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Os meus amigos em Portugal e pelo mundo fora;

iv



Toda a minha famı́lia (alargada) que me recebe de braços abertos
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Abstract

The most outstanding feature of the human brain is its abil-

ity to perform highly complex cognitive tasks and one key region of

the brain involved in these elaborated tasks is the prefrontal cortex.

However, little is known about the basic neuronal processes that sus-

tain these capacities. This dissertation describes the computational

study of the biophysical properties of neurons in the prefrontal cor-

tex that underlie complex cognitive processes with special emphasis

in working memory, the ability to keep information online in the

brain for a short period of time while processing incoming external

stimuli. The goal of this study is to link basic mechanisms occur-

ring at the cellular level with the activity of the neuronal network

that generates the memory trace, and ultimately to understand the

mechanisms underlying working memory function.

The current models built to simulate working memory are sus-

ceptible to drifts in the memory representation that contribute to

deviate it from the original stimulus properties. To improve the sta-

bility of the working memory trace, we investigated three slow bio-

physical mechanisms that are activity-dependent and prominently

present in neurons of the prefrontal cortex: depolarization-induced
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suppression of inhibition, calcium-dependent nonspecific cationic

current and short-term facilitation. We found that these processes

on one hand enhance the memory accuracy by counteracting the

impact created by noise on the mnemonic representation. On the

other hand, they make it harder to erase a memory trace with short

transient inputs. We characterize this trade-off between accuracy

and flexibility and suggest that it can be adjusted according to be-

havioral demands.

The second part of this dissertation describes how the nonselec-

tive hyperpolarized-activated H-current (IH) modulates prefrontal

cortex functions. The pharmacological blockage of IH in the pre-

frontal cortex has been reported to augment neural firing in pyra-

midal cells, induce stronger persistent activity of the network and

improve working memory task performance. Additional studies in

vitro have shown a similar increase in excitability when an IH an-

tagonist was applied to cortical slice preparations. We modeled

these results in single cell compartment models and found that IH

alone could not account for these changes. We proved that IH is a

mostly depolarizing current and its blockage leads to a decrease in

the generation of action potentials.

Lastly, we provide two alternative hypotheses that could account

for the experimental results of the blockage of IH. First, IH may

interact with an outward, hyperpolarizing current that is mediated

by channels that are sensitive to the IH antagonist. Second, we

propose that the presence of IH in local interneurons promotes the

generation of action potentials in these inhibitory cells, leading to a
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decrease of activity in pyramidal cells. Conversely, the blockage of

IH results in a reduced excitability of interneurons and an increased

activity of pyramidal cells.
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Sumário

A caracteŕıstica mais extraordinária do cérebro humano é a sua

capacidade para realizar tarefas cognitivas de elevada complexidade,

e uma região do cérebro essencial nestas tarefas é o córtex pré-

frontal. No entanto, pouco se sabe acerca dos processos neuronais

básicos que sustentam estas faculdades mentais. Esta dissertação

descreve o estudo computacional das propriedades biof́ısicas de neu-

rónios do córtex pré-frontal que definem os processos cognitivos

complexos, com especial ênfase na memória de trabalho, ou seja, a

capacidade de guardar informação on-line no cérebro por um curto

peŕıodo de tempo enquanto se faz o processamento de est́ımulos

externos. O objetivo deste estudo é fazer a ligação entre mecanis-

mos básicos que ocorrem ao ńıvel celular com a atividade da rede

neuronal que produz o sinal da memória e, em úlima análise, com-

preender os mecanismos que sustentam a memória de trabalho.

Os modelos atuais constrúıdos para simular a memória de tra-

balho são suscet́ıveis de sofrer desvios na representação da memória

o que contribui para distanciá-la das propriedades iniciais do est́ımu-

lo. Para melhorar a estabilidade do sinal da memória de trabalho,

investigámos três mecanismos biof́ısicos lentos que são dependentes
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de actividade e que estão presentes em neurónios do córtex pré-

frontal: supressão de inibição dependente de despolarização, cor-

rente catiónica não espećıfica dependente de cálcio e facilitação de

curta duração. Descobrimos que estes processos, por um lado au-

mentam a exactidão da memória, neutralizando o impacto criado

por rúıdo na representação mnemónica. Por outro lado, tornam

mais dif́ıcil apagar o sinal da memória com est́ımulos transitórios

breves. Caracterizámos este compromisso entre exactidão e flexi-

bilidade e sugerimos que ele pode ser ajustado de acordo com as

exigências comportamentais.

A segunda parte desta dissertação descreve como a corrente H

(IH), que é ativada por hiperpolarização e é não-seletiva, modula

as funções do córtex pré-frontal. Tem sido descrito que o bloqueio

farmacológico da IH no córtex pré-frontal aumenta o disparo neu-

ronal em células piramidais, induz uma forte atividade persistente

da rede e melhora o desempenho em tarefas que testam a memória

de trabalho. Estudos adicionais in vitro demonstraram um semel-

hante aumento na excitabilidade celular quando um antagonista da

IH foi administrado a preparações de tecido cortical. Simulámos

estes resultados em modelos compartimentais de células únicas e

descobrimos que a IH sozinha não pode ser responsável por essas

mudanças. Provámos que a IH é uma corrente maioritariamente de-

spolarizante e que o seu bloqueio leva a uma diminuição da geração

de potenciais de acção.

Por último, sugerimos duas hipóteses alternativas que poderão

explicar os resultados experimentais do bloqueio da IH. Em primeiro
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lugar, a IH pode interagir com uma corrente hiperpolarizante, que

promove o fluxo de catiões para o exterior da célula e que é medi-

ada por canais senśıveis ao antagonista da IH. Em segundo lugar,

propomos que a presença da IH em interneurónios vizinhos promove

a geração de potenciais de acção nestas células inibitórias, levando

a uma diminuição da atividade nas células piramidais. Por outro

lado, o bloqueio da IH resulta numa excitabilidade reduzida dos

interneurónios e um aumento da atividade das células piramidais.

xi



Contents

Acknowledgements iv

Abstract vi

Sumário ix

List of Figures xvi

1 Introduction 1

2 A trade-off between accuracy and flexibility in a work-

ing memory circuit endowed with slow feedback mech-

anisms 12

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Materials and Methods . . . . . . . . . . . . . . . . . 18

2.3.1 Single neuron model . . . . . . . . . . . . . . 18

2.3.2 Synaptic interactions . . . . . . . . . . . . . . 19

2.3.3 Network connectivity . . . . . . . . . . . . . . 21

2.3.4 Stimulus . . . . . . . . . . . . . . . . . . . . . 22

xii



2.3.5 Slow calcium-dependent nonspecific cationic

current . . . . . . . . . . . . . . . . . . . . . . 22

2.3.6 Depolarization-induced suppression of inhibi-

tion . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.7 Short-term facilitation . . . . . . . . . . . . . 25

2.3.8 Parameter change . . . . . . . . . . . . . . . . 25

2.3.9 Analysis of simulation data . . . . . . . . . . 26

2.3.10 Bistability analysis and bifurcation diagrams . 27

2.3.11 Simulation method . . . . . . . . . . . . . . . 27

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Dominant time constant determines memory

accuracy . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 ICAN increases memory stability but decreases

system flexibility . . . . . . . . . . . . . . . . 32

2.4.3 DSI shows trade-off between accuracy and flex-

ibility . . . . . . . . . . . . . . . . . . . . . . 36

2.4.4 ICAN and DSI enhance the robustness of work-

ing memory . . . . . . . . . . . . . . . . . . . 39

2.4.5 ICAN and DSI counteract heterogeneity . . . . 42

2.4.6 Short-term facilitation increases memory ac-

curacy . . . . . . . . . . . . . . . . . . . . . . 44

2.4.7 Slow mechanisms protect memory against dis-

tractors . . . . . . . . . . . . . . . . . . . . . 51

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5.1 Random drifts . . . . . . . . . . . . . . . . . . 56

2.5.2 Heterogeneity-induced drifts . . . . . . . . . . 56

xiii



2.5.3 Memory flexibility . . . . . . . . . . . . . . . 57

2.5.4 Slow mechanisms modulate dynamics of a work-

ing memory system . . . . . . . . . . . . . . . 58

2.5.5 Accuracy-flexibility trade-off . . . . . . . . . . 60

3 Physiological function of IH in pyramidal cells 63

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Materials and Methods . . . . . . . . . . . . . . . . . 73

3.3.1 Single and multi compartment models of pyra-

midal cells . . . . . . . . . . . . . . . . . . . . 73

3.3.2 Synaptic Input . . . . . . . . . . . . . . . . . 75

3.3.3 Ionic currents . . . . . . . . . . . . . . . . . . 76

3.3.4 Network model of spatial working memory . . 80

3.3.5 Simulation method and Analysis of data . . . 80

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.1 IH has a depolarizing net effect on membrane

potential . . . . . . . . . . . . . . . . . . . . . 81

3.4.2 Resistance of spine neck influences electrical

filtering . . . . . . . . . . . . . . . . . . . . . 87

3.4.3 Presence of IH in dendrites increases the so-

matic EPSP peaks . . . . . . . . . . . . . . . 89

3.4.4 IM modulates cellular excitability in single neu-

rons and working memory circuit . . . . . . . 92

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 98

3.5.1 IH depolarizes membrane potential and in-

creases excitability . . . . . . . . . . . . . . . 98

xiv



3.5.2 IM has a relevant role in working memory but

does not interact with IH . . . . . . . . . . . . 100

3.5.3 Neck resistance significantly increases electri-

cal compartmentalization of spine . . . . . . . 101

3.5.4 Complete mechanism of ZD7288-related in-

crease in excitability is still unknown . . . . . 102

4 A novel understanding of IH function 104

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . 106

4.3 Materials and Methods . . . . . . . . . . . . . . . . . 109

4.3.1 Network model with slow oscillatory activity . 109

4.3.2 Network model of spatial working memory . . 113

4.3.3 IHL, a ZD7288-sensitive leak current . . . . . . 114

4.3.4 Simulation method . . . . . . . . . . . . . . . 114

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4.1 Network model simulates slow oscillations . . 115

4.4.2 Slow oscillatory model is influenced by chan-

nel repertoire . . . . . . . . . . . . . . . . . . 115

4.4.3 IH in interneurons determines the working memory-

related persistent activity . . . . . . . . . . . 119

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 123

5 Concluding remarks 127

Bibliography 131

xv



List of Figures

1.1 Sequence of events and neural responses in the ocu-

lomotor delayed-response task . . . . . . . . . . . . . 4

2.1 Persistent activity and random drifts of a memory

trace in a spiking network model for spatial working

memory . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Trade-off between memory accuracy and flexibility

with ICAN . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Trade-off between memory accuracy and flexibility

with DSI . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Multistability analysis of the working memory model

as a dynamical system reveals that ICAN and DSI

increase the robustness of memory function . . . . . . 41

2.5 DSI and ICAN stabilize the memory trace in the pres-

ence of heterogeneity across neurons in the network . 43

2.6 Short-term facilitation of recurrent excitatory synapses

reduces random drifts . . . . . . . . . . . . . . . . . . 46

2.7 A simplified model with fixed F profile shows that

the network is multistable within a range of STF values 48

xvi



2.8 Short-term facilitation stabilizes the remembered cue

locations in the presence of heterogeneity across neu-

rons in the network . . . . . . . . . . . . . . . . . . . 50

2.9 Slow mechanisms preserve cue representation and de-

crease the influence of long distractor stimuli . . . . . 53

2.10 Summary phase-plane diagram of our working mem-

ory model, during three stages of a shutdown process 59

3.1 Blockage of HCN channels strengthens working memory-

related firing of PFC neurons . . . . . . . . . . . . . 67

3.2 A Model of α2A-cAMP-HCN Regulation of PFC Mi-

crocircuits . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Schematic representation of the single cell multi-compartment

model of a neocortical pyramidal cell . . . . . . . . . 74

3.4 Representation of IH and IM kinetics . . . . . . . . . 78

3.5 IH in a single compartment model increases the peak

height . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.6 In the action potential threshold Vm range, IH is de-

polarizing . . . . . . . . . . . . . . . . . . . . . . . . 83

3.7 Presence of IM inhibits generation of action potentials 86

3.8 Spine neck resistance affects EPSP amplitude mea-

sured at different cell locations . . . . . . . . . . . . . 88

3.9 IH on the spine reduces the EPSP amplitude (left

panel) but increases the peak height . . . . . . . . . . 90

3.10 Presence of IH and IM increases the somatic EPSP

peak height . . . . . . . . . . . . . . . . . . . . . . . 91

xvii



3.11 Increase of IM and spine neck resistance reduces the

EPSP peak at the soma . . . . . . . . . . . . . . . . 93

3.12 A small reduction in the excitatory drive can have

a high impact on the persistent activity required to

maintain information in a circuit . . . . . . . . . . . 94

3.13 Persistent activity during a spatial working memory

task depends on the magnitude of IM in pyramidal

cells of the network model . . . . . . . . . . . . . . . 96

4.1 Mechanism of the slow oscillation . . . . . . . . . . . 112

4.2 The network model reproduces the slow Up and Down

states recorded in experiments . . . . . . . . . . . . . 116

4.3 Incorporation of IH raises resting Vm and the ex-

citability of all neurons in the model, disrupting os-

cillations . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4 Simultaneous blockage of IH and IHL increases ex-

citability . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.5 The performance of working memory in a PFC circuit

depends on the magnitude of IH in pyramidal cells

and interneurons . . . . . . . . . . . . . . . . . . . . 121

xviii



Chapter 1

Introduction

The scientific study of the brain is one of the most challenging

tasks currently faced by humanity. The nervous system is not only

our gateway to the external world and social interactions but also

underlies our internal state of mind, thoughts, decisions and mem-

ories. Such a multifaceted system requires a variety of investigative

approaches in order to be fully comprehended. While that goal is

still a distant prospect, several significant contributions have been

made to the field of Neuroscience.

Like all other systems in living beings, the nervous system is

framed by the expression of genes coded in the DNA. However neu-

ral function is only partially explained by genetics and the same

could be said about physical and chemical interactions, cellular

mechanisms, synaptic communication, circuit dynamics and behav-
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ioral responses. Each of these dimensions can, and should, be stud-

ied separately to attain their detailed components and mechanisms.

Nevertheless, a more complete understanding of neural processes

may only be achieved through a cross-examination and integration

of the different levels of abstraction.

Neural circuits dynamics have a more immediate relationship

with cognition, in a sense that it is the output of networks of neu-

rons that drive such functions as motor response, memory storage,

learning and decision-making. Notwithstanding, low-level synap-

tic and cellular mechanisms determine the properties and behavior

of each of those neurons and provide invaluable substrates for the

manipulation of the brain activity and treatment of psychiatric dis-

orders, as proven by many compounds currently used in medicine,

such as fluoxetine, valproic acid and guanfacine.

The neural functions are performed by the interplay between

several brain regions. The prefrontal cortex (PFC), in the anterior

part of the frontal lobes, plays a crucial role in supervising higher

cognitive functions (Fuster 1997; Miller and Cohen 2001). It is

vastly connected to other anatomical regions, which allows it to in-

tegrate information from several brain sources and exert top-down

control over most processes in the central nervous system. A dis-

tinct property of the neural circuits of the PFC is the capacity to

maintain persistent neural activity for several seconds without di-

rect stimulation (Fuster and Alexander 1971; Funahashi et al. 1989;

Miller et al. 1996; Romo et al. 1999). This duration is much longer

than the timescale of synaptic connections between neurons and

2



therefore, it has been proposed that persistent activity is sustained

by slow reverberatory dynamics within a neural circuit (Hebb 1949;

Amit 1995; Goldman-Rakic 1995; Wang 2001). Studies in monkeys

found evidence of this type of circuit in the superficial layers of the

dorsolateral PFC (Levitt et al. 1993; Kritzer and Goldman-Rakic

1995). The theoretical modeling of persistent activity suggested

that the driving force behind it lies in recurrent synaptic excita-

tion that depends on the N-methyl-d-aspartate (NMDA) receptors

(Wang 1999b). This prediction has recently garnered direct support

from experimental results obtained in primates (Wang et al. 2013).

Persistent activity in the PFC has been hypothesized to be the

basis of working memory (Hebb 1949; Fuster and Alexander 1971;

Miyashita and Chang 1988; Amit 1995; Goldman-Rakic 1995; Wang

2001), which is the active maintenance of information during peri-

ods of a few seconds in the absence of direct external inputs. Work-

ing memory allows a variety of information, such as sensory stimulus

or internal thoughts, to be stored and retrieved during planning and

execution of behavioral tasks (Miller 1960).

A well-known paradigm to study working memory is the oculo-

motor delayed-response (ODR) task. In this experiment, a subject

is required to retain information of a visual cue location (direc-

tional angle) throughout a delay period between the stimulus and

memory-guided behavioral response (Fig. 1.1A). In a version of this

experiment, previously-implanted electrodes in the dorsolateral pre-

frontal cortex record the activity of single neurons while the subject

is performing the task (Funahashi et al. 1989; Chafee and Goldman-

3



Figure 1.1. Sequence of events and neural responses in the oculomotor
delayed-response task. A, trials begin with the appearance of a fixation
point at the center of the screen, which the monkey is required to fixate
throughout the trial. A spatial cue is subsequently presented, typically
at one of eight locations (center diagram in B). After a delay period of a
few seconds, the fixation point is turned off and the monkey is required
to indicate the location of the cue by moving his eyes accordingly on the
screen. B, directional delay period activity of a single PFC neuron during
the oculomotor delayed-response task. The eight discharge patterns are
arranged as to indicate the location of the cue. (Cont.)
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Figure 1.1. (Cont.) This neuron exhibited the strongest directional
delay period activity following presentation of the cue in the upper left
quadrant (135 degrees). Adapted from Constantinidis and Wang (2004)
and from Funahashi et al. (1989).

Rakic 1998; Constantinidis and Goldman-Rakic 2002; Constantini-

dis and Wang 2004). These recordings show that certain neurons

produce high levels of persistent firing during the delay period only

after the presentation of cues at a given angle (Fig. 1.1B). Assuming

that different neurons are tuned to different locations, similarly to

what happens in the primary visual cortex (Hubel and Wiesel 1968),

it is believed that a circuit in the PFC is capable of representing

the continuous 360 degree space.

Based on these observations, theoretical models of spatial work-

ing memory have been developed. A basic concept in some of these

models is the representation of persistent activity as dynamical at-

tractors (Amari 1977; Amit 1995; Wang 2001). The term attractor

refers to a self-sustained and stable state of a dynamic system, such

as a neural network (Wang 2013). A spatial working memory sys-

tem can be either in the spontaneous state or in a continuum of

location-selective memory states. Each of these states is considered

an attractor and transitions between them can be achieved through

transient inputs.

The theoretical simulation of working memory can take into ac-

count different levels of biophysical detail. The most basic prop-

erties incorporated in some models are the overall firing rates of

populations of neurons (Amari 1977; Amit et al. 1994; Camperi
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and Wang 1998; Durstewitz et al. 1999; Itskov et al. 2011). While

these models can simulate the main input-output function of a cir-

cuit, they do not provide a clear link to physiological data. In order

to unravel interdependencies between cellular properties and neural

circuit dynamics, it is preferable to include more detailed biophysi-

cal properties and neural spiking dynamics (Amit and Brunel 1997;

Durstewitz et al. 2000a; Compte et al. 2000; Tegnér et al. 2002;

Renart et al. 2003; Machens et al. 2005; Carter and Wang 2007;

Hansel and Mato 2013). These type of models, which are more rel-

evant to the work described in this dissertation, allow the modeler

to propose predictions that could be tested in electrophysiological

experiments.

The model proposed by Compte et al. (2000) to simulate the

ODR task has a population of excitatory pyramidal cells figuratively

arranged in a ring-like fashion. Each of these neurons is selectively-

tuned to a subsection of the 360-degrees space (like the neuron in

Fig. 1.1B). A crucial feature is that neurons not only receive exter-

nal inputs, but are also connected to each other with weights that

are inversely dependent on their distance in the ring. When a cue

at a certain angle is presented, the group of neurons tuned to that

angle elevates their firing rates and stimulate each other recipro-

cally. This positive feedback through recurrent synaptic excitation

is primarily mediated by NMDA receptors (Wang 1999b) and gives

rise to a localized persistent activity, creating an attractor memory

state. The overall activity of the network is kept from escalating

uncontrollably through the nonspecific inhibition by a population

6



of GABAergic, inhibitory interneurons.

The hypothesis that explains working memory maintenance

through states with stable activity is not consensual. A study pro-

posed that persistent activity is a costly consumption of metaboli-

cal energy and is not required for working memory (Mongillo et al.

2008). According to their modeling analysis, neocortical networks

encode and maintain information through slow calcium-mediated

synaptic facilitation (Tsodyks and Markram 1997; Hempel et al.

2000). This mechanism consists in a state of increased neurotrans-

mitter release that will allow the memory to be reactivated. How-

ever, this reactivation requires either an unrealistic readout stimulus

or an artificial increase in the background input that effectively re-

sults in persistent activity. Another study proposed that memory

maintenance relies on positive feedforward instead of feedback be-

tween neurons, even in anatomically recurrent networks (Goldman

2009). This idea can explain some experimental data observations

but, on the other hand, the proof of its biological realism is still

tenuous. Barak et al. (2013) recently compared three paramet-

ric working memory models of a delayed vibrotactile discrimina-

tion task. The models were comprised of neurons with different

degrees of tuning and dynamics: ranging from a system with prede-

termined connectivity and stable neural representations (Machens

et al. 2005) to a random network that evolves according to the

readout. They found that an intermediate model was the one that

best simulated the data at their disposal.

In this work, we employ a model that exhibits stable persistent
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activity (in line with Compte et al. (2000)) because it relies on

biophysically-realistic parameters, it can explain relevant electro-

physiological data of working memory tasks, and allows to formu-

late testable predictions at both cellular and circuit level. We also

analyze simpler models of pyramidal cells to determine more basic

properties of these neurons. As a result, a recurring theme in this

dissertation is the attempt to connect several levels of abstraction

within the PFC.

Chapter 2 deals with the robustness of the above mentioned

spatial working memory model. A characteristic of this type of

networks, in its current state of description, is the accumulation of

small deviations to the memory trace over time, which can result in

a final memory representation that is distant from the original cue

stimulus. The cellular and synaptic properties of these networks

are mostly homogeneous. The presence of heterogeneous properties

can disrupt the continuous family of attractors, i.e. the network is

no longer able to encode all 360 degrees and quickly drifts to one

of just a few privileged locations (Ben-Yishai et al. 1995; Tsodyks

and Sejnowski 1995; Zhang 1996; Renart et al. 2003; Itskov et al.

2011). Finally, if a distractor signal is presented while the nework

is encoding a previous stimulus, the remembered cue location may

move towards the distractor. All these phenomena can have nega-

tive implications on the accuracy of the memory trace.

As stated before, the stability of the persistent activity dur-

ing de delay period of working memory is sustained by slow re-

verberatory processes. But is the slower the better? To address
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this question, we tested how three cellular and synaptic biophysical

mechanisms affect the memory representation: short-term facilita-

tion, depolarization-induced suppression of inhibition and calcium-

activated inward currents. Briefly, short-term facilitation (STF) is

the increase in neurotransmitter release and postsynaptic response

after repetitive stimulation of a synapse (Tsodyks and Markram

1997; Hempel et al. 2000). Depolarization-induced suppression of

inhibition (DSI) is a mechanisms that decreases the inhibition re-

ceived by pyramidal cells when they are very active (Ohno-Shosaku

et al. 2001; Wilson et al. 2001; Wilson and Nicoll 2001). A calcium-

activated inward current (ICAN) is independent of the membrane

potential and depolarize cells after calcium influx. All three mecha-

nisms were found in the PFC, are activity-dependent, provide pos-

itive feedback and operate under a slow time course of activation.

The incorporation of these mechanisms in the network increased

the memory robustness and decreased the variability observed across

trials. On the other hand, their slow nature resulted in costlier

transitions between memory and resting state, which decreased the

flexibility of the overall system. We were able to explain these ob-

servations through a detailed analysis of the network model.

The project described in chapter 3 was done in collaboration

with experimentalists. One group carried out electrophysiological

recordings in monkeys, who were performing ODR tasks. At the

same time, they applied pharmacological compounds that block or

activate receptors and cellular machinery in specific regions of the

PFC of these monkeys. The results from these experiments allowed
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them to associate aspects of the monkey behavior with firing ac-

tivity of neurons and molecular pathways (Wang et al. 2007). A

second group studied the modulation of slow oscillations by ionic

currents (Shu et al. unpublished observations). Both studies ob-

served that the blockage of the channels that mediate H-current

(IH) increases the excitability of pyramidal cells. This current is ac-

tivated by hyperpolarized membrane potentials and is inward (de-

polarizing) at sub-threshold potentials. In order to understand the

basic mechanism of IH, we incorporated it in compartment neural

models. We demonstrate that the inactivation of this current alone

was not enough to produce the results observed with the pharma-

cological blocking of IH channels in experiments. We also tested the

properties of a second potassium current (IM) in the single cell and

working memory models.

Finally, in chapter 3 we propose two alternative hypotheses that

can explain the effects of blocking the IH channels. The first con-

sists of the interplay of IH with an outward (hyperpolarizing) current

(Migliore and Migliore 2012). In the second, IH is present not only

in excitatory pyramidal cells as currently assumed, but also in in-

hibitory cells as reported in some studies (Maccaferri and McBain

1996; Kawaguchi and Kubota 1997; Lupica et al. 2001; Notomi

and Shigemoto 2004; Aponte et al. 2006; Hughes et al. 2013).

We demonstrate how these two hypotheses are compatible with the

experimental procedures and observations.

A main goal of this work is to contribute for the understanding

of working memory. The adopted research approach focus on find-
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ing links between the cellular properties and the circuit dynamics

relevant to this cognitive process.
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Chapter 2

A trade-off between

accuracy and flexibility in a

working memory circuit

endowed with slow

feedback mechanisms
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2.1 Abstract

Recent studies have led to the recognition that reverberation

underlying mnemonic persistent activity must be slow, in order to

ensure the stability of a working memory system and to give rise

to long neural transients capable of accumulation of information

over time. Is the slower the underlying process, the better? To ad-

dress this question, we investigated three biophysical mechanisms

operating on slow timescales, all are activity-dependent and promi-

nently present in neurons of the prefrontal cortex: depolarization-

induced suppression of inhibition (DSI), calcium-dependent non-

specific cationic current (ICAN) and short-term facilitation (STF).

Using a spiking network model for spatial working memory, we

found that these slow biophysical processes enhance the accuracy

of memory representation by counteracting noise-induced drifts of

a memory trace, heterogeneity-induced systematic loss of stored in-

formation and distractors. Furthermore, the incorporation of DSI

and ICAN enlarges the range of network’s properties required for

memory states. However, when a progressively slower process dom-

inates the network, it becomes increasingly more difficult to erase a

memory trace and reset the network by brief external inputs, which

is required for proper function of a working memory circuit. We

demonstrate this basic trade-off between accuracy and flexibility

quantitatively and provide an explanation of it using a state-space

analysis. Our results support the scenario in which the NMDA-

receptor dependent recurrent excitation is the workhorse for the

maintenance of persistent activity, whereas very slow synaptic or
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cellular processes contribute to the robustness of mnemonic func-

tion in a trade-off that potentially can be adjusted according to

behavioral demands.
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2.2 Introduction

Working memory is thought to be represented by persistent ac-

tivity (Fuster and Alexander 1971; Gnadt and Andersen 1988; Fu-

nahashi et al. 1989; Amit 1995; Goldman-Rakic 1995; Miller et al.

1996; Romo et al. 1999; Wang 2001; Major and Tank 2004). Such

activity patterns are likely sustained by positive feedback processes

in a neural circuit, but the precise mechanisms remain unresolved.

Computational models stressed the role of recurrent synaptic ex-

citation (Amit 1995; Camperi and Wang 1998; Amit and Brunel

1997; Brunel and Wang 2001; Durstewitz et al. 2000b) that de-

pends on the NMDA receptors (Wang 1999b; Compte et al. 2000;

Lim and Goldman 2013), a prediction supported by findings from

a recent experiment (Wang et al. 2013).

Other synaptic and cellular process, present in the prefrontal

cortex (PFC), are likely involved in mnemonic persistent activity,

including short-term facilitation (STF) (Hempel et al. 2000; Wang

et al. 2006; Mongillo et al. 2008; Szatmary and Izhikevich 2010;

Hansel and Mato 2013), depolarization-induced suppression of inhi-

bition (DSI) (Carter and Wang 2007) and calcium-activated inward

currents (ICAN) (Tegnér et al. 2002; Egorov et al. 2002; Fransén

et al. 2006; Yoshida and Hasselmo 2009; Kulkarni et al. 2011;

Kalmbach et al. 2013). STF and ICAN provide feedback excitation,

whereas DSI is a disinhibition process. All are activity-dependent,

thus become selective for neurons that show elevated persistent ac-

tivity. Furthermore, these mechanisms operate with biophysical

time constants much slower than the NMDA receptor mediated
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synaptic excitation. Therefore, the long-standing question (Ma-

jor and Tank 2004) has gained urgency: what may be the relative

contributions to working memory function of these slow synaptic

and cellular processes versus the recurrent network mechanism?

We analyzed the role of slow biophysical processes in mnemonic

persistent activity, using a biologically-based continuous spiking cir-

cuit model for spatial working memory. This model system is en-

dowed with a resting state and a continuum of spatially tuned per-

sistent activity patterns (“bump attractors”) for memory storage

of an analog quantity such as spatial location (Camperi and Wang

1998; Compte et al. 2000; Gutkin et al. 2001; Laing and Chow

2001; Renart et al. 2003; Carter and Wang 2007; Wei et al. 2012;

Murray et al. 2012). During a mnemonic delay period, a bump

attractor drifts over time (Compte et al. 2000; Carter and Wang

2007; Murray et al. 2012), resulting in random deviations of the

memory away from the to-be-remembered sensory cue. Addition-

ally, heterogeneity in single neurons disrupts the continuous family

of attractors (Ben-Yishai et al. 1995; Tsodyks and Sejnowski 1995;

Zhang 1996), leading to systematic drifts of memory trace (Renart

et al. 2003; Itskov et al. 2011). Furthermore, the system may be

perturbed by external distractor stimuli. Interestingly, we found

that while STF, DSI and ICAN enhance the accuracy of a memory

trace, they hinder rapid memory erasure and network reset. The

latter is not functionally desirable, since behavior demands that

brief transient inputs should be sufficient to switch a working mem-

ory system from its resting state to a memory state or vice versa
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(Compte et al. 2000; Gutkin et al. 2001). Therefore, our study

reveals a fundamental trade-off between robustness and flexibility

of working memory function instantiated by slow neurobiological

mechanisms in a recurrent network.
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2.3 Materials and Methods

In an oculomotor delayed-response (ODR) task, the sensory

stimulus is a visual cue and the motor response is a saccade to

the cued location. A subject is briefly shown a visual cue that must

be remembered during a delay period of a few seconds. This mem-

ory is subsequently used to perform a memory-guided behavioral

response (the saccade). During the delay period, many neurons in

the dorsolateral PFC show high persistent activity that is spatially

selective (Funahashi et al. 1989). The present work uses a spiking

network model for the ODR task that has been tested thoroughly

(Compte et al. 2000; Carter and Wang 2007; Wei et al. 2012;

Murray et al. 2012). The parameters were modified starting with

the original “control parameter set” in Compte et al. (2000). The

model consists of a population of excitatory pyramidal cells and a

population of inhibitory interneurons. Pyramidal cells are arranged

in a ring-like fashion and labeled by their preferred cue direction,

from 0 to 360 degrees. A schematic of the network structure is

shown in Fig. 2.1A.

2.3.1 Single neuron model

Both pyramidal cells and interneurons are modeled as leaky in-

tegrate and fire units (Tuckwell 1988). Each type of cell is char-

acterized by total capacitance Cm, total leak conductance gL, leak

reversal potential VL, threshold potential Vth, reset potential Vres

and refractory time τref . The values that we use in the simulations
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are Cm = 0.5 nF, gL = 25 nS, VL = −70 mV, Vth = −50 mV, Vres

= −60 mV, and τref = 2 ms for pyramidal cells; and Cm = 0.2 nF,

gL = 20 nS, VL = −70 mV, Vth = −50 mV, Vres = −60 mV, and

τref = 1 ms for interneurons. The subthreshold membrane potential,

V(t), follows:

Cm
dV (t)

dt
= −gL(V (t)− VL)− Isyn(t)

where Isyn(t) is the total synaptic current to the cell.

2.3.2 Synaptic interactions

The network consists of NE = 2048 pyramidal cells and NI =

512 inhibitory interneurons. Neurons receive recurrent, background,

and external inputs. Excitatory synaptic currents are mediated by

2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid recep-

tors (AMPARs) and NMDARs, and inhibitory synaptic currents are

mediated by γ-aminobutyric acid type A receptors (GABAARs).

The total synaptic current to each neuron is

Isyn = INMDA + IAMPA + IGABA + Iext

where Iext delivers stimulus input to pyramidal cells. The dynamics

of synaptic currents for neuron i follow:

Ii,AMPA = (Vi − VE)
∑
j

gji,AMPA sj,AMPA
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Ii,NMDA = (Vi − VE)

∑
j
gji,NMDA sj,NMDA

1 + [Mg2+]exp(−0.062Vi/mV )/3.57

Ii,GABA = (Vi − VI)
∑
j

gji,GABA sj,GABA

where VE = 0 mV and VI = −70 mV and gji,syn denotes the synaptic

conductance strength on neuron i from neuron j. NMDAR-mediated

currents exhibit voltage dependence controlled by the extracellular

magnesium concentration [Mg2+] = 1 mM (Jahr and Stevens 1990).

Given a spike train {tk} in the presynaptic neuron j, the gating

variables sj,AMPA and sj,GABA for AMPAR- and GABAR-mediated

currents, respectively, are modeled as:

ds

dt
=
∑
k

δ(t− tk)−
s

τs

The gating variable sj,NMDA for NMDAR-mediated current is

modeled as:

dx

dt
= αx

∑
k

δ(t− tk)−
x

τx

ds

dt
= αsx(1− s)− s

τS

with αx = 1 (dimensionless), τx = 2 ms and αs = 0.5 kHz. The
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decay time constant τs is 2 ms for AMPA, 10 ms for GABA, and

100 ms for NMDA. For simplicity, background inputs are mediated

entirely by AMPARs, and recurrent excitatory inputs are mediated

entirely by NMDARs, as they are critical for the stability of persis-

tent activity (Wang 1999b; Compte et al. 2000; Wang et al. 2013).

All cells receive background excitatory inputs from other cortical

areas. This overall external input is modeled as uncorrelated Pois-

son spike trains to each neuron at a rate of νext = 1800 Hz per cell,

with AMPAR maximal conductances of 3.1 nS on pyramidal cells

and 2.38 nS on interneurons.

2.3.3 Network connectivity

As stated above, pyramidal cells are organized in a ring architec-

ture and are tuned to the angular location on a circle (0–360◦, Fig.

2.1A), with uniform distribution of their preferred angles. The net-

work structure follows a columnar architecture, such that pyramidal

cells with similar stimulus selectivity are preferentially connected to

each other. The synaptic conductance on neuron i from neuron j,

gji,syn = W(θj − θi)Gsyn, where θi is the preferred angle of neuron i,

and W(θj − θi) is the connectivity profile normalized such that:

1

360◦

∫ 360◦

0◦
W (θ)dθ = 1

For pyramidal-to-pyramidal connections, W(θj−θi) = J−+J+exp[−
(θj − θi)

2/2σ2]. We use J+ = 1.62 and σ = 14.4◦. All other

synaptic connection profiles are unstructured. Synaptic conduc-
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tance strengths are given by GEE = 0.381 nS, GEI = 0.292 nS, GIE

= 1.336 nS, GII = 1.024 nS.

2.3.4 Stimulus

Inputs are modeled as injected current with a Gaussian profile,

I(θ) = I0 exp[−(θ−θc)2/2σ2
I ], where the maximum current I0 = 200

pA, except otherwise noted. θc is the stimulus location, and the

width parameter σI = 18◦.

2.3.5 Slow calcium-dependent nonspecific cationic

current

ICAN can trigger a sustained depolarization outlasting the stimu-

lus for several seconds (Haj-Dahmane and Andrade 1998; Strübing

et al. 2001; Egorov et al. 2002; Tegnér et al. 2002). The activa-

tion of this current requires a rise in intracellular calcium. In some

simulations (results in Fig. 2.2, 2.4, 2.5), ICAN was added to the

network model (described above) according to the following:

ICAN = −gCANm2
CAN(V − ECAN)

dmCAN

dt
= φCAN ×

(
m∞([Ca2+])−mCAN

τCAN([Ca2+])

)

m∞([Ca2+]) =
α[Ca2+]2

α[Ca2+]2 + β
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τCAN([Ca2+]) =
1

α[Ca2+]2 + β

with gCAN = 1.5 nS, ECAN = −20 mV, β = 0.002 ms−1, α = 0.0056

[(ms(µM)2]−1. φCAN is used to adjust the effective time constant of

ICAN, without changing the steady state levels of activity.

Calcium influx to pyramidal cells is triggered by spikes and obeys

first-order kinetics as follows (Liu and Wang 2001):

d[Ca2+]

dt
= αCa

∑
i

δ(t− ti)−
[Ca2+]

τCa

When an action potential fires (at time ti), [Ca2+] is incremented

by αCa (0.2 µM). The calcium concentration decays back to zero

exponentially, with a time constant τCa (240 ms).

2.3.6 Depolarization-induced suppression of in-

hibition

Depolarization-induced suppression of inhibition is detected in

various regions of the brain (Llano et al. 1991; Pitler and Alger

1992; Trettel and Levine 2003). DSI is dependent on endocannabi-

noids that are released by active pyramidal cells, triggered by cal-

cium influx (Ohno-Shosaku et al. 2001; Wilson et al. 2001; Wil-

son and Nicoll 2001). These endogenous cannabinoids retrogradely

activate type 1 cannabinoid receptors (CB1R) located on the axon

terminals of interneurons that coexpress GABA and cholecystokinin
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(CCK) (Marsicano and Lutz 1999; Katona et al. 1999). The acti-

vation of CB1R results in the suppression of transmitter release to

postsynaptic pyramidal cells.

DSI was added to the network model (Fig. 2.3, 2.4, 2.5, 2.9) as

previously described in Carter and Wang (2007) and the same pa-

rameters were used, unless noted otherwise. Briefly, the inhibitory

synaptic conductance gGABA to a pyramidal cell is multiplied by a

factor D, which is proportional to the fraction of inhibitory synapses

that are sensitive to cannabinoid and their presynaptic release prob-

ability. D varies between 0 and 1. There is no DSI effect if D is

set to 1. DSI is the fractional reduction in inhibitory event size

or frequency. The dynamics of D are described by the following

equation:

dD

dt
= φD ×

(
1−D
τD

− βD × [Ca2+]× (D −Dmin)

)

where [Ca2+] represents the intracellular calcium concentration in

the pyramidal cell and has the same kinetics as ICAN. When [Ca2+]

accumulates, D decreases with a rate controlled by βD (1.66×10−5

(µM ms)−1), leading to disinhibition. D is bounded below at Dmin,

which determines the maximum disinhibition and biophysically cor-

responds to the maximum number of synapses that are cannabinoid

sensitive multiplied by the maximal reduction in release probability

at each synapse due to DSI. Unless stated otherwise, Dmin was set to

0.96, corresponding to a maximum DSI of 4%. When the pyramidal

cell ceases to be active, D recovers back to maximal value 1 with a
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time constant τD (16.7 s). The factor φD accounts for temperature

sensitivity and was used to adjust the effective time constant of DSI

without changing the steady state levels of activity.

2.3.7 Short-term facilitation

In simulations where we incorporated short-term facilitation (re-

sults in Fig. 2.6, 2.7, 2.8), only the recurrent excitatory synapses

are facilitatory. To implement short-term facilitation, the parame-

ter αx is multiplied by F , which is the facilitation factor and obeys

the following dynamical equation (Matveev and Wang 2000):

dF

dt
= αF

∑
i

δ(t− ti)(1− F )− F

τF

The parameter αF controls the facilitation potency and was set

at 0.6. Starting a paired-pulse facilitation simulation with F0 = 0,

it is possible to demonstrate that, for the first two spikes, with an

inter-spike interval 1/r:

F1 = 1− e−αF ; F2 = 1− (1− F−)e−αF ;
F2

F1

= 1 + e
−1
rτF
−αF

2.3.8 Parameter change

A key manipulation in our study is to gradually change the

timescale of a biophysical process. For ICAN, we varied the pa-

rameter φCAN, which scales the speed of the channel kinetics with-

out affecting the averaged steady-state level of the activity variable
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mCAN . Similarly, we varied the parameter φD to systematically

change the time constant of DSI while preserving the average level

of the activity variable D. Unlike ICAN or DSI, for STF the activity

variable F undergoes discrete jumps in time and what matters is

its value immediately after each jump due to a presynaptic spike,

rather than the temporal average. For this reason, we varied τF

directly (see Results for more details).

When a slow mechanism is added to a network model, the overall

level of activity of the excitatory population changes significantly,

to a degree correlated to the nature and strength of the mechanism.

This changes the shape of a population activity pattern and may

even disrupt its stability. For this reason, when ICAN, DSI or STF,

were present in the model, GEE was adjusted from 0.381 to 0.378,

0.379 or 0.383 nS, respectively. This way, the network maintained

consistently a fixed steady-state activity across all simulations, al-

lowing a fair comparison between scenarios.

2.3.9 Analysis of simulation data

To determine the remembered cue location at any given time,

we used the population vector, which is a simple readout of the

peak location of a spatially tuned persistent activity pattern (Geor-

gopoulos et al. 1982).

The minimum time to shutdown (tSHUT,MIN), in Figs. 2E, 3E

and 6A was determined as follows. For each time constant (τ),

a range of shutdown pulse durations (tSHUT) was considered. For

each τ and tSHUT, a set of model simulations was run, where an
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inhibitory input current lasting for tSHUT was applied when the

network was in a bump attractor state. At the end of each simulated

trial (seconds after pulse offset), whether the bump state was still

present or not was judged through the maximum of the firing rate

profile. If more than 95% of simulations of a set yielded successful

shutdowns, the corresponding pulse duration was accepted. Finally,

for each τ , tSHUT,MIN was chosen as the minimum of those accepted

pulse durations.

2.3.10 Bistability analysis and bifurcation dia-

grams

To plot the bifurcation diagrams in Fig. 2.4 and Fig. 2.7B, we

ran simulations across a range of values for the varied parameter

(GEE and F profile, respectively) with and without cue input and

measured the firing rate during the delay. The maximum firing rate

across the network indicated whether the system had evolved to the

memory state (typically > 20 Hz) or remained at the baseline state

(< 5 Hz).

2.3.11 Simulation method

The model was implemented in python in the Brian simulator

(Goodman and Brette 2009). The equations were integrated us-

ing a second-order Runge-Kutta algorithm (timestep = 0.02 ms).

The simulations were carried out in the cluster facilities of the Yale

University Biomedical High Performance Computing Center.
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2.4 Results

Our working memory model was designed for an ODR task,

which proceeds from cue (angle) presentation, to a delay period and

memory-guided behavioral response. The cue stimulus activates a

group of pyramidal neurons with preferred directions around the

sensory cue (first step current, lower panel of Fig. 2.1B). If the

firing rate of this subpopulation of neurons is sufficiently elevated

and mutual excitation among them is strong enough, reverberation

can give rise to self-sustained persistent activity after the stimulus

offset (plateau in Fig. 2.1B, upper panel) (Wang 2001). At the end

of the delay, a negative input is applied to all excitatory neurons

in the network (Fig. 2.1B, lower panel, second step current). This

shutdown pulse should be sufficient long to switch the network back

to the baseline resting state.

The spatiotemporal activity pattern of the network model is

shown in Fig. 2.1C (left panel). The memory trace is encoded as

a population activity pattern that persists during the delay period.

The spatial profile of the bump state, corresponding to the activity

during the delay period, has a typical Gaussian shape (Fig. 2.1C,

right panel). The population vector (shown in yellow) quantifies the

peak location of the bump attractor as the internal representation

of the sensory cue at any instant. In this example, the remem-

bered cue location fluctuates slightly around the initial cue (180◦)

and remains reasonably close to it at the end of the delay period.

Consequently, in this trial, the PFC circuit model successfully en-

codes and maintains a spatial memory trace, leading to an accurate
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readout.

2.4.1 Dominant time constant determines mem-

ory accuracy

The analysis of simulations across trials reveals that the remem-

bered cue (the population vector) as encoded by the network activ-

ity pattern displays random drifts over time (Fig. 2.1D). This is

because the system is endowed with a continuous family of bump

attractors, each for a directional angle as an analog quantity. Dur-

ing a delay period, irregular neural activity leads to random shift-

ing of the network state among those bump states. At the end of a

trial, if the drifts have grown over time greatly, the remembered cue

location could be located significantly away from the sensory cue

angle. This is shown in some trials of Fig. 2.1D, with deviations of

more than 20 degrees. These simulations therefore show a relatively

low accuracy of memory representation, which implies poor perfor-

mance. Note that, across trials, the average of random drifts is zero

(i.e. there is no systematic drift), whereas the variance increases

roughly linearly over time (Camperi and Wang 1998; Compte et al.

2000; Renart et al. 2003; Carter and Wang 2007). This variance

of population vector (VPV) quantifies the magnitude of random

drifts, which we used as a measure to assess the network’s function:

the smaller is the VPV, the more accurate is the representation of

a memory trace and the better is the behavioral performance.

A key ingredient in our working memory model is that persistent
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Figure 2.1. Persistent activity and random drifts of a memory trace in
a spiking network model for spatial working memory. A, schematic of
the network connectivity (all-to-all) between the excitatory (blue circles)
and inhibitory (yellow circle) neurons. Light gray and black connectors
indicate, respectively, excitatory and inhibitory synapses. Each excita-
tory cell is selective for a direction (black arrows), and the strength of
connection between two excitatory cells is a decreasing function of the
difference in their preferred directions. B, lower panel: applied current
to excitatory cells. The first positive step current corresponds to cue
presentation. The second negative current represents a shutdown signal.
Upper panel: average firing rate of a group of 200 neurons (with pre-
ferred directions around cue location) during a trial. The activity ramps
up during cue presentation, persists during delay and is reset to a spon-
taneous baseline by the shutdown pulse. C, left panel: spatiotemporal
pattern of excitatory cells of the same simulation as in A (cue presented
at 180 degrees). Each dot represents a spike. (Cont.)
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Figure 2.1. (Cont.) The yellow line is the population vector, which
traces the peak of the bell-shaped persistent activity pattern (bump
attractor) as the internal representation of the cue location. Right panel:
population firing profile, averaged over the delay period. D, remembered
cue as measured by the population vector from 20 sample trials with
the same cue location. The memory traces drift away from the initial
cue during the delay, the variance of population vector (VPV) across
trials quantifies this deviation so that the smaller is the VPV, the more
accurate is the memory readout. E, drift magnitude at 5–7 s of the delay
period, as measured by VPV (N = 500 trials), is plotted as a function of
the time constant of the NMDA receptor mediated synaptic excitation
τS. The VPV decreases steeply with increasing τS; the fitting line is an
exponential function for ease of eye inspection.

activity is stabilized by slow reverberation mediated by the NMDA

receptors at the recurrent excitatory synapses (Wang 1999b). The

NMDA receptor dependent synaptic current has a time constant

τS on the order of 50–100 milliseconds. We hypothesized that, the

longer is τS, the more robust will be the memory trace. To test

this possibility, we gradually varied the value of the NMDAR decay

time constant, and measured the variance of the remembered cue

location during a delay interval across hundreds of trials. The VPV

decreases inversely with increasing τS (Fig. 2.1E). The VPV is 206.2

deg2 with τS equal to 100 ms. A substantial reduction in the VPV

is observed when τS is increased three-fold (300 ms, σ2 = 61.5 deg2).

This result serves as a proof-of-principle of the idea that extending

the dominant time constants decreases random drifts of persistent

activity and improves the accuracy of memory representation. In

the following, we will consider three slow, biophysically-plausible

mechanisms that are present in the PFC and may improve working
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memory function.

2.4.2 ICAN increases memory stability but de-

creases system flexibility

Fig. 2.2A shows the spiking activity of an integrate-and-fire sin-

gle neuron model endowed with the slow inward current ICAN. An

external current results in action potentials that induce calcium in-

flux, which in turn activates ICAN. After the stimulus offset, the

activation of ICAN decays slowly, which allows it to provide positive

feedback that is enough to trigger a few additional spikes (after-

discharges). It is worth noting that we assumed that ICAN is not

sufficiently strong to produce stable persistent activity in an iso-

lated neuron (Fig. 2.2A), and we were interested in examining the

contribution of the activity-dependent ICAN in single neurons to the

maintenance of a persistent firing pattern in a recurrent working

memory circuit.

We ran simulations with ICAN present in excitatory cells and

measured the VPV of the delay-period memory trace across trials.

We tested two different values of max τCAN that lie within the ex-

perimentally measured range (Partridge and Valenzuela 1999; Faber

et al. 2006; Gross et al. 2009; Sidiropoulou et al. 2009). With a

shorter max τCAN (1 second), the VPV increases quasi-linearly with

time (Fig. 2.2B, black curve). By contrast, with max τCAN = 3 sec-

onds, the VPV shows a pronounced increase during the first second

of the delay period and then plateaus in the range 10–15 deg2 (Fig.
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Figure 2.2. Trade-off between memory accuracy and flexibility with
ICAN. A, an integrate-and-fire neuron model endowed with ICAN. A step
current (bottom panel) induces initial firing activity (upper panel). Each
spike triggers a small calcium influx (middle upper panel), which leads
to a slow activation of ICAN (middle lower panel). When the applied
current stops, the high level of ICAN activation is sufficient to induce
afterdischarge of spikes. B, variance of the remembered cue location
(VPV) during the delay period with max τCAN of 1 (black trace) and
3 (red trace) seconds (N = 500 trials). A longer time constant leads to
smaller random drifts after an initial time needed for the mechanism to
take effect. C, with max τCAN = 500 ms, a negative pulse of 200 ms to
excitatory cells is required in order to shutdown the bump state at the
end of delay. Lower panel shows applied current with 2 negative pulses
of lasting 100 (red) and 200 (blue) ms. Middle and upper panels: the
average population firing rates and ICAN activation, respectively, of 200
cells in the bump state around the initial cue location, under (Cont.)
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Figure 2.2. (Cont.) the two conditions (the same color scheme, N
= 10 trials). With 100 ms, ICAN activation decays by a small amount
but immediately increases after the shutdown input is over, providing
the necessary positive feedback for the return of the high-firing mem-
ory state. After a longer shutdown pulse (200 ms) the activation decays
to such an extent that ultimately leads to the resting state. D, state
space analysis with the population rate and the ICAN activation shown
in C plotted against each other in phase space. Each trajectory corre-
sponds to a trial and starts immediately at the shutdown pulse offset.
Red trajectories evolve to the bump attractor; blue proceed to shutdown
(resting state). There is a clear diagonal boundary that separates the
two attractors (dashed black curve), suggesting the presence of an unsta-
ble manifold. E, trade-off between decrease in variance of remembered
cue location (VPV) and minimum time to shutdown (tSHUT,MIN), with
increasing max τCAN. Open circles were determined as in Fig. 2.1E,
with max τCAN between 50 ms and 4 s. Filled circles express tSHUT,MIN

(see Methods) (N = 500 trials). The two data sets are fitted as a sum
of two exponentials (VPV) or as a simple exponential (tSHUT,MIN). A
compromise corresponds to an optimal value of max τCAN ' 1.5 sec.

2.2B, red curve). A possible explanation for the initial rise in drifts

(which is not visible for max τCAN = 1 s) is that with a slower time

constant, the ICAN takes longer to be activated and does not pro-

vide robustness against drifts as promptly. The crossover between

the two time courses shows that shorter τCAN is more advantageous

for shorter delay periods, whereas slower τCAN increases memory

accuracy in longer delays.

The increase in memory robustness provided by ICAN, however,

is just one of the effects this current has in the working memory

model; the incorporation of a slow mechanism also makes it harder

to erase memory. At the end of a delay period, memory erasure

was simulated using a negative current input to all excitatory cells,
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which completely silences the network. If this pulse is not suffi-

ciently long, the network returns to the memory state, with high

ICAN activation and elevated neural firing (Fig. 2.2C, red traces,

100 ms pulse). With a longer shutdown pulse, in contrast, ICAN de-

activates to a sufficiently low level that does not allow the return

of the high spiking activity and the network is switched off from a

bump attractor state (Fig. 2.2C, blue traces, 200 ms pulse).

To further demonstrate the role of ICAN in the memory erasure

process, we recorded simultaneously the activation variable of this

current and the firing rate of the network and plotted them in a

state space, for several trials (Fig. 2.2D). We only recorded neu-

rons around the cue location and in simulations that successfully

maintained a memory during the delay. All trajectories initiate

immediately after the shutdown (“pulse offset”). There is a clear

divergence between two kinds of traces: in a given trial the sys-

tem’s trajectory either revert back to the memory state (red traces,

“bump”) or decays to the resting state (blue traces, “shutdown”).

A boundary (dashed line) separates the regions of attraction of the

two states. This result shows that even though a relative weak ICAN

(which by itself does not yield persistent activity in a single neuron

(Fig. 2.2A)) does not determine whether a network generates per-

sistent activity per se, it can have a remarkably significant impact

on the network’s behavior.

Therefore, ICAN stabilizes the memory trace by reducing memory

drifts over time; at the same time it renders the network less flexible,

i.e., it may be harder to load inputs and discard old memories.
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This accuracy-flexibility trade-off was demonstrated more explicitly

when we varied max τCAN parametrically (Fig. 2.2E). The increase

in max τCAN decreases the variance of the remembered cue location

(the VPV, open circles) but increases the minimum time required to

shutdown the network (filled circles). A “sweet spot” corresponds to

the crossover point of the two curves (max τCAN = 1–2 s), where the

VPV is close to the minimum while tSHUT,MIN is reasonably short

(a few hundreds of milliseconds). However, an optimal compromise

for a working memory circuit could be different depending on the

functional demand that may emphasize either accuracy or flexibility.

2.4.3 DSI shows trade-off between accuracy and

flexibility

DSI is a cannabinoid-dependent process through which synaptic

inhibition to excitatory neurons is reduced by the magnitude of DSI,

which in turn is controlled by the activity of the same E cells (Fig.

2.3A). Thus, for each neuron, a higher level of excitation leads to a

weaker inhibition, resulting in an effective positive feedback.

The cells that are most active during an ODR task are those

around the peak of the bump activity pattern (Fig. 2.3B, cue lo-

cation at 180 deg). Therefore, due to its activity-dependence, DSI

is the strongest in this group as well. This is depicted in the blue

region of the spatiotemporal activity pattern in Fig. 2.3C (note

the inverted scale, with hotter colors representing less DSI activa-

tion). This creates a favorable bias for the network at the location
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Figure 2.3. Trade-off between memory accuracy and flexibility with
DSI. A, schematic of network model of spatial working memory endowed
with DSI. This mechanism is implemented as a cell-specific reduction in
inhibitory input conductance. Adapted from Carter and Wang (2007).
B, left panel: spatiotemporal pattern of excitatory cells endowed with
DSI (τD = 5 s). Cue was presented at 180 degrees during the 0.75–1 s
interval. A shutdown pulse of 500 ms was applied at 8 s. The yellow lines
represent the remembered cue location during delay and after shutdown
pulse. Right panel: population firing profiles, averaged over the delay
period (blue) or over the last second of the simulation (red), showing
that the bump state survives the shutdown input and the memory trace
is not erased. C, spatiotemporal representation of the activation variable
D of DSI (inverted scale, 1 means no DSI) of the same trial. Only the
D value of 41 cells (recorded equidistantly in the network) is plotted.
The lingering DSI trace, visible after the shutdown pulse, is sufficient to
induce the re-emergence of the bump state (in B). (Cont.)
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Figure 2.3. (Cont.) D, the accuracy-flexibility trade-off with DSI. The
variance of the remembered cue location (VPV) during the delay period
with effective τD of 1 (black trace) and 5 (red trace) seconds (N = 500
trials). In the former scenario, the VPV keeps increasing almost linearly.
By contrast, in the latter, it stabilizes after an initial period of 2 seconds.
E, trade-off between decrease in the VPV (open symbols) and tSHUT,MIN

(closed circles), as τD is increased from 50 ms to 5 s (N = 500 trials).
The VPV was determined during two intervals of the delay period: 5–6
s (open circles, same as Fig. 2.1E and Fig. 2.2E) or 12–13 s (open
squares). The data sets were fitted by solid curves for eye inspection.

of the sensory cue, thereby reducing spontaneous drift and stabiliz-

ing the neural representation of the remembered cue (Carter and

Wang 2007).

In order to quantify this DSI-induced effect, we determined the

variance of the remembered cue location (the VPV). We proceeded

in a similar way as described above, and the results are remarkably

similar. When DSI is controlled by a long time constant (5 s), there

is an initial period of rise in drifts (Fig. 2.3D, red trace, first 2 sec-

onds of delay), similar to a network without DSI. However, once the

mechanism is fully activated (with a longer delay), the VPV does

not grow any longer, reaching a plateau instead. For the shorter

time constant (1 s), the variance increases almost monotonically

(Fig. 2.3D, black trace).

Another notable feature in the particular sample trial of Fig, 3B-

C is the persistence of the inhibition suppression. Given the slow

nature of its decay (τD = 5 s), DSI does not have sufficient time

to fade away during a negative pulse lasting 0.5 s (compare with

Fig. 2.1C). The remaining trace of disinhibition is strong enough to
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restart the memory bump at approximately the same angle, without

a new cue presentation (Fig. 2.3B, right panel, red profile).

As shown in Fig. 2.3E (open symbols), the duration of a step

current required to reset the network increases dramatically with

τD (0.5 s: tSHUT,MIN = 130 ms; 5 s: tSHUT,MIN = 3.75 s). On the

other hand, the variance of the remembered cue location, the VPV,

is larger in simulations with short τD and decreases for progressively

longer τD, reaching a low plateau for τD larger than 1 s. Compared

to the control (Fig. 2.1E with τS = 100 ms, VPV = 206 deg2) with

the same delay period duration of 5–6 seconds, a circuit endowed

with DSI displays a smaller variance of drifts overall (VPV = 70.5

deg2 with τD = 50 ms, 42.1 deg2 with τD = 5 s) (Fig. 2.3E, open

circles). With larger delays (12–13 s), the simulations show higher

variance due to the accumulation of drifts over a longer time (Fig.

2.3E, open squares). However, in agreement with the traces in Fig.

2.3D, this relative increase of VPV due to longer delays is mostly

observed for shorter τD and is minimal for longer ones. Therefore,

our analysis shows a trade-off between the ease of shutdown and

memory accuracy which is the same with DSI as that observed

with ICAN.

2.4.4 ICAN and DSI enhance the robustness of

working memory

We next examined the network behavior when the model system

is endowed with a combination of both DSI and ICAN. Specifically,
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we quantified the network states in a bifurcation diagram (Fig.4).

The desirable behavior corresponds to multistability (the coexis-

tence of a resting state with a low rate and memory states with a

high rate), which is realized only in a range of the strength for the

recurrent connection between excitatory neurons (GEE). When DSI

and ICAN are not present, the multistability range (bounded by two

dashed lines) is restricted to a narrow range around GEE = 0.38 nS

(Fig. 2.4A). If either DSI or ICAN is incorporated (same as in pre-

vious simulations: 4% DSI or gCAN = 1.5 nS), the lower boundary

of the range is extended to smaller GEE values (Fig. 2.4B-C). The

maximum broadening effect occurs when both slow mechanisms are

present (Fig. 2.4D). This is readily understood: with the help of

DSI and ICAN, less recurrent excitation is required to generate per-

sistent activity.

A second noteworthy feature of Fig. 2.4 is that the slow bio-

physical mechanisms increase the firing rate of memory states while

that of the resting state remains roughly the same. This is because

DSI and ICAN are activity-dependent, therefore minimal in the low-

firing spontaneous activity but significant in the high-rate memory

states. This leads to a larger separation between the resting and

memory states. Consequently, a random fluctuation in spontaneous

spiking activity will be less prone to give rise to a “false” memory,

and the network function is more reliable.

To conclude, ICAN and DSI are beneficiary to the system by mak-

ing it less sensitive to variations of the network properties (such as

GEE), and less prone to spontaneous transitions by noise between
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Figure 2.4. Multistability analysis of the working memory model as a
dynamical system reveals that ICAN and DSI increase the robustness of
memory function. Simulations were ran with (black dots) or without (red
dots) cue presentation, for a range of recurrent excitatory conductance
(GEE) values. The maximum firing rate among all excitatory cells, at
the end of the delay period, is either low (2–6 Hz) corresponding to the
resting state or higher than 20 Hz corresponding to a memory sate. The
resulting state diagram is shown for the control network without slow
mechanisms (A), with only DSI (B) or ICAN (C) or both (D). The range
of GEE values for multi stability is delimited by 2 vertical dashed lines.
The presence of DSI (B) and ICAN (C) alone increased the multistability
range and also the firing rate separation between memory and resting
states. These effects are larger when both mechanisms are combined
(D).

the resting state and memory states. Both effects enhance the ro-

bustness of working memory behavior.
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2.4.5 ICAN and DSI counteract heterogeneity

Network models endowed with a continuum of attractor states

require that its constituent neurons have identical properties (Ben-

Yishai et al. 1995). Under this condition, if a localized pattern

of activity is spatially displaced, it will lead to another identical

pattern centered at the new location. However, any neural net-

work shows a certain degree of variability across cells (Marder and

Goaillard 2006). Can DSI and ICAN remedy the system’s vulnera-

bility to heterogeneity, by virtue of creating a privileged location in

the network in an activity-dependent manner? To investigate this

question, we implemented a modest amount of heterogeneity, by

assuming that the leak potential VL varies from cell to cell accord-

ing to a Gaussian distribution (mean VL = −70 mV and standard

deviation SD(VL) = 1 mV).

Across a large number of trials, the input cues are presented

at 20 angle locations equally distributed along the 360 degrees of

a circle. When both mechanisms are absent, the remembered cue

locations display systematic drifts and, as previously reported (Re-

nart et al. 2003), tend to converge to a few privileged locations

(Fig. 2.5A, θ = 180 and 320 deg). These locations are determined

by the heterogeneous distribution of the cellular excitability across

the network, which disrupts the continuous family of bump attrac-

tors. The mean drift from the cue location is minimal in networks

with DSI and ICAN (8.9 ± 6.9 deg) and significantly different (2-

sample t-test, p = 5×10−110) from that of the control network (46.7

± 32.5 deg) (Fig. 2.5C).
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Figure 2.5. DSI and ICAN stabilize the memory trace in the presence
of heterogeneity across neurons in the network. Simulations were carried
out where the cue was applied at 20 evenly spaced locations along the 360
degrees space. The maintenance and retrieval of memory require that
the remembered location at any given point in time should closely match
that of the to-be-remembered cue. A, the remembered cue locations
of the simulations with the control parameter set systematically drift
to a few privileged locations. B, when DSI (4% maximum effect) and
ICAN (gCAN = 1.5 nS) were incorporated in the network, the internal
representation of the cue location becomes much better (the population
vector is nearly stable across time). C, the mean drift from the original
cue location (at the end of a 9 s delay) is greatly reduced with DSI and
ICAN compared to the control (N = 500 trials).
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Intuitively, when DSI and ICAN are included, the remembered

cue locations show much smaller drifts (Fig. 2.5B). Both mecha-

nisms are activity-dependent, so they create a privileged location

in the network that “traps” a bump attractor encoding the sensory

cue. These slow mechanisms are powerful enough to overcome the

disrupting effect of heterogeneity.

2.4.6 Short-term facilitation increases memory

accuracy

Finally, we considered the effect of short-term facilitation (STF)

in our working memory model. STF shares similar features with

ICAN and DSI, namely activity-dependence, positive feedback and

slow time course of activation (Zucker 1989; Tsodyks and Markram

1997; Fisher et al. 1997; Abbott and Regehr 2004). It is espe-

cially prevalent in excitatory synapses between pyramidal cells in

the frontal cortex (Hempel et al. 2000; Wang et al. 2006).

The implementation of STF in the model reduced random drifts

of the memory trace during the delay. Compared to the control

network (Fig. 2.1E, τS = 100 ms, VPV = 206 deg2) the variance of

the remembered cue location was lower for any τF (Fig. 2.6A, open

circles, VPV ranges 71–126 deg2). However, contrary to DSI and

ICAN, the VPV increased rather than decreases with longer τF. This

unexpected result is elucidated by the analysis of a profile of the

peak value of the facilitation variable F , for a bump attractor. For

each cell in the network, every time there is a spike, F is increased
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by a discrete jump and the resulting value F+ is used to update the

synaptic conductance. Between spikes, F decayed until the next

spike takes place. Thus, neurons in the bump that had elevated

firing rates also show higher F+ (profile in Fig. 2.6B). For longer

τF, the decay is very slow, resulting in more temporal summation

and, eventually, in a saturation of F+ (Fig. 2.6B, gray dashed dou-

ble arrow). A wide steady state F+ profile effectively removed the

facilitation effect in that spatial region and selective enhancement

created by the activity-dependent positive feedback. For this rea-

son, augmenting the STF time constant increased memory drifts

and, consequently, increased the variance of the remembered cue

location (Fig. 2.6A, open circles).

This saturating feature was not observed with the other two

slow mechanisms because of the following differences between the

biological processes. The magnitudes of ICAN and DSI vary quasi-

continuously over time through their dependence on intracellular

calcium, which accumulates and declines slowly. Furthermore, they

influence the excitability of the cell at almost any point in time.

Therefore, the spatial profile of the activity variable (mCAN or D,

respectively) can be fixed and remains not saturating, when the time

constant is varied through a scaling factor (φCAN or φD). On the

other hand, STF is not a continuous process but acts only during

synaptic events. This means that the value of the variable F is

only used at times of spikes (F+) and ignored when it decays away

between spikes. For this reason, a scaling method is not appropriate

because it would only preserve the time-averaged steady state of F
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Figure 2.6. Short-term facilitation of recurrent excitatory synapses
reduces random drifts. A, tSHUT,MIN (filled circles) increases with τF
(fitted with an exponential equation). Likewise, the variance of the re-
membered cue location (VPV) also increases with slower STF (exponen-
tial fit), but remains much smaller than that in the absence of short-term
facilitation (VPV = 206 deg2 in Fig. 2.1E, τS = 100 ms) (N = 500). B,
steady-state profiles of F+ (the facilitation variable, F , after a spike) for
5 different τF (7 s after delay start, N = 400). For longer time constants,
the peak of the profile broadens (dashed gray double-arrow), resulting
in a region effectively without facilitation. This explains increased drifts
with longer τF. C, phase space plot of F and the population firing rate.
Each trajectory corresponds to a trial and starts immediately at the
shutdown pulse offset. The network either revert back to the mnemonic
bump state (trials in red) or rest to the resting state (trials in blue),
depending on the stochastic network dynamics. The F variable (Cont.)
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Figure 2.6. (Cont.) fluctuates from trial to trial and is significantly
larger in red trajectories than blue ones (see Results). Note that, at the
pulse offset, the population of excitatory cells was silent. However, due
to the temporal sliding window (50 ms) used to calculate firing rates,
the trajectories depicted start at > 0 Hz.

but not the steady state of F+.

Similarly to what is observed for ICAN and DSI, prolonged STF

time constant makes it more difficult to reset the network (Fig.

2.6A, filled circles). When τF is 0.5 s, the required time to shutdown

is just 50 ms. At the other end of the tested range, a τF of 4 s

requires a negative input pulse lasting for at least 1.4 s to erase a

memory trace.

The minimum shutdown time is determined by the decay for F

during the inhibitory input. At the end of the shutdown phase, the

magnitude of F for neurons in the bump attractor reaches a level

that depends on the pulse duration and τF. This level fluctuates

from trial to trial, and has a large influence on whether the bump

reappears or not in any given trial. In Fig. 2.6C are shown the

system trajectory in the state space of F and firing rate, for 40 trials

with τF = 1 s, which corresponds to a minimum time to shutdown

of 90 ms (Fig. 2.6A). The red traces (tSHUT,MIN = 50 ms, leading to

return of the bump state) start at an average of F = 0.89 ± 0.02,

while the blue ones (tSHUT,MIN = 100 ms, leading to shutdown) begin

at F = 0.84 ± 0.04 - a significant difference (2-sample t-test, p =

8.58×10−6). Longer τF require longer shutdown pulses in order for

F to decay to a low enough level, so that the recurrent excitation
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is too weak to enable the bump to reemerge.
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Figure 2.7. A simplified model with fixed F profile shows that the
network is multistable within a range of STF values. A, the black curve
corresponds to the orange profile (τF = 1 s) in Fig. 2.6B, and the
other curves were obtained by assuming an exponential decay in time of
the black profile, during different temporal intervals (see Results). B,
bifurcation diagram for τF = 1 and 2 seconds (upper and lower panels,
respectively). Simulations were run with (black dots) or without (red
dots) cue presentation, and plotted is the maximum firing rate among
all excitatory cells, at the end of the delay period. In these simulations, F
did not change dynamically but was set as a parameter and given spatial
profiles as those shown in A. The peaks of the corresponding F profiles
are shown in the abscissa. Below F1, the network was always in the
resting state. Above F2, no cue was necessary to initiate a bump. C, F1

and F2 as a function of τF = 0.5, 1, 2, 3, 4 s (fit with single exponentials).
The shaded area represents the presence of multistability.
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To shed further insights into how the STF variable F determines

the fate of the system after a shutdown input, we performed a bifur-

cation analysis of the system as a function of the F spatial profile.

Specifically, we started with the spatial profile of F at the onset of a

shutdown input (Fig. 2.7A, black curve), averaged over a number of

trials from simulations with τF = 1 s (N = 400 trials). During the

shutdown period, there is no spiking activity, therefore F simply

decays exponentially with τF, which is depicted by gray profiles in

Fig. 2.7A for periods of 4 to 328 ms, in 4 ms steps (only 16 exam-

ples are shown, downward arrow). This replicates the decay of F

during the shutdown phase, with different pulse durations. Then,

a new set of simulations were carried out, in which F is no longer

time-varying, but is fixed as one of the spatial profiles shown in Fig.

2.7A, each with a particular maximum Fpeak, and the possible net-

work states are plotted as a function of Fpeak (Fig. 2.7B). For each

profile, a pair of simulations was carried out, with and without cue

stimulus. At the end of the delay, the maximum firing rate of the

overall network indicated whether the network was in the resting

state (< 5 Hz) or in the memory state (> 20 Hz). In principle,

the profiles that resulted from decays longer than tSHUT,MIN should

not be able to sustain a bump without cue. A similar method was

applied to τF = 0.5, 2 (Fig. 2.7B, lower panel), 3 and 4 s. The main

difference between different values of τF was the shape of the spatial

F profiles, which are broader for longer τF as seen in Fig. 2.6B. For

each τF, the values of Fpeak at which the system would cross between

memory state and resting state were determined (Fig. 2.7B, F1 and
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F2). The shaded area in Fig. 2.7C represents the bistability range

in the parameter space. With longer STF time constants, it was

necessary to reach a lower Fpeak such that simulations without cue

input would remain in the resting state (below F2). This behavior

roughly corresponds to the increase in tSHUT,MIN for longer τF, in

simulations where F changes dynamically.
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Figure 2.8. Short-term facilitation stabilizes the remembered cue loca-
tions in the presence of heterogeneity across neurons in the network. In
stimulations, the cue location was applied at 20 evenly spaced locations
along the 360 degrees space. A, the remembered cue locations with STF
(τF = 1 s) show visibly less drifts than the control (Fig. 2.5A). B, the
mean heterogeneity-induced systematic drifts (at the end of a 9 s delay)
for the network model without STF (control) or with STF operating at
3 different time constants (N = 400).

As was shown in a recent study using a firing-rate model, sys-

tematic drifts of memory trace due to heterogeneity could be dra-
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matically reduced by STF (Itskov et al. 2011). We checked the

effect of STF in our spiking network model in the presence of cellu-

lar heterogeneity (< VL > = −70 mV and SD(VL) = 1 mV). It is

evident by visual inspection that with STF the memory storage of

the sensory cue is more stable over time (Fig. 2.8A), compared to

those under the control condition without STF (Fig. 2.5A). This

impression is confirmed statistically (Fig. 2.8B). There is a signifi-

cant (2-sample t-test) decrease in the mean drifts between the con-

trol network (without STF, 46.9 ± 33.4 deg) and each of the three

scenarios with a different τF (1 s, 32.7 ± 24.7 deg, p = 2×10−11; 2

s, 34.8 ± 24.1 deg, p = 8×10−9; 3 s, 38.6 ± 27.5 deg, p = 1×10−4).

In summary, like ICAN and DSI, STF reduces noise-induced ran-

dom drifts or heterogeneity-induced systematic drifts of memory

traces, thereby rendering working memory function more robust.

In contrast to the other two slow mechanisms, a longer time con-

stant of STF leads to larger drifts of a memory trace, but drifts

remain smaller than those in the control network without STF.

2.4.7 Slow mechanisms protect memory against

distractors

A cortical circuit assigned to store a particular stimulus in mem-

ory may receive, at any point in time, additional external signals

with the potential to transform its performance and output. De-

pending on the nature of the new, distractor signal, the circuit may

respond within a range of possible behaviors. It can erase the previ-
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ous memory and encode a new one. It can also let the second stim-

ulus influence the configuration of the established memory. Finally,

the circuit may discard the distraction. Considering the influence

that slow mechanisms have on memory robustness and flexibility,

they may also play a crucial role in this process.

In our network model, if we apply a particular distractor stimu-

lus during the delay period, the new remembered cue location will

shift towards its location and away from the cue stimulus angle.

The deviation of the bump peak location is clearly visible for a net-

work with the control parameter set (Fig. 2.9A, upper panel, θ1 =

178 deg, θ2 = 244 deg). The magnitude of this deviation (θ2 − θ1)
depends on the angular difference between the cue stimulus (θS)

and the distractor (θD). The distraction increases with θD − θS be-

fore reaching a maximum. Beyond this point, the influence of the

distractor decreases abruptly and the final location of the bump is

much closer to the cue angle. Longer distractor durations result in

significantly larger deviations of the final memory trace (Fig. 2.9B,

500 ms).

When DSI is incorporated in the network, the deviation of the

bump induced by a distractor is visibly smaller (Fig. 2.9A, lower

panel, θ1 = 185 deg, θ2 = 196 deg) than in the control network. This

outcome is observed across the range θD − θS and for all distrac-

tor durations (Fig. 2.9C). Consequently, the maximum distraction

(Fig. 2.9D, upper panel) with DSI is smaller and grows slower with

distractor duration (150 ms, 11.5 ± 3.7 deg; 500 ms, 29.0 ± 4.8 deg)

than in control conditions (150 ms, 41.6 ± 12.3 deg; 500 ms, 135.0
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Figure 2.9. Slow mechanisms preserve cue representation and decrease
the influence of long distractor stimuli. A, smoothed spatiotemporal
activity pattern of the network’s excitatory cells under control conditions
(upper panel) or with DSI (lower panel), in the presence of a distractor.
An initial cue stimulus (peak angle θS = 180◦, 750 ms – 1 s, first pair
of vertical dashed lines) drives the network to the memory state. The
application of a distractor during the delay period (peak angle θD = 300◦,
100 pA, 6 s – 6.25 s, second pair of dashed lines) pulls the location of the
bump closer to it. In these two example trials, the deviation of the bump,
measured as the difference between the remembered cue location after
the distractor (θ2, 8 s – 9 s) and before (θ1, 4.5 s – 5.5 s), is larger in the
control network than with DSI. B, the average difference between θ2 and
θ1 as a function of the difference in peak angles of distractor (θD) and
cue stimulus (θS), for 3 distractor durations (N = 150). The deviation
increases and approaches the perfect distraction (diagonal dashed line)
before declining for more distant distractors. (Cont.)
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Figure 2.9. (Cont.) Longer durations produce generally larger devia-
tions that have a maximum at larger distractor angles. C, same as in B
but for network with DSI. The differences in remembered cue locations
are visibly smaller than with the control network for all three distractor
durations (N = 150). D, distraction indicators for sets of trials with
different distractor durations, under control network (gray symbols) or
with DSI (black symbols). Upper panel: the maximum distraction is
small and increases almost linearly in a network with DSI. Under con-
trol conditions, this measure is larger throughout the whole range and
has a more prominent increase. The edge-colored data points were taken
from B and C with the same color scheme. Lower panel: similarly, the
distraction angle (θD−θS) at which the maximum deviation of the bump
is observed is wide and increases with duration in the control network,
but is narrower and almost stable when DSI is present. This slow mech-
anism limits the effects of closer distractors and protects the memory
against farther ones almost independently of their duration.

± 25.6 deg,). The angle difference between distractor and cue that

originated those maximum distractions ((θD − θS)max) corresponds

to the distractor location that has maximum influence on the mem-

ory bump. This indicator was higher with control parameters than

with DSI for all distractor durations. Remarkably, the presence of

the slow mechanism resulted in a more stable (θD− θS)max (150 ms,

90 deg; 500 ms, 110 deg) than in control network (150 ms, 110 deg;

500 ms, 155 deg). Taken together these results suggest that DSI

decrease the influence of all distractors regardless of their location.

Moreover, it reduces the range of distractor locations that signifi-

cantly deviate the memory bump. Finally, the protection against

farther distractors is almost independent of their duration.
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2.5 Discussion

By now it is commonly recognized that a working memory circuit

should not be conceptualized in terms of rapid switches between at-

tractor states. Instead, reverberation underlying persistent activity

must be slow, likely involving the NMDAR receptors at recurrent

excitatory synapses (Wang 1999b; Wang et al. 2013). Slow net-

work dynamics enables a single microcircuit mechanism to subserve

working memory and decision-making. The latter requires accumu-

lation of information over time by virtue of slow neural transients

such as quasi-linear ramping activity (Wang 2002; Wang 2008).

It is noteworthy that persistent activity during a mnemonic delay

period often displays slow temporal variations, as well as a rich het-

erogeneity across neurons (Batuev et al. 1979; Baeg et al. 2003;

Miller et al. 2003; Goldman 2009; Machens et al. 2010; Barak et al.

2013; Stokes et al. 2013).

Is the slower the underlying mechanism, the better? In the

present work, we investigated three biophysical mechanisms in a

network model of spatial working memory. ICAN, DSI and STF are

present in frontal neurons and are activity-dependent. They provide

positive feedback to active excitatory cells and operate on a slow

timescale. Our main finding was that slow timescale has a trade-off

effect. ICAN, DSI and STF render working memory representation

more robust. However, their slow decay leaves a lingering memory

trace even after the termination of persistent firing activity, which

makes it difficult to reset the circuit by brief inputs, a fundamental

requirement for normal function of a working memory system.
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2.5.1 Random drifts

Our study started with the premise that very slow processes

are not necessary for the generation of persistent activity per se,

but may play a role in determining the accuracy and robustness

of a working memory circuit’s behavior. It has been previously re-

ported that, in continuous attractor networks, a mnemonic activity

pattern (bump attractor) exhibits random drifts that accumulate

over time and deviate the stored spatial information away from the

cue location (Camperi and Wang 1998; Compte et al. 2000; Carter

and Wang 2007). This decreases the accuracy of the memory read-

out. We found that the incorporation of DSI, ICAN or STF helps

to reduce random drifts of a memory trace. Moreover, we demon-

strated that this stabilizing effect is dependent on the effective time

constant of the mechanism considered. For ICAN and DSI, the in-

crease in τ is associated with a decrease in random drifts before

reaching a plateau (approximately 1–2s). By contrast, with STF,

while it also increases accuracy when compared to the control net-

work, random drifts actually increase with τF. We showed that this

happens because, for longer time constants, the facilitation variable

F saturates around the bump, effectively removing facilitation in

that part of the network.

2.5.2 Heterogeneity-induced drifts

A different type of drifts of memory trace arises from hetero-

geneity across neurons, which is detrimental to the realization of
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a continuous family of attractors. A homeostatic mechanism that

scales the excitatory synapses was shown to recover the accuracy of

the remembered cue location under those conditions (Renart et al.

2003). This activity-dependent mechanism scales the excitatory

synaptic weights of each cell so that the long-term average firing

rate is similar for all and equal to a predetermined level. Recently,

it was demonstrated using a firing-rate model that short-term facil-

itation slows down the velocity of drifts in the presence of synaptic

heterogeneity (Itskov et al. 2011). Building upon these insights and

following our successful stabilization of random drifts, we tested the

effect of the three slow mechanisms on our spiking model in the

presence of cellular heterogeneity. A combination of ICAN and DSI

effectively counteracted the tendency of a bump to drift to priv-

ileged locations, during a relatively long delay period. Likewise,

short-term facilitation significantly reduced systematic drifts due

to heterogeneity, strengthening the previous results with a biophys-

ically realistic spiking network model.

2.5.3 Memory flexibility

Whereas slow biophysical mechanisms increased the accuracy

of memory representation, they have the opposite implications on

the flexibility to switch between dynamical states. We utilized the

duration of a negative step current to the excitatory cells as a mea-

sure of the ability to reset a bump and erase memory. This analysis

leads us to very similar conclusions regarding ICAN, DSI and STF.

The minimum duration of the pulse required to shutdown the net-
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work dramatically increases with the effective time constant of the

mechanism.

We also studied how a slow mechanism may help preserve the

location of the memory bump against distractor stimuli. DSI limits

the effects of closer distractors and protects the memory against

farther ones almost independently of their duration. Whereas this

effect is desirable to discard unwanted stimuli, it also uncovers the

potential for inter-trial persistency. When a new cue is presented

at a different location, the trace of disinhibition from the previous

trial will act as a distractor and pull the location of the new bump

towards the old one. Taken together, these results establish a trade-

off between memory accuracy and flexibility.

2.5.4 Slow mechanisms modulate dynamics of a

working memory system

The bifurcation analysis of the network model with GEE as a

control parameter revealed that, in the presence of DSI and ICAN,

the model system shows a wider multistability range and larger

separation between the firing rate of persistent activity and rest-

ing states. Wider multistability range implies a higher degree of

robustness because normal function is less sensitive to variations of

network properties. A larger separation of firing rates implies that it

is harder for spontaneous transitions between states to occur merely

by noise. We also showed that the realistic range of the facilitation

factor F contained a multistability range that shifts with the time
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constant τF. These raise the possibility that, in a working memory

circuit such as PFC, some modulatory mechanisms could flexibly

tune slow biophysical processes for optimal behavior.
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Figure 2.10. Summary phase-plane diagram of our working memory
model, during three stages of a shutdown process. This scheme applies
to all three slow biophysical mechanisms considered in this paper, with
X representing the activation variable of ICAN, DSI or STF. The inset in
B displays the timing of the three stages according to the presentation
of the negative shutdown input. A, the state space displays a stable
manifold (line with converging arrows) and an unstable manifold (line
with diverging arrows), their intersection creates a saddle point. There
are two stable steady states (filled circle) representing a memory state
and a rest state. at the end of delay, the system is in the memory state.
B, during the application of the negative pulse, there is only one steady
state (filled circle), with low firing rate and low X magnitude. After the
quick suppression of all firing activity (“FAST”), the system moves along
the direction of the exponential decay of X (“SLOW”) over the duration
of the pulse. C, the attractor landscape (A) is restored after the pulse
offset. Depending on whether the state of the system at the offset of the
shutdown input is on the left or the right side of the stable manifold, the
system will revert back to the memory state (red trajectory) or reset to
the resting state (blue trajectory, successful shutdown).

Fig. 2.10 offers a conceptual understanding common for all three

slow mechanisms. This schematic depiction is partly deduced from

the phase space plots in Fig. 2.2D and Fig. 2.6C. It shows, in a
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state space, how activity of neurons engaged in working memory

storage and the activation variable (X) of any of the three slow

mechanisms interact with each other dynamically. Just before the

shutdown pulse (Fig. 2.10A), the phase-plane consists of a sta-

ble manifold, which separates the resting and memory attractors,

and an unstable manifold. The intersection between the two lines

creates an unstable saddle point. During the shutdown pulse pre-

sentation (Fig. 2.10B), only the resting state exists. The negative

input pulse immediately inhibits all firing activity and X decays ex-

ponentially. At the pulse offset (Fig. 2.10C), the system regains its

previous landscape with both attractors. Afterwards, the network

trajectory depends on the extent of X decay, which is an exponen-

tial function of the duration of the pulse. If X is below the stable

manifold, the system will progress to the resting state, resulting in a

successful shutdown (blue trace). Otherwise, if X decayed less and

remains above the stable manifold at the pulse offset, the system

will revert back to the mnemonic attractor state (red trace).

2.5.5 Accuracy-flexibility trade-off

The circuits of the prefrontal cortex that encode working mem-

ory, like all systems in the nervous system, have a rich variety of

processes that modulate their performance. In this study, we con-

sidered a group of mechanisms that may be involved in the dynami-

cal stabilization of the memory trace. The apparent conflict result-

ing from a trade-off between accuracy and flexibility of the memory

trace may turn out to be significant for neural modulation. Accord-
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ing to environmental conditions and behavioral task demands, the

network may be instructed to tilt the balance in favor of increased

accuracy at the expense of flexibility. Under these circumstances,

ICAN, DSI or STF may be strongly activated so that the mem-

ory is encoded as precisely as possible. On the other hand, when

the task requires faster response to cue stimulation, the network

may be tuned to decrease the activation of the slow mechanisms

or shorten their time constants. This prevents the previous mem-

ory from interfering with the encoding of the new stimulus. It has

been proposed that an emphasis on robust online representation of

information versus rapid switching could be adjusted by dopamine

signaling, with D1 (respectively D2) receptors acting in favor of ro-

bustness (respectively flexibility) (Durstewitz and Seamans 2008;

Rolls et al. 2008). Our results suggest that slow processes, includ-

ing those studied here, are potentially effective targets of action by

dopamine or other neuromodulators, which can optimally adjust

the tradeoff between robustness of memory storage and cognitive

flexibility.

At the present time, there still exists a large gap between neu-

ral circuits and behavior (Carandini 2012); this wide gap must be

bridged in order to achieve our goal of understanding the brain

mechanisms of cognitive functions and their impairments associated

with mental disorders. The present work illustrates how biophysically-

based computational modeling, in interplay with experimentation,

can help make progress in this direction, through elucidation of

how specific cellular and synaptic processes shape network activ-
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ity patterns (persistent activity) and contribute to a key functional

requirement (accuracy-flexibility tradeoff) in a cognitive process.
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Chapter 3

Physiological function of IH

in pyramidal cells
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3.1 Abstract

The activity of the prefrontal cortex is determined by a reper-

toire of biophysical properties. A recent study investigated the cel-

lular mechanisms of working memory modulation in circuits of the

prefrontal cortex. According to the experimental results, a key mod-

ulator on this cognitive process is the nonselective hyperpolarized-

activated H-current (IH) found in spines of pyramidal neurons of

the prefrontal cortex. IH blockage resulted in augmented neural fir-

ing in these cells, stronger persistent activity of the network and

improved working memory task performance. In a different study,

IH blockage was found to increase the number of action potentials

recorded in pyramidal cells during membrane depolarization phases

designated by Up states. These and other studies suggest that IH

increases the neural excitability in pyramidal cells of the prefrontal

cortex. In order to understand the exact mechanisms of IH function,

we modeled this current in a single compartment model. We found

that IH alone could not account for the changes observed in exper-

iments. We proved that IH is a mostly depolarizing current and

its blockage leads to a decrease in the generation of action poten-

tials. We confirmed these findings in a multi compartment model

that better represents the geometry of pyramidal cells. Addition-

ally, our findings support the importance of thin dendritic spines in

the electrical filtering of synaptic inputs, as shown in experiments.

Furthermore, we proved that the previously proposed interaction

of IH and a M-type potassium contains serious flaws and does not

provide a valid explanation for this data. Nevertheless, we demon-
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strated that the latter current alone may have an important role in

controlling the overall levels of activity in working memory circuits.
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3.2 Introduction

The cognitive functions that depend on the prefrontal cortex

are determined by an intricate assembly of molecular, synaptic and

circuital mechanisms, which are under the influence of modulatory

pathways. The study of how each of these processes influences be-

havior requires a multi-disciplinary approach, which allows to infer

the connection between different levels of complexity.

Working memory function is thought to be represented by per-

sistent activity sustained by recurrent connections between neurons,

and is strongly modulated by catecholamines, including dopamine

and norepinefrine (Brozoski et al. 1979; Arnsten et al. 1994;

Williams and Goldman-Rakic 1995; Henze et al. 2000; Seamans

et al. 2001; Durstewitz and Seamans 2002; Seamans and Yang

2004; Birnbaum et al. 2004; Ramos et al. 2005; Vijayraghavan

et al. 2007). A recent work employed a variety of techniques in-

cluding electrophysiology, electron microscopy and pharmacology to

understand how the activation of a type of norepinephrine postsy-

naptic receptors, α2A-adrenoceptors (α2A-ARs) strengthens PFC

networks and improves working memory (Wang et al. 2007). These

authors carried out neuron recordings in area 46 of the dorsolat-

eral PFC of monkeys performing a spatial working memory task.

At the same time, through iontophoresis, they applied agonists and

antagonists of the relevant mechanisms involved in this modulatory

process. Their findings lead them to conclude that the activation

of α2A-ARs initiates a intracellular signaling cascade, which results

in the increase in the firing activity of pyramidal cells tuned for the
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stimulus, during the delay period.

Figure 3.1. Blockage of HCN channels strengthens working memory-
related firing of PFC neurons. A, iontophoretic application of ZD7288
caused a dose-dependent effect on delay-related firing in a neuron with
weak tuning under control condition. ZD7288 at 5 nA and 10 nA en-
hanced delay-related activity, while a high dose (40 nA) eroded the spa-
tial tuning. B, enhancing effect of ZD7288 (red) on delay related activity
at the population level (27 neurons). Adapted from Wang et al. (2007).

One of the first steps in this signaling cascade is the inhibi-

tion of cyclic adenosine monophosphate (cAMP). A consequence of

this inhibition was the closing of Hyperpolarization-activated Cyclic
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Nucleotide-gated (HCN) channels, which are responsible for carry-

ing the H-current (IH). Moreover, they determined that the di-

rect blockage of these channels with the compound ZD7288 also

strengthened the pyramidal cells delay-period firing activity, and

most importantly, it reversed the effect of the application of a α2A-

ARs antagonist. The effect of ZD7288 was recorded both at single

cell (Fig. 3.1A) and population level (Fig. 3.1B). The relationship

between these cellular components was further emphasized by the

discovery that the HCN channels co-localize with α2A-ARs in den-

dritic spines (Fig. 3.2). The pharmacological manipulation with

iontophoresis is very localized and does not produce any noticeable

change in the performance of the task. In order to test the behav-

ioral effects, these authors conducted a second set of experiments

where IH was reduced in rat prelimbic PFC, either through HCN

knockdown or ZD7288 infusion. This resulted in an improvement

of the performance in a spatial working memory task (Wang et al.

2007).

A different type of reverberatory circuit dynamics is the low-

frequency (< 1Hz) oscillatory activity, which is recorded in the cor-

tex during slow-wave sleep and anesthesia (Metherate and Ashe

1993; Steriade et al. 1993; Cowan and Wilson 1994; Contreras

et al. 1996; Destexhe et al. 1999; Sanchez-Vives and McCormick

2000; Steriade et al. 2001). This activity is self sustained by recur-

rent dynamics and creates phases of elevated membrane potential

with higher firing activity (Up states) intercalated with silent pe-

riod with hyperpolarized Vm (Down states). The Up and Down
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Figure 3.2. A Model of α2A-cAMP-HCN Regulation of PFC Microcir-
cuits. HCN channel opening shunts synaptic inputs onto dendritic spines
and reduces network activity. a2A-AR stimulation inhibits the produc-
tion of cAMP and increases the efficacy of cortical inputs. Adapted from
Wang et al. (2007).

states gradually disappear during waking, leading to a tonically de-

polarized state with low firing rates (Steriade et al. 1996; Steriade

et al. 2001; Timofeev et al. 2001). The role of this phenomenon

in cognition has not been totally understood, but it is prevalent in

animals and has been the focus of much research.

It is a tremendous challenge to study these mechanisms in liv-

ing animals. For this reason, several studies perform pharmaco-

logical manipulation and electrophysiological recordings in reduced

preparations obtained from slices of brain tissue. A recent exper-

imental study addressed how IH controls Up and Down states in

cortical pyramidal cells (Y Shu, A Hasenstaub, C Ghandi and D

McCormick, unpublished observations). Through electrophysiolog-

ical recordings of slices from the somatosensory and prefrontal cor-

tex of ferret, they registered the effects of blocking HCN channels
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with ZD7288. This blockage resulted in a hyperpolarization of the

resting membrane potential during silent periods (Down states).

Strikingly, it also produced an increase in the intensity of discharge

of single pyramidal cells during Up states. The firing rates were

elevated from 1.8±1.7 Hz in control to 9.2±4.9 Hz after bath ap-

plication of ZD7288 to the slice preparation. A second result of

the HCN channels blockage was the enhancement of the Up state

duration (0.68±0.3 seconds to 2.3±0.3 seconds).

IH plays a key role in the modulation of persistent activity dur-

ing working memory (Wang et al. 2007) and control of duration

and frequency of Up states (Shu et al, unpublished observations).

This current is mediated by a nonselective flux of cations, is active

at hyperpolarized membrane potentials, de-activates above the ac-

tion potential threshold and operates at a relatively slow timescale

(Luthi and McCormick 1998; Biel et al. 2009). IH is carried by

either of 4 subunits of HCN channels (HCN1-4). In the neocor-

tex and hippocampus, IH is carried by HCN1 and HCN2 with high

sensitivity to cAMP (Chen et al. 2001; Ulens and Tytgat 2001).

In pyramidal cells, HCN channels are located mostly on the distal

dendrites with a gradual decrease in presence towards the cell body

(Lorincz et al. 2002; Notomi and Shigemoto 2004).

This spatial distribution of HCN channels in the dendrites was

suggested to be crucial to counteract location-dependent temporal

differences of dendritic inputs (Magee 1998; Magee 1999; Williams

and Stuart 2000; Berger et al. 2001; Vaidya and Johnston 2013).

Due to the cable-like properties of dendrites, excitatory postsy-
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naptic potentials (EPSPs) originating distally tend to reach the

soma with larger widths, which increases the temporal summation

of trains of inputs, compared to the ones originating in proximal

dendrites. According to these studies, the mostly distal presence

of IH counteracts this effect so that all EPSPs reach the soma with

the same width. Another study showed that it is the total density

of HCN channels in dendrites and not the gradient that determines

this normalization (Angelo et al. 2007).

The role of IH in cellular excitability is still controversial. The

main current of thought proposes that the activation of this current

leads to a decrease in excitability (Poolos et al. 2002; Fan et al.

2005; Rosenkranz and Johnston 2006) and, conversely, its down-

regulation should elevate the generation of action potentials (Shah

et al. 2004; Kole et al. 2007; Jung et al. 2007). These effects

have been explained by a decrease in the input resistance and a re-

duction of temporal summation when HCN channels open and vice

versa. However, this view is in apparent contradiction with the ac-

cepted evidence that this inward current depolarizes the membrane

potential in the subthreshold range and increases the excitability in

pacemaking cells (DiFrancesco 1993; Clapham 1998) and in at least

one epilepsy study (Dyhrfjeld-Johnsen et al. 2008).

In this project we studied how IH contributes to the excitability

of PFC pyramidal cells. First, we used a simple single compartment

model to identity the key principles of the physiological function of

IH. Secondly, we employed a multi-compartment model of a pyra-

midal cell to ascertain if those rules stand true with a more realis-
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tic cellular representation in terms of architecture of dendrites and

spines and distribution of ionic channels. Additionally, we tested a

previously proposed hypothesis based on the interaction of IH with

a M-type potassium current (George et al. 2009). Finally, we con-

textualize our results with the current views of the function of IH

in the neurons of the prefrontal cortex.
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3.3 Materials and Methods

3.3.1 Single and multi compartment models of

pyramidal cells

To simulate how an electrical signal is propagated from the

synapse to other regions of a pyramidal cell we used two compart-

ment models following the Hodgkin-Huxley formalism. The single

compartment model has a length of 20 µm and diameter of 20 µm.

For the multi-compartment model we adopted the geometry of a

reduced model of a neocortical pyramidal cell (Bush and Sejnowski

1993; Bush and Sejnowski 1994). This model has 8 compartments:

apical tuft (length 140 µm, radius 1 µm), apical #1 (180 µm, 1.2

µm), apical trunk (35 µm, 1.25 µm), apical oblique (200 µm, 1.15

µm), soma (21 µm, 7.65 µm), basal trunk (50 µm, 1.25 µm) and

a pair of basal dendrites (150 µm, 0.8 µm) (Fig. 3.3). For this

study, we added a dendritic spine connected to the apical tuft.

The spine structural details were obtained from electron microscopy

measurements provided by Constantinos Paspalas and were repre-

sented in the model by two compartments: head (length 0.3 µm,

radius 0.3 µm) and spine neck (1 µm, 35 nm). In some simulations,

the radius of the spine neck was varied to change its resistance

(Figs. 3.8, 3.11B).

In both models, the membrane potential for each compartment

Vc follows:

CmAc
dVc
dt

= −Ac(IL + Iion)− Icoup − Isyn
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Figure 3.3. Schematic representation of the single cell compartment
model of a neocortical pyramidal cell. The model comprises 10 com-
partments: spine head, spine neck, apical tuft, apical #1, apical trunk,
apical oblique, soma, basal trunk, basal #1 and basal #2. The length
(but not the radius) of each compartment was drawn according to the
scale. The spine, attached to the apical tuft, was magnified 100x for bet-
ter visualization. The input, modeled as an alpha-function, was applied
to the spine head compartment.

where Ac is the surface area of the compartment. The specific

membrane capacitance Cm = 1 µF/cm2 (multiplied by a scaling

factor of 2.95 in the multi compartment model). The leak current

IL = gL(Vc−VL), with VL = −70 mV and gL = 0.3 mS/cm2 (single

compartment) or gL = 0.15 mS/cm2 (multi compartment). Iion and

Isyn represent the ionic currents and synaptic input, respectively,

that are present in that particular compartment (see below for de-

scription). Icoup describes the current that flows between coupled
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compartments. For the single compartment model, Icoup = 0. In the

complete model, each compartment c is connected to its neighbor

compartments, n:

Icoup =
∑
n

gcn(Vc − Vn)

According to the geometry of the model (Fig. 3.3), a compartment

can be connected to one (spine head, apical oblique, basals #1 and

#2), two (spine neck, apical tuft, apical #1 and soma) or three

neighbor compartments (apical trunk, basal trunk). gcn depends on

the properties of the pair of connected compartments:

gcn =
1

rc−rn
2

with rc, rn, the resistance of each connected compartments, de-

scribed as:

rx =
lx ×Ri

Across,x

with x = c, n, length of the compartment lx, specific axial resistance

of the cytoplasm Ri = 200 Ωcm, cross-sectional area Across,x.

3.3.2 Synaptic Input

Isyn is the synaptic current, which, in the multi-compartment

model, is only applied to the spine head; all other compartments

did not receive external input. The synaptic EPSP was adapted
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from the NEURON software package (Carnevale and Hines 2006):

Isyn = g(Vc − VE)

where VE = 0 mV and g is the synaptic conductance defined by the

following alpha function:

g = gmax ×
t− onset
tpeak

× exp(−t− onset− tpeak
tpeak

), for t > onset

where the maximum conductance gmax = 1 nS, except otherwise

noted. The onset is the time at which the change in postsynaptic

conductance begins, and the peak of the conductance change occurs

at tpeak = 2 ms.

In some simulations with the single compartment model, the

term −Isyn in the membrane potential expression was replaced by

Iapp, a step current.

3.3.3 Ionic currents

The ionic currents, Iion, included in simulations of both models

are:

Iion = IH + IM

where IH is the inward current mediated by the hyperpolarization-

activated cyclic nucleotide-gated (HCN) channels and IM is the out-

ward M-type current, carried by KCNQ potassium channels.
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The voltage-dependent currents are described by the Hodgkin-

Huxley formalism. Thus, a gating variable g satisfies a first-order

kinetics:

dg

dt
= φg(αg(Vm)(1− g)− βg(Vm)g) = φg

g∞(Vm)− g
τg(Vm)

where φg = 1 unless specified otherwise.

IH is given by:

IH = gHH(Vm − VH)

with VH = −40 mV and the gating variable H at steady state

defined as:

H∞ =
1

1 + exp(Vm+80
10

)

and time constant:

τH =
200

exp(Vm+70
20

) + exp(−Vm+70
20

)
+ 5

IM is expressed as:

IM = gMm(Vm − VK)

with VK = −80 mV and the gating variable at steady state defined

as:
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m∞ =
1

1 + exp(−Vm+44
6

)

and time constant:

τM =
200

exp(−Vm+44
12

) + exp(Vm+44
12

)
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Figure 3.4. Representation of IH and IM kinetics. A, gating vari-
ables at steady state. IH, determined by H∞, is active at hyperpolarized
membrane potentials and is mostly deactivated at Vm close to action
potential generation threshold (−50 mV). Its half-activation potential is
−80 mV. IM, determined by m∞, has the opposite functioning pattern
and is half-active at −44 mV. B, the time constants τH and τM have
similar dependency on Vm. Both have a maximum of approximately 100
ms, observed at potentials separated by 26 mV.

The maximum conductances of IH and IM, gH and gM, respec-
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tively, were varied in each simulation within a biological-plausible

range of values. The membrane potential dependence of the steady

state activation curves and time constants is shown in Fig. 3.4.

The spike-generating currents (INa and IK) were added to the sin-

gle compartment model uniquely to obtain the f-I curve in Fig. 3.7.

The sodium current is expressed as:

INa = gNam
3
∞h(Vm − VNa)

where the fast activation variable is replaced by its steady-state:

m∞ =
αm

αm + βm

αm =
−0.1(Vm + 31)

exp(−0.1(Vm + 31))− 1
; βm = 4 exp(−Vm + 56

18
)

and the inactivation variable is defined by:

αh = 0.07 exp(−Vm + 47

20
) ; βh =

1

exp(−0.1(Vm + 17)) + 1

The delayed rectifier is expressed as:

IK = gKn
4(Vm − VK)

where:

αn =
−0.01(Vm + 34)

exp(−0.1(Vm + 34))− 1
; βn = 0.125 exp(−Vm + 44

80
)
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The parameters are: gNa = 55 mS/cm2, gK = 15 mS/cm2, VNa =

55 mV, VK = −80 mV, φh = 4 and φn = 4.

3.3.4 Network model of spatial working mem-

ory

The working memory results presented in this chapter were ob-

tained with the spiking network model for the oculomotor delayed-

response (ODR) task, previously described (Compte et al. 2000).

The model consists of a population of excitatory pyramidal cells

and a population of inhibitory interneurons. Pyramidal cells are

arranged in a ring-like fashion and labeled by their preferred cue

direction, from 0 to 360 degrees. The specifications for single cell

properties, synaptic interactions, network connectivity and stimu-

lus input are the same as described in sections 2.3.1, 2.3.2, 2.3.3

and 2.3.4, respectively. The only modification is the inclusion of IM

in the subthreshold membrane potential expression, with the same

kinetics as described in section 3.3.3.

3.3.5 Simulation method and Analysis of data

The implementation of the compartment models and the anal-

ysis of data were done in Matlab programming language and nu-

merical computing environment. The integration of the differential

equations was done with a variable-step implicit solver.
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3.4 Results

3.4.1 IH has a depolarizing net effect on mem-

brane potential

To test the basic kinetic properties of IH we included it in a

simple single-compartment model. For different values of gH we

applied a synaptic current and registered the resulting EPSP. We

observed that the increase in H-conductance reduced the amplitude

of the EPSP (peak minus resting membrane potential) but elevated

its peak heigth (Fig. 3.5). This duality reveals the double action
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Figure 3.5. IH in a single compartment model increases the peak height.
A, the presence of larger gH reduces the EPSP amplitude (black curve)
but increases its peak height (red curve). These two measurements were
normalized to the EPSP with no IH (marked 100% in B). B, 12 example
EPSP traces for the scenarios with gH= 0 to gH = 100 mS/cm2 (in black
for visibility). Even though the EPSP amplitude increases with gH (0
mS/cm2, 6.1 mV; 100 mS/cm2, 2.6 mV), the peak is always higher due
to the elevation of the resting membrane potential (gH = 0, Vrest = -70.0
mV; gH = 100 mS/cm2, Vrest = -51.0 mV).
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of IH. On one hand, it depolarizes the membrane at rest, raising

the baseline Vm. On the other hand, it reduces the membrane

input resistance, which shortens the voltage deflection produced by

a stimulation. The net result of the presence of IH in our single

compartment model is a depolarization that leads to an increase in

the EPSP height.

To further characterize the dual effect of the H-current in the

membrane potential, we decomposed IH in two components:

IH = IH,tonic + IH,phasic

with

IH,tonic = gHH(VL − VH)

and

IH,phasic = gHH(Vm − VL)

The tonic component of the current, according to the expression,

is always negative (VL − VH), thus depolarizing. The phasic effect

acts as a leak current (reversal potential VL). The conductances of

both are naturally determined by the gating state of HCN channels.

To determine the relative contributions of both components, we

ran numerical simulations of the single compartment model with a

constant step current (Iapp) and different configurations of IH,tonic,

IH,phasic and IL. At rest (steady state), Iapp equals the magnitude of
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Figure 3.6. In the action potential threshold Vm range, IH is depolariz-
ing. Simulations of single compartment model with 3 currents: constant
Iapp, IL and IH (decomposed in phasic and tonic terms). Four simula-
tions were run with different current configurations. A, steady state of
Vm determines Iapp, which for each simulation corresponds to either full
IH + IL (all*), phasic term + IL (phasic*), tonic term + IL (tonic*)
and only IL (gH = 0). B, for each data set, the difference between Iapp
and IL represents the magnitude of each component of IH. The phasic
component (green) is positive (hyperpolarizing, outward current) above
VL. On the other hand, the tonic effect is always negative (depolarizing
inward current). (Cont.)
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Figure 3.6. (Cont.) The net current (blue) is negative below VH, which
includes the range below action potential generation. It becomes positive
above the reversal potential, but the reduced level of activation of IH at
these membrane potentials (determined by H) severely diminishes its
magnitude.

the other included currents (Fig. 3.6A). By subtracting IL to Iapp,

one obtains IH,phasic and/or IL. The tonic component, as expected,

was always negative (Fig. 3.6B red curve). The phasic effect is only

positive (outward, hyperpolarizing, Fig. 3.6B green curve) above

VH, but at this range IH is almost deactivated. The end result is a

strongly depolarizing IH current.

These results clearly show that IH alone can not account for the

shunting of synaptic inputs at dendritc spines in pyramidal cells

and the resulting decrease in neural excitability. The same conclu-

sion was reached by another study, which proposed a new explana-

tion for the experimental results: the interaction between IH and

another current, namely M-type potassium current (IM) (George

et al. 2009). As seen in Fig. 3.4, IH is hyperpolarized-activated,

while IM has the opposite activation pattern. At rest, IH elevates

the membrane potential, shifting it to the region where the gating

of IM is higher. Consequently, when a synaptic input is received,

IM should be more active and promote the shunting of the EPSP.

On the other hand, when the HCN blocker ZD7288 is applied, Vm

stays hyperpolarized and IM does not reach higher levels of activa-

tion, which decreases its shunting effect and results in higher EPSP

peaks after synaptic inputs. It is relevant to note that for this IH
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+ IM shunting to be effective, the input current has to be strong

enough to counteract the elevation of Vrest with IH. Below this

strength (dependent of the conductances used), the EPSP peak is

higher with IH than without it; once above it, the opposite happens

- this was referred to as the crossover effect (George et al. 2009).

However, to obtain this effect, gM has to be very large (35

mS/cm2). The presence of such a large outward current suggests

that the generation of action potentials could be compromised, an

issue that was not addressed in the original study (George et al.

2009). For this reason, we tested how the presence of both IH and

IM influences the spiking behavior of a cell. To generate action

potentials, we included the Hodgkin-Huxley-type sodium (INa) and

delayed rectifier potassium (IK) currents to our single compartment

model.

As expected from the previous results with the passive model,

IH alone has a depolarizing effect, and induces an increase in the

firing rate and a decrease in the threshold current needed to initiate

an action potential (Fig. 3.7, dashed red trace, gH = 10 mS/cm2),

compared to the control conditions (Fig. 3.7, solid red trace, null

gH and gM). On the other hand, the presence of IM with the large

conductance required for the crossover effect (gM = 35 mS/cm2) in-

hibits the generation of continuous action potentials (Fig. 3.7, black

traces), regardless of the inclusion of IH. This result demonstrates

that the proposed hypothesis of interplay between IH and IM to

explain the experimental results of the HCN channels blockage is

not satisfactory when the site of action potential generation has the
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Figure 3.7. Presence of IM inhibits generation of action potentials.
f-I curves for the single compartment model for 4 different conditions
(conductances in mS/cm2). With the control condition, the threshold
current needed to generate action potentials is 0.15 nA and the firing
rate at 0.2 nA and 0.5 nA is 172 and 368 Hz, respectively. The presence
of IH increases the ease to fire (threshold of 0.04 nA) and increases the
firing rates over the range of Iapp (0.2 nA, 26 Hz, 0.5 nA, 386 Hz).
When IM was included there was no continuous firing. A single spike
was generated for Iapp > 0.35 nA. The leak conductance was doubled
from the previous simulations to avoid spontaneous firing with IH. The
input was administered as a constant step current.

required channel conductances.

The single compartment model allowed us to determine the basic

physiological contribution of IH and IM during rest, after EPSP-like

perturbations of the membrane potential and in spike generation.

However, several other properties of a real pyramidal cell could influ-

ence its precise mechanism of action, such as dendritic architecture,

channel distribution and synaptic localization.
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3.4.2 Resistance of spine neck influences elec-

trical filtering

To further our understating of IH within a more realistic cell

representation, we built a multi-compartment model that includes

a spine in the dendritic tuft, which is the site of the input. Spines

are micro-structures in the dendritic branches that receive most of

the excitatory chemical synapses in the pyramidal cells. They have

a particular geometry that could potentially affect the transfer of

electrical signal between synapses and the rest of the cell. Generally,

the post-synaptic density is located at a bulbous structure called

head, which is then connected to the dendrite through the neck,

a tubular structure. The geometry of neocortical spines exhibits a

continuum of variability and is though to be correlated with the

synaptic function (Arellano et al. 2007). It was proposed that the

thin long necks play a key role in the gating of synaptic inputs in

the working memory (Wang et al. 2007) (see Fig. 3.2).

In our model, we considered thin dendritic spines that are present

in pyramidal cells of the PFC. We based our geometric parameters

on measurements obtained through high-resolution immunoelectron

microscopy of superficial layers of the macaque dorsolateral PFC

(Paspalas et al. 2013). We tested how the electrical resistance of

the spine neck, adjusted by its radius, influences the electrical signal

that flows from the spine head to the dendritic branches. The re-

sistance is inversely proportional to the cross-sectional area, which

increases with the radius. Therefore, thinner spines should confer
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Figure 3.8. Spine resistance affects EPSP amplitude measured at 4
compartments (spine head, spine neck, spiny dendritic compartment and
soma). A, measurements were normalized to the scenario with lower
neck resistance (63.7 MΩ, marked with 100% in B). The reduction of
the somatic and dendritic EPSPs is bigger for higher values of spine
neck resistance (45.7% and 50.8% at 1591.5 MΩ, respectively). On the
other hand, the EPSPs measured at the spine (head and neck) have
the inverse relation (at 1591.5 MΩ: neck, 300.4%; head, 460.3%). B,
the dendritic (upper panel, red) and somatic (lower panel, black) EPSP
traces for the scenarios with smaller (solid lines) and larger (dashed lines)
neck resistance. The spine neck resistance was adjusted by changing the
radius in the range 0.1–0.02 µm.

more resistance to the axial propagation of the EPSP.

In our model, by raising the spine neck resistance from 63.7 to

1591.5 MΩ we obtained a dramatic increase of the EPSP measured

at the spine (300.4% in neck and 460.3% in head) (Fig. 3.8). This

is a clear indication that the higher neck resistance results in a

larger voltage deflection at the spine, thus larger input resistance.

On the other hand, the EPSP measured at the dendrite and soma
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significantly decreased (amplitude reduction of 50.8% and 45.7%,

respectively) suggesting that we created a bigger electrical com-

partmentalization between the spine and the rest of the cell. For

the following work with the multi compartment model, we used a

spine neck radius of 0.035 µm, which was the average determined

by immunoelectron microscopy experiments (Paspalas et al. 2013)

and provides a resistance of 519.7 MΩ.

3.4.3 Presence of IH in dendrites increases the

somatic EPSP peaks

Immunoelectron microscopy images show that HCN channels

are present in the dendriditc spines (Wang et al. 2007). In order to

address the impact of their presence on the electric filtering, we in-

cluded IH to the spiny compartments of our single cell model. Like

in the single compartment model, we observed that the increase in

gH reduced the amplitude of the EPSP (Fig. 3.9A) but elevated its

peak (Fig. 3.9C) in all recorded locations. The presence of IH in

the spine of our multi compartment model results in an increase of

the EPSP that is transferred to the soma. Consequently, it con-

tributes to the generation of action potentials and promotes the

overall cellular excitability.

We had already demonstrated that the IH and IM interplay hy-

pothesis proposed by George et al. (2009) was not satisfactory

within a single compartment model because it required a high M-

conductance that inhibits action potentials. However, this propo-
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Figure 3.9. IH on the spine reduces the EPSP amplitude (left panel) but
increases the peak height (right panel) in all four recorded locations. A,
the normalized amplitude of EPSPs measured at four locations, decreases
as function of gH. B, the dendritic (red) and somatic (black) EPSP
traces for the scenarios with gH = 0 (solid lines) and gH = 100 mS/cm2

(dashed lines). C, the normalized EPSPs peak heights measured at four
locations, increases as function of gH. For this figure, H conductance
was only implemented on the spine (head and neck). This explains the
smaller raise in resting membrane potential with high gH at the soma.

sition could be considered if the IM is only present closer to the

synapse and the crossover effect is transferred to the spike generating-

compartment. To test this idea, we simulated different channel dis-

tributions throughout the multi compartment model.

If IH and IM are only present on the spine (with gM = 35

mS/cm2), there is no significant difference to the previous scenario

with IH alone (Fig. 3.9C). The increase in gH leads to higher EPSP

peak in all locations and especially at the soma (Fig. 3.10A, EPSP

peak increase of 153.2% with gH = 100 mS/cm2), due to the tonic

increase in the resting membrane potential.

George et al. (2009) determined that the peak of the somatic
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Figure 3.10. Presence of IH and IM increases the somatic EPSP peak
height. A, EPSP peak height measured at four locations when IH and
IM are present only in spine neck and head. Maintaing gM constant, the
increase of gH results in larger depolarizations at spine, dendrites and
soma. B, peak heights measured in a cell with constant IM and variable
IH throughout the dendritic tree (tuft, #1, oblique and trunk) but not on
the soma. The crossover effect obtained between conditions with IH and
withou IH, which indicates a shunting outcome, is only observed where
these currents are simultaneously present. There is a visible crossover
at the site of input (local, red curves, −53.35 mV, 7.1 nS). However,
this effect does not transfer to the soma - the curve without IH (solid
black) does not cross over the one with IH. IM was present with constant
conductance gM = 35 mS/cm2.

post-synaptic potential decreases with gH when both currents are

present throughout the cell. With our model, we determined that if

the currents are only present in the dendrites, there is no crossover

effect at the soma (Fig. 3.10B). This conclusion is also obtained with

the cable model used in their study (results not shown). Therefore,

to decrease the somatic EPSP peak it is necessary to have an uni-

form presence of IH and IM at the synapse location in spines and
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along the path to the soma. However, gM has to be set at a very

high magnitude, which, as proved above, completely inhibits the

generation of action potentials.

These results demonstrate that the hypothesis of IH and IM inter-

play previously proposed has serious flaws when considered within

a more biophysically realistic pyramidal cell model. Therefore, this

could not be considered an acceptable explanation for the experi-

mental results with the HCN blocker ZD7288.

3.4.4 IM modulates cellular excitability in single

neurons and working memory circuit

Even though the interaction between IH and IM has not been

validated by our results, IM may still play an important role in the

gating of synaptic inputs. Recent unpublished results (A Arnsten’s

personal communication) show that blocking IM clearly increases

the excitability of the pyramidal cells tuned for the stimulus direc-

tion during a spatial working memory task. We simulated the effect

of changing the conductance of IM in the spine of our multi compart-

ment model. By raising gM we decreased the EPSP peaks recorded

at the spine head, spine neck, dendrites and soma (Fig. 3.11A). The

larger reductions were measured at the soma; with gM of 10, 50, 100

mS/cm2 the somatic EPSP peaks were 96.1%, 98.0% and 99.6% of

the one with null gM. (Fig. 3.11A).

A salient feature observed in simulations with the multi com-

partment model is that the filtering effect of IM at the spine is more
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Figure 3.11. Increase of IM and spine neck resistance reduces the EPSP
peak at the soma A, EPSP peak height measured at four locations when
IM is present only in spine (neck and head). Raising gM results in lower
depolarizations at spine, dendrites and soma. For gM = 10, 50 and 100
mS/cm2 the somatic EPSP peaks (black line) are 99.6%, 98.0% and
96.1% of the scenario with no gM, respectively. B, the filtering effect
of IM (shown in A) is potentiated by thin spine necks. Comparison of
somatic EPSP peak reductions in simulations with different magnitudes
of spine neck resistance and gM. The resistance was set by changing the
radius of the neck within a realistic range (0.02 – 0.1 µm). Given that
this adjustment changes the area of the spine, we used absolute values
of gM, such that the magnitude of IM is the same within each of the
three data sets. M-conductances of 0.14, 0.68 and 1.36 nS correspond to
specific gM of 10, 50 and 100 mS/cm2, respectively, in the total area of
the standard spine (used in A, with neck radius of 0.035 µm and neck
resistance of 519.7 MΩ). The most extensive EPSP reduction (11.3%) is
achieved with the largest gM (1.36 nS) and neck resistance (1591.5 MΩ).

effective with thin long necks. Fig. 3.11B shows how somatic EP-

SPs are further reduced by the combined effect of IM and spine neck

resistance. When the total gM in the spine is 1.36 nS the reduction

of the EPSP peak height ranges from 2.0% (neck resistance of 63.7

MΩ) to 11.3% (1591.5MΩ) (Fig. 3.11B, black data points). Smaller
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absolute gM magnitudes cause smaller EPSP reductions that are

still dependent on the resistance of the spine neck (gM= 0.14 nS,

0.2% to 1.4%, Fig. 3.11B, light gray; gM= 0.68 nS, 1.0% to 6.2%,

Fig. 3.11B, dark gray).

Figure 3.12. A small reduction in the excitatory drive can have a
high impact on the persistent activity required to maintain information
in a circuit. A, network rastergram with strong stable bump attractor
(left panel) and the respective population profile during the delay period
(right panel). B, network raster plot and population profile of a second
simulation with 0.5% decrease in the recurrent excitatory conductance
(GEE) The maximum firing rate at the peak of the bump is significantly
lower than in control.

While these small reductions in the synaptic input do not seem

significant, they can have a critical effect when considered within
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a neural circuit involved in persistent activity. These circuits com-

prise thousands of interconnected cells that continuously receive

synaptic signals in its dendritic spines and perform the integration

of that input in order to generate action potentials. We demon-

strated the implications of the presence of IM in a neural circuit

with two approaches: either through a small reduction of the exci-

tatory drive (GEE) or through an increase in the total gM available

in each pyramidal cell. For both approaches, we employed our net-

work model of spatial working memory.

In the first approach, we tested how a small filtering of synaptic

input at the spine necks influences the activity at the network level.

As shown before, the reductions in EPSP size can be less than 1%

under certain conditions. In the network model, when the recur-

rent excitatory conductances between pyramidal cells (GEE) were

reduced by just 0.5%, the memory bump robustness and persistent

firing rates weakened (Fig. 3.12B) compared to the control simula-

tion (Fig. 3.12A). This is clearly visible in the population profiles

averaged over the delay period. If GEE is further reduced, the bump

will lose stability and the memory will disappear (not shown).

In the alternative approach to test the role of IM in the spatial

working memory network, we increased gM in each pyramidal exci-

tatory cell, to the absolute values tested in the multi compartment

model. When gH is set to 0.68 nS, the action potentials generated by

each cell during the delay period are slightly reduced (Fig. 3.13B),

compared to the control conditions (Fig. 3.13A). If we increase gM

to 1.36 nS the persistent activity collapses, as shown in some exam-
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Figure 3.13. Persistent activity during a spatial working memory task
depends on the magnitude of IM in pyramidal cells of the network model.
Rastergrams in the upper panels of A, B and C show the spike times
of 10 individual cells in the center of the received stimulus cue location.
The lower panels represent the instant average firing rate for those cells
in each condition. When a small gM (0.68 nS) is added to the network
(B), the persistent firing of the preferred neurons decreases compared
to those in the control network (A, gM= 0 nS). If the M-conductance
is further increased (C, 1.36 nS), the spiking of single neurons decreases
substantially and the persistent activity of the network stops. D, the
overall firing rates averaged across time are 21.4 Hz, 17.7 Hz and 6.6 Hz
for M-conductance of 0 nS, 0.68 nS and 1.36 nS, respectively.

ples of Fig. 3.13C (upper panel). The average firing rates of each

condition summarize the effect of IM (Fig. 3.13D).

These results demonstrate that IM is a powerful mechanism to
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control the signal transfer and excitability within a single neuron.

Moreover, when those effects are considered at the circuit level,

they have the power to modulate the overall persistent activity and

network readout.
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3.5 Discussion

Two studies have shown that the blockage of HCN channels

with ZD7288 increased the excitability of pyramidal cell of the PFC

during a working memory task (Wang et al. 2007) and during Up

states recorded in cortical slice preparation (Shu et al, unpublished

observations). In this research project, we tested these ideas in

compartment models, of different geometries, containing IH. We

determined, contrary to the commonly accepted assumption, that

IH is a mostly depolarizing current and that, when it is blocked, the

neuron fires less action potentials. We also rejected the hypothesis

that IH interacts with the M-type potassium current (George et al.

2009). Nevertheless, we explored the effect of IM in the neural

excitability and found that it could act as a potent modulator of

the working memory function. We found that thin long spines are

the ideal structures for the electrical filtering to occur due to the

large axial resistance of the spine neck.

3.5.1 IH depolarizes membrane potential and in-

creases excitability

The interpretation that IH would decrease neural firing rates

(Wang et al. 2007) was supported by previous studies that sug-

gest that this current decreases neural excitability (Poolos et al.

2002; Shah et al. 2004; Fan et al. 2005; Rosenkranz and John-

ston 2006; Kole et al. 2007; Jung et al. 2007). A main argument

for this proposition is that IH decreases the temporal summation of
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a train of EPSPs (Magee 1998; Magee 1999; Williams and Stuart

2000; Berger et al. 2001; Angelo et al. 2007; Vaidya and John-

ston 2013). This phasic phenomenon is explained by the decrease

in input resistance driven by the opening of HCN channels. How-

ever, IH is associated with a tonic property of opposing effect: it

depolarizes the membrane potential during rest. This elevates the

“baseline” Vm upon which synaptic EPSPs are added. The tonic

effect is widely recognized in studies of pacemaking in cardiac cells

(DiFrancesco 1993; Clapham 1998).

A technical aspect of some experimental slice recording papers

that lead to the misrepresentation of IH function is the adjustment

of baseline membrane potential by injected current, regardless of

the gH magnitude. This methodology allows for the comparison of

the size of EPSPs between conditions but effectively removes the

tonic effect of IH. If we consider a cell in a living organism, the

generation of action potentials occurs when the membrane poten-

tial crosses a given threshold, regardless of how it accumulated.

Therefore, the tonic contribution of IH is an important factor that

can not be discarded. For these reasons, in our study, we consid-

ered the peak height of the EPSP as a better measure to explain

IH than the EPSP amplitude. Our results lead us to conclude that

the presence of IH in spines and dendrites increases the somatic

EPSP peak and thus contributes to the depolarization of the cell

and not the opposite. We were able to explain this argument in

more detail when we compared the magnitude of both components

of IH separately. We found that the tonic depolarization overcame
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the shunting properties of the phasic effect, which resulted in an

inward, depolarizing net current over the range of Vm relevant to

the generation of action potentials.

3.5.2 IM has a relevant role in working memory

but does not interact with IH

Similar conclusions regarding the depolarizing nature of IH were

recently published (George et al. 2009). This study proposed that

an interaction between IM and IH is responsible for the effects of

ZD7288 in neurons. In this work, we found that, while compelling,

this explanation has serious flaws. Firstly, it absolutely requires the

presence of both currents along the path between synapse and action

potential-initiating region. Otherwise the shunting effect becomes

subdued by the tonic effect of IH. Secondly, the M-conductance

that is required throughout the cell to obtain the crossover effect is

too high and severely inhibits firing of action potentials.

Even though IM does not help to explain experimental IH re-

sults, it has a set of properties that can play a role in the control

of persistent activity associated with working memory. It is an

outward current mediated by KCNQ channels, it activates at sub-

threshold voltages, has slow time scale and does not inactivate. IM

has been shown to prevent repetitive neural firing (Pan et al. 2006),

and control bursting in cortical neurons (Wang 1999a; Santini and

Porter 2010). Furthermore, the activity of IM is regulated by sev-

eral modulatory pathways, including inhibition through stimulation

100



of muscarinic receptors (Delmas and Brown 2005; Cooper and Jan

2003).

We showed that the presence of IM in the spine neck alone,

decreases the size of the EPSPs that reaches the dendritic brach.

This increase in filtering does not require the interaction of IH nor a

high gH conductance close to the soma. However, it depends on the

spine neck resistance. Thiner and narrower necks create a stronger

barrier, in which IM filtering is more effective. We determined a

range of 0.2 to 11.3% reduction in the EPSP size in these conditions.

While the magnitude of this effect seems small, it has significant

consequences at the network level. When we reduced the excitatory

recurrent conductances of the network model by a similar amount,

we observed a decline in the persistent activity and on the memory

robustness. Separately, raising gM in the network model also leads

to a decrease in the firing rate of neurons. These results show the

importance of IM in working memory function.

3.5.3 Neck resistance significantly increases elec-

trical compartmentalization of spine

It is currently accepted that dendritic spines can act as biochem-

ical compartments (Muller and Connor 1991; Yuste and Denk 1995;

Sabatini and Svoboda 2000). However, the degree at which these

structures can be electrically compartmentalized from the rest of the

cell is controversial. The reported electrical attenuation from the

spine head to the dendrites ranges from approximately 50% (Araya
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et al. 2006) to just 15% (Palmer and Stuart 2009). One reason for

this uncertainty is the difficulty in obtaining reliable recordings of

the membrane potential in spines.

Our multi compartment model included a spine, which is con-

sidered to be crucial for the gating of synaptic inputs in pyramidal

cells during persistent activity (Wang et al. 2007; Arnsten et al.

2010). The constriction of the spine neck radius leads to the in-

crease in the spine neck resistance. By changing the radius from

0.1 to 0.02 µm, we decreased the EPSP size at the soma and den-

drites by approximately 50%. However, we chose to use a value of

0.035 µm. The reason for this choice was twofold. First, that is the

average neck radius of HCN-immunoreactive spines in layers II/III

of the PFC, measured by our collaborators (Paspalas et al. 2013).

Second, that measurement results in a total spine neck resistance of

519.7 MΩ, which is in line with previous studies (Palmer and Stu-

art 2009; Grunditz et al. 2008), even though an experimental study

has shown that it can reach up to 1 GΩ (Bloodgood and Sabatini

2005).

3.5.4 Complete mechanism of ZD7288-related

increase in excitability is still unknown

In this study, we were able to characterize the physiological

function of IH in neurons. However, the increase in excitability of

pyramidal cells after pharmacological application of the compound

ZD7288 can not be explained through a modulation of only the HCN
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channels present in pyramidal cells. In order to understand these

results, we will need to consider additional cellular mechanisms that

may also be affected by the action of this HCN antagonist.
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Chapter 4

A novel understanding of IH

function

104



4.1 Abstract

Ion channels play a key role in the integration of synaptic inputs

that lead to the generation of action potentials. In order to under-

stand these cellular processes it is necessary to obtain a clear phys-

iological understanding of the currents mediated by these channels.

According to our previous results, the nonselective hyperpolarized-

activated current IH promotes the depolarization of the membrane

potential and significantly increases the action potential firing. This

finding is at odds with experimental studies that showed that a

downregulation of IH, with the blocker ZD7288, elevates the firing

rate of cortical pyramidal cells. These results were obtained in a

variety of experimental procedures, which included a spatial work-

ing memory task with behaving monkeys and a ferret brain slice

preparation that exhibits slow oscillatory behavior. We propose

two alternative hypotheses that reconcile out theoretical findings

with the experimental results, at a circuit level. The first, assumes

the incorporation of an additional hyperpolarizing current, which

should also be mediated by ZD7288-sensitive channels. The second

hypothesis is based on presence of IH in interneurons and the result-

ing implications on the excitability of pyramidal cells. We test these

hypotheses in network models that simulate a PFC circuit during

a spatial working memory task and in a network that exhibits slow

Up and Down states. We found that both propositions are able to

qualitatively account for the main experimental observations.
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4.2 Introduction

The performance of neural circuits in the prefrontal cortex is de-

termined by the cellular properties of its neurons. These cells receive

constant input from thousands of synapses located on their den-

drites. The stimulation patterns are then processed on the dendritic

branches and reach the soma where action potentials are generated

(Spruston 2008). The active currents mediated by channels present

on the cell membrane are essential for this integration (Sjostrom

et al. 2008). In order to comprehend and predict the input-output

relation of neurons, it is crucial to understand the properties and

physiological function of these currents.

The H-current (IH) is carried by HCN channels that are ex-

pressed in several cell types (Notomi and Shigemoto 2004). These

channels are activated by membrane depolarization, are permeable

to sodium and potassium ions and their activation is facilitated by

cAMP (Biel et al. 2009). IH decreases the temporal summation

of distal dendritic inputs that reach the soma (Magee 1998; Magee

1999; Williams and Stuart 2000; Berger et al. 2001; Vaidya and

Johnston 2013). Several studies have found evidence that cellular

excitability is inversely correlated with the activation of IH (Poo-

los et al. 2002; Shah et al. 2004; Fan et al. 2005; Rosenkranz

and Johnston 2006; Kole et al. 2007; Jung et al. 2007). Similar

conclusions were obtained by our collaborators in studies of spatial

working memory (Wang et al. 2007) and slow Up and Down states

(Shu et al. unpublished observations). In both experimental proce-

dures, pyramidal cells increased their firing after administration of
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the HCN antagonist ZD7288.

In previous work (described in chapter 3) we demonstrated that,

contrary to most views, IH is a purely depolarizing current and

should contribute to neural excitability. Accordingly, a downregu-

lation of IH should lead to less action potentials being generated.

However, the previously mentioned experimental evidence is too

reliable and consistent to be neglected. What is the missing link

between IH function and the blockage of HCN channels with ZD7288

that explains the experimental changes in excitability of the pyra-

midal cells?

A recent modeling paper proposed an hypothesis that accounted

for some of these results (Migliore and Migliore 2012). In this study

the depolarizing tonic effect of IH is counteracted by a hyperpolar-

izing current. This current is still a theoretical proposition and

the channel that mediates if has not been identified yet. Never-

theless, potential candidates must be voltage-independent and have

a constant conductance that is proportional to the maximum con-

ductance of IH. With this framework they were able to replicate

results of EPSP temporal summation (Magee 1999) and the reduc-

tion in firing when IH is upregulated with the anti convulsive drug

Lamotrigine (Poolos et al. 2002).

An alternative explanation for the effects of IH on neural ex-

citability may rely on the expression of HCN channels, not only in

pyramidal cells, but also in interneurons (Maccaferri and McBain

1996; Kawaguchi and Kubota 1997; Lupica et al. 2001; Notomi

and Shigemoto 2004; Wang et al. 2004; Aponte et al. 2006; Hughes
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et al. 2013). This is a well-known and accepted observation but

has lead to fewer research studies than the ones on pyramidal cells.

The existence of IH in interneurons suggests that ZD7288 appli-

cation should hyperpolarize and silence these cells. The resulting

disinhibition of pyramidal cells should lead to an augmentation of

action potentials, as seen in experiments.

We tested both these hypotheses in two network models that

replicate the circuit properties investigated by our collaborators:

the spatial working memory model previously described and a model

that exhibits slow oscillations (Sanchez-Vives and McCormick 2000;

Compte et al. 2003). We incorporated IH in both pyramidal cells

and interneurons and included a version of the hyperpolarizing cur-

rent (IHL) proposed by Migliore and Migliore (2012). We found that

IH in interneurons and the interplay of IH with IHL could provide

qualitative explanations for the experimental results.
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4.3 Materials and Methods

4.3.1 Network model with slow oscillatory ac-

tivity

To study the influence of IH in the generation and rhythm of Up

and Down states, we adapted a network model that exhibits oscil-

latory activity (Compte et al. 2003). This model has a excitatory

population of 1024 pyramidal cells and an inhibitory population of

256 interneurons. The neurons are equidistantly distributed on a

line and interconnected through biologically plausible synaptic dy-

namics.

Each pyramidal cell in the network has a somatic and a dendritic

compartment (Pinsky and Rinzel 1994). The group of channels that

was included in each compartment was found in cortical pyramidal

cells. The soma contains the following currents: fast sodium INa,

delayed rectifier potassium IK, leak IL, fast A-type K+ IA, non-

inactivating slow K+ IKS and a Na+-dependent K+ IKNa. The den-

drite has a high-threshold Ca2+ current ICa, a Ca2+-dependent K+-

current IKCa, a non-inactivating (persistent) Na+ current INaP, an

inward rectifier (activated by hyperpolarization) non-inactivating

K+ current IAR, an hyperpolarized-activated nonselective current

IH and an additional leak-like current, IHL. The dynamical equa-

tions for the somatic voltage (Vs) and the dendritic voltage (Vd)

are:

CmAs
dVs
dt

= −As(IL+INa+IK+IA+IKS+IKNa)−gsd(Vs−Vd)−Isyn,s
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CmAd
dVd
dt

= −Ad(ICa+IKCa+INaP+IAR+IH+IHL)−gsd(Vd−Vs)−Isyn,d

with the membrane capacitance Cm = 1 µF/cm2 and the areas

being As = 0.015 mm2 and Ad = 0.035 mm2 for the soma and

dendrite, respectively. The coupling between soma and dendrite

is determined by gsd = 1.75 ± 0.1 µS (axial resistance 0.57 MΩ,

standard deviation indicates the degree to which this parameter is

randomly varied from cell to cell). Isyn,s and Isyn,d are the synap-

tic currents impinging on the soma and dendrites, respectively. In

our simulations, all excitatory synapses target the dendritic com-

partment and all inhibitory synapses are localized on the somatic

compartment of postsynaptic pyramidal neurons.

Interneurons are modeled with INa, IK, IL, IH and IHL, in their

single compartment:

CmAi
dVi
dt

= −Ai(IL + INa + IK + IH + IHL)− Isyn,i

with the total neural surface area being Ai = 0.02 mm2.

IH is modeled according to the description in section 3.3.3. IHL

is described below. The parameters and equations used for the re-

maining ionic currents, synapses and cortical network connectivity

were the same as previously published (Compte et al. 2003), except

the following modifications, which are required to obtain similar re-

sults when the model is implemented with the Brian simulator and

python programming language (Taxidis et al. 2013). Whenever a
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presynaptic spike is detected (with detection threshold at 10 mV

for the membrane potential of the presynaptic cell) a fixed instan-

taneous increase is given in the postsynaptic cell’s synaptic conduc-

tance. This increase is set to be 1/3 of the corresponding parameter

αsyn in Compte et al. (2003) for excitatory connections and 1/2 for

inhibitory ones. In the original model each synapse in a cell is

modeled by an independent post-synaptic variable, whereas in this

implementation each cell has one total variable for each synaptic

type. This required an adjustment of the overall excitation by re-

ducing the maximal excitatory conductances of the original model.

The pyramidal-to-pyramidal AMPA and NMDA synapses were set

to 4.15 nS and 0.225 nS, respectively. The pyramidal-to-interneuron

AMPA and NMDA synapses were adjusted to 0.5 nS and 0.11 nS,

respectively. Additionally, the GABA reversal potential was re-

duced from −70 to −75 mV to enhance inhibition. Finally, the

maximum sodium-dependent potassium conductance gKNa, in the

dendritic compartment of cortical pyramidal cells was reduced to

0.5 mS/cm2. This was done to increase the excitability of pyrami-

dal cells, prolonging (shortening) the duration of Up (Down) states

(Taxidis et al. 2013). With these modifications, the network repro-

duces all the basic characteristic properties of Compte et al. (2003).

The slow oscillations are a result of the interplay between all cur-

rents included in the model. IKNa plays a key role in determining

the end of Up states and transition to Down state (Fig. 4.1).
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Figure 4.1. Mechanism of the slow oscillation: some neurons have
slightly lower spiking threshold and fire spontaneously (bottom left).
This spontaneous firing will occasionally trigger the recruitment of all the
cells in a subregion of the network through recurrent excitation and bring
those cells up into the firing state (top left). While neurons fire, their
activity-dependent K+ currents (especially IKNa) accumulate slowly. A
point is reached in which the neurons are not excitable enough to main-
tain this self-sustained spiking state and they revert to the silent mode
(middle right). Only after the Na+-dependent K+ current decays can
the spontaneous firing resume and eventually trigger a new discharge
episode (bottom left). Adapted from Compte et al. (2003).
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4.3.2 Network model of spatial working mem-

ory

The working memory results presented in this chapter were ob-

tained with the spiking network model for the oculomotor delayed-

response (ODR) task, previously described (Compte et al. 2000).The

model consists of a population of excitatory pyramidal cells and a

population of inhibitory interneurons. Pyramidal cells are arranged

in a ring-like fashion and labeled by their preferred cue direction,

from 0 to 360 degrees.

Both pyramidal cells and interneurons are modeled as leaky in-

tegrate and fire units (Tuckwell 1988). Each type of cell is char-

acterized by total capacitance Cm, total leak conductance gL, leak

reversal potential VL, threshold potential Vth, reset potential Vres

and refractory time τref . The values that we use in the simulations

are Cm = 0.5 nF, gL = 25 nS, VL = −70 mV, Vth = −50 mV, Vres =

−60 mV, and τref = 2 ms for pyramidal cells; and Cm = 0.2 nF, gL

= 20 nS, VL = −70 mV, Vth = −50 mV, Vres = −60 mV, and τref =

1 ms for interneurons. The subthreshold membrane potential, Vm,

follows:

Cm
dVm
dt

= −gL(Vm − VL)− Iion − Isyn

where Iion is the sum of the ionic currents and Isyn is the total

synaptic current to the cell.

The specifications for synaptic interactions, network connectiv-

ity and stimulus input are the same as described in sections 2.3.2,
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2.3.3 and 2.3.4, respectively.

4.3.3 IHL, a ZD7288-sensitive leak current

IHL is not dependent on voltage but its magnitude is correlated

with the maximum conductance of IH:

IHL = gH l(Vm − VL)

where l is a voltage- and time-independent parameter (Migliore and

Migliore 2012) and was set to 0, except when noted.

4.3.4 Simulation method

The network models were written in python language in the

Brian simulator (Goodman and Brette 2009). The equations were

integrated using a second-order Runge-Kutta algorithm (timestep =

0.02 ms). The simulations were carried out in the cluster facilities

of the Yale University Biomedical High Performance Computing

Center.
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4.4 Results

4.4.1 Network model simulates slow oscillations

Our adapted implementation of the network model with slow

oscillatory activity reproduces the basic properties of the one pre-

viously published (Compte et al. 2003). In the control conditions,

the alternating Up and Down states have a frequency of less than 1

Hz (Fig. 4.2). The somatic membrane potential of some excitatory

cells exhibits clearly visible hyperpolarized Down states punctu-

ated by elevated Up states, which sustain repeated action poten-

tials (Fig. 4.2, lower panel). The spike timing of the populations of

pyramidal cells (Fig. 4.2, upper panel) and interneurons (Fig. 4.2,

middle panel) is highly synchronized throughout the simulation, as

seen in experimental recordings. The number of generated action

potentials during Up states is 5.6±1.4 Hz for pyramidal cells and

11.0±1.6 Hz for interneurons.

4.4.2 Slow oscillatory model is influenced by chan-

nel repertoire

IH increases excitability of the network model

Next, we tested how the incorporation of IH in pyramidal cells

would affect the output of the network model. This simulates the

opposite of applying the HCN blocker ZD7288. In this scenario,

the network will lose the slow oscillatory output and the neurons

will fire repetitively (Fig. 4.3). The activation of IH depolarizes the
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Figure 4.2. The network model reproduces the slow Up and Down
states recorded in experiments. The firing of pyramidal cells (upper
panel) and interneurons (middle panel) is synchronized in time. The
membrane potential trace of the somatic compartment of a pyramidal
cell in the network shows the hyperpolarization of the resting Vm during
silent Down states intercalated with depolarized Up states that exhibit
action potentials.

resting membrane potential (baseline Vm at approximately −72 mV

in Fig. 4.3, lower panel, compared to −80 mV in Fig. 4.2), which

promotes the generation of action potentials. These results confirm,

in a circuit model, our previous findings from compartment models

of single cells (chapter 3). Namely, that IH increases the excitability

of pyramidal cells of the PFC.
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Figure 4.3. Incorporation of IH raises resting Vm and the excitability of
all neurons in the model, disrupting oscillations. The membrane poten-
tial depolarizes with the presence of IH (lower panel). Both pyramidal
cells (upper panel) and interneurons (lower panel) increase their firing
activity. IH was incorporated with a conductance of 0.1 mS/cm2.

Simultaneous blockage of IH and IHL explains main effects

of ZD7288

According to a recent study, (Migliore and Migliore 2012), the

effects of ZD7288 in the excitability of pyramidal cells could be

explained with the interplay of IH with an hyperpolarizing current.

We modeled this current (IHL) with the reversal potential of the

leak (−70 mV) and a conductance that depends on gH. This last

setting arises from the assumption that IHL is mediated by channels

that are also blocked by ZD7288. Therefore when IH is blocked, so

is this current.

Based on our simulations, the presence of IH and IHL in pyrami-
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Figure 4.4. Simultaneous blockage of IH and IHL channels increases
excitability. The firing rate of pyramidal cells during the Up states
was increased from 13.7±3.4 Hz in a network with IH and IHL (gH)
to 25.2±7.8 Hz when those currents were blocked (ZD7288). In the IH+
IHL condition, gH was set to 0.1 mS/cm2 and l = 0.25, which results in
a IHL conductance that corresponds to 25% of gH.

dal cells results in firing rates of 13.7±3.4 Hz in these cells during Up

states (Fig. 4.4). In order to replicate the experimental results of the

pharmacological blockage of HCN channels (and IHL channels) we

considered the network without IH nor IHL (conditions of Fig. 4.2).

This leads to an increase in the firing rate of pyramidal cells to

25.2±7.8 Hz (Fig. 4.4). This increase in the frequency of action

potentials during Up states is consistent with what was recorded

in experiments (Shu et al. unpublished observations). Moreover,

similar to what was reported in that study, the membrane poten-

tial during the Down states also decreases from approximately −62
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mV with IH and IHL to −80 mV in the ZD7288-like simulations. A

feature that is not significantly accounted for our model is the in-

crease in the Up states duration with ZD7288 blockage. Our results

show that Up states lasted identical periods (gH, 0.26±0.05 seconds;

ZD7288, 0.25±0.11 seconds) in conditions with and without IH.

4.4.3 IH in interneurons determines the working

memory-related persistent activity

A major motivation for the study of IH arose from the repercus-

sions of its manipulation in a spatial working memory study. More

specifically, why blocking HCN channels with ZD7288 elevates the

firing activity of pyramidal cells of the prefrontal cortex during an

ODR task (Wang et al. 2007)? An alternative explanation for the

increase in firing rates with HCN antagonist is inspired by the pres-

ence of HCN channels in interneurons. This evidence allowed us to

hypothesize that the application of ZD7288 in the PFC could affect

local interneurons to a significant degree. According to our find-

ings in the previous chapter, IH increases excitability in neurons.

Therefore, a blockage oh IH would result in a decreased activity

of interneurons and, consequently, a disinhibition of the pyramidal

cells that establish connections with them.

In order to address this hypothesis, we incorporated modifica-

tions to our working memory model, which is designed to simulate

an ODR task. Briefly, this task proceeds from cue (angle) presen-

tation, to a delay period and finally to a memory-guided behavioral
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response. In the model, the cue input activates a group of pyrami-

dal neurons with preferred directions around the cue location. If the

firing rate of this subpopulation of neurons is sufficiently elevated

and mutual excitation among them is strong enough, reverberation

can give rise to self-sustained persistent activity after the stimulus

offset. This creates a memory bump that represents the cue dur-

ing the delay period. The persistent activity by pyramidal cells is

controlled by unspecific inhibition provided by the population of

interneurons. If the activity of these inhibitory cells is too large,

the persistent activity will not be sustainable.

To address the relevance of IH in interneurons in working mem-

ory circuits, this current was included in the cells of both popu-

lations (excitatory and inhibitory) of our network model. We ran

a set of spatial working memory simulation trials, using different

magnitudes of H-conductance in interneurons and pyramidal cells.

At the end of the delay, it was determined whether the system was

in the spontaneous or in the memory states. These two possible out-

comes of the network fell on distinct regions of the parameter space.

In general, simulations that maintained memories had a higher dis-

tributions of gH in pyramidal cells than interneurons (Fig. 4.5, red

shaded area). On the other hand, a bigger presence of gH in in-

terneurons, resulted in failed memorizations (Fig. 4.5, gray shaded

area).

The presence of IH in both cell types, however, did not produce

totally symmetrical results (Fig. 4.5, dashed line). Across almost

all range it was necessary to have more gH in pyramidal cells than
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Figure 4.5. The performance of working memory in a PFC circuit
depends on the magnitude of IH in pyramidal cells and interneurons.
A 2-d analysis of the dynamical state of the network model in respect
to gH in pyramidal cells (gH,E) and in interneurons (gH,I). The shaded
regions correspond to subsets of the parameter space where the network
was able to keep a memory through persistent activity (red) or remained
in the spontaneous baseline state (gray).

interneurons in order to have working memory sustained by per-

sistent activity. The opposite was only observed for lower conduc-

tances in the two populations. This break from symmetry could

be crucial to understand the blockage by ZD7288. Assuming that

this HCN antagonist binds equally to channels in both cell types,

the resulting decrease in H-conductance shifts the system to the

region where persistent activity is more immune to the presence of
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IH in interneurons. This result could explain why the application of

ZD7288 increases the firing rate of pyramidal cells during working

memory performance.
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4.5 Discussion

The pharmacological application of the HCN channel antagonist

ZD7288, leads to a consistent elevation of pyramidal cell excitability

in electrophysiological recordings in working memory (Wang et al.

2007) and slow oscillatory (Shu et al. unpublished observations)

studies. However, as reported in the previous chapter, the HCN-

mediated current IH has a depolarizing effect on the somatic resting

membrane potential that induces an increase in the generation of ac-

tion potentials. To provide an explanation for these two apparently

contradictory findings, we proposed two alternative hypotheses and

tested them in distinct network models. The ZD7288 may increase

the neural excitability of pyramidal cells due to the interplay be-

tween IH and an hyperpolarizing current IHL, or because it blocks

HCN channels that are present in interneurons.

The first of those hypotheses was influenced by a recent study

that proposes the existence of an IH-dependent hyperpolarizing cur-

rent (Migliore and Migliore 2012). The conductance of this current

is correlated with gH, such that the application of ZD7288 blocks

both IH and IHL. When this interplay was studied in single cell

models it accounted for experimental results at the cellular level

(Migliore and Migliore 2012). We took this hypothesis one step fur-

ther and implemented IH and IHL in a network model of slow Up and

Down states (Compte et al. 2003). We found that the firing rates

of pyramidal cells during Up states increased when the network lost

the presence of IH and IHL, mimicking the the effect of ZD7288 in

experiments (Shu et al. unpublished observations). This hypothesis
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accounts for the modulation of excitability in a way that is only de-

pendent on gH. In conditions where this conductance is large, IHL is

also very active and overcomes the depolarizing effect of IH. When

gH is blocked by ZD7288, IHL is equally reduced. Even though this

mechanism provides a qualitative explanation for a physiological re-

sult, the identity of this current and the channels that carry it are

still undetermined.

The second hypothesis put forward in this project considers the

presence of HCN channels in interneurons (Maccaferri and McBain

1996; Kawaguchi and Kubota 1997; Lupica et al. 2001; Notomi

and Shigemoto 2004; Aponte et al. 2006; Hughes et al. 2013).

This proposition assumes that the local application of ZD7288 to

a region of the PFC may affect, not only pyramidal cells, but also

local inhibitory neurons. This is likely because cortical neurons are

densely distributed and the pharmacological administration of an

antagonist should reach all cells in the targeted area. We tested this

hypothesis in the spatial working memory network, by incorporat-

ing IH in both populations of neurons. Lowering IH leads to less

depolarization and decreased cellular excitability in the interneu-

rons. The resulting disinhibition of pyramidal cells should promote

an increase in their firing. However, the HCN channels of pyramidal

cells should also be blocked, which causes the opposite effect. To

determine which effect is stronger, we performed a 2-d analysis with

a range of gH in both cell types. We found that when the combined

conductances are similarly reduced, as should happen with ZD7288,

the system evolves to a region of the parameter space where per-
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sistent activity is sustainable and working memory can be encoded.

These findings are in accordance with the data from (Wang et al.

2007) and may explain the improvement of working function when

IH is blocked.

Although these two alternative hypotheses were tested in dif-

ferent models, there is no evidence to suggests that the blockage

of and IH and IHL would not increase the persistent firing in the

spatial working memory model. Likewise, we are lead to believe

that the blockage of IH present in interneurons of a slow oscillatory

network would increase the generation of action potentials during

the Up states. Further modeling analysis is required to fully test

these assumptions.

These two hypotheses can successfully explain how an IH blocker

may increase the excitability of pyramidal neurons. Moreover, they

provide testable predictions regarding the currently unknown mech-

anisms. A combination of iontophoresis, electrophysiology and mi-

croscopy experiments could test the range of a ZD7288 application

and record the membrane potential from interneurons. Moreover,

the precise characterization of the HCN subunits in these interneu-

rons would be particularly relevant. If they differ from those in

pyramidal cells, specific antagonists could block them differentially.

This would allow the results of our 2-d analysis to be replicated

in experiments and to infer the importance of interneurons in the

overall network activity. Similarly, it would be relevant to test the

presence of a current with the properties of IHL in pyramidal cells,

namely being mediated by ZD7288-sensitive channels and having a
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low reversal potential.

Our theoretical approach based on experimental data contributed

to unravel the role of IH in the excitability of pyramidal cells in the

context of working memory. This current has a strong modulatory

effect, influences some of the most relevant cognitive functions in

the prefrontal cortex and a complete characterization of its function

would make a relevant contribution to the understanding of brain

activity.
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Chapter 5

Concluding remarks

As demonstrated in the previous chapters, a common theme in

the planning and execution of the work described in this disserta-

tion was to make the functional connection between biophysical pro-

cesses, neural network performance and ultimately behavior. The

cellular and synaptic processes that were studied influence circuit

dynamics and cognitive functions. While diverse in nature, they are

part of the global neural apparatus that gives rise to cognition in

the brain. In this work, we focused on the working memory function

as seen through the paradigm of the oculomotor delayed-response

task. According to the currently accepted framework, the basis

for this cognitive function lies in neural circuits of the prefrontal

cortex that store and maintain information through persistent ac-

tivity sustained by recurrent excitation between pyramidal cells.

This concept depends on the excitability of these neurons, i.e., the

ability to generate action potentials from the synaptic signals they

receive. Therefore, any mechanism that affects this input-output
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transfer is highly relevant to working memory performance.

In the second chapter of this dissertation, we tackled the problem

of the relative lack of robustness observed when working memory

was solely supported by N-methyl-D-aspartate-receptor-mediated

recurrent excitation. This problem is created when the network

suffers the influence of external perturbations, such has noise or dis-

tractors, or internal heterogeneity properties. In order to address

this issue, we explored the variety of known biophysical mechanisms

present in the PFC to find possible candidates that may counteract

the disruptive effects of these perturbations in the working memory

trace. The main requirements were to operate at slow time scales

and to be activity dependent. We realized that depolarization-

induced suppression of inhibition, calcium-dependent nonspecific

cationic current and short-term facilitation matched these criteria.

When included in the network model, these three slow mechanisms

conferred stability to the memory trace but at the expense of harder

transitions between memory and resting states. The trade-off be-

tween robustness and flexibility became the major proposition in

this work and we postulated that it could be adjusted by the neural

regulatory pathways according to the behavioral task demands. We

hope that these model observations and analysis may be tested by

experimental investigators in order to validate their importance in

working memory.

The implications of the presence of these slow processes in PFC

circuits may not be relevant only for working memory. As shown

for DSI and ICAN, these mechanisms have a slow time course of
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activation. Could this property be a neural substrate for other

cognitive functions? Decision-making requires slow accumulation

of information over time, which can be encoded by slow ramping of

activity in a cortical circuit (Wang 2002; Wang 2008). In theory,

DSI, STF or ICAN would allow such ramping to be extended for

the longer periods required to reach decisions. While our results

only provide an intuition regarding this subject, it would be worth

exploring in future research.

The project described in the third and fourth chapter resulted

from a back-and-forth collaboration with experimental investiga-

tors. They previously published a thorough study describing the

sequential steps in one of the intracellular signaling pathway that

controls pyramidal excitability. The activation of the catecholamine

receptors, α2A-adrenoceptors, resulted in the improvement of work-

ing memory function. They demonstrated that a key intermediate

step in this cascade is the reduction of H-current activity, which

seemingly lead to a decrease in the neurons excitability. Inspired

by this study, we built a single cell and network models designed to

simulate their findings. However, our modeling research suggested

that there were still some missing components in our collaborators

description - but did not refute the conclusions of their work. The

main disagreement was that IH alone could not account for the de-

crease in firing activity seen in recordings. In order to explain those

results, we suggested two alternative hypotheses that successfully

account for their observations.

This work contributes to shown the growing importance of the
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computational and theoretical approaches to the understanding of

biological processes and, more specifically, cognitive functions. The

implementation of biophysically realistic models helps unravel neu-

ral mechanisms that are unreachable by laboratory procedures. More-

over, computational simulations allow a very large number of condi-

tions to be tested in a short amount of time; something that would

be very cumbersome to achieve otherwise. Nevertheless, it is crucial

to define models constrained by biological data. The testable pre-

dictions proposed by the study of this type of models have a higher

probability to be accepted for scrutiny by experimentalists.

Most of the findings put forth in this dissertation could be tested

experimentally by a combination of methodologies, including elec-

trophysiology, pharmacology, anatomy and microscopy. If anything,

this work illustrates the importance of studying neural mechanisms

by cross-examining distinct levels of abstraction; from molecules to

circuits to behavior; from neurons to networks.
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