], online measurement of pressure is taken. 

Adsorption equilibrium is assumed to occur when, for a period of at least one hour, the 

pressure, temperature, and sample weight do not vary. The measured weight is 

recorded, and the amount adsorbed is determined. At this time, pressure and 

temperature are also acquired and the value of the gas density (for this pressure and 

temperature conditions) is obtained from a web database: NIST (National Institute of 

Standards and Technology) [61]; 

 

c) The gas pressure in the adsorption chamber is then increased, and the sample is 

allowed to reach equilibrium with this new condition. These measurements are repeated 

until an entire adsorption isotherm is obtained; 

 

d) After reaching the highest pressure point, the sample is degassed, once more step by 

step, and the values of measured weight, temperature and pressure are taken, in order 

to define the desorption isotherm; 

 

e) In the end, after desorption isotherm is defined the sample is heated under vacuum to 

ensure its complete regeneration. 
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4.3. Experimental Results and Data Analysis 

The adsorption isotherms of carbon dioxide (CO2), nitrogen (N2) and butane (C4H10) at 

303.15K, 323.15K and 353.15K and helium pycnometry at 353.15K, in a range of 0 – 35 bar 

were measured on the ANGUARD 6 sample. Adsorption isotherms of CO2 in the same 

temperature and pressure range were measured for the ACHM sample. 

 

The gravimetric measurements, as well as all other conventional adsorption methods, 

rather than giving the total amount adsorbed,   , give the specific excess adsorbed,    . The     

is the total gas amount added into the measuring cell minus the amount that remains in the gas 

phase upon system equilibration [30]. 

An alternative concept was developed by Gumma and Talu. This was named net 

adsorption,      and it is defined as the total amount of gas present in the measuring cell (with 

the adsorbent), minus the amount that would be present in the empty cell (without the 

adsorbent), at the same pressure and temperature (P, T) conditions. This parameter can be 

calculated directly from the experimental data since it is independent of the adsorbent 

characteristics such as pore volume, solid matrix density and impenetrable pore volume [17]. 

Therefore, this method eliminates the influence of the use of probe molecules in reporting 

adsorption equilibrium data. 

 

In order to determine the absolute adsorption, the buoyancy corrections must be 

performed. Buoyancy corrections are considered to correct the influence of the gas density on 

the measurements of the apparent weight sample. The corrections in the forces acting in the 

sample holder, solid adsorbent and adsorbed phase are taken in account. 

In the case of net adsorption, the buoyancy correction is needed only for the forces 

acting on the sample holder, obtained through the blank experiments performed at different 

pressures with the empty holder; for the excess adsorption, the buoyancy correction is 

necessary for the impenetrable solid volume, which results in an apparent weight loss. This 

correction is estimated as a product of the skeletal volume of the adsorbent and the gas density; 

for the absolute adsorption the correction of the buoyancy acting on the pore volume is also 

needed [17], [22] . 

 

The weight, , reading from the balance at any time can be written as [22]: 

 

     (  
  

  

)      (  
  

  

     ) 
(Equation 4.1) 

 

 

With     and    representing the mass and the density of the sample holder,     and    

are respectively the mass and skeletal density of the sample adsorbent,    is the density of the 
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bulk gas at equilibrium pressure and temperature. The specific excess adsorption,     can be 

calculated by: 

 

    
     

   

     (
 

  

  
  

  

)     
(Equation 4.2) 

 

 

Here,    is the volume of all moving parts present in the measuring cell (such as the 

holding basket). 

 

The blank experiments with the empty holder give its mass, volume and density from 

the intercept and the slope of the linear decrease of apparent weight,  , versus the gas density, 

  .  

        
   

   

     
(Equation 4.3) 

 

 

The values of    and    were estimated at 293.78K using He, helium. Figure 4.3 and 

Figure 4.4 show the results obtained for the blank calibration of the adsorbent sample holders. 

Table 4.1 summarizes the obtained results.  

 

 

 

Figure 4.3 - Blank calibration of sample holder #1 used in the adsorption, using helium at 293.63K. 

 

 



44 
 

 

Figure 4.4- Blank calibration of sample holder #2 used in the adsorption, using helium at 293.63K.  

 

Table 4.1 - Blank calibration of the measuring cells. 

Sample holder Conditions    (g)    (cm
3
)    (g/cm

3
) 

# 1 293.78 K. He 5.574 0.703 7.931 

# 2  293.78 K. He 6.412 0.808 7.934 

 

The determination of the mass and the density of the carbon sample (   and    ) was 

performed through high temperature (353.15K) measurements [22]. It is assumed that helium 

acts as a probe molecule that penetrates into all accessible pore volume of the carbon without 

being adsorbed. 

 

        
   

   

           
   

   

     
(Equation 4.4) 

 

 

Figure 4.5 shows the helium measurements performed for ANGUARD 6 and the 

ACHM. The results obtained from the data analysis are listed in Table 4.2. 
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Figure 4.5 - Helium measurements on ANGUARD 6 (top) and ACHM (bottom) at 353.15K. 

 

The values of weight and gas density, for both adsorbents are presented in APPENDIX B, 

Table B.1. 

 

 

Table 4.2 - Results obtained from helium measurements for ANGUARD 6 and ACHM. 

Sample  Conditions    (g)    (g/cm
3
) 

ANGUARD 6 353.15 K, He 0.490 2.622 

ACHM  353.15 K, He 0.424 2.847 

 

 

The net adsorption      can be calculated by (Equation 4.5. The excess amount     is 

related with      through Equation 4.6 [17]: 

 

 

     
                   

   

 
(Equation 4.5) 
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(Equation 4.6) 

 

 

Finally, the absolute amount adsorption (or total amount adsorbed),    can be 

calculated by the relation between     and      by [30]: 

 

                                   

 

(Equation 4.7) 
 

Where    is the accessible pore volume of the adsorbent and    
 

   
 is the specific 

adsorbent volume impenetrable to the adsorbate. For ANGUARD 6,    is 0.98 cm
3
/g, calculated 

in Chapter 3 by the Horvath-Kawazoe method.  

 During this study the    of the ACHM was not determined. Therefore, a     value 

reported in the literature was employed. The     used is 0.98 cm
3
/g. This is the value reported in 

the literature for a similar ACHM also manufactured by Mast Carbon (UK) [10]. 

 

As an example, Figure 4.6 illustrates the net, excess and total amounts adsorbed for 

nitrogen at 303.15K for ANGUARD 6. It is possible to see that in the low pressure region the 

values do not shown significant difference. On the other hand, when the pressure increases the 

values diverge from each other. For the high pressure region, the net adsorption is the lowest of 

the three quantities, followed by excess adsorption and total adsorption. The same trend was 

obtained for all the isotherms measured independently from the temperature and adsorbate 

employed. All the data is presented in APPENDIX B, in, Figure B.1 to Figure B.4. Table B.2 to 

Table B.5 shows the experimental values of     ,     and    for each pure gas. 

Also it can be observed that as predicted in Chapter 3, the isotherms obtained are Type 

I, which is characteristic of microporous adsorbents. Given that physical adsorption is an 

exothermic phenomenon, the slope of the curvature of the adsorption isotherms will decrease 

with the increasing of the temperature [22]. 
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Figure 4.6 - Net (◊), excess (□) and total (∆) amount adsorbed for nitrogen (N2) at 303.15K for 
ANGUARD 6. The solid symbols represent adsorption and the open desorption. 

 

4.3.1. Sips Isotherm Model 

Knowledge of the adsorption equilibrium and heat of adsorption are essential for proper 

design of any gas-phase adsorption process [22]. In fact, in adsorption separation processes, 

the heat of adsorption is very important since during the process the heat is released and the 

energy is partly absorbed by the solid adsorbent and partly is dissipated to the surrounding. The 

portion absorbed by the solid increases the particle temperature, decreasing its local capacity 

and broadening the mass transfer zone [36]. 

Several isotherm models are available to correlate experimentally obtained data. The 

Sips isotherm model (or Langmuir-Freundlich model) is an extension of the Freundlich equation, 

given by:  

        
    

 
 

       
 
 

 (Equation 4.8) 

 

Where    is the amount adsorbed in mole per unit mass or volume,     is the maximum 

amount adsorbed,   is the affinity constant and measure how strong the adsorbate molecule is 

attracted on to a surface,   is the pressure, the parameter  , usually greater than the unity,  

characterizes the interaction between adsorbate/adsorbent and its magnitude increases with the 

heterogeneity of the system.  
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The affinity constant   and the parameter   can be written in function of the temperature 

as: 

 

 

         
 

    

  
  

 
     

(Equation 4.9) 
 

 

 

 
 

 
  

 

  

       
  

 
  

(Equation 4.10) 
 

 

 

 

Here    is the affinity constant at a reference temperature, (   ,    is the parameter   at 

the same reference temperature,   is a constant parameter and    is the ideal gas constant. 

 
The isosteric heat of adsorption can be obtained by applying the Van’t Hoff’s equation, 

which relates the adsorption heat effects to the temperature dependence of the adsorption 

isotherm, 

              
    

  
    

(Equation 4.11) 
 

 

Where   is the fractional loading (   
  

   
 . In terms of the pressure, isosteric heat it is 

given by: 
 
 

         (     )         (Equation 4.12) 
 

 

And in terms of fractional loading, 

 

         (     )  
   (

 

   
) 

(Equation 4.13) 
 

 

In the Sips isotherm model, parameter   corresponds to the isosteric heat of adsorption 

at the fractional loading of 0.5. 

 

4.3.2. Experimental Results and Discussion 

 

The experimental adsorption equilibrium data (the absolute amount adsorbed) was fitted 

by the Sips adsorption isotherm model. The maximum amount adsorbed and the isosteric heat 

of adsorption from each pure gas was determined. The Sips isotherm model is widely used to 

describe data of many substances on activated carbon with good success [36].  



49 
 

To determine the Sips isotherm parameters for each adsorbate, the experimental 

adsorption data was fitted using the software TableCurve 3D, v.4.0. This software combines a 

powerful surface fitter that has the ability to describe three dimensional empirical data. Using 

this software feature the absolute amount adsorbed (mol/kg) and the pressure (bar) are plotted 

in order to the three working temperatures (K). From the fitted isotherm and the experimental 

data it was possible to determine the average relative error percentage,         (Equation 

4.14), between the experimental points and the ones given by the isotherm model.  

       
   

    

 ∑
           

   

 
(Equation 4.14) 

 

 

The experimental and theoretical results obtained are disclosed in the following 

sections.  

 

4.3.2.1. Experimental data fitting employing Sips isotherm model 

 

 Nitrogen Adsorption on ANGUARD 6 

 

 

Figure 4.7 - Sips model fitting of the N2 experimental data at 303K, 323K and 353K on ANGUARD 6 
and parameters obtained. Symbols represent the experimental data and the surface is the global 
isotherm model. 
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Figure 4.8 - Single component N2 isotherms at 303K, 323K and 353K on the activated carbon 
ANGUARD 6.Symbols represent the experimental data (filled symbol – adsorption; empty symbol – 
desorption) and lines represent the fittings with the Sips model.  The %ARE errors for 303.15K, 
323.15K, and 353.15K are 6.98, 9.01 and 3.55, respectively. The N2 overall ARE error is 6.51%. 

 

 

 

 

Figure 4.9 – Logarithmic representation of the single component N2 isotherms at 303K, 323K and 
353K on the activated carbon ANGUARD 6.Symbols represent the experimental data (filled symbol 
– adsorption; empty symbol – desorption) and lines represent the fittings with the Sips model.  The 
%ARE errors for 303.15K, 323.15K, and 353.15K are 6.98, 9.01 and 3.55, respectively. The N2 overall 
ARE error is 6.51%. 
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 Butane Adsorption on ANGUARD 6 

 

 

Figure 4.10 - Sips model fitting of the C4H10 experimental data at 303K, 323K and 353K on 
ANGUARD 6 and parameters obtained. Symbols represent the experimental data and the surface is 
the global isotherm model. 

 

 

 

 

 

Figure 4.11 - Single component C4H10 isotherms at 303K, 323K and 353K on the activated carbon 
ANGUARD 6.Symbols represent the experimental data (filled symbol – adsorption; empty symbol – 
desorption) and lines represent the fittings with the Sips model.  The %ARE errors for 303.15K, 
323.15K, and 353.15K are 3.90, 6.38 and 3.62, respectively. The C4H10 overall ARE error is 4.63%. 
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Figure 4.12 - Logarithmic representation of the single component C4H10 isotherms at 303K, 323K 
and 353K on the activated carbon ANGUARD 6.Symbols represent the experimental data (filled 
symbol – adsorption; empty symbol – desorption) and lines represent the fittings with the Sips 
model.  The %ARE errors for 303.15K, 323.15K, and 353.15K are 3.90, 6.38 and 3.62, respectively. 
The C4H10 overall ARE error is 4.63%. 

 

 

 

 Carbon Dioxide Adsorption on ANGUARD 6 

 

 

 

Figure 4.13- Sips model fitting of the CO2 experimental data at 303K, 323K and 353K on ANGUARD 
6 and parameters obtained. Symbols represent the experimental data and the surface is the global 
isotherm model. 
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Figure 4.14 - Single component CO2 isotherms at 303K, 323K and 353K on the activated carbon 
ANGUARD 6.Symbols represent the experimental data (filled symbol – adsorption; empty symbol – 
desorption) and lines represent the fittings with the Sips model.  The %ARE errors for 303.15K, 
323.15K, and 353.15K are 6.10, 6.20 and 8.45, respectively. The CO2 overall ARE error is 6.92%. 

 

 

 

 

 

Figure 4.15 - Logarithmic representation of the single component CO2 isotherms at 303K, 323K and 
353K on the activated carbon ANGUARD 6.Symbols represent the experimental data (filled symbol 
– adsorption; empty symbol – desorption) and lines represent the fittings with the Sips model. The 
%ARE errors for 303.15K, 323.15K, and 353.15K are 6.10, 6.20 and 8.45, respectively. The CO2 
overall ARE error is 6.92%. 
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 Carbon Dioxide Adsorption on ACHM 

 

 

Figure 4.16 - Sips model fitting of the CO2 experimental data at 303K, 323K and 353K on ACHM and 
parameters obtained. Symbols represent the experimental data and the surface is the global 
isotherm model. 

 

 

 

 

 

Figure 4.17 - Single component CO2 isotherms at 303K, 323K and 353K on the activated carbon 
ACHM. Symbols represent the experimental data (filled symbol – adsorption; empty symbol – 
desorption) and lines represent the fittings with the Sips model.  The %ARE errors for 303.15K, 
323.15K, and 353.15K are 5.29, 4.33 and 6.49, respectively. The CO2 overall ARE error is 5.37%. 
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Figure 4.18 - Logarithmic representation of the single component CO2 isotherms at 303K, 323K and 
353K on the activated carbon ACHM. Symbols represent the experimental data (filled symbol – 
adsorption; empty symbol – desorption) and lines represent the fittings with the Sips model. The 
%ARE errors for 303.15K, 323.15K, and 353.15K are 5.29, 4.33 and 6.49, respectively. The CO2 
overall ARE error is 5.37%. 

 

Through the several fittings presented between Figure 4.7 to Figure 4.18 it is possible 

to see the good agreement between the fittings with the Sips isotherm model and the 

experimental data through all the pressure range studied (including the low pressure region). 

This information is corroborated by the obtained values of    (the correlation coefficient), that 

are close to 1 and the values the fit standard error (   ), which are very small. These 

parameters of evaluation of the goodness of the fitting are showed in Table 4.3, along with the 

fitting parameters for each adsorbate studied.  

 

Table 4.3 - Parameters obtained from Sips isotherm models for the pure gases in ANGUARD 6 and 
ACHM. 

    ANGUARD 6   ACHM 

Parameter 
  

Nitrogen 
  

Butane 
  Carbon  

Dioxide 

  Carbon 
Dioxide         
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b0 (bar
-1
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4.3.2.2. Isosteric Heat of Adsorption employing Sips isotherm model 

 

 Nitrogen Isosteric Heat of Adsorption on ANGUARD 6 

 

 

Figure 4.19 - Single-component isosteric heat of adsorption for N2 at 303.15K, 323.15K and 353.15K 
as a function of fractional loading on the activated carbon ANGUARD 6, predicted by Sips isotherm 
model. 

 

 

Figure 4.20 - Single-component isosteric heat of adsorption for N2 at 303.15K, 323.15K and 353.15K 
as a function of equilibrium pressure on the activated carbon ANGUARD 6, predicted by Sips 
isotherm model. 
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 Butane Isosteric Heat of Adsorption on ANGUARD 6 

 

 

Figure 4.21 - Single-component isosteric heat of adsorption for C4H10 at 303.15K, 323.15K and 
353.15K as a function of fractional loading on the activated carbon ANGUARD 6, predicted by Sips 
isotherm model. 

 

 

 

 

Figure 4.22 - Single-component isosteric heat of adsorption for C4H10 at 303.15K, 323.15K and 
353.15K as a function of equilibrium pressure on the activated carbon ANGUARD 6, predicted by 
Sips isotherm model. 
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 Carbon Dioxide Isosteric Heat of Adsorption on ANGUARD 6 

 

 

Figure 4.23 - Single-component isosteric heat of adsorption for CO2 at 303.15K, 323.15K and 
353.15K as a function of fractional loading on the activated carbon ANGUARD 6, predicted by Sips 
isotherm model. 

 

 

 

 

Figure 4.24 - Single-component isosteric heat of adsorption for CO2 at 303.15K, 323.15K and 
353.15K as a function of equilibrium pressure on the activated carbon ANGUARD 6, predicted by 
Sips isotherm model. 
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 Carbon Dioxide Isosteric Heat of Adsorption on ACHM 

 

 

Figure 4.25 - Single-component isosteric heat of adsorption for CO2 at 303.15K, 323.15K and 
353.15K as a function of fractional loading on the activated carbon ACHM, predicted by Sips 
isotherm model. 

 

 

 

 

Figure 4.26 - Single-component isosteric heat of adsorption for CO2 at 303.15K, 323.15K and 
353.15K as a function of equilibrium pressure on the activated carbon ACHM, predicted by Sips 
isotherm model. 
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From Figure 4.19 to Figure 4.26, it is possible to visualize the variation of the isosteric 

heat of adsorption for each gas with the fractional loading and with pressure. For both cases, 

the heat of adsorption decreases with the increasing of the fractional loading and with pressure. 

This fact is related with the definition of isosteric heat. Activated carbons are characterized by 

heterogeneous surfaces with a distribution of adsorption sites of different energies. Since the 

adsorbate molecules begin to adhere to the surface sites with the highest energy, more energy 

is released at lower surface coverage values. When those sites are totally fulfilled with 

adsorbate, the gas molecules will be adsorbed on the remaining sites, with lower energy.  So at 

lower coverage, more energy is released reason why the isosteric heat of adsorption is higher 

for lower amounts adsorbed and decreases with the enhancement of loading and also pressure 

[22]. In spite of forming a plateau as the previous adsorbates, it can be seen in Figure 4.23 to 

Figure 4.26 that of the values of isosteric heats of adsorption for carbon dioxide, in ANGUARD 

6 and in ACHM almost not vary. This is due to the values of parameter   obtained for the two 

adsorbates (consult Table 4.3). Since the   values are almost zero, the contribution of the 

fractional loading and of the pressure is practical nil, reason why the values of isosteric heat of 

adsorption almost not vary (see Equation 4.12 and Equation 4.13). 

 

4.3.2.3. Data interpretation from Sips isotherm model 

Starting by the maximum amount adsorbed,    , from Table 4.3 it is possible to see that 

for ANGUARD 6, CO2 has the highest saturation amount adsorbed, 21.66 mol/kg, followed by 

C4H10, 17.12mol/kg and finally by N2 with 11.96 mol/kg. For comparison purposes the isotherms 

of CO2, N2 and C4H10 on ANGUARD 6 at 303.15K are showed in in Figure 4.27. 

 

Figure 4.27 - Single-component adsorption isotherms of N2, C4H10 and CO2 on ANGUARD 6 at 
303.15 K. The symbols represent the experimental data (filled symbol – adsorption; empty symbol 
– desorption) and the lines represent the Sips model isotherm fitting. 
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The data shows that at low pressures, C4H10 is significantly more adsorbed than CO2 

and N2. Despite this fact, the CO2 adsorption increases significantly with the pressure increase, 

especially when compared with the capacity of the adsorbent towards N2. This indicates that 

this activated carbon has potential to perform CO2/N2 separation. To evaluate this potential the 

equilibrium selectivity of the activated carbon ANGUARD 6 for the CO2/N2 separation was 

evaluated. Adsorption equilibrium selectivity results from a ratio between   , the adsorbed 

amount of the more adsorbed species and the adsorbed amount of the less adsorb quantity,   . 

     
  

  
 

(Equation 4.15) 
 

 

Figure 4.28 shows the equilibrium selectivity for the CO2/N2 separation on ANGUARD 

6. It can be observed that the selectivity for carbon dioxide decreases with the increasing of 

pressure. The plot shows that the selectivity of CO2 over N2 is more favored at low pressures, 

although it is known that the amount adsorbed increases significantly with pressure and both 

these parameters must be considered when designing adsorption-based separation processes. 

 

 

Figure 4.28 - Selectivity of CO2/N2 as a function of pressure at 303.15K. 
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kJ/mol for carbon dioxide on the ACHM. This means that the adsorbate molecules of butane are 

the ones that release a higher amount of energy in the adsorption process. 

For both activated carbons, for the four adsorbates the value of the Sips model 
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this information does not point to what is the source of the heterogeneity, whether it be the solid 

structural property, the solid energetically properties or the adsorbate properties [36]. The 

higher value of parameter   was obtained for butane on ANGUARD 6 (  = 2.41). 

This same parameter   influences the curvature of the adsorption isotherm. According 

to the literature [36], the larger is the value of  , the more nonlinear is the adsorption isotherm. 

When the parameter   is getting larger than 10, the adsorption isotherm is approaching a so-

called rectangular isotherm (or irreversible isotherm). The term "irreversible isotherm" is 

normally used because the pressure needs to be decreased to an extremely low value before 

adsorbate molecules would desorb from the surface. Such dramatic pressure decrease is quite 

energy intensive and will therefore affect the energy consumption and cost of a separation 

involving adsorbate-adsorbents with such isotherms. Figure 4.29 shows the adsorption 

isotherm for each adsorbate and its corresponding values of   parameter. It is possible to 

visualize that butane has the squarest adsorption isotherm. 

 

 

Figure 4.29 - Single-component adsorption isotherms for N2 (blue line), CO2 (green line), C4H10 (red 
line) on ANGUARD 6 and CO2 (purple line) on ACHM 6 at 303.15 K. 

 

Through Table 4.3, it is also possible to see that butane has the highest value of   , the 

affinity constant for a reference temperature on ANGUARD 6. This means that the molecules of 

butane are the ones that are more attracted to the surface of this activated carbon. Butane is 

followed by carbon dioxide and nitrogen. Making a comparison between with the value of    

obtained for CO2 on the ACHM, it can be concluded that the molecules of this adsorbate (CO2) 

have more affinity for to the surface of the monolith than for the surface of ANGUARD 6. 
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Figure 4.30 - Single-component adsorption isotherms for of CO2 on ANGUARD 6 and CO2 on ACHM 
6 at 303.15 K. The amount adsorbed is represented in moles of carbon dioxide by mass of carbon 
sample. 

 

Figure 4.30 presents the CO2 isotherms at 303.15K of the two activated carbon 

samples studied. It can be clearly observed that the ACHM adsorbs more CO2 at low pressures 

while for higher pressures the ANGUARD 6 activated carbon presents higher adsorption 

capacity towards CO2. In fact, the isotherms even cross at around 18 bar. 

When the amount adsorbed is compared not by mass of carbon but by volume, a similar 

trend is observed. The calculus involved in the determination of the bulk densities for 

ANGUARD 6 and ACHM can be consulted in APPENDIX A.10. Figure 4.31 shows that at low 

pressures ACHM adsorbs more CO2 than ANGUARD 6, but around 29 bar, where the 

adsorption isotherms cross, the situation reverses. 
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Figure 4.31 - Single-component adsorption isotherms for of CO2 on ANGUARD 6 and CO2 on ACHM 
6 at 303.15 K. The amount adsorbed is represented in moles of carbon dioxide by volume of carbon 
sample. 

 

The isotherm of CO2 on the honeycomb monolith is much squarer than the ANGUARD 

6 isotherm. The isotherm shapes is very important when designing a separation process as 

Pressure Swing Adsorption (PSA). PSA is widely study adsorption-based process [62] in which 

the adsorbed species are desorbed by decreasing the system pressure [14], [28]. Therefore, if 

the isotherm presents a square shape an important amount of energy must be spent in order to 

decrease the pressure enough to ensure desorption of the retained compound. 

 

4.4. Summary 

In this chapter adsorption equilibrium of carbon dioxide (CO2), nitrogen (N2) and butane 

(C4H10) at 303.15K, 323.15K and 353.15K and helium (He) pycnometry at 353.15K, in a range of 

0 – 35 bar, on ANGUARD 6 activated carbon was presented.  Adsorption equilibrium of CO2 on 

an activated carbon honeycomb monolith, at the same temperatures and pressure range, was 

also disclosed. 

The experimental adsorption equilibrium results obtained showed that all the adsorption 

isotherms obtained can be classified as IUPAC Type I, characteristic from microporous 

adsorbents. 

The adsorption experimental data from each pure gas was fitted employing the Sips 

isotherm model. This fitting allowed the estimation of the Sips model parameters. With these 

parameters the fractional loading,   and the isosteric heat of adsorption,       could be 

calculated.  

The isosteric heats of adsorption as a function of the fractional loading and pressure 
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and with the increasing of pressure for all the adsorbate species studied. In case of CO2, this 

dependence is almost nil due to the values of parameter  . 

For ANGUARD 6, the higher     estimated from the Sips model corresponded to carbon 

dioxide. The       obtained for CO2 on ANGUARD 6 was 21.66 mol/kg while the     obtained for 

CO2 on the honeycomb monolith was only 11.80 mol/kg. This indicates that the ANGUARD 6 

can adsorb more CO2 than the ACHM for sufficiently high pressures. This fact was also 

confirmed by comparison of isotherms at the same temperature (303.15 K). Although the ACHM 

adsorbs more CO2 at low pressures (above 18 bar when compared by mass and above 29 bar 

when compared by volume) the isotherms of CO2 on both carbons cross, and ANGUARD 6 is 

able to adsorb more CO2. Also the isotherm of CO2 on the honeycomb monolith is much 

squarer than the ANGUARD 6 isotherm, which indicates that to ensure desorption of the 

retained compound, a great amount of energy must be spent to decrease the pressure. 

  



66 
 

  



67 
 

Chapter 5 

 

5. Conclusions and Suggestions for Future Work 

 

5.1. Conclusions 

The work developed within this thesis was divided in two parts:  

a) Adsorbent characterization of two activated carbons: ANGUARD 6, which is an 

activated carbon in the form of extrudates, supplied by Sutcliffe Speakman 

Carbons Ltd. (UK) and an honeycomb monolith from Mast Carbon International 

Limited (UK); 

b) Single-component adsorption equilibrium measurements of pure gases (carbon 

dioxide, nitrogen and butane), performed in a magnetic suspension microbalance, 

by the gravimetric method.  

To characterize the activated carbons several methods were used. Surface chemistry of 

both carbons was analyzed using the Point of Zero Change and Bohem tiration methods. The 

results obtained indicated that both adsorbents have an amphoteric surface, characterized by 

basic groups (chromene, ketone and pyrones) and by acidic groups (carboxylic groups, 

phenols, but not by lactonic groups). 

Thermogravimetric analysis (TGA) of the ANGUARD 6 sample was also performed. The 

TGA curve showed that the weight of ANGUARD 6 decreases steeply at 50ºC (323.15K), losing 

at least 3% of its weight. From 50ºC (323.15K) to 550ºC (823.15K) the weight decreases slowly 

and above 600ºC (873.15K), the sample starts to decompose.  

Adsorption of nitrogen at 77K was also measured for ANGUARD 6 (at this point the 

purchased honeycomb monolith was not yet available). From the adsorption isotherm several 

physical proprieties of the adsorbent were determined. The BET Surface Area method 

determined that ANGUARD 6 has an internal surface area of 1699.79 m²/g. The t-plot method 

gave an external surface area of 52.50 m²/g and a micropore surface area of 1647.29 m²/g.  

The Horvath-Kawazoe (HK) method ensured the determination of the pore size distribution for 

the microporous adsorbent, indicating that ANGUARD 6 is mostly comprised by micropores but 

also have a small amount of mesopores, with sizes slightly above 20  ̇. Also, this method 

allowed the determination of the pore volume, used in the determination of the absolute amount 
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adsorbed (   = 0.98 cm
3
/g). The Density Functional Theory method confirmed the pore size 

distribution obtained by HK method.  

Mercury porosimetry was also performed for ANGUARD 6. The volume occupied by the 

mesopores and macropores were determined (0.87 cm
3
/g). Combining this volume, with the 

micropore volume, the total pore volume ANGUARD 6 was determined (  = 1.85 cm
3
/g). 

The second part of this work consisted in the adsorption equilibrium measurements of 

three gases: carbon dioxide (CO2), nitrogen (N2) and butane (C4H10) on ANGUARD 6. 

Adsorption equilibrium of CO2 on the honeycomb monolith was also measured. The 

experiments were made at 303.15K, 323.15K and 353.15K in a pressure range of 0-35 bar. The 

experiments were performed by the gravimetric method, using a magnetic suspension 

microbalance from Rubotherm GmbH.  

The net, excess and total amount adsorbed were calculated to each pure gas. The 

isotherms obtained can be classified as IUPAC Type I, typical for microporous adsorbents. The 

total amount adsorbed was fitted with the Sips isotherm model. The fitting obtained were good 

and allowed the determination of the Sips model parameters.  

The isosteric heat was also studied for all the adsorbates studied. The isosteric heat 

decreased with the fractional loading and with pressure for all the species studied.  

ANGUARD 6 presents a high surface area and micropore volume. This adsorbent also 

demonstrated to have a good adsorption capacity towards CO2 and proved to be selective for 

CO2/N2 separation. Therefore, ANGUARD 6 can be envisioned as a potential adsorbent to be 

employed in the capture of CO2 from flue gases emitted from fossil fueled power stations. More 

specifically, ANGUARD 6 can be a good candidate to be used in PSA technology as an 

alternative to amine scrubbing in the post-combustion CO2 capture process. 
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5.2. Suggestions for Future Work 

Despite the work already developed and disclosed in the pages of this dissertation, 

there is still work to be developed regarding the measurement of adsorption properties of the 

materials employed.  

The activated carbon honeycomb monolith was only available in the final part of this 

work and, therefore, its characterization could not be concluded. Thus, its characterization 

should be concluded in order to evaluate properties as its pore volume, surface area and pore 

size distribution. 

Also, measurement of the adsorption equilibrium of methane (CH4) on both adsorbents 

would be interesting. Biogas is, nowadays, an interesting energy source and since biogas is 

mainly constituted by CH4 and CO2 it would be interesting to evaluate the adsorption properties 

of both adsorbents towards CH4. This way, the potential use of the adsorbents on biogas 

upgrading can be evaluated.  

Finally, determination of the adsorption kinetics of the pure gases in the two activated 

carbons should be accomplished. The design of adsorption separation processes depends not 

only on the knowledge of the adsorption equilibrium, but also depends strongly on its kinetics. 

For this reason, the study of the kinetics of CO2, N2 and CH4 on ANGUARD 6 and the ACHM 

should be performed in the near future. 
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 A. Results from Chapter 3 

A.1. Calculus used in the analysis of Bohem Titrations Results 
 

Calculus: 

The determination of the number of moles of the surface functionalities (surface 

functional groups) at the carbon surface was obtained through the following equation [63]: 

 

                          
  

  
 (Equation A.1) 

 

Where,      is the number of moles of carbon surface functionalities at the carbon 

surface;      and    are the concentration and volume of the basic solution (or acid in case of 

HCl) mixed with carbon. The product between the two is the number of moles of the basic 

solution (or acid in case of HCl) that will be available to react with the surface groups at the 

carbon surface;     is the volume of the aliquot taken from   ;        and      (or in case of HCl, 

       and       )  are the concentration and volume of the titrant added to the aliquot and the 

product is the number of moles acid (or basic) added to the aliquot and available to react with 

the remaining reaction base (or acid); 

The quantification of the functional groups at the carbon surface can be calculated 

through several subtractions. The NaOH neutralizes all the acid groups (phenols, lactonic and 

carboxylic groups) and therefore has a      that includes all of these groups. Na2CO3 reacts 

with carboxylic and lactonic groups and the difference between     (NaOH) and     (Na2CO3) 

will denote the number of phenols on the surface.  

In the same way, since NaHCO3 reacts only with the carboxylic groups the difference 

between the     (Na2CO3) and     (NaHCO3) gives the quantity of lactonic groups. The 

quantity of carboxylic groups it is determined directly from     (NaHCO3).The quantification of 

the basic groups comes from the value of     (HCl) [63], [64]. 

In the case of the ACHM, like it was mention before, the amount available to perform 

the experiments was less than for ANGUARD 6, and for this reason only one run, RUN D, was 

performed. The same conditions as the ones used in RUN B were employed. Instead of 1.0 g of 

well-crushed activated carbon and 10 mL of each solution previously prepared, the quantities 

were reduced to half. 
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A.2. Results from Bohem Titrations 

  

Table A.1 - Results from Bohem Titrations Experiments for RUN A – 48 hours without centrifugation (ANGUARD 6). 

Solutions 
Concentration 

(M) 

pH of the 
aqueous 
solution 

pH of the 
solution 

mixed with 
ANG 6 

Volume 
of the 

titrated 

Weight 
of ANG 

6 

pH of the 
titrant 

Volume of 
the titrant 

Concentration 
of the titrant 

Concentration 
of the titrated 

Concentration of the 
titrated 

(0.05M) 
(292.15K) 

(titrated) 
(292.35K) 

(mL) (g) (292.25K) (mL) (mol/mL) (mol/mL) (mmol/mL) 

NaOH 0.05 12.15 9.91 5.1 1.015 1.71 1.5 1.000E-04 2.941E-05 0.029 

NaHCO3 0.05 8.32 9.01 3.8 1.007 1.71 0.9 1.000E-04 2.368E-05 0.024 

Na2CO3 0.05 10.89 9.50 4.0 1.009 1.71 1.4 1.000E-04 3.500E-05 0.035 

HCL 0.05 2.07 5.04 2.9 1.003 12.65 0.4 1.000E-04 1.379E-05 0.014 

 

Table A.2 - Results from Bohem Titrations Experiments for RUN B – 48 hours with centrifugation (ANGUARD 6). 

Solutions 
Concentration 

(M) 

pH of the 
aqueous 
solution 

pH of the 
solution 

mixed with 
ANG 6 

Volume 
of the 

titrated 

Weight 
of ANG 

6 

pH of the 
titrant 

Volume of 
the titrant 

Concentration 
of the titrant 

Concentration 
of the titrated 

Concentration of 
the titrated 

(0.05M) 
(292.45K) 

(titrated) 
(293.15K) 

(mL) (g) (292.25) (mL) (mol/mL) (mol/mL) (mmol/mL) 

NaOH 0.05 12.15 9.96 6.1 1.003 1.71 1.7 1.000E-04 2.787E-05 0.028 

NaHCO3 0.05 8.32 9.40 6.8 1.01 1.71 0.9 1.000E-04 1.324E-05 0.013 

Na2CO3 0.05 10.89 9.67 6.8 1.014 1.71 3.1 1.000E-04 4.559E-05 0.046 

HCL 0.05 2.07 5.12 5.5 1.006 12.65 0.3 1.000E-04 5.455E-06 0.005 
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Table A.3 - Results from Bohem Titrations Experiments for RUN C– 24 hours with centrifugation (ANGUARD 6). 

Solutions 
Concentration 

(M) 

pH of the 
aqueous 
solution 

pH of the 
solution 

mixed with 
ANG 6 

Volume 
of the 

titrated 

Weight 
of ANG 

6 

pH of the 
titrant 

Volume of 
the titrant 

Concentration 
of the titrant 

Concentration 
of the titrated 

Concentration of 
the titrated 

(0.05M) 
(292.45K) 

(titrated) 
(293.15K) 

(mL) (g) (292.25K) (mL) (mol/mL) (mol/mL) (mmol/mL) 

NaOH 0.05 12.15 10.960 6.5 1.011 1.71 2.0 1.000E-04 3.077E-05 0.031 

NaHCO3 0.05 8.32 9.800 4.8 1.022 1.71 1.1 1.000E-04 2.292E-05 0.023 

Na2CO3 0.05 10.89 10.380 6.5 1.001 1.71 3.2 1.000E-04 4.923E-05 0.049 

HCL 0.05 2.07 3.840 5.3 1.000 12.65 0.6 1.000E-04 1.132E-05 0.011 

 

 

Table A.4 - Results from Bohem Titrations Experiments for RUN D – 48 hours with centrifugation (ACHM). 

Solutions 
Concentration 

(M) 

pH of the 
aqueous 
solution 

pH of the 
solution 

mixed with 
ACHM 

Volume 
of the 

titrated 

Weight 
of 

ACHM 

pH of the 
titrant 

Volume of 
the titrant 

Concentration 
of the titrant 

Concentration 
of the titrated 

Concentration of 
the titrated 

(0.05M) 
(292.45K) 

(titrated) 
(293.15K) 

(mL) (g) (293.15K) (mL) (mol/mL) (mol/mL) (mmol/mL) 

NaOH 0.05 12.83 9.61 2.6 0.491 1.02 1.0 1.000E-04 3.8467E-05 0.038 

NaHCO3 0.05 9.01 9.87 3.0 0.504 1.02 1.1 1.000E-04 3.667E-05 0.037 

Na2CO3 0.05 11.67 10.13 3.0 0.505 1.02 1.4 1.000E-04 4.667E-05 0.047 

HCL 0.05 1.48 3.58 2.0 0.493 12.78 0.4 1.000E-04 2.000E-05 0.020 
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A.3. Results from N2 adsorption at 77K 
 

Table A.5 - N2 adsorption isotherm at 77K for ANGUARD 6. 

  

Relative Pressure (mmHg) Absolute Pressure (mmHg) Amount adsorbed (cm3/g STP) Saturation Pressure (mmHg)

5.40E-06 0.0042 20.1990 773.3922

9.80E-06 0.0076 40.3963

2.10E-05 0.0162 60.5900

3.99E-05 0.0309 80.7795

6.86E-05 0.0530 100.9655

1.13E-04 0.0871 121.1435

1.82E-04 0.1403 141.3116

2.95E-04 0.2276 161.4585

3.73E-04 0.2876 171.1009

7.47E-04 0.5761 197.3558

1.50E-03 1.1537 220.5257

3.00E-03 2.3143 241.1775

6.09E-03 4.6931 261.2856

1.22E-02 9.4126 282.0022 770.5537

2.51E-02 19.3363 307.5154

4.89E-02 37.7144 339.4128

9.83E-02 75.7452 390.3850

1.48E-01 113.9255 434.0811

1.99E-01 153.6747 475.4101

2.53E-01 194.8087 513.7624

3.09E-01 238.1761 548.4652

4.04E-01 311.7136 592.2765

5.04E-01 388.4846 618.3242

6.13E-01 472.3442 632.9579

7.09E-01 546.3831 640.0570

7.94E-01 612.1602 645.0776

8.58E-01 661.6496 648.7496

8.99E-01 693.1236 651.4601

9.24E-01 712.8140 653.5630

9.49E-01 731.7781 656.3436

9.73E-01 750.1361 661.1551

9.88E-01 762.0043 667.5474

8.96E-01 691.0161 656.5646

7.89E-01 608.5940 650.5465

6.88E-01 530.6953 645.2773

6.01E-01 463.4106 640.2210 771.2968

5.01E-01 386.5867 633.1470

3.97E-01 306.3074 591.6652

3.03E-01 233.4853 545.7287

2.00E-01 153.9131 475.8777

1.02E-01 78.7608 393.3008



80 
 

A.4. Results from BET Surface Area Method Analysis 
 

 

Figure A.1- BET Surface Area Report and BET Surface Area Plot for ANGUARD 6, obtained from 

DataMaster
TM

, V4.00 (2004). The value of   
 is indicated as Qm. 

 

A.5. Results from t-Plot Method Analysis 
 

 

Figure A.2 - t-Plot Report and t-Plot for ANGUARD 6, obtained from DataMaster
TM

, V4.00 (2004). 
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A.6. Results from Horvath-Kawazoe (HK) Method Analysis 
 

 

Figure A.3 - Horvath-Kawazoe Report for ANGUARD 6, obtained from DataMaster
TM

, V4.00 
(2004). 

 

 

A.7. Results from Density Functional Theory (DFT) Method 

Analysis 
 

 

Figure A.4 - Density Functional Theory results for ANGUARD 6, obtained from DataMaster
TM

, 
V4.00 (2004). 

 

A.8. Results from Mercury Porosimetry Analysis 
 

 

Figure A.5 - Intrusion Data from Hg porosimetry for ANGUARD 6 



82 
 

A.9. Resume of the physical parameters calculated from the 

several characterization methods for ANGUARD 6 
 

Table A.6 - Characterization physical parameters of ANGUARD 6. 

 

 

 

A.10. Calculus used for the determination of the bulk densities 

for ANGUARD 6 and ACHM 
 

Bulk density of ANGUARD 6 

In order to determine the bulk density of ANGUARD 6, a graduated cylinder of 50 mL   

1.0 mL was filled with the carbon pellets. The weights of the graduated cylinder and the 

graduated cylinder + the carbon pellets were measured. The weight of the carbon pellets was 

estimated by the difference. 

                                 = 93.868 g  

                                                 = 111.909 g  

                             = 18.041 g  
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The bulk density was than calculated by the quotient between the weight of the carbon 

pellets and the volume of the graduated cylinder. 

                           
                            

                                
             

 

 

Bulk density of ACHM 

Since the honeycomb monolith has a cylinder shape, it was easy to determine its 

volume. Figure A.6 illustrates a piece of the ACHM and its dimensions. 

 

D = 3 cm

H = 2 cm

 

Figure A.6 - Illustration of a piece of the ACHM used for the determination of its bulk density. 

 

After the dimensions were recorded, the piece of the ACHM was weighed. 

                         = 5.997 g  

                                            = 7.069 cm
2 

                         = 2 cm 

                                14.137 cm
3 

 

                      
                        

                        
             

 

  



84 
 

  



85 
 

B. Results from Chapter 4 
 

Table B.1 - Experimental data obtained from helium measurements at 353.15K for ANGUARD 6 and 
ACHM. 

He adsorption at 353.15K for ANG6 
 

He adsorption at 353.15K for ACHM 

Weight (g) 
 

ρg (kg/m
3
) 

 
Weight (g) 

 
ρg (kg/m

3
) 

6.9016 
 

0.0000 
 

5.9985 
 

0.0000 

6.9016 
 

0.0685 
 

5.9985 
 

0.0685 

6.9014 
 

0.2928 
 

5.9983 
 

0.2928 

6.9007 
 

0.9491 
 

5.9977 
 

0.9491 

6.9000 
 

1.8180 
 

5.9972 
 

1.8180 

6.8985 
 

3.3762 
 

5.9958 
 

3.3762 

6.8976 
 

4.1946 
 

5.9950 
 

4.1946 

6.8970 
 

4.6663 
 

5.9945 
 

4.6663 

6.8992 
 

2.5652 
 

5.9964 
 

2.5652 

6.9006 
 

1.3359 
 

5.9976 
 

1.3359 

6.9013 
 

0.5476 
 

5.9983 
 

0.5476 

6.9019 
 

0.0000 
 

5.9985 
 

0.0000 
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Table B.2 – Experimental nitrogen adsorption equilibrium data on the carbon sample ANGUARD 6 at 303.15K, 323.15K and 353.15K. 54 experimental data points 
were measured.  

303.15K   323.15K   353.15K 

P (bar) 
     

(mol/kg) 
    

(mol/kg) 
    

(mol/kg) 
  P (bar) 

     
(mol/kg) 

    
(mol/kg) 

    
(mol/kg) 

  P (bar) 
     

(mol/kg) 
    

(mol/kg) 
    

(mol/kg) 

0.0048 0.0017 0.0018 0.0020   0.0052 0.0010 0.0011 0.0013   0.1055 0.0118 0.0132 0.0167 

0.0245 0.0051 0.0055 0.0064   0.0176 0.0024 0.0027 0.0033   0.7156 0.0699 0.0792 0.1031 

0.0952 0.0224 0.0238 0.0275   0.1014 0.0091 0.0106 0.0143   1.0547 0.1124 0.1261 0.1613 

0.3088 0.0796 0.0843 0.0963   0.7544 0.0981 0.1088 0.1363   2.9982 0.2511 0.2900 0.3900 

0.7642 0.1985 0.2101 0.2398   1.0172 0.1292 0.1436 0.1807   7.1361 0.4904 0.5829 0.8209 

1.0280 0.2535 0.2690 0.3090   3.0153 0.3481 0.3909 0.5008   12.0574 0.7243 0.8806 1.2821 

3.0544 0.5489 0.5952 0.7140   5.5639 0.5826 0.6616 0.8646   17.1165 0.9214 1.1431 1.7128 

8.0958 1.0962 1.2189 1.5340   10.0009 0.9058 1.0478 1.4126   22.2872 1.0912 1.3799 2.1215 

13.0752 1.4886 1.6867 2.1959   15.0174 1.2013 1.4144 1.9621   28.1797 1.2469 1.6112 2.5472 

18.1291 1.7957 2.0706 2.7770   20.4011 1.4529 1.7424 2.4861   33.0759 1.3524 1.7795 2.8769 

22.9614 2.0304 2.3787 3.2736   24.9887 1.6300 1.9844 2.8952   30.3840 1.2919 1.6845 2.6933 

27.9974 2.2265 2.6512 3.7425   30.1453 1.7973 2.2246 3.3227   25.2169 1.1734 1.4996 2.3376 

31.8068 2.3479 2.8305 4.0705   34.1373 1.8905 2.3744 3.6176   19.7078 1.0002 1.2553 1.9110 

25.5976 2.1450 2.5333 3.5311   25.9843 1.6687 2.0372 2.9841   14.5531 0.8246 1.0133 1.4981 

15.3769 1.6448 1.8779 2.4769   17.4601 1.3292 1.5770 2.2136   9.3453 0.5963 0.7175 1.0291 

10.4483 1.3143 1.4726 1.8794   12.6342 1.0857 1.2651 1.7259   5.8770 0.4122 0.4885 0.6845 

4.0172 0.7067 0.7676 0.9239   7.4972 0.7450 0.8515 1.1249   4.0883 0.3048 0.3579 0.4943 

2.0575 0.4556 0.4867 0.5668   3.9986 0.4475 0.5042 0.6501   1.9162 0.1638 0.1887 0.2527 

          2.0161 0.2508 0.2794 0.3529   0.3994 0.0447 0.0499 0.0633 

          0.4383 0.0847 0.0909 0.1069           
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Figure B.1 - Net (◊), excess (□) and total (∆) adsorption isotherms of nitrogen on ANGUARD 6 at 
303.15K (top), 323.15K (middle) and 353.15K (bottom). 
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Table B.3 - Experimental butane adsorption equilibrium data on the carbon sample ANGUARD 6 at 303.15K, 323.15K and 353.15K. 40 experimental data points were 
measured.  

303.15K   323.15K   353.15K 

P (bar) 
     

(mol/kg) 
    

(mol/kg) 
    

(mol/kg) 
  P (bar) 

     
(mol/kg) 

    
(mol/kg) 

    
(mol/kg) 

  P (bar) 
     

(mol/kg) 
    

(mol/kg) 
    

(mol/kg) 

0.0018 0.6981 0.6982 0.6982   0.0066 0.7175 0.7176 0.7178   0.0364 1.0252 1.0257 1.0270 

0.0059 1.2985 1.2986 1.2988   0.0108 0.9571 0.9573 0.9577   0.0822 1.5183 1.5195 1.5223 

0.0097 1.6463 1.6465 1.6469   0.0342 1.7557 1.7562 1.7575   0.3914 3.0472 3.0530 3.0661 

0.0447 2.9250 2.9257 2.9274   0.0890 2.3123 2.3137 2.3170   0.8674 3.9330 3.9460 3.9754 

0.0834 3.5221 3.5234 3.5266   0.2883 3.8531 3.8578 3.8684   2.1419 5.1309 5.1638 5.2380 

0.5921 6.0561 6.0652 6.0886   0.7728 5.1751 5.1878 5.2165   4.4309 6.4442 6.5154 6.6758 

1.0740 7.3356 7.3523 7.3954   1.0045 5.5960 5.6126 5.6501   8.6204 7.3348 7.4879 7.8328 

2.0952 8.1699 8.2036 8.2903   2.2484 7.2691 7.3074 7.3939   5.8598 6.9672 7.0643 7.2833 

1.5181 7.8986 7.9226 7.9843   3.0863 7.8173 7.8712 7.9926   3.1090 5.7599 5.8086 5.9183 

0.8427 6.7919 6.8050 6.8385   3.9800 8.0334 8.1047 8.2654   1.6199 4.7123 4.7369 4.7925 

0.3724 5.2927 5.2984 5.3130   1.6560 6.6846 6.7125 6.7753   0.6134 3.5661 3.5753 3.5960 

0.1564 4.2081 4.2105 4.2166   0.5500 4.8201 4.8292 4.8495   0.2426 2.6475 2.6511 2.6592 

0.0691 3.4227 3.4237 3.4264   0.1706 3.5435 3.5463 3.5525   0.0174 0.7175 0.7178 0.7184 

0.0242 2.4727 2.4731 2.4740   0.0279 1.8670 1.8675 1.8685           

0.0036 1.0881 1.0882 1.0883   0.0045 0.7965 0.7965 0.7967           
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Figure B.2 -Net (◊), excess (□) and total (∆) adsorption isotherms of butane on ANGUARD 6 at 
303.15K (top), 323.15K (middle) and 353.15K (bottom). 
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Table B.4 - Experimental carbon dioxide adsorption equilibrium data on the carbon sample ANGUARD 6 at 303.15K, 323.15K and 353.15K. 43 experimental data 
points were measured. 

303.15K   323.15K   353.15K 

P (bar) 
     

(mol/kg) 
    

(mol/kg) 
    

(mol/kg) 
  P (bar) 

     
(mol/kg) 

    
(mol/kg) 

    
(mol/kg) 

  P (bar) 
     

(mol/kg) 
    

(mol/kg) 
    

(mol/kg) 

0.0445 0.0636 0.0643 0.0660   0.0489 0.0475 0.0482 0.0500   0.0953 0.0360 0.0372 0.0404 

0.1261 0.1764 0.1783 0.1832   0.0936 0.0860 0.0873 0.0907   0.3554 0.1568 0.1614 0.1733 

0.3130 0.4097 0.4144 0.4266   0.3712 0.3051 0.3104 0.3239   0.6792 0.3452 0.3540 0.3767 

0.6816 0.7476 0.7536 0.7692   0.7105 0.5387 0.5488 0.5748   1.0561 0.5083 0.5221 0.5574 

1.0210 1.0836 1.0991 1.1390   1.0225 0.7262 0.7408 0.7782   5.1716 1.5869 1.6551 1.8302 

5.0240 3.6830 3.7609 3.9610   5.0448 2.5310 2.6040 2.7916   10.2313 2.5888 2.7257 3.0774 

9.8602 5.6386 5.7953 6.1978   10.0215 4.0429 4.1909 4.5711   14.8082 3.3328 3.5338 4.0502 

15.0124 7.1428 7.3881 8.0185   15.8741 5.3549 5.5953 6.2128   19.7528 3.9822 4.2543 4.9535 

19.7043 8.2186 8.5496 9.4001   18.0277 5.7557 6.0312 6.7393   25.4129 4.5930 4.9494 5.8652 

24.5207 9.1841 9.6086 10.6993   24.5927 6.7710 7.1585 8.1542   29.8137 4.9968 5.4209 6.5109 

30.1224 10.1437 10.6855 12.0775   29.8378 7.4344 7.9169 9.1566   34.1600 5.3505 5.8437 7.1110 

35.1388 10.8885 11.5447 13.2308   33.9171 7.8764 8.4367 9.8764   23.2206 4.3756 4.6990 5.5301 

13.4264 6.7357 6.9531 7.5119   23.1519 6.5637 6.9260 7.8572   3.1077 1.0706 1.1113 1.2160 

3.1748 2.6973 2.7461 2.8714   3.3207 1.8595 1.9073 2.0299   1.5708 0.6278 0.6483 0.7010 

1.5765 1.5980 1.6221 1.6838   1.5912 1.0525 1.0752 1.1336       

0.0224 0.0626 0.0630 0.0638   0.0360 0.0481 0.0486 0.0500           
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Figure B.3 - Net (◊), excess (□) and total (∆) adsorption isotherms of carbon dioxide on ANGUARD 6 
at 303.15K (top), 323.15K (middle) and 353.15K (bottom). 
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Table B.5 - Experimental carbon dioxide adsorption equilibrium data on ACHM at 303.15K, 323.15K and 353.15K. 41 experimental data points were measured. 

303.15K   323.15K   353.15K 

P (bar) 
     

(mol/kg) 
    

(mol/kg) 
    

(mol/kg) 
  P (bar) 

     
(mol/kg) 

    
(mol/kg) 

    
(mol/kg) 

  P (bar) 
     

(mol/kg) 
    

(mol/kg) 
    

(mol/kg) 

0.0445 0.2084 0.2090 0.2090   0.0936 0.2832 0.2844 0.2844   0.0953 0.1377 0.1388 0.1388 

0.1261 0.5503 0.5520 0.5520   0.3712 0.8957 0.9006 0.9006   0.3554 0.4973 0.5016 0.5016 

0.3130 1.1820 1.1864 1.1864   0.7105 1.4487 1.4580 1.4580   0.6792 1.0534 1.0616 1.0616 

0.6816 2.0122 2.0178 2.0178   1.0225 1.8759 1.8893 1.8893   1.0561 1.4246 1.4372 1.4372 

1.0210 2.6879 2.7022 2.7022   5.0448 4.6886 4.7559 4.7559   5.1716 3.2839 3.3467 3.3467 

5.0240 6.0145 6.0862 6.0862   10.0215 6.0383 6.1746 6.1746   10.2313 4.4303 4.5564 4.5564 

9.8602 7.2441 7.3884 7.3884   15.8741 6.7796 7.0010 7.0010   14.8082 5.0933 5.2784 5.2784 

15.0124 7.7803 8.0062 8.0062   18.0277 6.9377 7.1915 7.1915   19.7528 5.5262 5.7768 5.7768 

19.7043 7.9952 8.3001 8.3001   24.5927 7.2193 7.5763 7.5763   25.4129 5.8598 6.1881 6.1881 

24.5207 8.0591 8.4501 8.4501   29.8378 7.3046 7.7490 7.7490   29.8137 6.0267 6.4174 6.4174 

30.1224 8.0314 8.5304 8.5304   33.9171 7.3298 7.8458 7.8458   34.1600 6.1140 6.5683 6.5683 

35.1388 7.9005 8.5049 8.5049   23.1519 7.2130 7.5468 7.5468   23.2206 5.7941 6.0920 6.0920 

13.4264 7.7225 7.9228 7.9228   3.3207 3.8471 3.8910 3.8910   3.1077 2.5038 2.5413 2.5413 

3.1748 5.1124 5.1573 5.1573   1.5912 2.5311 2.5520 2.5520   1.5708 1.6783 1.6971 1.6971 

1.5765 3.6160 3.6381 3.6381   0.0360 0.1290 0.1294 0.1294       

                            



93 
 

 

Figure B.4 - Net (◊), excess (□) and total (∆) adsorption isotherms of carbon dioxide on the ACHM at 
303.15K (top), 323.15K (middle) and 353.15K (bottom). 
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C. Equipment Description 

 

C.1. Equipment Description for Adsorption Equilibrium 

 

 High-pressure magnetic suspension balance (MSB) 

Model: ISOSORP 2000 coupled with a Sartorius microbalance Model BP211D. 

Supplier: RUBOTHERM GmbH. 

Characteristics: for a maximum load of 25 g (total measuring volume, ie. suspension 

coupling and measuring cell with sample), the balance have a resolution of 0.01 mg, an 

uncertainty than 0.002% of the measured value, a reproducibility than 0.03 mg, for 

pressures in the range UHV - 150 bar and temperatures up to 100 ºC. 

 

 Vacuum Pump (VP) 

Model: EDWARDS 5 C, A65201903I 

Pump Serial Number: 139482910 

Supplier: EDWARDS 

Characteristics: pumping speed 3.0 m
3
/h, motor type: RV3 US/EUR PUMP HIGH VOLTS , 

220-240 V, 50/60 Hz, Single phase, operating temperature of – 30ºC to 70ºC, maximum 

total pressure in high flux of 1.2×10−1, maximum total pressure of 2×10−3. 

Pump Oil: Edwards Ultragrade 19, hydrocarbon-oil, H11025015, 1 Litre. 

 

 

 Pressure Generator 

Model: 87-6-5 

Supplier: HiP 

Characteristics: pressure rating of 5000 psi, capacity per stroke 60 ml with teflon packing 

B-208. 

 

 

 Thermostatic Bath – Refrigerator/Heater 

Model: F32-HL 

Supplier: JULABO Labortechnik GmbH 

Characteristics: working temperature range of -35ºC to 200ºC, temperature stability   0,01 

ºC, cooling capacity: +20 0 -20 -30ºC to (Medium: ethanol): 0,45 0,39 0,15 0,06 KW, overall 

dimensions 31x42x64 cm, bath opening (WxL) 18x12 cm, bath depth 15 cm, filling volume 

5.5 to 8 liters , weight 38 Kg. 
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Refrigerant: R134a 

 

 Pt100 Temperature Probes  
 

Model: Pt100 

Supplier: RS Amidata, Spain 

Characteristics: 4 wires temperature sensors with platinum resistance, that exhibit a 

typical resistance of 100 at 0ºC, typically measure temperatures up 850ºC, Classe B 

precision ±0.12­ at 0.3ºC. It consists of a thin film of platinum on a plastic film inside a 

stainless steel involucre. The relationship between resistance and temperature is relatively 

linear, but curve fitting is often the most accurate way to make the RTD measurement. The 

probes were calibrated in the laboratory against a highly accurate Hart Scientific Pt 5613 

temperature sensor with an accuracy of ±0.01 K.  

 

 

 Pressure Transducer (PT)  
 

Model: MKS Baratron Type 627D 

Supplier: MKS Baratron 

Characteristics: pressure measurements in the range from 1K Torr (1.3157bar) to as low 

as 0.02 Torr (0.00002 bar) Full Scale (FS). The instrument operates with   15 VDC (  %5) 

input at   250 mA, and provides 0 to 10 VDC output linear with pressure.  The 627D 

transducer is available with optional heater status LEDs, two interface connector lock 

options, and a variety of fittings. The unit is capable of measuring pressure at ambient 

temperatures of 15ºC to 40ºC (59ºC to 104ºF). 

 
 

 Pressure Transducer (PT) (OM2) 
 

Model: PX01C1-150A5T 

Supplier: OMEGADYNE, Inc. 

Characteristics: pressure range of 0-10 bar. 

 

 Pressure Transducer (PT) (OM3) 
 

Model: PX01C1-500A5T 

Supplier: OMEGADYNE, Inc. 

Characteristics: pressure range of 0-35 bar. 
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 Pressure Transducer (PT) (OM4) 
 

Model: PX03C1-3KA5T 

Supplier: OMEGADYNE, Inc. 

Characteristics: pressure range for 0-69 bar-138-207. 

 

 

Table C.1 - Characteristic of the several pressure transducers used in this work. 

Name ACRN. 
Supply 
(VDC) 

(linearity) 
ACC 

(%F.S.) 

F.S. 
(bar) 

Output 
(VDC) 

Ch. 
Calibration 

Y=a+bx 

Omega 
1 

OM1 28 0.005 1.034 0-5 0 
USB6 xxx Analog 
Input Multi Sample 

Omega 
2 

OM2 28 0.005 6.124 0-5 1 
USB6 xxx Analog 
Input Multi Sample 

Omega 
3 

OM3 28 0.005 34.83 0-5 2 
USB6 xxx Analog 
Input Multi Sample 

Omega 
4 

OM4 28 0.15 68.931 0-5 3 
USB6 xxx Analog 
Input Multi Sample 

Baratron MKS 

  15 VDC 

  5% 
  250 mA 

 1.005 0-10 
COM 

1 
MKS PR 4000B 

MSB     0-5 
COM 

4 
Sartorius Rubotherm 

 

 

 Power Suppliers  
 
Model: PS 613 

Supplier: Velleman 

Characteristics: variable voltage of 0–30 V, 2.5 A DC and two fixed supplies of 

±12 V and ±5 V. 

 

 Ball Valves  

 
Model: SS-43S4 

Supplier: Swagelok 

      Characteristics: 1/8”OD fittings, Cv = 2.4, P ≤ 206 bar, 283K ≤ T ≤ 338K 

 

 Check Valves 
 

Model: SS-4C-TR-1 

Supplier: Swagelok 

Characteristics: 1/8”OD fittings, PTFE seals, Pcrack = 0.06 bar, Pmax = 206 bar. 
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 Several fittings  

 
Model: Swagelok types (nuts, unions, reducers, elbows, etc.) 

Supplier: Swagelok  

Characteristics: 1/8”OD fittings. 

 

 
 Computers (PC) 

 
Model: Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz 3.10 GHz 

Supplier: Tsunami Computers 

Characteristics: Windows 7 Professional, RAM: 8.00 Gb, System type: 64-bit 

Operating System. 

 

 Gases 
 
Supplier: Air Liquide and Praxair (Portugal and Spain). 

Characteristics: Compressed Helium (He) (99.99%), P=200 bar from Air Liquide 

Alphagaz; Compressed Nitrogen (N2), P=200 bar from Air Liquide Alphagaz; Carbon dioxide 

(CO2) N48, P=80 bar from Air Liquide Alphagaz; Butano (C4H10) N35, P=0.75 bar from Air 

Liquide Alphagaz.  
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C.2. Bank of Images 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.3 - Unit controller for data acquisition 
by Rubotherm GmBH. 

Figure C.2 - Pressure Transducers 
from MKS Baratron and 

Omegadyne. 

Figure C.4 - Gas Bottles from Air 
Liquid and Praxair. 

Figure C.1 - 
Magnetic 

Suspension Balance 
(Metal version). 
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Figure C.9 - Pictures of the experimental apparatus used in the equilibrium measurements. 

 

 

Figure C.5 - Pressure Generator from HiP. 

Figure C.6 - Thermostatic 
Bath, Refrigerator/Heater from 

Julabo. 

Figure C.8 - Heater from Nabertherm. Figure C.7 - Vaccum Pump from 
Edwards. 
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