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Abstract

We show that the prediction of strategic connectivity breakdowns
under a receiving-party-pays system and discrimination between on-
and off-net prices does not hold up once more than two mobile net-
works are considered. Indeed, if there are at least three competing
networks and enough utility is obtained from receiving calls, only
equilibria with finite call prices and receiving prices exist. Private
negotiations over access charges then achieve the effi cient outcome.
Bill & keep (zero access charges) and free outgoing and incoming calls
are effi cient if and only marginal costs of calls are zero.
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1 Introduction

The regulation of mobile termination rates (MTRs or access charges, the
fees that networks receive from their competitors to terminate calls) in the
European Union has come a long way over the last decade, moving away
from the paradigm of full network cost recovery towards an approach based on
recovering only the incremental cost of termination. In particular, the advent
of next-generation networks and IP interconnection have made the analysis
of zero access charges (bill & keep) on mobile networks more urgent. Indeed,
in 2009 the communications regulator in the United Kingdom, Ofcom, held
a consultation about the future regulation of MTRs, explicitly mentioning
bill & keep as one of the options to consider.1

While charging very low MTRs is standard practice in the US, in Europe
there has been some anxiety about the effects of MTR reductions on the
mobile telephony market, in particular because the US has an RPP (receiving
party pays) retail model. Contrary to the CPP (calling party network pays)
model common in Europe, under RPP subscribers pay both for making and
receiving calls. While opponents of RPP claim that consumers should not
pay for calls they receive if they already pay for making calls, they overlook
that, in a nutshell, paying for reception tends to go together with paying less
for making calls.
More worrying are theoretical results in the academic literature that indi-

cate that under RPP there is a high likelihood that strategic considerations
will lead "connectivity breakdowns". These breakdowns are predicted to oc-
cur under price discrimination between on- and off-net calls and duopolistic
competition. Each of the two networks has a strategic incentive to reduce the
surplus of its rival network’s subscribers by shutting off inter-network calls
through prohibitively high call or receiving prices. That this kind of pric-
ing behavior has not been observed in reality may well be due to regulatory
pressure, but it seems important to check whether the theoretical prediction
is robust in the first place. In this paper we show that it is not, and that
going beyond duopoly leads to a major change in predictions.

Results and Intuitions Below we show that the result in the duopoly case
is not robust to an increase in the number of networks, as there is a significant
range of fundamental parameter values for which no strategic breakdown
occurs if and only if the number of networks is larger than two. This range

1See European Commission (2009) on incremental cost and Tera’s (2010) report for the
European Commission on Bill & Keep. The Ofcom consultation and responses are available
at http://stakeholders.ofcom.org.uk/consultations/mobilecallterm (as of 27/09/2012).
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depends on the relation between the strength of the "call externality", i.e.
the utility that call receivers obtain, and the number of networks. More
precisely, if the parameter β measures the strength of the call externality on
a scale from 0 (no call externality) through 1 (the receiver obtains the same
utility as the caller), with n ≥ 2 symmetric networks the range of β where
no strategic connectivity breakdowns occur is given by

1

n− 1
< β < n− 1. (1)

Clearly, in duopoly (n = 2) the lower and upper bounds are equal and no
value of β satisfies this condition. Already with three networks no strategic
breakdown occurs for 1/2 < β < 2, and the interval of call externalities
without breakdown increases with the number of competing networks.
The intuition behind the effect of the number of networks is the follow-

ing. First consider an equilibrium in a duopoly market where the breakdown
is caused by a very large price for making off-net calls, while at the cor-
responding receiving price subscribers would accept to receive calls.2 This
high calling price is the result of very high "strategic marginal cost", i.e. the
combined value of the marginal cost of network usage and the externalities
bestowed on rival networks’customers. This latter externality consists of the
call externality from receiving the call and a "pecuniary externality" from
paying for receiving it. The key to understanding the pricing incentives in
this case is the size of the externality as compared to the marginal utility of
the caller. Indeed, as the number of networks grows, the total externality for
any specific rival network becomes smaller, and thus the externality compo-
nent of strategic marginal cost declines. Once strategic marginal cost falls
below a certain level (we show below that this happens when n− 1 > β) the
call price will be set at a finite level and no strategic breakdown occurs.
In a similar fashion, consider now a strategic breakdown caused by a

very large receiving price, while the off-net call price is finite. In this case
the strategic marginal cost of receiving calls must be very high. The latter
consists of (minus) the termination margin and the externality caused on rival
networks’customers by accepting an incoming call. This externality consists
of the utility from making the call and the pecuniary externality from paying
for it. As in the previous case, as the number of networks increases, the
externality on each rival network becomes smaller, and below a certain level
the receiver price takes on a finite value. The exact condition for this to
happen in this case is β > 1/(n− 1), or that n > 1 + 1/β.

2There are also non-strategic equilibria where both prices are infinite, due to a coor-
dination failure between networks. One can imagine that joint interest or a nudge by a
regulator would move networks out of these equilibria.

2



Some authors, such as Littlechild (2006) and Dewenter and Kruse (2011),
interpret "RPP" as conflating payment for incoming calls and the imposition
of bill & keep, resulting in the idea that the receivers of calls pay "termination
charges". The latter are then subject to consumer choice and competition,
which helps to keep them low. Here we interpret RPP differently: The
receiver price is a "missing price" under CPP, while it is charged under RPP;
simultaneously, the access charge is a wholesale price that is either chosen by
networks or set by a regulator. Indeed, since for call externality values in the
range (1) no strategic connectivity breakdown occurs, we can meaningfully
study the negotiated and effi cient levels of the access charge. We find that
the latter coincide, at a level below termination cost bug generally different
from zero. This implies on the one hand that under RPP regulation of access
charges would no longer be necessary, but on the other that the outcome of
these negotiations is not bill & keep unless the marginal costs of origination
and terminating calls are effectively zero. Indeed, in the latter case the
market would settle on both bill & keep and free incoming and outgoing
calls ("bucket pricing").
Finally, in an extension section, i) we show that larger networks have

higher incentives for provoking connectivity breakdowns, ii) consider the ef-
ficiency of bill & keep, and iii) investigate non-negative reception charges.

Related Literature Jeon et al. (2004, JLT) consider competition be-
tween two mobile networks under call externalities and where networks charge
their customers for receiving calls. Under uniform pricing (the same price
is charged for on-net and off-net calls, i.e. calls within the same network
or between networks), JLT find that call and reception charges are set at
off-net cost, i.e. as if all calls were off-net, and that the socially optimal
volume of calls can be achieved by setting the mobile access charges below
termination cost. On the other hand, with discrimination between on-net
and off-net calls, connection tends to break down in equilibrium, regardless
of the strength of the call externality: For strategic reasons networks choose
to set either call or receiver charges so high that no off-net calls will occur.
Lopez (2011) confirms this result in a setting with noise in both caller and
receiver utility. On the other hand, Kim and Lim (2001) assume that the
originating network sets the price for receiving calls and show that in this
(unrealistic) case no breakdown occurs. We show that the duopoly model
does not lead to a robust prediction of market outcomes, as with more than
two networks a new class of equilibria appears that takes the place of break-
downs for reasonable values of the call externality parameter.
Cambini and Valletti (2008) show that the possibility that call receivers
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phone back reduces the probability of breakdowns in duopoly while not elim-
inating them unless networks can jointly agree on access charges. They also
show that if callers end calls first then networks will jointly choose the effi -
cient access charge.3 Our paper obtains the same result for the more general
case where either callers or receivers end calls, and for more than two firms.4

Hermalin and Katz (2011) assume that networks commit to subscriber
numbers before setting retail prices, which decouples call pricing decisions
from competition for subscribers. As a consequence, strategic considerations
are reflected only in setting the fixed part of tariffs, and no connectivity
breakdowns occur in their model. In our model we underline the logic of
strategic call pricing, while pointing out the reasons why breakdowns may or
may not occur.
DeGraba (2003) determines socially optimal call prices and receiving

prices and access charges, but does not check whether these could actu-
ally be implemented in market equilibrium. We show that indeed if the call
externality value is in the correct range then the market equilibrium at the
effi cient access charges implies that both call and receiver prices are set ef-
ficiently. But our work also shows that it is necessary to consider both the
number of networks and the strength of the call externality to come to this
conclusion.
Littlechild (2006) and Harbord and Pagnozzi (2010) present stylized facts

and policy arguments concerning RPP versus CPP, while Dewenter and
Kruse (2011) contains an econometric analysis of mobile penetration. Over-
all, their conclusions are that CPP and RPP lead to similar mobile penetra-
tion, while usage tends to be higher under RPP. There is no mentioning of
breakdowns having ever happened, which underlines the need to have theory
models such as ours that predict finite (or even zero) call prices.

2 Model and Preliminary Results

The model setup is a generalization of JLT to many networks. We assume
that there are n ≥ 2 symmetric mobile networks i = 1, ..., n who compete
in multi-part tariffs of the form (pi, ri, p̂i, r̂i, Fi), where pi and ri are the
per-minute calling and reception charges for on-net calls, p̂i and r̂i those for

3Lopez (2011) shows that profits do not depend on access charges if networks do not
price discriminate between on- and off-net calls.

4Combining a larger number of networks with the possibility of calling back further
increases the range of equilibria.
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off-net calls, and Fi is a monthly fixed fee.5 Networks’marginal on-net cost
of a call is c > 0, the cost of termination of an off-net call is c0 > 0, and
networks charge each other the access charge a per incoming call minute.
Thus the marginal cost of an off-net call is c + m, where m = a − c0 is the
termination margin. There is also a monthly fixed cost f per customer.
Market shares are defined as follows. If consumers obtain surplus wi from

subscribing to networks i = 1, ..., n, the market share of network i is

αi = A (wi − w1, ..., wi − wn) ,

where A : Rn → R is strictly increasing and symmetric in its arguments,
with 0 ≤ αi ≤ 1,

∑n
i=1 αi = 1 and A(0, ..., 0) = 1/n.6

From making a call of length q, a consumer obtains utility u(q), where
u(0) = 0, u′ > 0 and u′′ < 0. For call price p, the corresponding call demand
q (p) is defined implicitly by u′(q) = p. As in JLT, receiving a call of length q
yields utility ũ(q) = βu(q)+εq, where β ≥ 0 indicates the strength of the call
externality and ε is a random noise term with E[ε] = 0, distribution function
G and density g.7 Thus at a reception price r, receiver demand is determined
by βu′(q) + ε = r and the receiver demands a call of length q((r − ε)/β).
Both callers and receivers can end the call, thus for each caller and receiver
pair the length of a call is given by min {q(p), q((r − ε)/β)}. Since for high
(small) values of ε the caller (receiver) hangs up first, the expected length of
a call is given by

D (p, r) = (1−G (r − βp)) q (p) +

∫ r−βp

−∞
q

(
r − ε
β

)
g (ε) dε.

In the first term on the right we have p < (r − ε)/β or ε > r − βp, and thus
a call of length q(p), while the second term contains the expected length of
the call for p ≥ (r − ε)/β. The corresponding expected utilities for making

5Thus networks set uniform off-net call (receiver) charges, i.e. do not price discriminate
between calls to (from) rival networks. One can show that allowing for price discrimination
leads to the same equilibrium charges in symmetric equilibrium.

6This demand specification is encapsulates both the generalized Hotelling model of
Hoernig (2014) and the logit model αi = exp(wi)/

∑n
j=1 exp(wj). Thus we allow for a

much more general discrete choice setup than JLT.
7The existence of randomness in receiver utility implies that both callers and receivers

determine the length of different calls. If call length was determined by only callers or
receivers then the equilibrium then either the calling or receiving price would be indeter-
minate.
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and receiving calls are

U (p, r) = (1−G (r − βp))u (q (p)) +

∫ r−βp

−∞
u

(
q

(
r − ε
β

))
g (ε) dε,

Ũ (p, r) =

∫ ∞
r−βp

(βu (q (p)) + εq (p)) g (ε) dε

+

∫ r−βp

−∞

(
βu

(
q

(
r − ε
β

))
+ εq

(
r − ε
β

))
g (ε) dε.

As in JLT we assume that calls between each pair of consumers are equally
likely, so that a subscriber of network i obtains the following expected surplus:

wi = αi

(
Uii + Ũii − (pi + ri)Dii

)
+
∑
j 6=i

αj

(
Uij − p̂iDij + Ũji − r̂iDji

)
− Fi,

where Dii = D (pi, ri), Dij = D (p̂i, r̂j), etc., for j 6= i. The first term on the
right-hand side contains the utility and payments for making and receiving
on-net calls, while the second term refers to off-net calls.
Network i’s profits are

πi = αi[Fi − f + αi (pi + ri − c)Dii (2)

+
∑
j 6=i

αj ((p̂i − c−m)Dij + (r̂i +m)Dji)],

where the line contains the profits from fixed fees and on-net calls, and the
line line those from incoming and outgoing off-net calls. As in JLT, we will
consider equilibrium conditions for vanishing noise, i.e. for a sequence of
distributions Gn whose support remains suffi ciently large that both callers or
receivers sometimes end the call but which converges to zero in probability.
We also assume that this sequence is regular in the following sense: For
ε < 0 < ε̄ we have 8

lim
n→∞

En [ε|ε ≤ ε] = ε, lim
n→∞

En [ε|ε ≥ ε̄] = ε̄.

For each caller and receiver pair, the socially optimal call volume q is given
by u′(q) + ũ′(q) = c. Since the latter depends on ε, in the presence of noise
the social optimum cannot be achieved. If one considers vanishing noise, the
condition for optimal call volume becomes u′(q) = c/(1+β). As JLT pointed
out, this optimal volume can be implemented if call prices and receiving
prices p∗ = c/(1 + β) and r∗ = βc/(1 + β) are imposed, since both callers
and receivers will then want to end the call simultaneously at the optimal
quantity.

8These assumptions imply that analogous conditions hold for any continuous and
bounded function of ε (my thanks to Iliyan Georgiev for this observation).
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3 Market Equilibrium

We will now determine the call and reception charges that arise in a sym-
metric equilibrium, following as closely as possible the solution procedure
in JLT. We neglect the equilibria in weakly dominated strategies that arise
if both calling and reception charges are infinite.9 Rather, we concentrate
on strategic connectivity breakdown, where one network wants to exchange
off-net calls and some other network effectively refuses do to so. Further-
more, we will omit the determination of equilibrium fixed fees in order to
concentrate on call prices.
Assume that all networks j 6= i choose the same tariff (p, r, p̂, r̂, F ), re-

sulting in identical market shares αj = (1− αi) / (n− 1), which we will hold
constant together with αi while determining call prices. For these symmetric
tariffs we have wj = w for all j 6= i and some expected surplus w. Thus we
can state network i’s market share as

αi = A (wi − w, ..., wi − w) = Ā (wi − w) ,

for some strictly increasing function Ā. Solving the latter condition for Fi
and substituting the result into (2) leads to the following profits of network
i:

πi = α2i

(
Uii + Ũii − cDii

)
+αi (1− αi)

(
Uik − (c+m)Dik + Ũki +mDki

)
−α2i

(
Uki − p̂Dki + Ũik − r̂Dik

)
+ const.

The first line contains the surplus and cost from making and receiving on-
net calls, while the second line contains those for off-net calls. The third line
indicates the externalities on customers of rival networks, direct ones via the
utilities Uki and Ũik, and pecuniary ones via the payments p̂Dki and r̂Dik.
Finally, there is a term that does not depend on network i’s call prices. The
expressions corresponding to on-net calls do not depend on the number of
networks. Rather, network i will maximize Uii + Ũii− cDii as in the duopoly
case, which leads to the effi cient choices pi = p∗ and ri = r∗. This result
arises because network i fully internalizes the externalities on callers and
receivers.

9The existence of these equilibria is a natural consequence of the application of the Nash
equilibrium concept. We can imagine, though, that coordination or regulatory pressure
could nudge firms away from this equilbirium.
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For off-net calls, denote the partial profits related to call prices and re-
ceiving prices, respectively, by

πp̂i (p̂i;αi, r̂) = αi

{
(1− αi) (Uik − (c+m)Dik) + αi

(
r̂Dik − Ũik

)}
,

πr̂i (r̂i;αi, p̂) = αi

{
(1− αi)

(
Ũki +mDki

)
+ αi (p̂Dki − Uki)

}
.

While these expressions are ostensibly identical to those found in the duopoly
case, allowing for multiple networks will make all the difference.
Since infinite calling or receiving prices choke offdemand we have πp̂i (∞) =

πr̂i (∞) = 0, so that in equilibrium both πp̂i and π
r̂
i must be non-negative. The

first derivatives with respect to pi and ri are

∂πp̂i
∂p̂i

= αi [1− F (r̂ − βp̂i)]× {(1− αi) (p̂i − c−m) (3)

−αi (βp̂i + E [ε|ε ≥ r̂ − βp̂i]− r̂)}q′(p̂i),
∂πr̂i
∂r̂i

= αi
F (r̂i − βp̂)

β
× E[{(1− αi) (r̂i +m) (4)

+αi(p̂− u′(q
(
r̂i − ε
β

)
))}q′

(
r̂i − ε
β

)
|ε ≤ r̂i − βp̂ ].

As noise vanishes, and assuming symmetric market shares αi = αj = 1/n

from now on, we can restate ∂πp̂i /∂p̂i, omitting positive leading factors, as{ (
p̂i − c−m− 1

n−1 (βp̂i − r̂)
)
q′ (p̂i) if r̂ ≤ βp̂i(

p̂i − c−m− 1
n−1 (βp̂i + r̂ − βp̂i − r̂)

)
q′ (p̂i) if r̂ ≥ βp̂i

,

or { ((
1− β

n−1
)
p̂i + 1

n−1 r̂ − c−m
)
q′ (p̂i) if r̂ ≤ βp̂i

(p̂i − c−m) q′ (p̂i) if r̂ ≥ βp̂i
. (5)

On the first branch, this derivative is positive before the critical value if
β < n − 1, and negative thereafter, while the same is true on the second
branch regardless of the value of β. Thus in this case either critical value
constitutes a local maximum if it falls on the corresponding branch, with
πp̂i (p̂i) ≥ 0. If β = n − 1 then the derivative does not depend on p̂i and
indicates a maximum if and only if r̂ = (n− 1) (c+m).
Similarly, as noise vanishes we find that ∂πr̂i/∂r̂i becomes{ (

(r̂i +m) + 1
n−1 (p̂− p̂)

)
q′ (p̂) if r̂i ≤ βp̂(

1
n−1 p̂+

(
1− 1

(n−1)β

)
r̂i +m

)
q′
(
r̂i
β

)
if r̂i ≥ βp̂

. (6)
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Again, the critical value is a local maximum on the first branch, and also on
the second branch if β > 1/(n − 1), with πr̂i (r̂i) ≥ 0. If β = 1/(n − 1) then
there is a local maximum if p̂ = (n− 1)m.
Define the access charge level

a∗ = c0 −
βc

1 + β
. (7)

We will see below that a∗ is the effi cient access charge independently of the
number of networks, as in DeGraba (2003) for a caller’s share of benefits
1/(1 + β), or Cambini and Valletti (2008) with two networks. Now we have
the following principal result.

Proposition 1 Let ε be regularly distributed, and n ≥ 2 networks compete
in multi-part tariffs with on/off-net price discrimination. As ε vanishes, for
1

n−1 < β < n − 1 there is no strategic connectivity breakdown in symmetric
equilibrium.10 More precisely,

1. for a > a∗, callers end the call first, with p̂ = p̂c ≡ (n−1)c+mn
n−1−β > p∗ and

r̂ = r̂c ≡ −m < r∗;

2. for a = a∗, callers and receivers end the call simultaneously, with p̂ = p∗

and r̂ = r∗;

3. for a < a∗, receivers end the call first, with p̂ = p̂r ≡ c + m < p∗ and
r̂ = r̂r ≡ − β(c+nm)

(n−1)β−1 > r∗.

Proof. Assuming r̂ ≤ βp̂, the symmetric equilibrium candidate (p̂c, r̂c)
is given by the conditions(

1− β

n− 1

)
p̂c +

1

n− 1
r̂c − c−m = 0, r̂c +m = 0.

The solution is r̂c = −m and p̂c = (n−1)c+nm
n−1−β . We have r̂c ≤ βp̂c if and only

if m ≥ − βc
1+β
, or a ≥ a∗.

In a similar manner, assuming r̂ ≥ βp̂ the symmetric equilibrium candi-
date is (p̂r, r̂r) with

p̂r − c−m = 0,
1

n− 1
p̂r +

(
1− 1

(n− 1) β

)
r̂r +m = 0,

10Similar to JLT, these equilibria exist if either m or σ are suffi ciently small.
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Figure 1: Equilibria in duopoly.

with solution p̂r = c + m, r̂r = −β c+mn
(n−1)β−1 . We have r̂

r ≥ βp̂r if and only if

m ≤ − βc
1+β

or a ≤ a∗.

The configurations of equilibria with n = 2 and n > 2 are depicted in
Figures 1 and 2, respectively. With two networks, for all combinations of
call externality values β and access charge levels a there are equilibria with
strategic connectivity breakdown (areas indicated by horizontal lines). More
precisely, for β < 1 the receiving price will be infinite, while for β > 1 the call
price is infinite. Simultaneously, equilibria exist where no breakdown occurs
(strictly above the dashed line πr̂i (r̂

r) = 0 on the left and strictly below it on
the right of β = 1, indicated by diagonal lines).
With more than two networks, this structure of breakdowns continues to

exist for either very small β, i.e. β < 1/(n−1), or very large β, i.e. β > n−1,
while for intermediate values β a whole new range of equilibria opens up. In
this range, for a > a∗ callers end the call first, while for a < a∗ receivers end
the call first. Crucially, no strategic connectivity breakdown occurs, and for
all values of β in this range a retail equilibrium has finite prices, including
when the access charge is set effi ciently at a = a∗.
The effect of an increase in the number of networks can be explained

by considering networks’ strategic marginal cost, as mentioned in the In-
troduction. If callers end the call first, then the strategic marginal cost of

10



Figure 2: Equilibria with at least three networks.

off-net calls for given r̂, which corresponds to expression (17) in JLT, can be
obtained from (5) as

u′(q(p̂)) = c+m+
1

n− 1
(βu′(q(p̂))− r̂) . (8)

Here u′ and βu′ are the caller’s and receiver’s marginal utilities, respectively,
and c+m is perceived off-net cost. The call price p̂ will be set at infinity if the
call and pecuniary externalities, as captured by the last term on the right-
hand side, are too large as compared to the caller’s utility, i.e. if 1 < β/(n−1),
or β > n− 1. One sees clearly that the of this term decreases in the number
of networks.
Similarly, if receivers end the call first then from (6) the strategic marginal

cost for off-net reception, at call price p̂, is given by

βu′(q(r̂/β)) = −m+
1

n− 1
(u′(q(r̂/β))− p̂) , (9)

with a corresponding externality term. In this case breakdown occurs if
β < 1/(n − 1). Again, the externality term decreases in the number of
networks.

At this point is it useful to remember that connectivity breakdowns can
occur for two reasons. First, they can happen due to coordination failure,
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where networks set both call prices and receiving prices to infinity. These
are mutually best responses, though in weakly dominated strategies, and this
type of equilibrium always exists due to the Nash equilibrium assumption.
Second, and more interestingly, connectivity can break down for strategic
reasons. This happens whenever setting a finite call or receiver price benefits
the rival too much. In this case it is optimal to choke off calls through an
infinite charge. What we have shown in Proposition 1 is that if more than
two competing networks are considered, a whole new region of equilibria
opens up where connectivity breakdowns due to strategic reasons simply
cannot happen. Moreover, this region includes reasonable values for the
call externality at the prevailing number of networks in most countries. For
example, with three or four networks, there is no connectivity breakdown for
1/2 < β < 2 and 1/3 < β < 3, respectively (Evidently, if one follows the
common assumption that β ≤ 1 then only the lower bound is relevant in
practice).
An additional significant piece of good news is that with more than two

networks the effi cient call volumes can be achieved by setting the access
charge equal to a∗, without having to fear strategic connectivity breakdowns.
Indeed, a look at Figure 1 shows that the same is not true in duopoly:
The line indicating a = a∗ only passes through areas where breakdown is
unavoidable. This implies that while in duopoly effi cient call volumes can
only be achieved if access and receiver charges are regulated, with more
networks it is enough to set the access charge at the right level and let the
market choose equilibrium retail prices.
As a further point, we consider how call and receiver prices change as a

function of the number of networks:

Corollary 1 Let 1
n−1 < β < n − 1. For all n > 2, r̂c and p̂r are equal to

off-net cost. As n increases, p̂c and r̂r converge from above to off-net cost.

Proof. Follows from the expressions in Proposition 1.

This Corollary implies that the relevant charges, i.e. p̂c when callers end
the call first and r̂r when receivers do so, are higher than they would be
under uniform pricing, where even with many networks charges continue to
be equal to off-net cost as in JLT.11 In other words, if there is no connec-
tivity breakdown, for strategic reasons fewer off-net calls will be made with
discrimination between on-net and off-net calls, just as in the case without
receiver charges. As the number of networks increases, though, more calls

11The proof is straightforward and therefore omitted.
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will be made off-net and therefore there are fewer incentives to distort off-net
call prices upwards.
Finally, we consider which access charge networks would jointly agree on.

To our knowledge, only Cambini and Valletti (2008) have considered this
issue before under RPP with discriminatory pricing, since all other authors
found that only equilibria with connectivity breakdowns existed. They found
that if there is a positive probability that call receivers make return calls then
equilibria without breakdown exist, and that if callers end calls first then a
network duopoly would agree on the effi cient access charge. We show that
this finding carries over the case of multiple firms, even if the probability of
return calls is zero and if either callers or receivers end calls (The proof is
relegated to the Appendix):

Proposition 2 Let 1
n−1 < β < n− 1. For all n > 2, networks jointly agree

on an access charge equal to the effi cient one, i.e. a = a∗, in which case both
call and receiver prices are set at the effi cient levels, too.

This result implies that if mobile networks were to adopt RPP, regulatory
determination of termination charges would no longer be necessary, as the
outcome would be effi cient. Contrary to what some authors have claimed
(e.g. Littlechild 2006, or Dewenter and Kruse 2011), networks in general
would not agree on bill & keep, though, as the effi cient access charge a∗ is
different from zero.

4 Additional Issues

Asymmetric Networks Here we give a quick stab at the question of how
strategic connectivity breakdown depends on networks’ relative sizes. For
simplicity, we continue to assume that networks j 6= i are symmetric, thus
derivatives (3) and (4) still apply for network i even if αi is different from
1/n in equilibrium.
For vanishing noise, the derivatives defining the off-net call and receiver

prices that influence call duration, i.e. p̂ci and r̂
r
i , become

∂πp̂i
∂p̂i

∼
((

1− βαi
1− αi

)
p̂i +

αi
1− αi

r̂ − c−m
)
q′(p̂i)

∂πr̂i
∂r̂i

∼
(

αi
1− αi

p̂+

(
1− αi

(1− αi) β

)
r̂i +m

)
q′
(
r̂i
β

)
Reframing the conditions for the existence of local maxima in terms of market
share αi (i.e. the sign of the derivative must change from positive to negative
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at the solution), the condition for a finite call price becomes αi < 1
1+β
,

while the condition for a finite receiver price becomes αi <
β
1+β
. The latter

condition is stricter in the more relevant case β < 1, while the former is
stricter for β > 1.
Thus we find in this indicative example that larger networks have a

stronger incentive to cause strategic connectivity breakdowns, by setting a
high off-net receiver price. In other words, for any given number of networks,
the risk of connectivity breakdown increases with the relative asymmetry
between networks, much as is the case without receiver charges.

Optimality of Bill & Keep An unavoidable question is whether and
when bill & keep (a = 0) can achieve the social optimum. This question
has been hotly discussed in Europe under the CPP system, and now we
pose it assuming RPP. First of all, even at the risk of repeating ourselves,
we would like to stress that this question could not have been meaningfully
posed in the duopoly case. With multiple networks, though, there is a large
and reasonable parameter region where call and receiver prices are finite in
equilibrium and fine-tuning of the access charge becomes possible in the first
place.

Corollary 2 Let 1
n−1 < β < n − 1. If c > 0 then bill & keep is effi cient iff

β = c0/(c− c0). If c = c0 = 0 then bill & keep is effi cient for all β ≥ 0, and
equilibrium retail prices are p̂ = r̂ = 0.

Proof. Follows from the definition of (7) and a∗ = 0.

This condition for optimality of bill & keep has been proven before by
DeGraba (2003, p. 213), but without considering whether an equilibrium
without breakdown exists at all. We add to this condition the certainty that
for reasonable values of β no strategic connectivity breakdown occurs.
On the other hand, it may be that the marginal cost of both origination

and termination are effectively zero, and any positive values only arise due
to the accounting practice of attributing common costs. This argument is
only bound to get stronger with the routing of traffi c over cheaper IP-based
networks. In other words, if marginal costs are indeed zero, under bill &
keep the market would move to “pure bucket pricing”, where consumers pay
a subscription fee and then make and receive calls for free.

Non-Negative Reception Charges As several authors have pointed out
(e.g. Cambini and Valletti 2008 and Lopez 2011), networks may not find it
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possible to set negative reception charges, since the latter may invite arbi-
trage or opportunistic behavior by clients. In this case the restriction r̂ ≥ 0
is binding whenever the access charge is high enough.

Corollary 3 Networks will choose positive reception charges if and only if
a < c0. If networks cannot set negative reception charges then if a > c0 the
symmetric market equilibrium involves off-net receiving price r̃ = 0 and the
call price

p̃ =
c+m

1− β/ (n− 1)

if β < n− 1, and p̃ =∞ if β > n− 1.

Proof. In the unconstrained equilibrium, r̂ < 0 only occurs in the case
a > a∗, where r̂ = −m. Thus r̂ < 0 if and only if m > 0. The expression for
p̃ follows from the first-order condition for the off-net price in Proposition
(1) with r̃ = 0.

Assuming CPP from the outset, JLT and Hoernig (2014) derive the same
pricing formula for n = 2 and arbitrary n ≥ 2, respectively.

5 Conclusions

In this paper we have shown that the stark prediction in Jeon et al. (2004)
of a strategic connectivity breakdown under RPP (receiving party pays, i.e.
subscribers also pay for receiving calls) and discrimination between on- and
off-net prices does not hold up once more than two networks are considered
in the model. Indeed, for reasonable values of the call externality, connectiv-
ity breakdowns for strategic reasons do not arise in symmetric equilibrium.
Intuitively, in the presence of multiple rivals it becomes essential that off-
net calls, both incoming and outgoing, are priced reasonably, while strategic
externalities lose importance.
The take-away from a policy perspective is that if competition is suffi -

ciently effective in the sense that at least three similar-sized networks exist,
then direct regulation of receiver charges is not necessary. The reverse side
of the medal is that if networks are few or suffi ciently asymmetric then reg-
ulatory pressure is still needed under RPP in order to avoid connectivity
breakdowns.
We have also found that an access charge below cost is socially optimal

in the presence of RPP, and that bill & keep is exactly socially optimal if
marginal costs are zero. This lends further support to regulatory policies
that induce access charges at or close to zero.
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Appendix

Proof of Proposition 2:
Proof. From (2), the first-order condition for profit-maximizing fixed

fees is

0 =
∂πi
∂Fi

=
∂αi
∂Fi

πi
αi

+ αi

[
1 +

∂αi
∂Fi

(pi + ri − c)Dii +
∑
j 6=i

∂αj
∂Fi

((p̂i − c−m)Dij + (r̂i +m)Dji)

]
,

from which we obtain equilibrium profits

πi = −α2i

[
1
∂αi
∂Fi

+ (pi + ri − c)Dii +
∑
j 6=i

∂αj
∂Fi
∂αi
∂Fi

((p̂i − c−m)Dij + (r̂i +m)Dji)

]
.

In order to determine the derivatives of market shares we write consumers’
benefits of subscribing to network i as

wi =
n∑
j=1

hijαj − Fi,

where hii = Uii+Ũii−(pi+ri)Dii and, for j 6= i, hij = Uij−p̂iDij+Ũji−r̂iDji.
Letting h be the n × n-matrix of hij and w, F the n × 1-vectors of wi and
Fi, we can write w = hα − F . Write market shares as αi = Di(w) and
α = D(w) = D(hα − F ) for a function D : Rn → Rn, then we obtain the
market share derivatives

dα

dF
= Dw

(
h
dα

dF
− I
)
⇐⇒ dα

dF
= − (I −Dwh)−1Dw,

where Dw is the Jacobian of D, and I is the identity matrix. Since market
shares sum to 1 we have ∂Di

∂wi
+
∑

j 6=i
∂Di
∂wj

= 0 for all i, which in a symmetric
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equilibrium implies that ∂Di
∂wi

= − (n− 1) ∂Di
∂wj

for all i and j 6= i. As for the
latter, we have

σ ≡ −∂Di

∂wj
=
∂A (x, 0, ..., 0)

∂x

∣∣∣∣
x=0

> 0,

i.e. σ is the partial derivative of A at equal surplus on all networks (and
as such is a constant). Furthermore, in symmetric equilibrium all hii are
identical, and so are all hij, for j 6= i. After some tedious computations we
find

dαi
dFi

= − (n− 1)σ

1− σn (hii − hij)
,
dαi
dFj

=
σ

1− σn (hii − hij)
.

Substitute these into profits, apply symmetry via Dji = Dij, p̂i = p̂, r̂i = r̂
and αi = 1/n to obtain equilibrium profits

πi =
1

n2

[
1

(n−1)σ −
n((1+β)Uii−(pi+ri)Dii)

n−1 − (pi + ri − c)Dii

+
n(1+β)Uij

n−1 −
(
p̂+r̂
n−1 + c

)
Dij

]
.

In order to see the effect of the access charge a, or equivalently the access
margin m, on profits we need to consider both the case where callers end
calls first and the case where receivers end calls first.
Case 1: βp̂ ≥ r̂, i.e. callers end calls first (a ≥ a∗ or m ≥ m∗ = − βc

1+β
):

In this case we have Dij = q (p̂), Uij = u (q (p̂)), p̂ = (n−1)c+mn
n−1−β and r̂ = −m.

The derivative of profits with respect to the access margin m becomes

dπi
dm

=
1

n2

(
n (1 + β) p̂+

1 + β

nη
p̂− (p̂−m)− (n− 1) c

)
q′ (p̂)

n− 1

n

n− 1− β ,

with the demand elasticity η = −p̂q′(p̂)/q(p̂), which at the lower bound
becomes

dπi
dm

∣∣∣∣
m=m∗

=
1

n2
c

η

q′ (p̂)

(n− 1) (n− 1− β)
.

If no breakdown occurs, i.e. β < n − 1, the latter is negative. There is a
unique solution to the first-order condition dπi/dm = 0, at

m = − (n− 1) c
1 + β + (n+ 1)nηβ

n (n2η − η + 1) (1 + β)
.

The latter lies below m∗ if and only if β < n − 1. Thus on this branch of
profits there is a unique global maximum at m = m∗ if β < n− 1.
Case 2: βp̂ ≤ r̂, i.e. receivers end calls first (a ≤ a∗ orm ≤ m∗ = − βc

1+β
):

In this case we haveDij = q
(
r̂
β

)
, Uij = u

(
q
(
r̂
β

))
, p̂ = c+m and r̂− β(c+nm)

(n−1)β−1 .
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The derivative of profits with respect to the access margin m now becomes

dπi
dm

= − 1

n2

(
n (1 + β) r̂

β
+ 1+β

nη
r̂
β

− (c+m+ r̂)− (n− 1) c

) q′
(
r̂
β

)
n− 1

n

(n− 1) β − 1
,

with η = −(r̂/β)q′(r̂/β)/q(r̂/β), which at the upper border m = m∗ simpli-
fies to

dπi
dm

∣∣∣∣
m=m∗

= − 1

n2
c

η

q′
(
r̂
β

)
(n− 1) ((n− 1) β − 1)

.

If no breakdown occurs, i.e. β > 1/(n−1), the latter is positive. The unique
solution to dπi/dm = 0 is

m = −c 1 + β + (n2 − 1)nηβ

n ((n2 − 1) η + 1) (1 + β)
,

which lies above m∗ if and only if β > 1/(n− 1). Thus on the second branch
of profits there is a unique global maximum at m = m∗ if β > 1/(n− 1).
Finally, we can conclude that the profits are indeed maximized atm = m∗.

Using any of the expressions for call prices it then follows immediately that
p̂ = p∗ and r̂ = r∗, i.e. call and receiver prices are effi cient.
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