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T́ıtulo

Aprendizagem por Reforço Hierárquico no Comportamento e no Cérebro

Resumo

A aprendizagem por reforço (reinforcement learning, RL) tem desempe-

nhado um papel fundamental na compreensão da neurobiologia da apren-

dizagem e da tomada de decisão. Em particular, a associação entre a ac-

tividade fásica de neurónios dopaminérgicos no tegmento ventral e o erro na

predição de recompensas (reward prediction error, RPE), quantificado se-

gundo o algoritmo de diferenças temporais (temporal-difference learning,

TD), constituiu uma descoberta chave na consolidação da relação entre

neurociências e RL. Esta descoberta permitiu o avanço do conhecimento

na distinção entre comportamento habitual e planeado, condicionamento,

memória de trabalho, controlo cognitivo e monitoração de erros. Além

destas contribuições, RL facilitou a compreensão dos défices cognitivos pre-

sentes na doença de Parkinson, depressão, défice de atenção e hiperactivi-

dade, e impulsividade.

No entanto, a maioria dos modelos de RL testados em neurociências

tem uma capacidade limitada de aprendizagem de problemas complexos,

nomeadamente à escala ecológica do comportamento humano. Esta res-

trição é um problema bem estudado em aprendizagem de máquinas, onde

é conhecido como a maldição da dimensionalidade. Das várias soluções

propostas, destacamos a aprendizagem por reforço hierárquico (hierarchical

reinforcement learning, HRL) dada a prevalência da noção de hierarquia em

psicologia e neurociências. Os métodos HRL facilitam a tomada de decisão e

aprendizagem através da divisão hierárquica entre acções. Hierarquia neste

contexto significa o parcelamento de acções subordinantes, que produzem

recompensas (e.g., fazer café), em acções subordinadas (e.g., abrir a lata do

café, aquecer água), uma caracteristica ub́ıqua do comportamento humano

e animal.
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A investigação apresentada nesta tese testou a hipótese que as estruturas

responsáveis por RL estariam também envolvidas em HRL. Especificamente,

que a actividade das áreas aferentes aos neurónios dopaminérgicos estaria

associada a erros de predição ao ńıvel de acções subordinantes (pseudo-

reward prediction errors, PPEs).

Antes de investigar as respostas cerebrais a PPEs, uma série de es-

tudos comportamentais, em humanos, procurou determinar se os resulta-

dos de acções subordinantes tinham uma influência nas escolhas de partici-

pantes diferente de recompensas primárias ou secundárias. Como previsto,

os participantes escolheram com vista à maximização de recompensa, sem

qualquer efeito de acções subordinadas. Este achado foi fundamental para

excluir a possibilidade que erros na predição do resultado de acções subordi-

nantes (PPEs) sejam RPEs. No entanto, de acordo com HRL, preferências

por resultados de acções subordinantes foram reveladas quando os parti-

cipantes se encontravam no momento de efectuar essa acção ou quando

as escolhas não implicavam uma mudança de recompensa primária ou se-

cundária.

Através de ressonância magnética funcional e electroencefalograma, em

três estudos, foi demonstrado que actividade no córtex cingulado anterior

(dorsal anterior cingulate cortex, dACC) esteve correlacionada com PPEs.

Estas respostas reflectiram diferenças na magnitude, mas não no sinal, dos

PPEs, em conformidade com o envolvimento desta área em aprendizagem

por surpresa. Finalmente, um estudo adicional, com ressonância magnética

funcional, procurou comparar directamente as respostas cerebrais a RPEs

e PPEs. Foi encontrado que a actividade em dACC apenas reflectiu a mag-

nitude, mas não o sinal, do erro de predição. No entanto, apenas se obser-

varam respostas a RPEs e não a PPEs. Postulou-se que esta dissociação

se tenha devido a competição no processamento de informação proveniente

de acções que produzam recompensas finais e de acções subordinadas. Esta

hipótese seria compat́ıvel com a primazia do efeito motivacional de acções

vi



que produzam recompensa sobre acções subordinadas, em concordância com

os estudos comportamentais referidos anteriormente. Em nenhum dos es-

tudos de neuroimagem foram observadas respostas estriatais a PPEs ou a

RPEs ao ńıvel de accões subordinadas — apesar de ter sido replicado o efeito

conhecido a RPEs monetários. Esta resposta selectiva de áreas aferentes de

neurónios dopaminérgicos, e a dissociação observada no estriado entre RPEs

em acções subordinadas e RPEs monetários, sugere que a dopamina não seja

responsável por tomada de decisão em domı́nios hierárquicos.

Em conclusão, esta tese incita à inclusão de mecanismos hierárquicos

nos modelos existentes de RL. Além desta extensão, permite o avanço do

conhecimento da função de dACC, relacionando esta área com a tomada de

decisão hierárquica.
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Abstract

Reinforcement learning (RL) has provided key insights to the neuro-

biology of learning and decision making. The pivotal finding is that the

phasic activity of dopaminergic cells in the ventral tegmental area during

learning conforms to a reward prediction error (RPE), as specified in the

temporal-difference learning algorithm (TD). This has provided insights to

conditioning, the distinction between habitual and goal-directed behavior,

working memory, cognitive control and error monitoring. It has also ad-

vanced the understanding of cognitive deficits in Parkinson’s disease, de-

pression, ADHD and of personality traits such as impulsivity.

However, the RL models that have mostly been tested in psychology and

neuroscience do not scale well with the complexity of a learning and decision

making problem, namely on the order of complexity present in ecological

tasks. This is a well-studied problem in the machine learning literature,

known as the curse of dimensionality. Out of the solutions that have been

proposed to increase the scalability of RL mechanisms, one that is particu-

larly appealing to psychology and neuroscience is hierarchical reinforcement

learning (HRL). HRL exploits the task-subtask structure of sequential ac-

tion, which is a ubiquitous feature of human and animal behavior.

The present research pursued the hypothesis that the same neural struc-

tures that are involved in RL are also also involved in HRL. In particular,

that the activity of afferents of midbrain dopaminergic neurons should be

sensitive to prediction errors at the level of subtasks, termed pseudo-reward

prediction errors (PPEs). Before examining the neural correlates of PPEs,

a set of behavioral studies confirmed that humans do not attach reward to

subgoals, a crucial exploration to ensure that subgoal prediction errors are

not RPEs. Nevertheless, in accordance with HRL, subgoal-related prefer-

ences were manifest when participants were engaged in a subtask and when

their choices did not entail any change in reward. In three neuroimaging

studies, using fMRI and EEG, activity in the dorsal anterior cingulate cortex
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(dACC) correlated with PPEs. Moreover, dACC responded to differences in

magnitude, but not valence, of the prediction errors. This is consistent with

a role of dACC in learning through surprising events. A final fMRI study

sought to compare the neural responses to PPEs to those of RPEs. Activity

in dACC for prediction errors was again shown to be unsigned. However,

responses were only observed for RPEs, and not PPEs. It is posited that

this dissociation was the result of competition between information at the

task and subtask level. This is compatible with the priority given to reward

over any reinforcing effect of subtasks, which was observed in the behavioral

studies. Across the reported studies, we observed no striatal engagement for

PPEs, or for RPEs at the level of subtasks, though we replicated responses

to monetary RPEs. The response of only a subset of dopaminergic afferents

for PPEs and the striatal dissociation between subtask and monetary RPEs

suggests that dopamine is not involved in hierarchical decision making.

In conclusion, this thesis encourages expansion of RL models in neu-

roscience to embrace mechanisms from HRL, and it advances the current

understanding of dACC function, positing an involvement in hierarchical

decision making.
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Chapter 1

Learning and Decision

Making in Hierarchical

Reinforcement Learning
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1.1 Chapter Summary

This chapter lays out the fundamentals of Reinforcement Learning (RL)

and expounds the need to move beyond the algorithms usually employed in

the literature.1

• Temporal-difference RL has had a tremendous success in understand-

ing the neural foundations of decision making and learning.

• Computer scientists have pointed out that model-free RL does not

scale well with domain complexity. Psychologists and neuroscientists

have urged for more scalable, and thus more plausible, models.

• Hierarchical Reinforcement Learning (HRL) ameliorates the scalabil-

ity of model-free RL by introducing extended sequences of actions in

the behavioral repertoire of an agent.

• The computational concept of hierarchy resonates with longstanding

ideas in psychology and neuroscience.

• The neural correlates of model-free RL can be easily extended to yield

putative neural mechanisms for HRL.

1Sections of this chapter were published in Ribas-Fernandes, Niv, and Botvinick (2011).
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1.2 The Success of Model-free RL

Over the past two decades, ideas from computational reinforcement learn-

ing (RL) have had an important and growing effect on neuroscience and

psychology. The impact of RL was initially felt in research on classical and

instrumental conditioning (Barto & Sutton, 1981; Sutton & Barto, 1990;

Wickens, Kotter, & Houk, 1995). Soon thereafter, its reach extended to

research on midbrain dopaminergic function, where the temporal-difference

(TD) learning paradigm provided a framework for interpreting temporal

profiles of dopaminergic activity (Barto, 1995; Houk, Adams, & Barto, 1995;

Montague, Dayan, & Sejnowski, 1996; Schultz, Dayan, & Montague, 1997;

Niv, 2009, for a review).

Subsequently, actor-critic architectures for RL have inspired new in-

terpretations of functional divisions of labor within the basal ganglia and

cerebral cortex (for a review, see Joel, Niv, & Ruppin, 2002), and RL-based

accounts have been advanced to address issues as diverse as motor control

(e.g., Miyamoto, Morimoto, Doya, & Kawato, 2004), working memory (e.g.,

O’Reilly & Frank, 2006), performance monitoring (e.g., Holroyd & Coles,

2002), and the distinction between habitual and goal-directed behavior (e.g.,

Daw, Niv, & Dayan, 2005).2 It has also advanced the understanding of cog-

nitive deficits in Parkinson’s disease, depression, ADHD and of personality

traits such as impulsivity (e.g., Frank & Seeberger, 2004; Maia & Frank,

2011, for a review).

2Curiously, ideas from neuroscience have in turn inspired algorithmic approaches in the
computational RL literature, namely the fact that phasic dopamine activity also reflects
novelty (Singh, Barto, & Chentanez, 2005; Reed, Mitchell, & Nokes, 1996; Dayan &
Balleine, 2002; Kakade & Dayan, 2002).
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1.3 Fundamentals of RL

RL problems comprise four elements: a set of world states, a set of actions

available to the agent in each state, a transition function, which specifies

the probability of transitioning from one state to another when performing

each action, and a reward function, which indicates the amount of reward

(or cost) associated with each such transition. Given these elements, the

objective of learning is to discover a policy, that is, a mapping from states

to actions, that maximizes cumulative discounted long-term reward.

There are a variety of specific algorithmic approaches to solving RL

problems (for reviews, see Bertsekas & Tsitsiklis, 1996; Sutton & Barto,

1998; Szepesvari, 2010). We focus on the approach that has arguably had

the most direct influence on neuroscientific translations of RL, referred to

as the actor-critic paradigm (Barto, 1995; Joel et al., 2002). In actor-critic

implementations of RL, the learning agent is divided into two parts, an ac-

tor and a critic, as illustrated in Figure 1.1A (for example, Barto, Sutton,

& Anderson, 1983; Houk et al., 1995; Suri, Bargas, & Arbib, 2001; Joel

et al., 2002). The actor selects actions according to a modifiable policy,

π(s) in Figure 1.1, which is based on a set of weighted associations from

states to actions, often called action strengths. The critic maintains a value

function, V (s), which associates each state with an estimate of the cumu-

lative, long-term reward that can be expected subsequent to visiting that

state. Importantly, both the action strengths and the value function must

be learned based on experience with the environment. At the outset of

learning, the value function and the actor’s action strengths are initialized,

for instance, uniformly or randomly, and the agent is placed in some initial

state. The actor then selects an action, following a rule that favors high-

strength actions but also allows for exploration. Once the resulting state

is reached and its associated reward is collected, the critic computes a TD

prediction error, denoted δ in Figure 1.1. The value that was attached to

4



the previous state is treated as a prediction of the reward that would be

received in the successor state, R(s), plus the value attached to that succes-

sor state. A positive prediction error indicates that this prediction was too

low, meaning that an outcome turned out better than expected. Of course,

the reverse can also happen, yielding a negative prediction error.

The prediction error is used to update both the value attached to the

previous state and the strength of the action that was selected in that state.

A positive prediction error leads to an increase in the value of the previous

state and the propensity to perform the chosen action at that state. A neg-

ative error leads to a reduction in these. After the appropriate adjustments,

the agent selects a new action, a new state is reached, a new prediction error

is computed, and so forth. As the agent explores the environment and this

procedure is repeated, the critic’s value function becomes progressively more

accurate, and the actor’s action strengths change so as to yield progressive

improvements in behavior, in terms of the amount of reward obtained.

The actor-critic architecture, and the TD learning procedure it imple-

ments, have provided a very useful framework for decoding the neural sub-

strates of learning and decision making. Although accounts relating the

actor-critic architecture to neural structures do vary (for a review, see Joel

et al., 2002), one influential approach has been to identify the actor with the

dorsolateral striatum (DLS), and the critic with the ventral striatum (VS)

and the mesolimbic dopaminergic system (see, for instance, O’Doherty et

al., 2004; Daw, Niv, & Dayan, 2006, Figure 1.1B). Dopamine (DA), in par-

ticular, has been associated with the function of conveying reward prediction

errors to both actor and critic (Barto, 1995; Montague et al., 1996; Schultz

et al., 1997). This set of correspondences will provide an important back-

drop for our later discussion of Hierarchical Reinforcement Learning (HRL)

and its neural correlates.
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1.4 The Curse of Dimensionality and the Blessing

of Abstraction

The actor-critic framework, and other TD implementations, share the sim-

plicity of not keeping a model of the environment. This comprises the tran-

sition and reward functions. Such algorithms are therefore model-free, in

contrast to model-based RL, which explicitly learns and uses the transition

probabilities for computing values.

The simplicity of model-free RL comes at a cost. As the number of

states and actions increases, the time to reach an optimal policy increases

exponentially (Bellman, 1957), as a large amount of visitations to each

state-action pair is required to achieve a useful estimate of the value. This

is a well-known problem in the computational literature and impacts the

scalability of model-free RL. In spite of this problem, the testbeds of RL in

neuroscience and psychology have mostly been tasks with small complexity,

compared with the complexity of human behavior (Dayan & Niv, 2008;

Daw & Frank, 2009). The poor scalability thus questions the validity of RL

algorithms to human behavior.

Two computational concepts have been proposed to address the scaling

problem, abstraction and generalization (a division according to Ponsen,

Taylor, & Tuyls, 2010). In abstraction, the representation of the learn-

ing problem is changed to only include relevant properties to behavior. If

the change is applied to states it is called state or structural abstraction

(Li, Walsh, & Littman, 2006), and if it is employed in actions then it is

termed temporal abstraction (Precup, 2000). As opposed to an abstracted

representation, an unmodified representation is called flat. In contrast to

abstraction, in generalization the representation of a learning problem is not

changed. Instead, similarities between states or actions are leveraged.

These two ideas are combined into different sets of RL methods, 1. hier-

archical reinforcement learning (HRL, Barto & Mahadevan, 2003; Hengst,

6



2012),using temporal, sometimes state, abstraction — whereby agents can

use actions at different levels of abstraction, 2. transfer learning (Taylor &

Stone, 2009), training on a source problem and applying knowledge to a tar-

get problem, using generalization, and 3. relational RL (Džeroski, De Raedt,

& Driessens, 2001), which uses inductive logic to represent actions and

states, and employs a mixture of abstraction and generalization.

The focus of this thesis is on HRL, where sequences of actions are rep-

resented according to a part-whole structure, illustrated in Figure 1.2. The

choice of abstraction in the action domain is sustained by the ample work in

psychology, pointing to a hierarchical structure of behavior and its neural

representations (see the section on hierarchy in behavior, and Botvinick,

2008).

Temporal abstraction has been around since early work in artificial in-

telligence (Newell & Simon, 1972; Fikes, Hart, & Nilsson, 1972). In its

inception, it involved using aggregated actions, called macro-operators to fa-

cilitate planning. Since then, work in AI focused on the representation of the

macro-operators, learning the sequence of actions of the macro-operators,

planning in stochastic environments, and finding useful subgoals, very much

the same questions that are approached by HRL (for a review, see Precup,

2000).

The use of these temporally-extended, aggregated actions allows systems

to solve problems in a smaller number of steps, as illustrated in Figure 1.3.

Assuming these sequences are known and are appropriate to the goal in

question, the problem of exploration becomes simpler. Many learning prob-

lems can be decomposed into smaller ones and it is often the case that

the composing units are shared with other tasks (Newell & Simon, 1972).

For instance, drive occurs both in get groceries and get to airport and it

would be inefficient to learn the same sequence twice. In any case, it is

important to ask about the origin and usefulness of these sequences (for

simulations of useful and prejudicial sequences, see Jong, Hester, & Stone,
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2008; Botvinick, Niv, & Barto, 2009, and the section on subgoal discovery

in the last chapter).

1.5 Introduction to Hierarchical Reinforcement

Learning

HRL has two main objectives, reward maximization while learning policies

at several levels of abstraction, which this thesis focus on, and, to a lesser

extent, determine which levels of abstraction are relevant for behavior. For-

mally speaking, the HRL setting is no longer a Markov decision process

(MDP), but rather a semi-Markov decision process (SMDP), where depen-

dencies are no longer between single transitions, but rather span sequences

of states and actions, sometimes called histories.

Among HRL methods to learn policies hierarchically, the most popu-

lar are options (Sutton, Precup, & Singh, 1999), MAXQ (Dietterich, 1998)

and HAM (hierarchy of abstract machines by Parr, 1998; Parr & Russell,

1998). As defined in Diuk and Littman (2008), MAXQ is an algorithm

which receives a multi-level hierarchical task decomposition as an input,

something that can be both powerful and limiting, and incorporates state

abstraction at each level. HAM specifies a series of non-deterministic finite

state machines, where “elements in HAMs can be thought of as small pro-

grams, which at certain points can decide to make calls to other lower-level

programs” (Diuk & Littman, 2008). Both MAXQ and HAM can be ex-

pressed as options (Precup, 2000), and in general the options framework is

the most parsimonious and the one that requires least extensions from flat,

model-free RL (Sutton et al., 1999). For these reasons, Botvinick, Niv, and

Barto (2009) proposed the options framework as the first approximation to

understanding the neural correlates of reward-based hierarchical learning.

Other HRL methods differ from options, MAXQ or HAM in that they

use state abstraction (Dayan & Hinton, 1993, though MAXQ also uses state

8



abstraction), target problems with partial observability (Wiering & Schmid-

huber, 1998), address continuous-time MDPs (Ghavamzadeh & Mahadevan,

2001) or solve concurrent activities (Rohanimanesh & Mahadevan, 2001).

1.5.1 Options

In options the action space is extended to include temporally extended

actions, called options,3 illustrated in Figure 1.4, in addition to regular,

primitive, actions. This parses the core MDP into smaller MDPs, each

being a separate learning problem, with its own reward function (in terms

of pseudo-reward). Regardless of the structure of the action space, the

observable output of behavior is a sequence of primitive actions. In reality,

primitive actions can be considered one-step options. However, for clarity,

we will continue to refer to primitive actions as actions. In options, the state

space in options is the same as the core MDP, at all levels of the hierarchy

(differing from, for example, Dayan & Hinton, 1993).4

Options are characterized by three components: (1) a set of initiation

states, determining at which states an option is available for selection, (2)

a set of termination conditions, mapping states to a probability of termina-

tion, and (3) option-specific policies πo. Option-specific policies can invoke

primitive actions, or other options.

Top-level action selection and learning. Whether to select an op-

tion at a particular state is governed by values which reflect expected dis-

counted sum of rewards, V (s), similarly to selection of actions in regular

RL, Figure 1.5. In options, however, V (s) reflects the extended nature of

3We will use italic to denote the framework and regular type for the extended actions.
4The term “option” exists in other fields of psychology (Kalis, Kaiser, & Mojzisch,

2013), as a statement that is relevant to the attainment of a goal, not necessarily in the
domain of actions (Ward, 2007), in the problem-solving literature as possible steps that
can be taken for the attainment of an action (Klein, Wolf, Militello, & Zsambok, 1995),
and in the context of motor decisions in sport, where an option is almost on the opposite
end of temporal abstraction, describing sets of motor primitives such joint angles (Raab
& Johnson, 2007).
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the option:

V π(s) = E{rt+1 + ...+ γk−1rt+k + γkV π(st+k)|o, s, t} (1.1)

Where k is the duration of option o, taken at state st, according to policy π,

terminated in state st+k and discounted by γ. Notice that the value reflects

option policies, as it is a sum of the yields during option o: E{rt+1 +

... + γk−1rt+k}, with the value at the termination state V π(st+k). This is

illustrated in Figure 1.5.

Learning at the reward level is very similar to flat RL, and consists of

regular and extended updates. Taking as an example the MDP shown in

Figure 1.5, the first prediction error (the green arrow between s1 and s2) is

equal between the hierarchical (top) and flat (bottom) agents, because in

both cases a primitive action was selected:

V (s1)← V (s1) + δ, δ = α[r2 + γV (s2)− V (s1)] (1.2)

Where α is the learning rate. In s2, however, the update will be different.

V (s2) is updated with extended reward prediction errors (the long green

arrow in 1.5):

V (s2)← V (s2) + δ, δ = α[r3 + γr4 + ...+ γkV (s5)− V (s2)] (1.3)

This update happens after the option has been terminated, s5 and the agent

has observed the entire sequence of accrued rewards. The next time an agent

is in s2, V (s2), which reflects an encapsulated prediction of rewards, will be

used to select actions as flat values in regular RL (e.g., using softmax).

Option-level action selection and learning. Once an option is se-

lected, option-specific values come into play (Vo). These only affect action

selection while the agent is executing the option. Values V reflect expected

discounted cumulative reward, whereas Vo reflects expected discounted cu-
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mulative pseudo-reward (depicted with a yellow asterisk in Figure 1.6). This

is a hedonic signal that is delivered at the last state of the option, called

the subgoal, and used to drive learning of option policies, independently of

the top level. This way the agent learns option policies, that can be later

transferred across problems with similar task structure, as well as root-level

policies. It is paramount that this is separate from reward, otherwise an

agent would prematurely terminate its behavioral course at the subgoal.

Learning while an option is executed also resorts to TD learning. At

the end of each action, the learning agent observes a certain amount of

pseudo-reward and the option-specific value of the new state, and with this

information a pseudo-reward prediction error is computed:

Vo(st)← Vo(st) + δ, δ = α[ψrt+1 + γVo(st+1)− Vo(st)] (1.4)

Where ψr designs the amount of pseudo-reward, and δ is the pseudo-reward

prediction error, or PPE (depicted by the lower green arrows in Figure 1.6).

Crucially these updates and quantities are independent of the top level, and

do not exist in standard RL methods.

Options bears the most resemblance with the methods that have been

tested in neuroscience (e.g., O’Doherty, Dayan, Friston, Critchley, & Dolan,

2003). For this reason, we adopt the framework of Botvinick, Niv, and

Barto (2009), who have proposed options as the parsimonious candidate for

extending neural RL mechanisms to hierarchical domains.

1.6 Hierarchy in Action and its Neural Implemen-

tation

The aim of this section is to review evidence for a hierarchical organization

behavior and its neural bases, and thus provide a scaffold for neural HRL.

There are important arguments to keep in mind while discussing evidence of
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hierarchy. There is no clear behavioral hallmark of hierarchy, unlike deval-

uation for goal-directed behavior (Dickinson, 1985). Only when cognitive

paradigms became more refined was it possible to detect hierarchical struc-

ture in behavior (for example, Rosenbaum, Kenny, & Derr, 1983; Crump

& Logan, 2010; Collins & Frank, 2013), looking at patterns of transfer,

priming and switch costs. Secondly, any task with hierarchical structure

can be solved by a flat agent, without abstract actions or abstract repre-

sentations (Sutton et al., 1999; Botvinick & Plaut, 2004). Finally, there is

a utility problem in adding temporally-extended sequences to control. This

was recognized by early AI (Lehman, Laird, & Rosenbloom, 1996), and only

recently has it received systematic attention (Jong et al., 2008; Van Dijk,

Polani, & Nehaniv, 2011; Solway et al., submitted). In spite of hierarchy

being historically difficult to detect, not strictly necessary, and sometimes

prejudicial to learning, hierarchical behavior is ubiquitous, as we review

below.

1.6.1 Hierarchical structure in behavior

Karl Lashley (1951) is credited with first pointing out the need for a non-

sequential account of behavior. He argued that selecting an action at every

behavioral transition was inefficient — thus coming closer to the computa-

tional justification for hierarchy, as presented in section 1.4. He supported

this idea with the pattern of errors in language, which showed evidence of

higher-level mental plans, instead of being the product of single stimulus-

response associations. For example, when typing groceries, errors will often

reflect a forthcoming letter or subsequence, grocreis, rather than a random

letter, grockeis. From a computational perspective, this example suggests

that errors depend on extended policies, very much like an option (though

the options framework does not make a direct prediction about errors). Be-

cause of this earlier reliance on language, it took 40 years until a similar

statement was published in the animal literature (Terrace, 1993; Fountain,
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Wallace, & Rowan, 2002, though research on goal-directed action already

mitigated a stimulus-response account of behavior).

After Lashley’s argument, early work in cognitive psychology focused

on how such hierarchical behavior could be generated, from a cognitive per-

spective and by mapping abstract modules of action directly to a control

unit. A pioneering model in this regard was the TOTE model of Miller,

Galanter, and Pribram (1960, Test-Operate-Test-Execute), where each unit

resembled a finite-state machine as in HAM. As cited in Botvinick (2008),

this was followed by research on scheduling of control units (in memory,

Estes, 1972; typing and speech, Rumelhart & Norman, 1982; Mackay, 1987;

and in the domain of everyday action, Cooper & Shallice, 2000), on the

combination of habitual and supervisory units (Norman & Shallice, 1986),

on models with biologically inspired units (Dehaene & Changeux, 1997;

Grossberg, 1986; Houghton, 1990), and on more abstract proposals of hi-

erarchical structure in action performance and understanding (Schank &

Abelson, 1977). Beyond providing a generative model for hierarchical be-

havior, these models also gave support to Lashley’s suggestion that errors

are a result of higher-level plans (e.g., Cooper & Shallice, 2000).

An important change of paradigm was introduced by connectionist mod-

els (Elman, 1990; Cleeremans, 1993; and later followed by Botvinick &

Plaut, 2004; Botvinick, 2007; Frank & Badre, 2012). Contrary to prior

models, hierarchical representations were not explicitly built in the model.

Rather, these were represented in the patterns of weights between hidden

units, and arose through learning, without input from the user. The fact

that behavior can be achieved through very different representations high-

lights the important possibility that the task structure might not be mir-

rored in the actual neural implementation (Uithol, van Rooij, Bekkering, &

Haselager, 2012).

Early on, evidence for hierarchical structure in behavior were thorough

registrations of slips of action, in line with Lashley’s language examples,
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drawing from research on verbal behavior (Garnham, Shillcock, Brown, Mill,

& Cutler, 1981), and routine actions, normal and pathological (Reason,

1979; Schwartz, Reed, Montgomery, Palmer, & Mayer, 1991; Humphreys

& Forde, 1998). Later, springing from a renewed focus on hierarchical be-

havior, other sources of research provided evidence to hierarchy in behavior:

research on event perception (Zacks & Tversky, 2001; Kurby & Zacks, 2008)

— showing how people can parse streams of actions into meaningful subse-

quences; typing (Logan, 2011) — showing priming and Stroop-like effects

at different levels of abstraction; and developmental psychology (Saffran &

Wilson, 2003; Whiten, Flynn, Brown, & Lee, 2006) — showing how infants

learn simultaneously at different levels of abstraction. Direct behavioral ev-

idence for human learning at several timescales according to RL principles

comes from recent neuroimaging studies (Haruno & Kawato, 2006; Diuk,

Tsai, Wallis, Botvinick, & Niv, 2013).

In the animal literature, evidence came from chunking of action se-

quences and analysis of grooming sequences in rodents (Fentress, 1972;

Berridge, Fentress, & Parr, 1987, in a similar vein to the earlier descrip-

tive analyses, e.g., Reason, 1979) — which demonstrates the existence of

temporally extended policies; and list learning (Terrace, 1993), in pigeons

and monkeys — eliciting similar errors to Lashley’s misinsertions (for a

review, see Conway & Christiansen, 2001).

Even though state abstraction is not part of many HRL methods, we

should mention studies that involve this type of abstraction. This is based

on the fact that the two abstractions might share many of the prefrontal

substrates, as discussed in the next section, and that, from an ecological

perspective, state and temporal abstraction often co-occur. In this setting,

research on task sets comes to bearing (MacLeod, 1991; Monsell, 2003),

showing that people learn abstract rules, and that errors and priming ef-

fects are dependent on which abstract rule is control of behavior — though

research in this field has mostly concentrated on the dynamics of task switch-
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ing. Particularly relevant are studies that show abstraction even in settings

where it is not necessary to do so (Badre, Kayser, & D Esposito, 2010;

Frank & Badre, 2012; Collins & Frank, 2013, the later two studies combin-

ing neuroimaging and behavior). SimiIarly to effects of task sets in humans,

context effects in conditioning in rodents show that single actions depend

on more abstract states (Courville, Daw, & Touretzky, 2006; Gershman &

Niv, 2012).

1.6.2 Neural implementation of hierarchical sequential ac-

tion

The structures that have figured in action selection and performance in hi-

erarchical domains have been the dorsolateral prefrontal and orbitofrontal

cortices (DLPFC and OFC), dorsolateral striatum (DLS), and to a lesser

extent, the ventral striatum (VS).5 For the reason that theoretical under-

standing and empirical evidence are still growing, rather than adopting a

specific framework to describe the activity of these areas, we review ways

in which neural responses differ from a flat representation. Only in the

next section do we discuss how these areas can be associated with a neural

instantiation of options.

The more straightforward and earliest forms of implementation of task

hierarchies assumed that the action hierarchy was mirrored in the control

hierarchy, where each unit reflected a subtask which would be sequentially

activated, as in Figure 1.7A (e.g., Miller et al., 1960; Cooper & Shallice,

2000). However, even though neuroanatomical hierarchical divisions might

be obvious (e.g., Goldman-Rakic, 1987), representations might not con-

tain any direct elements of the action hierarchy (Botvinick & Plaut, 2004;

Botvinick, 2007; Reynolds & Mozer, 2009; Uithol et al., 2012), as proved

by connectionist models. The exact same behavior can be produced with-

5One source of research that we do not mention is literature on perception of goals,
which involves the inferior parietal sulcus (Hamilton & Grafton, 2006; Bonini et al., 2011).
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out any explicit division of labor (Figure 1.7B, Botvinick & Plaut, 2004; or

Koechlin, Ody, & Kouneiher, 2003, vs. Reynolds & Mozer, 2009), and even

if there is a hierarchical separation between units, each might not map onto

particular subactions (Botvinick, 2007). To add to the confusion, hierar-

chical divisions of labor might be beneficial even for non-hierarchical tasks

(Botvinick, 2007).

Prefrontal cortex. Dorsolateral prefrontal cortex (DLPFC, BA 9,

and 46) has been extensively studied in humans and nonhuman primates,

in lesion and normal studies. A single pattern of DLPFC activation has

been associated with an entire mapping from stimuli to responses (Hoshi,

Shima, & Tanji, 1998; White & Wise, 1999; Asaad, Rainer, & Miller, 2000;

Shimamura, 2000; Wallis, Anderson, & Miller, 2001; Bunge, 2004; Rougier,

Noell, Braver, Cohen, & O’Reilly, 2005; Johnston & Everling, 2006), and

not the details of the task itself, corroborating the guided activation theory

(Miller & Cohen, 2001). DLPFC has also been found to code for progression

in a multistep task (Hasegawa, Blitz, & Goldberg, 2004; Knutson, Wood, &

Grafman, 2004; Amiez & Petrides, 2007; Berdyyeva & Olson, 2010; Saga,

Iba, Tanji, & Hoshi, 2011) and action sequence boundaries (Fujii & Graybiel,

2003; Farooqui, Mitchell, Thompson, & Duncan, 2012), a type of response

that has also been found in dorsolateral striatum.

The function of DLPFC is often considered together with that of fron-

topolar cortex (BA 10) and anterior premotor cortex (BA 8) in a number

of theories which posit a rostrocaudal allocation of function. Each theory

focus on a particular variable: amount of information required to reduce re-

sponse uncertainty (Koechlin & Summerfield, 2007), level of state abstrac-

tion (Badre & D’Esposito, 2007; Badre, Hoffman, Cooney, & D’Esposito,

2009), temporal abstraction (Sirigu et al., 1995; Fuster, 1997; Grafman,

2002; Wood & Grafman, 2003, 2003; Zalla, Pradat-Diehl, & Sirigu, 2003),

relational complexity (Christoff, 2003; Christoff & Keramatian, 2007), or

domain specificity (Sakai & Passingham, 2006; Courtney, Roth, & Sala,
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2007) — for reviews, see Hoshi (2006), Botvinick (2008), Badre (2008), and

Badre and D’Esposito (2009). The exact contribution of each area and the

nature of the gradient is still a subject of controversy (Reynolds, O’Reilly,

Cohen, & Braver, 2012; Duncan, 2013).

One possible source of confusion for theories of lateral prefrontal cortex,

is that abstract actions are often associated with multiple effectors, as well

as abstract, multimodal states. In addition, different cognitive processes

might be recruited for each level of abstraction (e.g., temporally abstract

actions require working memory, whereas primitive actions do not), making

it that the organizing principle might not be about levels of hierarchy, but

cognitive processes.

Neurophysiological data has shown that within OFC (BA 11, 13, and 14)

reward-predictive activity tends to be sustained, spanning temporally ex-

tended segments of task structure (Schultz, Tremblay, & Hollerman, 2000).

In addition, the response of OFC neurons to the receipt of primary rewards

has been shown to vary depending on the wait-time leading up to the reward

(Roesch, Taylor, & Schoenbaum, 2006).

Another prefrontal area that has been involved in hierarchical behavior

is the pre-supplementary motor area (pre-SMA, BA 8). In addition to the

putative role at the lower levels of hierarchy as stipulated by rostro-caudal

gradient theories, this area has been found to code for sequences of move-

ment as a whole (Shima, Mushiake, Saito, & Tanji, 1996; Nakamura, Sakai,

& Hikosaka, 1998; Shima & Tanji, 2000; Bor, Duncan, Wiseman, & Owen,

2003; Kennerley, Sakai, & Rushworth, 2004; Averbeck & Lee, 2007; Shima,

Isoda, Mushiake, & Tanji, 2007), and task set identity (Rushworth, Walton,

Kennerley, & Bannerman, 2004).

Striatum. The dorsolateral striatum (DLS) has been shown to respond

to the serial order of action in a sequence, but not of the action in isola-

tion (in rodents, Aldridge, Berridge, Herman, & Zimmer, 1993; Aldridge &

Berridge, 1998; Cromwell & Berridge, 1996; non-human primates, Kermadi,
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Jurquet, Arzi, & Joseph, 1993; Kermadi & Joseph, 1995; Mushiake & Strick,

1995; Ravel, Sardo, Legallet, & Apicella, 2006). In addition, DLS has been

shown to respond to the start and beginning of a sequence, something known

as task bracketing (evidence coming mostly from rodents Jin & Costa, 2010;

Barnes et al., 2011). This phenomenon might have a role in sequence chunk-

ing (Graybiel, 1998; Burkhardt, Jin, & Costa, 2009), such that lesions of

DLS lead to impairments in building extended behavioral repertoires (Boyd

et al., 2009; Tremblay et al., 2010). In addition, it is noteworthy that

DLPFC projects heavily onto DLS (Alexander, DeLong, & Strick, 1986;

Parent & Hazrati, 1995), thus consolidating the idea that these two struc-

tures are involved in sequential learning and selection — directly compared

in Fujii and Graybiel (2005). These connections have supported the detailed

computational models of Frank and Claus, which show how frontal inputs

to the striatum could switch among different stimulus-response pathways

(Rougier et al., 2005; Frank & Claus, 2006; O’Reilly & Frank, 2006).

Ventral striatum (VS) has figured less in hierarchical representation of

behavior. Instead, it has been proposed to be involved in learning at dif-

ferent levels of abstraction (Ito & Doya, 2011). Consistent with a role in

learning at multiple levels, a recent study has shown that ventral striatal

codes for prediction errors at multiple levels of abstraction (Diuk et al.,

2013) — at one level associated with deviations of outcomes from a ban-

dit task, and at a higher level, deviations from outcomes of a sequence of

bandits.

Finally, outside PFC and striatum, Daw, Courville, and Touretzky

(2003) have suggested that DA responses are driven by representations

which divide event sequences into temporally-extended segments, based on

the pattern of responses to delayed rewards.
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1.7 Extending Neural RL Mechanisms to HRL

HRL requires several computational extensions to regular RL: (1) Extended

PEs, (2) Extended values, (3) Option-specific policies, (4) Option-specific

value functions and pseudo-reward, and (5) Option-specific PEs or pseudo-

reward prediction errors (PPEs). Botvinick, Niv, and Barto (2009) have

proposed a mapping between these extensions and particular neural struc-

tures.

Other relevant, though less general, neural implementations of HRL have

been put forth by Ito & Doya (2011) and Frank & Badre (2012) — see the

last chapter for discussion of the differences between approaches. These have

focused on cortico-striatal loops. Ito & Doya has proposed that higher levels

of abstraction are represented more rostrally and medially in the basal gan-

glia, and more rostrally in the prefrontal cortex. Frank & Badre simulated

and tested an extension of the working memory model of prefrontal-basal

interactions for state abstraction (O’Reilly & Frank, 2006). Another im-

plementation of HRL, Holroyd and Yeung (2012), has given a key role in

option selection and maintenance to the medial frontal cortex, and to the

interaction with dorsolateral and orbital frontal cortices.

1.7.1 Extended PEs

One important change in how PEs are computed is that HRL widens the

scope of the events that the prediction error addresses. In standard RL,

the prediction error indicates whether outcomes went better or worse than

expected since the immediately preceding single-step action. In contrast,

the prediction errors associated with options are framed around temporally

extended events.

The widened scope of the prediction error computation in HRL resonates

with work on midbrain DA function. In articulating this account, Daw et

al. (2003) provided a formal analysis of DA function that draws on precisely

19



the same principles of temporal abstraction that also provide the foundation

for HRL, namely an SMDP framework. Consistent with the involvement of

dopamine in computing extended PEs, Diuk et al. showed ventral striatal

responses to extended PEs, in addition to regular PEs.

1.7.2 Extended values

Note that in HRL, in order to compute a prediction error when an option

terminates, certain information is needed. In particular, the critic needs ac-

cess to the reward prediction it made when the option was initially selected,

and for purposes of temporal discounting it also needs to know how much

time has passed since that prediction was made. These requirements of

HRL resonate with data concerning the OFC (Schultz et al., 2000; Roesch

et al., 2006), which have shown that reward-predictive activity is sensitive

to task structure.

1.7.3 Option-specific policies

As mentioned above, options come with their own policies, πo in Figure 1.1C,

assembled from a behavioral repertoire of actions and other options. This

consists of two key variables: a representation of the identity of the op-

tion currently in control of behavior, and the sequence that is about to be

performed, an option-level policy.

From a neuroscientific point of view, the representation of option iden-

tities seems very closely related to that commonly ascribed to the DLPFC.

Prefrontal representations are not thought to implement policies directly,

but instead select among stimulus-response pathways implemented outside

the prefrontal cortex (Miller & Cohen, 2001). This division of labor fits

well with the distinction in HRL between an option’s identifier and the pol-

icy with which it is associated, which might be mapped onto DLPFC and

preSMA/DLS respectively.
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Research on frontal cortex also accords well with the stipulation in HRL

that temporally abstract actions may organize into hierarchies, with the

policy for one option (say, an option for making coffee) calling other, lower-

level options (say, options for adding sugar or cream). This fits with the

accounts suggesting that the frontal cortex serves to represent action at

multiple, nested levels of temporal structure (Sirigu et al., 1995; Fuster,

1997; Grafman, 2002; Wood & Grafman, 2003, 2003; Zalla et al., 2003),

possibly in such a way that higher levels of structure are represented more

anteriorly (Botvinick, 2008; Badre, 2008; Badre & D’Esposito, 2009).

As reviewed earlier, neuroscientific interpretations of the basic actor-

critic architecture generally place policy representations within the DLS. It

is thus relevant that such regions as the DLPFC, SMA, pre-SMA and PMC

— areas potentially representing options — all project heavily to the DLS

(Alexander et al., 1986; Parent & Hazrati, 1995).

In HRL, as in guided activation theory, temporally abstract action rep-

resentations in frontal cortex select among alternative (i.e., option-specific)

policies. In order to support option-specific policies, the DLS would need

to integrate information about the currently controlling option with infor-

mation about the current environmental state, as is indicated by the arrows

converging on the policy module in Figure 1.1.

Unlike the selection of primitive actions, the selection of options in HRL

involves initiation, maintenance and termination phases. At the neural level,

the maintenance phase would be naturally supported within DLPFC, which

has been extensively implicated in working memory function (Postle, 2006;

Courtney et al., 2007; D’Esposito, 2007). With regard to initiation and ter-

mination, it is intriguing that phasic activity has been observed, both within

the DLS and in several areas of frontal cortex, at the boundaries of tempo-

rally extended action sequences (Zacks et al., 2001; Fujii & Graybiel, 2003;

Morris, Arkadir, Nevet, Vaadia, & Bergman, 2004). Since these bound-

aries correspond to points where new options would be selected, boundary-
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aligned activity in the DLS and frontal cortex is also consistent with a pro-

posed role of the DLS in gating information into prefrontal working memory

circuits (Rougier et al., 2005; O’Reilly & Frank, 2006).

1.7.4 Option-specific value functions and pseudo-reward

Another difference between HRL and ordinary TD learning is that learning

in HRL occur at all levels of task structure. This is because, as mentioned in

the section on HRL, there is a separate reward signal, noted pseudo-reward.

The possible neural correlates for pseudo-reward are the structures that

are posited to carry reward signals (Wise, 2002), the hypothalamus, and

the pedunculopontine nucleus. The hypothetical neural correlate of such

encapsulated value function would be the OFC (as reviewed in the section

on extended value functions).

1.7.5 Option-specific PEs or pseudo-reward prediction er-

rors (PPE)

At the topmost or root level, prediction errors signal unanticipated changes

in the prospects for primary reward. However, in addition, once the HRL

agent enters a subroutine, separate prediction error signals indicate the

degree to which each action has carried the agent toward the currently rele-

vant subgoal and its associated pseudo-reward. Note that these subroutine-

specific prediction errors are unique to HRL.

In what follows, we refer to them as pseudo-reward prediction errors

(PPE), reserving reward prediction error (RPE) for prediction errors relat-

ing to reward. Because the PPE is not found in ordinary RL, it can be

considered a functional signature of HRL. If the neural mechanisms under-

lying hierarchical behavior are related to those found in HRL, it should be

possible to uncover a neural correlate of the PPE. On grounds of parsi-

mony, one would expect to find PPE signals in the same structures that
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have been shown to carry RPE-related signals, in particular targets of mid-

brain dopaminergic projections including VS (Pagnoni, Zink, Montague, &

Berns, 2002; O’Doherty et al., 2004; Hare, O’Doherty, Camerer, Schultz, &

Rangel, 2008), anterior cingulate cortex (Holroyd & Coles, 2002; Holroyd,

Nieuwenhuis, Yeung, & Cohen, 2003), as well as the habenula (Ullsperger

& von Cramon, 2003; Matsumoto & Hikosaka, 2007; Salas & Montague,

2010) and amygdala (Breiter, Aharon, Kahneman, Dale, & Shizgal, 2001;

Yacubian et al., 2006).

1.8 Aims: Exploring Neural Correlates of PPEs

The present work has focused on evidence for subtask-bounded prediction

errors or pseudo-reward prediction errors (PPEs). The aims of the thesis

are to:

• Develop a hierarchical paradigm where PPEs can be safely dissociated

from RPEs (chapter Decision making in subtasks).

• Assess the influence of pseudo-reward on behavior (chapter Decision

making in subtasks).

• Explore the neural correlates of positive and negative PPEs separately

(chapter Neural correlates of pseudo-reward prediction errors).

• In a single paradigm, compare neural responses to PPEs and RPEs

(chapter Neural correlates of pseudo-reward and reward prediction

errors).
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Figure 1.1. Fundamentals of the actor-critic architecture. (A) Relationship
between agent and environment (π(s) - policy, V (s) - value at state s, R(s)
- reward at state s, δ - reward prediction error). Arrows represent direction
of computations. (B) Neural correlates of actor-critic (DLS - dorsolateral
striatum, DA - midbrain dopamine, VS ventral striatum, HT+ - hypotha-
lamus and related reward structures, e.g., peduncunlopontine nucleus). (C)
Extensions of actor-critic for options (o - option identifier, πo(s) - policy,
Vo(s) - option-specific value function, R(s) - reward function, δ - pseudo-
reward prediction error). (D) Putative neural extensions of the actor-critic
architecture for options (DLPFC - dorsolateral prefrontal cortex, OFC -
orbitofrontal cortex). From Botvinick, Niv, and Barto (2009).

24



superordinate actions
make a cup of tea

basic actions

subordinate actions

put teabag
in teapot

pour hot water
in teapot

put milk
in cup

pour milk
into cup

put sugar
in cup

stir tea

lift teapot move teapot 
to cup

tilt teapot
until tea pours

Figure 1.2. Hierarchical decomposition of the task of making tea. From
Botvinick (2007), adapted from Humphreys and Forde (1998).

Figure 1.3. Temporal abstraction ameliorating the scalability of RL. In this
Markov decision problem (MDP) an agent has to perform six sequential
binary decisions. Only one of the branches yields reward. The flat agent
(A), which uses only primitive actions, has to make six decisions. Assuming
the agent has previously learned the red and blue sequences of actions (B),
then exploration is greatly facilitated (C). This beneficial effect assumes
that these sequences are already learned and appropriate for the domain
in question — see the section on subgoal discovery for a discussion of this
issue. From Botvinick, Niv, and Barto (2009).

25



*

t=1 2 3 4 5 6

a ao

a a a

1

2 3 4

5

Figure 1.4. Behavioral repertoire of an options agent. Each grey box repre-
sents a state. The state at t = 6 yields reward, marked by the red asterisk.
a denotes primitive actions and o, an option. The final sequence of behavior
is the sequence of primitive actions a1-5. Adapted from Botvinick, Niv, and
Barto (2009).
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Figure 1.5. Reward-driven updates in HRL (top) and RL (bottom). Green
arrows represent prediction errors. Reward-driven prediction errors in HRL
can be exactly the same as in flat RL, as between s1 and s2, or reflect the
extended nature of options illustrated in the long arrow between s2 and
s5. Both values reflect an expected sum of discounted reward (marked by
the asterisk), though with different temporal structure — see main text.
Adapted from Botvinick, Niv, and Barto (2009).
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Figure 1.6. All learning updates in HRL and flat RL. In addition to learning
values driven by reward, an HRL agent learns simultaneously at the subtask
level. This is driven by pseudo-reward, and involves reward-independent
updates called pseudo-reward prediction errors (PPE, represented by the
lower-facing green arrows). PPEs are then used to update option-specific
values Vo. Adapted from Botvinick, Niv, and Barto (2009).
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Figure 1.7. Comparison of symbolic and connectionist models of routine se-
quential action. (A) In the symbolic model of Cooper and Shallice (2000),
the generative model of routine actions was composed of units which mir-
rored the parcellation of the task. (B) In the connectionist approach,
Botvinick and Plaut (2004) modeled the same task with a recurrent neural
network, without an explicit division of labor between units in the internal
representation. The comparable parts of the two models are highlighted by
the dashed lines.
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Chapter 2

Decision Making in Subtasks
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2.1 Chapter Summary

In this chapter we describe a series of experiments that examine behavioral

predictions of HRL.

• A first experiment aimed at testing the relative influence of goals and

subgoals on choice behavior. We designed a hierarchical spatial nav-

igation paradigm where participants had to navigate a truck to pick

up an envelope and then deliver it to a house. In this task, there was

a clear incentive at minimizing the distance traveled. We offered two

envelopes, trading-off action costs to attain the subgoal with those of

the goal. Participants showed clear avoidance of goal costs and were

indifferent to subgoal costs.

• A second and third experiment were variants of the hierarchical task,

used to test predictions of HRL. The predictions are that subgoal

preferences should be manifest when a participant is executing an op-

tion and that, the effect of such preferences should be larger when a

choice is offered between subgoals of equal costs of goal attainment.

There was a strong influence of goal preferences, as in the first ex-

periment. Surprisingly, the choice patterns showed no influence of

subgoals, suggesting that participants might have terminated the op-

tion “get subgoal” at the moment of choice (assuming a hierarchical

representation).

• On a fourth experiment, we refined the previous paradigms using a

minimal amount of pause, and voluntary, instead of forced, choice, in-

tending to cause the least amount of disruption to option maintenance.

We observed a clear influence of distance to subgoal in participants’

preferences. This was distributed on a spectrum of preferences: ap-

proximately one third of the participants minimized the costs in the
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first subtask, another third minimized the subgoal costs for a second

subtask, and the remaining third was indifferent.

• The behavioral findings obtained appear consistent with primary pre-

dictions from HRL, in spite of an unexpected pattern of choices.
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2.2 A Task Paradigm for Studying Hierarchical

Decision Making

The behavioral experiments described in this chapter aim at tapping into

HRL-like decision-making mechanisms.1 This means that preferences

should reflect the influence of reward, as is the case with flat agent, and,

under certain conditions, reflect the influence of pseudo-reward, at the level

of subgoals. When there is a trade off between reward and pseudo-reward,

the former should completely dominate the latter. This is because there

should be no attachment of reward to a subgoal (which would be a variant

of a flat agent). This first experiment examines the prediction of goal

dominance. Nevertheless, as stipulated by HRL, subgoal preferences should

be revealed when there is no trade off between reward and pseudo-reward,

or the subject is executing an option — something we explore in the

ensuing experiments. There have been early behavioral studies in rodents

examining the very same questions we pose here (Gilhousen, 1940; Spence

& Grice, 1942; Kendler, 1943). In these studies, it is found that rats prefer

closer subgoals independently of overall distance. However, upon closer

inspection, the manipulation of subgoal distance also implied a change

in goal distance. To our knowledge, there is no work addressing these

questions of hierarchical preferences.

We designed a hierarchical paradigm based on a benchmark task from

the computational HRL literature (the taxi task, Dietterich, 1998), the

courier task. Participants played a video game which is illustrated in Fig-

ure 2.1. As detailed below, in spatial paradigms the distances to the goal

and subgoal can be independently manipulated, which will prove crucial to

determine whether people attach reward to the subgoal. Only the colored

elements in the figure appeared in the task display. The overall objective of

1This experiment has been published in Ribas-Fernandes, Solway, et al. (2011), and
some of the text and figures are adapted from this source.
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the game was to complete a delivery as quickly as possible, using joystick

movements to guide the truck first to the package and from there to the

house. It is self-evident how this task might be represented hierarchically,

with delivery serving as the externally rewarded, top-level goal and acqui-

sition of the package as an obvious subgoal. This observation is not meant

to suggest that the task must be represented hierarchically. Indeed, it is an

established point in the HRL literature that any hierarchical policy has an

equivalent non-hierarchical or flat policy, as long as the underlying decision

problem satisfies the Markov property. For an HRL agent, delivery would be

associated with primary reward and acquisition of the package with pseudo-

reward. However, as mentioned in the introduction, pseudo-reward does not

trade off with reward at the top level. For an RL agent, only delivery would

be associated with reward, unless an agent attached reward to both pick-

up and delivery of the package, which would show independent approach

behavior.

Figure 2.1. Hierarchical spatial paradigm. Participants had to pick up the
package and deliver it to the house, using a joystick. Elements in the figure
are not to scale.

Let us examine how action costs to the subgoal can be dissociated from

those to the goal. Consider the envelope shown in Figure 2.2A. Any point

on the solid line will have the same distance d1 to the truck as the reference

envelope. In Figure 2.2B, any point on the ellipse, the dashed line, will
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have the same distance to the house, d1 + d2, shown by point P, but a

different distance to the subgoal. Assuming action costs are proportional to

the distance, we can then offer choices with independent subgoal and goal

costs, and observe participants’ preferences.2

A B

d1 d1

d2
P

d4

d3

d1 + d2 = d3 + d4

Figure 2.2. Dissociating action costs to attain the subgoal and the goal.
(A) Costs to the subgoal. Any point of the solid circle will have the same
action costs as the shown subgoal. (B) Costs to the goal. The costs to the
goal are d1 +d2. By definition, any point on the dashed ellipse has the same
costs to attain the goal as the envelope on the right (e.g., point P).

Methods

Participants. A total of 22 participants were recruited from the Princeton

University community (M = 20.3, SD = .5, 11 male). All provided informed

consent and received a nominal payment.

Task and procedure. Participants sat at a comfortable distance from

a computer display in a closed room. A joystick was held in the right hand

2The “birds-eye” view of the display affords information about future states, which is
different from the first-person perspective of a model-free agent in a gridworld. However,
we wanted to make sure that both goal and subgoal distances were available to the partic-
ipants at all times. Otherwise any manipulation of subgoal distance would be confounded
with incomplete information about overall distance. In addition, as described in the next
chapters, the manipulations eliciting prediction errors had elements of unpredictability
which are independent of the agent’s model of the task.
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(Logitech International, Romanel-sur-Morges, Switzerland). The computer-

ized task was coded using MATLAB (The MathWorks) and the MATLAB

Psychophysics Toolbox, version 3 (Brainard, 1997). On each trial, three

display elements appeared: a truck, an envelope and a house (Figure 2.1).

Each joystick movement displaced the truck a fixed distance of 50 pixels.

The orientation of the truck was randomly chosen after every such trans-

lation, and participants were required to tailor their joystick responses to

the truck’s orientation, as if they were facing its steering wheel (Figure 2.3).

For example if the front of the truck were oriented toward the bottom of

the screen, a rightward movement of the joystick would move the truck to

the left. This aspect of the task was intended to ensure that intensive spa-

tial processing occurred at each step of the task, rather than only at the

beginning of a trial. Responses were registered when the joystick was tilted

beyond half its maximum displacement (Figure 2.3A). Between responses

the participant was required to restore the joystick to a central position

(Figures 2.3A).

The experiment was composed of three phases. In the first phase, partic-

ipants completed ten deliveries. At the beginning of each trial, the locations

of the truck, envelope and house were determined randomly, with the con-

straint of being at least 100 pixels (two optimal steps) from each other (on

a screen with resolution 1024 x 768 pixels). When the truck passed within

30 pixels of the envelope, the envelope would appear inside the truck and be

carried within up to the delivery in the house. After picking up the enve-

lope, when the truck passed within 35 pixels of the house, the truck would

be shown inside the house and the message “Congratulations!” appeared

for 300 ms.

The second phase consisted of ten further delivery trials. However, here,

at the onset of each trial, the participant was required to choose between

two packages (Figure 2.4). The location of the truck and the house was

chosen randomly. The location of one package, designated subgoal one, was

36



randomly positioned along an ellipse with the truck and house as its foci and

a major/minor axis ratio of 2. The position of the other package, subgoal

two, was randomly chosen, subject to the constraint that it fell at least 100

pixels from each of the other icons. About one third of this second package,

fell inside the ellipse.

At the onset of each trial, each package would be highlighted with a

change of color, twice (in alternation with the other package, and counter-

balanced across trials), for a period of 6 s (1.5 s for each package, twice).

During this period the participant was required to press a key to indicate

his or her preferred package when that package was highlighted. After the

key press, the chosen subgoal would change to a new color. At the end of

the choice period, the unchosen subgoal was removed, and participants were

expected to initiate the delivery task. Importantly, participants had to wait

6s regardless of how fast they chose. The remainder of each trial proceeded

as in phase one.

The third and main phase of the experiment included 100 trials. One

third of these, interleaved in random order with the rest, followed the pro-

file of phase two trials. The remaining trials began as in phase two but

terminated immediately following the package-choice period. It should be

noted that the termination at choice would not make an RL agent value

the subgoal, as termination and choice were independent and choice hap-

pened before subgoal attainment. Participants were told that the first two

parts of the experiment were intended to become acquainted with playing

and choosing. In addition, they were also told that their choices had no

influence on whether a trial would continue beyond choice.

Data analysis. To determine the influence of goal and subgoal distance

on package choice, we plotted the choices on a standard ellipse. Because

the ratio of major/minor axis was constant, all house-truck-envelope triplets
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could be transformed to a standardized ellipse.3 This allowed to look at the

raw choices. To quantify the degree of influence of each type of distance

we conducted a logistic regression on the choice data from phase three.

Regressors included (1) the ratio of the distances from the truck to subgoal

one and subgoal two, and (2) the ratio of the distances from the truck to the

house through subgoal one and subgoal two. To test for significance across

subjects, we carried out a two-tailed t test on the population of regression

coefficients.

To further characterize the results, we fitted two RL models to each

participant’s phase-three choice data. One model assigned primary reward

only to goal attainment and so was indifferent to subgoal distance per se.

A second model assigned primary reward to the subgoal as well to the goal.

Value in the first case was the discounted number of steps to the goal, and

in the second case it was a sum of discounted number of steps to the subgoal

and to the goal. Choice was modeled using a softmax function, including

a free inverse temperature parameter. The fmincon function in MATLAB

was used to fit discount factor and inverse temperature parameters for both

models and reward magnitude for subgoal attainment for the second model.

We then compared the fits of the two models calculating Bayes factor for

each participant and performing a two-tailed t test on the factors.

Results

The scatter plot on Figure 2.5 shows a clear dissociation of choices based on

an ellipse. If subgoal 2 fell within the ellipse, its total distance to be travelled

would be smaller than the distance for the reference envelope. The converse

would happen if the second envelope was outside of the ellipse. This plot

3Because of a technical problem only some ellipses had this ratio, others had a ratio
of 5/3. For this reason not all choices could be standardized, as in Figure 2.5. However,
this had no impact on the logistic regression.
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suggested that the only factor governing choice was the total distance to be

travelled passing through the envelope.

The results of the logistic regression confirmed this influence (see Fig-

ure 2.6). The average coefficient for goal distance was −7.66 (SD = 3.5,

p < .001), whereas for subgoal distance −.16 (SD = .9, p = .43; see Fig-

ure 2.6). All participants, except two, showed large negative coefficients to

goal distance. At an individual level, none of coefficients for subgoal dis-

tance provided a significant fit. The latter observation held even in a subset

of trials where the two delivery options were closely matched in terms of

overall distance (with ratios of overall goal distance between .8 and 1.2).

The model fits yielded converging results, being that the Bayes factor was

4.31, thus favoring the simpler model with primary reward only at the goal.

Discussion

Participants overwhelmingly preferred subgoals that minimized overall path

travelled. This held even in pairs of subgoals that differed little in their goal

distance or subgoals that involved an initial travel in the opposite direction

to the house. The absence of a significant trend for the subgoal coefficients

at the population level strongly mitigates against attaching reward to the

attainment of the envelope. The test at the population level could however

fail to find individual differences or opposing effects. At the individual

level, no fit of the logistic model yielded a significant contribution of subgoal

distance. It could still be the case that opposing effects could happen within

the same participant. If this were the case, we would be able to see a “cloud”

of chosen subgoals around the house, when inspecting the raw data points

plotted on the transformed ellipse, which we did not observe (Figure 2.5).

Overall these results are consistent with HRL, in that subgoals do not

trade off with goals, and goals dominate choice. These findings reassure

that any manipulation of the subgoal does not yield changes in primary or

secondary reward. They do not guarantee, however, that subgoal attain-
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ment has something akin to pseudo-reward. This is suggested by the last

experiment in this chapter, and by an exclusion of alternative hypotheses

for the neural findings in the subsequent chapters.

2.3 Testing Subgoal Approach Behavior

In the previous section there was no observable influence of pseudo-reward

on choice behavior, when pitted against reward. However, HRL predicts

that when an agent is executing an option, choice should be influenced by

option-specific values, driven by pseudo-reward, independently of the top-

level value. Moreover, this effect should be clearer when choosing between

subgoals of equal goal distance. We would like to ascertain whether this

would be the case in two separate experiments (each with a different set

of participants). The first experiment offers choice after participants have

started to head towards the subgoal. The second experiment also presents

choices while the participant is within the option, with the addition that

these subgoals have the same overall distance to the goal.

Methods: choice while executing an option

Twenty-two participants (M = 19.4, SD = .87, 15 male) played a video

game very similar to the one described before. Task and procedure were

the same in all aspects with the exception that choice was offered after

participants had started heading towards the subgoal. The initial location

of the subgoal was determined to be at least 200 pixels from the house and

from the starting location of the truck, and be on an ellipse with major axis

twice the minor axis (resolution 1440 x 900 pixels). After the first or the

second step, a brief tone was played, the previous envelope disappeared, and

two envelopes appeared. One of the envelopes was randomly located on the

same ellipse as the initial location, with the constraint of being at a minimal

distance of 100 pixels from the house, truck and previous subgoal — this
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ellipse was calculated at the moment of the choice. The location of a second

envelope was determined randomly to be at least 100 pixels away from the

previously calculated icons. After the tone, participants could choose which

of the envelopes to pick up in the same way as was described in the previous

paradigm, by pressing a key while an envelope was highlighted. The rest

of the task proceeded as in the previous experiment. In the second phase,

two-thirds of the trials would end after the choice. We used a similar data

analysis approach as in the first experiment. After obtaining the coefficients

from the logistic regression of subgoal and goal distances, we did a one-tailed

t test comparing the subgoal coefficients between the current and the first

experiments. Unless otherwise stated, the significance of coefficients for

single subjects followed the population trend.

Methods: choice between subgoals of equal overall distance,

after start of the option

Nine participants (M = 20.44, SD = .5, 3 male) played a video game very

similar to the one described before. Task and procedure was the same in

all aspects with the exception that both envelopes were now on an ellipse

(both subgoals are different from the subgoal with which the participant

started the task). The location of the subgoals was determined by placing

two subgoals randomly on an ellipse with a major/minor axis ratio of 2/1,

with a minimal distance of 100 pixels of each other and the other icons.

Results

On both experiments there was no significant increase in influence of the

subgoal relative to the first choice experiment (choice while executing an op-

tion: mean difference = .13, p = .71; choice between equidistant subgoals:

mean difference = .13 p = .66, Figure 2.7). Results at the individual level

were in line with the population trend, in that no participant exhibited a
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significant contribution of distance to the subgoal. As in the first experi-

ment, the distance to the goal drove choices of all participants (M = -3.1,

p < .001).

Discussion

We tested subtler predictions of HRL, whereby people should prefer less

action costs to attain a subgoal if they have initiated the option leading to

that subgoal, and between subgoals with the same overall actions costs. In

HRL, this is dictated by option-specific value functions, reflecting expected

discounted pseudo-reward. Contrary to our predictions, neither cognitive

manipulation elicited preferences for closer subgoals. In theoretical terms,

such pattern of choices is in accordance with a goal-driven reward func-

tion. This would not disprove a hierarchical structure of behavior since it is

possible to achieve hierarchical control without pseudo-reward (e.g., Parr,

1998).

However, pseudo-reward is widely used for independent reinforcement

learning at the level of subtasks (Dietterich, 1998; Sutton et al., 1999), and

the evidence that people learn to optimize behavior locally, independently

of reward (Diuk et al., 2013) strongly suggests a hierarchical reward func-

tion.4 In addition, the medial frontal response to subtask prediction errors,

presented later in this thesis, adds credence to the existence of a separate,

subtask reward function. Indirect evidence for pseudo-reward in this task

might come from a post-hoc analysis of participants’ paths. We tested,

for each participant, whether the path from start to choice was indistin-

guishable from a straight line from start to the pre-choice subgoal location.

This was done by regressing the set of {x,y} points, from start to choice,

onto a line, then subtracting the slope of the fitted line to the slope of the

4We are excluding statistical forms of learning which do not require pseudo-reward.
Though they also yield learning at multiple hierarchical levels (e.g., Saffran & Wilson,
2003), they are usually studied in the domain of perception, and are not tied to reinforce-
ment (Turk-Browne & Scholl, 2010).
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straight-to-subgoal line, and doing a two tailed t test on the distribution

of differences. In this analysis no single participant exhibited a significant

difference from the straight-to-subgoal path (α = .05). This is interesting

because the optimal path for an agent that is not driven by pseudo-reward

is a straight line in the direction of the house, and then changing the course

depending on the chosen subgoal. Nevertheless, given that the there are

only three pre-choice {x,y} points, we cannot safely rely on this analysis.

We can raise several possibilities for the absence of an effect on choices.

Firstly, it could be that any scenario where goal distance and subgoal dis-

tance are pitted against each other eclipses any preferences for the latter.

To our knowledge, there is no precedence for this in the computational lit-

erature.5 On the other hand, competition of information for cognitive pro-

cessing is a widely acknowledged phenomenon in psychology. In perception,

limited capacity leads to processing of only behaviorally relevant stimuli

(Desimone & Duncan, 1995). On this line, there could be limited percep-

tual capacity to evaluate distances simultaneously at a subgoal and goal

level. Another possibility, is that goal preferences more automatically con-

trol behavior, similarly to the precedence of word reading over color naming

(Miller & Cohen, 2001), perhaps driven by an ecological imperative.

However, limited capacity and automaticity do not explain the absence

of subgoal preferences when both envelopes are on the ellipse. One possible

alternative is that participants terminate the option and return to the root

level. In this case, action selection would no longer be governed by option-

specific values, even if the action costs to the goal were preserved, but would

driven by reward. In the next experiment we sought to have choices happen

while performing an option, and to eliminate possible causes for option

termination. A possible candidate for eliciting option termination is the

imposed choice, and the length of the pause (6 s). Thirty-four participants

5If anything, subtask values are given preference over top-level values, something
known as recursive optimality (Dietterich, 1998).
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chose between pairs of buttons. One button brought the envelope closer

and another had the converse effect. Importantly, the change was voluntary

and immediate, in other words, participants could elect not to press any of

the buttons and the change took place with a minimal amount of pause. In

all cases the overall action costs to the goal were respected.

Methods

Thirty-four participants (M = 20.6 years, SD = .92, 15 male) performed ten

deliveries in a first phase. On a second phase, participants could press one of

two buttons in the joystick. At the beginning of the experiment participants

were told that it would be completely up to them to press the button or not.

We avoided using expressions such as “play” with the buttons to discourage

an exploratory bias. Participants could press the button at any point until

picking up the envelope. One of the buttons would bring the envelope to

the point on the ellipse, between the envelope and the truck, that would be

closest to 70% of a straight line between truck and envelope, whereas the

other button would have the opposite effect, bringing the envelope closer

to the house. Both manipulations happened on the ellipse. The change

would take place immediately after pressing a button. In case no button

was pressed, the trial proceeded as a regular delivery. Participants were not

told what the general effect of the buttons was.

There were four blocks of 40 trials, each with a pair of buttons. At the

onset of each block participants were told which pair of buttons was available

for choice. Buttons were numbered as shown in Figure 2.8. To make sure

that participants would not forget which pair was available, we showed the

screen informing about the available pair twice. Buttons were paired based

on similar ease of access (each red box indicates a pair of buttons Figure 2.8.

The effect of each button and the order of presentation of the pairs were

randomly assigned for each participant. For each participant and for each

block, the share of closer button presses out of all presses was calculated,
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and averaged across blocks. A share of .5 meant indifference between the

two buttons. A two-tailed t test was then performed on the 34 average

shares against the the null hypothesis that the mean share was .5.

Results

On average, .48 of the participants pressed a button in a block, with no

difference in pressing rate across blocks (F (3,132) = .179, p = .91). In spite

of this, there was large inter-subject variability (SD = .48). 18 out of 34

participants pressed both buttons on all blocks, 7 participants pressed both

buttons on 3 blocks and played with only one button type on one block, 6

pressed the two button types on 2 blocks, and only one type on the other

2 blocks, and the remaining 3 participants had 1 or 2 blocks with no press

at all. In spite of high press rate, the share of closer button presses was not

different from .5 (M = .48, SD = .32, p = .75). In contrast with the previous

experiments, the population trend around indifference seemed however to be

the result of a mixture of “truly” indifferent and very consistent participants

on both preferences. Figure 2.9 illustrates the spectrum of preference: on

the extremes one participant pressed the closer button on .98 of the trials,

averaged across blocks, and another participant chose the farther button on

.78 of the trials.

We conducted a post-hoc logistic regression, in order to quantify the

degree of subgoal preference in a manner comparable to the previous exper-

iments. This involved assuming that when the participant pressed a button

there were two subgoals of equal goal distance, one farther and another closer

to the truck than the subgoal prior to choice. The data of the 4 blocks was

treated as a single 120-trial experiment. Only trials with a pressed button

were considered. We labeled a random half of the true choices as subgoal 1

and the remaining half as subgoal 2 (the reverse labeling was applied to the

counterfactual choices). With these two subgoal labels, the ratio of subgoal

distances (distance to subgoal1 / distance to subgoal2) was calculated —
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as in the analysis for the previous experiments. We ran a logistic regression

with the ratio as predictor and whether the chosen subgoal was subgoal 1

or 2.

The population of coefficients was not significantly different from 0 (M

= -.16, SD = 1.5, p = .58). In spite of the mean, 11 participants had

a significant contribution of subgoal distance (p < .05 using Bonferroni

correction; 18 participants with uncorrected p < .05, Figure 2.10). These

11 participants had a significantly higher rate of button press, compared

with the remaining set (M = .82 vs. M = .34, p < .001).

Discussion

As hypothesized, choosing while executing an option, and eliminating the

possible trigger of termination (the pause generated by choice) allowed sub-

goal preferences to be revealed. These were distributed on a spectrum of

choice patterns. The results for the subset of participants that preferred a

closer envelope are in line with the posited effect of pseudo-reward (black

dots in Figure 2.10). An HRL agent should show a preference for earlier/less

effortful attainment ot the subgoal. Contrary to our predictions, but in line

with the previous experiments, there was a group indifferent to closer sub-

goals. The subset of indifferent participants might actually be a mixture in

itself, given the trending results for 7 participants. In any case, we cannot

safely affirm whether these indifferent participants had or had not subgoal

preferences. Making the expression of preferences voluntary, and providing

no information about the effect of the buttons, might make “true” prefer-

ences vulnerable to switch costs, and attention to early learning about the

dynamics of the task.

More surprisingly so, we found a group with preferences for farther sub-

goals. These participants informally mentioned that they liked being closer

to the house when picking-up the envelope. In computational terms, this

would be equivalent to preferring for higher top-level values at the moment
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the option has ended. Diuk et al. (2013) has shown that extended values,

dependent on the combination of the values of subtasks, influence behavior

and striatal activity at the end of a task and not as information is avail-

able. This is suggestive of hierarchical valuation, whereby an agent accesses

option-specific values while pursuing a subgoal and only accesses the root

reward function, and top-level values, once the subgoal has been attained

(in contrast with continuous integration of information).6 To be clear, an

RL agent would not show such results, because the action structure does not

reflect subgoal attainment or extended policies, and thus it does not make

sense to posit that Vs=envelope is given more priority in evaluation that any

other state.

2.4 Chapter Discussion

Our data are consistent with an interpretation under which the onset of the

choice stimuli triggers a return to the root level, a shift that does not occur

in the last experiment, where choices are made without such an exogenous

trigger. The latter experiment, importantly, revealed subgoal-related pref-

erences as predicted by HRL. However, the direction and range of these

preferences was a surprise, with an interesting pattern of individual diff-

ences. We interpret these in terms of the pseudo-reward function: some

people favor low-cost subgoal attainment, others prefer to “set up” for sub-

sequent subtasks. Preferring subgoals that prepares for the initiation set of

an ensuing option is the essence of skill chaining, a method of generating op-

tions (Konidaris & Barto, 2009). In either case, the data are consistent with

the general predictions of HRL, and cannot be explained by flat RL, reveal-

ing a scoping or encapsulation of value at different levels of task structure,

and revealing a role for such values in learning.

6Though some models of options with interruption specify that an agent has access to
top-level values even during option performance.
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Regarding the indifferent participants in the last experiment, it is un-

likely that this subset had a flat representation of the task. Hierarchical

representations are immediate to humans, even in situations where they are

not required or are detrimental (Rosenbaum et al., 1983; Badre et al., 2010;

Collins & Frank, 2013). The indifferent participants exhibited a lower rate

of button presses, suggesting that their “preferences” are actually the effect

of exploration. We posit that, when novelty bonuses were no longer at play,

switch costs of pressing a button would eclipse any subtask preference.

In four experiments we examined no attachment of reward to subgoals,

and approach of subgoals while performing an option. There are additional

predictions from HRL, which we have not focused on. Pseudo-reward should

lead to the creation of option policies. Also, after an option policy is learned,

we should observe a transfer effect to another task, which can positive or

negative, depending on the appropriateness of the option to the task at hand

(something we discuss in the last chapter of this thesis).
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A B

Figure 2.3. Implementation of action costs. (A) Illustration of the effect of
a movement command to the right of the joystick — as shown in the figure,
actual displacement on the screen depends on orientation of the truck. After
every movement command the joystick had to be reset from the outer “Move
threshold” (dark blue in the joystick) to the “Restart threshold” (light blue).
(B) An example of two movement commands.
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2

1

Figure 2.4. Choice between subgoals. The participant would only see the
colored elements (the dashed ellipse and the labels would not be shown).
Subgoal 2 could be inside or outside of the ellipse.
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Figure 2.5. Spatial distribution of choices for all participants. This figure
represents a minimal and transformed version of the task display. In solid
green and black are the truck and house. The solid black line illustrates
the position of the reference subgoal (which on each trial could be on any
point on the ellipse). The red points indicate a setting where the reference
subgoal (on the ellipse), was chosen. The blue points indicate the converse,
where the reference subgoal was not chosen. As can be seen, there was a
clear demarcation of preferences, based on overall distance to the goal.
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with reward at attainment of the house and the subgoal. The edges of a
box are the 25th and 75th percentiles, the line inside a box is the median,
and the whiskers extend to the most extreme data points not considered
outliers, and outliers are plotted individually.
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Figure 2.7. Comparison of regression coefficients for subgoal distance for the
three experiments. There was no significant increase in subgoal influence
for choosing while performing an option or for choice between subgoals
of equal distance to the goal. The differences between the experiments
are highlighted below the graph (goal distance, choice while executing an
option). The edges of a box are the 25th and 75th percentiles, the line
inside a box is the median, and the whiskers extend to the most extreme
data points not considered outliers, and outliers are plotted with a cross
inside a circle.

Figure 2.8. Top view of the joystick used for choice. Each block used a
different pair of buttons (highlighted by red boxes). One of the buttons was
randomly assigned to decrease the costs to the subgoal, whereas the other
increased the costs to the subgoal.
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Figure 2.9. Histogram of the share of closer and farther presses. As can be
seen there was a spectrum of preferences (the x-axis ranges from pressing
the farther button on all trials (blue extreme) to pressing the closer button
on all trials (red); in between, the values reflect the share of trials of the
difference between the closer and the farther buttons).
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Figure 2.10. Comparison of regression coefficients for subgoal distance for
the four experiments. The dots in black are single participants with signif-
icant fits for subgoal distance (p < .05 corrected — see text for details on
the test). The differences between the experiments are highlighted below
the graph. The edges of a box are the 25th and 75th percentiles, the line
inside a box is the median, and the whiskers extend to the most extreme
data points not considered outliers, and outliers are plotted with a cross
inside a circle.
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Chapter 3

Neural Correlates of

Pseudo-Reward Prediction

Errors
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3.1 Chapter Summary

• In this chapter we describe tests of neural correlates of PPEs, us-

ing variants of the task described in the previous chapter. In these

paradigms, while the subject is heading towards the subgoal, the sub-

goal unexpectedly jumps to a new location, which varies in initial

distance, but respects overall distance.1

• A first EEG experiment sought to examine whether negative PPEs

(subgoal jumps to a farther location) would elicit a feedback-related

negativity (FRN). This is a potential which reflects anterior cingulate

activity, and a known neural correlate of RPEs. We observed a po-

tential to negative PPEs, with an amplitude and location suggestive

of the FRN, controlling for errors and conflict.

• In a second study we used fMRI with a similar behavioral paradigm.

We found that BOLD signal in dorsal anterior cingulate cortex and

anterior insula increased with the magnitude of negative PPEs.

• In a third experiment we examined responses to positive PPEs (sub-

goal jumps to a closer location). Again we found activity in anterior

cingulate and insular cortices correlating with a PPE. More specifi-

cally, BOLD signal increased with the magnitude of the positive PPE.

No striatal response was observed.

• Overall, these experiments are consistent with a role of anterior cingu-

late cortex in HRL-related processes, signalling an unsigned prediction

error. We found no correlates of signed prediction errors. This is hy-

pothesized to be a result of opposing preferences in the population, as

observed in the previous behavioral experiments, yielding an average

null response in areas that would respond to PPEs in a signed way.

1The first two experiments were published in Ribas-Fernandes, Solway, et al.,(2011).
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3.2 Introduction

Learning in HRL occurs at two levels. At a global level, the agent learns

to select actions and subroutines so as to efficiently accomplish overall task

goals. A fundamental assumption of RL is that goals are defined by their

association with reward, and thus the objective at this level is to discover

behavior that maximizes long-term cumulative reward. Progress toward this

objective is driven by temporal-difference (TD) procedures drawn directly

from ordinary RL: following each action or subroutine, a reward-prediction

error is generated, indicating whether the behavior yielded an outcome bet-

ter or worse than initially predicted (see Figure 3.1 and methods section),

and this prediction error signal is used to update the behavioral policy. Im-

portantly, outcomes of actions are evaluated with respect to the global goal

of maximizing long-term reward.

At a second level, the problem is to learn the subroutines themselves.

Intuitively, useful subroutines are designed to accomplish internally-defined

subgoals (Singh et al., 2005). For example, in the task of making coffee, one

sensible subroutine would aim at adding cream. HRL makes the important

assumption that the attainment of such subgoals is associated with a spe-

cial form of reward, labeled pseudo-reward to distinguish it from external

or primary reward. The distinction is critical because subgoals may not

themselves be associated with primary reward. For example, adding cream

to coffee may bring one closer to that rewarding first sip, but is not itself

immediately rewarding. In an HRL context, accomplishment of this subgoal

would yield pseudo-reward, but not primary reward. Once the HRL agent

enters a subroutine, prediction error signals indicate the degree to which

each action has carried the agent toward the currently relevant subgoal and

its associated pseudo-reward (see Figure 3.1). Note that these subroutine-

specific prediction errors are unique to HRL. In what follows, we refer to
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them as pseudo-reward prediction errors (PPE), reserving reward prediction

error (RPE) for prediction errors relating to primary reward.

HRL

�at RL

*

t=1 2 3 4 5 6

a aa a a
V V V VV

*

t=1 2 3 4 5 6

a ao
VVV

a a a

*Vo Vo Vo

Figure 3.1. Learning updates in HRL and RL. In addition to learning
values driven by reward, an HRL agent learns simultaneously at the subtask
level. This is driven by pseudo-reward and involves reward-independent
updates called pseudo-reward prediction errors (PPE, represented by the
lower-facing green arrows) and option-specific values Vo. For comparison,
the lower diagram represents the updates in a flat RL agent. Adapted from
Botvinick, Niv, and Barto (2009).

In order to make these points concrete, consider the video game illus-

trated in Figure 3.2, which is based on a benchmark task from the com-

putational HRL literature (Dietterich, 1998). Only the colored elements in

the figure appear in the task display. The overall objective of the game is to

complete a delivery as quickly as possible, using joystick movements to guide

the truck first to the package and from there to the house. It is self-evident
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how this task might be represented hierarchically, with delivery serving as

the (externally rewarded) top-level goal and acquisition of the package as

an obvious subgoal. For an HRL agent, delivery would be associated with

primary reward, and acquisition of the package with pseudo-reward. This

observation is not meant to suggest that the task must be represented hi-

erarchically. Indeed, it is an established point in the HRL literature that

any hierarchical policy has an equivalent non-hierarchical or flat policy (as

long as the underlying decision problem satisfies the Markov property). Our

neuroimaging experiments proceeded on the assumption that participants

would represent the delivery task hierarchically. However, as we discuss

later, the neuroimaging results themselves provided convergent evidence for

the validity of this assumption.

Consider now a version of the task in which the package sometimes un-

expectedly jumps to a new location before the truck reaches it. According

to RL, a jump to point A in the figure, or any location within the ellipse

shown, should trigger a positive RPE, because the total distance that must

be covered in order to deliver the package has decreased. As supported

by the behavioral experiments in the previous chapter, we assume tempo-

ral/effort discounting, which implies that attaining the goal faster/in less

steps is more rewarding. We also assume that current subgoal and goal

distances are always immediately known, as they were for our experimental

participants from the task display. By the same token, a jump to point B

or any other exterior point should trigger a negative RPE. Cases C, D and

E are quite different. Here, there is no change in the overall distance to

the goal, and so no RPE should be triggered, either in standard RL or in

HRL. However, in case C the distance to the subgoal has decreased. Ac-

cording to HRL, a jump to this location should thus trigger a positive PPE.

Similarly, a jump to location D should trigger a negative PPE (note that

location E is special, being the only location that should trigger neither a

RPE nor a PPE). These points are illustrated in Figure 3.2 (right), which
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shows RPE and PPE time-courses from simulations of the delivery task

based on standard RL and HRL.

To make our computational predictions explicit, we implemented both

a standard and a hierarchical RL model of the delivery task, based on the

approach laid out in Botvinick, Niv, and Barto (2009). Simulations were

performed in Matlab (The Mathworks, Natick, MA); the relevant code is

available for download from www.princeton.edu/ matthewb. For the stan-

dard RL agent, the state on each step t, labeled st, was represented by the

goal distance (gd), the distance from the truck to the house, via the package,

in units of navigation steps. For the HRL agent, the state was represented

by two numbers: gd and the subgoal distance (sd), i.e., the distance be-

tween the truck and the package. Goal attainment yielded a reward (r) of

one for both agents, and subgoal attainment a pseudo-reward (ρ) of one for

the HRL agent. On each step of the task, the agent was assumed to act

optimally, that is to take a single step directly toward the package or, later

in the task, toward the house. The HRL agent was assumed to select a

subroutine ( σ) for attaining the package, which also resulted in direct steps

toward this subgoal (for details of subtask specification and selection, see

Figure 3.1, and Sutton et al., 1999; Botvinick, Niv, & Barto, 2009). For

the standard RL agent, the state value at time t, V (t), was defined as γgd ,

using a discount factor γ = .9. The RPE on steps prior to goal attainment

was thus:

RPE = rt+1 + γV (st+1)− V (st) = γ1+gdt+1 − γgdt (3.1)

The HRL agent calculated RPEs in the same manner, but also calcu-

lated PPEs during execution of the subroutine σ . These were based on a

subroutine-specific value function (see (Sutton et al., 1999; Botvinick, Niv,
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& Barto, 2009)), defined as Vσ(st) = γsdt . The PPE on each step prior to

subgoal attainment was thus:

PPE = ρt+1 + γVσ(st+1)− Vσ(st) = γ1+sdt+1 − γsdt (3.2)

To generate the data shown in Figure 3.2, we imposed initial distances

(gd, sd) = (949, 524). Following two task steps in the direction of the

package, at a point with distances (849, 424), in order to represent jump

events distances were changed to (599, 424) for jump type A; (1449, 424),

type B ; (849, 124), type C ; (849, 724), D ; and (849, 424), E. Dashed data

series in Figure 3.2 were generated with jumps to (849, 236), C ; and (849,

574), D.

Figure 3.2. Task and predictions from HRL and RL. Left: Task display and
underlying geometry of the delivery task. Right: Prediction-error signals
generated by standard RL and by HRL in each category of jump event.
Grey bars mark the time-step immediately preceding a jump event. Dashed
time-courses indicate the PPE generated in C and D jumps that change
the subgoals distance by a smaller amount. For simulation methods, see
the methods section below.
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These points translate directly into neuroscientific predictions. Previous

research has revealed neural correlates of the RPE in numerous structures

(Breiter et al., 2001; Holroyd & Coles, 2002; Holroyd et al., 2003; O’Doherty

et al., 2003; Ullsperger & von Cramon, 2003; Yacubian et al., 2006; Hare

et al., 2008). HRL predicts that neural correlates should also exist for the

PPE. To test this, we had neurologically normal participants perform the

delivery task from Figure 3.2 while undergoing EEG and, in two further

experiments, fMRI.

3.3 An EEG Experiment with Negative PPEs

Motivation

Earlier EEG research indicates that ordinary negative RPEs trigger a mid-

line negativity typically centered on lead Cz, sometimes referred to as the

feedback-related negativity or FRN (Miltner, Braun, & Coles, 1997; Hol-

royd & Coles, 2002; Holroyd et al., 2003). This is thought to originate in

the dorsal anterior cingulate cortex (ACC, Gehring and Willoughby, 2002;

but see, for an opposing perspective, van Veen, Holroyd, Cohen, Stenger,

and Carter, 2004) and to reflect phasic dopaminergic input to this region

(Holroyd & Coles, 2002). Based on HRL, we predicted that such fronto-

central negativity, suggestive of the FRN, would occur following the critical

jumps (type D) in our task.

Methods

Participants. All experimental procedures were approved by the Institu-

tional Review Board of Princeton University. Participants were recruited

from the University community and all gave their informed consent. Nine

participants were recruited (ages 18-22, M = 19.7, 4 males, all right-
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handed). All received course credit as compensation, and in addition,

received a monetary bonus based on their performance in the task.

Task and procedure. Participants sat at a comfortable distance

from a shielded CRT display in a dimly lit, sound attenuating, electrically

shielded room. A joystick was held in the right hand (Logitech International,

Romanel-sur-Morges, Switzerland). The computerized task was coded us-

ing Matlab (The Mathworks, Natick, MA) and the Matlab Psychophysics

toolbox, version 3 (Brainard, 1997). On each trial, three display elements

appeared: a truck, a package and a house. These objects occupied the ver-

tices of a virtual triangle with vertices at pixel coordinates (0, 180), (150,

30) and (0, -180) relative to the center of the screen (resolution 1024 x 768

pixels), but assuming a random new rotation and reflection at the onset of

each trial. The task was to move the truck first to the package and then

to the house. Each joystick movement displaced the truck a fixed distance

of 50 pixels. As in the behavioral experiments, the orientation of the truck

after each step, and participants had to their adapt their responses accord-

ingly. This aspect of the task was intended to assure that intensive spatial

processing occurred at each step of the task, rather than only following sub-

goal displacements. Responses were registered when the joystick was tilted

beyond half its maximum displacement. Between responses, the participant

was required to restore the joystick to a central position. When the truck

passed within 30 pixels of the package, the package moved inside the truck

icon and remained there for subsequent moves. When the truck containing

the package passed within 35 pixels of the house, the display cleared and a

message reading “10c” appeared for a duration of 300 ms (participants were

paid their cumulative earnings at the end of the experiment). A central

fixation cross then appeared for 700 ms before the onset of the next trial.

On every trial, after the first, second or third truck movement, a brief tone

occurred and the package flashed for an interval of 200 ms, during which

any joystick inputs were ignored. On one third of such occasions, the pack-
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age remained in its original location. On the remaining trials, at the onset

of the tone, the package jumped to a new location. In half of such cases,

the distance between the packages new position and the truck position was

unchanged by the jump (case E in Figure 3.2). In the remaining cases, the

distance from the truck to the package was increased by the jump, although

the total distance from the truck to the house (via the package) remained

the same (case D in the figure). In these cases, the jump always carried

the package across an imaginary line connecting the truck and the house,

and always resulted in a package-to-house distance of 160 pixels. In all three

conditions the package would be on an ellipse defined by the locations of the

old subgoal, the house and the position of the truck at the time of the jump.

By the definition of an ellipse overall distance to the house was preserved.

At the outset of the experiment, each participant completed a fifteen minute

training session, which was followed by the hour-long EEG testing session.

Participants completed 190 trials on average (range 128-231). Trials were

grouped into blocks, each containing six trials: two trials in which the po-

sition of the package did not change, two involving type E jumps and two

type D jumps. The order in which trials of a particular type occurred was

pseudorandom within a block. Participants were given an opportunity to

rest for a brief period between task blocks.

Data acquisition. EEG data were recorded using Neuroscan (Char-

lotte, NC) caps with 128 electrodes and a Sensorium (Charlotte, VT) EPA-

6 amplifier. The signal was sampled at 1000 Hz. All data were referenced

online to a chin electrode, and after excluding bad channels were rerefer-

enced to the average signal across all remaining channels (Hestvik, Maxfield,

Schwartz, & Shafer, 2007). EOG data were recorded using a single electrode

placed below the left eye. Ocular artifacts were detected by thresholding

a slow moving average of the activity in this channel, and trials with ar-

tifacts were not included in the analysis. Less than four trials per subject
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matched this criterion and were excluded from the analysis (less than two

per condition).

Data analysis. Epochs of 1000 ms (200 ms baseline) were extracted

from each trial, time-locked to the package’s change in position. The mean

level of activity during the baseline interval was subtracted from each epoch.

Trials containing type D jump were separated from trials containing jumps

of type E, and ERPs were computed for each condition and participant by

averaging the corresponding epochs. The ERPs shown in Figure 3.3 were

computed by averaging across participants. The PPE effect was quantified

in electrode Cz, following Holroyd and Coles (2002). The PPE effect was

quantified for each subject by taking the mean voltage during the time win-

dow from 200 to 600 ms following each jump, for the two jump types. A

one-tailed paired t test was used to evaluate the hypothesis that type D

jumps elicited a more negative potential than type E jumps. For compa-

rability with previous studies, topographic plots are shown for electrodes

FP1, FP2, AFz, F3, Fz, F4, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4,

T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, O1, Oz, O2 (as in

Yeung, Holroyd, & Cohen, 2005; F7 and F8 were an exception, given that

the used cap did not have these electrode locations).

Results

The EEG experiment included nine participants, who performed the deliv-

ery task for a total of 60 minutes (190 delivery trials on average per partici-

pant). One third of trials involved a jump event of type D from Figure 3.2;

these events were intended to elicit a negative PPE. Stimulus-aligned EEG

averages indicated that class-D jump events triggered a phasic negativity

in the EEG (p < .01 at Cz; Figure 3.3, left), relative to the E -jump control
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condition.2 This negativity was largest in the fronto-central midline leads

(including electrode Cz, see Figure 3.3, right).

Figure 3.3. Evoked responses at the moment of jump. (A) Evoked potentials
at electrode Cz, aligned to jump events, averaged across participants. D and
E refer to jump destinations in Figure 3.2. The data-series labeled D - E
shows the difference between curves D and E, isolating the PPE effect. (B)
Scalp topography for condition D, with baseline condition E subtracted
(topography plotted on the same grid used in Yeung et al., 2005).

Controlling for response conflict, errors and shifts of attention.

It was important to evaluate whether the ERP effect observed might reflect

error or response conflict detection, factors that have been shown in previous

studies to induce phasic midline negativities (Botvinick, Nystrom, Fissell,

Carter, & Cohen, 1999; Yeung, Botvinick, & Cohen, 2004; Krigolson &

Holroyd, 2006). To rule out an explanation in terms of error-detection, we

conducted an analysis that excluded trials where errors occurred. Although

there is no discrete criterion for response corrections in the task, it is possi-

ble to distinguish between highly accurate and less accurate responses. We

defined response accuracy in terms of the angle between the perfect joystick

movement (the movement that would have taken the truck directly toward

the package) and the actual movement, setting an upper bound of 22.5 ◦

2Like the ERP obtained in this study, the FRN sometimes takes the form of a relative
negativity occupying the positive voltage domain, rather than absolute negativity (for
germane examples, see Nieuwenhuis et al., 2005; Yeung et al., 2005).
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for highly accurate responses, based on an inspection of the response distri-

bution (Figure 3.4A). For clarity, we also only considered trials where the

package displacement required a change in the truck path spanning at least

45 ◦. Repeating our original ERP analysis, focusing only on trials involving

highly accurate responses, yielded the ERP data shown in Figure 3.4B. As

in the original analysis, the difference between jumps of type D and E was

significant (p = .019).

Figure 3.4. Accuracy, reaction times and evoked potentials conditioned on
these variables. (A) Polar accuracy plot for the movement command before
the subgoal jump. 0 ◦ is a perfect movement in the direction of the subgoal.
Left and right commands are shown collapsed. (B) Evoked potentials at
electrode Cz, aligned to jump events and difference wave, conditioned on
highly accurate responses. Dashed line corresponds to class D events, grey
solid line to E events and the black solid to the difference D - E. (C)
Reaction time distributions for type E and D jumps. (D) Evoked potentials
at electrode Cz, aligned to jump events and difference wave, conditioned on
slow responses. Dashed line corresponds to class D events, grey solid line
to E events and the black solid to the difference D - E.
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The other alternative explanation we wished to evaluate was related

to conflict detection. It was possible that type D jumps caused greater

response conflict than type E, perhaps because a greater time was needed

to pin down the direction to the new package location (more distant in

case D than E ). In order to test this explanation, we adopted the common

approach of treating reaction time (RT) as an index of conflict. Considering

only data from trials with highly accurate responses, mean RT in condition

D (1013 ms) did not differ significantly from mean RT for condition E (M

= 1049 ms, paired two-tailed t-test, p = .39). In fact, unconditioned on

accuracy, mean RT following type D jumps (849 ms) was smaller than that

following type E jumps (926 ms, paired two-tailed t test, p < .01), further

militating against an explanation based on conflict. RT distributions for

responses immediately following type D and E jumps (collapsing across

participants) are shown in Figure 3.4C. RTs in both conditions displayed a

clear bimodal distribution, and the difference in mean RT could be largely

attributed to a difference in the proportion of fast (and relatively inaccurate)

responses versus that of slower (and more accurate) responses. To control

for RT, we limited consideration to responses that fell within the slower

component of the bimodal distribution in both conditions. The mean RT

within the resulting samples (1077 ms for type D, 1075 ms for type E ) did

not differ significantly across the two conditions (paired two-tailed t test,

p = .98), nor did the proportion of inaccurate responses, as defined earlier

(49.98% for type D vs. 55.10% for type E, paired two-tailed t test p = .08).

An ERP analysis focusing on this matched data subset of slow responses

yielded a robust PPE effect (p = .02, Figure 3.4D). EEG correlates of shifts

of attention. Figure 3.5 shows the electrode potential at Cz for conditions

involving a shift of attention (average of conditions D and E ) and the no

jump condition.

Note that, in previous EEG research, exogenous shifts of attention have

been associated with a midline positivity, the amplitude of which grows with
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Figure 3.5. ERP for conditions involving a shift of attention (E and D ;
dashed line) and the condition with no jump (solid line) in electrode Cz. 0
ms is the moment when the package flashes yellow and a tone is played.

stimulus eccentricity (Yamaguchi, Tsuchiya, & Kobayashi, 1995). A midline

negativity has been reported in at least one study focusing on endogenous

attention (Grent-’t Jong & Woldorff, 2007), but the timing of this potential

differed dramatically from the difference wave in our EEG study, peaking

at 1000-1200 milliseconds post-stimulus, hundreds of milliseconds after our

effect ended. In fact, we observed such a positivity in our own data, in

Cz, when we compared jump events (D and E ) against occasions where the

subgoal stayed put, an analysis specifically designed to uncover attentional

effects (see Figure 3.5). In contrast, the PPE effect in our data took the

form of a negative difference wave (see Figure 3.3), consistent with the

predictions of HRL and contrary to those proceeding from previous research

on attention.

Discussion

Like the FRN, we observed a fronto-central negativity to negative PPEs.

Although the observed negativity peaked later than the typical FRN, its tim-

ing is consistent with studies of equivalent complexity of feedback (Baker &

Holroyd, 2011). As mentioned before, fronto-central negativities around 200

ms can reflect negative RPEs (Miltner et al., 1997; Gehring & Willoughby,

2002; Holroyd & Coles, 2002), but also errors (Gehring, Goss, Coles, Meyer,
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& Donchin, 1993; Krigolson & Holroyd, 2006) or response conflict (Yeung

et al., 2004). Post-hoc analyses of EEG data based on RTs and accu-

racy showed that the observed negativity was independent of the variables,

thus suggesting that it was indeed a response to a prediction error. Over-

all, this is suggestive of the involvement of ACC in coding negative PPEs,

and perhaps mesocortical dopamine. In the next experiment we repeat the

paradigm, eliciting negative PPEs, using fMRI.

3.4 An fMRI Study of Negative PPEs

Methods

Participants. Participants were recruited from the University community

and all gave their informed consent. For the first fMRI experiment, 33 par-

ticipants were recruited (ages 18-37, M = 21.2, 20 males, all right-handed).

Three participants were excluded: two because of technical problems and

one who was unable to complete the task in the available time. All partici-

pants received monetary compensation at a departmental standard rate.

Task and procedure. An MR compatible joystick (MagConcept, Red-

wood City, CA) was used. The task was identical to the one used in the

EEG experiment, with the following exceptions. Initial positions of the

icons were randomly assigned to the screen respecting a minimal distance

of 150 pixels between icons. On type D jumps, the destination of the pack-

age was chosen randomly from all locations satisfying the conditions that

they (1) increase truck-to-package distance, but (2) leave total path length

to the goal (house) unchanged. The forced delay involved in the task in-

terruption (tone, package flashing) totaled 900 ms. At the completion of

each delivery, the message “Congratulations!” was displayed for 1000 ms,

followed by a fixation cross that remained on screen for 6000 ms. The first

fMRI experiment consisted of three parts: a fifteen minute behavioral prac-

tice outside the scanner, an eight minute practice inside the scanner during
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structural scan acquisition and a third phase of approximately forty-five

minutes, where functional data were collected. During functional scanning,

90 trials were completed, in six runs of fifteen trials each. At the beginning

and end of each run a central fixation cross was displayed for 10000 ms. The

average run length was 7.5 minutes (range 5.7-11).

Image acquisition. Data were acquired with a 3 T Siemens Allegra

(Malvern, PA) head-only MRI scanner, with a circularly polarized head

volume coil. High-resolution (1 mm3 voxels) T1-weighted structural images

were acquired with an MP-RAGE pulse sequence at the beginning of the

scanning session. Functional data were acquired using a high-resolution

echo-planar imaging pulse sequence (3 x 3 x 3 mm voxels, 34 contiguous

slices, 3 mm thick, interleaved acquisition, TR of 2000 ms, TE of 30 ms,

flip angle 90 ◦, field of view 192 mm, aligned with the Anterior Commissure

- Posterior Commissure plane). The first five volumes of each run were

ignored.

Data analysis. Data were analyzed using AFNI software (Cox, 1996).

The T1-weighted anatomical images were aligned to the functional data.

Functional data was corrected for interleaved acquisition using Fourier in-

terpolation. Head motion parameters were estimated and corrected allowing

six-parameter rigid body transformations, referenced to the initial image of

the first functional run. A whole-brain mask for each participant was created

using the union of a mask for the first and last functional images. Spikes in

the data were removed and replaced with an interpolated data point. Data

was spatially smoothed until spatial autocorrelation was approximated by a

6 mm FHWM Gaussian kernel. Each voxels signal was converted to percent

change by normalizing it based on intensity. The mean image for each vol-

ume was calculated and used later as baseline regressor in the general linear

model, except in the region of interest analysis where the mean image of

the whole brain was not subtracted from the data. Anatomical images were

used to estimate normalization parameters to a template in Talairach space
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(Talairach & Tournoux, 1988), using SPM5 (www.fil.ion.ucl.ac.uk/spm/).

These transformations were applied to parameter estimates from the general

linear model.

General linear model analysis. For each participant we created a

design matrix modeling experimental events and including events of no in-

terest. At the time of an experimental event we defined an impulse and

convolved it with a hemodynamic response. The following regressors were

included in the model: (a) an indicator variable marking the occurrence of

all auditory tone / package flash events, (b) an indicator variable marking

the occurrence of all jump events (spanning jump types E and D), (c) an

indicator variable marking the occurrence of type D jumps, (d) a paramet-

ric regressor indicating the change in distance to subgoal induced by each

D jumps, mean-centered, (e and f) indicator variables marking subgoal and

goal attainment, and (g) an indicator variable marking all periods of task

performance, from the initial presentation of the icons to the end of the

trial. Also included were head motion parameters, and first to third order

polynomial regressors to regress out scanner drift effects. A global signal

regressor was also included (comparable analyses omitting the global signal

regressor yielded statistically significant PPE effects in ACC, bilateral in-

sula and lingual gyrus, in locations highly overlapping with those reported

subtracting global signal).

Group analysis. For each regressor and for each voxel we tested the

sample of 30 subject-specific coefficients against zero in a two-tailed t test.

We defined a threshold of p = .01 and applied correction for multiple com-

parison based on cluster size, using Monte Carlo simulations as implemented

in AFNIs AlphaSim. We report results at a corrected p < .01.

Follow-up analysis. Our experimental prediction related to the change

in distance between truck and package induced by type-D jump events, i.e.,

the change in distance to subgoal, or PPE effect. However, jump events also

varied in the degree to which they displaced the package (i.e., the distance
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from its original position to its post-jump position), and this distance cor-

related moderately with the increase in subgoal distance. It was therefore

necessary to evaluate whether the regions of activation identified in our pri-

mary GLM analysis might simply be responding to subgoal displacement

(and possible attendant visuospatial or motor processes), rather than the

increase in distance to subgoal. To this end, we looked at each area iden-

tified in the primary GLM, asking whether the area continued to a show

significant PPE effect even after this regressor was made orthogonal to sub-

goal displacement. In order to avoid bias in this procedure, we employed a

leave-one-out cross-validation approach, as follows. For every sub-group of

29 participants (from the total sample of 30) we re-ran the original GLM,

identifying voxels that (1) showed the PPE effect at significance threshold of

p = .05 (cluster-size thresholded to compensate for multiple comparisons),

and (2) fell within 33 mm of the peak-activation coordinates for one of the

six clusters identified in our primary GLM (dorsal anterior cingulate, bilat-

eral anterior insulae, left lingual gyrus, left inferior frontal gyrus, and right

supramarginal gyrus). The resulting clusters were used as regions of interest

(ROI) for the critical test. Focusing on the one subject omitted from each

29-subject sub-sample, we calculated the mean coefficient within each ROI

for the PPE effect, after orthogonalizing the PPE regressor to subgoal dis-

placement (and including subgoal displacement in the GLM). This yielded

thirty coefficients per ROI. Each set was tested for difference from zero,

using a two-twailed t test.

Region of interest analysis. We defined nucleus accumbens (NAcc)

based on anatomical boundaries on a high-resolution T1-weighted image

for each participant; habenula, using peak Talairach coordinates (5, 25, 8),

guided by Ullsperger and von Cramon (2003), surrounded by a sphere with

a radius of 6 mm (Salas & Montague, 2010); and amygdala, drawn using

the Talairach atlas in AFNI. Mean coefficients were extracted from these

regions for each participant. Reported coefficients for all regions of interest
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are from general linear model analyses without subtraction of global signal.

The sample of 30 subject-specific coefficients were tested against zero in a

two-tailed t test, with a threshold of p < .05.3

Results

A group of thirty participants performed a slightly different version of the

delivery task, again designed to elicit negative PPEs. As in the EEG exper-

iment, one-third of trials included a jump of type D (as in Figure 3.2) and

another third included a jump of type E. Type D jumps, by increasing the

distance to the subgoal, were again intended to trigger a PPE. However, in

the fMRI version of the task, unlike the EEG version, the exact increase in

subgoal distance varied across trials. Type D jumps were therefore intended

to induce PPEs that varied in magnitude (see Figure 3.2). Our analyses took

a model-based approach (O’Doherty, Hampton, & Kim, 2007), testing for

regions that showed phasic activation correlating positively with predicted

PPE size.

A whole-brain general linear model analysis, thresholded at p < .01

(cluster-size thresholded to correct for multiple comparisons), revealed such

a correlation in the dorsal anterior cingulate cortex (ACC; Figure 3.6, case

D). This region has been proposed to contain the generator of the FRN (Hol-

royd and Coles, 2002, although see Niewenhuis et al., 2005). In this regard,

the fMRI result is consistent with the result of our EEG experiment. The

same parametric fMRI effect was also observed bilaterally in the anterior

insula, a region often coactivated with ACC in the setting of unanticipated

negative events (Phan, Wager, Taylor, & I, 2004). The effect was also de-

tected in right supramarginal gyrus, the medial part of lingual gyrus, and,

with a negative coefficient, in the left inferior frontal gyrus. However, in a

3These analyses were intended to bring greater statistical power to bear on these re-
gions, in part because their small size may have undermined our ability to detect activation
in them in our whole-brain analysis, where a cluster-size threshold was employed.
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follow-up analysis we controlled for subgoal displacement (e.g., the distance

between the original package location and point D in Figure 3.2), a nuisance

variable moderately correlated, across trials, with the change in distance to

subgoal. Within this analysis, only ACC (p < .01), bilateral anterior insula

(p < .01 left, p <.05 right) and right lingual gyrus (p < .01) continued to

show significant correlations with the PPE. In the series of region-of-interest

(ROI) analyses, the habenular complex was found to display greater activ-

ity following type D than type E jumps (p < .05), consistent with the idea

that this structure is also engaged by negative PPEs. A comparable effect

was also observed in the right, though not left, amygdala (p < .05). In the

nucleus accumbens (NAcc) no significant PPE effect was observed (tests for

average bilateral accumbens: p = .23 for parametric PPE, .09 for categor-

ical PPE, results were comparable on left and right accumbens, and with

the inclusion of ventral caudate and ventral putamen).

Discussion

This experiment yielded a significant parametric PPE effect in several re-

gions. One additional aspect of the results that deserves comment is the

fact that these same regions did not display a statistically significant cate-

gorical effect. That is, while their activation scaled with the magnitude of

the subgoal-distance increase induced by type D jumps, the mean activation

induced by type D jumps was not significantly greater than that induced

by type E jumps. Two possible explanations can be offered for this aspect

of the results. First, it should be noted that the average increase in subgoal

distance across all trials in the experiment was well above zero. Taking this

into account, on a precise HRL account, type E jumps should in fact have

induced a small positive PPE. For simplicity, in deriving our experimental

predictions, we assumed that the PPE was calculated against a reference

or expected subgoal-distance change of zero. This difference between the

assumptions of our model and a strict HRL account may at least partially
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account for the details of our GLM results. On a more prosaic level, it

should be noted that, across trials, the increase in subgoal distance was

heavily skewed to the right. This may have undermined power for detecting

a mean effect of jump type, making it easier to detect the parametric effect

that we in fact obtained in the main GLM analyses. Further experimenta-

tion is called for to evaluate the merit of these two interpretations. As noted

in the introduction, the design of our neuroimaging experiments reflected

a presumption that participants would represent and perform the delivery

task in a hierarchical manner. However, as also intimated in the intro-

duction of this chapter, we also view our experimental results as providing

evidence supporting that assumption. Specifically, our behavioural study

provided evidence against a non-hierarchical or flat RL account involving

primary reward at subgoal attainment, and the EEG and fMRI results could

not be easily explained by a flat RL account with no reward at subgoal.

In the nucleus accumbens (NAcc), where some studies have observed

deactivation accompanying negative RPEs (Knutson, Taylor, Kaufman, &

Peterson, 2005), no significant PPE effect was observed. However, it should

be noted that NAcc deactivation with negative RPEs has been an incon-

sistent finding in previous work (see, e.g., O’Doherty, Buchanan, Seymour,

& Dolan, 2006; Cooper & Knutson, 2008). More robust is the association

between NAcc activation and positive RPEs (Seymour et al., 2004; Hare et

al., 2008; Niv, 2009).

We predicted, based on HRL, that neural structures previously proposed

to encode temporal-difference RPEs should also respond to PPEs. Nega-

tive PPEs were found to engage three structures previously reported to

show activation with negative RPEs: ACC, amygdala and habenula. On a

cautionary note, findings purported to originate in the habenular complex

may be due to spatial spread of signal from other structures, and detection

of habenular activity using fMRI might require methods with finer spatial

resolution (Lawson, Drevets, & Roiser, 2012). Of course, the association
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of these neural responses with the relevant task events does not uniquely

support an interpretation in terms of HRL (see Poldrack, 2006). However,

aspects of either the task or the experimental results do militate against

the most tempting alternative interpretations. Our precursory behavioral

studies provided evidence against primary reward at subgoal attainment,

closing off an interpretation of the neuroimaging data in terms of standard

RL. Given previous findings pertaining to the ACC, the effect we observed

in this structure might be conjectured to reflect response conflict or error

detection (Botvinick et al., 1999; Yeung et al., 2004; Krigolson & Holroyd,

2006). However, additional analyses of the EEG data indicated that the

PPE effect persisted even after controlling for response accuracy and for

response latency, each commonly regarded as an index of response conflict).

Another alternative that must be addressed relates to spatial attention.

Jump events in our neuroimaging experiments presumably triggered shifts

in attention, often complete with eye movements, and it is important to con-

sider the possibility that differences between conditions on this level may

have contributed to our central findings. While further experiments may be

useful in pinning down the precise role of attention in our task, there are

several aspects of the present results that argue against an interpretation

based purely on attention. Our fMRI results also resist an interpretation

based on spatial attention alone. We did find activation in or near the

frontal eye fields and in the superior parietal cortex regions classically as-

sociated with shifts of attention (Corbetta, Patel, & Shulman, 2008) in an

analysis contrasting all jump events with trials where the subgoal remained

in its original location (Figure 3.6, jump to E ). However, as reported above,

activity in these regions did not show any significant correlation with our

PPE regressor (see Figure 3.6, jump to D).

If one does adopt an HRL-based interpretation of the present results,

then several interesting questions follow. Given the prevailing view that

temporal-difference RPEs are signaled by phasic changes in dopaminergic
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activity (Schultz et al., 1997), one obvious question is whether the PPE

might be signaled via the same channel. ACC activity in association with

negative RPEs has been proposed to reflect phasic reductions in dopamin-

ergic input (Holroyd & Coles, 2002), and the habenula has been proposed

to provide suppressive input to midbrain dopaminergic nuclei (Christoph,

Leonzio, & Wilcox, 1986; Matsumoto & Hikosaka, 2007). The implication

of ACC and habenula in the present study thus provide tentative, indirect

support for dopaminergic involvement in HRL. At the same time, it should

be noted that some ambiguity surrounds the role of dopamine in driving

reward-outcome responses, particularly within the ACC (for a detailed re-

view, see Jocham & Ullsperger, 2009). The present findings must thus be

interpreted with appropriate circumspection. Again, it should be noted

that our HRL-based interpretation does not necessarily require a role for

dopamine in generating the observed neural events.

3.5 An fMRI Study of Positive PPEs

Introduction

In this section we now examine the converse case, where costs for subgoal at-

tainment are suddenly decreased. As illustrated in Figure 3.2, this triggers a

positive PPE. The association between ventral striatal activity and positive

prediction errors is stronger than with negative prediction errors (Seymour

et al., 2004; Hare et al., 2008; Niv, 2009). Therefore, this paradigm is a bet-

ter testbed for the possible association between ventral striatum and PPE.

This of couse assumes that in fact what is being triggered by the jump to

location C is a positive PE. The last behavioral experiment shows that some

participants may show a preference for farther subgoals. In any case, it is

not a neutral event and PE should be triggered. Also, in this experiment

we decided to aim for a strong main effect instead of a parametric effect.

79



For that reason all PE jumps head towards a similar location (see methods

section to why this cannot be set prior to the trial).

Methods

Participants. Participants were recruited from the University community

and all gave their informed consent. 30 participants were recruited (ages

18-25, M = 20.5, 11 males, all were right-handed). All participants received

monetary compensation at a departmental standard rate. In order to further

encourage performance, participants also received a small monetary bonus

based on task performance.

Task and procedure. An MR compatible joystick (MagConcept, Red-

wood City, CA) was used. The initial positions of the icons were rotations

or reflections, varied randomly, of a pre-established arrangement of icons of

a predetermined triangle with vertices truck (0, 200), package (151, -165)

and house (0, -200) (coordinates are in pixels, referenced to the center of

the screen, 1024 x 768 pixels).

On every trial, after the first, second or third truck movement, a brief

tone occurred and the package flashed for an interval of 900 ms, during

which any joystick inputs were ignored. On one third of such occasions, the

package remained in its original location. On the remaining trials, at the

onset of the tone, the package jumped to a new location. In half of such

cases, the distance between the packages new position and the truck position

was unchanged by the jump (case E in Figure 3.2). On the remaining third,

a type C jump would happen, the destination of the package was chosen such

that (1) the distance between truck and package always decreased to 120

pixels and (2) leave total path length to the goal (house) unchanged. At the

completion of each delivery, the message 10 appeared for 500 ms, indicating

the bonus earned for that trial. Immediately following this, a fixation cross

appeared for 2500 ms, followed by onset of the next trial. The experiment

consisted of three parts: a fifteen minute behavioral practice outside the

80



scanner, an eight minute practice inside the scanner during structural scan

acquisition and a third phase of approximately forty-five minutes, where

functional data were collected. During functional scanning, 90 trials were

completed, in six runs of fifteen trials each. At the beginning and end of

each run a central fixation cross was displayed for 10000 ms. The average

run length was 6.8 minutes (range 4.7-10.7).

Image acquisition. Image acquisition protocols was the same as in

the first fMRI experiment.

Data analysis. The procedure for preprocessing data was similar to

the one used in previous experiment.

General linear model analysis. For each participant we created

a design matrix modeling experimental events and including events of no

interest. At the time of an experimental event we defined an impulse and

convolved it with a hemodynamic response. The following regressors were

included in the model: (a) an indicator variable marking the occurrence of

all auditory tone / package flash events, (b) an indicator variable marking

the occurrence of jump types E and C, (c) an indicator variable marking

the occurrence of type C jumps, (d) a parametric regressor indicating the

change in distance to subgoal induced by each or C jumps, mean-centered,

(e and f) indicator variables marking subgoal and goal attainment, and (g)

an indicator variable marking all periods of task performance, from the

initial presentation of the icons to the end of the trial. Also included were

head motion parameters, and first to third order polynomial regressors to

regress out scanner drift effects.

Group analysis. For each regressor and for each voxel we tested the

sample of 30 subject-specific coefficients against zero in a two-tailed t test.

We defined a threshold of p = .01 and applied correction for multiple com-

parison based on cluster size, using Monte Carlo simulations as implemented

in AFNIs AlphaSim. We report results at a corrected p < .01.
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Region of interest analysis. We defined nucleus accumbens (NAcc)

based on anatomical boundaries on a high-resolution T1-weighted image

for each participant; habenula, using peak Talairach coordinates (5, 25, 8),

guided by Ullsperger and von Cramon (2003), surrounded by a sphere with

a radius of 6 mm (Salas & Montague, 2010); and amygdala, drawn using

the Talairach atlas in AFNI. Mean coefficients were extracted from these

regions for each participant. Reported coefficients for all regions of interest

are from general linear model analyses without subtraction of global signal.

The sample of 30 subject-specific coefficients were tested against zero in a

two-tailed t test, with a threshold of p < .05.

Results

At a whole brain level, in a surprising result, an increase BOLD to C jumps

relative to jumps E was observed in dorsal anterior cingulate and bilateral

anterior insula (p < .05 corrected) (Figure 3.6, jump to C ). Another re-

gion that survived correction was lingual gyrus in a comparable location

to the one observed in the previous study. There was no significant re-

sponse to the variation in subgoal distance. The control regressors E+C

and tone/flash/forced delay showed a similar pattern to the same contrast

in the previous fMRI experiment, of frontal eye fields and superior parietal

cortex (see Figure 3.6). The ROI analysis yielded no significant response in

bilateral NAcc (p = .94, and qualitatively the same result for ventral stria-

tum), habenula (p = .52) or amygdala (p = .14). Results were comparable

results for unilateral tests. We discuss these results in the next section,

together with the findings from the previous studies.

3.6 Chapter Discussion

Dorsal anterior cingulate cortex is known to respond to reward prediction

errors (Holroyd et al.,2004, and for a general review Rushworth, Noonan,
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Boorman, Walton, and Behrens, 2011). RPEs, however, are far from being

the only eliciting stimulus of dACC. It is also known to respond to conflict,

errors in performance. We can exclude conflict or error detection given that

reaction times are not higher for correct trials, nor are error rates between

for condition C, compared with E. Though the dACC is not part of the

canonical set of areas that responds to stimulus-driven attention, such as the

temporo-parietal junction, inferior parietal sulcus and right middle frontal

gyrus or frontal eye fields (Corbetta et al., 2008), it can be asked whether

the response we observed is driven by shear visual displacement, triggering

a shift of attention. The experimental condition, C, has less distance or

angle of visual displacement than the control condition, E. Consistently,

these areas responded to the occurence of a jump, C and was observed in

E, rather than C in isolation. By exclusion, we can say that the response

is a prediction error. However, we cannot for certainty say whether it is

a positive or negative PE, particularly given the finding that some people

prefer subgoal locations to be closer, and others farther, independently of

overall distance, though not both.

The dACC has been reported to respond to both positive and negative

PEs with increases in activity, both in BOLD and in single-unit measure-

ments (Hayden, Heilbronner, Pearson, & Platt, 2011; Roesch, Esber, Li,

Daw, & Schoenbaum, 2012, for a review), in contrast with earlier findings

(Holroyd et al., 2004). This type of response is consistent with a learning

model based on surprise (Pearce & Hall, 1980; Pearce, Kaye, & Hall, 1982).

This means that the direction of the effect we observed is not telling of the

valence of the PE. In the behavioral study, we reported a spectrum of prefer-

ences for closer to farther subgoal. It might be possible that for a subgroup

of participants the change elicited a positive PE, for others a negative PE

and for others nothing at all. Crucially none of the PEs is associated with

any change with reward delivery and none of these changes would happen

if people were not representing the task hierarchically.
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In contrast with the dACC, we did not observe any effect in canonical

signed RPE areas, the ventral striatum (O’Doherty et al., 2003), the lateral

habenula (Salas & Montague, 2010) or the midbrain (D’Ardenne, McClure,

Nystrom, & Cohen, 2008). This was true at the whole brain and ROI

level. Either these areas do not respond at all to option level PEs, or their

response is so small that cannot be observed. However, Diuk et al. (2013)

do find responses in the ventral striatum integrating information across an

option, whereas no responses in dACC. The study involved extended PEs,

computed at the end of the option, spanning information about the accrued

rewards during the option. Even though these were RPEs, it means that

VS is receiving information at the option-level and is not solely responding

to changes in flat RPEs. One possible nullifying factor is the spectrum of

preferences in the population. As illustrated in Figure 3.7, if there is a null-

centered spectrum of true preferences, an area with an unsigned response

will reflect both the aversive and appetitive nature of a jump, in statistical

analysis at the population level. However, an area with a signed response

will mirror the distribution of preferences around 0. Unlike the behavioral

studies, our fMRI analysis rely strongly on population level tests, and could

make responses in VS undetectable.

Given that the PPE is assumed to arise from hierarchical processing, it

may appear necessary for us to have established independent of the imag-

ing experiments that subjects represent the delivery task hierarchically. We

have claimed that the imaging data provide evidence both for the PPE and

for the logically prior proposition that the delivery task is performed hier-

archically. Isn’t there necessarily some circularity in this analysis? Despite

the appeal of this intuition, there is in fact nothing circular in our inter-

pretation of the data. To show this formally, let us define the following

terms:

A: The event that the task is represented hierarchically
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A: The event that the task is not represented hierarchically

B: The event that the task gives rise to a PPE

B: The event that the task does not give rise to a PPE

D: Our neuroimaging findings.

On purely logical grounds, it is clear that:

B → A: If B were true, then A would necessarily also be true

A→ B : If A were false, then B would necessarily also be false

Given these two premises, basic probability yields the following two con-

clusions:

P (B | D) =
P (D | B)P (B | A)P (A)

P (D | B)P (B | A)P (A) + P (D | B)P (B)
(3.3)

P (A | D) =
P (D | B)P (B | A)P (A) + P (D | A ∩B)P (A ∩B)

P (D | B)P (B | A)P (A) + P (D | B)P (B)
(3.4)

Equation 3.3 gives the posterior probability of the PPE hypothesis, given

the neuroimaging data. Equation 3.4 gives the probability of hierarchical

processing, given those same data. Two points are worth noting. First,

there is no circular or reciprocal dependency between the two equations.4

Given the appropriate likelihoods and prior probabilities, the equations can

be evaluated in parallel. It is thus logically sound to draw parallel conclu-

sions from the imaging data concerning both hierarchical processing and the

4The two expressions do of course share terms, and will thus be correlated, but this is no
indication of circularity or tautology As an aside, also note that P (B | D) = P (A∩B | D);
our experiment may be seen as evaluating the joint hypothesis A ∩B.
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PPE. Second, both probabilities depend inversely on P (D | B), the prob-

ability that the data might have been obtained in the absence of a PPE.

This indicates the importance of ruling out alternative explanations for the

imaging results. It is here that the behavioral study comes in, since it rules

out an interpretation of the imaging data based on primary reward at sub-

goal. Naturally, both probabilities, P (B | D) (Equation 3.3) and P (A | D)

(Equation 3.4), also depend on P (A), the a priori probability that the deliv-

ery task is performed hierarchically. Previous research makes it reasonable

to consider this probability to be fairly high: As we have recently reviewed

elsewhere (Botvinick, 2008; Botvinick, Niv, & Barto, 2009), decades of re-

search in cognitive psychology (e.g., Miller et al., 1960; Cooper & Shallice,

2000; Zacks, Speer, Swallow, Braver, & Reynolds, 2007), developmental psy-

chology (e.g., Saffran & Wilson, 2003), neuropsychology (e.g., Schwartz et

al., 1995; Badre et al., 2009), functional neuroimaging (e.g., Koechlin et al.,

2003; Badre & D’Esposito, 2007), and neurophysiology (e.g., Fuster, 2001)

indicate that hierarchical representation is ubiquitous, and perhaps even

obligatory in human behavior. The possibility that our experimental task,

with its very salient goal-subgoal structure, might constitute an exception

to this general rule seems improbable. Nevertheless, the importance of the

hierarchy assumption prompted us to consider whether our data might pro-

vide some additional, independent and convergent evidence for hierarchical

processing.

One opportunity, in this regard, is suggested by recent neurophysiolog-

ical research, which has discovered phasic activity within the dorsolateral

prefrontal cortex and dorsolateral striatum at sequence boundaries (Barnes

et al., 2011; Fujii & Graybiel, 2003; Jin & Costa, 2010). We reasoned that,

if participants in our experiment represented the delivery task hierarchi-

cally, such activity should occur at the point of subgoal attainment, since

this marks the completion of one subsequence and the onset of another.

Importantly, the moment of subgoal attainment in our task also requires a
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shift in visual attention; to control for this factor, we used package-jump

events (pooling across jump types E and D) as a baseline, since these events

also require a shift in visual attention but do not lie at a subtask boundary.

The resulting contrast revealed relative activation at subgoal attainment (p

< .01, corrected as in previous analyses) at three points within dorsolat-

eral prefrontal cortex (Talairach coordinates: 63, 7, 25; -61, 4, 30; and -51,

40, 19) and bilaterally within dorsolateral striatum (15, -14, 25; -12, 11,

19). Relative activation was also observed in left anterior parietal cortex

spanning the intraparietal sulcus, in the right precuneus, in bilateral mid-

dle occipital gyri, and in the cerebellum. Interestingly, the prefrontal areas

identified in this contrast lie near to areas identified in recent neuroimaging

studies aimed at isolating regions responsible for instantiating hierarchical

representations of action (Koechlin et al., 2003; Badre & D’Esposito, 2007).

We refrain from drawing strong conclusions from this apparent correspon-

dence, given the many differences between the task and analysis employed

here and ones involved in those previous studies. However, the finding of

phasic activation in these frontal regions at the subtask boundary within

our task does appear to offer some convergent support for our assumption

that participants represented the delivery task in a hierarchical fashion.

Overall, these findings are consistent with the dACC having a role in

learning through a Pearce-Hall model, at the level of subgoals. What does

this mean? In the study where people could learn the association between

button presses and direction of jumps of the subgoal, while preserving goal

distance, and carry on this choice, we could expect dACC, but not VS,

or lateral habenula, response during learning. As learning happens, and

the association between presses and subgoal locations becomes predictable,

responses in the dACC should be reduced and eventually inexistant.
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Negative PPE
D-(D+E)

Control
D+E

Positive PPE
C - (C + E)

Figure 3.6. Whole-brain results for negative, and positive PPEs. (Negative
PPE) Contrast of jumps type D - (D + E ). Shown are regions displaying
a positive correlation with the PPE, independent of subgoal displacement.
Talairach coordinates of peak are (0, 9, 39) for dACC, and (45, 12, 0) for
right anterior insula. Not shown are foci in left anterior insula (-45, 9, -3)
and lingual gyrus (0, -66, 0). (Control) Axial view (z = 53) of the BOLD
activity for events D and E (p < .01 corrected) contrasted with no jump
condition. Talairach coordinates for the peak voxel for the clusters shown
are (18, -66, 51) intraparietal sulcus, (-27, -12, 54) and (24, -15, 51) for
frontal eye fields. (Positive PPE) Contrast of second fMRI experiment, us-
ing type C - (C + E ). Shown are regions displaying a positive correlation
with the PPE, independent of subgoal displacement, which overlapped with
regions for Negative PPE. p < .01, corrected using cluster size. Color in-
dicates general linear model parameter estimates, ranging from 3.0 x 10-4
(palest yellow) to 1.2 x 10-3 (darkest orange).
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Figure 3.7. Effect of a spectrum of preferences around 0 on the detection
of neural PE responses. Assuming the population of participants had a
similar distribution of preferences as the one observed in the last behavioral
experiment, this will undermine the detection of a signed response (left).
However, in an unsigned case, both extremes of preferences contribute to
an increase in neural activity (right).
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Chapter 4

Neural Correlates of

Pseudo-Reward and Reward

Prediction Errors
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4.1 Chapter Summary

In this last experimental chapter, we describe one fMRI study which aimed

at comparing neural responses to PPEs and RPEs. In addition to PEs

related to subgoal jumps, there were monetary RPEs at the end of each

trial. These were introduced to further ground the comparison between

RPEs and PPEs.

• Participants played a similar spatial delivery paradigm. Two-thirds

of the trials involved a jump of the subgoal. All jump trials elicited

both an RPE and a PPE. The spatial distribution of jumps was spe-

cially designed to uncorrelate RPEs and PPEs, as well as the distance

between the old and new subgoal location.

• We observed an unsigned dACC response to RPEs, elicited by subgoal

jumps. This is consistent with research showing absolute responses in

this area.

• However, in contrast with the findings from the first neuroimaging

studies, there was no cingulate response to absolute PPEs. Though

surprising, this is consistent with the mutually exclusive pattern of

choices we observed in the behavioral studies: participants’ choices

only reflect subgoal distance when there is no change in overall dis-

tance.

• We replicated VS responses to positive RPEs, driven by unexpected

monetary outcomes. There was no response for negative RPEs. No

striatal response was elicited in PEs related to subgoal jumps. In

contrast with research showing VS-dACC co-activation for RPEs, no

dACC activity was observed for monetary outcomes.

• The dissociation between VS and dACC points to the possibility that

PEs related to subgoal manipulations in our task, and dACC activity
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in this thesis, are actually related to violations of transitions (state

prediction errors), but not of reward predictions. Thorough analy-

ses excluded that dACC responses would be due to spatial shifts of

attention.

• Overall, we observed evidence for a process of hierarchical prediction

in dACC. It is a matter for future research whether these responses

drive updating of transitions (as predicted by this last set of findings),

or of hierarchical values (as dictated by our initial predictions). In the

general discussion, we present an experiment seeking to disambiguate

between these two possibilities.
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4.2 Introduction

According to our initial hypothesis, the structures that respond to RPEs

also encode RPEs. This was based on a parsimonious extension of RL to

HRL, and on recent study (Diuk et al., 2013), which found ventral striatal

responses to prediction errors at two levels of hierarchy. In order to directly

address this hypothesis, we tested RPEs and PPEs using the same hierar-

chical spatial paradigm. The predictions were that 1. RPEs can be elicited

using the delivery task — given the clear pattern of choices shown in the

behavioral chapter, 2. PPEs arise in the same region, and 3. unsigned PEs

should be observed in dACC. In addition, 4. we benchmark jump RPEs

against probabilistic monetary rewards, as these have a strong prior for

robust responses in regions involved in RPEs (Niv, 2009).

4.3 An fMRI Experiment Crossing Valence and

Level of Hierarchy

Methods

As a recapitulation of our paradigm, we can elicit different types of PEs

by having the subgoal unexpectedly jump to different points in space. As

shown in Figure 4.1, jumps on the ellipse preserve overall distance and only

change action costs to the subgoal (C - decrease in distance, positive PPE,

D - increase in distance, negative PPE). Jumps to points A and B change

overall distance, but not initial distance, and thus only trigger positive and

negative RPEs, respectively. Because a paradigm with five jump conditions,

including a jump to point E, and a non-jump condition would be infeasi-

ble either in terms of power or duration, we set for a paradigm where all

jumps involved a PPE and an RPE, which were parametrically, but not

categorically, uncorrelated.
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Figure 4.1. Types of PEs. The previous paradigms used jumps to locations
D and E, or C and E. In this experiment PEs were elicited by having
the subgoal jump to random points in eight regions of space, highlighted in
yellow: 1-4 - positive RPEs, 5-8 - negative RPEs, odd - negative PPEs, even
- positive PPEs. Locations A and B depict RPEs without PPEs, C and D
PPEs without RPEs, and location E should not trigger any PE (except for
salience).

Participants. Forty participants were recruited from the Princeton

University community (range 18-27 years, M = 20, SD = 1.78, 15 male, 38

were right-handed and 2 were left-handed, joystick was always held in the

right hand). 8 participants were excluded, totalling 48 recruited participants

(7 for head movement larger than 2.5 mm and 1 for failure to complete

the task on time). All participants received monetary compensation at a

departmental standard rate, and a monetary bonus for performance plus a

probabilistic payment described as a tip, as detailed below.
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Materials, task and procedure. The task consisted of three parts:

a short behavioral pratice outside the scanner, for 12 trials, using a joy-

stick held in the right hand (Logitech International, Romanel-sur-Morges,

Switzerland) preceded a practice in the scanner, a 12 trial practice inside

the scanner, using an MR compatible joystick (MagConcept, Redwood City,

CA) during structural scan acquisition and a third phase of 132 trials (6 runs

of 22 trials) for approximately sixty minutes, where functional data were col-

lected. At the beginning and end of each run a central fixation cross was

displayed for 10000 ms. The average run length was 11.73 minutes.

Participants played a variant of the delivery task. On each trial truck,

envelope and house occupied the vertices of a virtual triangle with vertices

at pixel coordinates (-90, 320; truck), (150, 0; envelope) and (0, -200; house)

relative to the center of the screen (resolution 1024 x 768 pixels), but as-

suming a random new rotation at the onset of each trial. The task was to

move the truck first to the package and then to the house. Each joystick

movement displaced the truck a fixed distance of 50 pixels. The initial loca-

tion of the truck was determined such that it would be at 3 optimal steps of

distance (50 pixels) from the planned location for jumps to happen (0,200).

At this location the envelope was equidistant from the truck and goal, to

allow for equal variance in both positive and negative prediction errors.

Because of variance in performance, participants would never fall ex-

actly on the planned point (0,200). The jump happened when the truck

was closer than 250 pixels to the envelope or 400 pixels to the house —

this approximated a line. When the truck passed these boundaries, a brief

tone was played, the truck and envelope would flash yellow, and joystick

movements were ignored for 900 ms. In one-third of the trials the enve-

lope would stay in the same location. In the remaining two-thirds it would

jump to a new location (see the next paragraph for details on the jump

locations). Participants were told that the envelope sometimes stayed in

the same place, and sometimes it jumped. No information was given about
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the location of the jump. We emphasized that there was no contingency

between performance and the probability of jumping.

Post-jump envelope locations were determined a priori using a Monte

Carlo approach. The space of (x,y) coordinates was sampled to yield an

equal number of positive and negative RPEs and PPEs, and ipsilateral

and contralateral jumps. In addition, we bounded negative RPEs. Nega-

tive RPEs are only restricted by the screen boundaries, whereas the max-

imal positive RPE is a jump to the straight line between truck and house.

Datasets were constrained to have a maximal negative RPE of the same

magnitude as the maximal PPE. Figure 4.1 illustrates each of these areas

of space in an example dataset. After sampling within these boundaries,

we selected datasets that (1) had a mean PPE approaching zero (mean of

PPE distance less than half a standard deviation away from the mean of

the set of samples, which was zero), (2) had a mean RPE approaching zero

(mean of RPE distance less than a third of a standard deviation away from

the mean of the set of samples, which was zero), (3) had a low sum of ab-

solute correlation between variables (was farther than minus one standard

deviation away from the mean of the sum of the pairwise correlations be-

tween PPE, RPE and jump distance), and (4) had a high variance (datasets

with a standard deviation more than one standard deviation away from the

mean of standard deviations; this counteracted the bias for low variability

from the previous conditions). Out of the remaining datasets we randomly

sampled one. Within this dataset we used the same Monte Carlo approach

to look for possible orderings of trials that could allow for an exploration

of values. However, PEs from a model with learning (α = .1) were highly

correlated with those from a model which only reflected the current trial

(α = 1). These sampling and selection procedures were repeated for each

participant and for each task phase.

As mentioned before, because of errors in performance, the jump was

triggered at a truck location that approximated, but not equaled, the
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planned truck location. To ensure that performance would not grossly

change the correlations and the means of PEs significantly, we tested the

selected 40 datasets with an artificial agent with the same accuracy that was

observed in the previous behavioral tasks. Indeed, for the actual datasets,

taking into account participants’ performance, across jump conditions, the

average RPE was close to zero, M = .1 steps, converting distance in pixels

to steps, though with a relatively large variability, mean SD = 1.66 steps,

and a mean maximum of 3.19 steps; and the same for the average PPE

(M = 0, mean SD = 2.02 steps, mean maximum = 4.44 steps). It should

be noted that the means for individual runs could be different from zero.

This was to discourage participants from tallying how many types of each

event had happened in a run. Changes in local distance, between pre and

post-jump, were on average 4.41 steps (SD = 1.7). The correlation between

PPE and RPE was .31, correlation between PPE and jump distance 0,

correlation between RPE and jump distance -.37.

After the jump, participants headed towards the new location of the

subgoal. When the truck passed within 30 pixels of the package, the package

moved to the truck and remained there for the subsequent moves. When

the truck with the package passed within 30 pixels of the house, the truck

with the package appeared within the house. This image was displayed for

200 ms. After this period, a screen was shown with monetary information,

as shown in Figure 4.2.

Participants were paid a flat rate of 150 delivery bucks, a task currency

that would be converted to dollars. Though they were not told what the

conversion rate was, they were told that if they “worked hard a maximum of

$12” could be attained at the end of experiment in addition to the depart-

mental rate. In order to emphasize the cost of distance, gas was deducted

from the flat rate. This was .1 delivery bucks per actual pixel travelled

(truck at the start - truck at the jump - truck at package pick up - truck

in the house), up to a maximum of 100 delivery bucks. This was accompa-
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Figure 4.2. Eliciting RPEs through monetary outcomes. After delivering
the envelope to the house, the truck would be shown inside the house for
200ms. After this period, a brief tone was played and a breakdown of
payment and distance costs was shown for 3000ms, followed by a screen
with probabilistic monetary payment (+25, 0 or -25), accompanied by a
tone consistent with the valence (coin sound, neutral tone, or sad trumpet).

nied by the sound of cash register. After 3000 ms, a probabilistic monetary

reward appeared at the bottom of the screen (see Figure 4.2). This was

introduced to compare reward prediction errors arising from package jump

with reward prediction errors from monetary reward. Participants could get

25, -25 or 0 delivery bucks with equal probability. They were told that this

was not contingent on their performance but that it was worthwhile to pay

attention to this additional payment, given that final payment was a sum

of rewards accrued during all task phases. To ensure attentional capture,
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we introduced a sound at the moment of this information (coin sound for

25, different from the one for the flat rate, a sad trumpet sound for -25,

and a brief tone for 0, all sounds had the same 100 ms duration). This was

displayed for 600 ms and was followed by a fixation cross that remained on

screen for 700 ms. At the end of each run participants would be given a

self-paced break.

Image acquisition. Data were acquired with a 3T Siemens Skyra

(Malvern, PA) MRI scanner using a sixteen-channel head coil. High-

resolution (1 mm3 voxels) T1-weighted structural images were acquired

with an MP-RAGE pulse sequence at the beginning of the scanning session.

Functional data were acquired using a high-resolution echo-planar imaging

pulse sequence (3 x 3 x 3 mm voxels, 35 contiguous slices, 3 mm thick,

interleaved acquisition, TR of 2000 ms, TE of 30 ms, flip angle 90 ◦,

field of view 192 mm, aligned with the Anterior Commissure - Posterior

Commissure plane). The first five volumes of each run were ignored.

Data analysis. Data were analyzed using AFNI software (Cox, 1996).

The T1-weighted anatomical images were aligned to the functional data.

Functional data was corrected for interleaved acquisition using Fourier in-

terpolation. Head motion parameters were estimated and corrected allowing

six-parameter rigid body transformations, referenced to the initial image of

the first functional run. A whole-brain mask for each participant was created

using the union of a mask for the first and last functional images. Spikes in

the data were removed and replaced with an interpolated data point. Data

was spatially smoothed until spatial autocorrelation was approximated by

a 6 mm FHWM Gaussian kernel. Each voxels signal was converted to per-

cent change by normalizing it based on intensity. The mean image for each

volume was calculated and used later as baseline regressor in the general

linear model, except in the region of interest analysis where the mean image

of the whole brain was not subtracted from the data. Anatomical images

were used to estimate normalization parameters to a template in Talairach
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space (Talairach & Tournoux, 1988). These transformations were applied

to parameter estimates from the general linear model.

General linear model analysis. For each participant we created

a design matrix modeling experimental events and including events of no

interest. At the time of an experimental event we defined an impulse and

convolved it with a hemodynamic response. The following regressors were

included in the model: (a) an indicator variable marking the occurrence of

all auditory tone / package flash events, (b) an indicator variable marking

the occurrence of all jump events, (c) a parametric regressor indicating the

change in distance to subgoal induced by each jump, mean-centered, (d) a

parametric regressor indicating the change in distance to goal induced by

each jump, mean-centered, (e and f) indicator variables marking subgoal

and goal attainment, (g) an indicator variable marking all periods of task

performance, from the initial presentation of the icons to the end of the trial,

(h) an indicator variable for delivery of monetary reward (encompassing

the positive, 25, negative, -25, and neutral, 0, events), (i) an indicator

variable for the positive reward, 25, and (j) an indicator variable for the

negative reward, -25. Also included were head motion parameters, and first

to third order polynomial regressors to regress out scanner drift effects. A

global signal regressor was also included. In additional analyses, instead

of indicator variables encompassing signed positive and negative events,

we separated regressors for positive negative events, or included them in a

unsigned way, with one regressor for the jump PEs and one regressor for

the monetary PEs. All parametric regressors were mean-centered after all

changes.

Group analysis. For each regressor and for each voxel we tested the

sample of 40 subject-specific coefficients against zero in a two-tailed t test.

We defined a threshold of p = .01 and applied correction for multiple com-

parison based on cluster size, using Monte Carlo simulations as implemented

in AFNIs AlphaSim. We report results at a corrected p < .01.

100



Region of interest analysis. For the first fMRI experiment we de-

fined ventral striatum (including the olfactory tubercle) based on anatomi-

cal boundaries on a high-resolution T1-weighted image for each participant.

Mean coefficients were extracted from this region for each participant. Re-

ported coefficients for all regions of interest are from general linear model

analyses without subtraction of global signal. The sample of 40 subject-

specific coefficients were tested against zero in a two-tailed t test, with a

threshold of p < .05.

Results

Behavior

Participants completed a trial on average within 19.81 steps (SD = 4.31).

The average step for the pause was 5.57 (SD = .49). After a jump, partici-

pants reacted within 1.48 s (SD = .18) and accuracy was 74.5 ◦ (SD = 8.02).

As expected, responses in the jump condition were significantly slower and

less accurate than in the no jump condition (RT: mean difference = 67 ms,

p = .002; Accuracy = .08 ◦, p < .001). This effect was larger in jumps that

involved a larger distance between the two subgoals location (ρ = .09 for

RTs, p < .001, and ρ = .07 for accuracy, p < .001). There was no significant

effect on RT or accuracy of RPE (p = .76 and p = .16 respectively). There

was a small positive trending relationship between magnitude of PPE and

accuracy (ρ = .04, p = .07), and no significant correlation with RT (p =

.45).

fMRI

Jump-related PEs. Across all jumps, we found a robust parametric effect

of jump distance in bilateral frontal eye fields and in posterior parietal cor-

tices. Unsigned RPEs yielded dorsal anterior cingulate activity in a region
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similar to the unsigned PPE in the previous studies, Figure 4.3. In contrast,

we observed no medial response for unsigned PPEs. There were responses

in areas for which we had no a priori hypotheses for: increase in BOLD

in middle frontal gyrus (BA 8), and bilateral medial temporal gyrus (see

Table 4.1 for coordinates and cluster sizes). A separation of RPEs into pos-

itive and negative yielded no significant response at the whole-brain level.

We observed activity for signed PPEs several temporal and occipital areas

(Table 4.1).

Replicating the findings from our previous studies, the jump manipula-

tion (independent of RPE or PPE), elicited robust responses in FEF, pos-

terior parietal cortices, areas related to spatial shifts of attention (Corbetta

et al., 2008), as well as a decrease in ventromedial PFC, posterior cingulate

and retrosplenial cortex (Raichle et al., 2001) — areas whose joint activ-

ity, as the default mode network, often fluctuates inversely with shifts of

attention and task engagement.

Figure 4.3. Effect of unsigned RPE on medial prefrontal cortex. Peak
coordinates are (1.5, 28.5, 29.5), p < .05 corrected.

Monetary PEs. Positive RPEs yielded a trending increase in BOLD

signal in the right ventral striatum (-16,2,-4; p = .08 at whole-brain level)

— the independent ROI analysis yielded the same result of a significant

response in right striatum, p < .05. Responses in the left striatum were

not significant (p = .22). No cingulate response was observed for positive

or negative RPEs at a whole-brain level. There were large differences in

transverse temporal cortex, across positive and negative RPEs, which likely
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reflected differences in the auditory stimuli, given the difference in intensity

for the loss and gain sound and the location in auditory cortex (see Table 4.2

for cluster details).

Table 4.1. Whole-brain clusters for jump-related regressors (p < .05, cor-
rected by volume; size in voxels; t value and coordinates for peak voxel; R.
= Right, L. = Left, S. = Superior, g. = gyrus)

Regressor/Area BA size t x, y, z

Absolute RPE

L. dACC 32 48 3.98 1.5, -28.5, 29.5

Positive RPE

- - - - -

Negative RPE

- - - - -

Absolute PPE

R. middle temporal g. 19 214 4.6 -34.5, 76.5, 20.5

R. fusiform g. 17 59 4.4 -25.5, 50, -6.5

Positive PPE

R. middle temporal g. 19 372 4.99 40.5, 79.5, 20.5

Negative PPE

R. precuneus 7 84 -4.62 -10.5, 58.5, 35.5

R. middle occipital g. 18 53 4.14 -40.5, 79.5, -6.5

R. middle temporal g. 22 48 -4.6 -50, 10.5, -6.5

Jump

R. precuneus 7 4452 13.5 -4.5, 67.5, 47.5

S. temporal g. 41 938 -6.5 46.5, 31.5, 17.5

R. middle frontal g. 6 756 8.90 -25.5, 7.5, 53.5

R. medial frontal g. 8 745 -4.92 -7.5, -40.5, 38.5

L. postcentral g. 3 395 -6.16 37.5, 31.5, 60

R. middle frontal g. 9 221 7.32 -28.5, -31.5, 30

continued on next page
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continued from previous page

Regressor/Area BA size t x, y, z

L. middle frontal g. 47 198 -4.67 34.5 , -34.5, -3.5

L. lentiform nucleus - 189 -4.85 25.5, 4.5, -6.5

R. postcentral g. 40 162 -5.40 -58.5, 20, 17.5

R. superior temporal g. 22 141 -4.87 -55.5, 7.5 , 8.5

L. middle frontal g. 8 138 6.09 34.5 , -28.5, 38.5

L. dorsal caudate - 118 6.78 16.5 , -7.5, 14.5

R. culmen - 116 -4.5 -1.5 , 55.5 , -15.5

L. parahippocampal g. 37 98 5.72 28.5 , 46.5 , -9.5

L. cingulate g. 24 89 -4.98 4.5 , 13.5 , 35.5

L. posterior cingulate 23 84 -4.04 4.5 , 49.5 , 23.5

R. lentiform nucleus - 70 -4.21 -20 , 4.5 , -6.5

R. middle frontal g. 47 68 -4.50 -34.5, -31.5 , -3.5

R. lentiform nucleus - 57 4.92 -19.5, -13.5, 5.5

R. parahippocampal g. 37 54 4.62 -28.5 , 43.5 , -6.5

R. cuneus 18 48 -3.64 -4.5 , 76.5 , 17.5

Jump distance

R. precuneus 31 86 4.3 -7.5 , 43.5, 44.5

R. middle frontal gyrus 6 66 4.3 -19.5, -4.5, 59.5

Table 4.2. Whole-brain clusters for monetary outcomes regressors (p < .05,
corrected by volume; size in voxels; t value and coordinates for peak voxel;
R. = Right, L. = Left, S. = Superior, g. = gyrus)

Regressor/Area BA size t x, y, z

Absolute RPE

R. posterior insula 13 149 5.02 -43.5 , 13.5 , 3.5

L. posterior insula 13 108 6.95 43.5 , 19.5, 0

Middle occipital g. 17 96 -4.53 31.5 , 61.5 , 0

continued on next page
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Regressor/Area BA size t x, y, z

R. middle temporal g. 21 59 4.63 -50, -4.5, -10

R. fusiform g. 37 56 4.43 -34.5 , 43.5 , -10

R. cuneus 18 52 -4.35 -16.5 , 76.5 , 26.5

R. inferior frontal g. 9 49 4.25 -34.5 , -4.5 , 30

Positive RPE

Transverse temporal g. 41 362 -6.97 46.5 , 20 , 11.5

Transverse temporal g. 41 350 -5.65 -46.5 , 20 , 11.5

R. fusiform g. 37 203 5.7 -34.5, 43.5, -10

L. fusiform g. 37 92 5.6 28.5, 49.5, -10

Negative RPE

R. superior temporal g. 22 1324 8.67 -46.5 , 13.5 , 0

L. superior temporal g. 22 788 9.06 46.5 , 16.5 , 8.5

R. cuneus 18 249 -5.14 -16.5 , 76.5 , 20.5

L. middle occipital g. 19 210 -5.27 31.5 , 61.5, 0

L. Cuneus 17 188 -5.72 16.5 , 85.5 , 11.5

R. inferior temporal g. 37 96 -4.55 -46.5, 61.5, -0.5

L. thalamus - 85 4.75 4.5, 16.5 , -3.5

L. dorsal caudate - 75 -5.25 7.5 , -13.5 , 11.5

4.4 Chapter Discussion

The aims of this experiment were to compare neural responses to RPEs

and PPEs within subjects and using the same spatial paradigm. PEs were

elicited by unexpected changes of subgoal location, while executing In ad-

dition, we included RPEs triggered by monetary outcomes to further the

comparison with PPEs.

We observed an unsigned reward prediction error in dorsal anterior cin-

gulate cortex (dACC), an increase in BOLD activity with the magnitude,
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but not the valence, of the RPEs. Unsigned prediction errors are part of

learning models driven by surprise (Pearce-Hall Mackintosh, 1975; Pearce &

Hall, 1980; Pearce et al., 1982). This is consistent with previous studies us-

ing single-unit recordings(Hayden et al., 2011), fMRI (Jessup, Busemeyer,

& Brown, 2010), or EEG (Talmi, Atkinson, & El-Deredy, 2013), which

also found unsigned responses in dACC, as recently reviewed in Roesch et

al. (2012). ACC could be responsible for driving learning by association

(together with amygdala, as proposed in Roesch et al., 2012), or use this

deviation for re-evaluation of control (Shenhav, Botvinick, & Cohen, 2013),

or option policies (Holroyd & Yeung, 2012).

Alternative interpretations of this response are conflict between courses

of action, and errors (Botvinick, Braver, Barch, Carter, & Cohen, 2001;

Holroyd et al., 2004; Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 2004,

for a review). However, RPEs and PPEs were not significantly correlated

with either reaction times or accuracy, making it unlikely that the response

we observed was due to these two alternative factors.

Surprisingly we did not replicate the cingulate response to PPEs. What

might be driving this mutually exclusive response to PPEs or RPEs? Pre-

vious studies have shown that people are able to simultaneously process

reward information at different levels of abstraction (Krigolson & Holroyd,

2007; Badre et al., 2010; Diuk et al., 2013). Therefore, this suggests that the

source of competition in our task is not at the level of decisions. It is telling

that the spatial nature of our paradigm is the most evident difference with

previous hierarchical paradigms namely from that of Diuk et al.. On this

note, research on global vs. local perceptual processing (Navon, 1977), and

spatial frames of reference (Behrmann & Tipper, 1999), comes to bearing.

Navon has shown that, in stimuli with both global and local features (e.g.,

a large H composed of smaller s), participants exhibit interference from

global information (identity of large letter) when responding at a local level

(identity of smaller letters), but not the reverse. In Behrmann and Tip-
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per (1999) it is shown that certain types of spatial information cannot be

processed simultaneously. The hypothesis is thus that participants cannot

judge both overall and local distances simultaneously, and that reward in-

centivizes processing of overall distance. This would be consistent with our

behavioral studies, whereby people were only sensitive to subgoal-related

action costs when no evaluation of overall action costs was necessary. In the

general discussion, we present a paradigm to test this spatial hypothesis.

It was also surprising to observe a dissociation between ACC and VS

in jump RPEs. Both receive prominent dopaminergic input from the mid-

brain (Szabo, 1979; Miller & Vogt, 2009), and are heavily interconnected

(Berendse, Graaf, & Groenewegen, 1992; Parkinson, Willoughby, Robbins,

& Everitt, 2000; Croxson et al., 2005; Krebs, Boehler, Roberts, Song,

& Woldorff, 2012). Moreover, these two regions have been extensively

reported to be co-activated in studies examining neural correlates of RL

(Croxson, Walton, O’Reilly, Behrens, & Rushworth, 2009; Walton et al.,

2009; Botvinick, Huffstetler, & Mcguire, 2009; Krebs et al., 2012), and

particularly RPEs, in rodent, and primate research (O’Doherty et al., 2003;

Ullsperger & von Cramon, 2003; Walton, Devlin, & Rushworth, 2004;

Amiez, Joseph, & Procyk, 2005; Mars et al., 2005; Haruno & Kawato, 2006;

Seo & Lee, 2007; Rutledge, Dean, Caplin, & Glimcher, 2010; Hayden et al.,

2011), though not with exceptions (Holroyd et al., 2004; Viard, Doeller,

Hartley, Bird, & Burgess, 2011; Diuk et al., 2013, in this last study, ACC,

among other areas, was observed to be active in spatial violations, though

the reward structure was not as clear as in our study). In spite of the

clear behavioral preferences for closer goals, it is possible that the observed

response is not directly reward-related, but to violations of outcomes,

in other words a state prediction error. Detection of these violations is

actually a core component of some theories of ACC function (PRO theory,

Alexander & Brown, 2011). This would be consistent with two recent

integrative theories of ACC, which stipulate that any signal that requires
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re-evaluation of the amount of cognitive control (Shenhav et al., 2013)

or of temporally-extended actions (Holroyd & Yeung, 2012). In the next

chapter, as part of future directions, we propose a learning paradigm which

seeks to elucidate the nature of the observed medial frontal response.
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Chapter 5

General Discussion
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5.1 Overview of Empirical Findings

The aim of this thesis was to explore behavioral and neural correlates of

hierarchical reinforcement learning (HRL), not explainable by a flat RL

model. We used a spatial paradigm that was divisible into two subtasks,

each composed of a sequence of actions. From the behavioral studies we

observed several properties of a hierarchical agent:

• Values exist at multiple levels of a task — preferences were revealed

at the root and option level.

• Values at the root level dominate values at option level — in the pres-

ence of a trade off between reward and pseudo-reward, participants

overwhelmingly chose to maximize reward.

• Option-level values were expressed during option execution but not

while executing a different option or a root-level policy.

At a neural level, we sought to test whether the same structures involved

in coding root-level prediction errors (RPEs) would respond to option-level

prediction errors (PPEs). In particular, our main prediction was for a con-

sistent engagement of midbrain dopamine afferents. We found confirmations

of an HRL process at play, though equivocal evidence for involvement of the

structures that code for RPEs:

• Dorsal anterior cingulate cortex (dACC) responds to option-level pre-

diction errors (PPEs) in a fashion similar to RPEs, evidenced by

metabolic and electrophysiological correlates.

• dACC responds to prediction errors in an unsigned way, consistent

with an involvement in learning driven by surprise (Pearce-Hall

model).
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• No striatal response was observed to PPEs. In contrast, there was

a response to monetary RPEs. No consistent habenular or amygdala

response was detected.

• Evidence is not suggestive of a role of dopamine in coding PPEs.

In the next sections we discuss specific and general future directions of

the work presented in this thesis. In addition, we compare the theoretical

scaffold of this thesis, with other theoretical proposals and corresponding

empirical findings. Finally, we address issues pertinent to an implementation

of HRL that have not been the focus of the thesis: the problem of subgoal

discovery, and model-based options.

5.2 Future Directions

Specific directions

This thesis leaves several issues open for further research. Broadly they

concern explaining dissociations we observed, thorough explorations of

dopaminergic function in hierarchical domains, and assessment of further

HRL predictions.

Spatial determinants of attention at several levels of hierarchy.

We observed that participants either chose taking into account goal distance

or subgoal distance, but not both. Our main hypothesis is that such dissoci-

ation was due to incompatibility of processing global vs. local information.

In order to ascertain such hypothesis, it would be informative to design a

psychophysical study, with no task structure or reward. If competition were

observed in a purely perceptual paradigm, it would give support to the idea

that the absence of neural PPEs in the last fMRI study was due to impaired

spatial processing.

The proposed experiment uses the same spatial locations as in the last

fMRI study (see Figure 5.1). However, there is no cover task: participants
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see three isoluminant icons on a screen, which are only different in their

shape and color. In two-thirds of the trials the middle vertex (blue circle)

jumps to a new location (see Figure 5.1A and B). For 900 ms participants

see the old and new location of the vertex. After this period, it disappears

and participants have to estimate the extent to which the either the overall

or the “subgoal” distance changed (see Figure 5.1C). In the remaining third

of the trials, there will be no jump though participants still have to estimate

the amount of change.

+- +-

A B

C

Figure 5.1. Estimation of global and local distances. Participants play a
distance estimation task between two changing displays. All locations will
be the same as in the last fMRI study. (A) Pre-jump display. (B) Jump
of the middle vertex to a new location (equivalent to a jump of a subgoal).
(C) Estimation of change of local (left) or overall (right) distances using a
slider bar.
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We predict that under situations where overall distance changes, par-

ticipants will be insensitive to changes in local distance. As an additional

manipulation, we can reward each distance discrimination differentially and

assess how does that affect estimation of the other distance.

PPEs in a learning situation. The PPEs in the presented studies

were elicited in a Pavlovian-like probabilistic setting. However, PPEs should

be correlated with future approach behavior as dictated by TD.

We propose a study where both levels of the task hierarchy drift inde-

pendently. Initially, participants become acquainted with the delivery task,

with a single subgoal. In the test phase, they can choose between 3 different

subgoals, illustrated in Figure 5.2A. They do so by entering the respective

colored area on their first step. After the first step the unchosen subgoals

disappear. Each of the subgoals is characterized by independent, random,

trajectories of PPEs and RPEs through time, as shown in Figure 5.2B.

Trials with forced exploration will be introduced.

This experiment would allow to disambiguate the nature of dACC re-

sponse we observed in the three neuroimaging studies. In addition, it would

provide a better exploration of PPEs, as we can obtain the fits for models

with or without Vo based on the choice behavior (similarly to Diuk et al.,

2013).

Manipulating task structure independently of reward-based

computations. The purpose of this experiment is to independently ma-

nipulate task structure, and observe PPEs based on the putative struc-

ture. The independent manipulation of subtasks will be achieved through

prior exposure to statistical structure, as shown in Figure 5.3A, Exposure

Phase. There is ample evidence that people are sensitive to such struc-

ture (Turk-Browne & Scholl, 2010), and that activity in superior temporal

gyrus, and inferionr frontal gyrus, is sensitive to acquired community struc-

ture (Schapiro, Rogers, Cordova, Turk-Browne, & Botvinick, 2013). Par-

ticipants will be divided into three groups, Transition 1, Transition 2 and
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trial

PPE

A B

Figure 5.2. Task exploring the role of PPEs and RPEs in learning. (A)
In this task participants can choose between three subgoals, highlighted in
different colors. (B) Each subgoal is characterized by independent drifting
functions of RPEs and PPEs.

Control (Figure 5.3A). They will be exposed to this statistical structure

implicitly, performing an orthogonal cover task such as identification of a

target.

Our main goals are to observe PPEs dependent on task structure (Fig-

ure 5.3B), and determine whether there is a relationship between the way

participants encode the task structure and the degree of abstraction in

PPEs. This would be done by correlating a mixture parameter (w) with

similarity scores between stimuli within and across putative subtasks (Fig-

ure 5.3D) from activity in the temporal and frontal lobes (Schapiro et al.,

2013, Figure 5.3D), during the Exposure Phase.

The Reward Phase of the task is very similar to the hierarchical task pre-

sented in Diuk et al. (2013). Participants have to choose between two casinos

(Pillared houses in Figure 5.3B). Each casino is characterized by a distri-

bution of “points”, and a sequence of fractals. Upon choice, the amount of

points necessary to leave the casino with additional money, is shown by a
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dashed bar (Figure 5.3B). Points are earned by observing the outcome of

the fractal bandits (lower level sequence of fractals in Figure 5.3B). If the

amount of points is not attained, they participants leave the casino losing

a certain amount. Each fractal is associated with a drifting probability of

points, shown in Figure 5.3C, thus allowing continuous learning. Partic-

ipants have no control over the sequence that is shown, in contrast with

Diuk et al.. Trials from the Exposure Phase will be repeated in the Reward

Phase, so that the induced structure is not forgotten.

Ventral striatum should be sensitive to PPEs at level 1 for participants

in all three groups. Responses for PPEs at level 2 should depend statistical

relationships between the fractals which participants were exposed to. Par-

ticipants in groups Transition 1 and 2 should show extended PPEs at the

2nd and 3rd fractals respectively, whereas the control group should show no

second level PPEs. The extent to which neural PPEs reflect this mixture

of simultaneous PPEs at different levels, coded in the w parameter, should

be correlated at the population level with the similarity between these two

fractals.

Triggering PPEs while imaging midbrain dopaminergic nuclei.

The midbrain dopaminergic nuclei are notoriously difficult to image, due

to proximity to the basilar artery and susceptibility to cardiac interference

(D’Ardenne et al., 2008). For this reason, it would be interesting to repeat

the tasks presented in this thesis, and the one used in Diuk et al. (2013),

while using methods appropriate for brainstem imaging.

Assessing preSMA activity in option policies and subsequent

transfer. Single-neuron recordings in preSMA have shown neural responses

to code for particular sequences of behavior (Shima et al., 1996; Nakamura

et al., 1998; Shima & Tanji, 2000; Bor et al., 2003; Kennerley et al., 2004;

Averbeck & Lee, 2007; Shima et al., 2007). According to model-free options,

task structure should determined that certain states are associated with

pseudo-reward, and thus independently reinforced.
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The experimental group will be exposed to an MDP (MDP 1e, Fig-

ure 5.4A) with reward at one point and a perceptually salient intermediate

state (subgoal). The MDP consists of states (images such as the fractals

before), connected through arbitrary key pressings. If participants in this

group treat the perceptually salient state as subgoal, and associate pseudo-

reward with its attainment, then the policy leading to it (πo) should be

independently reinforced (Figure 5.4A, and see the section on subgoal dis-

covery). In contrast, the control group exposed to MDP 1c, which has no

parsing cues, should show no independent learning of a subpolicy. In a

second session, both groups play in MDP 2 which only shares the subset

of states leading to the subgoal (Figure 5.4B). We will assess how fast the

experimental group learns the optimal policy (Figure 5.4C), which includes

the previously learned option policy, compared with the control group. In

addition, acquisition of option cached values predicts that the experimental

group should show resistance to local devaluation (Figure 5.4C, “Devalua-

tion” ). We will perform this by introducing higher moving costs at certain

transitions. In a single experiment we thus show positive and negative

transfer effects of option policies.

Neurally, we posit that the extent to which an individual participant

shows transfer of option policies should depend of the robustness of neural

responses in preSMA. In addition, it should correlate with the caudality of

striatal responses (Yin & Knowlton, 2006; Tricomi, Balleine, & ODoherty,

2009), consistent with a shift to habitual responses.

General directions

There is more in HRL than option-specific policies, PPEs, and extended

PEs (see Figure 5.5A for a recapitulation of the neural mappings proposed

for HRL). Future explorations of neural HRL should include tests of option

identification, likely to reside in DLPFC (o in Figure 5.5A), explorations

of the origin of pseudo-reward, Ro(s), observations of the influence of task
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structure in top-level values, and identification of the neural correlates of

option-specific values, Vo(s). In addition to these tests, it would be inter-

esting to test whether the neural substrates for options are shared with

those of state abstraction (e.g., Badre et al., 2010), even though the options

framework usually does not employ state abstraction.

Further functional resolution can be achieved by manipulating the puta-

tive substrates of HRL. On this note, studies with functional disconnection

(e.g., Parkinson et al., 2000), neuronal lesion (Yin, Knowlton, & Balleine,

2004), stimulation (Witten et al., 2011), and neural representation (Mulder,

Nordquist, Örgüt, & Pennartz, 2003) would be decisive for the study of op-

tions. To our knowledge there are no animal studies directly addressing

HRL hypotheses.

5.3 Comparison with Other Relevant Proposals

In this section we compare the neural HRL framework with other recent RL

and non-RL accounts of hierarchical behavior.

5.3.1 Other RL models of hierarchical behavior

Haruno and Kawato (2006). The authors put forth a model of state ab-

straction along corticostriatal loops. In addition, they specify that activity

should shift caudally in the course of learning (as in accounts of habitual

learning, e.g., Tricomi et al., 2009), that difficulty of task dictates the loop

that starts learning — more difficult tasks require more anterior loops, and

that the posterior loops receive information from anterior loops.

In the model each loop keeps a specific Q value. The anterior PFC-

basal loop computes an RPE using regular TD. The prediction error at the

posterior loop is a weighted sum of the RPE of the anterior loop and a

local RPE. Thus the term heterarchical. They present fMRI evidence for
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the shift from caudate to putamen throughout learning, and confirm teh

weighted PEs throughout the striatum.

Frank and Badre (2012). The authors offer a brain-based account of

rule representation, according to RL. The model learns rules (stimuli-button

press mappings) of a task presented in Badre et al. (2010). Stimuli have

four dimensions and depending on the condition (hierarchical or flat), all

dimensions might be relevant (flat) or the value in one dimension instructs

which other dimensions to pay attention to, or to ignore. There is then, in

the hierarchical condition, the potential for abstraction, i.e., for removing

irrelevant dimensions. The authors provide a mechanistic account of previ-

ous neuroimaging data, showing segregation of abstract representations in

DLPC (Badre et al., 2010), and correlate model behavior with individual

performance in the task.

The model is a variant of the Prefrontal Basal Ganglia Working Memory

model (PBWM, O’Reilly & Frank, 2006). This is a connectionist architec-

ture where layers are connected according to the pattern of connectivity

between PFC, midbrain and striatum. In Frank and Badre, the number

of layers in PFC is extended to incorporate the rostrocaudal hypothesis of

LPFC according to abstraction (Badre & D’Esposito, 2007).

The contribution of this paper was to show how abstract mappings can

arise in PFC, without previously specifying them, drawing neuroimaging,

behavioral and theoretical approaches. One caveat is that the architecture

of the task is drawn into the model — “PFC” layer has the exact same

number of units as possible abstract dimensions in the task (compare with

Botvinick & Plaut, 2004, where no division of labor happens in hidden

units).

Notable differences with options are the focus on state, instead of tempo-

ral, abstraction — though they might be both subserved by PFC and striatal

loops; the use of a single dopaminergic signal for all levels of abstraction

— dopamine gates relevant information into working memory — instead
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of several independent teaching signals as posited in this thesis (RPEs and

PPEs).

Ito and Doya (2011). This is similar to the previous accounts in

that a division of labor is proposed along corticostriatal loops according

to different levels of abstraction. In general, this is a proposal that res-

onates with options, though the link is not formally made. They posit

that multiple Q values are learned at different levels of abstraction, simul-

taneously. In this framework, values of different abstraction are mapped

onto the striatum: dorsolateral — more primitive, medioventral — more

abstract. Curiously, this is the opposite of what is proposed by Bornstein

and Daw (2011). Though they mention HRL, this is not a computational

account, and the purpose is to propose an allocation of temporally abstract

learning in corticostriatal loops.

Holroyd and Yeung (2011), and Holroyd and Yeung (2012).

This proposal advances a theory of dorsal ACC in maintenance of

temporally-extended behaviors. They leverage the fact that current

theories cannot explain the effects of ACC lesion, producing, in the ex-

treme, akinetic mutism, and at the same time predict the findings of other

theories. It puts together hierarchical RL, research on cognitive control

and human and animal lesions of dACC.

According to the theory, ACC represents the Q value of an option, which

include: control costs of maintaining the option (which would not be present

if an agent acted habitually and flat) and positive rewards accrued through-

out the task (resonating with Shenhav et al., 2013). In case of a lesion,

there is no representation of the overall benefit of an option, and action

selection is based solely on local costs. Based on the Q value, ACC then

guides DLPFC, and afterwards DLS, for implementing the option-specific

policy. Recently, the authors have simulated the effect of ACC lesions and

compared performance with other theories (Holroyd & McClure, submit-

ted).
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5.3.2 Non-RL models of hierarchical behavior

Representing hierarchical behavior, symbolic vs connectionist

models. This distinction has mostly figured in preRL research of hierar-

chical behavioral (see Frank & Badre, 2012, for proposing a connectionist

model of hierarchical RL), even though it is also relevant in HRL models,

particularly in exploration of neural correlates. This is because, as pointed

in Uithol et al. (2012), the action hierarchy might not have parallels in the

control hierarchy.

In symbolic models (e.g., Miller et al., 1960; Estes, 1972; Norman &

Shallice, 1986; Cooper & Shallice, 2000; Koechlin et al., 2003; Crump &

Logan, 2010), there is a one-to-one mapping between control units and an

action effect (stir in coffee, go to doctor, ...) and often the relationship

between actions is built in. These models are important in describing as-

pects of behavior. However, they offer no account of how the units are

learned, may import too many assumptions on the relationship between

units (though for options to be useful, certain relationships between options

must be prelearned, and similarly in MAXQ), and there might be no part of

the brain with an activity mirroring the activity of the unit (Uithol et al.,

2012, though this also applies to univariate exploration of RL correlates).

In connectionist models (Elman, 1990, and Cleeremans, 1993, as cited in

Botvinick, 2008; Botvinick and Plaut 2004; Botvinick 2007), there is no

explicit, prelearned, division of labor between units. Rather, functions such

as representing the identity of an option arise from the interaction between

units. The contrast has been clearly made in Botvinick and Plaut (2004),

where the same type of behavior as in Cooper and Shallice (2000) was mod-

eled, without assuming a hierarchy of task units. In this thesis, we review

Cooper and Shallice (2000), Botvinick and Plaut (2004), and Logan (2011).

Cooper and Shallice (2000). This builds upon the theory of ac-

tion selection of Norman and Shallice (1986). The model focused on the

scheduling of control units such that subtasks can be performed without

120



conflicting with parallel subtasks. When the inputs to a particular unit ex-

ceed a threshold, that unit is activated, and all other competing subtasks

are inhibited. The relationship between units is built in into the model.

The authors successfully model routine behavior, including slips of ac-

tion (Reason, 1979), and behavioral deficits following neurological damage,

such as the Action Disorganization Syndrome (Schwartz et al., 1995).

Botvinick and Plaut (2004). The authors use a connectionist ap-

proach to model routine behavior, more specifically the production of coffee

and tea. The model has three layers: input, a recurrent hidden layer, and an

output layer. The input layer includes information about the current state

of world objects, and attention to objects and previous actions (people act

on what they are attending to). Output includes manipulative and percep-

tual actions (attend to object X). Learning happens by back-propagation

of weights after feedback, in a way proportional to the contribution of the

unit to the outcome.

The model was able to capture the similarity of actions in different

contexts (e.g., pour sugar in tea vs pour sugar during coffee production).

This similarity metric is not a feature of the standard options framework,

which might allow for a parametric modulation of transfer. As in Cooper

and Shallice (2000), the model produces regular and pathological slips of

action. In addition it provides an account of learning and a mechanism

for flexibility (a waiter has to adapt actions according to the costumer:

one customer likes no sugar, another likes one scoop and another likes two

scoops).

Logan (2011). This article reviews research (Crump & Logan, 2010,

2010) that uses typewriting as an exemplar domain where hierarchical prop-

erties of behavior can be tested. In order to predict the dynamics of type-

writing, the authors stipulate a model with two levels of abstraction, termed

outer (word level) and inner (keystroke level) loops. Besides temporal ab-

straction, the model also incorporates state abstraction: the information on
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each level is encapsulated (the upper level does not care in which state the

lower level is, as long as it is not in the state of completion). In addition,

each level receives different forms of perceptual feedback.

The authors present behavioral evidence for interference effects at dif-

ferent levels of abstraction. Using Stroop-like tasks with typing color, it was

shown that congruency affects RT but not interstroke interval: suggesting

that interference occurs at level of words and not at keystrokes. In addition,

scrambled sentences are typed as fast as normal sentences, but not words

with scrambled letters. Another experiment showed that priming with a

word benefits future writing of the first letter, but not of other letters in the

word. Moreover, keystroke pressing relies on feel of the keyboard, whereas

word production relies on visual spatial cues on the screen.
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5.4 The Problem of Subgoal Discovery

Throughout this thesis we assumed that subgoals, related reward functions,

and option policies, would be provided. While this encompasses a set of

interesting learning problems by itself, it leaves open the question where

do the options come from? This can be parsed into two questions, how

are subgoals provided and where do the option policies come from? In this

section we will focus on the first question, given that once subgoals are set,

regular, model-free RL methods can be employed.

This is an important question as a particular subgoal can have a detri-

mental or beneficial effect on learning, compared to a flat agent. In addition,

regardless of the usefulness of a single subgoal, adding options by itself in-

creases the space of possible actions, something that was recognized in early

AI as an utility problem (Lehman et al., 1996). As shown in Figure 5.6 in

the rooms domain, the addition of options to the set of permissible actions

has opposing effects of learning time, compared with a flat agent, depending

on which subgoal the agent is given (see Botvinick, Niv, & Barto, 2009, and

Jong et al., 2008, for more examples of negative and positive transfer).

With the exception of “fixed action patterns” — innate stereotypical

sequences, which run to completion, resembling open-loop policies (Lorenz,

1950) — hierarchical behavior is acquired during development through ac-

cretion of subtasks (Bruner, 1973; Fischer, 1980, though “fixed action pat-

terns” can serve as basis for later adaptive behavior, Thelen, 1981), or it can

be acquired through a direct analysis of the learning problem (e.g., Solway

et al., submitted, though the later is more aimed at providing an upper

bound on the best subgoal partitioning).1 Much like this distinction, in the

computational literature some methods rely on direct analyses of a learning

problem (e.g., Şimşek, Wolfe, & Barto, 2005), while others accrue options

through experience (e.g., Bernstein, 1999).

1State and policy abstraction also seem to follow an increasing pattern throughout
development (Halford, Wilson, & Phillips, 1998; Bunge & Zelazo, 2006).
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In addition, approaches differ in the main regularity that is leveraged to

identify useful subgoals. One set of approaches identifies candidate subgoals

based on regularities of the state space: using graph-theoretical measures

(Menache, Mannor, & Shimkin, 2002; Mannor, Menache, Hoze, & Klein,

2004; Şimşek et al., 2005; Solway et al., submitted, the latter also uses reg-

ularities in accrued rewards), unpredictability of transitions (Hengst, 2002),

successful trajectories through certain states (Digney, 1998; McGovern &

Barto, 2001), relative novelty of certain parts of the state space (Şimşek &

Barto, 2004, separable from unpredictability, but still related to frequency of

experience, in that it relies on building options to regions of the state space

that are different from the ones the agent usually experiences), or based on

salient perceptual properties of certain states (Singh et al., 2005, though this

also relies on establishing a reward function). Other methods rely on statis-

tics of policies, at individual (Thrun & Schwartz, 1995; Bernstein, 1999),

or evolutionary timescales (Elfwing, Uchibe, Doya, & Christensen, 2007),

or hierarchical imitation of policies (Friesen & Rao, 2010). Another family

of approaches adds options by incrementally changing the reward function,

by shaping (Kakade & Dayan, 2002, externally provided bonuses, much like

parenting), or by setting as subgoals the initiation states of known policies

(known as skill chaining Konidaris & Barto, 2009). Given the several angles

from which an MDP can be carved, there are several attempts to formal-

ize option creation as an optimization problem (Thrun & Schwartz, 1995;

Foster & Dayan, 2002; Solway et al., submitted).

To our knowledge, with few exceptions (Kakade & Dayan, 2002;

Reynolds, Zacks, & Braver, 2007; Solway et al., submitted), these principles

have not been formally tested in psychology. Solway et al. (submitted)

have shown that adult humans are optimal in their parsing of a task with

regard to maximizing reward over the possible trajectories that can happen

in an MDP.
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Research on the neural basis of the acquisition of subgoals is still nascent

(though, for comparison, there are neuroscientific accounts of rule-based

learning in development, Bunge & Zelazo, 2006). Exploring the neural

basis of subgoal discovery has yielded different structures dependent on the

principle behind acquisition: analyses based on the state space might involve

the temporal lobe (Schapiro et al., 2013) and likely the nucleus accumbens,

given the connections with hippocampus (Haber & Knutson, 2010), policy-

based methods might require dorsal striatal or lateral PFC engagement

(Cole, Etzel, Zacks, Schneider, & Braver, 2011), and methods of intrinsic

motivation might rely on the novelty properties of the dopaminergic system

(Reed et al., 1996; Dayan & Balleine, 2002; Kakade & Dayan, 2002).

5.5 Model-based Options

The parallel between the model-free/habitual, model-based/goal-directed

also extends to options (Balleine & Dickinson, 1998; Daw et al., 2005).

The knowledge of the transition and reward functions is now used to make

hierarchical predictions. In model-based options (Diuk, Strehl, & Littman,

2006; Jong & Stone, 2008), an agent skips over the transitions of primitive

actions, to instead make temporally distant predictions — which state will

it be at the end of the option, and what is its value. This resonates with

the nature of planning in humans, using the example in Botvinick, Niv,

and Barto (2009), “Perhaps I should buy one of those new cell phones...

Well, that would cost me a few hundred dollars... But if I bought one, I

could use it to check my email...”. Computationally, this has the advantage

of decreasing the size the search tree (Hayes-Roth, & Hayes-Roth, 1989;

Kambhampati, Mali, & Srivastava, 1998; Marthi, Russell, & Wolfe, 2007,

as cited in Botvinick, Niv, & Barto, 2009).

The evidence that humans make such extended predictions in the do-

main of action selection is rare, though not without precedents (Solway et
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al., submitted; Huys et al., 2013). Besides the isolated examples, research

on event perception (for a review, see Zacks et al., 2007) and action under-

standing (Mechsner, Kerzel, Knoblich, & Prinz, 2001; Hommel, Müsseler,

Aschersleben, & Prinz, 2001) has shown that humans make predictions that

reflect the task structure or the final goal, instead of a focus on the immedi-

ate consequences. Neurally, there is evidence that such extended predictions

are encoded in the parietal cortex (Hamilton & Grafton, 2006, 2008).

A recent proposal and behavioral study (Dezfouli & Balleine, 2013) has

integrated the two modes of control, model-free and model-based, with lev-

els of abstraction. According to the proposal, behavior is best explained

by a composition of habitual sequences — akin to option-specific policies

— which are integrated by a model-based controller. Interestingly, the lo-

calization of habitual and goal-directed regions of the striatum (Bornstein

& Daw, 2011) interacts with proposed striatal (Ito & Doya, 2011), and

cortico-striatal (Badre, 2008; Frank & Badre, 2012) divisions of labor based

on abstraction.

5.6 The Limits of the Hierarchy

Throughout this thesis we have assumed a strict hierarchy building upon

primitive actions. However, RL methods can also be applied to continuous

states (van Hasselt, 2012). Given that behavior is a sequence of muscle con-

tractions (Hamilton & Grafton, 2007), and in principle RL mechanisms can

bypass discretization of actions, what is the evidence for primitive actions?

Psychologically, humans do parse actions, and can do so at multiple

levels of granularity (Schwartz et al., 1991; Zacks & Tversky, 2001), and it

is known that infants and adults are sensitive to such structure and parse

behavioral streams of actions in meaningful sequences (Reed, Montgomery,

Schwartz, Palmer, & Pittenger, 1992; Zacks & Tversky, 2001; Baldwin,

Baird, Saylor, & Clark, 2001), at different levels of abstraction. There is also
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evidence for a neural hierarchical correspondence of control, from muscle

properties, to kynematics, and finally to goals (Lemon et al., 1998, and, as

cited in Hamilton & Grafton, 2007, Jackson, 1889, and Sherrington, 1906).

It is interesting that evidence for an involvement of dopamine in learning

specific visuomotor mappings is mixed (Weiner, Hallett, & Funkenstein,

1983; Contreras-Vidal & Buch, 2003; Isaias et al., 2011), sometimes finding

a sparing of visuomotor adaptation in Parkinson’s patients. Should the

learning of specific kynematic and muscle properties not be dependent on

dopamine, it posits the possibility that the “primitive actions” stipulated in

most studies of neural RL, such as press left to select a bandit, are actually

the ground level for dopamine mechanisms.

In theory, however, learning does not need to hinge on primitive actions,

or continuous muscle properties. Some HRL methods, such as MAXQ or

Feudal RL (Dayan & Hinton, 1993; Dietterich, 1998), can directly learn at a

particular level independently of the bottom level. Though this can happen

in options, there are limiting factors such as the fact that the state space is

the same as the core MDP, and that it is not straightforward to represent

policies that are not fully specified up to primitive actions, and instead

only learn to call other options. An options agent (at least in the rigid

formulation we have been discussing), learning to make a sandwich, would

optimize the existing subtasks, such as “put lettuce”, “open bread”, and

“put cheese”, independently of making the overall sandwich, but would have

a harder time learning that what actually matters is to get a combination

of some bread, with some sort of vegetable plus some cheese or meat. More

flexible models of human learning have been put forth, where agents learn a

probability distribution over intermediate parts of the hierarchy (Wingate,

Diuk, O’Donnell, Tenenbaum, & Gershman, 2013), which can exploit more

sophisticated knowledge structures (e.g, “a sandwich is the same category

as a wrap”, Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010). Indeed,
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there is some recent evidence that humans can learn directly at intermediate

levels of the hierarchy (Huys et al., 2013).

Human tasks vary widely in the degree of abstraction (Barker & Wright,

1954). Even though highly temporally-extended tasks might have obvious

hierarchical structure, it might not be useful anymore to exploit hierarchical

structure in the same way it is stipulated in the options framework. Indeed,

it might not be useful to build the subtask “get a PhD”, as it is unlikely it

will ever be transferred. On a speculative note, at this point, the interac-

tion with generalization or the capacity for dynamically setting abstraction

might come into play. Such cap on the current theories of behavior is also

reflected in theories of neural representation of abstraction, which fail to

offer an account for how PFC represents highly abstract behavior (Fuster,

1997; Badre, 2008).
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Figure 5.3. Manipulation of task structure independently of PPEs. (A) In
this experiment participants are exposed to different statistical structures
(Exposure Phase). (B) This structure will later be used to test whether neu-
ral PPEs in VS and dACC (Reward Phase) reflect a weighted sum of PPEs
at two levels of abstraction. (C) The probabilities of points yielded by the
fractals drifts according to a random walk in order to encourage learning.
(D) Test whether at the population level (each dot is a hypothetical partic-
ipant) similarity structure in superior temporal and inferior frontal gyri, as
found in Schapiro et al. (2013), correlate with the weight of abstraction in
PPEs.
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Figure 5.4. Positive and negative transfer of options. (A) Two groups of
participants play a sequential key press task. In MPD 1e, one of the states
is made to be perceptually salient (subgoal state marked by yellow asterisk,
e.g., by playing a tone), whereas in MDP 1c all states are equally salient.
Once participants have acquired proficiency in this task, they are transferred
to MDP 2. (B) MDP 2 shares an intermediate set of states with MDP 1e,
and none with MDP 1c. (C) Performance in MDP 2. The group trained in
MDP 1e should outperform the group trained in MDP 1c. However, upon
devaluation of any of the state-action pairs in πo, the control group should
show faster avoidance of the devalued sequence.
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Figure 5.5. Actor-critic implementation of HRL and proposed neural ex-
tensions.

100 200
1

2

3

Lo
g 

So
lu

tio
n 

Ti
m

e

Episode
1

A B

4 Corners

Doors

Flat

Figure 5.6. Examples of positive and negative transfer in the rooms domain.
(A) Consider the rooms gridworld, where a room is composed of a series of
states, each depicted by a black dot and admissible transitions with links
between the states (green = start, red = goal, orange = corner states, blue
= door/subgoal states). Transitions between rooms happen through a single
state, which we call doors. One HRL agent was endowed with a “get-to-
door” option, another was endowed with a “get-to-corner-of-room” option,
and both agents had a primitive actions in their behavioral repertoires. A
third agent, “flat” agent only had primitive actions. (B) The option “get-to-
door” decreased the time required to reach an optimal policy compared with
the flat agent, whereas “get-to-corner-of-room” delayed the attainment of
an optimal policy. Adapted with permission from Solway et al. (submitted).
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