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Summary 
 

Decision making is a ubiquitous theme in computational neuroscience. Here 

we present novel data and modeling approaches that relate to how the brain 

makes decisions. In the first part of this dissertation we use psychophysics 

to look into how the brain itself does statistics; in the second part we use 

statistical analysis tools to investigate the neural representation of relevant 

variables for decision making.  

Innumerous studies have suggested that people take previously 

accumulated information (prior distribution) as well and new information (the 

likelihood) into account when making a decision.  Here we start by asking 

where do prior distributions come from; since we are rarely in the exact 

same situation twice, how is the prior, used in a particular decision, 

generalized from previous similar experiences? Using a movement 

experiment we found differences between the generalization of the mean 

and variance of the prior distribution.  

We continue by asking how the brain makes a decision when choosing 

between two alternatives in a two-alternative-forced-choice (2AFC) task. 

The 2AFC paradigm is often assumed to measure sensory (likelihood) 

uncertainty independently of prior uncertainty. Here we test this assumption 

by looking into the algorithms the brain might use when choosing between 

the two alternatives in a 2AFC task. Specifically, after combining the prior 

and likelihood into a posterior distribution, is the decision based on the 

maximum of the posterior (the MAP hypothesis) or do humans sample from 

the posterior distribution (the sampling/matching hypothesis)? We show that 

in investigating this question we simultaneously test whether the 2AFC 

paradigm can be used to measure sensory uncertainty independently of 

prior uncertainty. Our experimental results favor the MAP hypothesis and 

hence the validity of the assumption. 
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Finally, we use probabilistic models to investigate whether neurons in the 

frontal eye field (FEF) represent bottom-up saliency when monkeys are 

searching a natural scene. Understanding what the brain represents/does 

ultimately involves understanding how it represents the kind of stimuli it has 

evolved to represent. Here we use natural scenes and an objective 

definition of bottom-up saliency that has been shown to predict saccade 

choices of both humans and monkeys during free-viewing of natural scenes. 

We found that although saliency appears to be used in deciding where to 

look next and predicts neural activity of FEF neurons, its predictive power is 

explained away if we take into account other saccade related covariates. 

This thesis provides important insights into several aspects of decision 

making. At a higher level it provides data for constraining models of 

generalization of uncertainty; it tests theories that relate to which kind of 

decision-making algorithms the brain implements; and finally it looks into 

neural representation of natural stimuli that are relevant for decision making. 
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Resumo 

A tomada de decisão é um tema omnipresente em neurociência 

computacional. Aqui apresentamos novas abordagens e resultados 

relacionados com a forma como o cérebro toma decisões . 

Começamos por fazer perguntas relacionadas com o modo como o próprio 

cérebro faz estatística. Especificamente, perguntamos de onde vêm as 

probabilidades a priori - as distribuições de probabilidade sobre o que 

esperamos que aconteça. Uma vez que raramente nos encontramos na 

mesma exacta situação duas vezes, como é que estas distribuições, 

utilizadas numa decisão particular, são generalizadas a partir de 

experiências semelhantes anteriores? Usando uma experiência de 

movimento encontramos diferenças de abrangência e simetria entre a 

generalização da média e variância da distribuição de probabilidade a priori. 

De seguida perguntamos como é que o cérebro toma uma decisão a partir 

da distribuição de probabilidade a posteriori quando tem de escolher entre 

duas alternativas no paradigma two alternative forced choice (2AFC). Usa o 

máximo da distribuição ou amostra da distribuição? Mostramos que ao 

investigar esta questão estamos simultaneamente a testar a hipótese 

comumente usada, mas não testada sobre este paradigma: que pode ser 

usado para medir a incerteza sensorial independentemente de incerteza 

das expectativas, i.e. independentemente da incerteza na distribuição a 

priori. 

Finalmente, usamos modelos probabilísticos para investigar as 

representações de variáveis relevantes para a tomada de decisão. 

Especificamente, perguntamos se o frontal-eye-field (FEF) de macacos 

representa a saliência de imagens quando os macacos estão à procura de 

um objecto em imagens naturais. Mostramos que, embora a saliência 

pareca ser usada para decidir para onde olhar e prevê a actividade de 
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neurónios no FEF, o seu poder preditivo desaparece (ou é explicado) se 

tomarmos em consideração variáveis relacionadas com o movimento dos 

olhos. 
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1. General Introduction 

 

Understanding decision making in various contexts is fundamental to 

understanding human behavior. This thesis presents several studies that 

examine decision making from many different points of view using a variety 

of research tools.  

In Chapters 2-4, we use human psychophysics, i.e., behavioral experiments 

designed for the quantitative study of the perceptual system. We use some 

of these experiments to characterize the generalization of prior 

expectations/subjective beliefs and to investigate which algorithms the 

nervous system uses for making a decision.  In Chapter 5, we analyze 

neural recordings to understand the representation of relevant neural 

variables for eye-movement decision making. The experiments presented 

here cover a wide range of decisions including motor decisions about where 

to reach (Chapters 2 and 3), sensory discrimination decisions when 

confronted with two choices (Chapter 4), and attention-related oculomotor 

decisions about where to look next (Chapter 5). 

 

1.1 Bayes theorem, priors, likelihood and posterior 

Innumerous studies have suggested that, when making a decision, humans 

take previous accumulated information (their expectations, or the prior 

distribution) as well as new information (the likelihood) into account (for a 

review see Vilares and Kording, 2011). Both of these pieces of information 

have an associated mean and variance (denoted by uncertainty). This 

perspective/modeling approach/description is called Bayesian and owes its 

name to the Bayes theorem: 
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p(s|r)p(r)
p(r|s)=

p(s)
   

When we try to infer what is out there in the world, we are interested is in 

having an accurate measure of what the current reality is given the new 

information arriving to our senses ( p(r|s) , the posterior). Bayes theorem 

tells us how we can obtain it, i.e., how to combine the new piece of sensory 

information ( p(s|r) , the likelihood) with our prior expectations over reality 

(the prior, p(r) ). 

 

1.2 Generalization, where priors come from  

Where do priors come from? As we are never in the exact same situation 

twice, it is useful to generalize about subjective beliefs acquired in one 

situation to be applicable to different but similar situations (Shepard, 1987). 

In Chapters 2 and 3 we address the question of how priors generalize and, 

in particular, how prior variance/uncertainty generalizes.  Several neural 

representation theories have been proposed on how the brain might 

represent/approximate the prior and the likelihood (Deneve, 2008; Fiser et 

al., 2010a; Hinton and Sejnowski, 1983a; Hoyer and Hyvärinen, 2003; Ma et 

al., 2006; Ma, 2010; Sahani and Dayan, 2003; Soltani and Wang, 2009; Wu 

et al., 2003; Zemel et al., 1998). These theories propose diverse, but not 

always mutually exclusive, ways in which uncertainty could be represented 

by populations of neurons. Some propose that it is represented in the width 

of the tuning curves, others in the amplitude of the tuning curves, in the 

firing rate, in the strength of the synapses, in the timing of the firing, etc. To 

our knowledge however, none of theories about the neural representation of 

uncertainty has been extended to incorporate generalization, nor is there 

data on how the variance of the prior distribution generalizes; generalization 

studies typically neglect variability.  
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Our aim was thus to characterize how the prior generalizes, and specifically 

to understand how this generalization depends on uncertainty. Namely, we 

wanted to understand: 1. how the generalization of the mean of the prior is 

affected by different degrees of uncertainty; and 2. how the 

variance/uncertainty of the prior itself generalizes. For that, we used a 

previously established generalization paradigm (Krakauer et al., 2000), 

which consists on a visuomotor rotation during a center-out reaching task, 

and extended it to include uncertainty/variability (Körding and Wolpert, 

2004).  

We found that manipulating the uncertainty level (the variance) of the 

prior does not affect how the mean of the prior generalizes (Chapter 2). We 

find differences in breadth between the generalization of mean and variance 

(uncertainty) and an unexpected asymmetry in the generalization of 

uncertainty (Chapter 3). Using a gradient-descent model we find that this 

asymmetry is consistent with the use of different similarity reference frames 

between the generalization of mean and variance/uncertainty. The results 

from Chapter 2 and 3 characterize differences and similarities between the 

generalization patterns of mean and uncertainty of prior expectations, and 

constrain future extensions of theories of prior representation to include 

effects of learning and generalization. 

 

1.3 How are decisions made? 

Although we know that Bayesian decisions involve a combination of prior 

and likelihood information, there exist several mathematical strategies by 

which an inference/decision could be computed. In Bayesian decision-

theory, after arriving to the posterior distribution, the ultimate decision still 

depends on the cost/reward of each of the possible choices. If everything 

(prior and likelihood) is assumed to be Gaussian, and under reasonable 
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choices of cost function (e.g. the mean squared error), the ideal choice is to 

weight the mean of prior and the mean of the likelihood by their relative 

precisions (the reciprocal of the variances). This choice corresponds to 

choosing the maximum of the posterior distribution (MAP). Do Humans use 

this strategy when deciding between two choices? 

In Chapter 4 we investigate which strategy humans use when 

deciding between two possible choices. Specifically we ask whether the final 

decision is based on the maximum of the posterior distribution (the MAP 

hypothesis), or do humans instead sample from the posterior distribution 

(the sampling and matching hypothesis) (Vul et al., 2009; Vulkan, 2000; 

Wozny et al., 2010). To investigate this we use the two-alternative forced 

choice paradigm (2AFC), a discrimination task that is one of the most used 

paradigms in psychophysics.  

 

1.4 Two-alternative forced choice paradigm and the just-

noticeable difference 

In a 2AFC task, subjects are presented with two alternatives and forced to 

choose between them. For example, subjects may be asked to decide which 

of two tones has a higher pitch. By controlling the discrepancy between 

these tones (the cues), experimenters can obtain a psychometric curve: the 

probability of a subject's response given the discrepancy between cues. 

This curve is often used to quantify the just-noticeable difference (JND), 

which is related to how different the two cues must be before subjects can 

tell them apart. 

 

 

 



5 

 

The JND is often assumed to measure sensory uncertainty, i.e., 

uncertainty/variance of the likelihood, independently of the variance of the 

prior. The MAP decision-making hypothesis described above is the implicit 

and untested assumption in studies that use JND for measuring likelihood 

uncertainty -- or at least consistent with that objective. However, as we show 

in Chapter 4, if the sampling/matching hypotheses are true then the JND is 

in fact proportional to perceptual uncertainty (i.e. proportional to the variance 

of the posterior distribution). Importantly this would mean that the JND is 

affected by changes in prior uncertainty and hence that it should be used 

with caution. The prevalence of either of these hypotheses has thus broad 

implications for the interpretability of the 2AFC paradigm.  

In Chapter 4 we present a task that allows manipulation of subjects’ 

prior uncertainty while simultaneously measuring subjects’ JND. Our results 

suggest that prior uncertainty does not affect the subjects’ JND. Hence our 

results support the MAP hypothesis and the use of JND to measure sensory 

uncertainty. Importantly we show how the 2AFC task can be used to test 

these decision-making theories. 

 

1.5 Deciding where to look next  

A big part of our sensory information comes through our retina. When we 

are scanning a visual scene, we are constantly moving our eyes from one 

place to the next. In fact, deciding where to look next might be one of our 

most frequent decisions. How do we accomplish it? In order to understand 

how we chose where to look next, the computational modeling of eye-

fixation choices has found that both bottom-up/task independent image 

features such as bottom-up saliency (Itti and Koch, 2001), as well as top-

down features, such as target similarity (Einhäuser et al., 2008) can predict 

eye movements to some degree.  
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In the second part of the thesis (Chapter 5) we look into neural 

representation of one of these important variables for deciding where to look 

next; bottom-up saliency (Itti and Koch, 2001). We search for neural 

representation of bottom-up saliency in the frontal-eye-field (FEF) while 

monkeys are searching natural scenes for an embedded target (Phillips and 

Segraves, 2010). The FEF is a brain region that is thought to be involved in 

the production of saccades, while at the same time responding to salient 

visual stimuli. However, while some experiments using artificial stimuli 

suggest that saliency is represented in the FEF, understanding what the 

brain represents/does ultimately involves understanding how it represents 

the kind of stimuli it has evolved to represent (Kayser et al., 2003; MacEvoy 

et al., 2008; Theunissen et al., 2000). We use natural scenes and an 

objective definition of bottom-up saliency that has been shown to predict 

both human and monkey’s saccade choices. We find that basic analyses 

suggest that FEF represents both saccade direction and saliency. However, 

by using Generalized Linear Models (Pillow et al., 2008; Saleh et al., 2010; 

Truccolo et al., 2005), specifically linear–nonlinear-Poisson cascade 

models, we show that saccade covariates explain away (Pearl, 1988) 

bottom-up saliency. Hence, even though saliency appears to be used when 

deciding where to look next, it does not seem that FEF neurons actively 

represent it during natural scene search.  

 

1.6 Marr’s levels in this dissertation 

To understand and contextualize the contributions of this dissertation in a 

unified sense, it is useful to group them under Marr’s levels of analysis. 

David Marr (Marr, 1982) introduced a taxonomy of three different levels of 

description/analysis. According to Marr, it is possible to divide models into 

those that deal with the objective of computation (Level 1), the algorithm 

used (Level 2), and the implementation (Level 3). The Level 1 approaches 
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ask which computational problem the nervous system is trying to solve. 

Normative approaches, which ask which kind of computation the brain 

should be solving, are included in the category. A typical example is the 

question of if the nervous system combines cues from different modalities 

taking into account their uncertainty to obtain a minimum variance estimate 

(Kording, 2007). Level 2 models deal with which algorithm or which 

strategies does the nervous system use to solve the computational 

objective. Finally level 3 deals with the precise physical implementation of 

the level 2 algorithms. The implementation can itself be described at many 

levels: molecular, synapses, spikes, etc. A description at level 1 can have 

several descriptions at level 2, and an algorithm at level 2 can have several 

possible implementations at level 3. However a particular implementation 

should originate one algorithm and a particular algorithm is typically solving 

one particular computational objective. Research done at a particular level 

thus constrains the possible descriptions not only at that level but also at the 

other levels and one could argue that the richer approaches are usually the 

ones able to connect different levels. 

The research presented in this dissertation touches several Marr levels. 

While Chapter 2 and 3 are mostly experimental, in these chapters we 

examine the learning and generalization of the prior distribution assuming a 

normative model of decision making: Bayesian decision theory (Marr level 

1). In Chapter 4 we test decision-making algorithms (Marr’s level 2) while 

also using the normative approach of Bayesian decision theory. Finally in 

Chapter 5 we use a computational definition of natural scene saliency that is 

generally used to predict eye movements. Hence, we test a specific 

algorithm (Marr’s level 2) for how the brain decides where to look next. 

While it is difficult to say exactly what mechanism/implementation means in 

Marr’s level 3 — it constitutes many levels of explanation — Chapter 5 

investigates whether and how features of a computational algorithm (Marr’s 
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level 2) for deciding where to look next is implemented in a specific 

population of neurons (Marr’s level 3). 
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the analysis: HLF with the contribution of IHS and KPK, Contributed reagents/ 
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2.1 Summary 

Generalization studies examine the influence of perturbations imposed on 

one movement onto other movements. The strength of generalization is 

traditionally interpreted as a reflection of the similarity of the underlying 

neural representations. Uncertainty fundamentally affects both sensory 

integration and learning and is at the heart of many theories of neural 

representation. However, little is known about how uncertainty, resulting 

from variability in the environment, affects generalization curves. Here we 

extend standard movement generalization experiments to ask how 

uncertainty affects the generalization of visuomotor rotations. We find that 

although uncertainty affects how fast subjects learn, the perturbation 

generalizes independently of uncertainty. 
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2.2 Introduction 

A central goal of systems neuroscience in general and motor control 

research in particular is to understand how sensorimotor behaviors, such as 

reaching, are represented and learned. One factor that regularly influences 

movement planning and execution is uncertainty. For example, when we 

grasp objects our hands move very differently depending on our level of 

uncertainty; if we are uncertain about an object’s position, we open our 

hands wider, move more slowly and approach the object with our hands 

aligned with the direction of highest uncertainty (Christopoulos and Schrater, 

2009). This example highlights the fact that variability in the external world 

affects behavior and suggests that uncertainty must be represented in the 

nervous system. 

 Many studies in the field of motor control have used generalization 

experiments to examine the neural representation of movement, asking how 

learning a perturbation in one task affects behavior on novel tasks (Donchin 

et al., 2003; Ghahramani et al., 1996b; Goodbody and Wolpert, 1998a; 

Hwang et al., 2006; Krakauer et al., 2000a; Mattar and Ostry, 2007; Paz et 

al., 2003; Pearson et al., 2010; Shadmehr, 2004; Shadmehr and Moussavi, 

2000; Shadmehr and Mussa-Ivaldi, 1994; Thoroughman and Shadmehr, 

2000; Thoroughman and Taylor, 2005). By studying which aspects of the 

behavior are transferred between tasks and which tasks a behavior 

transfers to, these experiments have investigated how we represent and 

modify movement and task variables. Generalization is sensitive to many 

factors including the coordinate system, nature, and complexity of the 

perturbation (Hwang et al., 2006; Krakauer et al., 2000a; Shadmehr and 

Mussa-Ivaldi, 1994; Thoroughman and Taylor, 2005), movement variables 

such as speed (Goodbody and Wolpert, 1998) and posture (Shadmehr and 

Moussavi, 2000), as well as the extent and type of training and feedback 

(Pearson et al., 2010; Taylor et al.,  2012). However, one factor that has not 
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yet been studied in the context of generalization experiments is uncertainty. 

Many studies have explored how uncertainty affects behavior (Christopoulos 

and Schrater, 2009; Körding and Wolpert, 2004a; Saijo and Gomi, 2012; 

Tassinari et al., 2006), but how uncertainty influences generalization has 

received little attention. 

 From a normative viewpoint, subjects should generalize what they 

have learned about a perturbation in one situation to a novel situation only if 

they expect the perturbation to occur in the novel situation. Behavior in 

novel situations reveals what subjects expected to occur, and these 

expectations may be affected by several factors including task similarity or 

familiarity with the type of perturbation. It has been difficult to formalize this 

normative approach to generalization, since natural movement statistics and 

natural perturbation statistics are difficult to collect. However, any normative 

description of generalization must take uncertainty into account, since 

variability in the external world can have strong effects on behavior; task 

uncertainty (Körding and Wolpert, 2004), sensory uncertainty (Wei and 

Körding, 2010) and motor noise (Harris and Wolpert, 1998; van Beers, 

2009), have all been shown to affect individual movements and learning, 

and may affect the similarity between movements as well as the resulting 

generalization. 

 A common interpretation of generalization from one task to another 

is that stronger generalization indicates a larger overlap in the neural 

representations of the two tasks. For instance, Krakauer et al. (Krakauer et 

al., 2000) measured generalization of planar, center-out reaching 

movements with rotation and gain perturbations. Training with a rotational 

perturbation in one direction produced strong generalization to nearby 

angular targets, but did not affect movements to novel targets with large 

angular separations from the training direction (>45°). On the other hand, 

visuomotor gain perturbations tended to generalize globally, to all reach 

directions. This finding suggests that the internal neural representation that 
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changed in response to these perturbations is activated during movements 

to similar angular directions, and that there may be a polar representation of 

planar reaches, where reach angle and extent are independent. Here we 

extend a visuomotor rotations experiment of Krakauer et al. (Krakauer et al., 

2000) by introducing variability in the perturbations. 

It is not clear, a priori, if and how uncertainty might influence 

generalization. One hypothesis, from a normative perspective, might be that 

task variability will make subjects more conservative and generalization 

narrower. High variability may indicate to subjects that it is less likely that 

the perturbation will be present for novel targets. A second hypothesis is 

that higher uncertainty will result in broader neural representations and that 

these could be reflected in wider generalization patterns. Several theories of 

the neural representation of uncertainty explicitly predict that uncertainty 

changes neural tuning. In particular, these models predict that tuning of 

individual neurons becomes wider with higher uncertainty (Girshick et al., 

2011; Zemel et al., 1998), and there is some experimental data suggesting 

that this may be the case (Barlow et al., 1957; Cisek and Kalaska, 2005) 

(see Discussion). If generalization patterns trivially reflect overlapping neural 

tuning and if neural tuning becomes wider with increasing uncertainty then 

we might expect generalization to become broader with increasing 

uncertainty. However, it is difficult to match behavioral results to precise 

neural mechanisms; generalization between two movements can typically 

only be interpreted in terms of the degree of behavioral similarity between 

the movements or in terms of an abstract similarity between the neural 

representations of the two movements (Poggio, 1990; Poggio and Bizzi, 

2004; Pouget and Snyder, 2000; Thoroughman and Shadmehr, 2000). 

 Here, with the goal of examining how uncertainty influences 

generalization patterns, we designed an experiment to manipulate the mean 

and the variance of noisy visuomotor rotations relative to the central starting 

position while subjects performed center-out reaches. We examined how 
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subjects adapt to distributions of perturbations applied during movement in 

one direction (training direction). On each trial a rotation sampled from a 

Gaussian distribution with fixed mean and variance was applied to a hidden 

cursor controlled by the subjects’ index finger. After the subjects adapt, we 

measure how the learned mean generalizes to movements into other 

directions. The mean perturbation remained the same under the different 

noise conditions. If this mean is the only factor driving generalization 

movements, then we would not expect to see any difference between 

generalization curves. On the other hand, since uncertainty has been shown 

to affect many different types of movement, it is important to test whether or 

not generalization changes under noisy perturbations. We found that the 

mean of the perturbation generalizes with a width of about 30 degrees, in 

line with previous studies (Fernandes et al., 2011; Krakauer et al., 2000a; 

Paz et al., 2005). We found that the variance of the perturbation changes 

the speed and extent of learning, but, importantly, generalization is 

unaffected.  

 

2.3 Results 

Here we ask how a perturbation that varies randomly across trials is learned 

for one direction and how adaptation to this perturbation affects movements 

into other directions. We thus extend movement generalization studies by 

analyzing how uncertainty, induced by variability or noise in the perturbation, 

affects generalization patterns. Subjects controlled the position of a hidden 

cursor with their right index finger by making planar reaches in a projector-

mirror system that blocked the view of the hand (Figure 2.1A). They made 

center-out reaches from the workspace center to one of eight targets while a 

visuomotor rotation, relative to the workspace center position, was applied 

to the hidden cursor position. The visuomotor rotation was drawn randomly 

each trial from a Gaussian distribution with fixed mean and variance (Figure 
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2.1B). During learning subjects were incentivized to make reaches to one of 

the targets and received endpoint feedback about the cursor position that 

allowed them to adapt to the perturbations. During testing subjects made 

reaches to the other targets, without endpoint feedback, allowing us to 

examine the generalization patterns (Figure 2.1C). We then measured how 

learning about the rotations under different variance conditions generalized. 

Subjects (n=16) were confronted with a rotational perturbation that 

caused the cursor to deviate from the true hand position as subjects moved 

away from the center of the workspace. We presented three blocks of 

training with the same absolute mean perturbation (±30 degrees) but 

different variability (standard deviations, 
pσ : 0o, 4o or 12o). Since the sign of 

the mean of the perturbation was randomly chosen for each subject and 

condition, in order to compare across subjects we transformed the measure 

of generalization so that positive hand position angles always refer to hand 

position angles that counteract the average perturbation – we call this 

measure the absolute angle of final hand position. In agreement with 

previous studies (Berniker et al., 2010b; Burge et al., 2008), we found that 

subjects rapidly adapt to the mean rotation, and, while they initially make 

large errors, subjects learn to counter-act the perturbation so that errors 

become small over the course of a few trials (Figure 2.2). We found that 

learning is fastest (p<0.03, bootstrap) and most complete (p<0.001, 

bootstrap) for the condition with zero variance (see Methods for details). As 

the uncertainty of the perturbation increased learning was both slower and 

less complete. 
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Figure 2.1. Experimental setup, protocol and typical trajectory data. A) 

Experimental setup. Subjects control the position of a hidden cursor on the screen 

with their right index finger. A projector-mirror system allows the image on-screen to 

be perceived as being in the movement plane. Subjects were incentivized to reach 

to a target (yellow) starting from a central target position (blue). The experiment 

assesses generalization of the learned mean under different uncertainty conditions. 

B) Perturbations and block design for an individual subject. Sequence of trials in the 

learning direction and generalizing directions and perturbations applied to trials in 

the learning direction for an individual subject. 
pσ  denotes the standard deviation of 

the distribution of perturbations. Each block is composed of 4 sub-blocks: 

familiarization, baseline, learning and testing. Numbers in the 1
st
 block horizontal 

axis correspond to the total number of trials during each sub-block (no brackets) 

and the number of trials towards the learning direction during each sub-block 

(between brackets).  C) Typical hand and cursor position during a testing sub-block. 

Thin colored lines are movements towards the learning target (colored circles). 

Dashed thick lines are average hand position for reaches in each direction. Black 

circles are targets in generalizing directions. 
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Once subjects learn the perturbation in one direction we assess how 

this learned perturbation generalizes. Using the average final hand position 

during movements to the testing directions as a measure of generalization, 

we found that the generalization patterns are local in all three variance 

conditions (Figure 2.3A-C). This is in line with Krakauer et al. (Krakauer et 

al., 2000) whose main condition was essentially identical to our 
pσ =0o

 

condition. Given that different subjects have different baseline biases and 

the amount of learning changes depending on subject and condition, we 

subtracted the baseline biases and normalized the generalization by the 

amount of learning in the learning direction – we call this measure the 

percent adaptation relative to the learning direction (Figure 2.3C, see 

Methods). Despite the fact that uncertainty influenced the rate and amount 

of adaptation, we did not find a difference between the generalization curves 

in the three conditions in the absolute angle of final hand position (Figure 

2.3B) (F2,210=1.06, p=0.36, two-way repeated measures ANOVA) or in the 

percent adaptation relative to the learning direction (Figure 2.3C) 

(F2,210=0.11, p=0.89, two-way repeated measures ANOVA). We also did not 

find a significant interaction between uncertainty levels and target angle 

either in the absolute angle of final hand position (F14,210=1.31, p=0.20, two-

way repeated measures ANOVA) or in the percent adaptation relative to the 

learning direction (F14,210=0.63, p=0.84, two-way repeated measures 

ANOVA). These results suggest that the generalization pattern is 

independent of the uncertainty about the perturbation.  
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Figure 2.2. Learning of mean under different variance conditions. A) Learning the 

mean of a perturbation during the first perturbation block for a typical subject. Solid 

lines denote exponential fits. B) Learning the mean of a perturbation during the first 

perturbation block across subjects (n=8, n=4, and n=4 for the standard deviations, 

pσ  of 0
o
, 4

o
 and 12

o
, respectively). Thick lines are average (±SD) across subjects 

considering bins of 5 trials. Thin lines are exponential fits. Grey dashed lines 

indicate the absolute average of the imposed perturbation (30
o
). C) Learning the 
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mean of a perturbation considering all blocks for each variance condition. Thick 

lines denote medians across subjects and trials in a trial window of 5 trials. Shaded 

area is 95% confidence region (bootstrap). D) Variability of angle of final hand 

position. Thick lines denote the interquartile range of the angle of final hand position 

across subjects and a trial window of 5 trials. Shaded area is 95% confidence 

region (bootstrap).  

 

With the exception of the transformed sign of the angle of final hand 

position (for the measures absolute angle and percent adaptation), we have 

thus far ignored the sign of the perturbation (+30o or -30o) in our analysis. 

We can take the sign of the perturbation it into account by reflecting the 

target directions (x-axis in Figure 2.3A-C) of the generalization data relative 

to the learning target direction for those blocks that had a -30o as mean of 

the distribution of perturbations. Given that all sixteen subjects are right-

handed, by ignoring the sign of the mean of the distribution of perturbations 

while combining the data from the different subjects we expect to detect 

biomechanical biases that could eventually scale with the level of variability 

but independently of the sign of the perturbation (Figure 2.3B-C). On the 

other hand if we take into account the sign of the perturbation we test for 

influences of angular direction of the mean of the perturbations on 

generalization and how these might eventually scale with uncertainty 

(Figure 2.3D, see Methods for details). 

When we combine the data across subjects after reflecting of the 

target directions according to the sign of the mean of the perturbation the 

generalization data, we observe an asymmetry in the generalization (Figure 

2.3D). Although we cannot reject the null hypothesis of no effect of 

uncertainty in the three conditions either in the absolute angle of final hand 

position (F2,210=1.06, p=0.35, two-way repeated measures ANOVA) or in the 

percent adaptation relative to the learning direction (F2,210=0.11, p=0.89, 

two-way repeated measures ANOVA), the interaction between uncertainty 
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level and target direction appears to be significant in both in the absolute 

angle of final hand position (F14,210=2.06, p=0.016, two-way repeated 

measures ANOVA) and in the percent adaptation relative to the learning 

direction (F14,210=1.95, p=0.023, two-way repeated measures ANOVA). The 

direction that corresponds to maximum generalization (determined by fitting 

a raised von Mises-like function to each subject and condition data, see 

Methods for details) is not significantly different from zero for the lower 

uncertainty conditions (p=0.07 and p=0.27, for 
pσ =0o and 4o, respectively; 

one-sided t-test), but it is significantly different from zero for 
pσ =12o 

(p=0.001, one-sided t-test). Even though it is not consistent with the 

amounts of uncertainty, there appears to be a weak deviation from a 

symmetric generalization curve.  

One possible explanation for the weak asymmetry that we found is 

use-dependent learning (Diedrichsen et al., 2010; Huang et al., 2011; 

Verstynen and Sabes, 2011). Under this hypothesis, subjects will tend to 

bias their reaching towards highly repeated movements. Hand movements 

during the testing trials would be attracted to the direction in which the hand 

moved during learning. To determine whether or not use-dependent learning 

could account for the observed asymmetry, we first plotted a hypothetical 

symmetric generalization curve - the angle of final hand position (relative to 

the angle of the learning target) as a function of target direction (Figure 

2.3E blue dots) for a perturbation with mean of +30o. Use dependent 

learning is expected to bias these symmetric movements towards the hand 

movements during learning (Figure 2.3E red dots). It is difficult to quantify 

this small effect exactly, but we observe that use-dependent learning is 

consistent with the direction of asymmetry that we see in our data. 

 To check for more subtle differences in generalization we 

estimated the width of the generalization curve for each individual subject 

and uncertainty condition (determined by fitting a raised von Mises-like 
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function, see Methods for details). For 
pσ =0o, 4o and 12o we found 

generalization widths of 27.0±2.2, 24.0±1.1 and 25.4±1.3 (mean±SEM, 

across subjects), respectively. We could not conclude that higher 

uncertainty corresponds to wider generalization for any of the 3 pair-wise 

comparisons (p=0.79, p=0.13 and p=0.92 for 
pσ =12 vs 

pσ =0o, 
pσ =12o vs 

pσ =4o and 
pσ =4o vs 

pσ =0o, respectively; one-sided paired t-test). These 

results suggest that the width of generalization of the mean of a noisy 

visuomotor rotation does not depend on the level of uncertainty in the 

perturbation.  

Finally we did a post-hoc power analysis to compute the minimum 

detectable effect size (see Methods for details). The rationale behind this 

kind of analysis is that there may be a difference in generalization widths 

and that we did not observe it by chance or because the effect size is small 

over the range of noise levels used here. We computed how big the effect 

size should be for us to have a high expectation of observing it using a one-

sided paired t-test with significance level of 0.05. We determined that we 

would expect a probability higher than 0.95 of observing a significant 

difference in the generalization widths, i.e. we would have had sufficient 

power to detect an effect, if the effect sizes (generalization widths) were 

higher than 8.5o, 5.7o and 8.2o for the 12o condition relative to 0o, the 12o 

relative to 4o, and 4o relative to 0o, respectively. Hence we would expect to 

observe a significant difference in the generalization widths even if the effect 

size was relatively small. 
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Figure 2.3. Generalization under different variance conditions. A) Baseline and 

generalization of the mean (±SEM) of a perturbation for a typical subject as 

measured by the absolute angle of final hand position relative to the target. Solid 

lines are generalization patterns after learning and dashed lines denote the pre-

training (baseline) results. B) Average generalization (±SEM) across subjects. Solid 

lines denote generalization patterns after learning and dashed lines denote the pre-

training (baseline) results. C) Percent adaptation (±SEM) in the generalizing 

directions relative to the learning direction. D) Percent adaptation (±SEM) in the 

generalizing directions relative to the learning direction after correcting for the sign 

of the mean of the perturbation; blocks with -30
o
 mean have the target directions (x-

axis) reflected relative to the learning direction. E) Diagram illustrating the direction 

of an asymmetry caused by used-dependent learning. The blue curve denotes a 

symmetric, local generalization pattern - without used-dependent learning. If there is 

used-dependent learning, hand movements in trials towards other targets would be 

attracted towards the direction to which the hand moved during the learning block 

(dashed red line). This effect would predict an asymmetry with the same side as the 

one observed in panel D. 

 

 

2.4 Discussion 

Here we extended traditional movement generalization studies by examining 

how generalization following learning of a visuomotor rotation is affected by 

the introduction of trial-by-trial variability. We found that generalization about 

the mean of a visuomotor rotation is largely unaffected when the 

perturbation is variable – generalization was local under three different 

variance conditions. Adaptation is slower and less complete with increased 

variance level but the width of generalization is unaffected. 

 We could have expected to see differences in generalization widths. 

Narrower or broader generalization could both have been justified based on 

normative arguments or under certain assumptions about the how 
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uncertainty affects overlapping neural representation of movement. 

Furthermore, several previous experiments have shown that generalization 

widths and patterns are neither universally uniform nor immune to changes 

in experimental conditions. Even though the width of generalization seems 

to be consistent across tasks such as reaching and wrist tilting (Fernandes 

et al., 2011; Krakauer et al., 2000), different kinds of perturbations show 

wider generalization; for example, gain perturbations in center-out reaches 

appear to generalize globally (Krakauer et al., 2000). Also, studies that 

manipulate experimental conditions, such as the complexity of the 

perturbation (Thoroughman and Taylor, 2005) show changes in width of 

generalization. Moreover, uncertainty has been shown to affect learning 

(Berniker et al., 2010b; Shea and Kohl, 1990) and retention (Shea and Kohl, 

1990), in particular learning of visuomotor rotations (Saijo and Gomi, 2012; 

Turnham et al., 2012). As uncertainty is important for all of these other 

aspects of motor learning, it may well affect generalization patterns as well. 

Here we have shown that generalization width for visuomotor rotations is not 

affected by changes in variability at least not up to 12 degrees of standard 

deviation. 

A number of models have been proposed for how the nervous 

system might represent and manipulate probability distributions and 

uncertainty (Berkes et al., 2011a; Deneve, 2008; Fiser et al., 2010b; Hinton 

and Sejnowski, 1983b; Hoyer and Hyvarinen, 2003; Ma et al., 2006; Ma, 

2010; Sahani and Dayan, 2003; Zemel et al., 1998). Generally in these 

models, the probability distribution over the set of expected perturbations or 

other environmental variable based on past experience is called the prior. 

After combining the prior expectations with new incoming sensory 

information – the likelihood - a new probability distribution is computed – the 

posterior. By manipulating the variance of stochastic perturbations we are 

modifying the variance of the prior and can alter how much subjects rely on 

new sensory information during single reaches (Körding and Wolpert, 2004). 
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However, depending on how these distributions are represented by a given 

neural model and precise assumptions about the neural basis of 

generalization, these models will make different predictions about 

generalization behavior. 

Some models of neural representation (Girshick et al., 2011; Zemel 

et al., 1998) explicitly propose an encoding scheme where tuning curves 

become wider with increasing uncertainty. Under these models neural 

tuning becomes broader due to the fact that neurons are receiving uncertain 

input (Zemel et al., 1998) or because they are optimizing the representation 

of the prior distribution itself with narrowly tuned neurons representing more 

common directions/orientations (Girshick et al., 2011). Analogous models 

applied to movement direction would predict that higher uncertainty would 

lead to broader tuning curves. There is also some experimental data 

suggesting that individual neurons and populations of neurons are sensitive 

to changes in uncertainty. Receptive fields in the cat’s retina, for instance, 

become wider with decreasing light levels (Barlow et al., 1957) and 

populations of neurons in pre-motor cortex appear to be able to represent 

uncertainty in reach plans (Cisek and Kalaska, 2005). However, there is still 

relatively limited experimental evidence to constrain these models of the 

neural representation of uncertainty, particularly in the movement related 

brain areas. While many electrophysiological experiments have probed how 

single neurons represent movement-related variables such as hand-

direction, speed, or muscle activity (Georgopoulos et al., 1992; Graham et 

al., 2003; Kakei et al., 1999; Moran and Schwartz, 1999; Sergio et al., 2005) 

and even how neural responses change during adaptation to visuomotor 

rotations (Paz et al., 2003), relatively little is known about how neural activity 

changes in the presence of sensorimotor uncertainty (but see Britten et al., 

1992; Cisek and Kalaska, 2002, 2005; Rickert et al., 2009). 

 If it is true that the width of generalization curves reflects the tuning 

widths of the neurons, we did not find signs of such broadening in our 
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generalization study. Importantly, there are three natural interpretations of 

this result. It could be that our study failed to see the effect because we did 

not have the necessary statistical power. However, with 16 subjects we ran 

far more subjects than most movement studies. Also, our power analysis 

revealed that we should have seen even relatively small effects of 

broadening; therefore it seems unlikely that this effect exists and we were 

unable to observe it. Another possibility is that theories that predict 

broadening of tuning curves are wrong, or at least do not apply to simple 

targeted reaching movements. However, none of the theories that deal with 

the representation of uncertainty explicitly mention their predictions of 

generalization and (third interpretation) generalization may be related to 

underlying neural representations in a more complex way than generally 

assumed in motor control research (Donchin et al., 2003; Krakauer et al., 

2000a; Thoroughman and Shadmehr, 2000; Thoroughman and Taylor, 

2005). 

We have found weak signs that generalization curves are slightly 

asymmetric. Use-dependent learning, where subjects are biased to move in 

a way that is similar to how they have been moving previously is one of the 

newly emerging insights in computational motor control (Diedrichsen et al., 

2010; Huang et al., 2011; Verstynen and Sabes, 2011). These theories 

would suggest biases towards the typical direction of hand movement. We 

find that this is consistent with the weak asymmetry that we found in the 

generalization curves. Furthermore it is also a potential explanation for the 

commonly observed adaptation at 180o (Donchin et al., 2003; Fernandes et 

al., 2011; Krakauer et al., 2000), since movements in this direction are 

similar to movements returning from the learning target to the center of the 

working space. Future research would be necessary to clarify which factors 

give rise to this asymmetry. For example, this asymmetry may disappear if 

perturbations are introduced in a gradual manner or if limb mechanics are 

controlled in more detail. 
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For some subjects the simplicity of the task and the salience of the 

perturbations led to cognitive strategies that may have introduced noise in 

the measurements. As such, we found relatively high variability across 

subjects. Gradually introduced perturbations have been shown to lead to a 

more complete adaptation and larger aftereffects (Kagerer et al., 1997; 

Taylor and Ivry, 2011b; Turnham et al., 2012). It would be interesting to test 

if slowly introduced perturbations would reduce the subject-by-subject 

variance and even have some effect in the generalization widths. 

The focus both in behavioral as well as in electrophysiological 

studies in motor control has been on the generalization and representation 

of perturbations without any trial-by-trial variability. While uncertainty has 

been shown to be important in many behavioral settings, variability does not 

appear to change generalization curves during visuomotor rotation. 

Variability does affect learning, however, and understanding how variability 

affects generalization in other tasks should provide some insight into the 

neural representations of uncertainty and movement. 

 

2.5 Materials and Methods 

 

Ethics statement. The experimental protocol was approved by the 

Northwestern University Institutional Review Board and is in accordance 

with the Northwestern University Institutional Review Board's policy 

statement on the use of human subjects in experiments. Written informed 

consent was obtained from all participants. The Institutional Review Board 

of Northwestern University approved the study. 
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Experimental protocol. Sixteen right-handed healthy subjects (5 male, 11 

female; aged 27±3.2 years) participated in the experiment. All were naive to 

the purpose of the experiment, and were paid according to their 

performance. Subjects made center-out reaches in an approximately 150 x 

150mm central region of a 100cm x 70cm workspace. They controlled the 

position of a cursor with their right index finger, which was recorded using 

an Optotrak 3D Investigator Motion Capture System. A projector and mirror 

system was calibrated such that visual feedback was perceived as being in 

the movement plane (Figure 2.1A), and the subject's view of their hand was 

blocked by the mirror. 

The task was designed to measure how subjects generalize the 

mean of a noisy visuomotor rotation, that is, how a perturbation learned 

during movements in one direction affects subsequent movements in other, 

test directions. This experiment extends a previous paradigm that allows 

measurement of generalization about a fixed perturbation (Krakauer et al., 

2000) to include stochastic perturbations. 

Subjects were instructed to make center-out reaches into a certain 

direction (the learning direction) until they adapted to the 

perturbations/rotations. During this period subjects were given endpoint 

feedback - that is, the final position of the hidden cursor was displayed - and 

were eventually able to correct endpoint errors in the learning direction. 

Afterwards, they were instructed to make movements into other directions 

(the generalizing directions) in order to measure the generalization pattern 

of the learned mean of the perturbation. Generalization of the mean was 

assessed by analyzing their average reaching direction for each target. 

The learning direction was randomly sampled from one of the 4 

diagonal directions and generalization was measured in 7 directions: 180o, 

±90o, ±45o and ±25o from the learning direction (Figure 2.1C). Subjects 

controlled the position of a red circle, the cursor (~3mm radius), with their 
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right index finger. Except for the first familiarization trials the position of the 

cursor was hidden. Subjects were instructed to make radial reaches from a 

central blue circle, the starting circle (~6mm radius) to one of 8 yellow 

circles, the targets (~6mm radius). Targets were all displayed at a distance 

of 72mm from the central blue circle. 300ms after positioning the cursor over 

the blue circle, the cursor disappeared, one of the eight targets appeared 

and subjects had to reach it. On some of the trials the final position of the 

cursor was displayed for 500ms (endpoint feedback). The final position of 

the cursor was defined as the first position of the cursor when its center was 

at a distance greater than 72mm from the center of the starting circle. If the 

reach was successful, that is, if the center of the red cursor was inside the 

target then the target turned white and subjects were rewarded by having a 

point added to their score. If a successful reach happened in those trials 

where no information was provided about the success of the reach (no 

endpoint feedback) then a point was added to a hidden score. To initiate the 

next trial, subjects had to reposition the cursor in the starting blue circle. 

Except for the familiarization trials where the cursor was always visible, the 

cursor was visible only within a distance of 10mm from the center of the 

starting blue circle. Since some subjects have difficulty finding their way 

back to the starting blue circle, 4 seconds after the previous trial was over, 

the cursor flashed every second for 50ms to allow subjects to find the 

starting position. 

We measured generalization of the learned mean for a rotation of 

±30o under three variability levels. Each trial, noise was added to the 

visuomotor rotation drawn from a Gaussian with a standard deviation of 0o, 

4o or 12o. The standard deviation of 0o reproduces previous experiments 

that measured the generalization pattern of a deterministic visuomotor 

rotation (Krakauer et al., 2000). 

The experiment was divided into three blocks of 560 trials (Figure 

2.1B). Blocks differed in the level of variance and were pseudo-randomized. 
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Each block was composed of 4 sub-blocks: Familiarization, Baseline, 

Learning and Testing. No rotation was imposed during the familiarization 

and baseline blocks. In all cases, the maximum time to complete each trial 

was 4 seconds and the minimum time 40ms. If any of these times was 

violated the trial was restarted.  

Familiarization. During the first half (40 trials, 5 movements to each 

target) of the familiarization sub-block the cursor was always visible. During 

the second half (40 trials, 5 movements to each target) only endpoint 

position was displayed.  

Baseline. This sub-block was used to measure the baseline (80 

trials, 10 movements to each target). These reaches were made under the 

same conditions as the second half of the familiarization block – endpoint 

feedback was provided in all trials and no perturbation was applied to the 

cursor. 

Learning. Subjects completed 240 trials of movements towards a 

single learning target with only endpoint feedback. The cursor was rotated 

relative to hand position.  

Testing. The testing sub-block was composed of 160 trials. In order 

to prevent de-adaptation to the perturbation, the learning target was 

revisited at least twice every 4 trials; every sequence of 4 trials consisted of 

two reaches towards the learning target and two reaches towards any two of 

the 8 targets. Targets were chosen pseudo-randomly so that there were 10 

reaches total towards each of the generalizing directions. Endpoint feedback 

is provided only in the learning direction trials. During these trials towards 

the learning direction the perturbations applied to the cursor position were 

sampled from the same distribution used in the learning block. 
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Data analysis. Final hand position angle gives us a measure of the 

subject’s estimation of the perturbation. For each trial we computed the final 

hand position by averaging the last data point before the hand goes beyond 

a distance of 72mm – the target radial distance – from the center of the 

starting circle and the first data point after that. Notice that final hand 

position is well defined for every trial since trials were restarted whenever 

the subject did not go beyond a distance of 72mm. 

 Absolute final hand position and percent adaptation. Since the sign 

of the mean of the distribution of perturbation was randomly chosen for each 

block and each subject, we normalized the angle of final hand position 

according to the sign of mean of the perturbations so that the average final 

hand position angle in the learning direction was positive for every block; 

this was done by multiplying by -1 the angle of final hand position when the 

mean of the distribution of perturbations was positive (+30 degrees). We call 

this measure the absolute final hand position. We measured the baseline 

movement biases, )(θb , and the learned and generalized means, )(θg , by 

considering the average absolute angle of final hand position (Figure 2.2). 

Specifically, ,( ) b

t t h tb θ θ θ= − and ,( ) g

t t h tg θ θ θ= − , where t
θ  is target 

direction, ,b t

hθ  and ,g t

hθ  are average absolute angles of final hand position in 

trials towards target t during baseline and testing, respectively. Using this 

information we can compute the percent adaptation, that is, the difference 

between testing and baseline in the each direction relative to the learning 

direction l
θ  (Figure 2.3C): 
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percent adaptation( ) 100

( ) ( )

t t
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θ θ
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−
 

 

Notice that a positive absolute angle of final hand position or percent 

adaptation corresponds to a hand movement that counteracts the mean of 
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the distribution of perturbations. We use one of these two measures in every 

figure and analysis (with the exception of Figure 2.1A and 2.3E where the 

true sign of final hand angle is displayed). 

Time-scales of learning. To compute the time scales and amount of 

adaptation we considered only the first block of learning for each subject 

(n=8, n=4 and n=4 for 
pσ =0o, 4o and 12o, respectively). We then fitted 

exponential learning curves that were constrained to start at zero. We used 

bootstrapping over trials to determine the p-value for the differences 

between the timescales of learning and between adaptation at end of the 

learning sub-blocks.  

Correcting for the sign of the mean of the perturbation.  For part of 

the analysis (Figure 2.3D) we wanted to take into account the fact that, for 

some of the blocks, the mean of the imposed perturbation had negative sign 

(-30o). This was done with the objective of searching for aspects of 

generalization that could depend on the sign of the imposed perturbation. 

We did the correction by reflecting the target directions relative to the 

learning target direction; if we set the learning target direction, l
θ  to be 

zero, then the corrected generalization function ( )c
g θ  is defined as: 

( ) ( )c
g gθ θ= − . 

Width of generalization. To determine the generalization width we 

used raised von Mises-like (circular Gaussian) functions:  

2 3cos( )

0 1 2 3 0 1( | , , , ) expg b b
β θ βθ β β β β −= +  2.1 

 

where θ  is target direction. We fitted these functions to each individual 

percent adaptation generalization.  We used 21/ β  as the estimate of 

generalization width. We excluded two subjects from this analysis because 
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the estimated width of their generalization in at least one of the uncertainty 

conditions was more than 10 standard deviations away from the mean of the 

remaining subjects’ widths for that uncertainty condition. 

Peak of generalization. To determine if there is a consistent 

asymmetry in the generalization pattern, we determined, for each subject 

and each uncertainty condition, the angle of maximum generalization given 

by the parameter 3β  in Equation 2.1. The sign of the parameter was 

corrected for the sign of the mean of the perturbation, more specifically, we 

multiplied 3β  by the sign of the mean of the perturbation. 

Effect size. To compute the minimum effect size, η , that would 

have been required for detecting an significant effect with probability above 

0.95 using a two-sample one-sided paired t-test at a significance level of 

0.05, we used the standard minimum detectable effect formula (e.g. see 

Zar, 1999) 

2 2

1 2
0.05,26 0.05,26( )

14

s s
t tη

+
= +  

where 1s  and 2s  are the estimated variances of widths for each uncertainty 

condition and ,tα ν  represents the value of the inverse of the cumulative t-

student distribution with ν  degrees of freedom at  1 α− . 
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3.1 Summary 

Bayesian statistics defines how new information, given by a likelihood, 

should be combined with previously acquired information, given by a prior 

distribution. Many experiments have shown that humans make use of such 

priors in cognitive, perceptual, and motor tasks, but where do priors come 

from? As people never experience the same situation twice, they can only 

construct priors by generalizing from similar past experiences. Here we 

examine the generalization of priors over stochastic visuomotor 

perturbations in reaching experiments. In particular, we look into how the 

first two moments of the prior - the mean and variance (uncertainty) - 

generalize. We find that uncertainty appears to generalize differently from 

the mean of the prior, and an interesting asymmetry arises when the mean 

and the uncertainty are manipulated simultaneously. 
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3.2 Introduction 

People use priors during sensorimotor tasks, and such priors allow 

perception and movement to be more accurate in many situations (Alais and 

Burr, 2004; Jazayeri and Shadlen, 2009; Körding and Wolpert, 2004a; 

Tassinari et al., 2006). In Bayesian statistics the prior reflects information 

accumulated from previous experience, which is then combined with 

incoming sensory feedback (the likelihood). As we interact with the world, 

we learn about its statistics (e.g. means and variances) and incorporate this 

information into our priors. However, since we are never in the same 

situation twice, we must use past information from different but similar 

situations to derive the right prior beliefs for a specific task. Only by 

generalizing from past situations to our current one can we calculate what to 

expect. 

In asking how humans generalize priors it is essential to understand 

how we represent uncertainty. There are a number of models of how the 

nervous system might represent uncertainty (Fiser et al., 2010a; Hoyer and 

Hyvärinen, 2003; Ma et al., 2006). However, there is limited experimental 

evidence to constrain these models. Many electrophysiological experiments 

have probed how single neurons represent movement-related variables 

such as hand-direction, speed, or muscle activity (Georgopoulos et al., 

1992; Kakei et al., 1999; Moran and Schwartz, 1999; Sergio et al., 2005), 

but relatively little is known about the neural representation of uncertainty in 

sensorimotor tasks (Britten et al., 1992; Cisek and Kalaska, 2005; Rickert et 

al., 2009). Furthermore, to our knowledge, none of the theoretical models for 

neural representations of uncertainty makes any prediction for 

generalization of priors nor is there an established normative conjecture for 

how behaviors should generalize. 

One way of characterizing the generalization of priors comes from 

previous generalization experiments in motor control (Donchin et al., 2003; 



35 

 

Ghahramani et al., 1996a; Mattar and Ostry, 2007; Shadmehr, 2004; 

Thoroughman and Shadmehr, 2000). During center-out reaching, training 

with a rotational perturbation in one direction biases movements to nearby 

targets, and this bias decreases with increasing distance from the training 

direction (Krakauer et al., 2000). Previous studies have looked into whether 

uncertainty affects this generalization pattern (Fernandes et al., 2012). 

However how uncertainty itself might generalize is unknown.  

Here, we manipulated the mean and the variance (uncertainty) of a noisy 

visuomotor rotation (the prior) imposed during movements in one (training) 

direction. After training, we examined subjects' movements in test directions 

and measured subjects' uncertainty by probing their reliance on feedback 

(the likelihood) (Körding and Wolpert, 2004). In a first experiment we 

manipulated the variance without changing the mean. As with standard 

rotational generalization, we found a strong local effect where subjects' 

uncertainty peaks in the training direction and decreases with increasing 

distance. However, unlike standard rotational generalization, we found that 

changes in uncertainty had a global effect. In a second experiment we 

manipulated the variance while introducing a mean perturbation and 

observed interesting nonlinear interactions between mean and variance -- 

subjects had the highest uncertainty not in the training direction but in a 

direction away from the perturbation.  

 

 

3.3 Materials and Methods 

 

Ethics statement. The study and all experimental protocols were approved 

by the Northwestern University Institutional Review Board and are in 

accordance with the Northwestern University Institutional Review Board’s 



36 

 

policy statement on the use of human subjects in experiments. Written 

informed consent was obtained from all participants. 

 

Experimental protocol. General. Forty right-handed healthy subjects (15 

male, 25 female; aged 28.5±3.5 years) participated in the experiments; n=32 

in Experiment 1 and n=8 in Experiment 2. All were naive to the purpose of 

the experiments, and were paid according to their performance. Subjects 

made center-out reaches in a 150 x 150 mm workspace. They controlled the 

position of a cursor with their right index finger, which was recorded using 

an Optotrak 3D Investigator Motion Capture System. A projector and mirror 

system was calibrated such that visual feedback was perceived as being in 

the movement plane (Figure 3.1A and Fernandes et al., 2012), and the 

subject's view of their hand was blocked by the mirror. 

 

 

Figure 3.1. Experimental setup and typical trajectory data. A, Subjects move a 

hidden cursor from a starting position to a target (yellow) by moving their occluded 

right index finger. We measure the generalization of the learned variance of a 

perturbation utilizing the response to a noisy midpoint cursor feedback (red dots). B, 

Experiment 1, with zero mean perturbation. Subject’s hand and cursor position 

during learning trials (red trials, black average). Average trajectories for generalizing 

directions are shown as black dashed lines (corresponding targets are black dots). 
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The position where midpoint feedback is triggered is denoted by the red line. C, 

Experiment 2, where the absolute mean perturbation is 30
o
. Same notation as (B). 

 

The task was designed to measure how subjects generalize a 

learned variance (and the learned mean) of a noisy visuomotor rotation, that 

is, how the uncertainty related to a perturbation learned during movements 

into one direction affects subsequent movements into other, test directions. 

The experiments combined two previously existing paradigms; one that 

allows measurement of generalization of the mean of perturbations 

(Fernandes et al., 2012; Krakauer et al., 2000) and another that allows 

measurement of how uncertain subjects are of a perturbation (Körding and 

Wolpert, 2004). 

Subjects were instructed to make reaches into a certain direction 

(the learning direction) until they adapted to the perturbations. During this 

period subjects were given endpoint feedback, and were eventually able to 

correct endpoint errors in the learning direction. Afterwards, they were 

instructed to make movements into other directions (the generalizing 

directions) in order to measure the generalization patterns of the learned 

mean and of the learned variance of the perturbation. Generalization 

patterns were assessed by using the fact that subjects combine their 

previous knowledge about the distribution of perturbations (the prior) and 

the feedback (the likelihood, see below) that they receive midway through 

the movement about the true position of the cursor weighted by their relative 

uncertainties (Körding and Wolpert, 2004). The ideal way to combine these 

two sources of information is to combine the means of the prior and 

likelihood, weighted by their relative precision (the inverse of the variance). 

Assuming that subjects combine this information optimally we can measure 

their relative uncertainty by computing the slope of a linear regression of the 

negative of final hand position (subjects’ estimated perturbation) as a 
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function of the perturbation (see Equations 3.1 and 3.2 and Figure 3.2A). 

Analogously we are able to simultaneously measure the mean of the prior 

(see Equation 3.3). 

In order to probe uncertainty, 5 red circles identical to the cursor are 

flashed midway through every trial reach: the midpoint feedback (likelihood). 

The position of these dots is sampled from an isotropic two-dimensional 

Normal distribution centered on the true position of the cursor with variance 

~5.1mm (chosen empirically to avoid complete reliance on either prior or 

likelihood, see below). Hence they give uncertain information about the true 

position of the cursor. The midpoint feedback is shown already during the 

familiarization block. This way subjects get a better idea of how the dots 

relate to the position of the cursor. We use the final hand position to 

measure the level of uncertainty that the subject has on the hidden cursor 

position. Describing it within the nomenclature of the Bayesian framework, 

the perturbation is sampled from a distribution with defined mean and 

variance and which is approximated by the prior, the midway flashing dots 

that give uncertain information about the true position of the red cursor 

correspond to the likelihood and the estimated perturbation corresponds to 

the mean of the posterior. By looking at the slope of the negative of the final 

hand position (mean of the posterior) as a linear function of the perturbation 

(Figure 3.2A) we can estimate the relative reliance on prior information -- 

relative to midpoint feedback information (Körding and Wolpert, 2004). 

Hence we can compute a relative measure of subjects’ learned and 

generalized uncertainty.  

The learning direction was randomly sampled from one of the 4 

diagonal directions and generalization was measured in 7 directions 

displayed at 180o, ±90o, ±45o and ±25o degrees from the learning direction. 

Subjects control the position of a red circle, the cursor (~3mm radius), with 

their right index finger. Except for the first familiarization trials the position of 

the cursor is hidden. Subjects were instructed to make radial reaches from a 
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central blue circle, the starting circle (~6mm radius) to one of 8 yellow 

circles, the targets (~6mm radius). Targets were all displayed at a distance 

of 72mm from the central blue circle. 300ms after positioning the cursor over 

the blue circle, the cursor disappeared, one of the eight targets appeared 

and subjects had to reach it. On some of the trials the final position of the 

cursor was displayed for 500ms (endpoint feedback). If the reach was 

successful, that is, if the center of the red cursor was inside the target then 

the target turned white and subjects were rewarded by having a point added 

to their score. If a successful reach happened in those trials where no 

information was provided about the success of the reach (no endpoint 

feedback) then a point was added to a hidden score. To begin the next trial, 

subjects had to reposition the cursor in the starting blue circle. Except for 

the familiarization trials where the cursor was always visible, the cursor was 

visible only within a distance of 10mm from the center of the starting blue 

circle. Since some subjects have difficulty finding their way back to the 

starting blue circle, 4 seconds after the previous trial was over, the cursor 

flashed every second for 50ms to allow subjects to find the starting position. 

The study comprised two experiments; Experiments 1 and 2. The 

experiments differ in that the mean of the imposed perturbations is zero in 

Experiment 1 and nonzero in Experiment 2. 

 

Experiment 1: Generalization of uncertainty under zero mean rotation. 

The goal of Experiment 1 is to measure the generalization pattern of 

uncertainty. The experiment begins with an initial Familiarization block (40 

trials, 5 movements to each target) where the cursor is always visible. No 

rotation was imposed during the familiarization block. After that, the 

experiment is divided into two blocks of 720 trials, one for each level of 

variability (std: 4o or 12o). The two blocks differ only in level of variance and 

their order is pseudo-randomized across subjects. 
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Each block of 720 trials is composed by a Learning and a Testing 

sub-blocks. The learning direction is the same for both blocks, but selected 

randomly for each subject from 4 possible directions; ±45o and ±135o. The 

maximum time to complete each trial is 4 seconds and there is a minimum 

time of 400ms to complete the second half of the reach. If any of these 

times is violated the trial is restarted. The minimum time threshold is to 

guarantee that subjects have enough time to integrate the midpoint 

feedback information. 

Learning. Subjects complete 240 trials of movements towards a 

single learning target with midpoint (the cloud of circles flashed midway 

through the movement) and endpoint feedback. The cursor is hidden and 

rotated relative to hand position. The rotations applied within each block are 

sampled from the same normal distribution with mean 0o and standard 

deviation pseudo-randomly chosen to be either 4o or 12o. 

Testing Uncertainty. The testing uncertainty sub-block (480 trials) is 

composed by sequences of 4 trials. In order to prevent forgetting of the 

perturbation the first 2 trials of these sequences are towards the learning 

direction and the other 2 towards any 2 of the 8 possible directions. Targets 

are chosen pseudo-randomly so that exactly 20 reaches are made towards 

each generalization target.  Endpoint feedback is provided only in trials 

towards the learning direction and midpoint feedback is provided in all 

directions. 

 

Experiment 2: Generalization of uncertainty under nonzero mean 

rotation. Experiment 2 is aimed at measuring the generalization pattern of 

mean and variance when both are perturbed simultaneously. The purpose 

of Experiment 2 is to distinguish between the abstract Bayesian models that 

explain the data of Experiment 1 and to see how changing the mean of a 

perturbation influences the generalization of uncertainty. Hence, the 
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difference between Experiments 1 and 2 is essentially that in Experiment 2 

the perturbations have a nonzero mean. The experiment starts with a 

Familiarization block (40 trials) just like the one in Experiment 1, and it is 

then divided into two blocks of 880 trials. The reason for the larger number 

of trials is that there is an extra sub-block between the Learning (240 trials) 

and the Testing Uncertainty (480 trials) sub-blocks; the Testing Mean sub-

block (160 trials).  

Testing Mean. Sub-block for measuring the generalization of the 

mean (160 trials). This sub-block allows us to measure directly how each 

subject generalized the mean of the perturbation (see Figure 3.5A, B). 

Subjects make reaches towards all targets. Endpoint feedback and midpoint 

feedback are provided only in the learning direction trials. In order to prevent 

de-adaptation to the perturbation, the learning target is revisited at least 

twice every 4 trials; every sequence of 4 trials is composed by two reaches 

towards the learning target and two reaches towards any two of the 8 

targets. Targets are chosen pseudo-randomly so that there are in total 10 

reaches towards each of the generalizing directions. Even though midpoint 

feedback is not displayed in movements towards generalizing direction, 

there is still a minimum amount of time to complete the second part of the 

movement in every trial. Hence, subjects still slow down halfway through the 

movement as in the trials where midpoint feedback is displayed.  

We can then use these measurements of the generalization of the 

mean during the Testing Uncertainty sub-block; in each target direction, the 

perturbation will have a mean equal to how much the subject generalized 

the learned mean to that direction (as measured in the Testing Mean sub-

block, see Figure 3.5A, B). Notice that, even though there is no endpoint 

feedback during Testing Uncertainty, if the mean perturbation doesn’t match 

the subject’s generalized mean then the midpoint feedback could perturb 

subjects learned mean and uncertainty, and, consequently the 

measurement of generalization of uncertainty. Hence, by matching the 
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mean of the probing perturbation in each of the generalizing directions with 

the learned mean, we minimize the possibility of subjects learning from the 

midpoint feedback information (see description of the experimental design 

below for further details regarding this issue).  

 

Experimental protocol. Details. There are two important details to be 

noticed regarding the experimental design of both experiments.  

It is not possible to measure a baseline for uncertainty using this protocol. It 

is not possible to measure a baseline for relative reliance on midpoint 

feedback due to the fact that we need to introduce a perturbation to 

measure the slope (Equation 3.1 and 3.2 and Figure 3.2A). For that reason 

we measured the generalization of two different levels of variability – 

standard deviation of 4o and 12o. These standard deviation values were 

chosen empirically based on several constrains that the task imposes: at the 

same time that both values need to be sufficiently different, the smaller 

variance cannot be too small otherwise the range of the perturbations is not 

large enough to measure the relative reliance on midpoint feedback (the 

slope of a linear regression) with a reasonable confidence interval. The 

higher variance condition cannot be too large otherwise it could introduce 

nonlinearities (Körding et al., 2007; Wei and Kording, 2009) and because of 

the constrains inherent of working in a circular support. The standard 

deviation of the likelihood was chosen empirically so that the slopes would 

be close to 0.5. This is the range where behavior is influenced equally by 

prior and likelihood, and thus where fluctuations in uncertainty will have the 

most effect. Several values were tested while designing the experiment, 

starting with the theoretical value that would produce the desired slope and 

changing it until values obtained for the slope were around 0.5. 

In the generalizing directions, the standard deviation of the perturbation 

used to probe uncertainty is the same regardless of the standard deviation 
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of the imposed perturbation in the learning direction. Since midpoint 

feedback is necessary to measure subject's relative uncertainty, special 

care is needed to ensure that this feedback does not bias measurements of 

generalization. Differences in learning and sensorimotor integration could 

both lead to spurious differences in the patterns of relative uncertainty. In 

both experiments we do not provide endpoint feedback in the generalizing 

directions. In Experiment 1 this is enough to ensure that differences in 

generalization patterns cannot be due to learning during the testing phase. 

However, during both experiments, perturbed midpoint feedback is the only 

method to measure each subject's relative uncertainty. The spread and 

timing of the midpoint feedback was the same across the two variance 

conditions. Additionally, we set the variance of the perturbation in the 

generalization directions to the geometric mean of the two standard 

deviations used in the learning directions, namely 124 × o. This 

guarantees that the only difference in the distribution of perturbations 

between the blocks of trials during movements in the learning direction. The 

important consequence is that, even if the midpoint feedback allowed 

subjects to learn during generalization trials, learning would only act to bring 

the two generalizations curves closer together. The methods used here, 

thus, set a lower bound on the distance between the generalization patterns 

for the two variance conditions. 

 

Data analysis. General. 

Final hand position and estimated perturbation. In this paradigm, the final 

hand position angle, fhθ  angle gives us a measure of subjects estimated 

perturbation θ̂ , specifically; fhθ̂ θ= − . We compute the final hand position 

for each trial by averaging the last data point before the hand goes beyond a 

distance of 72mm – the target distance – from the center of the starting 
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circle and the first data point after that. Every trial was restarted if subjects 

didn’t go beyond the target distance, thus fhθ  and θ̂  are defined for every 

trial. 

 

Measuring generalization of uncertainty; relative reliance on midpoint 

feedback (slope). We assume that the estimated perturbation corresponds 

to the mean of the posterior (Körding and Wolpert, 2004). Assuming 

Gaussian distributions, an ideal observer/actor would combine information 

from their prior over cursor perturbations (
pθ ) and the perturbation angle 

sensed from the midpoint feedback information (
fθ ) weighting their values 

by their relative precisions, according to   

2 2

2 2 2 2
ˆ f p

p f

p f p f

σ σ
θ θ θ

σ σ σ σ
= +

+ +
  3.1 

 

Where 2

pσ  and 2

fσ  denote subjects’ uncertainty in prior and midpoint 

feedback respectively. Subjects estimated angle of the perturbation (θ̂ ) is 

reflected in the angle of their final hand position. As a proxy for the sensed 

perturbation angle (
fθ ) we use the real perturbation angle corrected (see 

below) for the bias in the centroid of the sampled flashing dots of the 

likelihood. That is, instead of considering the real perturbation angle we 

considered the angle that a vector from the center of the central blue circle 

to the centroid of the flashing dots would do with the target direction if the 

subject had moved straight to the target. Importantly, this equation allows us 

to estimate the relative learned variance of the prior for each generalizing 

direction, and to compute a relative generalization function for uncertainty. 

We estimate the value of the slope (
ps ) 
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for each variance condition and direction using linear regression (Figure 

3.2A) – we use the median of bootstrap samples to reduce the influence of 

outliers when computing the slopes. This slope, the relative uncertainty, 

serves as the basis for most of our analysis. The centroid adjustment and 

bootstrapped slope estimates provide more robust measures of behavior, 

but using unadjusted perturbations and maximum likelihood estimated slope 

produce qualitatively very similar results. 

 

Measuring generalization of the mean.  

Inferred mean. We are able to infer the mean of the prior in both 

experiments using the data from the testing uncertainty block. We do this by 

computing the intercept of a linear regression; we can rearrange Equation 

3.1 to obtain   

2 2

2
ˆ( )

f p

f p f

f

σ σ
θ θ θ θ

σ

+
= + −   3.3 

We can hence, for each target direction, use as estimate of the subjects’ 

mean of the prior,
pθ , the intercept of linear regression of 

fθ  as a function of 

ˆ
fθ θ− . 

Direct measurement of the prior’s mean. In Experiment 2, during the testing 

mean block, we were able to directly measure generalization of the mean in 

each of the generalizing direction; during the trials in the generalizing 

directions of the testing mean sub-block, subjects were not shown midpoint 

feedback (the likelihood) and hence their estimate - as inferred by final hand 
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position - is assumed to be the mean of the prior distribution. Using this 

information we were able to compute, during the experiment, the means of 

the perturbations used to probe uncertainty in the generalizing directions 

during the testing uncertainty sub-block (see Experimental protocol above 

for details). During trials in the learning direction subjects were still shown 

midpoint feedback. Thus, their average final hand position during trials 

towards the learning direction is an estimate of the mean of the posterior 

and not of the prior. The generalization patterns obtained during the test of 

the mean block match very well the ones inferred using the data from the 

testing of uncertainty blocks (F1,7=3.27, p=0.11, two-way (testing block, 

direction) repeated measures (subject) ANOVA, see Figure 3.5B; see also 

Figure 3.5A first and second rows for individual subject data). The higher 

complexity of this task, relative to previous studies that measured 

generalization of means (Fernandes et al., 2012), lead to smaller variability 

(possibly due to smaller variability in cognitive strategies) across subjects. 

Absolute mean and percent adaptation. In Experiment 2, since for half of the 

subjects the mean of the perturbation was -30o, we normalized the 

estimated perturbation (as measured by the negative of the angle of final 

hand position) according to the sign of the mean of the perturbation; we 

multiplied by -1 the angle of the estimated perturbation if the mean of the 

perturbation was negative (-30o). Hence, a positive absolute mean 

corresponds to a movement that counteracts the perturbation. We call the 

measurements of the mean using this normalization the inferred absolute 

mean and the measured absolute mean. Using the absolute inferred mean 

we compute the percent adaptation, the amount of learned/generalized 

mean relative to the learned mean in the learning direction (Figure 3.4E). 

The percent adaptation in the learning direction is hence, by definition, 

100%.    
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Models for generalization.  

The models we consider are online learning models. They use gradient 

descent to learn the mean and standard deviation of the imposed prior; for 

each trial they use gradient descent to minimize the expected squared error 

between the target angle and the final cursor position angle. 

Consider the subjects’ original prior: 

0 0 0 0( , ) (0 , )p θ σ σ°= =N N
   

.  

We assume that the original prior is the same for all directions. Throughout 

this section we generally use θ  to denote perturbation related angles and φ  

to denote target angles. Note that the perturbation angles θ  are always 

given relative to a target direction. 

We define a context function, ( )
l gWφ φ , for a target direction 

gφ  relative to 

the learning target direction l
φ , as a scaled von Mises function: 

( ) ( )( )( )0 1exp cos /
l g g lW b bφ φ φ φ α= + −

   

 

where 0b  is a baseline for context, 1b  defines the width of the context and 

0 1exp( )b bα = +  is a normalization factor so that context is 1 in the learning 

direction, that is, ( ) 1
l lWφ φ = . This is the same as saying that generalization 

is complete in the learning direction. The context function can be interpreted 

as defining how similar the movement directions.  
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The Model’s parameters are: three context function parameters allowing for 

different context baselines for mean and variance, 0
pb

θ
, 0

pb
σ

, 1b ; the initial 

prior uncertainty 0σ  and likelihood uncertainty 
fσ  and the learning rates of 

mean and variance, 
pθη  and 

pση . These 7 parameters were enough to 

produce good fits to the data from the first block. However, we observed 

that, none of the models managed to capture decreases in the variance of 

the prior during the second block. For this reason and to account for 

possible differences between the learning and the testing blocks, we added 

an extra parameter that scales the model’s output of prior uncertainty at the 

end of learning before fitting it to the testing data. Hence both Models 1 and 

2 have a total of 8 parameters. While Model 1 is the target centered, Model 

2 tests the hypothesis that generalization of variance has a non-target 

centered reference frame; the visual feedback information. 

 

Model 1. Gradient descent with target centered reference frame. On each i-

th trial of the learning block, the subject is trying to minimize the squared 

error between the target angle and the final cursor position angle, that is, 

trying to learn the mean ˆ
pθ  and variance 2ˆ

pσ  of the prior imposed in the 

learning direction  such that 

( )
,

ˆ ˆ( , ) arg min , ,l l

p p

i

p p p p
e

φ φ

θ σ

θ σ θ θ σ=

   

 

where i
θ  is the perturbation imposed during the i-th trial and 

( ) ( )( )
2

ˆ, , ,i i

p p p pe θ θ σ θ θ θ σ= − where ( )ˆ ,p pθ θ σ   is defined in Equation 

3.1. The model takes as input the learning trials and assumes that the 

standard deviation and mean of the subject's prior evolve according to  
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Model 2. Gradient descent with difference frames of reference; visual 

feedback centered context for generalization for variance. The only 

difference between the models is that the context function for uncertainty in 

the prior (standard deviation, 
pσ ) is centered on the angle of the centroid of 

the displayed cloud of dots, c
φ , while the context function for the mean 

remains centered on the learning target direction, l
φ : 

, 1 , 1

, , 1

,

( )g g

p c

i il c
p p

i i
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e
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In order to avoid using behavioral data obtained during the learning block, 

the model uses the predicted position of the cloud of dots as a proxy for c
φ . 

This predicted position is obtained by computing, give the trial perturbation, 

where the cloud of dots would appear if the subject performed a straight 

center-out movement corrected by the current mean of the prior. Equivalent 

results were obtained when data from the learning block, the actual angle of 

centroid of the cloud of dots, was used. However, using only testing data 

allows for a fair comparison of all models, and allows us to simulate the 

models even in the absence of behavioral data.  
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Computing the gradient 

To compute the partial derivative of the error function, ( ), ,i

p pe θ θ σ , we 

observe that 

( ) ( )( ) ( )
2 2

ˆ, , , (1 )i i i

p p p p p f p pe s sθ θ σ θ θ θ σ θ θ θ= − = − − −  

where  ( )2 2 2/p p p fs σ σ σ= +  and θ̂  is defined in Equation 3.1. 

 

Applying the chain rule we obtain the partial derivatives: 

( ) ( )
( )

2 2

22 2
2 2

2 2
p fi

p p f p f p

p p f
p f

e σ σ
θ θ θ θ θ θ σ
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( )( )( )2 1 1
p p p p f p

p

e
s s sθ θ θ

θ

∂
= − − − − −

∂
 

 

Model fitting.  

We fitted the models to the slope and mean data of each subject by 

minimizing the squared distance to the subjects slope and mean in each 

direction weighted by the precision (inverse variance, obtained using 

bootstrapping) of each data point. To account for discrepancies between the 

learning and testing blocks, both models have an additional scaling 

parameter that allows us to fit the output of the learning model to subject’s 

prior uncertainty during testing. To compare models (Figure 3.7) we 

bootstrap over the average difference between the weighted RMSE across 

subjects. 
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3.4 Results 

Here we ask how a noisy perturbation in one, training direction affects 

reaches into other directions. In particular, we aim to extend movement 

generalization studies by understanding how both the mean and the 

variance of a training perturbation affect other movements. Subjects 

controlled the position of a hidden cursor with their right index finger while 

their true hand position was occluded by a projector mirror system (Figure 

3.1). They made reaches from the workspace center to one of eight 

concentric targets with a visuomotor rotation applied to the hidden cursor 

position. The visuomotor rotation was drawn randomly each trial from a 

Gaussian distribution with fixed mean and variance. During learning 

subjects were incentivized (see Materials and Methods) to make reaches 

to one of the targets (training) and received endpoint feedback that allowed 

them to adapt to the perturbations. During testing subjects also made 

reaches to the other targets, without endpoint error feedback, allowing us to 

probe generalization. All subjects went through 2 blocks of training, each 

with a different variance (
pσ : 4o or 12o). We measured how the learned 

variance generalizes, first without perturbing the mean (Experiment 1) and 

then while also perturbing the mean (Experiment 2). 

As subjects adapt to the noisy visuomotor rotations they update their 

knowledge of both the mean and variance of the perturbations. We can 

probe subjects' prior uncertainty by providing noisy feedback about the 

cursor position midway through the movement in the form of a cloud of dots 

(Körding and Wolpert, 2004). Subjects (n=32 in Experiment 1 and n=8 in 

Experiment 2) use this midpoint feedback information to correct their 

movements during each reach (Figure 3.1) and they rely more on feedback 

the more uncertain they are about the cursor position. Computing the slope 

of the negative of final hand position angle (proxy for estimated perturbation) 

as a function of the perturbation angle (proxy for perturbation sensed via 
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midpoint feedback) provides a measure of the uncertainty that subjects have 

about the expected perturbations (prior uncertainty) relative to uncertainty 

about the midpoint feedback (likelihood uncertainty) (Körding and Wolpert, 

2004). Intuitively we can see that, if subjects are very certain about the 

perturbation (low prior uncertainty) then they will tend to ignore the noisy 

midpoint feedback information and the slope will have a value closer to zero. 

If on the other hand they have a high prior uncertainty relative to the 

uncertainty in the midpoint feedback, they will tend to rely only on midpoint 

feedback and hence the slope will have a value of one. For standard 

Bayesian integration using Gaussian distributions (Körding and Wolpert, 

2004), the slope 
ps  is given by 

2

2 2

p

p

p f

s
σ

σ σ
=

+
 

where  2

pσ  and 2

fσ   are the variances of the prior and likelihood 

distributions, respectively (see Materials and Methods for details). Hence, 

larger slopes indicate a higher reliance on sensory feedback and higher 

uncertainty about the perturbations (see Figure 3.2A). Whether subjects are 

Bayesian or not, their slope is a measure of how uncertain they are about 

the hidden perturbation. 
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Figure 3.2. Experiment 1: Relative reliance on midpoint feedback (slope) across 

directions. A, Probing uncertainty in the prior by computing the relative reliance on 

midpoint feedback. Estimated perturbation as a function of the perturbation angle, 

for a typical subject, in the learning direction and in one generalizing direction (+90
o
) 

during the testing phase. Solid lines denote linear fits to the data. Insets: Slope or 

relative reliance on midpoint feedback (±SE) during movements in that direction for 

this subject. B, Learning for two groups of subjects: subjects that started with the 

low variance condition and subjects that started with high variance condition. 

Colored lines are average slopes (±SEM) across subjects considering bins of 20 

trials. Black curves are exponential fits. C, Relative reliance on feedback for the two 

levels of prior uncertainty as a function of target direction relative to learning 

direction. Mean (±SEM) of slopes across all subjects. D, Inferred mean of prior for 

the two levels of uncertainty as a function target direction relative to learning 

direction. Mean (±SEM) of slopes across all subjects. 

 

 

Experiment 1  

We first wanted to know how uncertainty generalizes with a zero mean 

perturbation. We find that subjects learn about the variance and exhibit 

smaller slopes for the small variance condition than for the high variance 

condition (Figure 3.2B). This is what we should expect since a smaller slope 

implies that the subject relies less on the midpoint feedback and, hence, that 

the subject is more certain a priori about the hidden cursor position. 

Furthermore, learning curves under the same variance condition converge 

to the same value during the learning phase, no matter which condition 

subjects started in and appear to saturate before we assess generalization. 

We do not find a significant difference between the slopes in the two groups 

of subjects after training (F(1,472)=0.95, p=0.33, four-way nested ANOVA over 

subject, variance, group, target direction where subject is nested in group). 

By the end of each learning block subjects have adapted to the new 
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variance condition. In the following analysis we thus combine data across 

groups to ask how subjects generalize this learned variance. 

 

 

Figure 3.3.  Individual subject slope data for Experiment 1. Error bars are ±SEM 

(bootstrap). Lines are Model 2 (see Models) fits to individual subjects. Black and 

orange bar (inset) indicates the order in which the different uncertainty blocks were 

presented to each subject. 

 

To examine generalization of uncertainty we quantify subjects' reliance on 

midpoint feedback (as measured with the slope) as a function of the 

direction of movement. We find that the reliance on midpoint feedback 

(Figure 3.2C; see Figure 3.3 for individual subject data) is significantly 

different between the two variance conditions (F(1,31)=65.13, p<10E-8, two-

way repeated measures ANOVA) and slopes for the high variance condition 

are higher than those for the low variance condition for movements into all 

directions (p≤0.006, for every direction, paired t-tests, n=32). Uncertainty in 
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the prior (as measured by the relative reliance on midpoint feedback) 

increases in all directions and decays with increasing distance from the 

learning direction. Unlike the mean (Experiment 2 below and Fernandes et 

al., 2012, but see Taylor and Ivry), uncertainty appears to have a strong 

global component. 

Even though the perturbation had zero mean, we can infer the mean of the 

subject’s prior by analyzing the intercept of a linear regression using data 

from the testing block (see Materials and Methods for details). As with the 

slopes, we do not find a significant difference between the inferred means in 

the two groups of subjects (F(1,472)~0, p~0.97, four-way nested ANOVA) 

which allows us to pool the data of both groups. We find an interesting 

asymmetry consistent with use-dependent learning/adaptation theory 

(Diedrichsen et al., 2010; Huang et al., 2011; Verstynen and Sabes, 2011); 

in the reaches towards targets that neighbor the learning target, hand 

movements are biased towards the learning target and this bias decays with 

distance from the learning target (Figure 3.2). Furthermore the bias is 

stronger in the low variance condition (p<0.001 for both 22.5o target 

directions, paired t-tests) when movements tend to be less variable and 

hand position covers a narrower region. We observed signs of a similar 

effect in a previous study exploring generalization of the mean (Fernandes 

et al., 2012). We can see it clearly here in the absence of mean adaptation, 

and where possibly the large number of subjects and the increased 

complexity of the task (reduced cognitive strategies and across subject 

variability) makes the effect more observable. These results suggest a weak 

use-dependent learning effect in this experiment. 

Experiment 1 is the analogous for uncertainty of previous generalization 

studies that measured the generalization of fixed visuomotor perturbations 

(Krakauer et al., 2000), i.e., the generalization of the mean of the prior with 

zero imposed variance/uncertainty. In a previous study we showed that the 

generalization of the mean seems to be unaffected by changes in prior 
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uncertainty (Fernandes et al., 2012).  Fully understanding the generalization 

of uncertainty requires some understanding of how simultaneously 

perturbing the mean affects the generalization of uncertainty. Experiment 2 

aims to characterize these interactions and differences between 

generalization of the mean and variance. 

 

Experiment 2  

In Experiment 2 our aim is to characterize how the mean of a perturbation 

affects the generalization of uncertainty. As in Experiment 1, it is important 

to quantify the effects of the different perturbation variances and to 

determine whether training order (i.e., high-to-low vs low-to-high variance) 

matters. Subjects (n=8) readily learned the perturbation variance (Figure 

3.4A), even with the addition of a non-zero mean perturbation, and we found 

that, in block 1, the reliance on midpoint feedback (slope) (Figure 3.4B) is 

significantly different between the two variance conditions (F(1,8)=19.72, 

p=0.02, two-way repeated measures ANOVA). However, in Experiment 2 

we found a significant difference in reliance on midpoint feedback between 

the two groups of subjects after training (F(1,112)=8.7, p=0.004, four-way 

nested ANOVA -- subject, variance, group, direction where subject is nested 

in group). In particular, there are signs of interference in Block 2 (Figure 

3.4B, C). As savings and interference are a hallmark feature of motor 

learning (Brashers-Krug et al., 1996; Krakauer et al., 1999) it is not 

surprising that we should also see them here. Because the order of training 

now matters we will present and analyze the data from the two blocks 

separately. 
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Figure 3.4. Experiment 2. A, Learning of uncertainty for the two groups of subjects: 

subjects that started with the low variance condition and subjects that started with 

high variance condition. Colored lines are average slopes (±SEM) across subjects 

considering bins of 20 trials. B–C, Relative reliance on midpoint feedback for the 

two levels of prior uncertainty as a function of target direction relative to mean of 

perturbation (±30
o
) following the first (B) and second (C) learning blocks. Mean 

(±SEM) of slopes across all subjects (n=8) in Experiment 2 (opaque solid lines). The 

transparent lines are the results of Experiment 1 (same data as in Figure 3.2C). D, 

Inferred mean of prior (±SEM) in the generalizing directions relative to the learning 

direction (baseline was not measured in this experiment and hence not taken into 

consideration in this quantification). E, Inferred percent adaptation (±SEM) for the 

mean in the generalizing directions relative to the learning direction. 

 

In contrast to Experiment 1, here we find a strong asymmetry in the 

generalization of uncertainty (Figure 3.4B, C; see Figure 3.5A for individual 

subject data). The generalized uncertainty as measured by the relative 

reliance on midpoint feedback is higher than expected for the neighboring 

targets on one of the sides of the training direction, even higher than the 

learned uncertainty in the training direction. These directions of higher 

uncertainty correspond to the opposite direction to where the hand has to 

move to correct for the perturbation -- that is, the direction of the mean of 

the perturbation. These are the directions where the midpoint visual 

feedback is more often displayed during early learning. Furthermore this 

asymmetry is observed consistently across subjects (Figure 3.5A, C) and 

seems to be robust to any subject-specific cognitive strategies (Taylor and 

Ivry). We find that when changed simultaneously, the mean and variance of 

perturbations have asymmetric effects in the generalization of the variance 

of the prior over those perturbations. 
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Figure 3.5. Individual subject data for Experiment 2, and further data analysis. A, 

Error bars are ±SEM (bootstrap). Black and orange bar (first row, inset) indicates 

the order in which the different uncertainty blocks were presented to each subject. 

Lines in second and thirst row are Model 2 (see Models) fits to individual subjects. 

B, Generalization of mean measured during testing mean sub-block (opaque), 

compared with the inferred generalization of the mean (transparent, same as Figure 

3.4D during testing uncertainty sub-block. C, Generalization of mean and of relative 

reliance on midpoint feedback (slope) separated by sign of the mean of the 

perturbation. The asymmetry in generalization of uncertainty (slope) was stronger 

for the right handed subjects (lower panels). 

 

Since we find a surprising asymmetry in the generalization of variance in 

Experiment 2, it is reasonable to ask whether manipulating mean and 

variance simultaneously has a similar effect in the generalization of the 

mean. We find that the generalization of the mean angular perturbation is 
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local, with a width of about 30o, similar to what has been reported in 

previous studies (Fernandes et al., 2012; Krakauer et al., 2000) (Figure 

3.4D, E and Figure 3.5B). As in previous studies, with similar center-out 

reaching designs (Fernandes et al., 2012), generalization to targets at a 

±90o angular distance from the learning target is not significantly different 

from zero (p>0.13 for the ±90o targets in both uncertainty conditions, t-tests). 

Furthermore, in agreement with Experiment 1, in the directions that neighbor 

the learning target we observe an asymmetry consistent with use-dependent 

learning. Note that the use-dependent asymmetry, although reflected as an 

asymmetric generalization pattern in the mean, can be interpreted as 

movements close to the training direction being attracted by the direction 

where training occurred. 

 

Models 

If the amount of generalization depends only on similarity between contexts 

and context is symmetric around target then we would not expect to see an 

asymmetric pattern in the generalization of variance. In practice, however, 

the coordinate systems in which subjects try to solve the problem can have 

an influence on the generalization patterns. To allow for this possibility we 

hypothesized that the asymmetry could have arisen from a context that is 

not target centered. Do subjects learn about visual feedback position (Taylor 

et al., 2012) when generalizing uncertainty? 

To see if the data is consistent with this hypothesis and to implement 

models where feedback position is relevant, we need to consider the 

distribution of learning data. One natural way of implementing such a model 

is in terms of online gradient descent. Every trial, one goal of the movement 

system may be to update certain parameters so that future movements will 

be better -- we want to go down the gradient of errors (Taylor et al., 2012; 

Thoroughman and Shadmehr, 2000). We thus implemented two online 
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learning models that take the perturbations imposed during the learning 

trials. These models implement gradient descent on the value of, assumed 

(direction dependent) mean and variance in order to minimize the squared 

error between target angle and final cursor position angle of each trial (see 

Materials and Methods for details). Model 2 uses a coordinate system for 

generalization of variance related to the position of visual feedback while 

Model 1 uses only target-centered coordinates. This way of phrasing the 

problem allows us to consider the effect of the candidate coordinate 

systems on learning and generalization.  

 

 

Figure 3.6 Online learning models for different reference frames. A, Models fit 

(shaded area is ±SEM for M2 fits) for the slope data of Experiment 2 (same as 

Figure 3.4B, C, opaque). Error bars are ±SEM. B, Models fit for the mean data of 

Experiment 2. C, Models fit for mean and slope data (same as Figure 3.4B, C, 
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transparent) of Experiment 1. Error bars are ±1SEM. Lines are average across 

subjects of individual fits. Error bars are ±1SEM. 

 

We find that Model 2 captures the generalization patterns of both 

experiments (Figure 3.6; see Figure 3.3 and 3.5A second and third rows for 

individual subject fits). Importantly, Model 2 was able to capture the 

asymmetric generalization of uncertainty of Experiment 2 (Figure 3.6A) and, 

simultaneously, explain the data in Experiment 1 (Figure 3.6C) – except for 

the use-dependent effect. We find that, while none of the models is 

significantly better for Experiment 1 (p>0.14 for uncertainty and for mean; 

bootstrap of RMSE of individual fittings across subjects, see Figure 3.7A, 

C), Model 2 is better than Model 1 for Experiment 2 (p<10-4 for uncertainty; 

bootstrap individual fittings across subjects, see Figure 3.7B, D). Although 

lacking a normative interpretation/justification, using different reference 

frames for mean and variance and using gradient descent learning 

accurately captures the generalization patterns across experiments. 

 

 

3.5 Discussion 

Here we examined how priors over a stochastic visuomotor perturbation 

generalize. We examined in particular, how prior uncertainty, that is, 

knowledge of the trial-by-trial variability, generalizes.  We first tested 

generalization when we changed only the variance of the distribution of 

rotation perturbations and not the mean. We found that, similarly to standard 

generalization of visuomotor rotations, generalization of uncertainty has a 

local component. However, unlike the mean, it affects movements into all 

directions. We then tested how uncertainty generalizes when we introduce a 

stochastic perturbation with non-zero mean. We observed asymmetric 
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generalization that is qualitatively consistent with a descriptive, online 

learning model that assumes that mean and variance generalize according 

to different reference frames. 

 

 

Figure 3.7. Model comparison. A–D, Model comparison for Models 1 and 2 for 

Uncertainty (A and B) and for Mean (C and D). (Left) Weighted root mean square 

error (RMSE) across subjects (95% confidence intervals, bootstrap) of each model 

and of the difference between models for each subject. (Right) scatterplot of the 

RMSE for each subject for Models 1 and 2. 

 

 

In movement research, generalization experiments are usually interpreted 

as being directly related to neuronal tuning properties (Krakauer et al., 

2000a; Thoroughman and Shadmehr, 2000) (but see Pearson et al., 2010; 

Taylor and Ivry). Under this interpretation they constrain our 

conceptualization of neural computation and reveal a great deal about the 

neural basis of sensorimotor integration. We had seen evidence for some 
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independence in representation of mean and variance of priors in previous 

studies when we showed that uncertainty does not affect the width of 

generalization of the mean (Fernandes et al., 2012). The results of this 

study indicate that knowledge of the variance of external perturbations might 

be represented in a way that is distinct from the knowledge about the mean 

– both the extent of generalization and reference frames appear to differ. 

The degree to which the brain is “Bayesian” has been extensively debated 

over the last decade (Doya, 2007). Many studies have shown that the brain 

achieves Bayes-like behavior for familiar tasks (such as reaching) and that 

this behavior stems from ongoing learning (Berniker et al., 2010). Such 

general-purpose Bayesian behavior may result from a variety of non-

Bayesian/heuristic neural representations. Alternatively, Bayesian ideas 

may be far more fundamental to the organization of the brain in the sense 

that there is something Bayesian about the neural code itself. For example, 

spikes in populations of neurons might directly represent probability 

distributions, including their means and variances (Deneve, 2008; Fiser et 

al., 2010a; Hinton and Sejnowski, 1983a; Hoyer and Hyvärinen, 2003; Ma et 

al., 2006; Ma, 2010; Sahani and Dayan, 2003; Soltani and Wang, 2009; Wu 

et al., 2003; Zemel et al., 1998). None of these “Bayesian Brain” theories 

explicitly predicts generalization of uncertainty and, generalization is 

probably related to underlying neural representations in a more complex 

way than generally assumed in motor control research. However, 

dissociation between generalization of mean and variance emerges 

immediately from our results and produces an important challenge to 

extensions of “Bayesian brain” theories to generalization. 

The lack of computational predictions for generalization of priors, and of 

uncertainty in particular, is mirrored in experimental work where the focus 

both in behavioral as well as in electrophysiological studies in motor control 

has been on the generalization and representation of fixed perturbations 

without any trial-by-trial variability (but see Fernandes et al., 2012 and 
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Verstynen and Sabes, 2011). Previous work had not indicated that means 

and variances could generalize differently. 

Previous studies have shown that the reference frames for generalization 

depend on context, and that we expect different generalization patterns if 

different contexts are imposed (Berniker and Kording, 2008; Brayanov et al., 

2012; Taylor and Ivry). Studies that focus on the adaptation of the mean 

suggested that feedback plays an important role in adaptation (Huang et al., 

2011) and generalization (Taylor et al., 2012). Differences in visual error 

information lead to changes in generalization that can be explained by a 

neural network that assumes error feedback processing on a set of 

homogeneous and invariant tuning functions (Taylor et al., 2012). The use 

of the reference frame of visual feedback for the learning of the mean has 

thus been shown previously. This study suggests the use of a visual 

reference frame for the generalization of uncertainty. 

The model presented here makes several predictions for future experiments 

as well. Some studies look at what happens when perturbations are 

introduced gradually (Berniker and Kording, 2011; Kagerer et al., 1997; 

Turnham et al., 2012). If Model 2 is correct then we expect gradually 

introduced perturbation to produce a less asymmetric generalization curve 

for uncertainty, since the feedback would generally not appear so far away 

from target direction. Another interesting follow-up experiment would be to 

do the same set of experiments for visuomotor gain instead of visuomotor 

rotation - whose mean has been shown to generalize globally in minimal 

uncertainty conditions (Krakauer et al., 2000). 

The fact that the task was more complex than previous studies (Fernandes 

et al., 2012) allowed us to infer the mean of the prior with smaller variability 

across subjects. We find clear signs that movements are biased towards 

typical directions of previous hand movements, which is consistent with the 

use-dependent learning/adaptation hypothesis (Diedrichsen et al., 2010; 
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Huang et al., 2011; Verstynen and Sabes, 2011). We find this in both 

experiments and it is particularly evident in Experiment 1 where the mean of 

the distribution of stochastic perturbations was zero; this use-dependent 

asymmetry scales with the uncertainty level and exists even when there is 

zero mean perturbation. Although our model captures features of 

generalization patterns for both mean and uncertainty, it does not capture 

this use-dependent aspect of the generalization. Future work could account 

for these effects by incorporating a hand centered reference frame or other 

“model-free” learning processes (Huang et al., 2011). 

In fact, even though Model 2 is consistent with observed symmetry we 

cannot exclude that it might be caused by other mechanisms. It is not an 

unreasonable hypothesis that the same mechanism responsible for the use-

dependent asymmetry in the generalization of the mean is responsible for 

the asymmetry in the generalization of uncertainty. If this is true it happens 

in a way that is not obvious to us and future research could try to address it. 

Where priors come from and how they are represented are fundamental 

questions in learning and behavior. As we never experience the same 

situation twice, constructing priors depends crucially on our ability to 

generalize. However, generalization in both perception and action is a result 

of how the brain represents the external world. In perception research, 

studies that hypothesize priors based on the statistics of natural scenes 

(Burge et al., 2010; DiMattina et al., 2012; Geisler et al., 2001; Roth and 

Black, 2005) generally assume certain invariances where global 

generalization occurs along many dimensions of the stimulus. When 

calculating orientation priors, for instance, color and contrast are assumed 

to be irrelevant and only the statistics over orientation are considered 

important (Girshick et al., 2011). In movement research, it is generally 

assumed that the system is invariant to the content of the visual scene and 

that generalization only depends on (angular) distance (Krakauer et al., 

2000), velocity (Goodbody and Wolpert, 1998) or the way an object is held 
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(Ingram et al., 2010) (but see Taylor et al., 2012). For both perception and 

action, the nature of the underlying representations determines the shape of 

generalization. Quantifying the generalization of priors, taking uncertainty 

into account, allows new ways of understanding these representations. 
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4.1 Summary 

The two-alternative-forced-choice (2AFC) paradigm and the resulting just-

noticeable difference (JND), are generally assumed to quantify sensory 

uncertainty independent of a subject’s beliefs (i.e. their prior). This 

interpretation is consistent with the maximum a posteriori (MAP) decision 

theory, according to which subjects choose the option most probable (using 

a posterior distribution to represent subjective belief). However, a host of 

alternative decision-making theories, including sampling and matching, 

predict choices should be influenced by prior beliefs. Here we 

mathematically examine the predictions of these different theories and, 

using the results from an interleaved estimation and 2AFC task, find no 

influence of the subjects’ prior beliefs on their measured JNDs. These 

results are consistent with the MAP hypothesis, arguing against sampling 

theories of decision making. We propose that the 2AFC task is not a 
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straightforward tool for measuring subjects’ sensory precision, but rather a 

probe for theories of the neural representation of uncertainty. 

 

4.2 Introduction 

Every decision we make is a choice, constrained by our options and based 

on limited and uncertain information. For example, which lane on the 

highway should you drive in? which line at the grocery store should you wait 

in? Sometimes our options have clear differences, while other times the 

options and their outcomes are nearly identical and hard to distinguish. 

Though these decisions are commonplace and indicative of how we make 

choices in general, how people choose between multiple uncertain options 

remains largely unknown. 

There are multiple prominent theories describing how people make 

decisions under uncertainty. Normative theories assume that sensory 

information (generating a likelihood function) is optimally combined with our 

expectations (a prior distribution) into a belief (posterior distribution) over the 

outcome of our choices (e.g. the probability getting home early for each lane 

we drive in). Various theories on decision-making differ only in how a choice 

is made from this posterior probability. One alternative is that people choose 

the most probable alternative (the maximum a posteriori probability---MAP 

hypothesis). Alternatively, people may not be able to compute the most 

probable outcome, and must approximate it instead. Under this hypothesis, 

subjects draw one or more sample choices from their posterior, and 

compute the best sample statistic, the so-called “sampling hypothesis” (Vul 

et al., 2009). If subjects use only one sample, they are said to be “matching” 

(Vulkan, 2000; Wozny et al., 2010). Though both MAP and the sampling 

hypotheses offer very different predictions, they can both be viewed as 

optimal under the right assumptions (e.g., for MAP (Duda et al., 2012); for 
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sampling (Sakai and Fukai, 2008; Vul et al., 2009; Wozny et al., 2010)) and 

thus equally normative in their description of decision-making. 

The two-alternative forced choice (2AFC) task has been the workhorse of 

psychophysics and decision-making experiments for the last 150 years 

(Green and Swets, 1966). In this task, subjects are presented with two 

alternatives and forced to choose between them based on some 

experimentally defined attribute. For example, subjects may be asked to 

decide which of two flashes of light displayed on a screen is further to the 

left. By controlling the discrepancy between these cues (location of light 

flashes), experimenters can obtain a psychometric curve: the probability of a 

subject's response given the discrepancy between cues. This curve can 

then be used to quantify the just-noticeable-difference (JND), which is 

related to how different must the two cues be before subjects can reliably 

tell them apart (Green and Swets, 1966). Due to its simplicity and 

experimental benefits, the 2AFC task is used in a broad variety of sensory 

and cognitive domains to measure the JND. 

In the majority of circumstances, the 2AFC task and psychometric curve are 

assumed to characterize sensory precision (Ernst and Banks, 2002; Fetsch 

et al., 2011; Girshick et al., 2011; Stocker and Simoncelli, 2006; Tassinari et 

al., 2006). Importantly though, the resulting JND is thought to be 

independent of an individual's prior beliefs. This is beneficial for several 

reasons, not least of which because it precludes the possibility that the 

measured JND can be influenced by subject biases or experimental 

circumstances. However, how people perform the 2AFC task, and what the 

JND measures, relies crucially on how people make decisions under 

uncertainty; depending on the subjects' strategy, the JND may or may not 

be influenced by a subject's prior, confounding its interpretation as a 

measure of sensory precision. This confound raises concerns for the great 

number of studies that rely on psychometric curves and measured JNDs 

obtained in the 2AFC task. 
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Here we mathematically examine the MAP and sampling theories of 

decision-making and their influence on the 2AFC task and resulting JND. 

We demonstrate how if, after combining sensory and prior information, 

subjects choose the option that maximizes their posterior (i.e. the MAP 

answer) then the JND correctly measures a subject's sensory precision. 

However, if subjects choose according to the sampling hypothesis, the 

psychometric curve and JND measure something altogether different that 

depends on their prior. We then exploit this result to design an experimental 

paradigm to test how people make uncertain decisions. Using an interleaved 

estimation and 2AFC task, we measure subjects’ prior beliefs and their 

JNDs. In our task we found that changes in a subject's prior had no 

measurable influence on their JND, consistent with MAP decision-making. 

Our results thus support the traditional interpretation of the psychometric 

curve as measuring sensory precision, independently of prior knowledge. 

However, we propose that in general, the 2AFC task is not a straightforward 

tool for measuring a subject's sensory precision. Instead, the 2AFC task can 

be used to probe and falsify theories of decision-making under uncertainty 

(Gold and Ding, 2013; Liston and Stone, 2008; Palmer et al., 2000). 

 

4.3 Results 

Our aim was twofold. First, we sought to examine several prominent 

theories for decision-making under uncertainty, and in particular how they 

would influence a psychometric curve. Second, we sought to design an 

experiment capable of testing these predictions. These analyses would 

clarify the implicit assumptions behind the common use of the 2AFC task, 

and the experiment would test whether the JND is in fact a measure of 

sensory precision, or merely a phenomenon of dubious distinction. Below 

we briefly introduce the relevant decision variables, the conventional 2AFC 

interpretation and determination of the JND. This will provide the 
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groundwork for the subsequent mathematical analysis of the 2AFC task 

under the sampling and maximizing theories. We then describe the 

experiment and present the experimental results and their analyses. 

 

Decision-making Theory and the 2AFC 

In the 2AFC task, people are asked to make a binary choice based on two 

experimentally imposed cues, which we refer to as 1c  and 2c . They could be 

two differentially illuminated flashes of light or two sounds of different 

pitches. For instance, suppose that the task is to decide whether the second 

cue is greater in value than the first cue (i.e. is 2 1c c>  true of false?) Since 

the answer to this or any 2AFC question is binary, we can describe the 

answer with the random Bernoulli variable, {0,1}z ∈ . By asking subjects to 

perform many trials of this task, while systematically manipulating the 

difference between 2c  and 1c , we obtain a psychometric curve. This curve 

characterizes the probability that a subject chooses one cue over the other 

as a function of the difference between them, δ . One way of describing this 

relationship is with the cumulative normal distribution,  

JND
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2 2
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 where erf  denotes the error function. The standard deviation, JNDσ , often 

referred to as the just-noticeable difference (JND), describes the behavioral 

precision in discriminating two cues. The experimental and behavioral 

aspects of the 2AFC task are well-studied and analyzed and can be found 

elsewhere (Green and Swets, 1966). 
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The psychometric curve and JND presented above quantify subject 

behavior, but do not describe how choices are made. This decision process 

is formalized in essentially the same manner by many normative theories. 

Due to the noise imposed by the experimental settings as well as to the 

inherent noise in the human sensory apparatus, the two cues give rise to 

uncertain sensations, which we shall label as 1s  and 2s . Formally, our 

sensory information induces the likelihood of every possible value of the cue 

for each sensation: 1 1( | )P s c  and 2 2( | )P s c . Our percepts can be thought of 

as another probability distribution, ( | )P c s , which is our posterior belief of 

each cue probability given our sensation of them. Applying Bayes’ formula, 

we find, 

( | ) ( | ) ( )P c s P s c P c∝  

where the prior, ( )P c , is our subjective expectation based on a lifetime of 

experiences. Hence, our perception of the cue is a function of both our 

senses, and our prior belief in what we expect the cue to be. Now we can 

formally interpret the 2AFC task as a decision, z , based on two probability 

distributions, 1 1( | )P c s  and 2 2( | )P c s . This allows us to predict different 

distributions, ( | )P z δ , for different candidate decision-making theories and 

determine when, if ever, the JND is influenced by prior beliefs. Additionally, 

by comparing these predictions against subject behavior, we can use the 

2AFC task as a tool to corroborate or falsify decision-making theories. 

 

Maximum a posteriori (MAP) decision-making 

Under the MAP hypothesis, subjects make their decision based on the most 

probable choice; that is, in choosing which cue is larger, one simply 
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compares the most probable value of 2c , with the most probable value of 1c . 

Mathematically, the choice is defined as follows:  

2 12 2 1 11 if arg max [ ( | )] arg max [ ( | )]

0 otherwise

c cP c s P c s
z

≥
= 


 

 

 

Figure 4.1. Predictions of the different decision making theories. (A) Psychometric 

curves predicted for the sampling models and the MAP model under different prior 

conditions. Note that the MAP/narrow prior and the MAP/wide prior lines overlap.  

(B) JND of the psychometric curves as a function of relative reliance on likelihood 

(proxy for prior uncertainty). The predictions for the sampling models (with different 

number of samples, k) and the MAP model are shown. 

 

By assuming functional forms for the likelihood ( | )P s c  and prior ( )P c , we 

can then obtain ( | )P z δ , by integrating over our senses, s . In particular, if 

we assume normal distributions (see Supplemental Information) we get, 

1
( 1 | ) 1 erf ( )

2 2
P z

δ
δ

σ

 
= = +  

, 
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 where σ  is the standard deviation of the likelihood. To be clear, if subjects 

choose according to the MAP hypothesis, the function above accurately 

models their behavior, whereas Equation 4.1 is used to fit their behavior. 

Note that the resulting psychometric curve (and JND) are independent of the 

subject's prior (see also Figure 4.1A). Furthermore, by comparing terms 

with Equation 4.1 we can define the experimentally derived JND in terms of 

the precision of a subject's likelihood:  

MAP

JND 2σ σ=  

The assumptions we made to derive these results are the implicit 

assumptions that most studies make when the experimental JND is 

interpreted as a measure of the subject's sensory accuracy. However, as we 

demonstrate below, alternative decision-making theories predict distinct 

results.  

Decision-making theory JND 

(1) MAP MAP

JND 2σ σ=  

(2) sampling sampling 2 2

JND 2 ( 1) /
c c

k kσ σ σ σ σ = + +
 

 

(2) matching (k=1) 
  

matching 2 2

JND 2 2 / cσ σ σ σ= +  

(3) sampling with c
σ → +∞  

JND

1
2

c

c

k

kσ
σ σ

→+∞

+
→  

Table 1. Different predictions for the measured JND, according to MAP and 

sampling/matching decision-making theories. 

    

Sampling-based decision-making 

In contrast with the above result, the sampling-based decision-making 

hypothesis proposes that choices are based on an approximation to the 

most probable outcome. This approximation is computed by “sampling” from 
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the two posterior distributions, and comparing the averages. Mathematically, 

we can express the choice as follows:  

2 11 if

0 otherwise

k k
c c

z
 ≥

= 


,   4.2 

 where 1

k
c  and 2

k
c  are the sample means computed by drawing k  samples 

from the posterior distributions, 1 1( | )P c s  and 2 2( | )P c s . Again, by assuming 

distributions for the likelihood and prior we can then obtain ( | )P z δ . If we 

assume normal distributions for the likelihood and the prior, 

2

1 2( ) ( ) ( , )cP c P c N µ σ= = , we find, 

( )2 2

1
( 1 ) 1 erf

2 2 ( 1)

c

c

k
P z

k

σ δ
δ

σ σ σ

  
  = = +
   + +   

∣  

 We note several features of this result, first of which is the appearance of 

terms from the prior (see Figure 4.1A). Again by matching terms with 

Equation 4.1, under this hypothesis the experimentally derived JND is not 

merely a subject's sensory accuracy, but rather a combination of both 

sensory and prior uncertainties: 

2 2

sampling

JND

2 ( 1) c

c

k

k

σ σ σ
σ

σ

+ +
=  4.3 

This result is in stark contrast with the traditional interpretation of the 2AFC 

task. We see that when a subject's prior is certain (relatively small c
σ ), the 

JND increases (see Figure 4.1B). Intuitively, we interpret this as follows: as 

the prior becomes more and more certain, sensory information becomes 

less relevant and the posterior belief is more closely aligned with the prior. 
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Therefore, distinguishing a difference between the two cues requires 

increasingly large differences. 

 

 

Figure 4.2. Experimental protocol. Subjects were shown two sets of “splashes” (5 

dots) and then randomly presented with one of two tasks; either (A) the 

estimation/coin-catching task or (B) the 2AFC task. (A) On the estimation trials 

subjects were prompted to place a net (vertical blue bar) where they estimated the 

hidden coin position to be. (B) On the 2AFC trials subjects had to estimate which of 

the two hidden coins landed more to the right. 

 

In the limit of an infinite number of samples, the JND under the sampling 

hypothesis is equivalent to the MAP prediction. In the limit of an infinite 

variance prior, the JND tends to  

JND

1
2

c

c

k

kσ
σ σ

→+∞

+
→  
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which is different from the MAP prediction (if k  is finite). We also note the 

special case where 1k =  is the so-called matching hypothesis (Vulkan, 

2000; Wozny et al., 2010). This scenario is equivalent to the hypothesis that 

subjects choose between their choices with a rate that is proportional to the 

probability of being correct; that is, 1z =  with probability 2 1 2 1( | , )P c c s s> . By 

observation the JND is now: 

matching 2 2

JND 2 2 / cσ σ σ σ= + . 

 

These systematic differences between the MAP and sampling predictions 

(Table 1) suggest a way of using subjects’ performance during the 2AFC 

task to investigate how they make decisions under uncertainty. Below we 

present the details and results of an experiment design that aims at doing 

so. 

 

Measuring subjective beliefs 

Based on the derivations above, we designed an experiment to manipulate 

subjects' uncertainty in the prior while simultaneously quantifying changes in 

their JND. Each of the seven subjects performed the experiment on five 

separate days. On each day, they performed 2,000 trials, randomly 

switching between estimation trials (1000/day), where they had to estimate 

the location of a hidden coin, and 2AFC trials (1000/day), where they had to 

decide which of two coins was further to the right (see below, and Materials 

and Methods). Halfway through each day's experiment, the variance of the 

prior distribution would switch, from large to small or from small to large. 

These conditions allowed us to test whether subjects' JND changed when 

the variance of the prior changed. 
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During estimation trials, subjects' guesses for the location of the hidden 

coins were used to measure their subjective beliefs, commonly referred to 

as their prior. By recording how their guesses varied as the location of the 

evidence (splashes/likelihood) varied, we measure two features: the mean 

of their prior (see Figure 3A and Materials and Methods) and their reliance 

on the likelihood relative to the prior (“reliance on likelihood”, for short; see 

Figure 3B, C and Materials and Methods). The reliance on likelihood is an 

indirect measurement of the variance of a subject's prior (Berniker et al., 

2010a; Körding and Wolpert, 2004b; Vilares et al., 2012). With these 

measurements we could determine if subjects learned the experimentally 

manipulated distribution of coins. 

 

 

Figure 4.3. Measuring subject's priors. A) Estimated mean of the prior for a 

typical subject on both blocks of the first day. Error bars are 95% CI 

(bootstrap). B) Data from the estimation trials for a typical subject on their 

first day. The slope of a linear regression determines the reliance of the 

likelihood, a proxy for subject’s prior uncertainty. C) The reliance on the 

likelihood is binned to visualize learning. As subjects learn the prior (dashed 

lines are theoretical values that correspond to the experimental variances of 

prior and likelihood). Error bars are 95% CI (bootstrap). 
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First we wanted to know if subjects learn a prior and whether they take prior 

and likelihood variances/uncertainties into account when deciding where to 

place the net. That is, (a) whether subjects learn a different prior in the low 

prior uncertainty block relatively to the high prior uncertainty block and (b) 

whether they also take the different uncertainty levels in the likelihood into 

account. As this estimation paradigm has been used with successful results 

in previous research (Berniker et al., 2010a; Vilares et al., 2012) we expect 

this to happen. Indeed, the fitted slope to the data of the estimation trials 

during the first 250 trials of the first day were significantly different across 

priors (F(1,19)=44.2, p<0.01, ANOVA), and likelihood (F(1,19)=12.8, 

p<0.01,  ANOVA), but not subjects, (F(1,19)=1.5, p=0.22, ANOVA), 

suggesting that the experimentally manipulated priors and likelihoods had 

an effect in subjects behavior. The same result holds for the estimation trials 

within the last 250 trials of the first day. Subjects typically learned the task 

already in the first day as is evident from the different behavior for the 

different conditions. The additional four days were necessary to more 

precisely quantify their psychometric curves. 

Next we wanted to know if subjects learned similar priors across days. This 

is important if we could combine the data across days. The fitted slopes 

during the estimation trials during the last 250 trials of each day was 

significantly different across priors, F(1,127)=325.9, p<0.01, likelihoods, 

F(1,127)=90.67, p<0.01, subjects F(6,127)=6.44, p<0.01, but not 

significantly different across days, F(4,127)=1.26, p=0.28, suggesting that 

subjects learned similar priors across days. The slopes for the different prior 

and likelihood conditions did not change significantly across days for each 

subject. 

The average reliance on the likelihood across subjects and days was 0.72 

(SE 0.01) for narrow prior and narrow likelihood, 0.43 (SE 0.01) for narrow 

prior and wide likelihood, 0.95 (SE 0.007) for wide prior and narrow 

likelihood, and 0.91 (SE 0.006) for wide prior and wide likelihood. These 
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numbers are significantly different from the optimal values but show a trend 

qualitatively consistent with the optimal values: 0.91 for narrow prior and 

narrow likelihood, 0.39 for narrow prior and wide likelihood, 0.99 for wide 

prior and narrow likelihood, and 0.94 for the wide prior and wide likelihood 

conditions. The fact that subjects don’t learn the exact experimentally 

imposed prior is not a problem given that what we need is for subjects to 

learn a sufficiently different prior across condition that allows distinguishing 

between decision-making theories. 

Based on the above findings we conclude that subjects take into 

consideration the prior and the likelihood uncertainty when making a 

decision in the estimation task. Importantly they learn a different prior for 

each imposed prior condition and we are able to obtain a relative measure 

of each subject’s subjective prior. This allows us to examine if changes in 

their priors influenced their JND's. The results of this examination would 

provide evidence for either a MAP or sampling decision-making process.  

 

Measuring psychometric functions 

As described above, on each day subjects performed 1000 2AFC trials. The 

data from these trials were used to fit psychometric functions. These 

subject-specific curves quantify how large the discrepancy between two coin 

splashes needs to be before subjects can reliably perceive them as distinct. 

In roughly half of the trials, the two coin splashes had approximately the 

same size. We denote these trials as same-likelihood 2AFC trials. Using this 

data we could fit a psychometric curve to each subject's responses, and 

measure their JNDs and PSEs (see Methods). The psychometric curves 

(using the same-likelihood 2AFC trials) would give us valuable estimates of 

subject-specific JNDs. These estimates are necessary to test the decision-

making theories. 
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In the remaining 2AFC trials, the two coin splashes had different sizes; 

different-likelihood 2AFC trials. When two different likelihoods are used to 

make a choice, the probability of a response is a function of both cue 

locations (not merely the difference between them as it happens in the 

same-likelihood condition, see Figure 4A); the psychometric function is now 

a surface (see Figure 4.4B and Supp. Information). We used these surfaces 

to measure how the PSE's changed with cue locations. These surfaces, 

computed using the different-likelihood 2AFC trials, were used as a valuable 

control; since the use of a prior makes predictable changes in the way the 

cues’ position affect the shape of the surface (see below and Supp. 

Information) we can use this data to test whether the prior learned in the 

estimation trials is used in the 2AFC trails. 

 

 

 

Figure 4.4. Subject-specific psychometric curves. A) Data from the 2AFC trials is 

used to fit a psychometric curve. Red and blue dots are subject responses during 

the narrow and wide conditions, respectively. B) When the standard deviations of 

the two cues are different, the probability of a response being true is a function of 

the location of the both reference cues and the fit is now a surface. 

 

Subjects use the learned prior during the 2AFC task 
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A basic assumption of the 2AFC analysis is that subjects use their prior 

when making choices. However, it could be the case that subjects only use 

one prior in the estimation trials, and use a different strategy for the 2AFC 

trials. For example, subjects might simply use the respective centroids to 

choose between splashes (i.e. a maximum-likelihood estimate), or a 

different prior and neglect the prior learned during the estimation times all 

together. To exclude this possibility, we examined the psychometric 

surfaces obtained in the different-likelihood 2AFC trials. If subjects were 

using the prior learned during the estimation trials, these surfaces would 

change in a predictable way. 

In the different-likelihoods 2AFC trials, the PSE for both MAP and sampling 

hypotheses is a function of the cue positions (see Materials and Methods 

and Supp. Information). In particular, the PSE should change linearly with 

the cue positions, We can express this in terms of either cue’s position, for 

instance, 1c ,  and their respective variances: 

2 2

2 1
1 12 2

1

PSE( )
c

c c
σ σ

σ σ

 −
=  

+ 
 

 where 1σ , 2σ  are the likelihood variances and c
σ  is the prior variance. We 

denote the term 2 2 2 2

2 1 1( ) / ( )cσ σ σ σ− +  by slope of PSE. Importantly, the 

prediction is that the slope's magnitude (absolute value) will decrease as the 

prior's variance increases, allowing us to predict how it should change 

across the small and large experimental prior variance conditions. We chose 

1c  to be the splash with large variance and hence the slope of PSE is 

predicted to be negative.  

In agreement with the predictions, we found that the PSE slope for the small 

prior was significantly smaller (than for the large priors (p<0.05, paired t-test; 

see Figure 4.5A). This result supports the assumption that subjects used 
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their subjective prior learned during the estimation trials when making their 

choices during the 2AFC task. We can now finally check if changes in prior 

affects the JND measured using data from the same-likelihood 2AFC trials.  

 

 

Figure 4.5. Comparing subject data and candidate decision-making theories. A) 

Across-days average slope of the PSE (during the two-likelihood 2AFC trials) 

across conditions for each subject. With one exception, each subject's data followed 

the same trend indicating the prior had a significant effect on their choices during 

the 2AFC task. B) Each subjects JND plotted versus their reliance on the likelihood 

(95% CI) Solid lines correspond to the theoretical predictions for the MAP (black 

line) and sampling (various number of samples, k) hypotheses. 

 

Subjects' JND's did not change with their prior 

To summarize, our results so far suggest that subjects learned two distinct 

priors during the estimation trials, and that they used these priors during the 

2AFC trials. We are now in conditions of testing whether the prior 

uncertainty affects the JND obtained using the standard (same-likelihood) 

2AFC task and look for evidence of either decision-making theory.  
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The MAP hypothesis predicts that changes in the prior should not influence 

the JND, whereas the sampling hypothesis predicts that changes in the prior 

do influence the JND – concretely, that a decrease in prior uncertainty 

should lead to an increase in the JND. We found that subject's JND's did not 

increase as prior uncertainty (reliance on likelihood) decreases (p=0.91, 

paired t-test, see Figure 4.5B), and hence, it does not follow the general 

trend predicted by sampling. This evidence suggests people do not sample.  

Notice that, even though we found no evidence for sampling, in theory 

subjects could be sampling; recall that in the limit of an infinite number of 

samples, the predictions for the JND are identical for both strategies. 

However, given that each splash (likelihood) is displayed for only 25ms and 

masked immediately after, it is reasonable to expect that the number of 

samples subjects would be able to sample (if they were using a sampling 

strategy) would be limited. Related to this, notice that for virtually all subjects 

the JND (and the 95% CI) in the narrow prior (low reliance on likelihood, 

leftward points in Figure 5B) is well below the sampling predictions for a few 

samples. 

The paradigm presented here offers a straightforward procedure for using 

behavioral data to examine theories of decision making under uncertainty. 

Our findings support the hypothesis that, when making decisions under 

uncertainty, subjects use a MAP process; after combining a subjective prior 

and their sensory input they choose the option that is most probable. This 

finding is important for several reasons. Evidence for a MAP process 

supports the conventional interpretation of the JND and what it measures, 

i.e. sensory precision. These findings also argue against a popular proposal 

for the basis of neural computations based on sampling.  
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4.4 Discussion 

The JND obtained from the 2AFC paradigm is often used to measure 

sensory uncertainty and hence assumed to be immune to changes in the 

prior uncertainty. Here we showed how the interpretation of the JND is 

sensitive to the underlying assumptions about which algorithm the brain 

uses when deciding between two choices. We did this by explicitly 

computing the predictions from two prominent decision-making hypotheses; 

the MAP and the sampling/matching hypothesis. The results of an 

experiment designed to test these predictions are consistent with the MAP 

theory and hence argue against the sampling/matching theories. 

Previous studies have used the 2AFC paradigm to test assumptions about 

the underlying computational processes implemented in the brain (Gold and 

Ding, 2013; Liston and Stone, 2008). In fact, the 2AFC paradigm has been 

used to study how the prior affects perceptual choices (Liston and Stone, 

2008). However, and at the same time, the paradigm is more often used to 

measure sensory uncertainty without explicitly stating or testing the 

underlying assumptions about the neural computational processes (Ernst 

and Banks, 2002; Fetsch et al., 2011; Girshick et al., 2011; Stocker and 

Simoncelli, 2006; Tassinari et al., 2006); e.g. it has been used to measure 

the prior uncertainty by factoring out the likelihood uncertainty measured 

using the JND (Girshick et al., 2011). Many applications for 2AFC assume 

that the JND measures likelihood uncertainty, our study provides a 

framework for testing this assumption. 

The results from our experiment were not trivially expected. Even though 

one could argue that MAP is the optimal strategy in a 2AFC task, this does 

not imply that the brain implements it a MAP algorithm. In fact, several 

studies support the sampling hypothesis; theoretical work shows that a 

sampling strategy can be optimal under certain assumptions (Sakai and 

Fukai, 2008; Vul et al., 2009) and experimental work has also argued for 
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sampling or matching both in cognitive tasks (Gaissmaier and Schooler, 

2008) as well as in perceptual tasks (Battaglia et al., 2011; Wozny et al., 

2010), or based on spontaneous neural activity (Berkes et al., 2011).  

While our results do not support the matching/sampling hypothesis, we 

cannot rule out matching/sampling or some other decision-making algorithm 

in other circumstances. Our paradigm should be extended to tasks that have 

been suggested to show evidence for sampling and also to tasks often used 

in studies that use JND as a measure of sensory uncertainty. Another 

possible caveat is that our task is artificial; we chose it because it is an 

established paradigm for studying learning and representation of prior 

uncertainty (Berniker et al., 2010a; Vilares et al., 2012) and because 

natural/evolutionary/innate priors are harder to change (but see Hosoya et 

al., 2005). It could be possible, however, that the brain uses a different 

strategy with natural priors. Future work should adapt this paradigm to a 

more natural prior/task and see if the results stand. 

We used masking to limit the number of samples subjects could take if they 

were using a sampling strategy. Since in the limit of an infinite number of 

samples the two theories are undistinguishable (at least using our 

paradigm), limiting the number of samples would help us distinguishing 

between the two theories. It has been shown for instance that if samples are 

costly then decisions based on few samples are optimal (Vul et al., 2009). 

While we cannot put an exact upper bound on the number of samples 

subjects can take during the 25ms the image is presented, it is reasonable 

to expect that masking limits the number of samples humans can take if 

humans use a sampling decision-making algorithm. 

We observed that there is a lower bound on the number of samples subjects 

could be sampling if they were using a sampling decision-making strategy. 

We have used this, together with the fact that we are masking to argue 

against sampling. However, we also observe that the JND measurements 



89 

 

are above the theoretical prediction for MAP. This is explained by the fact 

that we used the experimentally defined variance of the likelihood. As the 

true variance of the likelihood is expected to be higher than the 

experimentally imposed one -- due for instance to sub-optimality in 

estimating the centroid of the cloud of dots (Tassinari et al., 2006) -- the true 

JND for a MAP strategy should also be above the theoretical prediction and 

hence be consistent with our results.  

 

 

4.5 Materials and Methods 

 

Experimental Protocol 

We designed an experiment to examine whether or not subjects' behavior 

during a 2AFC task is influenced by their prior. If a change in their prior 

produces systematic changes in their JND, then this would be evidence that 

decisions are made by sampling. If, on the other hand, the JND is invariant 

with respect to their prior, then this would offer evidence that subjects use 

MAP. Additionally, this would provide evidence that the 2AFC task 

measures sensory precision. To test this, we had subjects participate in a 

previously published “coin-catching” paradigm (Berniker et al., 2010a; Sato 

and Aihara, 2011; Vilares et al., 2012) which consists of an estimation task. 

Here we adapted the paradigm to include 2AFC trials as well as estimation 

trials. 
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Estimation and 2AFC trials 

A virtual coin-catching paradigm was used to test subjects in both estimation 

and 2AFC tasks. All trials/tasks began the same. The locations of two virtual 

coins were drawn from a normal distribution (the prior). The location of the 

first coin was depicted by quickly presenting a “splash” (the likelihood) as 

five small red dots drawn from a normal distribution centered on the coin's 

position (see Figure 4.2). After 25 milliseconds a mask (see below) was 

displayed for 500 milliseconds. Then a second splash was used to depict 

the location of the second coin (again centered on the coin's location and 

displayed for 25 milliseconds and followed by a mask. After this subjects 

were randomly asked to either estimate the second coin's location (the 

estimation task), or which of the two coins landed further to the right (the 

2AFC task) (see Figure 4.2). 

 

Estimation task.  

In the estimation trials, subjects were presented with a virtual net, depicted 

with a vertical bar (10% of the screen width). Their task was to place the net 

where they believed the coin landed. Since the net covered the entire height 

of the screen, the task was a one-dimensional estimation problem. Once 

they placed the net in the desired location and depressed the mouse key, 

the true coin location was displayed to them and the trial ended. If a coin 

landed within the net it was considered caught. A running tally of the number 

of coins caught as well as their average distance between the net and the 

coin was displayed. The estimation trials were used to change the subject's 

prior belief in coin locations, and its data was used to estimate if that change 

happened. 
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2AFC task. 

In the 2AFC trials, subjects were instructed to guess which tossed coin, 

unseen to them, landed further to the right by depressing a key (either 1 for 

the first coin, or 2 for the second coin). The data collected during the 2AFC 

trials was used to construct psychometric curves. The data allowed us to 

both measure the subjects’ JND and also to verify that subjects used a prior 

for the coin's location in both the estimation and 2AFC trials (see below).  

By manipulating the variance/uncertainty of the coin's prior – the variance of 

the distribution from witch the hidden coin’s position is sampled -, as well as 

of the likelihood, we were able to change the subjects' prior, infer if the prior 

was effectively changed (using the estimation trials) and confirm that 

subjects used the learned prior in the 2AFC task (using the different-

likelihood 2AFC trials). Importantly, since we simultaneously measured 

subjects’ JNDs (using the same-likelihood 2AFC trials, see below) we were 

able to examine the specific predictions of different decision-making 

theories; concretely, whether and how subjects’ JND changes with changes 

in variance/uncertainty of their prior.  

 

Experimental details  

Seven subjects participated in this study (one female) with an average age 

of 30.1 7.2±  years. Four of the participants were naive to the goals of the 

experiment, signed consent forms and were paid based on their 

performance. The remaining three participants are authors of this 

manuscript (DA, MB and HLF). All experimental protocols were approved by 

the Northwestern University Institutional Review Board and were in 

accordance with Northwestern University's policy statement on the use of 

humans in experiments. 
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Subjects performed the experiment over five days, participating 

approximately two hours per day. On each day they were seated in front of 

a computer monitor (approximately 24 inches (52cm wide, 32.5cm high) in a 

quiet room. Each subject performed two 1000-trial blocks per day (for a total 

of 10,000 trials across 5 days). The prior over coin locations switched from 

block to block, from wide to narrow variance on one day, and narrow to wide 

variance, on the subsequent day, etc. Both priors were normal distributions 

with zero mean. The narrow prior had a standard deviation of 4% of screen 

width while the wide prior had a standard deviation of 20% of screen width. 

To create the splashes, we used two standard deviations; one was 2.24% of 

the screen width, the other 8%. Occasionally target coins close to the left 

and right side of the monitor would have splashes that fell outside the 

screen limits. In these trials the splash was resampled until all dots were 

within the screen limits. In half of the trials, the same likelihood was used for 

both coins (standard deviation of 8% of screen width). In the remaining, 

randomly drawn trials, one of the coins' splashes used the 2.24% standard 

deviation, while the other used the 8% standard deviation. 

2AFC trials wherein the two coins had the same likelihood standard 

deviation – denoted same-likelihood 2AFC trials – were used to measure 

subjects' JND. 2AFC trials wherein the two coins had different likelihood 

standard deviations – denoted different-likelihood 2AFC trials – allowed us 

to verify that subjects used the prior learned during the estimation trials to 

judge coin locations during the 2AFC trials. Alternatively it could be that 

subjects were just using the splash's centroid or a different prior (see 

below); this is an important control because, even though the MAP 

hypothesis predicts that subjects’ behavior is independent of their prior (see 

Figure 4.2), this would also be the predicted behavior under the sampling 

hypothesis if subjects, while performing the 2AFC task, merely neglected 

the prior learned during the estimation trials, and instead relied on a different 

and unchanged prior.  
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All trials began as described above, and were randomly assigned to be 

estimation or 2AFC trials. Each block consisted of 500 estimation trials and 

500 2AFC trials, in a random order. To assist subjects in learning the coin's 

prior quickly, the first half of each block was mostly estimation trials (375 

estimation trial and 125 2AFC trials) while the second half were mostly 

2AFC trials (125 estimation trials and 375 2AFC trials). After the end of the 

first block, subjects took a brief (3-5 minute) rest before beginning the 

second block, with a different prior. 

At the start of each day, subjects were instructed on how to complete the 

estimation and 2AFC tasks, from a prepared manuscript. Subjects were told 

that someone behind them (the exact location not being important) was 

tossing coins, one at a time, into the pond/screen. In the estimation trials, 

their task was to try and “catch” the coin by placing a net (the vertical bar) 

where they believed the unseen coin landed. They were asked to make the 

average distance between the net and coin as small as possible, while 

collecting the maximum number of coins. They were also informed that they 

would be paid based in part on how small this distance was. Though clear to 

most subjects, it was explained to them that the vertical component of their 

guess did not matter, as the net spanned the whole height of the screen. For 

the 2AFC trials they would have to guess which of the unseen coins landed 

further to the right. Instructions were provided on how to indicate their 

choice with a key depress. To reduce the influence of uncontrolled cognitive 

strategies, subjects were also told that that the person throwing coins was 

not trying to help or hinder their progress, nor reacting to the choices they 

made. 

At the end of each day, their average distance from the hidden coins during 

the estimation trials was tallied and they were paid a base rate plus an 

additional bonus for increasingly small errors.  
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Data Analysis 

Our goal was to find a correspondence in the data with the hypotheses we 

described before. We use simple linear regressions to infer subjects’ prior 

mean and a relative measure of prior variance/uncertainty – denoted relative 

reliance of likelihood, a proxy for subjects’ prior uncertainty (see below). We 

use a cumulative Gaussian psychometric curve to measure JND and PSE. 

With these inferred pieces of information, we can investigate whether 

subjects' JND changes when their prior uncertainty changes. 

 

Estimation task 

Measuring subject’s prior variance/uncertainty. The estimation task is used 

both to change subjects’ prior uncertainty and to measure it. We assume 

Gaussian distributions and a reasonable cost-function (e.g. minimizing the 

squared error). Under these assumptions the best way (Bayes’ optimal) of 

combining the two pieces of information (prior and likelihood) is by weighting 

their means by their relative precision, i.e., their normalized reciprocal 

variance (see Körding and Wolpert, 2004b; Trommershäuser et al., 2011). 

This corresponds to the MAP solution: 

22

2 2 2 2
ˆ sc

c c

c c
σσ

µ
σ σ σ σ

= +
+ +

 

where σ  and c
σ  denote the likelihood and prior variance respectively, and 

µ  and s
c  their respective means. Consider the following model:  

bias reliance estimation
ˆ ˆ( ) ( ; r , )s s

p c c c r cφ σ= +∣  

where ( ; , )xφ µ σ  is a normal density function with mean µ  and standard 

deviation σ . By fitting this model to the data and estimating reliancer , i.e., by 
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computing the slope of the linear regression between the centroid of the 

splash of dots (proxy for mean of likelihood/sensed cue (Berniker et al., 

2010a; Sato and Aihara, 2011; Vilares et al., 2012) and estimated position 

(using the position of the net) we can estimate a relative measure of each 

subject’s prior uncertainty, reliancer , which we denote by relative reliance on 

likelihood. If subjects are Bayesian optimal then 

2

reliance 2 2

c

c

r
σ

σ σ
=

+
. Hence by 

computing the slope of the linear regression between centroid of splash of 

dots (proxy for sensed cue) and estimated position (position of the net) we 

can determine a relative measure of subjects' prior uncertainty. Note that if 

subjects were sampling then, on average, their response would also be 

optimal but noisier. This means that we can expect 

2

reliance 2 2

c

c

r
σ

σ σ
=

+
    , and 

hence that reliancer  to be a relative measure of reliance in likelihood (thus a 

proxy for prior uncertainty) independently of whether subjects are using a 

MAP or sampling strategy. 

 

Measuring subject’s mean of the prior. We can also infer subjects’ mean of 

the prior using the same data. For that, notice that we can re-arrange the 

equation above in the following way 

( )
2 2

2
ˆs sc

c

c c c
σ σ

µ
σ

+
= + −  

We can hence use as estimate of the subjects’ mean of the prior, µ , the 

intercept of linear regression of 
s

c  as a function of  ˆs
c c− . 
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2AFC task.  

The 2AFC trials can be separated into two different kinds; trials where both 

likelihoods (splashes) had the same standard deviation (regular 2AFC 

trials), and trials where the standard deviations were different (control 2AFC 

trials). Trials with equal standard deviations were used to measure subjects' 

JND and this was done by fitting a regular psychometric function (with lapse 

correction, see below). Trials with different standard deviations were used to 

infer whether subjects where using, during the 2AFC trials, the same prior 

they learned in the estimation trials (see below). 

Psychometric function. Psychometric curve fitting for 2AFC tasks finds a 

relationship between stimuli's discrepancy and the subject’s response. 

Given the uncertainty and noise inherent to the task, the psychometric curve 

describes the probability of a response given a pair of stimuli. There are 

multiple functions that can be used to define the probability of response in a 

psychometric curve. Here we use a cumulative Gaussian function to make it 

coincide with the theoretical derivations shown in Results and Supp. 

Information. We could use an alternative functional form for the 

psychometric curve (e.g. Weibull or logistic) but the cumulative Gaussian 

function simplifies our exposition substantially. 

The psychometric function used in our analysis is  

( )1 2 2 1 JND( 1 , ) ;PSE,p z c c c c σ= = Φ −∣ , 4.4 

 where 1c  is the reference cue, 2c  is the probe cue, and Φ  is the 

cumulative Gaussian function with mean PSE and standard deviation JNDσ  . 

We refer to 2 1c c−   as the experiments' cue discrepancy---as opposed to 

2 1

s sc c− , the subjects sensed cue discrepancy.  
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2AFC trials with same likelihood standard deviation. In these trials we are 

interested in quantifying subjects' JND. We fit the psychometric function in 

order to determine the �PSE  and JNDσ̂ . We use a psychometric curve with 

lapse, a small variation of the psychometric curve (see below). 

Control 2AFC trials; different likelihood standard deviation. In this case, the 

PSE (see Equations 4.6, 4.8 and 4.10 in Supp. Information, but not the JND 

see Equations 4.7 and 4.9 in Supp. Information), depends on the absolute 

position of the cues. The psychometric curve is thus a two-dimensional 

surface; effectively we get a different psychometric curve for different 

positions of the reference cue. Importantly, both the MAP and the sampling 

hypothesis have the same prediction for how changes in prior uncertainty 

affect how the PSE values depend on the position of the reference cue. 

Specifically, they predict that the PSE changes linearly with the position of 

the reference cue 1c  (see Supplemental Information for details): 

2 2

2 1
1 12 2

1

( )
c

PSE c c
σ σ

σ σ

−
=

+
   4.5 

In the analysis of these 2AFC trials we chose the reference cue, 1c , to be 

the cue with higher standard deviation ( 1 2σ σ> ). Hence the linear term 

( ) ( )2 2 2 2

2 1 1/ cσ σ σ σ− +  is expected to be negative and its absolute value is 

expected to increase as the uncertainty of the prior ( c
σ ) decreases. 

Quantifying this linear relationship thus allows us to examine whether or not 

subjects use the prior learned during the estimation trials to make the 2AFC 

judgments. 

When fitting the psychometric function to data from these trials we assume 

that PSE equals bias ref 1

e
cβ β+ , i.e., we assume a bias term just like in the 

regular psychometric curve fitting, plus a linear dependence on the 
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reference cue as predicted in Equation 4.5. Note that if we set ref 0β =   we 

recover the psychometric curve fitting used for the same likelihood standard 

deviation trials data. As in the simple psychometric function fitting, it is 

possible to find biasβ , refβ , and JNDσ̂  optimally by framing the problem within 

a generalized linear model framework.  

 

Psychometric curve with lapse. Equation 4.4 assumes that subjects make 

no distraction mistakes; given a sufficiently large discrepancy between the 

cues, the cumulative Gaussian converges on both sides to a 100% 

discrimination rate. However, to account for occasional mistakes that 

subjects may produce, we add a lapse parameter that can be interpreted as 

a small but not negligible change that subjects commit errors and respond 

randomly, independent of the discrepancy, with λ  probability. The 

psychometric curve can be then modified to accommodate this change as 

follows  

( )1 2 2 1 JND( 1 , ) (1 2 ) ;PSE,e e e e
p z c c c cλ λ σ= = + − ⋅Φ −∣ , 

 where now the curve is bounded between %λ  and (1 )*100%λ−  

accuracy. We find the parameters jointly by likelihood maximization. 

For estimating, for each subject, the slope of PSE, JND, reliance in 

feedback and mean of the prior, we used only trials after trial 500 for the first 

day and after trial 100 for the other days. Confidence intervals were 

computed using 1000 bootstrap samples.  
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4.6 Supplemental Information 

 

We start by assuming that the prior over cues, ( )P c , and the likelihoods, 

1 1( | )P s c , 2 2( | )P s c  are Gaussian functions defined in the following way: 

Prior: 2( ) ( , )cP c µ σ= N  

Likelihoods: 2

1 1 1 1( | ) ( , )P s c c σ= N  and  2

2 2 2 2( | ) ( , )P s c c σ= N  

Hence, the posterior 1 1( | )P c s  is given by: 

2 2 2 2

1 1 1
1 1 1 1 1 1 2 2 2 2

1 1

( | ) ( | ) ( ) / ( ) ,c c

c c

s
P c s P s c P c P s

µσ σ σ σ

σ σ σ σ

 +
= =  

+ + 
N  

 analogously for 2 2( | )P c s . 

  

MAP Derivations 

For maximizing, the subject's response variable, z  is a random variable, 

equal to 1 if the maximizer of 2 2( | )P c s  is greater than the maximizer of 

1 1( | )P c s ,  

[ ] [ ]2 2 1 1

1 2

1 if E P(c |s ) -E P(c |s ) 0
( , )

0 otherwise
z s s

 ≥
= 


 

where, for normal distributions,  

[ ] [ ]
2 2 2 2

2 2 1 1
2 2 1 1 2 2 2 2

2 1

E ( | ) ( | ) c c

c c

s s
P c s E P c s

µσ σ µσ σ

σ σ σ σ

+ +
− = −

+ +
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where for notational simplicity, we refer to this difference as δ . Therefore, a 

subject's response is determined through the random variable, δ , which is 

defined by the two random sensory inputs, 1s , and 2s . From 1 2( | , )P s sδ , 

and using 1 1( | )P s c   and 2 2( | )P s c , we can integrate out 1s  and 2s  to obtain 

the probability distribution for δ  in terms of the two experimental variables, 

1

e
c , 2

e
c .  

2 2 2 2
21 1 2 2 1 2

1 2 2 1 2 2 2 2 2 2 2 2 2 2

1 2 1 2

( ) ( )
( | , ) ,

( ) ( )

e e
e e e e

c

c c c c

c c
P c c c c

µ σ µ σ σ σ
δ σ

σ σ σ σ σ σ σ σ

  − −
= − + + +   + + + +  
N

 

We can then compute the probability of a subject's response, given the two 

cue locations, 1

e
c , 2

e
c . 

( ) ( ) ( )1 2 1 2 1 2
0

1| , 0 | , | ,e e e e e eP z c c P c c P c c dδ δ δ
∞

= = ≥ = ∫  

2 2 2 2 2 2

2 1 2 1 1 2
1 2

2 2 2 2 2 2 2 2

1 2 2 1

( ) ( ) ( )1
( 1| , ) 1 erf

2 2 ( ) ( )

e e
e e c c

c c

c c
P z c c

µ σ σ σ σ σ σ

σ σ σ σ σ σ

  − + + − +  = = +
  + + +  

 

this equation, defines the psychometric curve, the probability of the subject 

responses given the experimentally manipulated cues. First we note a few 

important features of this curve. In this most general case, where the two 

sensed cues have different likelihoods, the psychometric curve is a function 

of the two cues, 1

e
c , 2

e
c , and cannot be rewritten in terms of the difference 

between cues 2 1

e e
c c− . The psychometric curve is a function of not only of 

the discrepancy between the two cues, but also their absolute values. To 

see this, note that the point of subjective equality (PSE) is found when, 

2 2 2 2 2 2

2 1 2 1 2 1( ) ( )e e

c cc cσ σ µσ σ σ µσ+ + = + +  4.6 
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and the just-noticeable-difference, or JND is found to be, 

2 2 2 2 2 2 2 2

1 2 2 1

JND 2 2

1

( ) ( )c c

c

σ σ σ σ σ σ
σ

σ σ

+ + +
=

+
 4.7 

If, however, the two likelihoods have the same variance, i.e., 1 2σ σ σ= = , 

then the psychometric curve collapses to the more familiar form: 

2 1
1 2

1
( 1| , ) 1 erf

2 2

e e
e e c c

P z c c
σ

  −
= = +  

  
 

where the PSE zero, and the JND is hence 
JND 2σ σ=  

  

Sampling derivations 

According to the sampling hypothesis, the subject's response is based on 

two estimates of the mean, 1̂

k
c  and 2

ˆk
c , computed using k  samples from 

the corresponding posterior distributions, 1 1( | )P c s  and 2 2( | )P c s , i.e., 

1 1

{1,..., }

1
ˆ ˆk i

i k

c c
k ∈

= ∑  where 1 1 1
ˆ ~ ( | )i
c P c s , analogously for 2c . 

Hence 1̂

k
c  and 2

ˆk
c  are random variables and  

2 2 2 2

1 1 1
1 1 2 2 2 2

1 1

ˆ( | ) ,
( )

k c c

c c

s
P c s

k

µσ σ σ σ

σ σ σ σ

 +
=  

+ + 
N  

similarly for 2 2
ˆ( | )k

P c s . A subject's response variable, z, is chosen according 

to the following rule:  
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k k

2 1

1 2

ˆ ˆ1 if c -c 0
( , )

0 otherwise
z s s

 ≥
= 


 

Just as with the MAP decision, we define a random variable, 2 1
ˆ ˆk k
c cδ = −  

which is defined by the two random sensory inputs, 1s , and 2s . Again, we 

can integrate out 1s  and 2s  using the likelihoods 1 1( | )P s c  and 2 2( | )P s c  

and obtain the probability distribution for δ  in terms of the two experimental 

variables, 1

e
c , 2

e
c : 

( )2

1 2( | , ) ,e e
P c c δ δδ µ σ= N  

where the mean and variance are defined as: 

2 2

2 2 1 1
2 1 2 2 2 2

2 1

( ) ( )e e
e e

c c

c c
c cδ

σ µ σ µ
µ

σ σ σ σ

− −
= − + −

+ +
 

2 2 2 2 2 2 2 4 2 2
2 1 2 1 2 1 2

2 2 2 2 2 2 2 2 2 2

1 2 1 2

2 ( )

( ) ( ) ( )( )

c c c c

c c c c
k

δ

σ σ σ σ σ σ σ σ σ σ
σ

σ σ σ σ σ σ σ σ

+ +
= + +

+ + + +
 

We can then compute the probability of a subject's response, given the two 

cue locations, 1

e
c , 2

e
c : 

( ) ( ) ( )1 2 1 2 1 2
0

1| , 0 | , | ,e e e e e eP z c c P c c P c c dδ δ δ
∞

= = ≥ = ∫  

1 2

1
( 1| , ) 1 erf

2 2

e e
P z c c δ

δ

µ

σ

  
= = +   

   
 

Also in this case, as with the MAP decision hypothesis, the psychometric 

curve is not translation invariant, i.e. it cannot be written in terms of the 
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difference between 1

e
c , 2

e
c  . The PSE is, as in the MAP case (Equation 4.6), 

obtained when 

2 2 2 2 2 2

2 1 2 1 2 1( ) ( )e e

c cc cσ σ µσ σ σ µσ+ + = + +   4.8 

On the other hand, the just-noticeable-difference is different from the MAP 

case, given by 

2 2 2 4 2 4 2 2 2 4 2 2

1 1 2 1 2 1 2
JND 2 2 2 2 2 2 2 2 2 2 2

1 2 1 2

( ) 2 ( )

( ) ( ) ( )( )

c c c c c

c c c c c
k

σ σ σ σ σ σ σ σ σ σ σ σ
σ

σ σ σ σ σ σ σ σ σ

+ + +
= + +

+ + + +
4.9 

When the two likelihoods have the same variance, σ  then the psychometric 

curve collapses to, 

2 1
1 2

2 2

( )1
( 1| , ) 1 erf

2 2 ( 1)

e e
e e c

c

c c k
P z c c

k

σ

σ σ σ

  −  = = +
  + +  

 

where the PSE is zero, and the JND is: 

2 2

JND

( 1)
2

c

c

k

k

σ σ
σ σ

σ

+ +
=  

 

Using the PSE to investigate if subjects transfer the prior to the 2AFC 

task 

When the likelihoods of the two cues displayed during the 2AFC task have 

different standard deviations – different-likelihood 2AFC trials --, the 

psychometric curve and, in particular, the PSE, are a function of not only the 

cue discrepancy but also of the cues’ absolute position. For fixed standard 

deviations of the two cues, we can thus compute the PSE as a function of 

the reference cue position. We now show that both MAP and Sampling 
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theories predict the PSE to change linearly with the position of the reference 

cue, and that this linear relationship depends - in the same way for both 

theories - on the variance of the prior. 

We have seen above (Equations 4.6 and 4.8) that for both the MAP and the 

Sampling hypothesis the PSE -- by definition the discrepancy 2 1

e e
c c−  that 

makes 1 2( 1| , ) 0.5e e
P z c c= = -- is given by: 

2 2 2 2 2 2

2 1 2 1 2 1( ) ( )e e

c cc cσ σ µσ σ σ µσ+ + = + +  

Let 1

e
c  be the cue with large variance and chose it to the reference cue. Let 

2

e
c  hence be the probe cue. We can rearrange the previous equation and 

observe how cue discrepancy 2 1

e e
c c−  at the point of subjective equality 

(PSE) changes linearly with the position of the reference cue 1

e
c : 

2 2

2 1
1 1 2 2

1

PSE( )e e

c

c c
σ σ

σ σ

−
=

+
  4.10 

Importantly we can see how this linear relationship changes with the 

variance of the prior. This can be used to check whether, during the 2AFC 

task, subjects are using the prior they have learned in the estimation task; if 

the linear relationship between PSE and absolute position of the reference 

cue changes from one learned prior to the other. This way we can exclude 

an alternative explanation for an eventual absence of change in the JND, 

specifically, that subjects might be using a different prior in the 2AFC task 

than the one learned in the estimation task. 
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5.1 Summary 

The frontal eye-field (FEF) plays a central role in saccade selection and 

execution. Using artificial stimuli, many studies have shown that the activity 

of neurons in the FEF is affected by both visually salient stimuli in a 

neuron’s receptive field and upcoming saccades in a certain direction. 

However, the extent to which visual and motor information is represented in 

the FEF in the context of the cluttered natural scenes we encounter during 

everyday life has not been explored. Here we model the activities of 

neurons in the FEF, recorded while monkeys were searching natural 

scenes, using both visual and saccade information. We compare the 

contribution of bottom-up visual saliency (based on low-level features such 

as brightness, orientation, and color) and saccade direction. We find that, 

while saliency is correlated with the activities of some neurons, this 

relationship is ultimately driven by activities related to movement. Although 

bottom-up visual saliency contributes to the choice of saccade targets, it 
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does not appear that FEF neurons actively encode the kind of saliency 

posited by popular saliency map theories. Instead, our results emphasize 

the FEF’s role in the stages of saccade planning directly related to 

movement generation. 

 

5.2 Introduction 

One of the most frequent decisions in our lives is where to look next. How 

the nervous system makes this decision while free-viewing or searching for 

a target in natural scenes is an ongoing topic of research in computational 

neuroscience (Ehinger et al., 2009; Elazary and Itti, 2008; Foulsham et al., 

2011; Kayser et al., 2006; Koch and Ullman, 1985; Yarbus, 1967; Zhao and 

Koch, 2011). The most prominent models of saccade target selection during 

free-viewing are based on the concept of bottom-up saliency maps. In these 

models, the image is separated into several channels including color, light 

intensity, and orientation, to create a set of "feature maps" (for a review see 

Cave and Wolfe, 1990; Itti and Koch, 2000, 2001b; Koch and Ullman, 1985; 

Schall and Thompson, 1999; Treisman, 1988). For example, the horizontal 

feature map would have high values wherever the image has strong 

horizontal edges. After normalizing and combining these feature maps the 

output indicates locations in an image containing features that are different 

from the rest of the image. The more dissimilar an image region is from the 

rest of the image the more salient or “surprising” it is (Itti and Baldi, 2006). 

Saliency models for saccade target-selection predict that human subjects 

are more likely to look at locations that are salient in the sense of being 

different from the rest of the image. Models based on these ideas have 

successfully described eye-movement behavior in both humans and 

monkeys (Berg et al., 2009; Einhäuser et al., 2006; Foulsham et al., 2011). 

How the brain may implement such algorithms is a central question in eye-

movement research. 
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The involvement of cerebral cortex in this selection of eye 

movements has been recognized since the late 19th century when David 

Ferrier reported that eye-movements could be evoked from several regions 

of the rhesus monkey's cerebral cortex by using electrical stimuli (Ferrier, 

1875). One of these regions included an area of cortex now known as the 

frontal eye field (FEF). The visual and movement-related response field 

properties of different classes of neurons in the FEF have been carefully 

characterized using physiological and behavioral methods (Bichot et al., 

1996; Bizzi, 1968; Bizzi and Schiller, 1970; Bruce and Goldberg, 1985; 

Burman and Segraves, 1994; Dias et al., 1995; Dias and Segraves, 1999; 

Everling and Munoz, 2000; Fecteau and Munoz, 2006; Mohler et al., 1973; 

Phillips and Segraves, 2010a; Ray et al., 2009; Sato and Schall, 2003; 

Schall, 1991; Schall and Hanes, 1993; Schall et al., 1995; Schiller et al., 

1980; Segraves, 1992; Segraves and Goldberg, 1987; Segraves and Park, 

1993; Serences and Yantis, 2006; Sommer and Tehovnik, 1997; Sommer 

and Wurtz, 2001; Suzuki and Azuma, 1977; Thompson and Bichot, 2005). In 

addition to eye-movement related activity, FEF firing rates are thought to be 

affected by simple image features (Peng et al., 2008), by task-relevant 

features (Bichot and Schall, 1999; Murthy et al., 2001; Thompson et al., 

1997; Thompson et al., 1996), and by higher-order cognitive factors 

including memory and expectation (Thompson et al., 2005). During the 

period of fixation between saccades, the initial visual activity of FEF neurons 

is not selective for specific features such as color, shape, or direction of 

motion (Schall and Hanes, 1993). Later activity, however, is more closely 

related to saccade target selection, and appears to be influenced by both 

the intrinsic, bottom-up saliency of potential targets as well by their similarity 

to the target (Murthy et al., 2001; Thompson and Bichot, 2005; Thompson et 

al., 2005). Several studies have suggested that the pre-saccadic peak of 

FEF visual activity specifies the saccade target (Bichot and Schall, 1999; 

Schall and Hanes, 1993; Schall et al., 1995) and that this visual selection 

signal is independent of saccade production (Murthy et al., 2001; O'Shea et 
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al., 2004; Sato et al., 2001; Thompson et al., 1997). In summary, activity in 

FEF has been linked to information about perception, decision making, 

planning, and action, increasing the difficulty of identifying a precise 

computational role for this area. 

Although it has been suggested that FEF neurons encode a visual 

saliency map, the definition for visual saliency in this context is typically 

largely subjective, non-uniform across studies, not always explicitly defined, 

and based primarily upon the likelihood that a feature in visual space will 

become the target for a saccade (Thompson and Bichot, 2005). From a 

computational perspective, the prevalent interpretation of saliency in the 

oculomotor field includes the fundamental visual features contributing to the 

objective definition of visual saliency as well as other factors determining 

saccade target choice including relevance or similarity to the search target 

and the gist - the likelihood that the target will be found at a particular 

location (Itti and Koch, 2000; Land and Hayhoe, 2001; Oliva et al., 2003; 

Turano et al., 2003). In this study, we use a precise bottom-up definition of 

saliency, a definition that is independent of task objective or gist, based only 

upon the basic physical image features. Examining FEF activity in the light 

of a formal definition will advance our understanding of both the process for 

saccade target choice as well as the role of the FEF in that process.  

It is unclear whether results from earlier studies using artificial stimuli 

will hold for natural scenes, and exactly how visual and motor information 

are represented in FEF during naturalistic eye movements. To understand 

how the brain works ultimately implies understanding how it solves the kinds 

of tasks encountered during everyday life (Kayser et al., 2004). Following 

that philosophy, multiple communities have begun to analyze the brain using 

natural stimuli (Rolls and Tovee, 1995; Sharpee et al., 2004; Smyth et al., 

2003; Theunissen et al., 2001; Vinje and Gallant, 2002; Wainwright et al., 

2002; Weliky et al., 2003; Willmore et al., 2000) and have quantified the 

statistics of natural scenes and movements (Bell and Sejnowski, 1997; 
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Howard et al., 2009; Hyvarinen et al., 2003; Ingram et al., 2008; Lewicki, 

2002; Möller et al., 2003; Olshausen and Field, 1996; Schwartz and 

Simoncelli, 2001; Smith and Lewicki, 2006; Srivastava et al., 2003; Van 

Hateren and van der Schaaf, 1998). Importantly, these studies show 

experimentally that surprising nonlinear aspects of processing become 

apparent as soon as natural stimuli are used (Kayser et al., 2003; MacEvoy 

et al., 2008; Theunissen et al., 2000). For example, input to regions outside 

of the classical receptive field during natural scene viewing increases the 

selectivity and information transfer of V1 neurons (Vinje and Gallant, 2002). 

It is thus important to analyze FEF activity using natural stimuli. 

Although a complete understanding of the FEF’s role in eye 

movement control will depend upon the use of natural stimuli, analyzing 

neural activities during the search of natural images is a difficult problem. 

The main factor contributing to this difficulty is the fact that most variables of 

interest are correlated with one another. It is known that monkeys tend to 

look at visually salient regions of images (Berg et al., 2009; Einhäuser et al., 

2006). This means, that a purely movement related neuron would have 

correlations with bottom-up saliency. In an extreme example, eye muscle 

motor neurons responsible for moving the eyes to the right, would on 

average have more activity during times where the right side of the image 

has high saliency, and would thus appear to encode high saliency in the 

right visual field. We clearly would not want to conclude that the motor 

neuron encodes saliency. This emphasizes the need for a way of dealing 

with the existing correlations. 

To deal with such cases, statistical methods have been developed 

that enable “explaining away” (Pearl, 1988). In natural scene search, the 

correlations are not perfect - the subject may not always look to the right 

when the rightward region is salient. These divergences enable us to identify 

the relative contributions of visual and motor activation to neuron spiking. 

The basic intuition is the following: For the case of a neuron that is tuned 
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only to saliency, its activity may also be correlated with eye movement 

direction due to the imperfect correlation of saliency and saccade direction 

during natural scene search. Once we subtract the best prediction based on 

saliency, however, any correlation with movement would be gone. The 

opposite would not be true. If we subtract the best prediction based on 

movement, a correlation with saliency would still exist. Over the past few 

years, generalized linear models (GLMs), have proven to be powerful tools 

for solving such problems, modeling spike trains when neural activity may 

depend on multiple, potentially correlated, variables (Pillow et al., 2008; 

Saleh et al., 2010; Truccolo et al., 2005).  

Here we recorded from neurons in the frontal eye field (FEF) while a 

monkey searched for a small target embedded in natural scenes. We then 

analyzed the spiking activity of these neurons using GLMs that treat both 

bottom-up saliency and saccades as regression variables. Almost all 

neurons had correlations with upcoming saccades and most also had 

correlations with bottom-up saliency. However, after taking into account the 

saccade related activities, the correlations with saliency were explained 

away. These results suggest that conventional, bottom-up saliency is not 

actively encoded in the FEF during natural scene search. 

 

5.3 Materials and Methods 

The animal surgery, training, and neurophysiological procedures used in 

these experiments are identical to those reported in (Phillips and Segraves, 

2010). All procedures for training, surgery, and experiments were approved 

by Northwestern University’s Animal Care and Use Committee. 

 

Animals and Surgery 

Two female adult rhesus monkeys (Macaca mulatta) were used for these 

experiments, identified here as MAS14 and MAS15. Each monkey received 
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preoperative training followed by an aseptic surgery to implant a 

subconjunctival wire search coil for recording eye movements (Judge et al., 

1980; Robinson, 1963), a Cilux plastic recording cylinder aimed at the 

frontal eye field (FEF), and a titanium receptacle to allow the head to be 

held stationary during behavioral and neuronal recordings. Surgical 

anesthesia was induced with the short-acting barbituate thiopental (5-7 

mg/kg IV), and maintained using isoflurane (1.0-2.5%) inhaled through an 

endotracheal tube. The FEF cylinder was centered at stereotaxic 

coordinates anterior 25 mm and lateral 20 mm. The location of the arcuate 

sulcus was then visualized through the exposed dura and the orientation of 

the cylinder adjusted to allow penetrations that were roughly parallel to the 

bank of the arcuate sulcus. Both monkeys had an initial cylinder placed over 

the left FEF. Monkey MAS14 later had a second cylinder place over the right 

FEF. 

 

Behavioral Paradigms 

We used the REX system (Hays et al., 1982) based on a PC computer 

running QNX (QNX Software Systems, Ottawa, Ontario, Ca), a real-time 

UNIX operating system, for behavioral control and eye position monitoring. 

Visual stimuli were generated by a second, independent graphics process 

(QNX – Photon) running on the same PC and rear-projected onto a tangent 

screen in front of the monkey by a CRT video projector (Sony VPH-D50, 

75Hz non-interlaced vertical scan rate, 1024×768 resolution). The distance 

between the front of the monkey’s eye to the screen was 109.22cm (43 

inches). 

 

Visually guided and memory-guided delayed saccade tasks 

Monkeys fixated a central red dot for a period of 500-1000 ms. At the end of 

this period, a target stimulus appeared at a peripheral location. On visually 

guided trials, the target remained visible for the duration of the trial. On 
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memory-guided trials, the target disappeared after 350 ms. After the onset 

of the target, monkeys were required to maintain central fixation for an 

additional 700-1000 ms until the central red dot disappeared, signaling the 

monkey to make a single saccade to the target (visually guided) or the 

location at which the target had appeared (memory-guided). The delay 

period refers to the period of time between the target onset and the 

disappearance of the fixation spot. These two tasks were used to 

characterize the FEF cells by comparing neural activity during four critical 

epochs (see Data Analysis). Typically, trials of these types were interleaved 

with each other, and with the scene search tasks described below.  

 

Scene search task 

This task was designed to generate large numbers of purposeful, self-

guided, saccades. Monkeys were trained to find a picture of a small fly 

embedded in photographs of natural scenes. After monkeys learned the 

standard visually guided and memory-guided search tasks, the target spot 

was replaced with the image of the fly. After 30 minutes the scene task was 

introduced. Both monkeys used in this experiment immediately and 

successfully sought out the fly. After a few sessions performing this task, it 

became obvious that monkeys were finding the target after only one or two 

saccades. We therefore used a standard alpha blending technique to 

superimpose the target onto the scene. This method allows for varying the 

proportions of the source (target) and destination (the background scene) 

for each pixel, and was used to create a semi-transparent target.  Even after 

extensive training, we found that the task was reasonably difficult with a 

65% transparent target, requiring the production of multiple saccades while 

the monkeys searched for the target. Monkeys began each trial by fixating a 

central red dot for 500-1000 ms, then the scene and embedded target 

appeared simultaneously with the disappearance of the fixation spot, 

allowing monkeys to begin searching immediately. The fly was placed 
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pseudo-randomly such that its appearance in one of eight 45° sectors of the 

screen was balanced. Within each sector its placement was random 

between 3 and 30 degrees of visual angle from the center of the screen. 

Trials ended when the monkeys fixated the target for 300 ms, or failed to 

find the target within 25 saccades. Images of natural scenes were pseudo-

randomly chosen from a library of >500 images, such that individual images 

were repeated only after all images were displayed. An essential feature of 

this task is that, although they searched for a predefined target, the 

monkeys themselves decided where to look. The location where the target 

was placed on the image did not predict the amplitudes and directions of the 

saccades that would be made while searching for it nor the vector of the 

final saccade that captured it. 

 

Image database 

The set of images was collected by one of the co-authors (ANP) for the 

purpose of conducting the experiment in Phillips and Segraves (2010), and 

is available for download. The photographs were taken using a digital 

camera, and included scenes with engaging objects such as animals, 

people, plants, or food. The images were taken by a human photographer 

and thus may contain biases not present in truly natural visual stimuli 

(Tseng et al., 2009). For instance, the center of the image tends to be more 

salient than the edges (as presented in Results, Figure 5.2A and B). 

 

Neural Recording 

Single neuron activity was recorded using tungsten microelectrodes (A-M 

Systems, Inc., Carlsborg, WA). Electrode penetrations were made through 

stainless steel guide tubes that just pierced the dura. Guide tubes were 

positioned using a Crist grid system (Crist et al., 1988, Crist Instrument Co., 

Hagerstown, MD). Recordings were made using a single electrode 

advanced by a hydraulic microdrive (Narashige Scientific Instrument Lab, 
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Tokyo, Japan). On-line spike discrimination and the generation of pulses 

marking action potentials were accomplished using a multi-channel spike 

acquisition system (Plexon, Inc., Dallas, TX). This system isolated a 

maximum of 2 neuron waveforms from a single FEF electrode. Pulses 

marking the time of isolated spikes were transferred to and stored by the 

REX system. During the experiment, a real-time display generated by the 

REX system showed the timing of spike pulses in relationship to selected 

behavioral events. 

The location of the FEF was confirmed by our ability to evoke low-

threshold saccades from the recording sites with current intensities of 

≤50 μA, and the match of recorded activity to established cell activity types 

(Bruce and Goldberg, 1985). To stimulate electrically, we generated 70 ms 

trains of biphasic pulses, negative first, 0.2 ms width per pulse phase 

delivered at a frequency of 330 Hz. 

 

Data Analysis – General Analysis  

FEF cell characterization 

We examined average cell activity during four critical epochs while the 

monkey performed the memory-guided delayed saccade task to determine if 

the cell displayed visual or pre-motor activity. If not enough data was 

available from this task, data from the visually guided delayed saccade task 

was used. The baseline epoch was the 200 ms preceding target onset, the 

visual epoch was 50-200 ms after target onset, the delay epoch was the 150 

ms preceding the disappearance of the fixation spot, and the pre-saccade 

epoch was the 50 ms preceding the saccade onset. FEF cells were 

characterized by comparing epochs in the following manner using the 

Wilcoxon sign-rank test. If average firing rates during the visual or delay 

epochs was significantly higher than the baseline rate, the cell was 

considered to have visual or delay activity respectively. If the activity during 

the pre-saccade epoch was significantly greater than the delay epoch, the 
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cell was considered to have pre-motor activity. These criteria are similar to 

those used by Sommer and Wurtz (2000). The selection of neurons for this 

study was biased towards those with visual activity and our sample does not 

include any neurons with only motor activity. 

 

IK-Saliency 

We considered the Itti-Koch (IK)-saliency (Itti and Koch, 2000; Walther and 

Koch, 2006) as the definition of saliency (see Supp. Mat. and Figure 5.9A). 

This method provides a bottom-up definition of saliency based only on basic 

image features and independent of task objectives. We used the publicly 

available toolbox (Walther and Koch, 2006) for computing IK-saliency with 

the default parameter values and considered three, equally-weighted, 

channels: color, intensity and orientation. IK-saliency for each image was 

centered by subtracting the mean of the IK-saliency of that image. To 

account for a possible imprecision of eye position tracking, we low-pass 

filtered the IK-saliency using a 5 degree standard deviation 2D-Gaussian 

(some examples are shown in Results, Figure 5.2A). We redid the analysis 

either without centering or without low-pass filtering the definition of IK-

saliency and show that the conclusions of this study are the same (these 

results are shown in Supplementary Material, Figure 5.13).  

 

ROC curve  

To compute the Receiver Operator Characteristic (ROC) curve for IK-

saliency as an eye fixation predictor we considered all the saccades for both 

monkeys in the interval between 200ms and 2000ms of each trial. We 

varied a threshold across the domain of possible values of IK-saliency and 

determined the fraction of fixations that fell on pixels with IK-saliency above 

that threshold (y-axis of ROC curve). We compared this true positive rate 

across all frames to the fraction of pixels without fixations that had IK-

saliency above the threshold (the false positive rate). We bootstrapped 
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across the pixels with fixations to obtain a 95% confidence interval for the 

area under the ROC curve. 

Finally, to test for the predictive value of saliency independent of center-bias 

we compared, using Mann-Whitney test, the IK-saliency at the fixated 

locations with the IK-saliency at the same locations in all other images. 

 

Peri/Post-Stimulus time histograms (PSTHs) 

We used PSTHs to examine preferred directions for saccades as well as 

sensitivity to visual saliency. For the saccade-related PSTHs, we considered 

a time interval of 400 ms centered on saccade onset. We considered all 

saccades in the time period of 200 ms after trial start and until a maximum 

of 5000 ms into the trial (less if the trial ended before 5000 ms). We 

assigned the neuron's activity for each 400 ms perisaccadic interval to one 

of 8 PSTHs according to the saccade direction and ignoring the magnitude 

of the saccade. To construct the PSTHs, spikes were binned in 10 ms 

windows and averaged across trials. 

The PSTHs for activity driven by visual saliency were computed in 

an analogous way. Each of our analyses considers the whole distribution of 

IK-saliency over the scene to characterize neural responses. We considered 

a time interval of 400 ms centered on fixation onset. The spikes were binned 

in 10 ms windows. Activity for a fixation interval was assigned to a particular 

direction if, after convolving the IK-saliency image with one of 8 filter 

windows that corresponded to each representative direction relative to eye 

fixation, the average pixel value was positive. Unlike the saccade-related 

PSTHs where each raster was associated with only one of the 8 

representative directions, IK-saliency for a given image was often elevated 

in more than one of the 8 filter windows, and thus each raster in the visual 

saliency PSTHs could be assigned to more than one PSTH. The 8 filter 

windows were cosine functions of the angle, each with a maximum at the 

correspondent representative direction and independent of the distance to 
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fixation point. These filters were thresholded to be zero at a distance smaller 

than 3 or larger than 60 degrees. 

 

Data Analysis – Generative Model, Model Fitting and Model 

Comparison  

To explicitly model the joint contribution of saliency and saccades we 

developed a generative model for FEF spiking using a type of generalized 

linear model (GLM) -- a linear-nonlinear-Poisson cascade model. We 

specify how these multiple variables can affect neural firing rates and how 

firing rates translate to observed spikes. We then fit the model to the 

observed spikes using maximum likelihood estimation (see below). 

 

Generative model 

We considered a time interval starting 200 ms after trial start and until a 

maximum of 5000 ms into the trial. We wanted to examine three 

hypotheses: spike trains in FEF neurons encode (i) saccade-related (motor) 

information alone, (ii) bottom-up saliency alone, or (iii) both motor processes 

and bottom-up saliency. We model spike activity using a Generalized 

Bilinear Model (Ahrens et al., 2008). We will explain in detail the joint model, 

i.e., the model that considers both saccade and saliency as covariates – 

candidate predictors of FEF neuron activity. The saccade only, saliency only 

and full-saccade models are simplifications of this basic model and will be 

described after. We start by assuming that the conditional intensity 

(instantaneous firing rate), λ , of a neuron at time t is a function of the eye 

movements m
s , visual stimuli, v

s , as well as the time relative to saccade 

onsets, m
τ , and time relative to fixation onsets, v

τ : 

( ) ( ) ( ) ( ) ( )( )| , , , exp , ,M m V v

m m m v v vt f s f f s f f sλ τ α α τ τ τ τ= + + + +  
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We assume that there are two spatio-temporal receptive fields (STRFs) 

(.)m
f  and (.)v

f  for motor (saccade) and for visual (saliency) covariates, 

respectively. To account for possible non-spatially tuned responses (e.g. 

untuned temporal modulation preceding fixation onset in a saliency 

encoding neuron or saccade-locked untuned firing rate change) and for the 

fact that saccades do not have a fixed duration (a histogram of saccade 

durations is shown in Figure 5.10B), we also allow for the possibility of a 

purely temporal response – independent of direction of saccade or of 

saliency stimuli – defined by temporal receptive fields (TRFs) at beginning of 

saccade, (.)M
f  and at end of saccade/beginning of fixation, (.)V

f . We 

assume that these STRFs and TRFs combine linearly and, to ensure that 

the firing rate is positive, the output of this linear combination is then passed 

through an exponential nonlinearity. To simplify, we assume that the STRFs 

are space-time separable 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )| , , , , exp M m m V v v

m m m v v vt g h s f g h s f g h sλ τ α α τ τ τ τ= + + + +

 

and that both the TRFs and the STRFs are linear in some basis, such that 

they can be rewritten as a sum of linear and bilinear forms, 

( ) ( )| , , , exp ( ) ( ) ( ) ( )M M m m m V V v v vt t t t tλ α α= + + + +X w b w X w X b w X w X b
� � � �

 

The vectors m
w  and v

w  define the temporal components of the 

STRFs, while m
b  and v

b  define the respective spatial components. The 

parameter α  defines the baseline intensity and m
w  and v

w  are the 

parameters for the purely temporal responses centered at saccade and 

fixation onset, respectively. These parameters, together with the motor 

parameters m
w  and m

b , as well as the saliency parameters v
w  and v

b  of 

the STRF, fully define the neurons firing rate. Notice that the bilinear 

components of the model are not strictly linear in the parameters unless we 

consider the temporal components and the spatial components separately.  



119 

 

Finally, we assume that the observed spikes are drawn from a 

Poisson random variable with this rate:  

( )( )spikes( ) ~ Poisson | , , ,n t tλ αX w b . 

Hence if [ , [N t t t+∆  is the number of spikes during the interval [ , [t t t+ ∆ , 

( )( )[ , [ spikes spikesN ( ) ( ) ~ Poisson | , , ,
t t

t t t
t

n t t n t t dtλ α
+∆

+∆ = + ∆ − ∫ X w b . 

We binned the data in t∆ = 10 ms intervals and we assume constant firing 

rate [ , [t t tλ +∆  within each time bin then 

( )( )[ , [ [ , [| , , ,
N ~ Poissont t t t t t

t
α

λ+∆ +∆
∆

X w b  

For notational convenience, in the remainder of the Methods t will denote an 

index representing the time bin [ , [t t t+ ∆ , with t∆ = 10 ms. 

 

Parametrization of the receptive fields 

The form of the STRFs depends on how we construct m
X  and v

X , that is, 

how we parameterize the spatial and temporal components of the saccade 

and saliency receptive fields. We parameterize the spatial receptive field for 

saccades by assuming that the activity of the neuron is cosine tuned for 

saccade direction, i.e., its firing rate is a function of the cosine of the angular 

difference between the direction of saccade and some fixed direction, the 

neuron’s preferred direction (Georgopoulos et al., 1982; Hatsopoulos et al., 

2007). Specifically, for each time index t we define a vector ( )td  as: 

[ ]( ) cos( ( )) sin( ( ))t t tθ θ=d
�

 

if a saccade with direction ( )tθ  occurred at time index t,  otherwise ( )t =d 0

. For notation convenience we define a matrix ,( ) [ ]t jt d=D , where 
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, ( )t j jd t= d . This matrix incorporates the spatial component of the saccade 

covariates for each of the spatial basis functions for all time points. Although 

there is some evidence that FEF neurons may be tuned to saccade 

magnitude (Bruce and Goldberg, 1985), we focus on directional tuning here, 

which appears to be the dominant factor. The construction of M
X  and V

X , 

which defines the form of the TRFs, is done in an analogous way by defining 

vector ( )td  as 1  (one dimensional) if a saccade occurred at time index t 

and 0  otherwise. To model temporal variation near the time of saccade 

and fixation onset we parameterized temporal receptive fields with a set of 5 

basis functions. Since saccades and fixations are defined by very specific 

points in time, we restrict ourselves to finite windows 200 ms before to 300 

ms after saccade or fixation onset. Specifically, our set of temporal basis 

functions are 5 truncated Gaussians with standard deviation of 50 ms: 

( ) [ 200,300]( ) ,50 ms ( )k kt tµ −= ×f 1N , 

where (.)
A

1  is the indicator function, and the k =5 means k
µ  are equally 

spaced such that they partition the interval between -200 ms and 300 ms 

into 6 subintervals: [ 200 : : 300 ]
k

µ τ τ τ= − + ∆ ∆ − ∆  ms with τ∆ =500/6 ms.  

We incorporate temporal information by convolving each column of matrix 

D  with each basis function that parameterizes the temporal receptive fields. 

Finally, we define, for each time index t, the matrix , 5 2( ) [ ( )]m k jt x t ×=X  

where 

( ), ( ) * ( )k j j kx t t= D f . 

The matrix ( )
M

tX  is defined in an analogous way and is hence a 5-by-1 

matrix. 
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For the visual/saliency basis we assume a similar model where the 

neuron has a preferred direction for the saliency surrounding the eye fixation 

position. This model is based on the entire saliency distribution across the 

scene. The parameterization is analogous to the saccade spatial receptive 

field: 

( ) ( )fix fix fix fix2 2 2 2
, ,

( ) IKS ( ), ( ) IKS ( ), ( )
x y x y

x y
t x x t y y t x x t y y t

x y x y

 
 = − − − −

+ +  
∑ ∑d

�

 

if a fixation started at time t and ( ) 0t =d  otherwise. IKS  denotes the IK-

saliency of the current image and the sum is over all pixel positions ( , )x y  in 

a window centered at the eye position during fixation (see Supp. Mat. and 

the description above and (Itti and Koch, 2000; Walther and Koch, 2006) for 

details). Similarly to the cosine tuning to saccade direction used above, this 

representation provides a directional tuning to average saliency. We 

considered the median eye position during the fixation period as the value of 

eye position during the ith fixation, ( )fix fix( ), ( )x t y t . The construction of 

matrices v
X  and V

X  is then analogous to the construction of m
X  and 

( )
M

tX .  

The STRFs for saccades and saliency allow us to model directional 

dependence that is then modulated by an envelope around the time of 

saccade or fixation onset. Note that the STRFs for saliency and saccades 

are allowed to be completely unrelated under this model, and the same is 

true for the TRFs, the purely temporal responses around saccade and 

fixation onset. The joint model has a total of 25 parameters: α  for the 

baseline (1), M
w  and V

w  for the TRFs (5+5), m
w  and v

w  for the temporal 

response of the STRFs (5+5) and m
b  and v

b  for spatial component of the 

STRFs (2+2). In addition to the joint model we consider a saccade-only 
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model ( V
w = 0, v

w = 0 and v
b = 0, 13 parameters) and a saliency-only 

model ( M
w = 0, m

w = 0 and m
b = 0, 13 parameters). Finally we consider 

also the full-saccade model ( v
w = 0 and v

b = 0, 18 parameters) which can 

account for saccade duration variability and some possible temporal 

representation of the end of the saccade. 

 

Fitting algorithm 

To estimate the parameters α , M
w , m

w , m
w , V

w , v
w , m

b  and v
b , we 

use maximum likelihood estimation and coordinate ascent. By coordinate 

ascent we mean that we alternate between fitting one subset of parameters 

and another. We do this because the model is linear only when we consider 

the temporal and spatial parameters of the bilinear terms separately. We 

first fit the baseline, the purely temporal parameters and the temporal 

parameters of the bilinear terms holding spatial parameters fixed, which 

reduces the problem to a GLM: 

( ) ( )ˆ ˆ, ,
exp ( ) ( ) ( () )

m v
M M m V V vm v

t t t t tλ α= + + + +
b b

w X w X w X w X
� � � �

 

where 
ˆ

mb
 
and ˆ

vb
 
are fixed parameters for the spatial receptive field and 

ˆ,
( )

mm
t

b
X = ˆ( )m mtX b

 
 and ˆ,

( )
vv

t
b

X = ˆ( )v vtX b . We then repeat the procedure 

and fit the baseline, the purely temporal parameters and the spatial 

parameters holding the temporal parameters of the bilinear terms fixed: 

( ) ( )ˆ ˆ, ,exp ( ) ( ) ( )( )
m vM M m m V V v vt tt t tλ α= + + + +

w w
w X X b w X X b
� �

 

where 
ˆ

m
w

 
and ˆ

v
w

 
are fixed parameters for the temporal response of the 

spatially modulated component of the receptive field and
 ˆ, ( )

mm t
w

X =

ˆ ( )m m tw X
�  and ˆ, ( )

vv t
w

X = ˆ ( )v v tw X
� . 
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We alternate between fitting one set of parameters and the other until the 

log-likelihood converges. Since both likelihood functions are log-concave it 

is reasonable to expect that it converges to the optimal solution (Ahrens et 

al., 2008), and, in practice, random restarts converge to the same STRF 

solutions. 

 

Model comparison 

To compare the joint model, the saccade-only, and saliency-only models we 

computed, using 10-fold cross-validation, the pseudo R2 for each model 

(Haslinger et al., 2012; Heinzl and Mittlböck, 2003) and the relative pseudo 

R2. Note that we should not use the traditional R2 to quantify the spike 

prediction accuracy of the model since while that measure assumes 

Gaussian noise, the number of spikes is non-negative and discrete signal. 

Instead we use an extension of the traditional R2 measure to Poisson 

distributions; the pseudo R2. The pseudo R2 can be interpreted as the 

relative reduction in deviance due to the additional covariates a model and 

is defined as: 

2
ˆlog L( ) log L( )

(model) 1
log L( ) log L( )

D

n
R

n n

λ−
= −

−
 

where ˆlog L( )λ  is the log-likelihood of the model under consideration, 

log L( )n  is the likelihood of the saturated model and logL( )n  is the 

likelihood of the homogenous model. The homogeneous model is the model 

that assumes a constant firing rate, specifically, the average firing rate of the 

training set. The saturated model provides an upper-bound on prediction 

accuracy by assuming that the firing rate in a certain time bin is exactly 

equal to the observed firing rate in that time bin. 

In order to compare between models 1 and 2, where model 1 is a model 

nested in model 2 – for example, the saccade-only model is nested in the 

joint model - we use the relative pseudo R2 which is defined analogously: 
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2 2

1

ˆlog L( ) log L( )
(model 2, model 1) 1

ˆlog L( ) log L( )
D

n
R

n

λ

λ

−
= −

−
 

Where 1
ˆlog L( )λ  and 2

ˆlog L( )λ  are the log-likelihood of models 1 and 2, 

respectively. The relative pseudo R2 can hence be interpreted as the relative 

reduction in deviance due to the extra set of covariates included in model 2. 

Note that 2 (model 1)DR = 2 (model 1, homogeneous model)DR . 

It is important to recognize that we are not able to obtain unbiased variance 

estimates for the pseudo-R2 obtained using 10-fold cross-validation since 

the correlations due to the overlap of the testing sets typically leads to 

underestimating the variance (Bengio and Grandvalet, 2004). However, by 

bootstrapping across the whole population of recorded neurons and within 

each subpopulation of visuomotor and visual neurons, we can obtain 95% 

confidence intervals on the average pseudo R2 for each population and sub-

population of neurons.   

There are other measures that we could have used such as bits per spike 

(Harris et al., 2003; Pillow et al., 2008) which is defined as the log (base 2) 

of the likelihood ratio between the model and the baseline model, divided by 

the number of spikes. The bits per spike measure gives the reduction in 

entropy (mutual information) due to the covariates. The pseudo R2 measure 

that we use is, apart from the different basis of the logarithm, the bits per 

spike measure normalized by the amount of bits per spike of the saturated 

model. Hence the two measures are closely related. It is important to note 

that, although the pseudo-R2 measure has the advantage of being upper-

bounded by 1, this bound is impossible to achieve in practice unless every 

spike is perfectly predicted. 

 

Overfitting 

We checked for overfitting for every neuron considering all trials and for a 

particular neuron (neuron 4) as a function of the number of trials. We 
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computed, for the joint model and for a particular neuron (neuron 4), the 

pseudo R2 on test data and on training data as a function of the number of 

trials used in the analysis. For each set of trials considered we randomly 

partitioned the data into 10 subsets. We fitted STRFs for all combinations of 

9 subsets (the training set) of this partition and computed the pseudo R2 on 

the training set and on the remaining 10% (the test set). Finally we 

computed the mean across 10-folds and obtained an average of spike 

prediction accuracy on test data and on training data. To check for 

overfitting for all neurons we repeated the same procedure for every neuron 

considering all trials. 

 

Simulations 

To verify the ability of the model to dissociate saliency and saccade-related 

spiking we simulated 3 typical kinds of neurons, saccade only, saliency only 

and joint dependence. We used the behavioral data from one particular 

neuron in our dataset to simulate spikes, assuming the same STRF for this 

set of simulations (as presented in Results, Figure 5.7A), and using 

smoothed IK-saliency as the definition of saliency. We assumed that each 

model had the same saccade/saliency STRF. This STRF was obtained by 

fitting the saccade-only model to the data of a particular neuron (neuron 4). 

To compute confidence intervals for recovered angle and recovered 

temporal filter we split the dataset into a partition of 10 sets of trials with an 

equal amount of trials. We computed the pseudo R2 confidence interval 

using 10-fold cross-validation. 

For the next set of simulations (as presented in Results, Figure 5.8) 

we used data from a particular neuron (neuron 4) and we fitted the receptive 

fields using the saccade only model. We then used baseline and the STRF 

terms to simulate spike data for a new set of simulated neurons. We tested 

how adding Gaussian white noise to the IK-saliency affected how well we 

could recover saliency encoding (as measured by relative pseudo R2 
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between the joint model and the saccade only model). We matched the 

variance of the noise to the variance of the IK-saliency image. Finally, we 

simulated neurons that lie in the range between only saccade encoding 

neurons and neurons that encode equal amounts of saccade and saliency, 

and again tested how well we could recover saliency encoding. 

 

 

Figure 5.1. Behavioral task and data from a typical trial. (A) Monkeys were 

rewarded for finding the picture of a fly (not shown) embedded in natural scenes. 

(B) Eye position and spike trains were recorded for each trial, allowing us to model 

dependencies between image features, eye movement, and neural responses. 

Vertical dashed line marks beginning of fixation of a dot appearing at the center of 

the tangent screen. Blue vertical line marks the appearance of the image with 

embedded target. Red and yellow dots mark the beginning and end of saccades. 

Saccade endpoints correspond to the beginning of a new period of fixation between 

saccades. 

 

5.4 Results 

We recorded from single neurons in the frontal eye field (FEF) of behaving 

monkeys while they searched for a small inconspicuous target embedded in 

a natural image stimulus (Figure 5.1, target not shown, see Methods). Eye 

movements where monitored and the monkey was rewarded with water for 

successfully finding the target. In the following analysis we examine the 

activity of 52 FEF neurons recorded from 2 rhesus monkeys (MAS14, n = 
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30; MAS15, n = 22) categorized, using visual and memory-guided saccade 

tasks, as visual (n = 37) or visuomovement (n = 15) neurons; visual neurons 

have strong responses after target onset in the receptive field and 

visuomovement neurons are visual neurons that also have strong activity 

during the pre-saccade epoch (see Methods - FEF cell characterization). A 

previous study examined saccade tuning in these data, ignoring visual 

information (Phillips and Segraves, 2010). Here we analyze how the activity 

of the neurons relates to aspects of both saccades and features of the 

natural scene stimuli, more specifically to a bottom-up definition of saliency. 

 

 

Figure 5.2. Saliency maps and saccade prediction. (A) Three typical images from 

the natural scene search task, along with their IK-saliency maps, and smoothed IK-

saliency maps (filtered with an isotropic Gaussian with a standard deviation of 5 

deg). (B) (top) Average IK-saliency map across all images used in the task along 

with the average smoothed IK-saliency. Note that there is a bias towards the center 

of the image being more salient than the edges. (bottom) Corresponding image 

histograms. (C) ROC curve for smoothed IK-saliency as an eye fixation predictor. 

Area under the curve (median and 95% confidence interval, boostrap) is shown. 

 

We use the definition of saliency (IK-saliency) developed by Itti and 

Koch (Itti and Koch, 2000). The IK-saliency is a traditional, bottom-up 

saliency map algorithm that converts images into saliency maps based upon 

color, intensity and orientation on multiple spatial scales  (see (Itti and Koch, 
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2000), Methods and Supp. Mat. for details). For each of the maps, the 

algorithm computes how different each location or pixel is from its surround, 

and the map is then normalized. This leads to conspicuity maps which are 

then added together to define the overall saliency map. Points that are 

similar to the rest of the image will have low saliency while, potentially 

interesting points that are different from the rest of the image have high 

saliency (Figure 5.2A and B). The resulting saliency map tends to be highly 

sparse with most regions of the image being unsurprising (Figure 5.2A). 

There is a non-negligible center bias where the center of the image is more 

salient than the borders (Figure 5.2B), an effect that is due to human 

photographers having a bias in their choice of pointing direction (Tseng et 

al., 2009). Saliency maps summarize the high dimensional properties of an 

image with a single dimension; the saliency or interestingness of the image 

as a function of space. 

We first wanted to check if, as predicted by previous publications 

(Berg et al., 2009; Einhäuser et al., 2006), monkeys look more often at 

regions of the image that have high saliency. We thus plotted the standard 

ROC curve which quantifies how well the saccade targets can be predicted 

from the saliency map (Figure 5.2C). We found the area under the ROC 

curve to be 0.587 (0.584, 0.590)  (median and 95% confidence interval, 

bootstrap, see Methods for details) – somewhat lower than in previous 

monkey free-viewing saccade experiments but above the chance level of 

0.50  (Einhäuser et al., 2006). However, in our experiment the monkey was 

not free-viewing the images but had a specific task: it was searching for an 

embedded target. This top-down goal likely makes the saccades less 

predictable compared to the case when only bottom-up saliency information 

is considered. To test if the predictive values of saliency were only due to 

the center bias, we compared the saliency of image locations where 

fixations occurred with the average saliency for that location for the 

remainder of the image set. We found that saliency at the fixated locations 
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tends to be higher than at the same location in the other images (p<10-10, 

Mann-Whitney test), demonstrating that the predictive value of saliency for 

fixation choice is due to more than just center-bias. Algorithms that calculate 

bottom-up saliency predict some aspects of fixation behavior but tend to be 

somewhat imprecise. When the task is not a free-viewing task but involves 

target search the predictions of bottom-up saliency maps become even 

more imprecise. Regarding attempts to understand how saliency relates to 

the activities of FEF neurons, many methods such as post/peri-stimulus time 

histograms (PSTH) rely on a well-controlled stimulus or trigger. For those 

methods, it would be advantageous if saliency did not predict eye 

movements. Here we use a model-based, multivariate regression approach 

where saliency and eye movements are not required to be independent. 
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Figure 5.3. Saccade encoding. (A) Rasters sorted by direction of saccade, centered 

on saccade onset and the correspondent peri-stimulus time histograms (PSTHs) for 

a particular neuron (neuron 4). (B) Overlapping colored PSTHs (left), the fitted 

spatial and temporal receptive fields (right, insets) and correspondent reproduced 

PSTHs (right). Actual PSTHs were constructed using all the trials. Parameters were 

fitted to randomly chosen 90% of the trials and fitted PSTHs were constructed using 

those 90% of the trials. Blue and purple curves (right, inset) correspond to the 

temporal gains in the directions of lower (blue arrow) and higher (purple arrow) 
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modulation of the spatio-temporal receptive fields (STRFs). (C) Spike prediction 

quality for each neuron: Pseudo R
2
 (±2SEM, 10-fold cross-validation for each 

individual neuron; 95% bootstrap confidence intervals for the averages across the 

recorded population and subpopulations) of the saccade encoding model. Neurons 

previously classified as visuomovement and visual and respective averages (95% 

CI, bootstrap across neurons) are shown in black and grey, respectively (see 

Methods). Global average (95% CI, bootstrap across neurons) is represented in 

red. Arrow signals neuron number 4, the example neuron in panels A and B. 

 

 

Saccade Representation 

One of the well-established characteristics of many FEF neurons is that they 

are tuned to the direction of upcoming movements. To quantify this 

dependence on saccade direction, and test if it may be affected by search in 

natural images, we estimated each neuron’s spatio-temporal tuning to 

direction of movement. The saccade-triggered PSTH for eye-movements to 

various octants shows that, indeed, some neurons do have substantial 

tuning to the direction of saccade (Figure 5.3A). 
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Figure 5.4. Saliency encoding. (A) Rasters and post-stimulus time histograms 

(PSTHs) for a particular neuron (neuron 42). Data are aligned on fixation onset, and 

assigned to a raster/PSTH based upon the directions where IK-saliency was 

elevated during the fixation interval (see Methods for additional detail and Figure 

5.11 for the analogous saccade-onset PSTHs for this neuron). (B) Overlapping 

colored PSTHs (left), the fitted spatial and temporal receptive fields (right, insets) 

and correspondent reproduced PSTHs (right). Actual PSTHs were constructed 

using all the trials. Parameters were fitted to randomly chosen 90% of the trials and 

fitted PSTHs were constructed using those 90% of the trials. Blue and purple curves 

(right, inset) correspond to the temporal gains in the directions of lower (blue arrow) 

and higher (purple arrow) modulation of the STRFs. (C) Spike prediction quality for 

each neuron: Pseudo R
2
 (± 2SEM, 10-fold cross-validation for each individual 

neuron; 95% bootstrap confidence intervals for the averages across the recorded 

population and subpopulations) for the vision/saliency encoding model. Neurons 

previously classified as visuomovement and visual and respective averages 

(±2SEM) are shown in black and grey, respectively (see Methods). Global average 

(±2SEM) is represented in red. Arrow signals neuron 42, the example neuron in 

panels A and B. (D) Scatter plot for spike prediction quality (±2SEM, 10-fold cross-

validation) of saccade model (same data as Figure 5.3C) and saliency (same data 

as Figure 5.4C) for each neuron. 

 

We then used a generalized linear model (GLM, see Figure 5.9B 

and Methods) to explicitly model the spatio-temporal tuning to saccade 

direction of the neurons. The model used here (space-time separable STRF 

with cosine direction dependence) accurately captures the properties of the 

example neuron (Figure 5.3B), and allows us to quantify how well-tuned 

each neuron is to saccades in each direction (Figure 5.3C). Most of the 

neurons we recorded from appear to have strong saccade-related 

modulation, similar to previous descriptions of neurons in the FEF during 

simple visual tasks (e.g. Bruce and Goldberg, 1985). 
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Vision/Saliency Representation 

We next wanted to see if the same neurons might also be tuned for visual 

saliency. Using fixation-triggered PSTHs divided by the direction with the 

highest IK-saliency, we found that, indeed, some neurons seem to have 

substantial tuning to directions in which there are salient stimuli (Figure 

5.4A, but see below). Similar to the saccade direction dependence shown 

above, we found that a GLM based on tuning to IK-saliency accurately 

captured the properties of this neuron (Figure 5.4B) and allowed us to 

quantify how well each neuron was tuned to the saliency of the stimuli 

(Figure 5.4C). Using this saliency model, it appears that some of the 

neurons we recorded from do have significant tuning for salient stimuli in a 

particular direction. 

 

Explaining Away Saliency Representation 

So far we have found that some neurons do appear to have tuning to 

saccade and also tuning to the direction in which there are salient stimuli. 

For most neurons, saccade direction alone provides a better model of 

spiking than saliency alone (Figure 5.4D), however, since these two 

variables are correlated, the independent analyses above may be 

confounded. We have shown that monkeys tend to make saccades towards 

more salient targets, even during natural scene search. This means, that if 

FEF neurons encode only saccade movement, their activity might still be 

correlated with saliency. Furthermore fixation onset times and saccade 

onset times are also highly correlated, which may make it difficult to 

disambiguate the effects of saccades and saliency on spiking activity. 

We thus implemented a GLM that predicts spikes based on saccade 

and saliency at the same time. This approach allows us to take advantage 

of a statistical effect called explaining away. If the spikes could be fully 

described by saliency then the system would put no weight on saccade and 
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vice versa. Since the saccades and saliency are not perfectly correlated, 

such a joint model will determine which of the two factors is, statistically, a 

more direct explanation of a neuron’s firing. 

 

 

Figure 5.5. Explaining away. (A) Scatter plots of the spike prediction accuracy 

(±2SEM, 10-fold cross-validation, see Methods) under the saliency-only (left)/ 

saccade-only (center)/ full-saccade (right) and joint models. The saccade-only, 

saliency-only and full-saccade models are represented on the x-axis and the joint 
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saccade in the y-axis. “n4” and “n42” denote neurons 4 and 42, the example 

neurons of Figure 5.3 and 5.4, respectively. (B) Relative pseudo R
2
 between the 

joint model and the saliency model (left)/ saccade model (center)/ full saccade 

model (right) (±2SEM, 10-fold cross-validation for each individual neuron; 95% 

bootstrap confidence intervals for the averages across the recorded population and 

subpopulations). Arrows signal neurons 4 and 42, the example neurons of Figure 

5.3 and 5.4 respectively. Note different y-axis scales for left versus center and right 

panels. (C) Actual spikes and PSTHs (1
st
 column) and predicted firing rates and 

PSTHs for saliency only model (2
nd

 column), joint model using saliency covariates 

only (3
rd

 column) and joint model using saccade covariates only (4
th
 column) for the 

example neuron of Figure 5.4 (neuron 42). Parameters were fitted to 50% of the 

trials and the data shown (both actual spikes and predicted firing rates) correspond 

to spikes and covariates of the remaining 50% of data (testing set). Upper panels 

show raw data and predicted firing rates from 340 fixations of the test set where the 

IK-saliency in the lower-left octant area of the image relative to the point of fixation 

was positive (see Methods). Lower panels show PSTHs for all directions. 

 

For essentially all of the recorded neurons, we find that adding a spatio-

temporal saliency receptive field to the saccade model does not improve the 

spike prediction accuracy (Figure 5.5). A model that uses only saccade and 

a model that uses both saccade and saliency perform almost equally well 

(Figure 5.5A and B, center panels) - in contrast, considering both saccade 

and saliency improves the performance relative to considering only saliency 

(Figure 5.5A and B, left panels). In fact, the apparent saliency related 

modulation (Figure 5.4A, B and Figure 5.5C, 1st and 2nd columns) can be 

reproduced using motor information only (Figure 5.5C, 4th column). 

Saccade covariates of the joint model can capture the trial-by-trial variability 

better than the saliency only model which just smears the spiking activity 

(Figure 5.5C, 4th and 3nd columns, respectively). As saccade duration has 

some variability (see Figure 5.10B) we tested a GLM that adds a purely 

temporal response centered at the end of the saccade to the saccade-only 

model: the full-saccade model. We find that it completely explains away – 
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for all neurons – the saliency modulation (Figure 5.5A and B, right panels) – 

the saliency related covariates do not add any predictive power to the full-

saccade model. In other words, when modeling activities carefully, there is 

absolutely no sign of bottom-up saliency (Itti and Koch, 2000) encoding. 

 

 

Figure 5.6. Model sensitivity and overfitting analysis. (A) Average of spike 

prediction accuracy (±SEM, 10-fold cross-validation) for the joint model on test data 

and on training data, as a function of the amount of data used. Total number of trials 

for this specific neuron is 328. Dashed vertical lines indicate thresholds for 50% and 

90% for the trials. (B) Over-fitting analysis for the whole population. Error bars in 

both dimensions are ±2SEM. 
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The absence of improvement in spike prediction accuracy was not 

caused by the higher number of parameters in the joint model, since there is 

minimal overfitting (Figure 5.6A and B). Even though the full-saccade 

model explains away the saliency tuning modulation at fixation onset, it does 

not completely explain away saccade direction modulation at the end of the 

saccade (also see Supp. Information. and Figure 5.12). Furthermore, we 

checked that explaining away is robust within a considerable range of 

parameterizations of the temporal receptive fields (Figure 5.13). Thus, our 

finding that saliency is not represented in the FEF is not due to overfitting. 

We observed that, for most of the neurons, saliency information 

alone allows some prediction of neural activity (Figure 5.4C). In fact, the 

spatio-temporal terms of the saliency model add predictive power (as 

measured by the pseudo R2, p<0.05, bootstrap), to a model that considers 

only the purely temporal terms centered at fixation onset. However, the 

modulation related to saliency was explained away by including saccade 

information (Figure 5.5A and B). The fact that saliency related tuning is 

explained away seems surprising, since the relationship between saccades 

and saliency, although present, is fairly weak in our natural scene search 

task (Figure 5.2C). Even the apparently large effects in the saliency PSTHs 

(Figure 5.4A and B) and spike prediction (Figure 5.4C and 5.5A) seem to 

be well explained based on these correlations (Figure 5.5A-C). Part of the 

directional tuning may be explained by the fact that the center of images 

tends to be more salient than the periphery (Figure 5.2B), and when fixation 

is at the edge of the image saccades toward the center become more likely. 

Furthermore, saccade onset and fixation onset happen close in time and 

saccade durations have some variability (Figure 5.10B). Neural responses 

are driven by a range of different factors. Ignoring some factors may lead us 

to draw wrong conclusions, but by modeling these factors together we can 

disambiguate which factors truly relate to the responses. 
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Figure 5.7. Simulations. (A) Simulated spatial and temporal filters for the three 

different kinds of neurons: purely saccade, purely saliency and both saccade and 

saliency encoding. We used a fixed temporal filter (triggered on saccade onset for 

saccade responses and on fixation onset for saliency responses) and a fixed 

preferred direction (represented by the circles with shades of grey – preferred 

direction corresponds to the lighter shades). Blue and purple curves correspond to 

the temporal gains in the directions of lower (blue arrow) and higher (purple arrow) 

modulation of the spatio-temporal receptive fields (STRFs). We simulated spikes 

using behavioral data corresponding to one neuron of our data set. (B) Recovered 

temporal filters (shaded area interval corresponds to ±2SEM) and preferred 

directions (±2SEM, 10-fold cross-validation. Black dashed line in error bar plot 

corresponds to the simulated/true preferred direction: direction of lighter shades of 
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grey signaled by the purple arrow in Panel A) for saccade and for saliency using the 

joint model for each of the simulated neurons of Panel A. (C) Cross-validated (± 

2SEM, 10-fold) pseudo R
2
 for each of the 4 models (saccade only, saliency only, 

full-saccade and joint model) for each of the 3 simulated neurons (saccade only, 

saliency only and both saccade and saliency). 

 

Simulations 

It could be that we failed to find true saliency responses in FEF because our 

data analysis routines did not correctly handle the correlations between the 

variables. We thus simulated equivalent amounts of data using a range of 

models: a purely saccade neuron, a purely saliency neuron and a neuron 

that encodes saccade and saliency simultaneously (Figure 5.7A, see 

Methods for details). We then asked if our methods would be able to recover 

the spatio-temporal tuning of these simulated neurons. Using the same GLM 

approach as above, we find that we can readily detect tuning to preferred 

saccade direction or saliency direction (Figure 5.7B and C) and the spatially 

and non-spatially dependent temporal responses. If the neurons in the 

actual FEF sample were truly tuned to the definition of saliency we are 

using, then these simulations demonstrate that we should have been able to 

reconstruct this dependence. 
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Figure 5.8. Statistical power analysis. (A) Relative pseudo R
2
 between the joint 

model and the movement model, (±2SEM) as a function of the signal-to-noise ratio 

of the saliency definition, for a saccade only neuron and for a neuron that encodes 

saccade and saliency. (B) Relative pseudo R
2
 between the joint model and the 

movement model (±2SEM), as a function of the amount of saliency that the neuron 

encodes relative to movement. 

 

Lastly, it might simply be that our analysis was underpowered and 

more data would have been necessary to observe modulations in firing rate 

due to saliency. To test for this possibility we simulated neurons using the 

STRF component of the fitted receptive field to data of a particular neuron 

(neuron 4, Figure 5.4B; see Methods for details). We degraded the signal 

quality in our simulated neurons in two ways: (1) We made the definition of 

saliency used in the models worse by adding noise to the IK-saliency 
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definition and (2) We simulated neurons that were mostly tuned to saccade 

movement with progressively weaker modulation due to saliency. We found 

that even if saliency signals were highly corrupted (SNR~0.1) the amount of 

data available here should have been sufficient to resolve saliency related 

tuning (Figure 5.8A). We also found that even if the saliency tuning is 

substantially smaller than saccade tuning (by a factor of ~3) these effects 

should have been picked up (Figure 5.8B). Concretely, we can say that if 

IK-saliency had at least 25% influence on the neural activity of this neuron 

then we should have had more than 95% probability of finding it.  

 

5.5 Discussion 

In this study, we examined the activity of frontal eye field neurons to 

determine whether or not they represent bottom-up saliency while a monkey 

searches for small targets embedded in natural scenes. We found that 

saliency is mildly predictive of eye-movement direction during natural scene 

search but it appears not to be a determinant of FEF activity when other 

correlated, saccade-related covariates are properly taken into account. Our 

finding that FEF does not appear to represent bottom-up saliency suggests 

that the activity of the FEF may be dominated by top-down target-selection 

and saccade planning. 

 Our study has used eye movements during natural scene viewing to 

ask if neurons in the FEF represent bottom-up saliency. There are, of 

course, factors that limit the interpretation of our results. 

Caveat 1: Our definition of saliency may differ from the actual 

representation of bottom-up saliency used by the FEF. We have employed a 

commonly used definition of bottom-up saliency (Itti and Koch, 2000). Past 

research has shown that most definitions of bottom-up saliency lead to 

saliency maps that are highly correlated with one another and are often 

difficult to disambiguate behaviorally (Borji et al., 2012). This is because 
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most computational definitions of bottom-up saliency effectively ask how 

dissimilar image patches are from the rest of the image and the specific 

metric of similarity often has little influence in such cases (Schölkopf and 

Smola, 2002). Therefore, it seems unlikely that other definitions of bottom-

up saliency would have improved our ability to observe saliency tuning in 

FEF neurons. 

 Caveat 2: Our results show that if bottom-up saliency is represented 

in the FEF during natural scene search it is only explaining a tiny proportion 

of the overall activity. This does not imply that there is no representation of 

bottom-up saliency, nor does it imply that this proportion would be as small if 

it was a free-viewing task; just that our results support a weak 

representation. However, given that activity in the FEF is sufficiently strongly 

dominated by planning, it appears that bottom-up saliency representation is 

not a central function of FEF. 

Previous research using artificial stimuli has suggested that 

significant activity in the FEF is devoted to the representation of visual 

saliency, noting that salient objects within the receptive field of an FEF cell 

may elicit high activity even without a saccade that actually ends in the 

receptive field (Bichot and Schall, 1999; Murthy et al., 2001; Thompson et 

al., 1997 ; Thompson et al., 1996). However, our results suggest that 

bottom-up saliency is not represented in the FEF. Furthermore, other 

studies using natural scenes suggest that visual cells do not respond to 

stimuli unless their receptive field contains the target of a future saccade 

(Burman and Segraves, 1994; Phillips and Segraves, 2010). How can this 

difference be explained? We suggest a couple of possible explanations for 

this apparent contradiction. 

 First, the eye-movement field has had some difficulty to adhere to a 

uniform definition of saliency, and generally includes a combination of 

bottom-up and top-down — including target relevance and the probability of 

a saccade — factors within the realm of saliency (but see Melloni et al., 
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2012). This ambiguity makes it difficult to directly relate bottom-up saliency 

to activity in the FEF.  

Second, we expect activity to be much higher for non-targets in a 

search task where the number of distractors is small (see McPeek and 

Keller, 2002). Given the small number of targets and the exceptionally high 

levels of saliency used in typical experiments, results may not generalize to 

search in natural scenes. Furthermore, it may be that highly salient stimuli 

trigger implicit planning of saccades that is later aborted, and hence, that the 

activity of a visual cell represents the amount of covert attention allocated to 

that location. Future work should directly compare the responses of FEF 

neurons to the traditional artificial salient stimuli and to more natural stimuli. 

There are many computational definitions of the top-down factors 

that are likely to be represented in the FEF. The oculomotor system takes 

into account what the task-relevant target looks like (the relevance) (Serre et 

al., 2007) and the likely locations of the target given the scene context (the 

gist) (Torralba et al., 2006; Vogel and Schiele, 2007). Several studies have 

shown that most of search is driven by task-demands (Yarbus, 1967) and 

that it can override sensory-driven (bottom-up) saliency almost entirely 

(Einhäuser et al., 2008). In our task the monkey was not free-viewing but 

searching for an embedded target. Looking for representations of these top-

down influences is possible with the methods presented here and would be 

an exciting topic for future research.  

If bottom-up saliency is not represented in the FEF but it is important 

for the selection of saccades, it should be represented somewhere else. A 

model of a processing stream for visual saliency suggests a succession of 

stages in the visual-motor pathway from V1 to extrastriate visual cortex and 

on to areas LIP and FEF (Soltani and Koch, 2010). A recent imaging study 

has suggested that V1 represents bottom-up saliency while FEF is involved 

with target enhancement (Melloni et al., 2012). There have been reports 

supporting the existence of visual saliency maps in V4 (Burrows and Moore, 
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2009; Mazer and Gallant, 2003; Zhou and Desimone, 2011), LIP (Arcizet et 

al., 2011; Constantinidis and Steinmetz, 2005; Gottlieb et al., 1998), and 

FEF (Schall and Thompson, 1999; Thompson and Bichot, 2005; Wardak et 

al., 2010). A true bottom-up saliency map must represent the conspicuity of 

stimuli in the visual field, independent of the individual stimulus features 

themselves. However, given our results about the subtle ways by which 

apparent saliency tuning may arise, it seems fair to state that the question of 

if and where the brain represents saliency has not yet received a sufficient 

answer. It is not clear where in the visuomotor system relevance/target-

matching is computed, but this study provides a counter-point to the hyper-

salient tasks used in artificial experiments. 

The approach taken here provides a template for how multiple 

factors that simultaneously might affect neural responses can be analyzed. 

Specifically, our analysis attempts to define what it means to say that the 

FEF encodes saliency when other correlated variables, such as saccade 

planning, may also be encoded by the same neurons. Here we used a 

precise definition of bottom-up saliency from the computational literature to 

quantify the extent to which FEF neurons represent bottom-up visual 

saliency during natural scene search. We found that it is not strongly 

represented. Instead, saccade planning and execution dominate the neural 

responses. This emphasizes the role of the FEF as a premotor structure, 

where neural activity encodes information about the importance of various 

spatial locations as potential saccade targets, independent of the visual 

properties of those locations.  
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5.6 Supplemental Information 

 

Description of IK-Saliency algorithm and generalized linear model 

We considered IK-saliency (Itti L and C Koch 2000; Walther D and C Koch 

2006) as our definition of saliency. This is a bottom-up definition of saliency, 

i.e. based only on basic image features, independent of task objectives (see 

Figure 5.9A): (a) A total of 7 vision features (color channels tuned to 

red/green and blue/yellow hues, four orientations and brightness) are 

computed; (b) Each is computed at several different spatial scales using 

Gaussian pyramids as linear filters which consist of progressively low-pass 

filtering and subsampling; (c) This is followed by center surround differences 

across spatial scales, which compute local spatial contrast in each feature 

generating 6 maps for each feature - a total of 42 maps; (d) Non-linear 

iterative lateral inhibition incorporates center surround competition within 

each map. This iterative scheme uses Differences-of-Gaussians followed by 

a negative shift and half-wave rectification in order to suppress areas that 

are balanced in terms “excitation” and “inhibition” (with values near zero 

after the Differences-if-Gaussians is applied) and set every pixel to a non-

negative value; (e) After competition, feature maps are combined into a 

single conspicuity map for each of the 3 feature types (color, intensity and 

orientation) and step d) - center surround competition - is repeated for each 

of the three conspicuity maps;  (f) The three conspicuity maps are finally 

summed into the single map, the saliency map. We used the publicly 

available toolbox (http://www.saliencytoolbox.net/index.html (Walther D and 

C Koch 2006)) for computing IK-saliency for each image with the default 

parameter values and considered the three, equally-weighted, channels: 

color, intensity and orientation. 
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Figure 5.9. IK-saliency and generative model. (A) IK-saliency algorith. Scheme of 

the several steps of the the computation of IK-saliency (see description in the text 

above). (B) Generative model. We assume that the firing rate of the neuron 

depends on eye movement (saccades) and/or on the saliency of the image 

surrounding the fixation point. Each neuron has a preferred direction for saccade 

and a preferred direction for saliency. Also, each neuron has a temporal reaction to 

saccades and another one for saliencies that are centered on saccade onset and 

fixation onset respectively. We assume that the spiking activity is Poisson 

generated from the firing rate. 

 

Saccade statistics and saccade modulation 

  

 

Figure 5.10. Saccade statistics. (A) Distribution of the number of saccades for the 

trials of one of the example neurons (neuron 42) using all the data (black) or only 
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the saccades that we considered (grey; the ones in the interval [200 ms, 5000 ms]). 

(B) Variability in saccade duration. Histogram of saccade durations for the eye 

movements during the trials for neuron 42. This variability could be the reason why, 

even for neurons only encode saccade, the saccade only model fails to completely 

explain away the joint model (see Figure 5.5A and B, center panels and Figure 

5.12). 

 

 

Saccade PSTH for example neuron number 42 

For completeness we show the PSTH centered at saccade onset for neuron 

42 (see Figure 5.11), the example neuron in Figure 5.4A, B and 5.5C. 

 

Figure 5.11. Saccade PSTH for neuron 42. Rasters sorted by direction of saccade, 

centered on saccade onset and the correspondent peri-stimulus time histograms 

(PSTHs) for neuron 42 from Figure 5.4A, B and Fig. 5.5C. 
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Full-saccade model doesn’t explain away saccade spatial modulation 

at end of saccade  

We tested an extra model - the complete saccade model- similar to the joint 

model but with saccade direction modulation at end of saccade/beginning of 

fixation instead of saliency modulation. We then computed the relative 

pseudo R2 of the complete saccade model relative to the full saccade model 

and observed that the full saccade model does not completely explain away 

the direction of saccade modulation at end of saccade/beginning of fixation. 

In other words, saccade direction information at end of saccade adds 

predictive power to the model. This suggests that saccade duration 

variability (see Figure 5.10B) is what prevents the saccade model from 

completely explaining away the joint model.   

 

 

Figure 5.12. Predictive power of end of saccade modulation terms. Relative pseudo 

R2 between the complete saccade model and the full saccade model (±2SEM, 10-

fold cross-validation for each individual neuron; 95% bootstrap confidence intervals 

for the averages across the recorded population and subpopulations).  Arrows 

signal neurons 4 and 42, the example neurons of Figure 5.3 and 5.4 respectively. 
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Figure 5.13. Robusteness of expaining away to change in some of the parameters. 

Pseudo R2 for the saccade, saliency, joint and full saccade models and relative 

pseudo R2 between the joint model and the full saccade model (95% confidence 

intervals, bootstrap across neurons). We considered not smoothing or not centering 

the IK-saliency definition and also several values for the parametrization of the 

temporal receptive fields, namely the number and standard deviation of the 

temporal basis functions. 
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Robustness of explaining away to changes in the parameters  

We tested the robustness of our results to changes in the parameters of the 

models, specifically to width and number of basis functions that 

parameterize the temporal responses. We also tested whether centering 

(subtracting the mean) or smoothing (low-pass filtering) the IK-saliency 

definition had any influence in the conclusions of our analysis. We find that 

our results are robust to all these changes (see Figure 5.13). 
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6. Final Discussion 

 

In this dissertation we have explored several approaches that aim at 

understanding decision making. The dissertation has essentially two parts; 

in a first part we use psychophysics and exclusively human behavioral data 

to characterize the generalization of prior expectations and to test prominent 

decision-making hypothesis (Chapters 2, 3 and 4). In a second part we use 

electrophysiology recordings to test the representation of relevant 

algorithmic variables in neural activity for making eye-movement decisions 

(Chapter 5). 

 

6.1 Generalization and uncertainty 

We started the dissertation by looking into generalization under uncertainty 

and of uncertainty itself. We did that by extending previous traditional motor-

control generalization studies (Krakauer et al., 2000) to include uncertainty 

(Körding and Wolpert, 2004). In biology and in neuroscience in particular, 

the dream of finding physics-like general laws has always existed. Both 

generalization (Shepard, 1987) and Bayesian principles (Trommershäuser 

et al., 2011) have at a certain time been proposed as possible candidates 

for satisfying this utopian endeavor. It is thus exciting to bring them together 

in the research presented in Chapters 2 and 3. 

We found that while uncertainty in the prior (the variance of a learned 

imposed perturbation) does not affect the generalization of the mean 

(Chapter 2), the mean does affects the generalization of uncertainty 

(Chapter 3). We show that, while also having a local component, uncertainty 

generalizes with a global component, and that manipulating the mean 

introduces an interesting asymmetry in the generalization of uncertainty 
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(Chapter 3). Furthermore we show that this asymmetry is consistent with the 

use of different reference frames when generalizing; target–centered for the 

mean and visual-feedback–centered for uncertainty. 

While there are many theories about how the brain might represent or 

approximate probability distributions (Fiser et al., 2010; Hoyer and 

Hyvärinen, 2003; Ma et al., 2006), to our knowledge none of these theories 

has explicit predictions for how these probability distributions are 

learned/generalized from previous relatively similar experiences. The 

differences and interactions that we present in Chapters 2 and 3 between 

the generalizations of mean and variance constrain and pose a challenge to 

future attempts at extending these theories to generalization. 

Apart from theoretical modeling, future directions of research can include 

further behavioral experiments but also imaging and electrophysiology 

studies to understand the neural basis of the asymmetries reported here. 

Regarding behavior studies, if the generalization of uncertainty is visual-

feedback-centered then we expect the asymmetry to disappear if the mean 

of the perturbation is introduced and increased progressively. We also 

expect the location of the peak of uncertainty to change if we try different 

magnitudes of mean perturbation; e.g. the generalization pattern of a 

perturbation with a 15 degree mean should have a peak closer to the 

learning direction than of a 30 or 45 degree perturbation. 

How does the brain represent the uncertainty about various quantities in 

order to generalize about them? In an imaging study using an estimation 

paradigm similar to the one used in in Chapter 4 (Vilares et al., 2012), we 

found that likelihood and prior uncertainty activated non-overlapping brain 

regions. An analogous study could look into whether mean and variance of 

the prior have non-overlapping representations in the visuomotor paradigm 

used in Chapters 2 and 3 to provide some insight on the representation of 

generalization. Recently, a similar center-out reaching paradigm has been 
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tested in non-human primates (Dekleva et al., 2013) and promises to give 

some perspective into how populations of neurons represent and learn the 

variance of prior and likelihood. 

 

6.2 Decision-making theories 

In Chapter 4 we tested a commonly implicit assumption about the two-

alternative forced choice (2AFC) paradigm; that the just-noticeable 

difference (JND) measures sensory uncertainty. We show that in doing this 

we simultaneously test decision-making theories; MAP vs. 

Sampling/Matching. While the results from our experimental paradigm favor 

the assumption that the brain uses MAP algorithm, the most important 

output of the work presented in this chapter is that it makes the assumption 

explicit and suggests a way of testing it that should be extended to other 

tasks. 

Even though in the first part of this dissertation we talk about representation 

of the value of some quantity (the mean of the prior) along with its 

uncertainty (the variance of the prior), it is important to note that these 

representations themselves are the outcome of an inference problem. For 

instance it may be argued that the retina solves an inference problem given 

photons; studies have shown that the retina already has predictive encoding 

and that the receptive fields of retinal ganglion cells can change to improve 

predictive coding under new environmental statistics (Hosoya et al., 2005). 

Similarly, the lateral geniculate nucleus (LGN), the primary visual cortex 

(V1) and other early visual areas may also solve inference problems, given 

retinal input – for instance, some studies suggest that prior is implicitly 

embedded in the neural tuning of sensory neurons (Ganguli and Simoncelli, 

2012)  – and so on. Hence, we are not dealing with a representation, but 

with the outcome of hierarchies of inference. At each stage the input (the 
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likelihood), is combined with the prior at that stage and this new posterior is 

the input (or likelihood?) for the next inference. While it might seem 

reasonable, assuming that prior and likelihood are two separate entities 

represented in the brain might limit the conclusions we can get from data 

and even make us draw the wrong conclusions if that assumption is not 

valid. 

Following this line of thought there is another possible caveat in this study. It 

could be that we have changed the prior upstream of the input/likelihood 

whose uncertainty the JND is measuring; if the 2AFC measures likelihood 

uncertainty, and if we change the prior (uncertainty) upstream of this 

likelihood, then this JND should change with changes in prior variance. This 

is because this likelihood/input is in fact a posterior/output of a previous 

inference process that involves the prior that we are manipulating. Hence 

the JND would be actually measuring a posterior uncertainty – which 

changes with the variance of the prior even for the MAP hypothesis. 

However, the fMRI study we mentioned above (Vilares et al., 2012) that 

uses a similar estimation task to the one we use here suggests that, at least 

for this task, the representations of prior and likelihood occur in different 

regions in the brain; while changes in likelihood uncertainty differentially 

activates earlier visual areas, changes in prior uncertainty differentially 

activate the putamen, amygdala, insula and orbitofrontal cortex. Hence, and 

even though the above mentioned hierarchical stream of inference most 

likely has recursive connections (Kok et al., 2013), we could argue that it is 

not very unreasonable to expect that, for our task, changes in prior are 

occurring mostly downstream of the likelihood of interest. 
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6.3 Neural representation of relevant variables 

In Chapters 2 and 3 we explored the generalization of visuomotor rotations 

using a center-out reaching paradigm. Our results are compatible with a 

visual-feedback-centered reference frame for generalization of uncertainty. 

The importance of visual components in traditional center-out reaching 

paradigms has been highlighted before. For example, a visual aspect of 

targets, the saliency, has been shown to influence reaches (Wood et al., 

2011). Saliency has also been shown to be a relevant variable for deciding 

where to look next (Berg et al., 2009; Einhäuser et al., 2006; Foulsham et 

al., 2011). In the second part of the thesis we looked into whether individual 

neurons of the monkey’s frontal eye field (FEF) represent bottom-up 

saliency in a natural scene searching task. We found that even though 

saliency predicts eye movement, its predictive power gets explained away 

when we take into account saccade-related covariates.  

Future research could investigate if the FEF represents other, non-bottom 

up, features that have been shown to predict fixation locations during natural 

scene, such as target related features (Ramkumar et al., 2013; Serre et al., 

2007) as well as the likely locations of the target given the scene context, 

the gist (Torralba et al., 2006; Vogel and Schiele, 2007). Furthermore, future 

studies should also verify if the apparent absence of representation of 

bottom-up saliency still holds during free-viewing of natural scenes.  

 

6.4 Concluding Remarks 

Common to the different chapters of this thesis is the attempt to bridge or 

connect paradigms or theories from different sub-fields; in Chapter 2 and 3 

we extend traditional visuomotor generalization studies in motor control to 

incorporate uncertainty by adapting a paradigm that has been used in 

several Bayesian-brain studies; In Chapter 4 we demonstrate the 
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connection between assumptions of the 2AFC paradigm and (Bayesian) 

decision-making theories. In Chapter 5 we used natural stimuli and an 

objective computational definition for testing the neural representation of 

bottom-up saliency, a relevant variable for making eye-movement decisions. 

In conclusion, this dissertation gives several contributions to decision-

making research at different levels; characterizes general principles in the 

generalization of probability distributions, tests which decision-making 

algorithms the brain might use and, finally, tests whether and how individual 

neurons represent specific variables relevant for deciding where to look 

next. 
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