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I am also grateful to Instituto Superior Técnico, for their hospitality and permission

to do course work. In particular, I would like to thank Professor António Pacheco,
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INTRODUCTION

This dissertation consists of three essays that propose robust statistical procedures for

testing hypotheses on the slope of the trend function. It includes statistics to test and

estimate the number and timing of breaks in the slope of the deterministic trend from

a univariate time series and from a multivariate time series robust to stationary, non-

stationary and cointegrated environments and robust tests for general linear restrictions

in the coefficients of trend, given the estimated regimes.

Structural changes are pervasive in economics: Changes in economic policy, evolving

technological progress or specific events with a strong impact in the World economy such

as wars or oil price shocks can give rise to structural breaks in any econometric model used

to explain the behavior of certain economic variables. On the other hand, the presence

of at least one structural break leads to inconsistent estimates and poor forecasts if that

break is not properly modeled. Naturally, this fact has led to a large amount of interest

on the literature about this topic. Different statistical procedures were proposed to test

for the existence of structural breaks and estimate both the number and timing of the

change points. The problem is that the majority of these tests are valid only when the

data are stationary. This fact restricts the applicability of these tests as, in practice, it

is rarely known as to whether the data are stationary or not. However, the literature on

multiple structural breaks valid in both I(0) and I(1) environments is relatively scarce.

This is a very important problem since in fact formal testing of whether a time series

contains structural breaks or not depend on whether the stochastic part is stationary or

not.

Hence, in the first chapter of my thesis, we propose new tests for the presence of

multiple breaks in the slope of the deterministic trend of a univariate time-series where

the number and dates of the breaks are unknown and that are valid in the presence of



stationary or unit root shocks. These tests can also be used to sequentially estimate the

number of breaks. After developing the asymptotic theory and showing that the tests

work well for finite samples, we illustrate the applicability of the proposed tests to various

U.S. historical macroeconomic time series. Here we show how important it is to take into

account both the (non) stationarity of the data and the possible presence of multiple

breaks. We conclude that many macroeconomic variables are characterized by having

multiple breaks in the deterministic trend and not only one break as is very popularly

advocated in the literature.

The second chapter extends these ideas to the multivariate framework. This extension

is important for many reasons: first, intuitively many factors that may be responsible for

the presence of a structural break in a univariate time series may, by contagion, result

in structural changes in other economic variables. Second, the same circular problem be-

tween unit root and trend break testing can also be encountered within the cointegration

testing framework. Finally, it has been shown that we can expect substantial payoffs

in identifying, precisely, the dates in which breaks have occurred if we estimate them

in a multivariate system. Hence, in this chapter, we develop the first procedure which

delivers tests for the presence of common broken trends in multivariate time series which

do not require knowledge of the form of serial correlation in the data and are robust as

to whether the shocks are stationary, non stationary, cointegrated or not cointegrated.

The setup is a VAR process for cointegrated variables. We propose tests to detect and

estimate the number of change points occurring at known and unknown dates in a system

of equations. These tests are simple to implement and can be used to specify the deter-

ministic component of VAR Models. We present Monte Carlo simulation results which

suggest that the proposed tests perform well in small samples. The proposed methodol-

ogy is used to study the existence of trend breaks in data related to economic inequality.

In particular, we use a recently compiled database on the concentration of wealth in the

richest individuals. Here we identify those international economic events that were re-

sponsible for a change in the historical trend of concentration of wealth in various groups

of countries close to each other geographically and culturally.
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The third chapter of this dissertation contributes to one of the prevalent topics in

the economic growth literature: the choice of the growth model more compatible with

what we observe in the data. An important part of this discussion can be summarized

in three mutually exclusive hypotheses: the “constant trend”, “level shift” and “slope

shift” hypothesis. The objective of this chapter is to classify countries according to each

of these hypotheses and to analyze which of the growth theories seems to be favored. We

approach this problem in two-steps: first, the number and the timing of trend breaks

are estimated using the approach from the first chapter; and second, conditional on the

estimated number of breaks, break dates, and coefficients, a statistical framework is in-

troduced to test for general linear restrictions on the coefficients of the linear disjoint

broken trend model. Here, we prove a general result that, under certain conditions, a

standard F statistic to test the additional restrictions, given the first step estimated par-

tition, converges asymptotically in distribution to the usual chi-square distribution. We

further show how the aforementioned hypotheses can be formulated as linear restrictions

on the parameters of the breaking trend model and apply the methodology to per capita

output of an extensive list of countries. All of our tests are robust as to whether the data

are I(0) or I(1) surpassing technical and methodological concerns on previous empirical

evidence. We find evidence favoring the “constant trend” hypothesis for nine countries:

Austria, Germany, Switzerland, Canada, United States, Chile, Sweden, Australia and

New Zealand. The results of our tests support the “level shift” hypothesis for six coun-

tries: France, Netherlands, Brazil, Denmark, Japan and Italy. Finally, there is a third

group of eight countries where statistical evidence favors the “growth shift” hypothesis:

Belgium, Uruguay, Finland, Norway, United Kingdom, Sri Lanka, Portugal and Spain.

All in all, this dissertation contributes to the literature of structural breaks by propos-

ing a different set of procedures that can be used in a univariate or in a multivariate

framework to detect both the number and timing of significant structural changes in the

trend function of one or multiple economic variables. This framework also allows to test

general linear restrictions on the trend, given the estimated partition. The advantage of

this approach is that the empirical practitioner does not need to pre-test for the presence

17



of a unit root or specify the number of cointegrating relations to solve this statistical

inference problem. Empirical applications show that it is important to take into account

these breaks as they are common in macroeconomic time series.
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1. TESTS FOR MULTIPLE BREAKS IN THE TREND WITH

STATIONARY OR INTEGRATED SHOCKS

With Luis C. Nunes1

1.1 Introduction

Many macroeconomic time series are characterized by a clear tendency to grow over

time, that is, as having a deterministic time trend component. There has been a large

debate in the literature regarding the appropriate methods to infer about the linearity

and stability of the trend function and the nature of the shocks affecting a time series.

This is a particularly important issue when it comes to make accurate economic forecasts

or test economic hypothesis. In fact, there are many interesting economic applications

that involve statistical inference on the parameters of the trend function, namely, in the

continuous time macroeconomic modeling (see Bergstrom et al., 1992, Nowman, 1998), in

international trade, for example, with the Prebish-Singer hypothesis testing (see Bunzel

and Vogelsang, 2005), in the empirical debate regarding regional convergence in per capita

income (see Sayginsoy and Vogelsang, 2004), or in environmental economics on the future

consequences of global warming (see Vogelsang and Franses, 2005).

The stationarity properties of the shocks have important implications on the appro-

priate methods to make inferences about the trend function. In particular, the correct

approach to make inferences about the stability or the existence of breaks in the trend

1We are grateful to participants in seminars at Universiteit Van Amsterdam and Nova School of
Business and Economics, in the QED Conference (Amsterdam, May 2009), in the Econometric Society
European meeting (joint congress with the European Economic Association; Barcelona, August 2009)
and in the XXXV Simposio de la Asociación Española de Economı́a (Madrid, December 2010)for helpful
comments and suggestions on earlier versions of this paper. We also thank Pierre Perron and Josep Llúıs
Carrion-i-Silvestre for providing us with their Gauss programs. Financial support from Fundação para
a Ciência e Tecnologia is also acknowledged.



depends on whether the shocks are I(0) or I(1). In the first case one should use regressions

on the levels, while for the latter the correct approach is to model the first-differences

of the series. However, it is often not known a priori whether the shocks are stationary

or contain a unit-root. Moreover, stationarity or unit-root tests also suffer from similar

problems since their properties are in turn affected by the stability of the trend function.

Only recently have some solutions to this dilemma been proposed in the literature.

These resort to statistical tests of the null hypothesis of a constant linear trend against the

alternative of a one break at some unknown date that do not require a priori knowledge

of whether the noise is I(0) or I(1). Sayginsoy and Vogelsang (2004) proposed a Mean

Wald and a Sup Wald statistic scaled by a factor based on unit root tests to smooth

the discontinuities in the asymptotic distributions of the test statistics as the errors

go from I(0) to I(1). The scaling factor approach is based on Vogelsang (1998) who

proposed test statistics for general linear hypothesis regarding the parameters of the

trend function which do not require knowledge as to whether the innovations are I(0)

or I(1). Perron and Yabu (2009) proposed a Feasible Quasi Generalized Least Squares

approach to estimate the slope of the trend function. By truncating the estimate of the

sum of the autoregressive coefficients of the disturbance term to take the value of one

whenever the estimate is in a neighborhood of one, they have shown that the limiting

distribution of the t-statistic becomes Normal regardless of the persistence of the error

term. Kejriwal and Perron (2010) proposed a sequential testing procedure based on

Perron and Yabu (2009). Harvey et al. (2009) (hereafter HLT) employed a weighted

average of the appropriate regression t-statistics used to test the existence of a broken

trend when the errors are I(0) and I(1). However, as Lumsdaine and Papell (1997) point

out with an example of Jones (1995), allowing for only one break is not always the best

characterization of a macroeconomic variable, specially when analyzing long historical

time series.

This paper extends the results from HLT by providing tests of the null hypothesis of

no trend breaks against the alternative of one or more breaks in the trend slope which

do not require knowledge of the form of serial correlation in the data and are robust as
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to whether the underlying shocks are stationary or have a unit-root. We build on the

framework proposed by HLT for the case of a single break, and construct test statistics

that are weighted averages of the appropriate F-statistics to test the existence of multiple

trend breaks when the disturbance term is I (0) and I (1) .We adopt the weight function

used in HLT and prove that it has the same large sample properties regardless of the

number of trend breaks being tested.

We start by considering the case where the true break fractions are known and prove

that the proposed statistics converge in distribution to a chi-square distribution under

the null. Next, we consider the case where the trend break fractions are unknown and

need to be estimated. We transform our statistic in the same spirit as Andrews (1993)

and Bai and Perron (1998) and take the supremum of the F statistic over all possible

break fractions except those that are actively restricted by the trimming parameter. Here,

the weight function is evaluated at the estimated break fractions and we prove that its

large sample behavior is similar regardless of the number of break fractions estimated

and the number of structural breaks in the trend function. However, the asymptotic null

distributions of the appropriate F-statistics for I (0) and I (1) environments are different

and so, following Vogelsang (1998), we provide a scaling factor that makes the asymptotic

critical values invariant to the degree of persistence of the shocks. Finally, we propose

double maximum tests and a sequential test procedure that can be used to estimate

the number of trend breaks and that are also robust to the order of integration of the

error term. In both the known and unknown break dates settings, our proposed tests

are made robust to short memory serial correlation in the shocks via the use of standard

non-parametric estimators of the long run variance of the errors.

The outline of this article is as follows. Section 1.2 describes the multiple breaks in the

trend model, presents the test statistics for both known and unknown break fractions and

establishes the asymptotic behavior of these statistics. The sequential testing procedure

to estimate the number of breaks is also described. In Section 1.3 we extend the model

to allow for simultaneous shifts in the intercept and slope of the trend functions and

develop test procedures for this case. In Section 1.4 we discuss practical issues related to
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the application of the test statistics proposed, namely, the critical values and the choice

of the scaling constants. Size and power properties in finite samples from applying these

procedures are also discussed in this section. Section 1.5 provides an empirical application

to various U.S. macroeconomic time series data. Section 1.6 concludes the paper with

a discussion of some issues raised by our analysis and suggests possible paths for future

research. All our key results are proved in a Mathematical Appendix.

1.2 Joint Broken Trend Model

We start by considering a time-series process {yt} with a first-order linear trend and m

possible time changes in the slope such that the trend function is always joined at the

time of the break, which we call “Model A”:

yt = α + βt+
m∑
j=1

γjDTt
(
τ ∗j
)

+ ut, t = 1, . . . , T, (1.1)

and

ut = ρut−1 + εt, t = 2, . . . , T, u1 = ε1, (1.2)

where DTt
(
τ ∗j
)

:= 1
(
t > T ∗j

) (
t− T ∗j

)
captures the eventual jth break in the slope oc-

curring at date T ∗j := bτ ∗j T c with associated break fraction τ ∗j ∈ (0, 1) and 0 < τ1 < . . . <

τm < 1. The slope coefficient changes from β to β+γ1 at time T ∗1 , from β+γ1 to β+γ1+γ2

at time T ∗2 and, in general, from β +

j−1∑
i=1

γi to β +

j∑
i=1

γi at time T ∗j for j = 1, . . . ,m.

However, notice that the trend function is continuous in every period including the dates

at which the slope changes occur. The discontinuous case is considered in Section 1.3.

We assume that εt in (1.2) satisfies Assumption 1 of Sayginsoy and Vogelsang (2004,

pp. 2-3):

Assumption 1. The stochastic process εt is such that:

εt = C(L)ηt, C (L) =
∞∑
i=0

ciL
i
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with C(1)2 > 0 and
∞∑
i=0

i|ci| <∞, and where ηt is a martingale difference sequence with

unit conditional variance and sup
t
E
(
η4
t

)
<∞.

The error term ut can have one unit root or none. If |ρ| < 1, ut is an I(0) process.

But if ρ = 1 then ut turns out to be an I(1) process. We are interested in testing if

there are trend breaks in yt and in estimating the number of breaks in the time series

process, independently of whether ut is I(0) or I(1). Therefore, we would like to test

the null hypothesis H0 : γ1 = γ2 = . . . = γm = 0 against the two sided alternative:

H1 : γ1 6= 0 ∨ γ2 6= 0 ∨ . . . ∨ γm 6= 0.

Remark 1. Under the conditions of Assumption 1, the long run variance of εt is given

by ω2
ε := lim

T→∞
T−1E

(
T∑
t=1

εt

)2

= C (1)2 . In the I(0) case, the long run variance of ut is

given by ω2
u := lim

T→∞
T−1E

(
T∑
t=1

ut

)2

= ω2
ε/ (1− ρ)2.

1.2.1 Known Break Fractions

We start by considering the case where the vector of true break fractions τ ∗ = (τ ∗1 , τ
∗
2 , . . . , τ

∗
m)′

and hence all the eventual dates when the slope changes occur are known. The number

of breaks m is also known.

Similarly to HLT, we partition H1 into two local alternatives H1,0 : γ = κT−3/2 when

ut is I (0) and H1,1 : γ = κT−1/2 when ut is I (1) where γ = (γ1, γ2, . . . , γm)′ and κ is a

k-dimensional vector of finite non negative constants, κ = (κ1, κ2, . . . , κm)′.

Suppose one knows that ut is I (0), with ρ = 0 and εt is Gaussian white noise.

Then, to test the null hypothesis H0, we should use the standard F-statistic. Let(
α̂, β̂, γ̂1 (τ ∗) , . . . , γ̂m (τ ∗)

)
be the OLS estimators of the coefficients in equation (1.1)

and ût (τ ∗) := yt− α̂− β̂t−
m∑
j=1

γ̂j (τ ∗)DTt
(
τ ∗j
)

be the corresponding OLS residuals. Also

define xDT,t (τ ∗) := {1, t, DTt (τ ∗1 ) , DTt (τ ∗2 ) , . . . , DTt (τ ∗m)}′ as the vector of regressors.

The z0 (τ ∗) statistic is given by 2:

2The notation [.](i:j,i:j) ([.](j)) is used to denote a submatrix (scalar) formed by rows and columns i
until j (the j’th element) from the matrix (vector) within the squared brackets
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z0 (τ ∗) = γ̂ (τ ∗)′

σ̂2 (τ ∗)

[
T∑
t=1

xDT,t (τ ∗)xDT,t (τ ∗)′
]−1

(3:m+2,3:m+2)


−1

γ̂ (τ ∗) /m (1.3)

where γ̂ (τ ∗) = (γ̂1 (τ ∗) , γ̂2 (τ ∗) , . . . , γ̂m (τ ∗))′ with

γ̂j (τ ∗) =

( T∑
t=1

xDT,t (τ ∗)xDT,t (τ ∗)′
)−1 T∑

t=1

xDT,t (τ ∗) yt


(j+2)

, j = 1, . . . ,m,

and σ̂2 (τ ∗) := T−1

T∑
t=1

ût (τ ∗)2 .

Now suppose that ut is known to be I (1), with ρ = 1 and ∆ut is a Gaussian white

noise process. To test if the slope of the trend function is constant against the alternative

of m breaks over time we should use the F-statistic after differentiating the data. So by

applying first-differences to equation (1.1) we have:

∆yt = β +
m∑
j=1

γjDUt
(
τ ∗j
)

+ vt, t = 2, . . . , T (1.4)

where DUt
(
τ ∗j
)

:= 1
(
t > T ∗j

)
and vt = ∆ut. Let

(
β̃, γ̃1 (τ ∗) , γ̃2 (τ ∗) , . . . , γ̃m (τ ∗)

)
denote the OLS estimators of the parameters from (1.4) and ṽt (τ ∗) = ∆yt − β̃ −
m∑
j=1

γ̃j (τ ∗)DUt
(
τ ∗j
)

the resulting residuals. Also let xDU,t (τ ∗) := {1, DUt (τ ∗1 ) , DUt (τ ∗2 ) , . . . , DUt (τ ∗m)}′

denote the vector of regressors. The z1 (τ ∗) statistic is given by:

z1 (τ ∗) = γ̃ (τ ∗)′

σ̃2 (τ ∗)

[
T∑
t=2

xDU,t (τ ∗)xDU,t (τ ∗)′
]−1

(2:m+1,2:m+1)


−1

γ̃ (τ ∗) /m (1.5)

where γ̃ (τ ∗) = (γ̃1 (τ ∗) , γ̃2 (τ ∗) , . . . , γ̃m (τ ∗))′ with
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γ̃j (τ ∗) =

( T∑
t=2

xDU,t (τ ∗)xDU,t (τ ∗)′
)−1 T∑

t=2

xDU,t (τ ∗) ∆yt


(j+1)

, j = 1, . . . ,m,

and σ̃2 (τ ∗) := (T − 1)−1
T∑
t=2

ṽt (τ ∗)2 .

Remark 2. This paper is focusing its attention on the existence of multiple structural

breaks in the trend function. However, it is straightforward to adapt the test statistic to

other hypothesis of interest, for example, to test if the magnitude of the breaks was the

same in two different periods, or even non-linear hypothesis.

To accommodate more general forms of autocorrelation of the error terms as allowed

in Assumption 1, we simply substitute σ̂2 (τ ∗) and σ̃2 (τ ∗) by non-parametric estimators

of the long-run variances. Following Newey and West (1987), the following estimators

can be used:

ω̂2 (τ ∗) := γ̂0 (τ ∗) + 2
l∑

j=1

h (j/l) γ̂j (τ ∗) , γ̂j (τ ∗) = T−1

T∑
t=j+1

ût (τ ∗) ût−j (τ ∗) , (1.6)

and

ω̃2 (τ ∗) := γ̃0 (τ ∗) + 2
l∑

j=1

h (j/l) γ̃j (τ ∗) , γ̃j (τ ∗) = (T − 1)−1
T∑

t=j+1

ṽt (τ ∗) ṽt−j (τ ∗) ,

(1.7)

where the weights are given by h (j/l) := 1− j/ (l + 1) with lag truncation l = O(T 1/4).

In the sequel, unless otherwise stated, any reference to z0 (τ ∗) and z1 (τ ∗) will be taken

to imply those based on these long run variance estimators.

We now establish the asymptotic distribution of the z0 (τ ∗) and z1 (τ ∗) statistics.

Theorem 1. Let the time series process be generated by (1.1) and (1.2), and let Assump-

tion 1 hold.
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(i) If ut is I(0) (|ρ| < 1) then, under H1,0: (a) z0 (τ ∗)
d−→ 1

m
J0 (τ ∗, κ), and (b) z1 (τ ∗) =

Op

(
l

T

)
, where

J0 (τ ∗, κ) ∼ χ2
m (µ0) , µ0= κ′

[
Q0 (τ ∗) /ω2

u

]
κ,Q0 (τ ∗) =

1∫
0

RT (r, τ ∗) RT (r, τ ∗)′ dr

(ii) If ut is I(1) (|ρ| = 1) then, under H1,1: (a) z0 (τ ∗) = Op

(
T

l

)
, and (b) z1 (τ ∗)

d−→
1

m
J1 (τ ∗, κ), where

J1 (τ ∗, κ) ∼ χ2
m (µ1) , µ1 = κ′

[
Q1 (τ ∗) /ω2

ε

]
κ,Q1 (τ ∗) =

1∫
0

RU (r, τ ∗) RU (r, τ ∗)′ dr

The χ2
m (µ) denotes the non-central chi-square distribution with m degrees of freedom

and RT (r, τ ∗) = (RT (r, τ ∗1 ) , RT (r, τ ∗2 ) , . . . , RT (r, τ ∗m))′ where RT (r, τ ∗i ) is the contin-

uous time residual from the projection of (r − τ ∗i )1 (r > τ ∗i ) onto the space spanned by

{1, r} and RU (r, τ ∗) = (RU (r, τ ∗1 ) , . . . , RU (r, τ ∗m))′ where RU (r, τ ∗i ) is the continuous

time residual from the projection of 1 (r > τ ∗i ) onto {1}.

Remark 3. From Theorem 1 we can easily conclude that, under H0 : γ = 0m×1 (or

κ = 0m×1), we have m · z0 (τ ∗)
d−→ χ2

m if ut is I(0) and also m · z1 (τ ∗)
d−→ χ2

m if ut

is I(1). If we knew all the true potential break dates and also the order of integration

of the error term ut, we could use the appropriate F-statistic to test if the potential m

changes in slope are statistically significant or not using critical values from the chi-square

distribution with m degrees of freedom. Also note that in the particular case of only one

break, m = 1, Theorem 1 is basically equivalent to Theorem 1 in HLT by the equivalence

between the F-statistic and the squared t-statistic when testing only one coefficient.

Remark 4. From the results of part (i) of Theorem 1 it is seen that when ut is I(0),

z1 (τ ∗) converges in probability to zero, regardless of the value of κ. Similarly, from the

results in part (ii) of Theorem 1 it is seen that when ut is I(1), z0 (τ ∗) diverges irrespective

of the value of κ.

26



Since, in practice, the order of integration is not known we would like to find a pro-

cedure that, at least asymptotically, converges to the asymptotic distribution of z0 (τ ∗)

when ut is I(0) and to the asymptotic distribution of z1 (τ ∗) when ut is I(1). More

specifically, we would like to find a weight function, call it λ (.), such that λ (.)
p−→ 1 if

ut is I(0) and λ (.)
p−→ 0 if ut is I(1) ensuring that the appropriate statistic with non-

degenerate distribution is selected. We employ the solution proposed by HLT and let

λ (.) be a function of the KPSS statistic of the original data S0 (τ ∗) and of the differenced

data S1 (τ ∗) :

S0 (τ ∗) :=

∑T
t=1

(∑t
i=1 ûi (τ

∗)
)2

T 2ω̂2 (τ ∗)
, S1 (τ ∗) :=

∑T
t=2

(∑t
i=1 ṽi (τ

∗)
)2

(T − 1)2 ω̃2 (τ ∗)
(1.8)

Lemma 1. Let the conditions of Theorem 1 hold:

(i) If ut is I(0), then: (a) S0 (τ ∗) = Op (1), and (b) S1 (τ ∗) = Op (l/T ).

(ii) If ut is I(1), then: (a) S0 (τ ∗) = Op (T/l), and (b) S1 (τ ∗) = Op (1).

Since by Lemma 1 the KPSS statistics, S0 (τ ∗) and S1 (τ ∗), have the same asymptotic

rates of convergence for a single or more trend breaks we can use the same weight function

from HLT:

λ (S0 (τ ∗) , S1 (τ ∗)) := exp [−{gS0 (τ ∗)S1 (τ ∗)}v] (1.9)

where g and v are positive constants. Now we are able to form the z∗λ statistic and study

its asymptotic distribution:

zλ (τ ∗) := {λ (S0 (τ ∗) , S1 (τ ∗))×z0 (τ ∗)}+ {[1− λ (S0 (τ ∗) , S1 (τ ∗))]×z1 (τ ∗)} (1.10)

Notice that a higher g gives more weight to z1 keeping everything else constant. Using

the results from Theorem 1 and Lemma 1, we get the following result.

Corollary 1. Let the conditions of Theorem 1 hold.

(i) If ut is I(0), then: λ (S0 (τ ∗) , S1 (τ ∗))
p−→ 1 under both H0 and H1,0, and zλ (τ ∗) =

z0 (τ ∗) + op (1)
d−→ 1

m
J0 (τ ∗, κ).
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(ii) If ut is I(1), then: λ (S0 (τ ∗) , S1 (τ ∗))
p−→ 0, under both H0 and H1,1, and zλ (τ ∗) =

z1 (τ ∗) + op (1)
d−→ 1

m
J1 (τ ∗, κ).

Remark 5. From Corollary 1 we observe that we have constructed a test statistic to test

the presence of m candidate trend breaks at known break dates that is valid regardless of

the order of integration of the errors. If ut is I(0), zλ (τ ∗) is asymptotically equivalent to

z0 (τ ∗), while if ut is I(1), zλ (τ ∗) becomes asymptotically equivalent to z1 (τ ∗). Since,

given these conditions, both m ·z0 (τ ∗) and m ·z1 (τ ∗) converge in distribution to a chi-

square distribution with m degrees of freedom under the null we can use the critical values

of the central chi-square distribution for zλ (τ ∗) irrespective of whether the disturbances,

ut, are I(0) or I(1).

1.2.2 Unknown Break Fractions

In this section, we consider tests of multiple structural changes in the trend function

with unknown change points. Suppose that the true break fractions τ ∗ are unknown but

the number of breaks, m, is known. Proceeding in the same way as Andrews (1993)

and Bai and Perron (1998) we can form F type statistics to test the null hypothesis of

no trend breaks against the alternative hypothesis that there are m trend breaks. Let

τm := (τ1, . . . , τm) and Λm = {(τ1, . . . , τm) : |τi+1 − τi| ≥ η, τ1 ≥ η, τm ≤ 1 − η} and

assume throughout that τ ∗ ∈ Λm. If we knew that ut was I(0) the F-statistic would be

defined as:

z∗0 (m|0) := sup
τm∈Λm

z0 (τm) (1.11)

and if we knew that ut was I(1) the statistic would be given by:

z∗1 (m|0) := sup
τm∈Λm

z1 (τm) , (1.12)

where the associated vectors of estimated break fractions of τ ∗ are given by

τ̂m := arg sup
τm∈Λm

z0 (τm) (1.13)
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and

τ̃m := arg sup
τm∈Λm

z1 (τm) , (1.14)

respectively, such that z∗0 (m|0) = z0 (τ̂m) and z∗1 (m|0) = z1 (τ̃m). To solve the problem

of an unknown order of integration of the error term we follow the same strategy as in

the known break fraction case and write the analogue of the zλ (τ ∗) statistic:

z∗λ (m|0) := {λ (τ̂m, τ̃m)×z∗0 (m|0)}+ bmξ {[1− λ (τ̂m, τ̃m)]×z∗1 (m|0)} (1.15)

where λ (τ̂m, τ̃m) := λ (S0 (τ̂m) , S1 (τ̃m)) and bmξ is a positive finite constant such that,

as will be explained below, for any significance level ξ, the critical value of z∗λ (m|0)

is the same regardless of whether ut is I(0) or I(1). The following Theorem states the

asymptotic distribution of z∗0 (m|0) and z∗1 (m|0) under the null hypothesis γ = 0 when

the innovation sequence {ut} is either I(0) or I(1).

Theorem 2. Let the time series process be generated by (1.1) and (1.2) under H0 : γ =

0m×1 and let Assumption 1 hold.

(i) If ut is I(0), then: (a) z∗0 (m|0)
d−→ 1

m
sup

τm∈Λm

J0 (τm, 0), and (b) z∗1 (m|0) = Op

(
l

T

)
.

(ii) If ut is I(1), then: (a) z∗0 (m|0) = Op

(
T

l

)
, and (b) z∗1 (m|0)

d−→ 1

m
sup

τm∈Λm

J1 (τm, 0).

Remark 6. HLT established the divergence rates for the 1 break case under a fixed

alternative H1 : γ 6= 0 using sup t instead of supz statistics. Since zi(τ1) = (ti(τ1))2

and zi(τ1) 6 2zi(τ1, τ2) 6 mzi(τ1, . . . , τm), i = 0, 1, the consistency of z∗0 and z∗1 follow

immediately from Theorem 3 from HLT.

Next, we establish the large sample behavior of the weight function λ (S0 (τ̂m) , S1 (τ̃m)).

For this purpose, we need to know the asymptotic behavior of the KPSS statistics S0 (τm)

and S1 (τm) when the disturbances ut are either I(0) or I(1) and the vector of break points,

τ , is estimated, i.e., for the cases τm = τ̂m and τm = τ̃m.

Lemma 2. Let the conditions of Theorem 1 hold.
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(i) If ut is I(0), then: (a) S0 (τ̂m) = Op (1), and (b) S1 (τ̃m) = Op (l/T ).

(ii) If ut is I(1), then: (a) S0 (τ̂m) = Op (T/l), and (b) S1 (τ̃m) = Op (1).

From Lemma 2 it is seen that the results from Lemma 1 are unchanged and so the

large sample behavior of the KPSS statistics is the same regardless of whether the trend

break dates are known or unknown. We conjecture that Lemma 2 holds independently of

assuming the null hypothesis H0 : γ1 = γ2 = . . . = γm = 0 or the alternative H1 : γj 6= 0,

j = 1, . . . ,m, as shown in HLT for the 1 break case. This implies that we can continue to

use the same λ(.) function as defined above for the case of known break dates since if ut

is I(0) then λ (τ̂m, τ̃m)
p−→ 1 while if ut is I(1) we have λ (τ̂m, τ̃m)

p−→ 0, under both H0

and H1, and so the F statistic that we would like to be chosen depending on the order of

integration of ut is actually selected asymptotically. Therefore we can state the following

corollary:

Corollary 2. Let the conditions of Theorem 2 hold.

(i) If ut is I(0), then: z∗λ (m|0) = z∗0 (m|0) + op (1)
d−→ 1

m
sup

τm∈Λm

J0 (τm, 0).

(ii) If ut is I(1), then: z∗λ (m|0) = bmξ F
∗
1 (m|0) + op (1)

d−→ bmξ
1

m
sup

τm∈Λm

J1 (τm, 0).

Notice that contrary to the known break fraction case, the asymptotic distribution of

F ∗0 (m|0) is different from F ∗1 (m|0) and both no longer converge to a chi-square distribu-

tion with m degrees of freedom. In this case using the same reasoning as HLT, we can

choose a constant bmξ such that the critical values become the same for both I(0) and I(1)

errors.

1.2.3 Double Maximum Tests

The tests discussed above require the specification of the number of trend breaks, m,

under the alternative hypothesis. However, in most applications, one is not sure about

the number of breaks. Therefore, we consider tests of the null of no trend break against

the alternative hypothesis of an unknown number of breaks in the trend slope up to some
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maximum M . Following Bai and Perron (1998), we use the class of double maximum

tests which are generally written as:

Dmaxz∗0 := max
1≤m≤M

a0,mz∗0 (m|0) = max
1≤m≤M

a0,m sup
τm∈Λm

z0 (τm) (1.16)

and

Dmaxz∗1 := max
1≤m≤M

a1,mz∗1 (m|0) = max
1≤m≤M

a1,m sup
τm∈Λm

z1 (τm) (1.17)

with (a0,1, . . . , a0,M) and (a1,1, . . . , a1,M) fixed weights that may be chosen in a way that

reflects some prior knowledge regarding the likelihood that the data has a certain number

of trend breaks. We use the same weight function to obtain a double maximum test that

is valid for both I(0) and I(1) errors:

Dmaxz∗λ :=
{
λ
(
τ̂M , τ̃M

)
×Dmaxz∗0

}
+ bMξ

{
[1− λ

(
τ̂M , τ̃M

)
]×Dmaxz∗1

}
(1.18)

The bMξ denote a constant that can be chosen, as before, in a way that guarantees the

same critical values for both I(0) and I(1) cases. From Theorem 2 and the Continuous

Mapping Theorem we may easily find the asymptotic distribution of the Dmaxz∗λ test

statistic.

Corollary 3. Let the conditions of Theorem 2 hold.

(i) If ut is I(0), then:

Dmaxz∗λ = max
1≤m≤M

a0,m z∗0 (m|0) + op (1)
d−→ max

1≤m≤M
a0,m

1

m
sup

τm∈Λm

J0 (τm, 0).

(ii) If ut is I(1), then:

Dmaxz∗λ = bMξ max
1≤m≤M

a1,mz∗1 (m|0) + op (1)
d−→ bMξ max

1≤m≤M
a1,m

1

m
sup

τm∈Λm

J1 (τm, 0).

We consider as in Bai and Perron (1998) two cases: the UDmaxz type of test where

the weights are chosen uniformly across all possible number of breaks, ad,1 = . . . =

ad,M = 1, d = 0, 1, and the WDmaxz where the weights are defined in such a way

that the marginal p-values are equal across values of m, i.e., ad,1 = 1 and for m > 1,
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ad,m =
Cd (ξ, 1)

Cd (ξ,m)
where Cd (ξ,m) is the asymptotic critical value of the test z∗d for a

significance level ξ and m breaks.

1.2.4 Sequential Tests and Estimation of the Number of Breaks

As in Bai and Perron (1998), we also extend our methodology to a test of the null

hypothesis of l breaks in the trend against the alternative of l + 1 breaks. Let τ̂ l =

(τ̂1, . . . , τ̂l)
′ and τ̃ l = (τ̃1, . . . , τ̃l)

′ denote the vectors of estimated break fractions assuming

l breaks in the I(0) and I(1) cases, respectively, as defined in equations (1.13) and (1.14).

Let z0 (τ̂1, . . . , τ̂i−1, ζ, τ̂i, . . . , τ̂l) be the standard F-statistic for testing H0 : γl+1 = 0

versus the alternative H1 : γl+1 6= 0 in the Model:

yt = α + βt+
l∑

j=1

γjDTt (τ̂j) + γl+1DTt (ζ) + ut

Similarly, let z1 (τ̃1, . . . , τ̃i−1, ζ, τ̃i, . . . , τ̃l) be the standard F-statistic for testing H0 :

γl+1 = 0 versus the alternative H1 : γl+1 6= 0 in the Model :

∆yt = β +
l∑

j=1

γjDUt (τ̂j) + γl+1DUt (ζ) + vt

When the break dates are not known, we use the z∗0 (l + 1|l) and z∗1 (l + 1|l) test statistics

defined as z∗0 (1|0) := sup
τ1∈Λ1

z0 (τ), z∗1 (1|0) := sup
τ1∈Λ1

z1 (τ) for l = 0; and for l > 0 as

z∗0 (l + 1|l) := max
1≤i≤l+1

sup
ζ∈Λ0,i

z0 (τ̂1, . . . , τ̂i−1, ζ, τ̂i, . . . , τ̂l)

z∗1 (l + 1|l) := max
1≤i≤l+1

sup
ζ∈Λ1,i

z1 (τ̃1, . . . , τ̃i−1, ζ, τ̃i, . . . , τ̃l)

where the possible eligible break fractions ζ are contained in the following sets in

which η is the trimming parameter:

Λ0,i = {ζ : τ̂i−1 + (τ̂i − τ̂i−1) η ≤ ζ ≤ τ̂i − (τ̂i − τ̂i−1) η} (1.19)
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and

Λ1,i = {ζ : τ̃i−1 + (τ̃i − τ̃i−1) η ≤ ζ ≤ τ̃i − (τ̃i − τ̃i−1) η} . (1.20)

with τ̂0 = 0 and τ̂l+1 = 1. The next Theorem establishes the asymptotic behaviour of

z∗0 (l + 1|l) and z∗1 (l + 1|l) for different orders of integration of the error term ut.

Theorem 3. Let the time series process yt be generated according to (1.1) and (1.2) with

m = l breaks and let Assumption 1 hold.

(i) If ut is I(0), then: (a) lim
T→∞

P (z∗0 (l + 1|l) ≤ x) = G0 (x)l+1, where G0 (x) is the

distribution function of sup
τm∈Λm

J0 (τm, 0) for m = 1, and (b) z∗1 (l + 1|l) = Op (l/T ).

(ii) If ut is I(1), then: (a) z∗0 (l + 1|l) = Op (T/l), and (b) lim
T→∞

P (z∗1 (l + 1|l) ≤ x) =

G1 (x)l+1, where G1 (x) is the distribution function of sup
τm∈Λm

J1 (τm, 0) for m = 1.

Remark 7. The results in the previous Theorem show that critical values for the se-

quential tests can be computed from the quantiles of the asymptotic distributions of the

z∗0 and z∗1 test statistics for the case of just one break (m = 1).

The z∗λ (l + 1|l) statistic is then given by:

z∗λ (l + 1|l) :=
{
λ
(
τ̂ l+1, τ̃ l+1

)
×z∗0 (l + 1|l)

}
+ b

l+1|l
ξ

{
[1− λ

(
τ̂ l+1, τ̃ l+1

)
]×z∗1 (l + 1|l)

}
(1.21)

where τ̂ l+1 = (τ̂1, . . . , τ̂l+1)′ and τ̃ l+1 = (τ̃1, . . . , τ̃l+1)′ and b
l+1|l
ξ is a constant that ensures

that for a given significance level ξ and null hypothesis of l trend breaks the critical values

of the asymptotic distribution of zλ (l + 1|l) is the same in both I(0) and I(1) cases.

Using Lemma 2 and the fact that the order of probability of the KPSS statistics

S0

(
τ̂ l+1

)
and S1

(
τ̂ l+1

)
under I(0) or I(1) errors is unchanged both under the null and the

alternative hypothesis, it is readily seen that the weight function has the same asymptotic

behavior as in Corollary 1 and so we may state the following corollary:

Corollary 4. Let the conditions of Theorem 3 hold.
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(i) If ut is I(0), then λ
(
τ̂ l+1, τ̃ l+1

) p−→ 1, z∗λ (l + 1|l) = z∗0 (l + 1|l) + op (1) and

lim
T→∞

P (z∗λ (l + 1|l) ≤ x) = G0 (x)l+1.

(ii) If ut is I(1), then λ
(
τ̂ l+1, τ̃ l+1

) p−→ 0, z∗λ (l + 1|l) = b
l+1|l
ξ z∗1 (l + 1|l) + op (1) and

lim
T→∞

P
(
b
l+1|l
ξ z∗λ (l + 1|l) ≤ x

)
= G1 (x)l+1.

The z∗λ (l + 1|l) can be used to estimate the number of breaks in the trend slope

without making any assumption about the errors being I(0) or I(1). The procedure

starts with l = 0, by using the z∗λ (1|0) to test for the presence of one break. If the

null hypothesis is rejected, we set l = 1 and perform the z∗λ(2|1) test. The procedure is

repeated until the z∗λ (l + 1|l) test cannot reject the null hypothesis of l breaks.

Remark 8. In small samples, for some particular combinations of the breaks in the trend

slope, this sequential procedure may not perform well. For instance, in the presence of two

breaks of opposite signs, the z∗λ (1|0) may have low power in identifying the two breaks,

causing the sequential estimation procedure to stop too soon. A simple modification of

this sequential procedure that is able to obviate to this problem consists in using the z∗λ

with m = 2 or a double maximum test Dmaxz∗λ whenever the z∗λ (1|0) does not reject

the null hypothesis of no break. If the z∗λ with m = 2 or the double maximum test does

not reject H0 then we conclude that there are no trend breaks. Otherwise we proceed to

z∗λ (3|2) . We call these sequential procedures Seqz∗λ (1|0) , Seqz∗λ (2|0) , SeqUDmaxz∗λ

and SeqWDmaxz∗λ. Figure 1.16 summarizes the steps to implement in each type of

sequential test presented.

Remark 9. The sequential procedure to estimate the number of breaks can be made

consistent by letting the significance level of the z∗λ (l + 1|l) test converge to zero slowly

enough as explained in Proposition 8 from Bai and Perron (1998). However, for a given

sample, this has no practical implications and the usual significance levels can be used.

1.3 Disjoint Broken Trend Model

The analysis of the previous section can be generalized to the case of a model with m

disjoint broken trends where the level may also change at the same time as the slope.
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Therefore, we consider the following model:

yt = α + βt+
m∑
j=1

δjDUt
(
τ ∗j
)

+
m∑
j=1

γjDTt
(
τ ∗j
)

+ ut t = 1, . . . , T, (1.22)

and

ut = ρut−1 + εt, t = 2, . . . , T, u1 = ε1, (1.23)

satisfying Assumption 1 and |ρ| ≤ 1. In what follows we will refer to this model as

“Model B”. Notice that δj and γj capture the change, respectively, in the level and slope

coefficients of the series at time Tj. The slope coefficient changes from β to β+γ1 and the

level shifts from α to α + δ1 at time T ∗1 . At break point T ∗2 the slope coefficient changes

from β + γ1 to β + γ1 + γ2 and the level goes from α + δ1 to α + δ1 + δ2. Generally, in

period T ∗j the slope coefficient changes from β +

j−1∑
i=1

γi to β +

j∑
i=1

γi while the level shifts

from α +

j−1∑
i=1

δi to α +

j∑
i=1

δi for j = 1, . . . ,m. The trend function is discontinuous at a

break date T ∗j if δj 6= 0.

The first-differenced form of “Model B” is given by:

∆yt = β +
k∑
j=1

δjDt

(
τ ∗j
)

+
k∑
j=1

γjDUt
(
τ ∗j
)

+ ∆ut, t = 2, . . . , T (1.24)

where Dt

(
τ ∗j
)

:= 1
(
t = T ∗j + 1

)
. Our interest is, as in Model A, to construct a test that

is able to test if there are trend breaks in yt and to develop a procedure to estimate the

number of breaks in the trend slope regardless of whether ut is I(0) or I(1). The null

hypothesis of interest continues to be H0 : γ1 = γ2 = . . . = γm = 0 against the two sided

alternative: H1 : γ1 6= 0∨γ2 6= 0∨ . . .∨γm 6= 0. Note that we do not place any restrictions

on the values of δj and the interest lies only on the breaks in the trend slopes.

1.3.1 Known Break Fractions

Following the same steps as in Model A, we start by assuming that the true break fractions

τ ∗ = (τ ∗1 , τ
∗
2 , . . . , τ

∗
m)′ are known. Let H0, H1, H1,0 and H1,1 be defined as in Section 1.2.
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We don’t impose any restrictions on the vector of parameters δj to derive the asymptotic

behaviour of the new test statistics.

Consider first the case when ut is known to be I (0) . We redefine the data matrix,

xDT,t (τ ∗) := {1, t, DUt (τ ∗1 ) , . . . , DUt (τ ∗m) , DTt (τ ∗1 ) , . . . , DTt (τ ∗m)}′ .

Now we are able to rewrite F0(τ ∗) as:

z0 (τ ∗) = γ̂ (τ ∗)′

ω̂2 (τ ∗)

[
T∑
t=1

xDT,t (τ ∗)xDT,t (τ ∗)′
]−1

(m+3:2m+2,m+3:2m+2)


−1

γ̂ (τ ∗) /m

(1.25)

where

γ̂j (τ ∗) =

( T∑
t=1

xDT,t (τ ∗)xDT,t (τ ∗)′
)−1 T∑

t=1

xDT,t (τ ∗) yt


(j+2+m)

with γ̂ (τ ∗) = (γ̂1 (τ ∗) , γ̂2 (τ ∗) , . . . , γ̂m (τ ∗))′ and the long run variance ω̂2 (τ ∗) computed

as before but using the new set of residuals ût (τ ∗) = yt − α̂ − β̂t −
m∑
j=1

δ̂jDUt
(
τ ∗j
)
−

m∑
j=1

γ̂j (τ ∗)DTt
(
τ ∗j
)
. When ut follows an I (1) process, we use the first-differenced model

and the vector of regressors becomes xDU,t (τ ∗) := {1, Dt (τ ∗1 ) , . . . , Dt (τ ∗m) , DUt (τ ∗1 ) , . . . , DUt (τ ∗m)}′ .

The z1 (τ ∗) statistic is now given by:

z1 (τ ∗) = γ̃ (τ ∗)′

ω̃2 (τ ∗)

[
T∑
t=2

xDU,t (τ ∗)xDU,t (τ ∗)′
]−1

(m+2:2m+1,m+2:2m+1)


−1

γ̃ (τ ∗) /m

(1.26)

where

γ̃j (τ ∗) =

( T∑
t=2

xDU,t (τ ∗)xDU,t (τ ∗)′
)−1 T∑

t=2

xDU,t (τ ∗) ∆yt


(j+1+m)

with γ̃ (τ ∗) = (γ̃1 (τ ∗) , γ̃2 (τ ∗) , . . . , γ̃m (τ ∗))′.

The variance estimator ω̃2 (τ ∗) , is now computed using the following residuals: ṽt (τ ∗) =

∆yt − β̃ −
m∑
j=1

δ̃jDt

(
τ ∗j
)
−

m∑
j=1

γ̃j (τ ∗)DUt
(
τ ∗j
)

:

The next theorem establishes the asymptotic distribution of z0 (τ ∗) and z1 (τ ∗) under
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H1,0 and H1,1 with δ unrestricted when the error term is I(0) and I(1).

Theorem 4. Let the time series process be generated by (1.22) and (1.23) and let As-

sumption 1 hold.

(i) If ut is I(0) (|ρ| < 1) then, under H1,0, (a) z0 (τ ∗)
d−→ 1

m
K0 (τ ∗, κ), and (b) z1 (τ ∗) =

Op

(
l

T

)
, where

K0 (τ ∗, κ) ∼ χ2
m (µ0) , µ0= κ′

[
Q0 (τ ∗) /ω2

u

]
κ,Q

0
(τ ∗) =

1∫
0

RTU (r, τ ∗) RTU (r, τ ∗)′ dr

(ii) If ut is I(1) (|ρ| = 1) then, under H1,1, (a) z0 (τ ∗) = Op

(
T

l

)
, and (b) z1 (τ ∗)

d−→
1

m
J1 (τ ∗, κ), where

J1 (τ ∗, κ) ∼ χ2
m (µ1) , µ1 = κ′

[
Q1 (τ ∗) /ω2

ε

]
κ,Q1 (τ ∗) =

1∫
0

RU (r, τ ∗) RU (r, τ ∗)′ dr

where χ2
m (µ) is the non-central chi-square distribution with m degrees of freedom

and RTU (r, τ ∗) = (RTU (r, τ ∗1 ) , . . . , RTU (r, τ ∗m))′ where RTU (r, τ ∗i ) is the continuous

time residual from the projection of (r − τ ∗i )1 (r > τ ∗i ) onto the space spanned by

{1, r,1 (r > τ ∗1 ) , . . . ,1 (r > τ ∗m)} and RU (r, τ ∗) is defined in Theorem 1.

Remark 10. As in “Model A”, notice that under H0 both m · z0 (τ ∗) and m · z1 (τ ∗)

converge in distribution to the chi-square distribution with m degrees of freedom. So,

again, if we know the order of integration of the disturbance term we can apply the

appropriate F-statistic and use the critical value from the χ2
m table to see if there is

statistical evidence of the existence of m trend breaks.

We now extend our analysis to the case where it is not known if the error is I(0) or

I(1). Following the same steps of the proof of Lemma 1 we are able to show that the

orders of probability of the redefined KPSS statistics S0 (τ ∗) and S1 (τ ∗) remain the same

as presented in that Lemma. Given this fact and Theorem 4 we may state the following

corollary:
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Corollary 5. Let the conditions of Theorem 4 hold:

(i) If ut is I(0), then λ (S0 (τ ∗) , S1 (τ ∗))
p−→ 1, under both H0 and H1,0, and zλ (τ ∗) =

z0 (τ ∗) + op (1)
d−→ 1

m
K0 (τ ∗, k).

(ii) If ut is I(1), then λ (S0 (τ ∗) , S1 (τ ∗))
p−→ 0, under both H0 and H1,1, and zλ (τ ∗) =

z1 (τ ∗) + op (1)
d−→ 1

m
J1 (τ ∗, k).

1.3.2 Unknown Break Fractions

We now consider the case where the true break fractions τ ∗ are unknown in Model B.

For this purpose we adapt the test statistics to this model in the same way as done in

the previous section. We redefine z∗0 (m|0) and z∗1 (m|0) using expressions with the new

z0 (τ) and z1 (τ) presented above as well as τ̂ , τ̃ and z∗λ (m|0).

Remark 11. Although our objective is only to test for changes in slope, we have to

set additionally δ = 0 in order to obtain a pivotal limiting null distribution for our test

statistic. Hence, as in HLT the null hypothesis must be restated as H0 : γ = δ = 0.

The following Theorem states the asymptotic distribution of the re-defined z∗0 (m|0)

and z∗1 (m|0) under the restated null hypothesis H0 when the innovation sequence {ut}

is either I(0) or I(1).

Theorem 5. Let the time series process be generated by (1.22) and (1.23) under H0 :

γ = δ = 0m×1 and let Assumption 1 hold.

(i) If ut is I(0), then: (a) z∗0 (m|0)
d−→ 1

m
sup

τm∈Λm

K0 (τm, 0), and (b) z∗1 (m|0) =

Op

(
l

T

)
.

(ii) If ut is I(1), then: (a) z∗0 (m|0) = Op

(
T

l

)
, and (b) z∗1 (m|0)

d−→ 1

m
sup

τm∈Λm

J1 (τm, 0).

To establish the asymptotic behavior of the z∗λ (m|0) statistic we need to compute

the order of probability of the redefined S0 (τ̂m) and S1 (τ̃m) in arbitrarily large samples.

Extending in a straightforward way Lemma 2 to Model B we can conclude that the
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divergence rates are the same as in Model A. This implies that the limit behaviour of the

weight function λ (S0 (τ̂m) , S1 (τ̃m)) is similar to the cases presented above and so we can

finally state the following corollary:

Corollary 6. Let the conditions of Theorem 5 hold.

(i) If ut is I(0), then z∗λ (m|0) = z∗0 (m|0) + op (1)
d−→ 1

m
sup

τm∈Λm

K0 (τm, 0).

(ii) If ut is I(1), then z∗λ (m|0) = bmξ z∗1 (m|0) + op (1)
d−→ bmξ

1

m
sup

τm∈Λm

J1 (τm, 0).

As in Model A, the constant bmξ adjusts the critical values of z∗λ and, hence, delivers a

test statistic with asymptotic critical values that are invariant to the order of integration

of ut. Asymptotic results for the double maximum test and the sequential test procedures

to estimate the number of trend breaks in Model B can be obtained as straightforward

extensions of those obtained for Model A.

Corollary 7. Let the conditions of Theorem 5 hold.

(i) If ut is I(0), then:

Dmaxz∗λ = max
1≤m≤M

a0,m z∗0 (m|0) + op (1)
d−→ max

1≤m≤M
a0,m

1

m
sup

τm∈Λm

K0 (τm, 0).

(ii) If ut is I(1), then:

Dmaxz∗λ = bMξ max
1≤m≤M

a1,mz∗1 (m|0) + op (1)
d−→ bMξ max

1≤m≤M
a1,m

1

m
sup

τm∈Λm

J1 (τm, 0).

Corollary 8. Let the time series process {yt} be generated according to (1.22) and (1.23)

with m = l breaks and let Assumption 1 hold.

(i) If ut is I(0), then λ
(
τ̂ l+1, τ̃ l+1

) p−→ 1, z∗λ (l + 1|l) = z∗0 (l + 1|l) + op (1) and

lim
T→∞

P (z∗λ (l + 1|l) ≤ x) = Q0 (x)l+1, where Q0 (x) is the distribution function of

sup
τm∈Λm

K0 (τm, 0) for m = 1.

(ii) If ut is I(1), then λ
(
τ̂ l+1, τ̃ l+1

) p−→ 0, z∗λ (l + 1|l) = b
l+1|l
ξ z∗1 (l + 1|l) + op (1) and

lim
T→∞

P
(
b
l+1|l
ξ z∗λ (l + 1|l) ≤ x

)
= G1 (x)l+1 where G1 (x) is defined in Theorem 3.
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1.4 Size and Power Simulations

In this section we provide the results of several Monte Carlo simulations. The trimming

parameter η was set equal to 0.15. Asymptotic critical values were obtained with discrete

approximations (T=1000) of the asymptotic distributions using 5000 simulations and the

rndn pseudo random number generator in Gauss. To apply these tests we need to choose

constants g and v from the weight function and the bandwidth parameter l from the long

run variance estimator. After considering several combinations of the values of g and v

constants in the weight function, and truncation lag l in the long run variance estimator

we have chosen g = 500 + 750× (m− 1) , v = 6, l = [4(T/100)]1/4 as these presented the

best results in terms of size and power in the range of simulations considered. Hence these

are the values which should be chosen in practical applications of these tests. These results

apply for both Models A and B. Table 1.1 reports the obtained asymptotic critical values

for the class z∗λ (m|0) statistics for m = 1, . . . , 5 and for the UDmaxz∗λ and WDmaxz∗λ

statistics up to a maximum of 3 trend breaks. In Table 1.2 we present critical values for

the F ∗λ (l + 1|l) statistic for different values of l. Since the values provided are for the

unknown break fraction case we also provide the values of bmξ .To analyze the power and

size properties we used 5000 simulations with 150 observations derived from the following

DGP based on Model B:

yt = α + βt+
m∑
j=1

δjDUt
(
τ ∗j
)

+
m∑
j=1

γjDTt
(
τ ∗j
)

+ ut (1.27)

with the error term given by:

(1− ρL)ut = (1− θL) εt, t = 2, . . . , T, u1 = ε1, εt v NIID (0, 1) (1.28)

We analyzed different levels of persistence on the error term ut measured by the

autoregressive parameter ρ and moving average parameter θ. We use ρ = 1 − c

T
with

c ∈ {0, 10, 20, T} and θ ∈ {−0.5, 0, 0.5}. For the power curves, we generated data from

the DGP described by equations (1.27) and (1.28) for a grid of γ1 = δ1/5 values covering
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the range [0, 1] with steps of 0.1. Results for the size of the z∗λ (m|0) and Dmaxz∗λ test

statistics with the number of breaks under the alternative m = 1, . . . , 5 and upper bound

M = 3 are presented in Table 1.3 for T = 150. In the case of I(1) (c = 0, ρ = 1) shocks we

see that the z∗λ (m|0) test is oversized specially when θ = −0.5. Size distortions become

specially higher with m if θ ∈ {−0.5, 0} but in the case of θ = 0.5 the size remains fairly

constant regardless of the number of trend breaks set under the alternative hypothesis.

For ρ ≈ 0.93 (c = 10) and ρ ≈ 0.87 (c = 20) the z∗λ (m|0) test shows reasonable size

control for θ ∈ {−0.5, 0} with a slight size depreciation towards the over-sizing region for

ρ ≈ 0.93 and θ = −0.5.

In the case of ρ = 0 (c = T) we observe that for m = 1 and m = 2 the z∗λ (m|0)

is slightly oversized if θ ∈ {−0.5, 0} and undersized if θ = 0.5. Since in these cases the

size decreases with m we have large degree of under-size with a higher number of trend

breaks under H1.

In general the UDmaxz∗λ and WDmaxz∗λ statistics seem to have similar finite sam-

ple size performances for M = 3: Dmaxz∗λ class is specially under-sized in the case of

pure MA shocks with θ = 0.5 and over-sized if the errors follow an I(1) process with

θ = −0.5, similarly ro what was observed for the z∗λ (m|0) statistics. Unreported simu-

lations show that these size distortions become worse with the increase of the number of

trend breaks allowed under H1. However, the WDmaxz∗λ is substantially more sensitive

than the UDmaxz∗λ to M .

Consider now Figures 1.1, 1.2 and 1.3 that display the power of the tests for a DGP

with 1 change point as a function of the magnitude of the break γ1 occurring in the

middle of the sample, τ ∗1 = 1/2, for different values of ρ and θ. The results show that the

tests have similar power for the case of I(1) shocks with small differences attributable

to unequal finite sample size performances. However, in most cases with I(0) shocks the

z∗λ (1|0) has higher power than all the other tests which is not surprising since our DGP

includes only 1 trend break. Also, notice that the power z∗λ (m|0) definitely decreases as

we increase the number of trend breaks set under H1. This is explained by the fact that,

as we increase m, we are allowing for more breaks than necessary to detect the single
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break in the DGP.

Finally, consider Table 1.4. Here we present the empirical relative frequency at 5%

level of the proposed sequential statistics estimating 0,1,2 and more than 2 trend breaks.

In our experiment, yt may have no breaks, 1 trend break and 2 trend breaks with the

same magnitude and same sign,γ1 = γ2, or with opposite signs, γ1 = −γ2. We considered

a trend break of magnitudes γ1 ∈ {0.5, 1} occurring in the middle of the sample if there is

1 break, τ ∗1 = 0.5, and located at τ ∗1 = 1/3 and τ ∗2 = 2/3 if there are 2 trend breaks. The

usual values of ρ were considered with no moving average effects, θ = 0. All sequential

tests have power to efficiently detect the presence one break in trend. For a DGP with 2

trend breaks with same sign and magnitude the tests show similar and reasonable power

to detect 2 breaks. This happens specially as we decrease the persistence of the errors, ρ.

However, the differences are quite considerable when we look for the 2 opposite breaks

case. Here Seqz∗λ (1|0) has very low power to detect breaks and is clearly outperformed

by its competitors Seqz∗λ (2|0), SeqUDmaxz∗λ and SeqWDmaxz∗λ. For example, for

the highest magnitude considered in the simulations γ1 = 1, γ2 = −1 and I (1) shocks the

Seqz∗λ (1|0) only estimates 2 breaks with 41% power while the other sequential tests have

probability of around 90% to detect 2 change points. Also if ut is a highly persistent I(0)

process (c = 10, 20) and for the same magnitudes the Seqz∗λ (1|0) only detects 2 breaks

with, at most, 25% probability whereas its competitors display almost full power. On the

basis of the results on Table 1.4, we would recommend the use of Seqz∗λ (2|0) when testing

the null of no trend break against an unknown number of trend breaks: this sequential

test has smaller and only mild size distortions in comparison with the other sequential

tests and is able to detect with high power changes in the trend function without suffering

the opposite breaks problem. If the empirical researcher is sure about the number of trend

breaks under the alternative then it should use the z∗λ (m|0) and specify the number of

m trend breaks under H1. However, it should be cautious if m is quite large (≥ 4) and

the number of observations T is small because simulation results show increasing size

distortions with m. In that case, we recommend the use of the Dmaxz∗λ statistics as

a pre test to check if there are trend breaks and if the null is rejected use z∗λ (m|0) to
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estimate the break dates.

1.5 Empirical Application

In this section, we apply our trend break tests to the dataset compiled by Stock and

Watson (2008) available on Mark Watson’s website. Particularly, we analyze 79 quarterly

time series (192 observations) and 108 monthly time series (576 observations) for the

United States spanning from 1959 to 2006. A detailed description of each individual

variable can be found in that study. The series are only measured in logarithms whenever

Stock and Watson (2008) implemented the logarithm transformation in their analysis.

Otherwise, we use the original time series. Tables 1.5 to 1.9 present results using Model

B for z∗λ (m|0) for m = 1, . . . , 3 , UDmaxz∗λ and WDmaxz∗λ tests and the estimated

break dates are provided in square brackets when the null is rejected at 5% significance

level. These were obtained as weighted averages of the estimated break dates by z∗0 and

z∗1: {λ (S0 (τ̂m) , S1 (τ̃m))× τ̂m}+ {[1− λ (S0 (τ̂m) , S1 (τ̃m))]× τ̃m}.

We see that there is evidence for a change in the slope of the trend function at 5%

level in more than half of the variables analyzed: at least one of the tests rejects the null

of no break in the deterministic trend for 105 or 56% of the series. All tests detect the

presence of at least one trend break for 85 from these 105 variables. Hence, all tests seem

to be pointing out to the same decision for most of the variables.

If we adopt a more conservative decision rule and increase the significance level to 1%

the results are almost unchanged as the null is rejected for 101 or 54% of the series by at

least one test and for 64 or 34% of the series, all the tests are unanimous in rejecting the

null of no structural change.

The tests referred so far in this section require the specification of the number of

breaks (z∗λ) or test against an unknown number of breaks but do not specify the break

dates (Dmaxz∗λ). In practice, it is valuable to know not only if a break is present in

the data but also when and how often did these changes occurred. Additionally, in some

cases there may be some ambiguity on the results, namely, for the same variable some

tests result in statistically significant trend breaks while others favor a constant trend
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function.

For these reasons, it is useful to consider the sequential tests presented in Section

1.2.4 adapted to Model B. The number of estimated break fractions and its respective

break dates for each sequential test are presented in Tables 1.10 to 1.14.

We focus on the results of the Seqz∗λ (2|0) procedure as it provided the best overall

finite sample results in Section 1.4. An immediate observation that we obtain from the

table is that the sequential tests agree on the estimated number of breaks for almost

all variables. There are 11 exceptions and 7 out of these 11 series only have a different

estimate with the Seqz∗λ (1|0) procedure. A plausible reason for this result is the low

power of the Seqz∗λ (1|0) in the presence of multiple breaks in slope with opposite sign.

In fact, by simple visual inspection of the plots of the series in Figures 1.4 to 1.15, it

seems that the first and last regime estimated under the Seqz∗λ (2|0) procedure have

approximately the same slope.

On the other hand, the results naturally confirm the previous finding that a significant

portion of the variables analyzed have at least one change in the slope of its trend function:

103 out of 187 series have at least one break in the trend according to the Seqz∗λ (2|0)

procedure. Actually, for 52 or 28% of the variables we find statistical evidence for the

presence of 2 breaks and for 28 or 15% of the series, the test estimates 3 significant

changes in the slope of the trend function.

In the graphs of Figures 1.4 to 1.15 we superimposed the estimated break dates

suggested by the sequential procedure Seqz∗λ (2|0) and fitted values of the breaking trend

model. We see that the estimated breaks correspond closely to the ones suggested by

visual inspection and are mainly dated in the late 1960s, early 1970s, early 1980s and

early1990s. Hence, as expected the break dates are focused on periods with important

fluctuations in U.S. economic activity like, for example, the collapse of the Bretton Woods

system in 1971, the oil price shocks of 1973 and 1979 or the 1980 recession.
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1.6 Conclusions

In this paper we presented tests for the presence of multiple structural change in the

trend slope of a univariate time series which do not require knowledge of the form of

serial correlation in the data and are valid regardless of the shocks being I(0) or I(1).

We have considered two Models: a Joint and a Disjoint Broken Trends Model. We

have extended the test procedure proposed by Harvey et al. (2009) and constructed a

weighted average of two F-statistics, one standardly used when the data is I (0) and the

other usually applied for data exhibiting a unit root. We start by considering the case

in which the empirical researcher is sure about the break dates if there is any structural

change in the trend function. Next, we proposed tests for known number of trend breaks

but unknown break dates under the alternative. Here, the break dates estimated are

global maximizers of the F statistics over all permissible break fractions. Finally, we

analyzed tests for the practitioner who is also not sure about the number of break dates

if trend changes have occurred. We analyzed double maximum tests and also 4 sequential

procedures that can be used to estimate the number of breaks. We have established the

large sample properties of all these tests. Monte Carlo evidence shows that our tests have

good size and power properties and recommend the use of a modified sequential approach

where the double maximum test or the Fλ (2\0) is used to detect breaks of opposite signs.

An empirical example illustrated the usefulness of the proposed procedures.
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Appendix

Proof of Theorem 1. (i) (a) From the Frisch-Waugh-Lovell Theorem we can write

m ·z0 (τ ∗) as:

m ·z0 (τ ∗) =

{
κ+ T 3/2

[∑
RTt (τ ∗)RTt (τ ∗)′

]−1∑
RTt (τ ∗)ut

}′
[
T−3

∑
RTt (τ ∗)RTt (τ ∗)′

ω̂2 (τ ∗)

]
{
κ+ T 3/2

[∑
RTt (τ ∗)RTt (τ ∗)′

]−1∑
RTt (τ ∗)ut

}

with RTt (τ ∗) := (RTt (τ ∗1 ) , . . . , RTt (τ ∗m))′ where RTt
(
τ ∗j
)

is the vector of residuals

from the regression of DTt
(
τ ∗j
)

on {1, t} . From standard weak convergence results,

namely, the Continuous Mapping Theorem (CMT) and the Functional Central Limit

Theorem (FCLT), T−
1
2

bTrc∑
t=1

ut
d−→ ωuW (r), we can establish that:

T 3/2
[∑

RTt (τ ∗)RTt (τ ∗)′
]−1∑

RTt (τ ∗)ut
d−→

ωu

[∫ 1

0

RT (r, τ ∗)RT (r, τ ∗)′ dr

]−1 ∫ 1

0

RT (r, τ ∗) dW (r) := ωuQ0 (τ ∗)−1

∫ 1

0

V0 (τ ∗, r) dr

whereW (r) is the standard Brownian Motion, RT (r, τ) is the continuous time resid-

ual vector whose jth element is given by the projection of (r − τj)1 (r > τj) onto the

space spanned by {1, r}, Q0 (τ ∗) :=

∫ 1

0

RT (τ ∗, r)RT (τ ∗, r)′ dr and

∫ 1

0

V0 (τ ∗, r) dr :=∫ 1

0

RT (τ ∗, r) dW (r). It is also well known that the long run variance estimator

ω̂2 (τ ∗) is consistent, ω̂2 (τ ∗)
p→ ω2

u. With these results, the asymptotic distribution

of m ·z0 (τ ∗) can be written as :

m ·z0 (τ ∗)
d−→
{
κ+ ωuQ0 (τ ∗)−1

∫ 1

0

V0 (τ ∗, r) dr

}′ [
Q0 (τ ∗) /ω2

u

]
{
κ+ ωuQ0 (τ ∗)−1

∫ 1

0

V0 (τ ∗, r) dr

}
.
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It is straightforward to show that this corresponds to a non-central chi-square distri-

bution with m degrees of freedom and non centrality parameter κ′
[
Q0 (τ ∗) /ω2

u

]
κ.

(b) Again appealing to the Frisch-Waugh-Lovell Theorem it is possible to rewrite(
T

l

)
z1 (τ ∗) as:

(
T

l

)
z1 (τ ∗) =

1

m

{
κT−

1
2 +

[
T−1

∑
RUt (τ ∗)RUt (τ ∗)′

]−1∑
RUt (τ ∗)4ut

}′
[
T−1

∑
RUt (τ ∗)RUt (τ ∗)′

lω̃2 (τ ∗)

]{
κT−

1
2 +

[
T−1

∑
RUt (τ ∗)RUt (τ ∗)′

]−1∑
RUt (τ ∗)4ut

}
(1.29)

with RUt (τ ∗) = (RUt (τ ∗1 ) , . . . , RUt (τ ∗m))′ where RUt
(
τ ∗j
)

is the vector of residuals

from the regression of DUt
(
τ ∗j
)

on {1} . Now notice that RUt
(
τ ∗j
)

can be simplified

to:

RUt(τ
∗
j ) =


τ ∗j − 1 , if t ≤ T ∗j

τ ∗j , if t > T ∗j

and so we get that
∑

RUt
(
τ ∗j
)
4ut = τ ∗j uT − uT ∗j −

(
1− τ ∗j

)
u1 = Op (1) since ut v

I (0) . Also, Leybourne et al. (2007) proved that lω̃2 (τ ∗) has a finite and positive

probability limit provided that l = o
(
T 1/2

)
and Assumption 1 from their paper

holds. Hence, we get lω̃2 (τ ∗)
p−→ −2

∞∑
s=0

sγs = Op (1) , where γs = E [4ut4ut−s] .

Finally, it is straightforward to see that

T−1
∑

RUt (τ ∗)RUt (τ ∗)′ −→
∫ 1

0

RU (τ ∗, r)RU (τ ∗, r)′ dr = O (1) .

So, since all terms from the right hand side of (1.29) are Op (1) we proved that(
T

l

)
z1 (τ ∗) = Op (1) .
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(ii) (a) We have that

(
l

T

)
z0 (τ ∗) equals:

(
l

T

)
z0 (τ ∗) =

1

m

{
κ+ T−3

[∑
RTt (τ ∗)RTt (τ ∗)′

]−1

T−5/2
∑

RTt (τ ∗)ut

}′
[
T−3

∑
RTt (τ ∗)RTt (τ ∗)′

(lT )−1ω̂2 (τ ∗)

]
{
κ+ T−3

[∑
RTt (τ ∗)RTt (τ ∗)′

]−1

T−5/2
∑

RTt (τ ∗)ut

}

Using standard weak convergence results we can prove that:

T−5/2
∑

RTt (τ ∗)ut
d−→ ωu

∫ 1

0

RT (r, τ ∗) dW (r) = Op (1)

and

T−3
∑

RTt (τ ∗)RTt (τ ∗)′ −→
∫ 1

0

RT (r, τ ∗)RT (r, τ ∗)′ dr = O (1) .

Extending appropriately formula (23) from Kwiatkowski et al. (1992) to Model A,

it is possible to show that (lT )−1 ω̂2 (τ ∗)
p−→ ω2

u

∫ 1

0

H (r, τ ∗)2 dr where H (r, τ ∗) is

the continuous time residual from the projection of W (r) onto the space spanned

by {1, r, (r − τ ∗1 )1 (r > τ ∗1 ) , . . . , (r − τ ∗m)1 (r > τ ∗m)}. Since all terms have non-

degenerate distributions we can say that

(
l

T

)
z0 (τ ∗) = Op (1) .

(b) Following the same lines from the proofs of the previous results we can rewrite

m ·z1 (τ ∗) as:

m ·z1 (τ ∗) =

{
κ+

[
T−1

∑
RUt (τ ∗)RUt (τ ∗)′

]−1

T−1/2
∑

RUt (τ ∗) εt

}′
[
T−1

∑
RUt (τ ∗)RUt (τ ∗)′

ω̃2 (τ ∗)

]
{
κ+

[
T−1

∑
RUt (τ ∗)RUt (τ ∗)′

]−1

T−1/2
∑

RUt (τ ∗) εt

}

50



From

[
T−1

∑
RUt (τ ∗)RUt (τ ∗)′

]−1

T−1/2
∑

RUt (τ ∗) εt
d−→[∫ 1

0

RU (τ ∗, r)RUt (τ ∗, r)′ dr

]−1

ωε

∫ 1

0

RU (τ ∗, r) dW (r) := ωεQ1 (τ ∗)−1

∫ 1

0

V1 (τ ∗, r) dr

whereQ1 (τ ∗) :=

∫ 1

0

RU (τ ∗, r)RU (τ ∗, r)′ dr and

∫ 1

0

V1 (τ ∗, r) dr :=

∫ 1

0

RU (τ ∗, r) dW (r)

and using the fact that ω̃2 (τ ∗)
p→ ω2

ε , we can establish the asymptotic distribution

of m ·z1 (τ ∗):

m ·z1 (τ ∗)
d−→
{
κ+ ωεQ1 (τ ∗)−1

∫ 1

0

V1 (τ ∗, r) dr

}′ [
Q1 (τ ∗)−1 /ω2

ε

]
{
κ+ ωεQ1 (τ ∗)−1

∫ 1

0

V1 (τ ∗, r) dr

}

As before, it is straightforward to show that this corresponds to a non-central

chi-square distribution with m degrees of freedom and non centrality parameter

κ′
[
Q1 (τ ∗)ω2

ε

]
κ.

Proof of Lemma 1. Results (i)(a) and (i)(b) follow from Kwiatkowski et al. (1992). If

the error term ut v I (0) then S0 (τ ∗) = Op (1) and converges to a function of the Wiener

process. Similarly, if ut v I (1), then when we differentiate the model the disturbances

become stationary and so S1 (τ ∗) = Op (1) .Result (ii)(a) follows from (lT )−1 ω̂2 (τ ∗)
p−→

ω2
u

∫ 1

0

H (r, τ ∗)2 dr, an extension of expression (22) from Kwiatkowski et al. (1992) to

Model A, and

T−4

T∑
t=1

(
t∑
i=1

ûi (τ
∗)

)2

P−→ ω2
u

∫ 1

0

(∫ a

0

H (r, τ ∗) dr

)2

da.

Hence, we have that under ut v I (1) , S0 (τ ∗) = Op (T/l) . Finally, from results from

Leybourne et al. (2007) we get that if ut v I (0), then lω̃2 (τ ∗)
p−→ −2

∞∑
s=0

sγs = Op (1)

and T−1

T∑
t=2

(
t∑
i=1

ṽi (τ
∗)

)2

= Op (1) which establishes the result

(
T

l

)
S1 (τ ∗) = Op (1) .
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Proof of Theorem 2. We start by proving (i)(a) and (ii)(b). From Theorem 1 it is im-

mediate that, for any finite number L of values of the m−dimensional vector of break frac-

tions τm,
(
z0

(
τm,1

)
, . . . ,z0

(
τm,L

))′
and

(
z1

(
τm,1

)
, . . . ,z1

(
τm,L

))′
weakly converge to(

J0

(
τm,1, 0

)
, . . . , J0

(
τm,L, 0

))′
and

(
J1

(
τm,1, 0

)
, . . . , J1

(
τm,L, 0

))′
, respectively, and so

we establish the finite dimensional convergence of these test statistics. Also from the proof

of Theorem 1 we observe that z0 (.) is a functional of
(
T−3

∑
RTt (.)RTt (.)′ , T−3/2

∑
RTt (.)ut, ω̂

2 (.)
)′

and

z1 (.) is a functional of the process
(
T−1

∑
RUt (.)RUt (.)′ , T−1/2

∑
RUt (.) εt, ω̃

2 (.)
)
.

Using similar arguments from Zivot and Andrews (1992) we can show the joint weak

convergence of these processes:

(
T−3

∑
RTt (.)RTt (.)′ , T−3/2

∑
RTt (.)ut, ω̂

2 (.)
)′
⇒

⇒
(∫ 1

0

RT (., r)RT (., r)′ dr,

∫ 1

0

RT (., r) dW (r) , ω2
u (.)

)′
,

(
T−1

∑
RUt (.)RUt (.)′ , T−1/2

∑
RUt (.) εt, ω̃

2 (.)
)′
⇒

⇒
(∫ 1

0

RU (., r)RU (., r)′ dr,

∫ 1

0

RU (., r) dW (r) , ω2
ε (.)

)′

The sup function is continuous a.s. with respect to

(∫ 1

0

RT (., r)RT (., r)′ dr,

∫ 1

0

RT (., r) dW (r) , ω2
u (.)

)′

and (∫ 1

0

RU (., r)RU (., r)′ dr,

∫ 1

0

RU (., r) dW (r) , ω2
ε (.)

)′
,

which implies that z∗0(m|0) ⇒ 1

m
sup

τm∈Λm

J0 (τm, 0) and z∗1(m|0) ⇒ 1

m
sup

τm∈Λm

J1 (τm, 0) by

the CMT, following the same lines from the proof of the Theorem from Zivot and Andrews

(1992). From Theorem 1(i)(b) and the fact that lω̃2 (τm)
p−→ −2

∞∑
s=0

sγs uniformly in τm

it follows that if ut v I (0), then z1 (τm) = Op

(
l

T

)
uniformly in τm and so the result
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in (i)(b) is proved. Finally, from Theorem 1(ii)(a) and the fact that (lT )−1 ω̂2 (τm)
d−→

ω2
u

∫ 1

0

H (r, τm)2 dr uniformly in τm we can show that if ut v I (1), then z0 (τm) =

Op

(
T

l

)
uniformly in τm and so the result in (ii)(a) is proved.

Proof of Theorem 3. Throughout the proof we employ the following additional no-

tation: Let RSSR0

(
τ ∗i−1, τ

∗
i

)
and USSR0

(
τ ∗i−1, ζ, τ

∗
i

)
denote, respectively, the restricted

and unrestricted sum of squared residuals for testing H0 : γ = 0 in the model:

yt = α + β
(
t− T ∗i−1

)
+ γDTt (ζ) + ut, t = T ∗i−1 + 1, . . . , T ∗i

with T ∗i := bτ ∗i T c.

Similarly, denote by RSSR1

(
τ ∗i−1, τ

∗
i

)
and USSR1

(
τ ∗i−1, ζ, τ

∗
i

)
, respectively, the re-

stricted and unrestricted sum of squared residuals for testing H0 : γ = 0 in the model:

yt = β + γDUt (ζ) + vt, t = T ∗i−1 + 1, . . . , T ∗i

(i) (a) Notice that:

z0

(
τ ∗1 , . . . , τ

∗
i−1, ζ, τ

∗
i+1, . . . , τ

∗
l

)
=
RSSR0

(
τ ∗i−1, τ

∗
i

)
− USSR0

(
τ ∗i−1, ζ, τ

∗
i

)
ω̂2
(
τ ∗1 , . . . , τ

∗
i−1, ζ, τ

∗
i+1, . . . , τ

∗
l

) + op (1)

Since,under H0 there are l trend breaks occurring at dates (T ∗1 , . . . , T
∗
l ), it is well

known that ω̂2
(
τ ∗1 , . . . , τ

∗
i−1, ζ, τ

∗
i+1, . . . , τ

∗
l

) p→ ω2
u. Moreover, similar arguments

from the proof of Theorem 2 can be used to prove that, under H0, for each i =

1, . . . , l + 1:

sup
ζεΛ∗0,i

RSSR0

(
τ ∗i−1, τ

∗
i

)
− USSR0

(
τ ∗i−1, ζ, τ

∗
i

)
ω̂2
(
τ ∗1 , . . . , τ

∗
i−1, ζ, τ

∗
i+1, . . . , τ

∗
l

) d−→ sup
ζεΛ∗0,i

J0

(
ζ − τ ∗i−1

τ ∗i − τ ∗i−1

, 0

)
(1.30)

where Λ∗0,i is as defined in (1.19)with τ̂i−1 and τ̂i replaced by τ ∗i−1 and τ ∗i , respec-

tively. Since (τ̂1, . . . , τ̂l) have been obtained by the z∗0 (l|0) statistic we get that,

under H0, τ̂i − τ ∗i = Op

(
T−

3
2

)
from Theorem 3 of Perron and Zhu (2005). This

implies that T̂i = T ∗i + Op

(
T−

1
2

)
and so it is possible to show that (1.30) holds
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with
(
τ ∗1 , . . . , τ

∗
i−1, τ

∗
i , . . . , τ

∗
l

)
replaced by (τ̂1, . . . , τ̂i−1, τ̂i, . . . , τ̂l). Now notice that

RSSR0 (., .) and USSR0 (., .) are computed on different and non overlapping regimes

which implies independence of the weak limits in (1.30). Since we are taking the

maximum over l + 1 independent random variables we get that:

lim
T→∞

P (z∗0 (l + 1|l) ≤ x) = G0 (x)l+1

where G0 (x) is the distribution function of sup
τ1∈Λ1

J0

(
τ 1, 0

)
where we employed the

change in variable τ 1 =
(
ζ − τ ∗i−1

)
/
(
τ ∗i − τ ∗i−1

)
.

(b) Notice that:

sup
ζεΛ∗1,i

z1

(
τ ∗1 , . . . , τ

∗
i−1, ζ, τ

∗
i+1, . . . , τ

∗
l

)
= sup

ζεΛ∗1,i

RSSR1

(
τ ∗i−1, τ

∗
i

)
− USSR1

(
τ ∗i−1, ζ, τ

∗
i

)
ω̃2
(
τ ∗1 , . . . , τ

∗
i−1, ζ, τ

∗
i+1, . . . , τ

∗
l

)
(1.31)

where Λ∗1,i is as defined in (1.20) with τ̃i−1 and τ̃i replaced by τ ∗i−1 and τ ∗i , re-

spectively. Similar arguments from the proof of Theorem 2 allow us to establish

that, under the null, lω̃2
(
τ ∗1 , . . . , τ

∗
i−1, ζ, τ

∗
i+1, . . . , τ

∗
l

)
= Op (1) and, furthermore,

T
(
RSSR1

(
τ ∗i−1, τ

∗
i

)
− USSR1

(
τ ∗i−1, ζ, τ

∗
i

))
= Op (1) uniformly in ζ, given that

ut v I (0) and the fact that there are no breaks between observations T ∗i−1 + 1

and T ∗i . Hence, the F-statistic in (1.31) is Op

(
l

T

)
uniformly. Since τ̃i − τ ∗i is

Op

(
T−

1
2

)
by the proof of Theorem 3 from HLT, this is enough to establish that,

for each i = 1, . . . , l + 1:

sup
ζεΛ1,i

RSSR1 (τ̃i−1, τ̃i)− USSR1 (τ̃i−1, ζ, τ̃i)

ω̃2 (τ̃1, . . . , τ̃i−1, ζ, τ̃i+1, . . . , τ̃l)
= Op

(
l

T

)

uniformly in ζ. Since, asymptotically, we are taking the maximum over l + 1 i.i.d

random variables that are Op

(
l

T

)
we obtain the desired result.

(ii) (a) Similar arguments from the proof of Theorem 2 can be employed to show that,

under the null of no trend breaks, if ut v I (1), then the left hand side of (1.30)

is Op

(
T

l

)
uniformly over all ζ. Since τ̂i − τ ∗i = Op

(
T−

1
2

)
from Theorem 3 of
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Perron and Zhu (2005) the rate of convergence remains the same when we replace(
τ ∗1 , . . . , τ

∗
i−1, τ

∗
i , . . . , τ

∗
l

)
by (τ̂1, . . . , τ̂i−1, τ̂i, . . . , τ̂l). Hence, we have that, for each

i = 1, . . . , l + 1:

sup
ζεΛ0,i

RSSR0 (τ̂i−1, τ̂i)− USSR0 (τ̂i−1, ζ, τ̂i)

ω̂2 (τ̂1, . . . , τ̂i−1, τ̂i, . . . , τ̂l)
= Op

(
T

l

)

Since, asymptotically, we are taking the maximum over l+ 1 i.i.d random variables

that are Op

(
T

l

)
we obtain the desired result.

(b) Using the fact, under H0, T̂i = T ∗i + Op (1) from Bai and Perron (1998), the

same arguments from (i)(a) can be used to show that:

lim
T→∞

P (z∗1 (l + 1|l) ≤ x) = G1 (x)l+1

where G1 (x)l+1 is the distribution function of sup
τ1∈Λ1

J1

(
τ 1, 0

)
.
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Tab. 1.3: Empirical size of z∗λ(m|0) and Dmaxz∗λ tests, 5% nominal level, T = 150.

ρ θ z∗λ (m|0) UDmaxz∗λ WDmaxz∗λ
m = 1 m = 2 m = 3 m = 4 m = 5

0 -0.5 0.069 0.062 0.041 0.010 0.003 0.020 0.023
0.0 0.068 0.067 0.041 0.012 0.002 0.019 0.023
0.5 0.015 0.005 0.001 0.000 0.000 0.001 0.001

0.87 -0.5 0.052 0.045 0.044 0.045 0.035 0.034 0.038
0.0 0.065 0.056 0.058 0.049 0.034 0.044 0.048
0.5 0.145 0.130 0.117 0.068 0.028 0.090 0.100

0.93 -0.5 0.040 0.050 0.071 0.097 0.097 0.040 0.050
0.0 0.046 0.052 0.068 0.089 0.078 0.042 0.050
0.5 0.105 0.102 0.098 0.082 0.045 0.082 0.088

1 -0.5 0.133 0.187 0.253 0.297 0.312 0.173 0.185
0.0 0.114 0.156 0.210 0.250 0.258 0.143 0.149
0.5 0.109 0.108 0.113 0.114 0.086 0.105 0.105

Tab. 1.4: Size and Power of Sequential Tests, Model B, T=150

Seqz∗λ (1|0) Seqz∗λ (2|0) SeqUDmaxz∗λ SeqWDmaxz∗λ
γ1 γ2 ρ 0 br 1 br 2 br >2br 0 br 1 br 2 br >2br 0 br 1 br 2 br >2br 0 br 1 br 2 br >2br

0 0 0 0.93 0.07 0.00 0.00 0.88 0.07 0.05 0.00 0.92 0.07 0.01 0.00 0.91 0.07 0.02 0.00
0.5 0 0.00 0.98 0.02 0.00 0.00 0.98 0.02 0.00 0.00 0.98 0.02 0.00 0.00 0.98 0.02 0.00
1 0 0.00 0.97 0.03 0.00 0.00 0.97 0.03 0.00 0.00 0.97 0.03 0.00 0.00 0.97 0.03 0.00
0.5 0.5 0.00 0.01 0.98 0.01 0.00 0.01 0.98 0.01 0.00 0.01 0.98 0.01 0.00 0.01 0.98 0.01
1 1 0.00 0.00 0.99 0.01 0.00 0.00 0.99 0.01 0.00 0.00 0.99 0.01 0.00 0.00 0.99 0.01
0.5 -0.5 1.00 0.00 0.00 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.99 0.01 0.00 0.00 0.99 0.01
1 -1 0.31 0.00 0.67 0.01 0.00 0.00 0.98 0.02 0.00 0.00 0.98 0.02 0.00 0.00 0.98 0.02

0 0 0.87 0.94 0.06 0.00 0.00 0.89 0.06 0.04 0.00 0.90 0.06 0.03 0.00 0.89 0.06 0.04 0.00
0.5 0.02 0.95 0.03 0.00 0.02 0.95 0.03 0.00 0.01 0.95 0.03 0.00 0.02 0.95 0.03 0.00
1 0 0.00 0.97 0.03 0.00 0.00 0.97 0.03 0.00 0.00 0.97 0.03 0.00 0.00 0.97 0.03 0.00
0.5 0.5 0.00 0.79 0.20 0.01 0.00 0.79 0.20 0.01 0.00 0.79 0.20 0.01 0.00 0.79 0.20 0.01
1 1 0.00 0.00 0.98 0.02 0.00 0.00 0.98 0.02 0.00 0.00 0.98 0.02 0.00 0.00 0.98 0.02
0.5 -0.5 0.99 0.00 0.00 0.00 0.26 0.00 0.71 0.02 0.52 0.00 0.46 0.02 0.40 0.00 0.57 0.02
1 -1 0.78 0.00 0.21 0.01 0.00 0.00 0.96 0.04 0.00 0.00 0.96 0.04 0.00 0.00 0.96 0.04

0 0 0.93 0.95 0.04 0.00 0.00 0.91 0.04 0.04 0.00 0.92 0.04 0.03 0.01 0.91 0.04 0.04 0.01
0.5 0 0.09 0.88 0.03 0.00 0.07 0.88 0.05 0.00 0.08 0.88 0.04 0.00 0.07 0.88 0.05 0.00
1 0 0.00 0.96 0.03 0.00 0.00 0.96 0.03 0.00 0.00 0.96 0.03 0.00 0.00 0.96 0.03 0.00
0.5 0.5 0.00 0.87 0.12 0.01 0.00 0.87 0.12 0.01 0.00 0.87 0.12 0.01 0.00 0.87 0.12 0.01
1 1 0.00 0.02 0.94 0.04 0.00 0.02 0.94 0.04 0.00 0.02 0.94 0.04 0.00 0.02 0.94 0.04
0.5 -0.5 0.97 0.01 0.02 0.00 0.33 0.01 0.63 0.03 0.53 0.01 0.43 0.03 0.41 0.01 0.55 0.03
1 -1 0.74 0.00 0.25 0.01 0.00 0.00 0.95 0.05 0.00 0.00 0.95 0.05 0.00 0.00 0.95 0.05

0 0 1 0.89 0.10 0.01 0.00 0.79 0.10 0.10 0.00 0.82 0.10 0.07 0.01 0.79 0.10 0.10 0.01
0.5 0 0.23 0.71 0.06 0.00 0.17 0.71 0.12 0.01 0.19 0.71 0.10 0.01 0.17 0.71 0.11 0.01
1 0 0.00 0.91 0.09 0.01 0.00 0.91 0.09 0.01 0.00 0.91 0.09 0.01 0.00 0.91 0.09 0.01
0.5 0.5 0.01 0.85 0.13 0.01 0.00 0.85 0.13 0.01 0.00 0.85 0.13 0.01 0.00 0.85 0.13 0.01
1 1 0.00 0.08 0.85 0.07 0.00 0.08 0.85 0.07 0.00 0.08 0.85 0.07 0.00 0.08 0.85 0.07
0.5 -0.5 0.78 0.11 0.10 0.01 0.30 0.11 0.56 0.03 0.42 0.11 0.43 0.03 0.33 0.11 0.52 0.04
1 -1 0.54 0.01 0.41 0.04 0.00 0.01 0.91 0.08 0.01 0.01 0.90 0.07 0.00 0.01 0.91 0.08
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Tab. 1.5: Empirical Application of z∗λ and Dmaxz∗λ tests

Variables\Test z∗λ (m|0) UDmaxz∗λ WDmaxz∗λ
m = 1 m = 2 m = 3

Real Gross Domestic Product 66.71*** 4.17 3.98 4.61 5.07
(1969Q4)

Real Personal Consumption Expenditures 5.69 6.17 5.35 5.86 6.81

Real Personal Consumption Expenditures -
Durable Goods

1.43 4.07 3.32 3.87 4.40

Real Personal Consumption Expenditures -
NonDur

2.89 4.32 4.07 4.11 5.18

Real Personal Consumption Expenditures -
Services

26.92*** 17.68*** 16.16*** 27.25*** 26.10***
(1972Q4) (1973Q1,1988Q1) (1972Q4,1981Q2,1988Q3)

Real Gross Private Domestic Investment 0.74 1.78 11.22*** 11.20** 14.71***
(1983Q4,1991Q1,1999Q3)

Real Gross Private Domestic Investment -
FixedInv

1.13 2.56 3.04 2.81 3.88

Real Gross Private Domestic Investment -
NonRes

2.46 3.24 3.81 3.52 4.85

Real Gross Private Domestic Investment -
NonRes - struct

4.78 3.94 3.52 4.84 4.64

Real Gross Private Domestic Investment -
NonRes - Equip

2.08 4.07 4.10 3.87 5.22

Real Gross Private Domestic Investment -
Residential

1.46 2.94 2.50 2.79 3.18

Real Exports 1.99 2.80 3.51 3.24 4.47

Real Imports 2.07 3.70 3.25 3.51 4.14

Real Government Consumption Expendi-
tures+Gross Investment

9.66** 11.08*** 9.51*** 10.52** 12.10**
(1967Q4) (1967Q4,1976Q3) (1967Q4,1976Q3,1986Q1)

Real Government Consumption Expendi-
tures+Gross Investment-Fed.

2.91 9.58** 9.69*** 9.10* 12.33**
(1967Q3,1975Q1) (1967Q3,1974Q4,1987Q3)

Real Government Consumption Expendi-
tures+Gross Investment-State/Loc.

19.40*** 14.35*** 15.01*** 19.64*** 19.10***
(1968Q2) (1975Q3,1983Q1) (1968Q2,1975Q3,1983Q1)

Real Final Sales of Domestic Product 71.57*** 5.03 4.77 6.11 6.07
(1969Q4)

Real Gross Domestic Purchases 3.07 3.57 3.10 3.39 3.94

Real Final Sales to Domestic Purchasers 3.96 4.31 3.86 4.09 4.92

Real Gross National Product 71.46*** 4.15 3.86 4.72 4.91
(1969Q4)

Gross Domestic Product 13.94*** 68.56*** 88.65*** 81.82*** 112.83**
(1983Q4) (1967Q3,1982Q2) (1966Q1,1973Q2,1982Q1)

Personal Consumption Expenditures 11.48** 64.04*** 61.24*** 60.83*** 77.95***
(1990Q3) (1972Q3,1981Q3) (1972Q3,1981Q3,1991Q3)

Personal Consumption Expenditures -
Durable Goods

32.26*** 47.97*** 90.30*** 83.34*** 114.93**
(1994Q3) (1973Q2,1981Q4) (1973Q1,1981Q3,1994Q4)

Personal Consumption Expenditures - Non-
durable Goods

9.81** 39.42*** 30.15*** 37.44*** 42.62***
(1981Q2) (1972Q2,1980Q4) (1972Q2,1980Q4,1990Q2)

Personal Consumption Expenditures - Ser-
vices

12.45** 68.05*** 84.82*** 78.28*** 107.95**
(1967Q2) (1972Q4,1983Q2) (1966Q1,1973Q2,1983Q2)

Gross Private Domestic Investment 18.39*** 67.89*** 75.96*** 70.11*** 96.68***
(1982Q1) (1972Q3,1981Q3) (1966Q1,1973Q2,1981Q3)

Gross Private Domestic Investment - Fixed In-
vestment

18.46*** 68.86*** 80.53*** 74.33*** 102.49**
(1982Q1) (1972Q3,1981Q3) (1966Q1,1973Q2,1981Q3)

Gross Private Domestic Investment - NonRes. 23.29*** 65.11*** 66.65*** 61.85*** 84.83***
(1982Q1) (1972Q4,1981Q4) (1966Q1,1973Q2,1981Q4)

Gross Private Domestic Investment - NonRes
- struct

8.66* 25.95*** 29.98*** 27.67*** 38.15***
(1967Q2) (1968Q1,1981Q4) (1968Q1,1981Q4,1999Q2)

Gross Private Domestic Investment - NonRes.
- Equip.

25.75*** 60.61*** 57.38*** 57.57*** 73.03***
(1982Q2) (1973Q2,1981Q4) (1973Q2,1981Q3,1990Q3)

Gross Private Domestic Investment - Res. 12.93*** 48.55*** 44.52*** 46.11*** 56.66***
(1966Q2) (1970Q2,1981Q1) (1966Q2,1973Q3,1981Q1)

Exports 14.94*** 30.43*** 22.20*** 28.90*** 32.90***
(1980Q4) (1972Q1,1980Q4) (1972Q1,1980Q4,1999Q2)

Imports 10.62** 23.22*** 17.26*** 22.05*** 25.10***
(1980Q4) (1971Q3,1980Q4) (1971Q3,1980Q4,1998Q4)
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Tab. 1.6: Empirical Application of z∗λ and Dmaxz∗λ tests (continued)

Variables\Test z∗λ (m|0) UDmaxz∗λ WDmaxz∗λ
m = 1 m = 2 m = 3

Government Consumption Expenditures &
Gross Investment

17.24*** 72.49*** 55.96*** 68.85*** 78.38***
(1983Q4) (1967Q4,1981Q4) (1967Q4,1982Q1,1998Q4)

Government Consumption Expenditures &
Gross Investment - Federal

17.63*** 68.31*** 50.63*** 64.89*** 73.86***
(1983Q4) (1967Q4,1981Q4) (1967Q4,1981Q4,1999Q2)

Government Consumption Expenditures &
Gross Investment - State/local

16.56*** 52.28*** 42.72*** 49.66*** 56.53***
(1982Q2) (1966Q1,1982Q1) (1966Q1,1973Q2,1981Q4)

Final Sales of Domestic Product 13.92*** 69.12*** 90.41*** 83.44*** 115.06**
(1983Q4) (1967Q3,1982Q2) (1966Q1,1973Q2,1982Q1)

Gross Domestic Purchases 13.53*** 64.42*** 76.44*** 70.55*** 97.29***
(1982Q2) (1972Q2,1981Q3) (1966Q1,1973Q2,1981Q3)

Final Sales to Domestic Purchasers 13.57*** 64.91*** 77.79*** 71.79*** 99.00***
(1982Q2) (1972Q2,1981Q4) (1966Q1,1973Q2,1981Q4)

Gross National Product 13.98*** 68.66*** 88.80*** 81.96*** 113.02**
(1983Q4) (1967Q3,1982Q2) (1966Q1,1973Q2,1982Q1)

Output per hour all persons: Business Sector 7.09 7.81* 6.67* 7.42 8.49
(1972Q4,1995Q2) (1972Q4,1982Q4,1995Q1)

Real Compensation per
hour,Employees:Nonfarm Business

10.35** 13.16*** 10.73*** 12.50** 14.22**
(1972Q4) (1972Q4,1996Q4) (1972Q4,1985Q4,1996Q4)

Hours of all persons: NonFarm Business Sec-
tor

18.17*** 2.64 2.46 3.16 3.13
(1998Q1)

Unit Labor Cost: Non farm Business Sector 11.28** 39.60*** 38.50*** 37.62*** 49.00***
(1982Q2) (1972Q3,1981Q4) (1966Q1,1973Q2,1981Q4)

Gross domestic product Price Index 13.63*** 67.66*** 87.20*** 80.49*** 110.99**
(1983Q4) (1967Q3,1982Q2) (1966Q1,1973Q2,1981Q4)

Personal consumption expenditures Price In-
dex

11.38** 63.98*** 60.94*** 60.77*** 77.55***
(1990Q3) (1972Q3,1981Q3) (1972Q3,1981Q3,1991Q3)

Durable goods Price Index 32.49*** 47.90*** 90.80*** 83.80*** 115.56**
(1994Q3) (1973Q2,1981Q4) (1973Q1,1981Q3,1994Q4)

Motor vehicles and parts Price Index 12.13** 38.43*** 46.78*** 43.18*** 59.54***
(1995Q3) (1973Q3,1981Q3) (1973Q2,1981Q3,1995Q3)

Furniture and household equipment Price In-
dex

68.04*** 62.18*** 138.05** 127.42** 175.70**
(1994Q1) (1982Q3,1994Q3) (1973Q1,1982Q1,1994Q3)

Other Price Index 21.76*** 27.75*** 37.16*** 34.30*** 47.30***
(1991Q2) (1973Q2,1980Q4) (1973Q2,1980Q4,1991Q2)

Nondurable goods Price Index 9.78** 39.31*** 30.05*** 37.34*** 42.51***
(1981Q2) (1972Q2,1980Q4) (1972Q2,1980Q4,1990Q2)

Food Price Index 9.62** 43.63*** 33.53*** 41.44*** 47.18***
(1981Q2) (1972Q1,1980Q4) (1972Q1,1980Q4,1990Q3)

Clothing and shoes Price Index 60.84*** 44.79*** 57.13*** 61.59*** 72.71***
(1991Q2) (1966Q1,1991Q2) (1966Q1,1977Q2,1991Q2)

Gasoline, fuel oil, and other energy goods
Price Index

2.39 6.80 8.20** 7.57 10.44*
(1972Q3,1980Q4,1998Q4)

Other Price Index 11.48** 37.81*** 43.59*** 40.24*** 55.48***
(1992Q1) (1973Q1,1982Q4) (1973Q1,1982Q4,1992Q1)

Services Price Index 12.56** 68.03*** 84.97*** 78.42*** 108.14**
(1967Q2) (1972Q4,1983Q2) (1966Q1,1973Q2,1982Q4)

Housing Price Index 20.69*** 66.58*** 82.34*** 76.00*** 104.80**
(1968Q2) (1974Q1,1986Q1) (1967Q1,1974Q2,1986Q1)

Household operation Price Index 13.20*** 48.30*** 38.79*** 45.88*** 52.23***
(1984Q2) (1969Q4,1983Q4) (1966Q1,1973Q2,1982Q4)

Electricity and gas Price Index 6.30 28.93*** 27.03*** 27.48*** 34.40***
(1972Q4,1982Q3) (1972Q4,1982Q4,1999Q2)

Other household operation Price Index 22.09*** 40.21*** 30.69*** 38.20*** 43.48***
(1985Q4) (1967Q2,1985Q2) (1967Q2,1978Q3,1985Q4)

Transportation Price Index 8.16* 23.31*** 21.74*** 22.14*** 27.67***
(1984Q1) (1973Q3,1980Q4) (1966Q1,1973Q3,1980Q4)

Medical care Price Index 19.76*** 40.23*** 48.66*** 44.91*** 61.93***
(1992Q3) (1973Q2,1983Q4) (1973Q2,1982Q4,1992Q4)

Recreation Price Index 15.12*** 25.24*** 23.08*** 23.97*** 29.37***
(1991Q1) (1966Q4,1991Q1) (1973Q1,1981Q3,1991Q1)

Other Price Index 10.26** 33.88*** 30.24*** 32.18*** 38.48***
(1986Q2) (1972Q3,1981Q2) (1972Q4,1981Q2,1991Q3)

Gross private domestic investment Price Index 17.67*** 64.24*** 70.44*** 65.02*** 89.66***
(1982Q1) (1972Q3,1981Q3) (1966Q1,1973Q2,1981Q3)

Fixed investment Price Index 17.81*** 65.40*** 74.84*** 69.08*** 95.25***
(1982Q1) (1972Q3,1981Q3) (1966Q1,1973Q2,1981Q3)

Nonresidential Price Index 22.92*** 63.78*** 64.95*** 60.59*** 82.66***
(1982Q1) (1972Q4,1981Q4) (1966Q1,1973Q2,1981Q4)

Structures 8.60* 25.19*** 29.39*** 27.12*** 37.40***
(1967Q2) (1968Q1,1981Q4) (1968Q1,1981Q4,1999Q2)

Equipment and software Price Index 25.45*** 60.10*** 56.32*** 57.09*** 71.69***
(1982Q2) (1973Q2,1981Q4) (1973Q2,1981Q3,1990Q3)

Residential Price Index 13.05*** 45.06*** 40.59*** 42.80*** 51.65***
(1966Q2) (1970Q2,1981Q1) (1966Q2,1973Q3,1981Q1)
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Tab. 1.7: Empirical Application of z∗λ and Dmaxz∗λ tests (continued)

Variables\Test z∗λ (m|0) UDmaxz∗λ WDmaxz∗λ
m = 1 m = 2 m = 3

Exports Price Index 14.93*** 30.42*** 22.20*** 28.89*** 32.89***
(1980Q4) (1972Q1,1980Q4) (1972Q1,1980Q4,1999Q2)

Goods Price Index 13.98*** 25.83*** 19.21*** 24.54*** 27.93***
(1980Q4) (1972Q1,1980Q4) (1972Q1,1980Q4,1999Q2)

Services Price Index 14.33*** 43.92*** 35.56*** 41.72*** 47.49***
(1982Q4) (1970Q2,1982Q2) (1970Q2,1982Q1,1990Q2)

Imports Price Index 10.71** 23.32*** 17.27*** 22.15*** 25.21***
(1980Q4) (1971Q3,1980Q4) (1971Q3,1980Q4,1998Q4)

Goods Price Index 10.14** 21.66*** 16.07*** 20.58*** 23.42***
(1980Q4) (1971Q2,1980Q4) (1971Q2,1980Q4,1998Q4)

Services Price Index 7.98* 24.82*** 18.18*** 23.57*** 26.83***
(1980Q2) (1970Q2,1980Q2) (1970Q2,1980Q2,1990Q2)

Government consumption expenditures and
gross investment Price Index

16.59*** 69.63*** 54.86*** 66.14*** 75.28***
(1983Q4) (1967Q4,1981Q4) (1967Q4,1982Q1,1999Q1)

Federal Price Index 17.21*** 66.92*** 50.27*** 63.57*** 72.36***
(1983Q4) (1967Q4,1981Q4) (1967Q4,1981Q4,1999Q2)

State and local Price Index 15.82*** 49.81*** 40.56*** 47.32*** 53.86***
(1982Q2) (1966Q1,1982Q1) (1966Q1,1973Q2,1981Q4)

Industrial Production Index - Total Index 5.12 4.73 4.12 5.19 5.24
Industrial Production Index - Products, Total 6.58 4.25 3.83 6.66 6.38
Industrial Production Index - Final Products 7.62 5.13 4.34 7.72 7.39
Industrial Production Index - Consumer
Goods

10.69** 7.90* 6.05 10.83** 10.37*
(1973M1) (1973M1,1982M11)

Industrial Production Index - Durable Con-
sumer Goods

2.96 4.41 3.79 4.19 4.82

Industrial Production Index - Nondurable
Consumer Goods

19.41*** 11.37*** 8.59** 19.65*** 18.82***
(1973M1) (1967M3,1978M2) (1967M3,1978M2,1985M10)

Industrial Production Index - Business Equip-
ment

2.17 2.25 2.51 2.32 3.20

Industrial Production Index - Materials 3.78 4.43 3.74 4.20 4.78
Industrial Production Index - Durable Goods
Materials

2.98 4.55 3.78 4.32 4.92

Industrial Production Index - Nondurable
Goods Materials

14.34*** 8.54** 6.67* 14.52*** 13.91**
(1973M12) (1973M12,1982M11) (1973M12,1982M11,1999M9)

Industrial Production Index - Manufacturing 3.85 4.02 3.66 3.89 4.66
Industrial Production Index - Residential Util-
ities

2232.62* 111.47** 878.90** 2592.92* 2592.90*
(1973M9) (1973M9,1994M4) (1973M9,1983M3,1988M5)

Industrial Production Index - Fuels 5.59 5.78 4.57 5.69 6.28
Napm Production Index (Percent) 4.73 1.79 1.59 1.57 2.02
Capacity Utilization - Manufacturing 1.81 3.07 2.53 2.91 3.32
Avg Hrly Earnings, Prod Wrkrs, Nonfarm -
Goods-Producing

78.08*** 205.14** 173.79** 194.86** 221.80**
(1982M6) (1967M4,1982M4) (1967M1,1974M3,1982M1)

Avg Hrly Earnings, Prod Wrkrs, Nonfarm -
Construction

96.10*** 86.16*** 63.16*** 97.29*** 93.19***
(1981M11) (1967M1,1981M11) (1967M1,1975M2,1982M6)

Avg Hrly Earnings, Prod Wrkrs, Nonfarm -
Mfg

60.42*** 134.08** 128.00** 127.36** 162.91**
(1982M5) (1967M8,1982M1) (1967M1,1974M3,1981M12)

Real Avg Hrly Earnings, Prod Wrkrs, Non-
farm - Goods-Producing

41.22*** 30.37*** 27.58*** 41.74*** 39.98***
(1972M12) (1972M12,1993M4) (1972M12,1981M11,1992M11)

Real Avg Hrly Earnings, Prod Wrkrs, Non-
farm - Construction

82.53*** 60.76*** 47.63*** 83.56*** 80.04***
(1972M12) (1972M12,1993M8) (1972M12,1981M11,1993M8)

Real Avg Hrly Earnings, Prod Wrkrs, Non-
farm - Mfg

24.75*** 19.58*** 14.50*** 25.06*** 24.00***
(1978M11) (1978M11,1992M10) (1978M11,1986M1,1993M4)

Employees, Nonfarm - Total Private 5.73 3.84 3.84 5.80 5.56
Employees, Nonfarm - Goods-Producing 5.03 3.36 3.70 5.09 4.88
Employees, Nonfarm - Mining 6.76 12.73*** 13.81*** 12.75** 17.58***

(1971M9,1981M10) (1971M9,1981M10,1989M6)

Employees, Nonfarm - Construction 3.68 3.43 3.35 3.73 4.27
Employees, Nonfarm - Mfg 8.94* 7.37 5.51 9.05* 8.67

(1979M5)

Employees, Nonfarm - Durable Goods 7.07 5.10 4.44 7.16 6.85
Employees, Nonfarm - Nondurable Goods 22.47*** 16.39*** 11.95*** 22.75*** 21.79***

(1998M1) (1969M7,1998M2) (1966M12,1974M11,1998M2)

Employees, Nonfarm - Service-Providing 20.22*** 16.50*** 12.18*** 20.47*** 19.61***
(1990M1) (1979M5,1999M9) (1979M5,1992M7,1999M9)

Employees, Nonfarm - Trade, Transport, Util-
ities

15.41*** 10.50** 8.15** 15.61*** 14.95***
(1989M4) (1989M2,1999M9) (1971M8,1979M2,1999M9)
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Tab. 1.8: Empirical Application of z∗λ and Dmaxz∗λ tests (continued)

Variables\Test z∗λ (m|0) UDmaxz∗λ WDmaxz∗λ
m = 1 m = 2 m = 3

Employees, Nonfarm - Wholesale Trade 16.30*** 11.51*** 9.77*** 16.50*** 15.81***
(1980M1) (1980M1,1999M9) (1971M4,1979M5,1999M9)

Employees, Nonfarm - Retail Trade 28.21*** 17.35*** 12.88*** 28.56*** 27.36***
(1989M4) (1989M4,1999M8) (1979M2,1989M4,1999M8)

Employees, Nonfarm - Financial Activities 45.38*** 29.01*** 23.31*** 45.94*** 44.01***
(1987M6) (1987M8,1995M6) (1966M8,1987M6,1995M6)

Employees, Nonfarm - Government 67.82*** 42.31*** 32.54*** 68.66*** 65.77***
(1975M3) (1968M6,1978M5) (1968M6,1978M3,1985M5)

Index Of Help-Wanted Advertising In News-
papers

5.46 4.02 4.01 5.53 5.30

Employment: Ratio; Help-Wanted Ads:No.
Unemployed Clf

5.99 5.75 4.57 6.06 6.22

Civilian Labor Force: Employed, Total
(Thous.)

5.72 5.96 4.78 5.79 6.44

Civilian Labor Force: Employed, Nona-
gric.Industries (Thous.)

7.95* 6.23 4.97 8.05 7.71
(1979M1)

Unemployment Rate: All Workers, 16 Years
& Over (%)

3.90 5.40 5.53 5.13 7.04

Unemploy.By Duration: Aver-
age(Mean)Duration In Weeks

3.08 3.88 4.25 3.92 5.41

Unemploy.By Duration: Persons Unempl.Less
Than 5 Wks (Thous.)

3.96 4.54 3.91 4.31 4.97

Unemploy.By Duration: Persons Unempl.5 To
14 Wks (Thous.)

2.45 5.16 3.97 4.90 5.58

Unemploy.By Duration: Persons Unempl.15
Wks + (Thous.)

4.09 6.67 5.39 6.33 7.21

Unemploy.By Duration: Persons Unempl.15
To 26 Wks (Thous.)

2.92 4.87 4.19 4.63 5.34

Unemploy.By Duration: Persons Unempl.27
Wks (Thous)

5.07 7.31 5.64 6.94 7.90

Avg Wkly Hours, Prod Wrkrs, Nonfarm -
Goods-Producing

1.07 2.57 2.25 2.44 2.87

Avg Wkly Overtime Hours, Prod Wrkrs, Non-
farm

1.90 2.60 3.20 2.96 4.08

Housing Authorized: Total New Priv Housing
Units (Thous.)

1.73 2.40 2.24 2.28 2.85

Housing Starts:Nonfarm(1947-58) 1.60 2.09 1.91 1.99 2.44
Housing Starts:Northeast (Thous.U.) 1.37 2.05 2.16 2.00 2.75
Housing Starts:Midwest(Thous.U.) 1.68 2.76 2.66 2.62 3.38
Housing Starts:South (Thous.U.) 1.01 2.66 2.65 2.52 3.37
Housing Starts:West (Thous.U.) 2.32 2.70 2.43 2.56 3.10
Interest Rate: Federal Funds (Effective) (%
Per Annum)

4.14 4.07 4.04 4.19 5.14

Interest Rate: U.S.Treasury Bills,Sec Mkt,3-
Mo.(% Per Annum)

3.99 4.15 4.10 4.04 5.22

Interest Rate: U.S.Treasury Bills,Sec Mkt,6-
Mo.(% Per Annum)

4.03 4.15 4.06 4.08 5.17

Interest Rate: U.S.Treasury Const
Maturities,1-Yr.(% Per Annum)

4.59 4.64 4.40 4.64 5.60

Interest Rate: U.S.Treasury Const
Maturities,5-Yr.(% Per Annum)

6.85 5.58 5.11 6.93 6.64

Interest Rate: U.S.Treasury Const
Maturities,10-Yr.(% Per Annum)

8.66* 6.81 6.06 8.77* 8.40
(1981M8)

Bond Yield: Moody’S Aaa Corporate (% Per
Annum)

12.92*** 9.38** 7.96** 13.08*** 12.53**
(1981M8) (1973M3,1981M8) (1973M3,1981M8,1993M9)

Bond Yield: Moody’S Baa Corporate (% Per
Annum)

13.57*** 10.03** 8.97*** 13.74*** 13.16**
(1981M12) (1981M12,1993M9) (1973M3,1981M12,1993M9)

Fygm6-Fygm3 1.14 2.20 2.19 2.09 2.79
Fygt1-Fygm3 1.57 2.34 2.49 2.32 3.18
Fygt10-Fygm3 0.82 1.74 1.79 1.66 2.28
Fyaaac-Fygt10 1.79 1.59 5.58 5.47 7.27
Fybaac-Fygt10 1.62 1.68 1.64 1.64 2.09
Money Stock: M1 28.05*** 28.75*** 22.32*** 28.40*** 31.09***

(1994M1) (1966M12,1994M1) (1966M12,1980M2,1993M10)
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Tab. 1.9: Empirical Application of z∗λ and Dmaxz∗λ tests (continued)

Variables\Test z∗λ (m|0) UDmaxz∗λ WDmaxz∗λ
m = 1 m = 2 m = 3

Mzm Frb St. Louis 5.68 9.50** 8.14** 9.03* 10.36*
(1980M2,1987M4) (1980M2,1987M4,1995M3)

Money Stock:M2 37.62*** 33.84*** 33.68*** 38.08*** 42.87***
(1986M11) (1970M5,1986M11) (1970M5,1986M11,1995M3)

Monetary Base, Adj For Reserve Requirement
Changes

34.00*** 28.08*** 21.27*** 34.43*** 32.98***
(1967M5) (1967M5,1994M10) (1966M11,1975M2,1994M6)

Depository Inst Reserves:Total 18.64*** 16.45*** 12.01*** 18.87*** 18.07***
(1993M11) (1982M5,1993M11) (1966M10,1982M5,1993M11)

Depository Inst Reserves:Nonborrowed 9.22* 13.64*** 9.96*** 12.96** 14.75***
(1993M11) (1984M6,1993M11) (1974M8,1984M6,1993M11)

Commercial And Industrial Loans At All
Commercial Banks

19.69*** 13.26*** 9.91*** 19.94*** 19.10***
(1985M1) (1986M11,1994M1) (1975M1,1986M11,1994M1)

Consumer Credit Outstanding - Nonrevolving 9.19* 17.82*** 14.46*** 16.92*** 19.26***
(1986M8) (1986M8,1993M10) (1976M11,1986M8,1993M10)

Personal Consumption Expenditures, Price
Index

22.16*** 106.56** 99.01*** 101.21** 126.01**
(1990M11) (1972M11,1981M10) (1966M2,1973M4,1981M10)

Personal Consumption Expenditures -
Durable Goods, Price Index

56.02*** 74.30*** 107.79** 99.49*** 137.19**
(1995M2) (1973M10,1981M12) (1973M10,1981M10,1995M2)

Personal Consumption Expenditures - Non-
durable Goods, Price Index

16.13*** 54.52*** 40.73*** 51.79*** 58.95***
(1981M2) (1972M10,1981M2) (1972M9,1981M2,1990M7)

Personal Consumption Expenditures - Ser-
vices, Price Index

25.45*** 120.39** 137.55** 126.95** 175.06**
(1967M7) (1973M3,1982M12) (1966M2,1973M5,1982M12)

CPI All Items 16.95*** 93.09*** 82.07*** 88.42*** 104.46**
(1967M4) (1972M11,1981M8) (1966M2,1973M4,1981M8)

CPI Less Food And Energy 19.71*** 85.03*** 90.27*** 83.31*** 114.88**
(1966M2) (1973M6,1982M6) (1966M2,1973M10,1982M5)

PCE Price Index Less Food And Energy 31.48*** 98.53*** 115.23** 106.35** 146.65**
(1992M2) (1973M4,1982M12) (1973M5,1982M9,1992M2)

Producer Price Index: Finished Goods 13.54*** 67.60*** 48.08*** 64.21*** 73.09***
(1981M11) (1972M9,1981M5) (1972M9,1981M3,1990M7)

Producer Price Index:Finished Consumer
Goods

9.88** 49.94*** 36.45*** 47.44*** 54.00***
(1981M4) (1972M9,1981M3) (1972M9,1981M3,1999M1)

Producer Price Index:Intermed Mat.Supplies
& Components

9.07* 34.83*** 27.09*** 33.08*** 37.66***
(1981M6) (1972M6,1981M3) (1972M6,1981M3,1999M1)

Producer Price Index:Crude Materials 3.89 4.87 5.85 5.40 7.45
Real Producer Price Index:Crude Materials 6.34 5.36 4.80 6.41 6.14
Spot Market Price Index:Bls & Crb: All Com-
modities

2.38 6.16 5.88 5.85 7.49

Real Spot Market Price Index:Bls & Crb: All
Commodities

3.26 5.01 5.10 4.76 6.50

Producer Price Index: Crude Petroleum 4.94 6.39 6.08 6.07 7.74
PPI Crude 6.06 6.48 5.58 6.16 7.10
NAPM Commodity Prices Index (Percent) 0.58 1.59 1.14 1.05 1.45
Effective Exchange Rate: United States 4.18 6.66 7.06* 6.51 8.98*

(1977M11,1985M1,1992M7)

Foreign Exchange Rate: Switzerland 2.02 5.76 5.18 5.48 6.59
Foreign Exchange Rate: Japan 4.21 6.66 4.97 6.33 7.20
Foreign Exchange Rate: United Kingdom 5.93 5.47 5.35 6.00 6.80
Foreign Exchange Rate: Canada 9.98** 8.89** 8.00** 10.11** 10.18*

(1998M10) (1991M8,1998M10) (1984M5,1991M8,1998M10)

S&P’S Common Stock Price Index: Compos-
ite

3.86 5.40 4.23 5.13 5.83

S&P’S Common Stock Price Index: Industri-
als

3.39 5.63 4.39 5.35 6.09

S&P’S Composite Common Stock: Dividend
Yield (% Per Annum)

4.44 4.46 4.25 4.49 5.41

S&P’S Composite Common Stock: Price-
Earnings Ratio (%)

3.35 3.77 2.90 3.58 4.07

Common Stock Prices: Dow Jones Industrial
Average

6.56 6.81 5.32 6.64 7.36

U. Of Mich. Index Of Consumer Expectations 1.36 2.13 1.99 2.02 2.53
Purchasing Managers’ Index 2.37 1.69 1.66 1.60 2.12
NAPM New Orders Index (Percent) 2.12 1.92 1.61 1.49 2.06
NAPM Vendor Deliveries Index (Percent) 1.69 1.64 1.62 1.56 2.06
NAPM Inventories Index (Percent) 0.66 1.29 1.13 1.22 1.43
New Orders (Net) - Consumer Goods & Ma-
terials

3.79 3.53 3.68 3.84 4.68

New Orders, Nondefense Capital Goods 3.68 3.06 2.54 3.72 3.56
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Tab. 1.10: Empirical Application of Sequential tests to various U.S. macroeconomic time series

Variables\Test Seqz∗λ (1\0) Seqz∗λ (2\0) SeqUDmaxz∗λ SeqWDmaxz∗λ
Real Gross Domestic Product 1 1 1 1

(1969Q4) (1969Q4) (1969Q4) (1969Q4)

Real Personal Consumption Expenditures 0 0 0 0

Real Personal Consumption Expenditures -
Durable Goods

0 0 0 0

Real Personal Consumption Expenditures -
NonDur

0 0 0 0

Real Personal Consumption Expenditures -
Services

1 1 1 1
(1972Q4) (1972Q4) (1972Q4) (1972Q4)

Real Gross Private Domestic Investment 0 0 2 2
(1972Q4,1982Q3) (1972Q4,1982Q3)

Real Gross Private Domestic Investment -
FixedInv

0 0 0 0

Real Gross Private Domestic Investment -
NonRes

0 0 0 0

Real Gross Private Domestic Investment -
NonRes - struct

0 0 0 0

Real Gross Private Domestic Investment -
NonRes - Equip

0 0 0 0

Real Gross Private Domestic Investment -
Residential

0 0 0 0

Real Exports 0 0 0 0

Real Imports 0 0 0 0

Real Government Consumption Expendi-
tures+Gross Investment

0 2 2 2
(1967Q4,1976Q3) (1967Q4,1976Q3) (1967Q4,1976Q3)

Real Government Consumption Expendi-
tures+Gross Investment-Fed.

0 2 0 2
(1967Q3,1975Q1) (1967Q3,1975Q1)

Real Government Consumption Expendi-
tures+Gross Investment-State/Loc.

1 1 1 1
(1968Q2) (1968Q2) (1968Q2) (1968Q2)

Real Final Sales of Domestic Product 1 1 1 1
(1969Q4) (1969Q4) (1969Q4) (1969Q4)

Real Gross Domestic Purchases 0 0 0 0

Real Final Sales to Domestic Purchasers 0 0 0 0

Real Gross National Product 1 1 1 1
(1969Q4) (1969Q4) (1969Q4) (1969Q4)

Gross Domestic Product 3 3 3 3
(1966Q1,1973Q2,1982Q1) (1966Q1,1973Q2,1982Q1) (1966Q1,1973Q2,1982Q1) (1966Q1,1973Q2,1982Q1)

Personal Consumption Expenditures 3 3 3 3
(1972Q3,1981Q3,1991Q3) (1972Q3,1981Q3,1991Q3) (1972Q3,1981Q3,1991Q3) (1972Q3,1981Q3,1991Q3)

Personal Consumption Expenditures -
Durable Goods

3 3 3 3
(1973Q1,1981Q3,1994Q4) (1973Q1,1981Q3,1994Q4) (1973Q1,1981Q3,1994Q4) (1973Q1,1981Q3,1994Q4)

Personal Consumption Expenditures - Non-
durable Goods

2 2 2 2
(1972Q2,1980Q4) (1972Q2,1980Q4) (1972Q2,1980Q4) (1972Q2,1980Q4)

Personal Consumption Expenditures - Ser-
vices

3 3 3 3
(1966Q1,1973Q2,1983Q2) (1966Q1,1973Q2,1983Q2) (1966Q1,1973Q2,1983Q2) (1966Q1,1973Q2,1983Q2)

Gross Private Domestic Investment 2 2 2 2
(1972Q3,1981Q3) (1972Q3,1981Q3) (1972Q3,1981Q3) (1972Q3,1981Q3)

Gross Private Domestic Investment - Fixed In-
vestment

2 2 2 2
(1972Q3,1981Q3) (1972Q3,1981Q3) (1972Q3,1981Q3) (1972Q3,1981Q3)

Gross Private Domestic Investment - NonRes. 2 2 2 2
(1972Q4,1981Q4) (1972Q4,1981Q4) (1972Q4,1981Q4) (1972Q4,1981Q4)

Gross Private Domestic Investment - NonRes
- struct

0 3 3 3
(1968Q1,1981Q4,1999Q2) (1968Q1,1981Q4,1999Q2) (1968Q1,1981Q4,1999Q2)

Gross Private Domestic Investment - NonRes.
- Equip.

2 2 2 2
(1973Q2,1981Q4) (1973Q2,1981Q4) (1973Q2,1981Q4) (1973Q2,1981Q4)

Gross Private Domestic Investment - Res. 2 2 2 2
(1970Q2,1981Q1) (1970Q2,1981Q1) (1970Q2,1981Q1) (1970Q2,1981Q1)

Exports 2 2 2 2
(1972Q1,1980Q4) (1972Q1,1980Q4) (1972Q1,1980Q4) (1972Q1,1980Q4)

Imports 2 2 2 2
(1971Q3,1980Q4) (1971Q3,1980Q4) (1971Q3,1980Q4) (1971Q3,1980Q4)
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Tab. 1.11: Empirical Application of Sequential tests to various U.S. macroeconomic time
series (continued)

Variables\Test Seqz∗λ (1\0) Seqz∗λ (2\0) SeqUDmaxz∗λ SeqWDmaxz∗λ
Government Consumption Expenditures &
Gross Investment

2 2 2 2
(1967Q4,1981Q4) (1967Q4,1981Q4) (1967Q4,1981Q4) (1967Q4,1981Q4)

Government Consumption Expenditures &
Gross Investment - Federal

2 2 2 2
(1967Q4,1981Q4) (1967Q4,1981Q4) (1967Q4,1981Q4) (1967Q4,1981Q4)

Government Consumption Expenditures &
Gross Investment - State/local

2 2 2 2
(1966Q1,1982Q1) (1966Q1,1982Q1) (1966Q1,1982Q1) (1966Q1,1982Q1)

Final Sales of Domestic Product 3 3 3 3
(1966Q1,1973Q2,1982Q1) (1966Q1,1973Q2,1982Q1) (1966Q1,1973Q2,1982Q1) (1966Q1,1973Q2,1982Q1)

Gross Domestic Purchases 2 2 2 2
(1972Q2,1981Q3) (1972Q2,1981Q3) (1972Q2,1981Q3) (1972Q2,1981Q3)

Final Sales to Domestic Purchasers 2 2 2 2
(1972Q2,1981Q4) (1972Q2,1981Q4) (1972Q2,1981Q4) (1972Q2,1981Q4)

Gross National Product 3 3 3 3
(1966Q1,1973Q2,1982Q1) (1966Q1,1973Q2,1982Q1) (1966Q1,1973Q2,1982Q1) (1966Q1,1973Q2,1982Q1)

Output per hour all persons: Business Sector 0 0 0 0

Real Compensation per
hour,Employees:Nonfarm Business

2 2 2 2
(1972Q4,1996Q4) (1972Q4,1996Q4) (1972Q4,1996Q4) (1972Q4,1996Q4)

Hours of all persons: NonFarm Business Sec-
tor

1 1 1 1
(1998Q1) (1998Q1) (1998Q1) (1998Q1)

Unit Labor Cost: Non farm Business Sector 2 2 2 2
(1972Q3,1981Q4) (1972Q3,1981Q4) (1972Q3,1981Q4) (1972Q3,1981Q4)

Gross domestic product Price Index 3 3 3 3
(1966Q1,1973Q2,1981Q4) (1966Q1,1973Q2,1981Q4) (1966Q1,1973Q2,1981Q4) (1966Q1,1973Q2,1981Q4)

Personal consumption expenditures Price In-
dex

3 3 3 3
(1972Q3,1981Q3,1991Q3) (1972Q3,1981Q3,1991Q3) (1972Q3,1981Q3,1991Q3) (1972Q3,1981Q3,1991Q3)

Durable goods Price Index 3 3 3 3
(1973Q1,1981Q3,1994Q4) (1973Q1,1981Q3,1994Q4) (1973Q1,1981Q3,1994Q4) (1973Q1,1981Q3,1994Q4)

Motor vehicles and parts Price Index 3 3 3 3
(1973Q2,1981Q3,1995Q3) (1973Q2,1981Q3,1995Q3) (1973Q2,1981Q3,1995Q3) (1973Q2,1981Q3,1995Q3)

Furniture and household equipment Price In-
dex

3 3 3 3
(1973Q1,1982Q1,1994Q3) (1973Q1,1982Q1,1994Q3) (1973Q1,1982Q1,1994Q3) (1973Q1,1982Q1,1994Q3)

Other Price Index 3 3 3 3
(1973Q2,1980Q4,1991Q2) (1973Q2,1980Q4,1991Q2) (1973Q2,1980Q4,1991Q2) (1973Q2,1980Q4,1991Q2)

Nondurable goods Price Index 2 2 2 2
(1972Q2,1980Q4) (1972Q2,1980Q4) (1972Q2,1980Q4) (1972Q2,1980Q4)

Food Price Index 0 2 2 2
(1972Q1,1980Q4) (1972Q1,1980Q4) (1972Q1,1980Q4)

Clothing and shoes Price Index 1 1 1 1
(1991Q2) (1991Q2) (1991Q2) (1991Q2)

Gasoline, fuel oil, and other energy goods
Price Index

0 0 0 0

Other Price Index 3 3 3 3
(1973Q1,1982Q4,1992Q1) (1973Q1,1982Q4,1992Q1) (1973Q1,1982Q4,1992Q1) (1973Q1,1982Q4,1992Q1)

Services Price Index 3 3 3 3
(1966Q1,1973Q2,1982Q4) (1966Q1,1973Q2,1982Q4) (1966Q1,1973Q2,1982Q4) (1966Q1,1973Q2,1982Q4)

Housing Price Index 3 3 3 3
(1967Q1,1974Q2,1986Q1) (1967Q1,1974Q2,1986Q1) (1967Q1,1974Q2,1986Q1) (1967Q1,1974Q2,1986Q1)

Household operation Price Index 2 2 2 2
(1969Q4,1983Q4) (1969Q4,1983Q4) (1969Q4,1983Q4) (1969Q4,1983Q4)

Electricity and gas Price Index 0 2 2 2
(1972Q4,1982Q3) (1972Q4,1982Q3) (1972Q4,1982Q3)

Other household operation Price Index 2 2 2 2
(1967Q2,1985Q2) (1967Q2,1985Q2) (1967Q2,1985Q2) (1967Q2,1985Q2)

Transportation Price Index 0 2 2 2
(1973Q3,1980Q4) (1973Q3,1980Q4) (1973Q3,1980Q4)

Medical care Price Index 3 3 3 3
(1973Q2,1982Q4,1992Q4) (1973Q2,1982Q4,1992Q4) (1973Q2,1982Q4,1992Q4) (1973Q2,1982Q4,1992Q4)

Recreation Price Index 2 2 2 2
(1966Q4,1991Q1) (1966Q4,1991Q1) (1966Q4,1991Q1) (1966Q4,1991Q1)

Other Price Index 2 2 2 2
(1972Q3,1981Q2) (1972Q3,1981Q2) (1972Q3,1981Q2) (1972Q3,1981Q2)

Gross private domestic investment Price Index 2 2 2 2
(1972Q3,1981Q3) (1972Q3,1981Q3) (1972Q3,1981Q3) (1972Q3,1981Q3)

Fixed investment Price Index 2 2 2 2
(1972Q3,1981Q3) (1972Q3,1981Q3) (1972Q3,1981Q3) (1972Q3,1981Q3)

Nonresidential Price Index 2 2 2 2
(1972Q4,1981Q4) (1972Q4,1981Q4) (1972Q4,1981Q4) (1972Q4,1981Q4)

Structures 0 3 3 3
(1968Q1,1981Q4,1999Q2) (1968Q1,1981Q4,1999Q2) (1968Q1,1981Q4,1999Q2)

Equipment and software Price Index 2 2 2 2
(1973Q2,1981Q4) (1973Q2,1981Q4) (1973Q2,1981Q4) (1973Q2,1981Q4)

Residential Price Index 2 2 2 2
(1970Q2,1981Q1) (1970Q2,1981Q1) (1970Q2,1981Q1) (1970Q2,1981Q1)
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Tab. 1.12: Empirical Application of Sequential tests to various U.S. macroeconomic time
series (continued)

Variables\Test Seqz∗λ (1\0) Seqz∗λ (2\0) SeqUDmaxz∗λ SeqWDmaxz∗λ
Exports Price Index 2 2 2 2

(1972Q1,1980Q4) (1972Q1,1980Q4) (1972Q1,1980Q4) (1972Q1,1980Q4)

Goods Price Index 2 2 2 2
(1972Q1,1980Q4) (1972Q1,1980Q4) (1972Q1,1980Q4) (1972Q1,1980Q4)

Services Price Index 2 2 2 2
(1970Q2,1982Q2) (1970Q2,1982Q2) (1970Q2,1982Q2) (1970Q2,1982Q2)

Imports Price Index 2 2 2 2
(1971Q3,1980Q4) (1971Q3,1980Q4) (1971Q3,1980Q4) (1971Q3,1980Q4)

Goods Price Index 2 2 2 2
(1971Q2,1980Q4) (1971Q2,1980Q4) (1971Q2,1980Q4) (1971Q2,1980Q4)

Services Price Index 0 2 2 2
(1970Q2,1980Q2) (1970Q2,1980Q2) (1970Q2,1980Q2)

Government consumption expenditures and
gross investment Price Index

2 2 2 2
(1967Q4,1981Q4) (1967Q4,1981Q4) (1967Q4,1981Q4) (1967Q4,1981Q4)

Federal Price Index 2 2 2 2
(1967Q4,1981Q4) (1967Q4,1981Q4) (1967Q4,1981Q4) (1967Q4,1981Q4)

State and local Price Index 2 2 2 2
(1966Q1,1982Q1) (1966Q1,1982Q1) (1966Q1,1982Q1) (1966Q1,1982Q1)

Industrial Production Index - Total Index 0 0 0 0
Industrial Production Index - Products, Total 0 0 0 0
Industrial Production Index - Final Products 0 0 0 0
Industrial Production Index - Consumer
Goods

1 1 1 1
(1973M1) (1973M1) (1973M1) (1973M1)

Industrial Production Index - Durable Con-
sumer Goods

0 0 0 0

Industrial Production Index - Nondurable
Consumer Goods

1 1 1 1
(1973M1) (1973M1) (1973M1) (1973M1)

Industrial Production Index - Business Equip-
ment

0 0 0 0

Industrial Production Index - Materials 0 0 0 0
Industrial Production Index - Durable Goods
Materials

0 0 0 0

Industrial Production Index - Nondurable
Goods Materials

1 1 1 1
(1973M12) (1973M12) (1973M12) (1973M12)

Industrial Production Index - Manufacturing 0 0 0 0
Industrial Production Index - Residential Util-
ities

1 1 1 1
(1973M9) (1973M9) (1973M9) (1973M9)

Industrial Production Index - Fuels 0 0 0 0
Napm Production Index (Percent) 0 0 0 0
Capacity Utilization - Manufacturing 0 0 0 0
Avg Hrly Earnings, Prod Wrkrs, Nonfarm -
Goods-Producing

3 3 3 3
(1967M1,1974M3,1982M1) (1967M1,1974M3,1982M1) (1967M1,1974M3,1982M1) (1967M1,1974M3,1982M1)

Avg Hrly Earnings, Prod Wrkrs, Nonfarm -
Construction

2 2 2 2
(1967M1,1981M11) (1967M1,1981M11) (1967M1,1981M11) (1967M1,1981M11)

Avg Hrly Earnings, Prod Wrkrs, Nonfarm -
Mfg

3 3 3 3
(1967M1,1974M3,1981M12) (1967M1,1974M3,1981M12) (1967M1,1974M3,1981M12) (1967M1,1974M3,1981M12)

Real Avg Hrly Earnings, Prod Wrkrs, Non-
farm - Goods-Producing

1 1 1 1
(1972M12) (1972M12) (1972M12) (1972M12)

Real Avg Hrly Earnings, Prod Wrkrs, Non-
farm - Construction

2 2 2 2
(1972M12,1993M8) (1972M12,1993M8) (1972M12,1993M8) (1972M12,1993M8)

Real Avg Hrly Earnings, Prod Wrkrs, Non-
farm - Mfg

1 1 1 1
(1978M11) (1978M11) (1978M11) (1978M11)

Employees, Nonfarm - Total Private 0 0 0 0
Employees, Nonfarm - Goods-Producing 0 0 0 0
Employees, Nonfarm - Mining 0 3 3 3

(1971M9,1981M10,1989M6) (1971M9,1981M10,1989M6) (1971M9,1981M10,1989M6)

Employees, Nonfarm - Construction 0 0 0 0
Employees, Nonfarm - Mfg 0 0 0 0
Employees, Nonfarm - Durable Goods 0 0 0 0
Employees, Nonfarm - Nondurable Goods 1 1 1 1

(1998M1) (1998M1) (1998M1) (1998M1)

Employees, Nonfarm - Service-Providing 1 1 1 1
(1990M1) (1990M1) (1990M1) (1990M1)

Employees, Nonfarm - Trade, Transport, Util-
ities

1 1 1 1
(1989M4) (1989M4) (1989M4) (1989M4)
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Tab. 1.13: Empirical Application of Sequential tests to various U.S. macroeconomic time
series (continued)

Variables\Test Seqz∗λ (1\0) Seqz∗λ (2\0) SeqUDmaxz∗λ SeqWDmaxz∗λ
Employees, Nonfarm - Wholesale Trade 1 1 1 1

(1980M1) (1980M1) (1980M1) (1980M1)

Employees, Nonfarm - Retail Trade 1 1 1 1
(1989M4) (1989M4) (1989M4) (1989M4)

Employees, Nonfarm - Financial Activities 1 1 1 1
(1987M6) (1987M6) (1987M6) (1987M6)

Employees, Nonfarm - Government 1 1 1 1
(1975M3) (1975M3) (1975M3) (1975M3)

Index Of Help-Wanted Advertising In News-
papers

0 0 0 0

Employment: Ratio; Help-Wanted Ads:No.
Unemployed Clf

0 0 0 0

Civilian Labor Force: Employed, Total
(Thous.)

0 0 0 0

Civilian Labor Force: Employed, Nona-
gric.Industries (Thous.)

0 0 0 0

Unemployment Rate: All Workers, 16 Years
& Over (%)

0 0 0 0

Unemploy.By Duration: Aver-
age(Mean)Duration In Weeks

0 0 0 0

Unemploy.By Duration: Persons Unempl.Less
Than 5 Wks (Thous.)

0 0 0 0

Unemploy.By Duration: Persons Unempl.5 To
14 Wks (Thous.)

0 0 0 0

Unemploy.By Duration: Persons Unempl.15
Wks + (Thous.)

0 0 0 0

Unemploy.By Duration: Persons Unempl.15
To 26 Wks (Thous.)

0 0 0 0

Unemploy.By Duration: Persons Unempl.27
Wks (Thous)

0 0 0 0

Avg Wkly Hours, Prod Wrkrs, Nonfarm -
Goods-Producing

0 0 0 0

Avg Wkly Overtime Hours, Prod Wrkrs, Non-
farm

0 0 0 0

Housing Authorized: Total New Priv Housing
Units (Thous.)

0 0 0 0

Housing Starts:Nonfarm(1947-58) 0 0 0 0
Housing Starts:Northeast (Thous.U.) 0 0 0 0
Housing Starts:Midwest(Thous.U.) 0 0 0 0
Housing Starts:South (Thous.U.) 0 0 0 0
Housing Starts:West (Thous.U.) 0 0 0 0
Interest Rate: Federal Funds (Effective) (%
Per Annum)

0 0 0 0

Interest Rate: U.S.Treasury Bills,Sec Mkt,3-
Mo.(% Per Annum)

0 0 0 0

Interest Rate: U.S.Treasury Bills,Sec Mkt,6-
Mo.(% Per Annum)

0 0 0 0

Interest Rate: U.S.Treasury Const
Maturities,1-Yr.(% Per Annum)

0 0 0 0

Interest Rate: U.S.Treasury Const
Maturities,5-Yr.(% Per Annum)

0 0 0 0

Interest Rate: U.S.Treasury Const
Maturities,10-Yr.(% Per Annum)

0 0 0 0

Bond Yield: Moody’S Aaa Corporate (% Per
Annum)

2 2 2 2
(1973M3,1981M8) (1973M3,1981M8) (1973M3,1981M8) (1973M3,1981M8)

Bond Yield: Moody’S Baa Corporate (% Per
Annum)

3 3 3 3
(1973M3,1981M12,1993M9) (1973M3,1981M12,1993M9) (1973M3,1981M12,1993M9) (1973M3,1981M12,1993M9)

Fygm6-Fygm3 0 0 0 0
Fygt1-Fygm3 0 0 0 0
Fygt10-Fygm3 0 0 0 0
Money Stock: M1 2 2 2 2

(1966M12,1994M1) (1966M12,1994M1) (1966M12,1994M1) (1966M12,1994M1)
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Tab. 1.14: Empirical Application of Sequential tests to various U.S. macroeconomic time
series (continued)

Variables\Test Seqz∗λ (1\0) Seqz∗λ (2\0) SeqUDmaxz∗λ SeqWDmaxz∗λ
Mzm Frb St. Louis 0 2 0 0

(1980M2,1987M4)

Money Stock:M2 3 3 3 3
(1970M5,1986M11,1995M3) (1970M5,1986M11,1995M3) (1970M5,1986M11,1995M3) (1970M5,1986M11,1995M3)

Monetary Base, Adj For Reserve Requirement
Changes

2 2 2 2
(1967M5,1994M10) (1967M5,1994M10) (1967M5,1994M10) (1967M5,1994M10)

Depository Inst Reserves:Total 1 1 1 1
(1993M11) (1993M11) (1993M11) (1993M11)

Depository Inst Reserves:Nonborrowed 0 2 2 2
(1984M6,1993M11) (1984M6,1993M11) (1984M6,1993M11)

Commercial And Industrial Loans At All
Commercial Banks

1 1 1 1
(1985M1) (1985M1) (1985M1) (1985M1)

Consumer Credit Outstanding - Nonrevolving 0 2 2 2
(1986M8,1993M10) (1986M8,1993M10) (1986M8,1993M10)

Personal Consumption Expenditures, Price
Index

3 3 3 3
(1966M2,1973M4,1981M10) (1966M2,1973M4,1981M10) (1966M2,1973M4,1981M10) (1966M2,1973M4,1981M10)

Personal Consumption Expenditures -
Durable Goods, Price Index

3 3 3 3
(1973M10,1981M10,1995M2) (1973M10,1981M10,1995M2) (1973M10,1981M10,1995M2) (1973M10,1981M10,1995M2)

Personal Consumption Expenditures - Non-
durable Goods, Price Index

2 2 2 2
(1972M10,1981M2) (1972M10,1981M2) (1972M10,1981M2) (1972M10,1981M2)

Personal Consumption Expenditures - Ser-
vices, Price Index

3 3 3 3
(1966M2,1973M5,1982M12) (1966M2,1973M5,1982M12) (1966M2,1973M5,1982M12) (1966M2,1973M5,1982M12)

CPI All Items 2 2 2 2
(1972M11,1981M8) (1972M11,1981M8) (1972M11,1981M8) (1972M11,1981M8)

CPI Less Food And Energy 3 3 3 3
(1966M2,1973M10,1982M5) (1966M2,1973M10,1982M5) (1966M2,1973M10,1982M5) (1966M2,1973M10,1982M5)

PCE Price Index Less Food And Energy 3 3 3 3
(1973M5,1982M9,1992M2) (1973M5,1982M9,1992M2) (1973M5,1982M9,1992M2) (1973M5,1982M9,1992M2)

Producer Price Index: Finished Goods 2 2 2 2
(1972M9,1981M5) (1972M9,1981M5) (1972M9,1981M5) (1972M9,1981M5)

Producer Price Index:Finished Consumer
Goods

2 2 2 2
(1972M9,1981M3) (1972M9,1981M3) (1972M9,1981M3) (1972M9,1981M3)

Producer Price Index:Intermed Mat.Supplies
& Components

0 2 2 2
(1972M6,1981M3) (1972M6,1981M3) (1972M6,1981M3)

Producer Price Index:Crude Materials 0 0 0 0
Real Producer Price Index:Crude Materials 0 0 0 0
Spot Market Price Index:Bls & Crb: All Com-
modities

0 0 0 0

Real Spot Market Price Index:Bls & Crb: All
Commodities

0 0 0 0

Producer Price Index: Crude Petroleum 0 0 0 0
PPI Crude 0 0 0 0
NAPM Commodity Prices Index (Percent) 0 0 0 0
Effective Exchange Rate: United States 0 0 0 0
Foreign Exchange Rate: Switzerland 0 0 0 0
Foreign Exchange Rate: Japan 0 0 0 0
Foreign Exchange Rate: United Kingdom 0 0 0 0
Foreign Exchange Rate: Canada 1 1 1 1

(1998M10) (1998M10) (1998M10) (1998M10)

S&P’S Common Stock Price Index: Compos-
ite

0 0 0 0

S&P’S Common Stock Price Index: Industri-
als

0 0 0 0

S&P’S Composite Common Stock: Dividend
Yield (% Per Annum)

0 0 0 0

S&P’S Composite Common Stock: Price-
Earnings Ratio (%)

0 0 0 0

Common Stock Prices: Dow Jones Industrial
Average

0 0 0 0

U. Of Mich. Index Of Consumer Expectations 0 0 0 0
Purchasing Managers’ Index 0 0 0 0
NAPM New Orders Index (Percent) 0 0 0 0
NAPM Vendor Deliveries Index (Percent) 0 0 0 0
NAPM Inventories Index (Percent) 0 0 0 0
New Orders (Net) - Consumer Goods & Ma-
terials

0 0 0 0

New Orders, Nondefense Capital Goods 0 0 0 0
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Fig. 1.16: Sequential Tests procedure
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2. TREND BREAKS IN MULTIVARIATE TIME SERIES

With Luis C. Nunes1

2.1 Introduction

Structural changes in economics can occur for a variety of reasons, such as changes in

economic policy, changes in the structure of the economy, or an invention that changes

a specific industry. As a result, this concept has widespread use in economics. In econo-

metrics it is usually modelled as changes in the population regression function over the

course of the sample. If such changes, or “breaks” occur, then a regression model that

neglects those changes can provide a misleading basis for inference and forecasting. Cor-

rectly detecting and identifying a structural change can also have profound effect on

policy evaluation and recommendation. As a result, structural changes have always been

an important concern in econometric modeling.

The statistics and econometrics literature both contain a vast amount of work on

issues related to structural changes with unknown break dates, most of it specifically

designed for the case of a single change (see Perron, 2006, for an extensive survey).

Because a myriad of political and economic factors may alter the data generating

process, multiple changes may be a more accurate characterization of economic time

series. Hence, the problem of multiple structural changes has received more attention

recently, mostly in the context of a single regression. Bai and Perron (1998, 2003) provided

a comprehensive treatment of various issues: consistency of estimates of the break dates,

1We are grateful to Robinson Kruse, Iliyan Georgiev, Helmut Lütkepohl, Sandra Farropas and partic-
ipants in the SNDE 20th Annual Symposium (Istambul, April 2012), ASSET Conference (Évora, October
2011), NBER-NSF Time Series Conference (Michigan State University, September 2011), ETSERN Fall
2010 Meeting (Lisbon, December 2010) and in seminars at Nova School of Business and Economics for
helpful comments and suggestions on earlier versions of the paper. Financial support from Fundação
para a Ciência e Tecnologia and Fundação Amélia de Mello are also acknowledged.



tests for structural changes, confidence intervals for the break dates, methods to select

the number of breaks, and efficient algorithms to compute the estimates.

However, they preclude the presence of trending or nonstationary regressors while, in

fact, formal testing of whether a time series contains structural breaks or not depend on

whether the stochastic part of the process is stationary or not. Most tests trying to assess

whether structural change is present will reject the null hypothesis of no structural change

when the process has a unit root component but constant model parameters. Moreover,

doing a structural change test using first-difference data or growth rates to correct for

possible I(1) shocks leads to tests with very poor finite sample properties when the series

has an I(0) noise component.

A possible solution would be to apply stationary or unit root tests in a first step

but these also suffer from similar problems since their properties are in turn affected by

the stability of the deterministic components. The leading cases are when data have

changes in the mean or slope of a linear trend: unmodelled trend breaks can bias unit

root tests towards the non-rejection of the unit root hypothesis when the errors are I(1)

(see Perron, 1989), while including unnecessary broken trends greatly reduces power to

reject the unit root null under I(0) errors (see Marsh, 2005, for example). A circular

testing problem therefore arises between tests on the parameters of the trend function

and unit root/stationarity tests. This creates particular difficulties in applied work, since

both are of definite practical importance in economic applications.

Hence, the problem of testing for structural changes in a linear model with errors that

are either I(0) or I(1) is of substantial interest when testing for breaks in the mean or

slope of a linear trend. Only recently have some solutions to this dilemma been proposed

in the literature. These resort to statistical tests of the null hypothesis of a constant linear

trend against the alternative of a one break at some unknown date that do not require a

priori knowledge of whether the noise component is I(0) or I(1). Perron and Yabu (2009)

proposed a Feasible Quasi Generalized Least Squares approach to estimate the slope of the

trend function. By truncating the estimate of the sum of the autoregressive coefficients of

the disturbance term to take the value of one whenever the estimate is in a neighborhood
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of one, they have shown that the limiting distribution of the t-statistic becomes Normal

regardless of the persistence of the error term. Sayginsoy and Vogelsang (2004) proposed

a Mean Wald and a Sup-Wald statistic scaled by a factor based on unit root tests to

smooth the discontinuities in the asymptotic distributions of the test statistics as the

errors go from I(0) to I(1). The scaling factor approach is based on Vogelsang (1998)

who proposed test statistics for general linear hypothesis regarding the parameters of the

trend function which do not require knowledge as to whether the innovations are I(0)

or I(1). Harvey et al. (2009) employed a weighted average of the appropriate regression

t-statistics used to test the existence of a broken trend when the errors are I(0) and I(1).

Nunes and Sobreira (2010) built on the framework proposed by Harvey et al. (2009) to

provide tests of the null hypothesis of no trend breaks against the alternative of one

or more breaks in the trend slope which do not require knowledge of the form of serial

correlation in the data and are robust as to whether the underlying shocks are stationary

or have a unit-root.

The objective of this paper is to extend their work into a multivariate framework and

study the problem of testing for multiple structural changes in the trend function of a

multivariate time series which do not require knowledge of the form of serial correlation

in the data and are robust as to whether the data is stationary, non stationary, cointe-

grated or not cointegrated. This problem is of practical importance for several reasons.

Many macroeconomic time series are characterized by a clear tendency to grow over time,

that is, as having a deterministic time trend component. This implies that many inter-

esting economic applications involve statistical inference on the parameters of the trend

function. Examples can be found in the continuous time macroeconomic modelling (see

Bergstrom et al., 1992, Nowman, 1998), in international trade with the Prebish-Singer

hypothesis testing (see Bunzel and Vogelsang, 2005), in the empirical debate regarding

regional convergence in per capita income (see Sayginsoy and Vogelsang, 2004), or in

environmental economics on the future consequences of global warming (see Vogelsang

and Franses, 2005). Also, one is often interested in testing whether the rate of growth

of some macroeconomic variables, such as Real GDP, exhibits a structural change. With
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data in logarithmic form, the coefficient on the trend component represents this average

growth rate.

However, empirical work, in general, relies on inference about the trend function in

a single regression framework rather than multivariate systems. Many factors which

are generally deemed important for the presence of a structural change can result in

the growth rates breaking contemporaneously across series. This suggests that gains in

precision might be achieved by a multivariate treatment. While it may be difficult to

identify a break point with a single series, it should be, intuitively, much easier to locate

the common break point using a number of series together. For example, Bai et al. (1998)

have shown that dating the slowdown in the postwar U.S. was somewhat difficult due to

a very imprecise univariate estimate of the break date for U.S. output. However, dynamic

economic theories suggest that a discrete productivity slowdown,an oil price shock or a

tax policy change will be reflected in lower growth rates not only of output, but of series

that are cointegrated with output, in particular, consumption and investment (see King

et al., 1988, for example). When modelling these variables as a trivariate system Bai

et al. (1998) found a statistically significant common slowdown in the growth rate around

the first quarter of 1969.

In spite of the substantial payoffs for using multivariate rather than univariate tech-

niques, work on structural change issues arising in the context of a system of multivariate

equations is relatively scarce. Bai et al. (1998) considered asymptotically valid inference

for the estimate of a single break date in multivariate time series allowing stationary

or integrated regressors as well as trends. They show that the width of the confidence

interval decreases in an important way when series having a common break are treated as

a group and estimation is carried using a quasi-maximum likelihood (QML) procedure.

Also, Bai (2000) considers the consistency, rate of convergence and limiting distribution

of estimated break dates in a segmented stationary VAR model estimated again by QML

when the breaks can occur in the parameters of the conditional mean, the covariance ma-

trix of the error term or both. Qu and Perron (2007) considered a more general framework

and their theoretical analysis shows how substantial efficiency gains can be obtained by
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casting the analysis in a system of regressions. In addition, the result of Bai et al. (1998),

that when a break is common across equations the precision increases in proportion to

the number of equations, is extended to the multiple break case. More importantly, the

precision of the estimate of a particular break date in one equation can increase when

the system includes other equations even if the parameters of the latter are invariant

across regimes. All that is needed is that the correlation between the errors be non-zero.

However, Bai et al. (1998) was only designed for the single break case and deals with I(0)

and I(1) dynamic models in a separate fashion. Bai (2000) and Qu and Perron (2007) do

not permit models with integrated or trending regressors. Hence, techniques for inference

about multiple break dates in the trend function in multivariate systems are currently

unavailable in spite of the substantial gains from analyzing multiple equations.

It is important to realize that to do appropriate inference about structural breaks in

multivariate equations it is necessary to have a priori knowledge about the stationarity

and the cointegrating relations among the variables and, in general, this information is

not available. The limiting distribution of test statistics depends on number of common

stochastic trends (see, for example, Sims et al., 1990, Park and Phillips, 1988, 1989) so

that methods of inference that are robust to different possibilities are needed.

A possible solution would be to apply popular Likelihood ratio (LR) tests for the coin-

tegrating rank proposed by Johansen (1991) in a first step as this represents the natural

extension of unit root tests into the multivariate framework. However, the limit distribu-

tion under the null of cointegrating rank depends on nuisance parameters related to the

deterministic components, in particular, if there are breaking trends or not. In recogni-

tion of this fact, Johansen et al. (2000) show how the traditional cointegration analysis

can be used to identify some types of structural breaks with known break points in the

deterministic components. Within their framework they show how to identify (and test

for) shifts in the trends, but not in the levels. Lütkepohl and Saikkonen (2000a,b) and

Lütkepohl et al. (2004, 2008) in a sequence of papers proposed an alternative two-step

approach where in the first step the deterministic part of the DGP is estimated by a gen-

eralized least squares (GLS) procedure and then removed from the series. Thereafter an
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LR type test for the cointegrating rank is applied. In Monte Carlo simulations Lütkepohl

et al. (2008) (LST, henceforth) proved that the test proposed has considerably better

small sample properties than the Johansen et al. (2000) test. However, they only con-

sider testing the cointegration rank with trend breaks assuming that the number of break

points and the break dates are known. Misspecification of the number of change points

and break dates may have a profound effect on the finite sample properties of LR tests for

the Cointegrating Rank from Johansen et al. (2000) and LST. Hence, the circular testing

problem described above between tests on the parameters of the trend function and unit

root/stationarity tests also arises with cointegration/commmon stochastic trends tests.

This paper provides tests of the null hypothesis of no trend breaks against the alter-

native of one or more breaks in the trend slope in multivariate time series. Our proposed

tests do not require knowledge of the form of serial correlation in the data; in particular,

no prior knowledge is needed as to whether the the multivariate system is stationary,

nonstationary, cointegrated or not cointegrated, thereby breaking the circular testing

problem discussed above between structural change and cointegration testing.

The general setup is a VAR process with a linear trend term which may have level

shifts and breaks in the trend slope at unknown points in time. If a break is believed

to have occurred in the deterministic part of the process only and does not affect the

stochastic part, it seems natural to strictly separate the deterministics from the stochastic

part in setting up the model. Therefore, as in Lütkepohl et al. (2008), the deterministic

part is added to a zero mean purely stochastic process in our setup. The details about

the model and assumptions can be found in Section 2.2. In section 2.3 we describe

the procedure used to estimate the deterministic components in the stationary and non-

stationary directions. These estimators form the basis for statistical inference about the

slope of the deterministic trend.

We construct test statistics that are weighted averages of the appropriate Wald statis-

tics to test the existence of multiple trend breaks when the disturbance term is stationary,

nonstationary, cointegrated or non cointegrated. The weighting function we employ is

based on tests for common stochastic trends from Nyblom and Harvey (2000) and Busetti
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(2002) applied to the levels and first differenced data. In section 2.4.1, we start by con-

sidering the case where the true break fractions are known and prove that the proposed

statistics converge in distribution to a chi-square distribution under the null. Next, in

section 2.4.2 we consider the case where the trend break fractions are unknown and need

to be estimated. We transform our statistic in the same spirit as Bai et al. (1998) and

Qu and Perron (2007) and find those break dates that globally maximize the value of the

Wald test over the set of admissible partitions under a trimming restriction. Then we

evaluate the Wald statistic on those estimated break points. Here, the weight function

is obtained through the minimization of the tests for common stochastic trend over all

permissible change points and we prove that its large sample behavior is similar to the

known break case regardless of the number of break fractions estimated and the number

of structural breaks in the trend function. Finally, in Section 2.5 we propose a sequential

test procedure that can be used to estimate the number of trend breaks and that are also

robust to stationarity, nonstationarity and cointegration on the multivariate system. In

both the known and unknown break dates settings, our proposed tests are made robust

to short memory serial correlation in the shocks via the use of lagged dependent variables

as regressors. Some Monte Carlo experiments and an empirical application are provided

in Sections 2.6 and 2.7 to highlight the practical usefulness of our proposed tests. Section

2.8 offers some concluding remarks.

2.2 The Model and Assumptions

Consider the following n-dimensional time series yt = (y1,t, . . . , yn,t) that is known to be

generated by a process with a first-order linear trend and m possible local disjoint broken

trends (m+ 1 regimes):

yt = µ0 + µ1t+
m∑
j=1

δjDU
j
t +

m∑
j=1

γjDT
j
t + ut, t = 1, . . . , T (2.1)

where δj and γj for j = 0, . . . ,m are unknown vectors of coefficients and DU j
t :=

1(t > T ∗j ) and DT jt := 1(t > T ∗j )(t − T ∗j ) are dummy variables capturing, respectively,
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the eventual jth change in the intercept and in the slope coefficients occurring at date

T ∗j := bτ ∗j T c with associated break fraction τ ∗j ∈ (0, 1) and 0 < τ ∗1 < . . . < τ ∗m < 1.

In the above model, we are interested in testing if there are common trend breaks in

yt and in estimating the number and dates of breaks in the multivariate time series

process, independently of whether ut is stationary, non stationary, cointegrated or not

cointegrated. Therefore, we would like to test the null hypothesis H0 : γ1 = γ2 = . . . =

γm = 0 against the two sided alternative: H1 : γ1 6= 0∨ γ2 6= 0∨ . . .∨ γm 6= 0 in equation

(2.1). We make the following assumption on the stochastic part of the Model, ut.

Assumption 2. ut is an unobservable error process which we assume that follows a pth

order zero mean VAR process:

ut = A1ut−1 + . . .+ Aput−p + εt (2.2)

where the initial values ut, t ≤ 0 are assumed to be equal to zero.

where the Ai are (n× n) coefficient matrices, for i = 1, . . . , p. The disturbance term

εt is assumed to satisfy the following assumption:

Assumption 3. Let εt be a zero mean Gaussian white noise so that εt
iid∼ Nn (0,Ω) with

the covariance matrix Ω definite positive.

To exclude the possibility of having explosive and seasonal roots, we use following

assumption regarding the characteristic polynomial of ut:

Assumption 4. Let A (z) = In −
p∑
i=1

Aiz
i be the characteristic polynomial of ut. Then

A (z) satisfies the condition that if |A (z)| = 0 , then either |z| = 1 or |z| > 1.

If we subtract ut−1 on both sides of (2.2) and rearrange terms, we can write ut in error

correction (EC) form:

∆ut = Πut−1 +

p−1∑
i=1

Γi∆ut−i + εt (2.3)

92



where Π = −(In − A1 − . . .− Ap), Γi = −(Ai+1 − . . .− Ap) and ∆ is the usual first-

difference operator. The process ut is assumed to be at most I(1) and may be cointegrated

or not, which implies that matrix Π can be full rank, be equal to the null matrix or have

reduced cointegrating rank 0 ≤ r ≤ n. If ut is cointegrated with 0 < r < n then the

matrix Π can be written as Π = αβ′ where α and β are (n × r) matrices of full column

rank. Since we want to rule out the possibity of finding processes that are integrated of

order higher than one, we impose the following condition:

Assumption 5. We assume that |α′⊥Ψβ⊥| 6= 0, with Ψ = In −
p−1∑
i=1

Γi.

Here as well as below, if B is an (n × H) matrix of full column rank n > H we let

B⊥ stand for an orthogonal complement, that is, B⊥ is an (n× (n−H)) matrix of full

column rank and such that B′B⊥ = 0. The orthogonal complement of a nonsingular

square matrix is zero and the orthogonal complement of zero is an identity matrix of

suitable dimension. Given these assumptions, according to the Granger Representation

Theorem, the solution of (2.3) has the representation:

ut = C
t∑
i=1

εi + ξt (2.4)

where, apart from the specification of the initial values, ξt is a zero mean stationary

process and C = β⊥(α′⊥Ψβ⊥)−1α′⊥. We use the following identity for the characteristic

polynomial of ut:

A(L) = In −
p∑
i=1

AiL
i = In∆− ΠL−

p−1∑
i=1

Γi∆L
i (2.5)

It will be useful later on to note the relation between the two representations of A (L):
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A1 = In + αβ′ + Γ1

Ai = Γi − Γi−1, i = 2, . . . , p− 1 (2.6)

Ap = −Γp−1

Multiplying (2.1) by A(L), we obtain the error correction (EC) form of yt:

∆yt =µ+ α

(
β′yt−1 − β′µ1(t− 1)−

m∑
j=1

β′γjDT
j
t−1

)
+

p−1∑
i=1

Γi∆yt−i

+
m∑
j=1

p−1∑
i=0

υi,jD
j
t−i +

m∑
j=1

ηjDU
j
t−1 + εt, t = p+ 1, . . . , (2.7)

where µ = −Πµ0 + Ψµ1, ηj = Ψγj − Πδj and

υi,j =


δj + Πδj + Γ1γj + . . .+ +Γp−1γj , i = 0,

−Γiδj + Γi+1γj + . . .+ Γp−1γj , i = 1, . . . , p− 2,

−Γp−1δj , i = p− 1.

Also, notice that Dj
t is an impulse dummy which takes the value 1 at t = T ∗j +1 and 0

elsewhere. To write the EC form more compactly define Φ = (µ, υ0,1, . . . , υp−1,m, η1, . . . , ηm),

XDU,t =
(
1, D1

t , . . . , D
m
t−p+1, DU

1
t−1, . . . , DU

m
t−1

)′
, φ = (β′µ1, β

′γ1, . . . , β
′γm)

′
, XDT,t =(

t,DT 1
t , . . . , DT

m
t

)′
, Γ = (Γ1, . . . ,Γp−1) and ∆yp+1,t = (∆yt−1, . . . ,∆yt−p+1)′. Then equa-

tion (2.7) can be rewritten as:

∆yt = ΦXDU,t + α (β′yt−1 − φ′XDT,t−1) + Γ∆yp+1,t + εt, t = p+ 1, . . . , (2.8)
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As in TSL we shall use the VECM for the observed series yt (equations (2.7) and

(2.8)) to obtain first stage estimators for the parameters of the error process xt, that is,

for α, β, Γi (i = 1, . . . , p − 1) and Ω. A conventional reduced rank (RR) or estimated

generalized least squares (EGLS) regression of ∆yt on (yt−1, t− 1, DT 1
t−1, . . . , DT

m
t−1) cor-

rected for (1,∆yt−1, . . . ,∆yt−p+1, D
1
t , . . . , D

1
t−p+1, . . . , D

m
t , . . . , D

m
t−p+1, DU

1
t−1, . . . , DU

m
t−1)

may be used. We adopt the latter method firstly proposed by Ahn and Reinsel (1990) and

Saikonnen (1992) since it has some theoretical and practical advantages relative to Jo-

hansen’s reduced rank maximum likelihood estimation (see Brüggemann and Lütkepohl,

2005, Herwartz and Lütkepohl, 2011, for more details).

2.3 The estimation method

Our method uses the VECM in (2.7) and applies feasible GLS to the model (2.1) as it

was proposed in TSL to estimate the parameters of the deterministic part in the direction

of β and β⊥, respectively. Then, we construct a sequence of Wald statistics for a broken

trend appropriate for all possible number of stochastic trends we may have in yt. To see

how the estimation method works consider first the case where the process ut in (2.3) is

known to be non stationary and cointegrated with known cointegrating rank 0 < r < n

and cointegration vectors, β, so that |A(1)| = 0 and Π = αβ′.

Then the EC form is given in (2.7) whose parameters can be estimated with an

estimated generalized least squares (EGLS) regression.

To see how the EGLS works, we concentrate out the short-run adjustment and de-

terministic components outside the cointegrating relations and consider the concentrated

model corresponding to (2.7):

R∆y,t = α (β′Ry,t−1 − φ′RDT,t−1) + et

where Rz,t denotes the residuals from regressing z on (XDU,t,∆yp+1,t)
′ for z = ∆y, y,DT .

Suppose that α and Ω are known and β is normalized such that:
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β =

 Ir

β(k)



Then, the only unknown elements are β(k) and φ which can be estimated with the

application of OLS to the following multivariate linear regression:

R∆y,t − αR(r)
y,t−1 = α

(
β′(k)R

(k)
y,t−1 − φ′RDT,t−1

)
+ et (2.9)

where R
(r)
y,t−1 and R

(k)
y,t−1 are defined, respectively, as the first r and the last k = n− r

elements of Ry,t−1. This procedure becomes feasible GLS with consistent first stage

estimators of α and Ω. Given the previous normalization, it is readily seen that the

first r columns of Π̃ are equal to α̃ and the usual covariance matrix estimator from the

unrestricted LS estimator can be shown to be a consistent estimator of Ω. Hence, for the

proposed α̃ and Ω̃, the FGLS estimator of βφ′(k) is given by:

β̃φ̃′(k) =
(
α̃′Ω̃−1α̃

)−1

α̃′Ω̃−1

[
T∑
t=1

(
R∆y,t − α̃R(r)

y,t−1

)
R

(k)′
y,DT,t−1

][
T∑
t=1

R
(k)
y,DT,t−1R

(k)′
y,DT,t−1

]−1

(2.10)

where βφ′(k) =
(
β′(k), φ

′) and R
(k)
y,DT,t−1 =

(
R

(k)
y,t−1, RDT,t−1

)′
. Now since β′γ is obtained

from the last m columns of matrix φ′ we can use the corresponding submatrix of φ̃′ as an

estimator of β′γ.

Now we discuss the estimation of γ in the direction of β′⊥. One possible simple and

fast method applies LS directly to the regression model:

β̃′⊥∆yt =
m∑
j=1

β̃′⊥δjD
j
t + β̃′⊥µ1 +

m∑
j=1

β̃′⊥γjDU
j
t + β̂′⊥∆ut, t = 1, . . . , T (2.11)

Since ηt is stationary, the resulting estimator β̃′⊥γ̃ is consistent for β′⊥γ and it can be

shown with similar arguments from Lütkepohl and Saikkonen (2000b) that it achieves
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asymptotic normality. However since the error term of (2.11) ignores all possible short-

run dynamics we consider additionally an alternative method that fits a finite autoregres-

sive model to ut and then applies FGLS. Specifically, if equation (2.1) is multiplied from

the left by A (L) we have that:

A (L) yt = G0tµ0 +H0tµ1 +
m∑
j=1

Gjtδj +
m∑
j=1

Hjtγj + εt (2.12)

where yt = 0 for t ≤ 0, G0t =A(L)at, H0t = A(L)bt, Gjt = A(L)DU j
t and Hjt =

A(L)DT jt for j = 1, . . . ,m with

at =


0 , for t ≤ 0,

1 , for t ≥ 1,

bt =


0 , for t ≤ 0,

t , for t ≥ 1,

Moreover, if we define:

Q =

[
Ω−1α

(
α′Ω−1α

)− 1
2 α⊥ (α′⊥Ωα⊥)

− 1
2

]
(2.13)

It is straightforward to see that:

QQ′ = Ω−1α
(
α′Ω−1α

)−1
α′Ω−1 + α⊥ (α′⊥Ωα⊥)

−1
α′⊥ = Ω−1

Now, if we pre-multiply equation (2.12) by Q′ the resulting error vector from the trans-

formed multivariate regression vector will have a spherical covariance matrix. Hence, as

in GLS estimation with a known covariance structure, we have a transformation which

renders a regression model with an error term with standard properties. Since the pa-

rameters from the matrix Q and the characteristic polynomial A(L) are not known in

practice suitable estimators for α, β, Γi (i = 1, . . . , p− 1) and Ω are needed. We substi-

tute these estimators for the corresponding theoretical parameters according to (2.6) to
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obtain estimators of the Ai coefficient matrices, denoted by Ãi, i = 1, . . . , p.

Then we define Ã(L) = In−
p∑
i=1

ÃiL
i, G̃0t = Ã (L) at, H̃0t = Ã (L) bt, G̃jt = Ã (L)DU j

t

and H̃jt = Ã (L)DT jt for j = 1, . . . ,m. Finally, the estimator Q̃ may be obtained if we

replace in (2.13) by their respective estimators. Now we can use these estimators to get

the feasible form of equation (2.12):

Q̃′Ã (L) yt = Q̃′G̃0tµ0 + Q̃′H̃0tµ1 +
m∑
j=0

Q̃′G̃jtδj +
m∑
j=0

Q̃′H̃jtγj + ςt (2.14)

Now, we can use equation (2.14) to obtain the estimator for β′⊥γ.

We use conventional FGLS for the extreme cases r = 0 and r = n. Suppose now one

knows that the process ut is non stationary and not cointegrated, with |A(1)| = 0 and

Π = 0, so that r = 0. Then, we construct the feasible characteristic polynomial Ã (L)

with a first stage estimation of the regression model:

∆yt = µ+

p−1∑
i=1

Γi∆yt−i +
m∑
j=1

p−1∑
i=1

υi,jD
j
t−i +

m∑
j=1

ηjDU
j
t−1 + εt, t = p+ 1, . . . , (2.15)

which is a the particular case of equation (2.7) restricted by Π = αβ′ = 0. Then

the estimators of the coefficient matrices Ãi are recovered analogously using (2.6) with

the aforementioned restriction. Using Q̃ = Ω̃−
1
2 , the estimators δ̃j and γ̃j (j = 0, . . . ,m)

are obtained using (2.14). Notice that, in this case, the regressors G̃jt (j = 0, . . . ,m) are

equal to zero except on a fixed number of p time indices and so behave as an impulse

dummy. Furthermore, H̃jt (j = 0, . . . ,m) are similar to the constant term and level shift

dummies (see expressions (2.31), (2.32), (2.33) in the Mathematical Appendix).

Finally, suppose one knows that the process ut is stationary, with |A(1)| 6= 0, so that

r = n. The parameter matrices Ãi are obtained estimating the following equation:
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yt = µ∗+

p∑
i=1

Aiyt−i+
m∑
j=1

δj∗DU
j
t +

m∑
j=1

γj∗DT
j
t +

m∑
j=1

p−1∑
i=1

υi,j∗D
j
t−i+εt, t = p+1, . . . , (2.16)

where the it is easy to see the relation between µ∗, δj∗, γj∗ and υi,j∗ and the parameters

in (2.7). Setting Q̃ = Ω̃−
1
2 , the estimators µ̃0, µ̃1, δ̃j and γ̃j (j = 1, . . . ,m) are computed

as before with (2.14).

As a matter of notation we use bold letters to denote the vec operator applied to a

matrix. For example, we have β̃′
⊥γ̃ (τ ) = vec

(
β̃′⊥γ̃ (τ)

)
and β̃′γ̃ (τ ) = vec

(
β̃′γ̃ (τ)

)
.

The next theorem establishes the asymptotic distribution of estimators of the magnitude

of the break assuming that we have specified correctly the number of common stochastic

trends, i.e, k = k∗, k∗ = 0, . . . , n:

Theorem 6. If assumptions 2-5 and ut has k∗ = n− r∗ common stochastic trends then,

under H0 : γ1 = . . . = γm = 0, the asymptotic distribution of the estimators is given by:

(a)

T 1/2β̃′
⊥γ̃ (τ )⇒

{[∫ 1

0

RU (s, τ)RU (s, τ)′ ds

]−1

⊗ Ik∗
}{∫ 1

0

RU (s, τ)⊗ dBβ⊥
k∗ (s)

}

for k∗ = 1, . . . , n.

(b)

T 3/2β̃′γ̃ (τ )⇒

{[∫ 1

0

RT (s, τ)RT (s, τ)′ ds

]−1

⊗ Ir∗
}{∫ 1

0

RT (s, τ)⊗ dBα
r∗(s)

}

for k∗ = 0, . . . , n−1, where dBβ⊥
k∗ (s) = β′⊥CΩ

1
2Bn(s) and dBα

r∗(s) =
(
α′Ω−1α

)−1
α′Ω−

1
2Bn(s)

and Bn(s) is a n-dimensional standard Brownian motion. Here we also have that RU (s, τ) =

(RU (s, τ1) , . . . , RU (s, τm))′ and RT (s, τ) = (RT (s, τ1) , . . . , RT (s, τm))′, where RU (s, τj)

is the continuous time residual from a projection of 1 (s > τj) onto the space spanned by

{1} and RT (s, τj) is the continuous time residual from a projection of 1 (s > τj) (s− τj)

onto the space spanned by {1, 1 (s > τ1) , . . . , 1 (s > τm)}.
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2.4 Testing for Common Breaks in Trend

2.4.1 Known Break Fractions

We start by considering the case where the number of breaks m is fixed and the vector of

true break fractions τ ∗ = (τ ∗1 , τ
∗
2 , . . . , τ

∗
m)′ and hence all the eventual dates when the slope

changes occur are known. We consider a Wald type test of no common breaks in the trend

(m = 0) versus the alternative hypothesis that there are m breaks in (2.1) robust as to

whether the stochastic part of the process described by ut disturbance term is stationary,

nonstationary, cointegrated or not cointegrated. The idea underlying the proposed test

is to construct a weighted average of Wald statistics appropriate to test the existence of

multiple broken trends for each possible case. For a fixed r, let k be the number of common

stochastic trends in yt, i.e., k = n−r. For each k we decompose γ from (2.14) in stationary

and non stationary directions using Pβ⊥ + Pβ = β (β′β)
−1
β + β⊥ (β′⊥β⊥)

−1
β⊥ = In. If

H0 holds so that γj = 0 (j = 1, . . . ,m) we have β′γj = 0 and β′⊥γj = 0. On the other

hand, under the alternative, it must be that β′⊥γj 6= 0 or β′γj 6= 0. Therefore the idea is

to test jointly the restrictions β′γj = 0 and β′⊥γj = 0 by the Wald principle. Since the

estimators β̃′⊥γ̃ and β̃′γ̃ are asymptotically independent as proved in Theorem 7, the test

can be written as the sum of the appropriate Wald statistics for testing β′γj = 0 and

β′⊥γj = 0. Therefore, the Wk(τ
∗) statistic is defined as:

Wk(τ
∗) = W k

β′
⊥γ

(τ ∗) +W k
β′γ(τ ∗)

=
(
β̃′
⊥γ̃
)′ [

Ãvar(̃β′
⊥̃γ)

]−1 (
β̃′
⊥γ̃
)

+
(
β̃′γ̃

)′ [
Ãvar(̃β′̃γ)

]−1 (
β̃′γ̃

)
(2.17)

Ãvar(̃β′̃γ) =

[
T∑
t=1

RTt (τ)RTt (τ)′
]−1

⊗ (α̃′Ω̃−1α̃)−1

Ãvar(̃β′
⊥̃γ) =

[
T∑
t=1

RUt (τ)RUt (τ)′
]−1

⊗
(
β̃′⊥C̃Ω̃C̃ ′β̃⊥

)
with RTt(τ) = (RTt(τ1), . . . , RTt(τm)) and RUt(τ) = (RUt(τ1), . . . , RUt(τm)), where
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RTt(τj) are the residuals from a regression of DT jt on
(
1, t, DU1

t , . . . , DU
m
t

)
and RUt(τj)

are the residuals from a regression of DU j
t on

(
1, D1

t , . . . , D
m
t

)
. Notice that if k = 0 then

yt is stationary and so β = In, β⊥ = 0 which implies that Wk (τ ∗) = W k
β′γ (τ ∗). On the

other hand, if k = n then yt is non stationary and not cointegrated and we conclude that

Wk (τ ∗) = W k
β′⊥γ

(τ ∗).

We now establish the asymptotic distribution of Wk(τ
∗) statistics for k = 0, . . . , n:

Theorem 7. If Assumptions 2-5 hold and ut has k∗ = n− r∗ common stochastic trends,

i.e, rank(Π) = r∗ then, under H0:

Wk∗(τ
∗)

d−→ χ2
nm

where χ2
nm denotes the chi-square distribution with Nm degrees of freedom.

In view of the above results, and given that number of common stochastic trends (or

the number of cointegrating relations) in ut is not known in practice or, in other words, the

rank(Π) is unknown, it is a fairly natural step to consider constructing a procedure that

employs some auxiliary routine which ensures that, asymptotically at least, the statistic

Wk(τ
∗) is selected when ut has k common stochastic trends or rank(Π) = n− k, thereby

ensuring that the asymptotically optimal test is selected in the limit. To that end we

extend the approach of Harvey et al. (2009) and Nunes and Sobreira (2010) and construct

data-dependent weighted averages of the sequence of Wk(τ
∗) statistics for k = 0, . . . , n in

the following way:

Wλ(τ
∗) =

n∑
k=0

[λk (τ ∗)− λk−1 (τ ∗)]Wk(τ
∗) (2.18)

where λk (τ ∗) = λ(ξy,k(τ
∗), ξ∆y,k(τ

∗)) if k = 0, . . . , n− 1 and equal to zero if k = −1 and

to unity if k = n. Here, ξy,k(τ
∗) and ξ∆y,k(τ

∗) are auxiliary statistics chosen such that,

as the sample size diverges to positive infinity, the difference between weights functions

λk(., .) − λk−1(., .) converges to unity when ut has, in fact, k common stochastic trends

(n − k cointegrating relations) and to zero when ut does not have k common stochastic

trends, such that Wλ(τ
∗) will collapse to Wk(τ

∗) when ut has k common stochastic trends.
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Because the auxiliary routine needs to be ambivalent between H0 and H1, the ξy,k(τ
∗)

and ξ∆y,k(τ
∗) statistics must also be invariant with respect to the parameters from the

model defined in (2.1)and (2.3). We therefore need to choose appropriate auxiliary statis-

tics, ξy,k(τ
∗) and ξ∆y,k(τ

∗), and weight function, λ(., .). For the former we shall adopt

the multivariate KPSS common trends test statistics calculated from the ordered eigen-

values of residuals obtained from regressions of (2.1) and first differenced form of (2.1).

Specifically, let Λy,1 ≥ . . . ≥ Λy,n and Λ∆y,1 ≥ . . . ≥ Λ∆y,n be the ordered eigenvalues

of Σ−1
y Cy and Σ−1

∆yC∆y, obtained from |Cy − Λy,jΣy| = 0 and |C∆y − Λ∆y,jΣ∆y| = 0 for

j = 1, . . . , n, respectively, where Cy = T−2

T∑
t=1

[
t∑
i=1

ũi

][
t∑
i=1

ũi

]′
, Σy = T−1

t−1∑
i=1

J (i/l)

T∑
t=i+1

ũtũ
′
t−i, C∆y = T−2

T∑
t=1

[
t∑
i=1

ṽi

][
t∑

s=1

ṽi

]′
and Σ∆y = T−1

t−1∑
i=1

J (i/l)
T∑

t=i+1

ṽtṽ
′
t−i. ũt

and ṽt are the residuals from the regression of yt on
{

1, t, DU1
t , . . . , DU

m
t , DT

1
t , . . . , DT

m
t

}
and of ∆yt on

{
1, D1

t , . . . , D
m
t , DU

1
t , . . . , DU

m
t

}
, respectively. In what follows we shall

make use of the Bartlett kernel for J (.), with the data dependent formula proposed by

Andrews (1991) for the bandwidth l = [4(T/100)1/4]. The ξy,k(τ
∗) and ξ∆y,k(τ

∗) tests are

defined as the sum of the n− k smallest eigenvalues, that is,

ξy,k(τ
∗) = Λy,k+1 + . . .+ Λy,n (2.19)

and

ξ∆y,k(τ
∗) = Λ∆y,k+1 + . . .+ Λ∆y,n (2.20)

The relevant large sample properties of these two test statistics are given in the fol-

lowing lemma:
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Lemma 3. If Assumptions 2-5 hold, then:

(a)

ξy,k(τ
∗) =


Op(1), if k ≥ k∗

Op(T/l), if k < k∗

(b)

ξ∆y,k(τ
∗) =


Op(l/T ), if k ≥ k∗

Op(1), if k < k∗

The results in Lemma 3 suggest a weight function of the form:

λk (τ ∗) = λ(ξy,k(τ
∗), ξ∆y,k(τ

∗)) := exp[−{gξy,k(τ ∗)ξ∆y,k(τ
∗)}6] (2.21)

where g is a positive constant, since this will converge to unity if k ≥ k∗ and to zero

if k < k∗. The following corollary summarizes the asymptotic properties of the weight

function λ(ξy,k(τ
∗), ξ∆y,k(τ

∗)) and of Wλ(τ
∗) test statistic.

Corollary 9. If ut has 0 ≤ k∗ ≤ n common stochastic trends then:

λk (τ ∗) = λ(ξy,k(τ
∗), ξ∆y,k(τ

∗))
p−→


1, if k ≥ k∗

0, if k < k∗
(2.22)

Also we have that Wλ(τ
∗) = Wk∗(τ

∗) + op (1)
d−→ χ2

nm for any 0 ≤ k∗ ≤ n.

Remark 12. The results from Corollary 9 show that, regardless of the number of stochas-

tic trends, Wλ(τ
∗) is asymptotically equivalent to Wk∗(τ

∗), i.e, the Wald statistic ap-

propriate for testing broken trends if one knew the number of stochastic trends in our

multivariate time-series. This occurs with the aid of the weight function (2.21) which

ensures that the asymptotically optimal Wald test is selected in the limit. Furthermore,

under H0 Wλ statistic converges to a chi-square distribution with Nm degrees of freedom
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and so this test is easily implemented using the critical values from this distribution.

Remark 13. Since the difference λk − λk−1 converges in probability to unity if k = k∗

and to zero when k 6= k∗ at an exponential rate in T , i.e., at a faster rate than any finite

polynomial rate, each individual term {λk − λk−1}Wk, k 6= k∗ is asymptotically negligible

even if Wk diverges in probability at a polynomial rate.

2.4.2 Unknown Break Fractions

In this section, we are interested in testing for common broken trends in equation (2.1)

in cases where the change points τ = (τ1, . . . , τm) are unknown. This testing problem

does not fit into the standard testing framework since the unknown parameter τ is only

present under the alternative and not under the null. We follow the approach of Andrews

(1993), Andrews and Ploberger (1994) and extended by Bai et al. (1998), Bai (2000)

and Qu and Perron (2007) to the multivariate setting. Our testing procedure is based

on the supremum of the sequence of Wk (τ) statistics for testing H0 for τj = τLj , . . . , τ
U
j ,

(j = 1, . . . ,m):

Wk = sup
τ∈Λmε

Wk (τ) (2.23)

where Λm
ε = {(τ1, . . . , τm) : τ1 ≥ ε, τm ≤ 1− ε, |τj+1 − τj| ≥ ε} and it is assumed that τ ∗ ∈

Λm
ε .To solve the problem of unknown number of common stochastic trends we follow the

same strategy as the known breaks fraction case and write the analogue of test statistic

Wλ:

Wλ =
n∑
k=0

[λk (τ̂ , τ̃)− λk−1 (τ̂ , τ̃)]Wk (2.24)

Here, the sequence of multivariate KPSS statistics are now replaced by ξy,k(τ̂) = inf
τ∈Λmε

ξy,k(τ)

and ξ∆y,k(τ̃) = inf
τ∈Λmε

ξ∆y,k(τ). To derive the asymptotic behavior of Wλ, we must study

the large sample behavior of the weight function and the Wk statistics. The next the-

orem establishes the asymptotic distribution of individual Wk assuming that we made

right guess on the number of common stochastic trends in the multivariate system or,

more succinctly, if k = k∗:
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Theorem 8. If assumptions 2-5 and ut has k∗ = n− r∗ common stochastic trends then,

under H0 : γ1 = . . . = γm = 0, then the asymptotic distributions of the Wald Tests are

the following:

(a)

W k∗

β′
⊥γ

(τ)⇒
{∫ 1

0

RU (s, τ)⊗ dBk∗ (s)

}′{[∫ 1

0

RU (s, τ)RU (s, τ)′ ds

]−1

⊗ Ik∗
}

{∫ 1

0

RU (s, τ)⊗ dBk∗ (s)

}
≡ Jmk∗ (τ)

for k∗ = 1, . . . , n

(b)

W k∗

β′γ(τ)⇒
{∫ 1

0

RT (s, τ)⊗ dBr∗ (s)

}′{[∫ 1

0

RT (s, τ)RT (s, τ)′ ds

]−1

⊗ Ir∗
}

{∫ 1

0

RT (s, τ)⊗ dBr∗ (s)

}
≡ Jmr∗ (τ)

for k∗ = 0, . . . , n− 1, where
{
Br∗ (s)′ , Bk∗ (s)′

}
is a n-dimensional vector of independent

standard Brownian Motion processes.

(c)

Wk∗ ⇒ sup
τ∈Λmε

Jmk∗ (τ) + Jmr∗ (τ)

The fixed τ representations of the asymptotic distribution of β̃′⊥γ̃, β̃′γ̃, Wβ′⊥γ
(τ),

Wβ′γ(τ) are shown in Theorem 7. Since the sup function is continuous, the stated result

in part (c) of Theorem 8 follows directly with the application of the Continuous Mapping

Theorem (CMT). Next, we obtain the large sample behavior of the auxiliary statistics

ξy,k(τ̂) and ξ∆y,k(τ̃) when the stochastic part of the Model has 0 ≤ k ≤ n stochastic trends.

The continuous mapping theorem applied to the inf function and fixed τ representations

of the asymptotic distributions of the ξy,k (τ) and ξ∆y,k (τ) presented in Busetti (2002)

and Nyblom and Harvey (2000) (that are trivial to extend to our multiple breaks setting)

allow us to show that the rates of convergence of these statistics are the same as in the
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known break fraction case:

Lemma 4. Let assumptions 2-5 hold. If the magnitude of the shifts δs,j and γs,j de-

creases to zero at faster rates than T−1/2 for γ1,j, . . . , γk∗,j, δk∗+1,j, . . . , δn,j and T−3/2 for

γk∗+1,j, . . . , γn,j then we have that

(a)

ξy,k(τ̂) =


Op(1), if k ≥ k∗

Op(T/l), if k < k∗

(b)

ξ∆y,k(τ̃) =


Op(l/T ), if k ≥ k∗

Op(1), if k < k∗

Since the multivariate KPSS statistics converge in probability at the same rate as

in Section 2.4.1, one readily obtains that the weight function λ (ξy,k(τ̂), ξ∆y,k(τ̃))
p→ 0 if

k < k∗ and λ (ξy,k(τ̂), ξ∆y,k(τ̃))
p→ 1 if k ≥ k∗ as in Corollary 9. Consequently, from this

fact and Theorem 8 we are in position to establish the asymptotic distribution of the

weighted Wald statistic, Wλ:

Corollary 10. Let assumptions 2-5 and H0 : γ1 = . . . = γm = 0 hold. If ut has

0 ≤ k∗ ≤ n common stochastic trends then:

λ(ξy,k(τ̂), ξ∆y,k(τ̃))
p−→


1, if k ≥ k∗

0, if k < k∗
(2.25)

Also we have that Wλ = Wk∗ + op (1)⇒ sup
τ∈Λmε

Jmk∗ (τ) + Jmr∗ (τ) for any 0 ≤ k∗ ≤ n.

Notice that contrary to the known break fraction case, the asymptotic distribution of

Wk∗ is different if ut has k∗ common stochastic trends for k∗ = 0, . . . , n and no longer

converges to a chi-square distribution with mN degrees of freedom. In this case using the

same reasoning as Vogelsang (1998), we could choose a constant such that, for a given sig-

nificance level ψ under H0, the critical values to be used in the testing procedure become
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the same irrespective of the number of stochastic trends, k∗, present in yt. However, after

simulating the critical values of sup
τ∈Λmε

Jmk∗ (τ)+Jmr∗ (τ) across 0 ≤ k∗ ≤ n we found these to

be very similar and, hence, from a practical point of view this fact won’t make difference

on the finite sample behavior of the test. Critical values for the asymptotic distributions

of the Wλ statistic were obtained via simulations. The vector standard Brownian Motion

B(s) is approximated with partial sums

[Ts]∑
i=1

εi where εi is i.i.d. N (0, In) for T = 1000

and 5000 replications. In table 2.1 we present critical values for the 1 trend break case

(m = 1) up to 8 dependent variables (n = 2, . . . , 8).

2.5 A test of l versus l + 1 common broken trends

As in Qu and Perron (2007) and Kejriwal and Perron (2010) we extend our methodology

to a test of the null hypothesis of l common broken trends against the alternative of l+ 1

breaks. This test allow us to build a sequential procedure that can be used to determine

the number of trend breaks in our system of equations. The test is implemented as

follows. First we obtain the estimates of the break dates
(
T̃1, . . . , T̃l

)
as maximizers of

the log-likelihood function under the hypothesis of l breaks in the trend for the model in

levels which is equivalent to have:

(
T̃1, . . . , T̃l

)
= arg inf

τ∈Λlε

log |Σy (T1, . . . , Tl)|

with Σy (T1, . . . , Tl) = T−1

T∑
t=1

ũtũ
′
t where the residuals ũt are obtained from the es-

timated equation (2.1) with the dummy variables evaluated at dates (T1, . . . , Tl). Next,

we proceed by testing for the presence of an additional break in each of the (l + 1) seg-

ments obtained with the estimated partition
(
T̃1, . . . , T̃l

)
. In particular, for each segment

s = 1, . . . , l + 1 we estimate the VECM by EGLS and the model in levels by FGLS in

the direction of β′⊥ as described in equations (2.9) and (2.14),respectively. The regression

equations are then given, respectively, by:

R∆y,t − α(s)R
(r)
y,t−1 = α(s)

(
β

(s)′
(k) R

(k)
y,t−1 − φ(s)′RDT,t−1

)
+ et
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and

Q̃′Ã (L) yt = Q̃′G̃0tµ
(s)
0 + Q̃′H̃0tµ

(s)
1 + Q̃′G̃1tδ

(s) + Q̃′H̃1tγ
(s) + ςt

for t = T̃s−1 + 1 . . . T̃s with T̃0 = 0 and T̃l+1 = T for every k = 0, . . . , n. Here

R∆y,t, R
(r)
y,t , R

(k)
y,t , RDT,t, G̃j,t and H̃j,t, j = 0, 1 are as defined in Section 2.3 but with t

replaced (t− T̃s−1). All the estimators are obtained using the subsample from observation

t = T̃s−1 + 1 to T̃s.

The test now amounts to testing the null hypothesis of no break in the slope of the

trend function H0 : γ(s) = 0 against the alternative of a single break H1 : γ(s) 6= 0 in each

segment s = 1, . . . , l+ 1 with an unknown break date. We conclude in favour of the l+ 1

changes if the overall maximum value of the (l + 1) Wald statistics is sufficiently high.

The Wald test statistic for a fixed break date ζ is then given by:

W
(s)
k (T̃l−1, ζ, T̃l) =

(
β̃(s)′γ̃(s)

)′ [
Ãvar

(̃
β(s)′̃γ(s)

)]−1 (
β̃(s)′γ̃(s)

)
(2.26)

+
(
β̃

(s)′
⊥ γ̃(s)

)′ [
Ãvar

(̃
β

(s)′
⊥ γ̃(s)

)]−1 (
β̃

(s)′
⊥ γ̃(s)

)
(2.27)

Ãvar(̃β(s)′̃γ(s)) =

 T̃l∑
t=T̃l−1+1

RT
(s)
t (ζ)RT

(s)
t (ζ)′

−1

⊗ (α̃(s)′Ω̃(s)−1α̃(s))−1

Ãvar(̃β
(s)′
⊥ γ̃(s)) =

 T̃l∑
t=T̃l−1+1

RU
(s)
t (ζ)RU

(s)
t (ζ)′

−1

⊗
(
β̃

(s)′
⊥ C̃(s)Ω̃(s)C̃(s)′β̃

(s)′
⊥

)

The sequential test is then defined as the maximum of the W (s)(T̃l−1, ζ, T̃l) over all

s = 1, . . . , l + 1:

Wk (l + 1|l) = max
1≤s≤l+1

sup
ζ∈Λs,ε

W
(s)
k (T̃s−1, ζ, T̃s)

where the possible eligible break dates are contained in the following set:

Λs,ε =
{
ζ : T̃s−1 +

(
T̃s − T̃s−1

)
ε ≤ ζ ≤ T̃s −

(
T̃s − T̃s−1

)
ε
}

The next theorem establishes the asymptotic distribution of W k∗ (l + 1|l), that is, the
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sequential Wald statistic that would be appropriate to use if we knew the true number

of common stochastic trends (k = k∗):

Theorem 9. If assumptions 2-5 and ut has k∗ = n − r∗ common stochastic trends

then, under the null that there are m = l breaks, we have lim
T→∞

P (Wk∗ (l + 1|l) ≤ x) =

Gk∗,ε (x)l+1 where Gk∗ε (x) is the distribution function of sup
τ∈Λmε

Jmk∗ (τ) +Jmr∗ (τ) for m = 1.

Since in general the number of common stochastic trends, k∗ is not known, the practi-

cal implementation of this test is rather limited. Hence, as in sections 2.4.1 and 2.4.2 we

built data dependent weighted averages of the Wk (l + 1|l) statistics for k = 0, . . . , n that

ensure that the appropriate sequential test statistic is selected at least asymptotically.

Therefore, the Wλ (l + 1|l) statistic is given by:

Wλ (l + 1|l) =
n∑
k=0

[
λk
(
τ̂ l+1, τ̃ l+1

)
− λk−1

(
τ̂ l+1, τ̃ l+1

)]
Wk (l + 1|l)

where τ̂ l+1 = (τ̂1, . . . , τ̂l+1) = arg inf
τ∈Λl+1

ε

ξy,k(τ) and τ̃ l+1 = (τ̃1, . . . , τ̃l+1) = arg inf
τ∈Λl+1

ε

ξ∆y,k(τ).

Since under H0 we have m = l it is readily seen that the asymptotic behaviour of the mul-

tivariate KPSS statistics ξy,k(τ̂
l+1) and ξ∆y,k(τ̃

l+1) and the weight functions λk
(
τ̂ l+1, τ̃ l+1

)
for k = 0, . . . , n is precisely the same as described in Lemma 4 and Corollary 10. Hence, we

may state the following corollary that describes the asymptotic behaviour of Wλ (l + 1|l):

Corollary 11. If assumptions 2-5 hold and ut has k∗ common stochastic trends then,

under the null that there are m = l breaks:

λ(ξy,k(τ̂
l+1), ξ∆y,k(τ̃

l+1))
p−→


1, if k ≥ k∗

0, if k < k∗
(2.28)

and we have lim
T→∞

P (Wλ (l + 1|l) ≤ x) = Gk∗,ε (x)l+1 where Gk∗,ε (x) is the distribution

function of sup
τ∈Λmε

Jmk∗ (τ) + Jmr∗ (τ) for m = 1.

The results in Corollary 11 show that critical values for the sequential tests can be

computed from the quantiles of the asymptotic distribution of the W k∗

∗ statistic for the
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case of just one break (m = 1). In table 2.2 we present critical values Wλ (l + 1|l) test for

l = 0, . . . , 4 up to 8 dependent variables (n = 2, . . . , 8). The Wλ (l + 1|l) can, then, be

used to estimate the number of common broken deterministic trends without making any

assumption about the error process being I(0) or I(1) cointegrated or not cointegrated.

The procedure starts with l = 0, by using Wλ (1|0) to test for the presence of one break.

If the null hypothesis is rejected, we set l = 1 and perform the Wλ (2|1). The procedure

is repeated in a similar fashion until the Wλ (l + 1|l) cannot reject the null hypothesis of

l breaks. The estimated number of breaks is then obtained as the number of rejections.

This sequential procedure can be made consistent with the same arguments as in Hosoya

(1989) by adopting a significance level for the test Wλ (l + 1|l) that decreases to zero, at

a suitable rate, as the sample size increases.

2.6 Finite Sample Simulations

In this section we provide results of several Monte Carlo simulations. All the results

were computed over 5000 replications using the rndn pseudo random number generator

in Gauss. The trimming parameter ε is set equal to 0.15. Asymptotic critical values

were obtained with discrete approximations (T = 1000) of the asymptotic distributions.

We report the critical values, with different significant levels denoted by ψ, for the test

of the null of no break against the alternative of a broken trend, with the break date

unknown on Table 2.1. To apply these tests we need to choose constant g from the

weight function. After studying the finite sample behaviour of the sequence of weight

functions, {λk (τ̂ , τ̃)}nk=0 with several Monte Carlo simulations we found that the rule

gk,n,m = (500 + 750 (m− 1))
(n+ k)

(n− k)2 was the best overall and presents decent finite

sample size and power over the range of experiments considered. More specifically, to

analyze the power and size properties we use 5000 simulations with different number

of observations ranging from T = 100 to T = 1000 derived from the following general

DGPs:

yt = µ0 + µ1t+
m∑
j=1

δjDU
j
t +

m∑
j=1

γjDT
j
t + ut
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Throughout, we set µ0 and µ1 to zero (µ0 = µ1 = 0) since the test results are invariant

to the true parameter values of the intercept and trend terms. The disturbance term, ut,

is based on Toda (1994, 1995) where he has shown that the following process can be seen

as a canonical form for investigating the properties of LR type cointegration tests:

ut =

ρIn−k∗ 0k∗

0n−k∗ Ik∗

ut−1 + εt, εt∼Nn (0n, In) (2.29)

Since both the Wald test and the multivariate KPSS statistic are invariant to affine

linear transformations, that is, yt 7→ Pyt+a this class of DGPs also represent a canonical

form to study the properties of Wλ test statistic.

Table 2.3 reports size (δj = γj = 0) for j = 1, . . . ,m of Wλ(τ
∗) test statistic for the

known break fraction case with τ ∗ = 0.5. We used the values 0, 0.4 and 0.8 for the

autoregressive parameter, ρ, of the I(0) time series. Naturally, for the k∗ I(1) time series

the autoregressive parameter is set to 1 as it can be seen in (2.29). We set the dimension

of the yt vector as n = 3 and considered all possible number of common stochastic trends

k∗ = 0, . . . , n. Hence, for k∗ = n, ut is a pure multivariate random walk whereas if k∗ = 0,

ut is a multivariate I(0) process where each element of the vector yt is and AR(1) with

autoregressive parameter ρ. In the case of pure I(0) shocks, we observe that the Wλ

statistic tends to be somewhat undersized, specially, for a small number of observations

(T = 100). However, as we increase the sample size the empirical rejection frequencies

get closer to the 5% significance level. Conversely, if ut is a pure non cointegrated I(1)

process the test is slightly oversized. The same oversizing pattern occurs if the shocks are

I(1) and cointegrated (except for T = 100) and this effect is specially pronounced as we

increase the persistence of the I(0) components of yt. However, we see these distortions as

finite sample effects because as we increase the sample size the the oversizing magnitude

decreases and approaches the 5% rejection frequency.

Table 2.4 reports rejection frequencies of Wλ test statistic for the unknown break

fraction case. We simulated bivariate (n = 2) and trivariate (n = 3) processes generated

according to (2.29). We used values of 0 and 0.5 for the autoregressive parameter of

111



n − k∗ I(0) time series and we considered sample sizes of T = 100 and T = 200. We

set γ = δ = 0 and γ =
δ

2
= {0.2, 0.4} to analyze, respectively, finite sample size and

power of the test. In general, the behaviour of the empirical size is qualitatively similar

to the known break case with underrejections in cases where the shocks are I(0) and a

sudden shift from an undersized to an oversized test as the sample increased from 100

to 200 observations for k∗ = 1, . . . , n − 1. However, it is important to realize that in

most cases the degree of size distortions is higher than in the known break fraction case.

We provide some results regarding power and without showing more detailed results we

observe a general rule: the test is much more effective in detecting the existence of breaks

in the trend if they occurred in the stationary time series than if they occurred in the

I(1) region. This should come as no surprise as the order of probability of the estimator

of the magnitude of the break γ is much higher in the I(0) region than in the I(1) region

as it can be readily seen in Theorem 6.

2.7 Empirical Application

The construction of accurate and cross-country comparable top income share estimates

attracted a considerable amount of attention in the economic inequality literature during

the last decade. The share of total income concentrated on the richest people is now

considered to be a reasonable proxy for income inequality due to the observed strong

and positive correlation between the top income share and other measures of income in-

equality as, for example, relative property. Furthermore, changes in distribution in top

income share may also have very important socio-economic implications: for example, a

higher concentration may increase the influence of the richest class on political outcomes

and on important decisions from major industry sectors. It may also generate “expen-

diture cascades” of the middle class as the median income people change the positional

goods bundle that they consider “adequate” to keep their social stating. Hence the im-

portant consequences of changing top income shares justify an extensive research agenda

both to understand the main causes and quantifying the socioeconomic impact of these

movements.
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In a recent paper Roine and Waldenström (2011) added a valuable contribution to this

literature. They conducted an extensive study about the number and timing of structural

breaks in the trend of top income shares across eighteen countries. The authors identified

and distinguished break dates common to all countries, common to groups of countries

and specific to each individual country. The empirical analysis used Bai and Perron

(1998) method to detect country specific breaks in the trend and Qu and Perron (2007)

methodology (henceforth PQ) to detect structural changes occurring simultaneously on all

countries and across groups. These 2 methods preclude trending and unit root regressors.

Now if we compare our test with PQ critical values we find very similar values and so it

seems that, in practice, we can detect accurately changes in trend with PQ algorithm.

However, if we do not take into account (non-)stationarity properties of the driving shocks

then this may lead to structural breaks tests to have very poor size and power properties

as discussed in previous sections.

Hence, in this section we use exactly the dataset from Roine and Waldenström (2011)

(data are generously provided on Waldenstrom’s website). Table 1 from that paper enu-

merates the sources used to collect data for different countries. These sources essentially

obtain income shares through national level personal income tax returns. For each coun-

try, data are topically drawn from income tax tabulations that report for a large number

of different income groups the corresponding number of tax payers, total income and tax

liability. Then, the standard practice is to assume that data follow a Pareto distribution

and use interpolation techniques to produce top income series. A discussion of different

methodologies by which this can be done can be found in Atkinson and Piketty (2007).

We analyze natural logarithm of top percentile income shares.

This dataset is used to identify breaks in the trend function that are common for

groups and for all countries under our proposed econometric sequential testing method-

ology. Our objective is to complement their empirical analysis both confirming and

strengthening some of their important findings and highlighting possible important dif-

ferences on our results that may be attributed to common cross section stochastic trends

observed in the data.
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The main results of PQ and our sequential Wλ test statistic applied to country groups

top 1% income share are given in Table 2.5. The break dates estimated under both

methodologies are superimposed on the plots of Figure 2.1. According to PQ test, there

is statistical evidence at the 5% level to find 2 trend breaks for the continental group and

3 trend breaks for the asian group. However, the sequential Wλ statistic cannot confirm

these structural breaks for both country groups. The results illustrate the importance of

taking into account the number of stochastic trends if they exist. These idea is reinforced

when we look at differences on the results from other country groups: The results from

the PQ test show strong evidence for 3 trend breaks in anglo-saxon and nordic group but

we only find evidence for 1 trend break according to the Wλ statistic. We also report the

values of PQ and Wλ statistics for testing the null of 0 against 1 break in trend. Here we

observe that the value of the PQ statistic is substantially higher than the Wλ statistic

except for the nordic group. Thus caution should be taken in interpreting certain events

as causing common structural breaks in trend of top income shares. In fact, according to

both methodologies the second World War and the first oil price shock can be regarded as

exogenous shocks, respectively, for nordic and anglo-saxon groups. However, in contrast

to PQ, the Wλ test statistic reveals that other estimated trend breaks in all country

groups should be regarded as shocks or combination of shocks from the errors of the

underlying data-generating process of top income shares.

2.8 Conclusion

In this paper we presented tests for the presence of multiple structural change in the trend

slope of a multivariate time series which do not require knowledge of the form of serial

correlation in the data and are valid regardless of the vector of shocks being I(0), I(1),

cointegrated or not cointegrated. We have considered a Disjoint Broken Trends Model.

We have extended the test procedure proposed by Harvey et al. (2009) to multivariate

setting and constructed a weighted average of a sequence of Wald statistics appropriate

for testing the existence of breaks in trend if one knows the number of stochastic trends

in the data. We start by considering the case in which the empirical researcher is sure
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about the break dates if there is any structural change in the trend function and proved

that the proposed test has a chi-square limiting distribution, regardless of the number of

stochastic trends. Next, we propose tests for known number of trend breaks but unknown

break dates under the alternative. Here, the estimated break dates are global maximizers

of the sequence of Wald statistics evaluated at all admissible partitions. We also proposed

a sequential procedure that may be used to estimate the number of breaks along the lines

of Qu and Perron (2007). We analyzed Monte Carlo evidence to study finite sample

properties of the proposed tests.
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Mathematical Appendix

Proof of Theorem 6. (a) The proof of this part of the theorem is similar to the

proof of Lemma 3.1 from TSL. First, notice that all relevant quantities are invariant

to normalizations of α̃ and β̃, so we can assume some kind of normalization and use

the following results (see Ahn and Reinsel, 1990, Saikkonen, 1992, Paruolo, 2002, for

example):

α̃ = α +Op

(
T−

1
2

)
β̃ = β +Op

(
T−1

)
β̃⊥ = β⊥ +Op

(
T−1

)
Γ̃i = Γi +Op

(
T−

1
2

)
Ω̃ = Ω +Op

(
T−

1
2

) (2.30)

From the definitions of G̃jt and H̃jt, for j = 0, . . . ,m, we have that:

G̃0t =



In, if t = 1

In −
t−1∑
j=1

Ãj, if t = 2, . . . , p

−α̃β̃′, if t = p+ 1, . . . , T

H̃0t =



In, if t = 1

tIn −
t−1∑
j=1

(t− j) Ãj, if t = 2, . . . , p

Ψ̃− (t− 1) α̃β̃′, if t = p+ 1, . . . , T

(2.31)

G̃jt =



0, if t < T ∗j

In, if t = T ∗j

In −
t−T ∗j∑
J=1

Ãj, if t = T ∗j + 1, . . . , T ∗j + p− 1

−ãβ̃′, if t = T ∗j + p, . . . , T

(2.32)
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H̃jt =



0, if t < T ∗j

In, if t = T ∗j

In −
t−T ∗j∑
J=1

(
t− T ∗j + 1− j

)
Ãj, if t = T ∗j + 1, . . . , T ∗j + p− 1

Ψ̃−
(
t− T ∗j

)
α̃β̃′, if t = T ∗j + p, . . . , T

(2.33)

for j = 1, . . . ,m. The idea is to consider the asymptotic properties of the estima-

tors in the direction of β⊥. For this purpose, consider the parameter vectors B1 ={
β̃′µ0, β̃

′δ1, . . . , β̃
′δm, β̃

′µ1, β̃
′γ1, . . . , β̃

′γm

}′
, B2 =

{
β̃′⊥µ1, β̃

′
⊥γ1, . . . , β̃

′
⊥γm

}′
and B3 ={

β̃′⊥µ0, β̃
′
⊥δ1, . . . , β̃

′
⊥δm

}′
. Now, to express equation (2.14) in terms of B1, B2 and B3.

We transform the matrices G̃jt and H̃jt (j = 0, . . . ,m) accordingly and we define:

F̃1t = Q̃′
[
G̃0tβ̃ : . . . : G̃mtβ̃ : H̃0tβ̃ : . . . : H̃mtβ̃

]
, F̃2t = Q̃′

[
H̃0tβ̃⊥ : . . . : H̃mtβ̃⊥

]
and F̃3t =

Q̃′
[
G̃0tβ̃⊥ : . . . : G̃mtβ̃⊥

]
, where β̃ = β̃

[
β̃′β̃
]−1

and β̃ = β̃⊥

[
β̃′⊥β̃⊥

]−1

. Then (2.14) can

be rewritten as:

Q̃′Ã (L) yt = F̃1tB1 + F̃2tB2 + F̃3tB3 + ςt (2.34)

Now notice that equation (2.34) differs from equation (A.1) in TSL only in the number of

structural breaks that we may allow in the deterministic component. Since the intercept

and slope dummies behave in the same way, respectively, as the constant and linear

trend the rates of convergence of the LS estimators B̃1, B̃2 and B̃3 will be the same as

in TSL. Hence, taking into account that F̃3t takes nonzero values only for a fixed number

of time indices t we conclude that the appropriately standardized moment matrix is

asymptotically block diagonal between F̃3t and
[
F̃1t : F̃2t

]
and B̃1 = B1 + Op (1). Also,

the aforementioned arguments allow us to drop F̃3t on the right hand side of (2.34) and

conclude that the asymptotic properties of estimators from equation (2.34) are the same

from the following equation:

ỹt =
{
c′1t ⊗

(
−Q̃′α̃

)}
B1 +

{
c′2t ⊗ Q̃′Ψ̃β̃⊥

(
β̃′⊥β̃⊥

)−1
}
B2 + ςt (2.35)
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where ỹt = Q̃′Ã (L) yt, c1t =
{

1, DU1
t , . . . , DU

m
t , t, DT

1
t , . . . , DT

m
t

}′
, c2t =

{
1, DU1

t , . . . , DU
m
t

}′
and ηt = Q̃′Ã (L) yt. Then we have that:

B̃2 −B2

B̃3 −B3

 =

C11 ⊗ Ã11 C12 ⊗ Ã12

C21 ⊗ Ã21 C22 ⊗ Ã22


−1


T∑
t=1

c1t ⊗
(
−α̃′Ω̃−1Ã (L)ut

)
T∑
t=1

c2t ⊗
(
β̃′⊥β̃⊥

)−1

β̃′⊥Ψ̃′Ω̃−1Ã (L)ut


where

Cij =
T∑
t=1

citc
′
jt

Ã11 = α̃′Ω̃−1α̃

Ã12 = Ã21 = −α̃′Ω̃−1Ψ̃β̃⊥

(
β̃′⊥β̃⊥

)−1

Ã22 =
(
β̃′⊥β̃⊥

)−1

β̃′⊥Ψ̃′QΩ̃−1Ψ̃β̃⊥

(
β̃′⊥β̃⊥

)−1

= Ã21Ã
−1
11 Ã12 + D̃−1

with

D̃ = β̃′⊥C̃Ω̃C̃ ′β̃⊥

Let’s turn now to the asymptotic distribution of β̃′⊥γ̃− β′⊥γ. To simplify the notation let

RUt :=
{
RU1

t , . . . , RU
m
t

}
where RU j

t are the OLS residuals from the regression of DU j
t

on
{

1, D1
t , . . . , D

m
t

}
. Then, using the FWLT we can write the asymptotic bias of β̃′

⊥γ̃

as:
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T
1
2

(
β̃′
⊥γ̃ − β′

⊥γ
)

=


[
T−1

T∑
t=1

RUtRU
′
t

]−1

⊗B
(
A21A

−1
11 α

′ + (β′⊥β⊥)
−1
β′⊥Ψ′

)
︸ ︷︷ ︸

=β′⊥CΩ

Ω−1


(
T−

1
2

T∑
t=1

RUt ⊗ Ã (L)ut

)
+ op (1) =

=

[T−1

T∑
t=1

RUtRU
′
t

]−1

⊗ Ik∗

T−
1
2

T∑
t=1

RUt ⊗ β′⊥Cεt + op (1)

Now entirely standard results allow us to establish the following weak convergence

result:

T
1
2

(
β̃′
⊥γ̃ − β′

⊥γ
)
⇒
[∫ 1

0

RURU ′ ⊗ Ik∗
]−1 [∫ 1

0

RU ⊗ dBβ⊥
k∗

]
(b) We first prove that that the result of the theorem holds for the GLS estimator,

i. e., assuming the unrealistic assumption that α, Ω are known. Let et = R∆y,t −

α (β′Ry,t−1 − φ′RDT,t−1). Then, if we replace R∆y,t−αR(r)
y,t−1 in the expression of the GLS

estimator (see (2.3) with α̃ and Ω̃ replaced by α and Ω) by α
(
β′(k)R

(k)
y,t−1 − φ′RDT,t−1

)
+et

and rearrange terms we obtain:

(
β̃′(k), φ̃

′
)
−
(
β′(k), φ

′) =
(
α′Ω−1α

)−1
α′Ω−1

[
T∑
t=1

etR
(k)′
y,DT,t−1

][
T∑
t=1

R
(k)
y,DT,t−1R

(k)′
y,DT,t−1

]−1

Since R
(k)
y,t−1 possibly exhibits a segmented deterministic trend with up to m+1 regimes it

is convenient to use RDT,t−1, the last component of the vector R
(k)
y,DT,t−1, to detrend the lev-

els of this process taking into account the trend breaks. In order to do so and to control the

different asymptotic rates of convergence of the estimators, we define the adjustment ma-

trix QT =

TB22 T
3
2PRDT

0 T
3
2 Im+1

 such that

TB22 T
3
2PRDT

0 T
3
2 Im+1


−1

=

 1

T
B−1

22 −T
3
2B−1

22 PRDT

0 T−
3
2 Im+1


where B22 is the lower right hand ((k)× (k)) block of B−1 with B =

 β′

α′⊥

 and PRDT is
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the projection matrix of RDT . For ease of exposition we use the following notation. For

any two processes Kt and Lt we define the residuals:

(Kt|Lt) = Kt −
T∑
i=1

KiL
′
i

(
T∑
i=1

LiL
′
i

)−1

Lt

Then we have that:

R
(k)
y,DT,t−1 = QT

T−1B−1
22 R

(k)
y,t−1|RDT,t−1

T−
3
2R′DT,t−1

 (2.36)

Using (2.36) for the moment matrix
T∑
t=1

R
(k)
y,DT,t−1R

(k)′
y,DT,t−1, we have that:

[
T∑
t=1

R
(k)
y,DT,t−1R

(k)′
y,DT,t−1

]−1

= Q′−1
T

M11
T 0

0 M22
T

Q−1
T + op (1) (2.37)

whereM11
T =

(
T−2

T∑
t=1

β′⊥ (ut−1|XDT,t−1, XDU,t−1) (ut−1|XDT,t−1, XDU,t−1)′ β⊥

)−1

andM22
T =(

T−3

T∑
t=1

(XDT,t−1|XDU,t−1) (XDT,t−1|XDU,t−1)′
)−1

. and for the cross products between

the components et the regressors of R
(k)′
y,DT,t−1, we see that:

T∑
t=1

etR
(k)′
y,DT,t−1 =

(
T−1

T∑
t=1

εt (ut−1|XDT,t−1, XDU,t−1)′ β⊥

)
(
T−

3
2

T∑
t=1

εt (XDT,t−1|XDU,t−1)′
)
Q
′

T + op (1) (2.38)

Hence, combining (2.37) and (2.38) we find the asymptotic dominant terms and asymp-

totic distribution of the appropriately standardized estimators
(
β̃GLS′(k) , φ̃GLS′

)
.

Now we prove that
(
β̃FGLS′(k) , φ̃FGLS′

)
is asymptotically close to

(
β̃GLS′(k) , φ̃GLS′

)
by

proving that
((
β̃FGLS′(k) , φ̃FGLS′

)
−
(
β̃GLS′(k) , φ̃GLS′

))
QT = op (1).

Let νt = R∆y,t − α̃
(
R

(r)
y,t−1 − φ̃′RDT,t−1

)
− α̃

(
βφ′(k)R

(k)
y,DT,t−1

)
. If we replace R∆y,t −
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α̃R
(r)
y,t−1 by α̃

(
βφ′(k)R

(k)
y,DT,t−1

)
+ et and rearrange terms, we obtain:

(
β̃FGLS′(k) , φ̃FGLS′

)
−
(
β̃′(k), φ̃

)
=
(
α̃′Ω̃−1α̃

)−1

α̃′Ω̃−1

[
T∑
t=1

νtR
(k)′
y,DT,t−1

][
T∑
t=1

R
(k)
y,DT,t−1R

(k)′
y,DT,t−1

]−1

Now: (
β̃φ̃′FGLS(k) − β̃

φ̃′
GLS(k)

)
QT = (I) + (II) (2.39)

where

(I) =

((
α̃′Ω̃−1α̃

)−1

α̃′Ω̃−1 −
(
α′Ω−1α

)−1
α′Ω−1

)[ T∑
t=1

etR
(k)′
y,DT,t−1

][
T∑
t=1

R
(k)
y,DT,t−1R

(k)′
y,DT,t−1

]−1

QT

and

(II) =
(
α̃′Ω̃−1α̃

)−1

α̃′Ω̃−1

(
T∑
t=1

(νt − et)R(k)′
y,DT,t−1

)(
T∑
t=1

R
(k)
y,DT,t−1R

(k)′
y,DT,t−1

)
QT

Since νt− et = (α̃− α) (β′Ry,t−1 − φRDT,t−1) by virtue of the consistency of α̃ and Ω̃ and

the fact that β′Ry,t−1 − φRDT,t−1 is and I(0) process “cleaned” from the deterministic

components we see that the right hand side in (2.39) is op (1). From (2.37) and (2.38)

and
(
β̃φ̃′FGLS(k) − β̃

φ̃′
GLS(k)

)
QT = op (1), we find that:

(
φ̃FGLS′ − φ′

)
QT

d→
∫ 1

0

Bα
r∗ (XDT |XDU)′

(∫ 1

0

(XDT |XDU) (XDT |XDU)′
)−1

and so applying the FWL Theorem we have that:

T−
3
2 β̃′γ̃

d→
[∫ 1

0

RTRT ′ ⊗ Ir
]−1 [∫ 1

0

RT ⊗ dBα
r∗

]

Proof of Theorems 7 and 8. Using arguments similar to the proof of Lemma A.2

from Lütkepohl and Saikkonen (2000a), we find that:
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TÃvar
(̃
β′
⊥̃γ
)
⇒
(∫ 1

0

RURU

)−1

⊗ (β′⊥CΩC ′β⊥) (2.40)

and

T 3Ãvar
(̃
β′̃γ

)
⇒
(∫ 1

0

RTRT

)−1

⊗
(
α′Ω−1α

)−1
(2.41)

Therefore, one readily obtains:

W k
β′
⊥γ

=
(
β̃′
⊥γ̃
)′ [

Ãvar
(̃
β′
⊥̃γ
)]−1 (

β̃′
⊥γ̃
)
⇒ χ2

mk

and

W k
β′⊥γ

=
(
β̃′γ̃

)′ [
Ãvar

(̃
β′̃γ

)]−1 (
β̃′γ̃

)
⇒ χ2

mr

The result from Theorem 7 now follows from the asymptotic unconditional indepen-

dence of T
1
2 β̃′⊥γ̃ and T

3
2 β̃′γ̃ and the fact that the sum of independent chi-square random

variables is also chi-square distributed. Hence, it follows that:

W k
γ = W k

β′
⊥γ

+W k
β′γ ⇒ χ2

mn

Now we define the following the following standard Brownian motions:

Br∗ (s)

Bk∗ (s)

 =

 (
α′Ω−1α

)− 1
2 α′Ω−

1
2Bn (s)

(β′⊥CΩC ′β⊥)
− 1

2 β′⊥CΩ
1
2Bn (s)

 = BM

Ir∗ 0

0 Ik∗


The result from Theorem 8 now follows from the definition of Br∗ (s) and Bk∗ (s), Theorem

6,(2.40) and (2.41) and the CMT.

Proof of Lemma 3. Result (a) follows from Proposition 3 of Busetti (2002) for the
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cases k < k∗ and k = k∗. With similar arguments from Theorem B.4 of Nyblom and

Harvey (2000) we can see Λy,k = Op (T/l) for k = 1, . . . , k∗ and Λy,k = Op (1) if k =

k∗ + 1, . . . , n. Hence we conclude that ξy,k = Op (1) when k > k∗. Result (b) follows

from Corollary B.6 of Nyblom and Harvey (2000) for the case k < k∗. With results from

Leybourne et al. (2007) we proceed in the same way as Theorem B.4 from Nyblom and

Harvey (2000) to prove that Λ∆y,k = Op (1) for k = 1, . . . , k∗ and Λ∆y,k = Op (l/T ) if

k = k∗ + 1, . . . , n. Consequently, ξy,k = Op (l/T ) when k > k∗.

Proof of Lemma 4. To avoid inessential algebraic complexities we prove these results

for m = 1 and µ0 = µ1 = δ = 0. These assumptions have no effect on the orders of

probability. Throughout the proof, we will make use of the following partition of Σy (τ),

Σ∆y (τ), Cy (τ) and C∆y (τ):

Σy (τ) =

Σ11,y (τ) Σ12,y (τ)

Σ21,y (τ) Σ22,y (τ)

Σ∆y (τ) =

Σ11,∆y (τ) Σ12,∆y (τ)

Σ21,∆y (τ) Σ22,∆y (τ)



Cy (τ) =

C11,y (τ) C12,y (τ)

C21,y (τ) C22,y (τ)

C∆y (τ) =

C11,∆y (τ) C12,∆y (τ)

C21,∆y (τ) C22,∆y (τ)


where Σ11,y (τ), Σ11,∆y (τ), Cy (τ), C11,∆y (τ) are k∗ × k∗ matrices.

(a) We analyze first the asymptotic properties of the OLS variance matrix estimator

for the model in levels: Σy with l = 0. Using the same arguments as in Harvey et al.

(2009) we find that the dominant term of the difference Σy (τ)− Σy (τ ∗) is given by:

(dT )2

36
(τ − 1)3 (4τ ∗ − τ − 3) γγ′

where d = τ − τ ∗. Now since γ = o
(
T−

1
2

)
for s = 1, . . . , , k∗ and γ = o

(
T−

3
2

)
for s =

k∗ + 1, . . . , n it follows that ‖Σ22,y (τ)− Σ22,y (τ ∗)‖ = op
(
T−1

)
, ‖Σ12,y (τ)− Σ12,y (τ ∗)‖ =

op (1), ‖Σ21,y (τ)− Σ21,y (τ ∗)‖ = op (1) and ‖Σ11,y (τ)− Σ11,y (τ ∗)‖ = op (T ). Now we

relax the restriction on l and use the last 2 results to obtain the order of probability for
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the difference of the long run covariance matrix estimator:

‖Σy (τ)− Σy (τ ∗)‖ ≤

∥∥∥∥∥ 1

T

T∑
t=1

et (τ) et (τ)′ − 1

T

T∑
t=1

et (τ ∗) et (τ ∗)′

∥∥∥∥∥
+

∥∥∥∥∥∥∥∥∥∥
2

l∑
i=1

(
1− i

l + 1

)
︸ ︷︷ ︸

O(l)

(
1

T

T∑
t=1

et (τ) et−i (τ)′ − 1

T

T∑
t=1

et (τ ∗) et−i (τ
∗)′
)∥∥∥∥∥∥∥∥∥∥

(2.42)

Hence, we conclude that ‖Σ22,y (τ)− Σ22,y (τ ∗)‖ = op
(
lT−1

)
, ‖Σ12,y (τ)− Σ12,y (τ ∗)‖ =

op (l), ‖Σ21,y (τ)− Σ21,y (τ ∗)‖ = op (l) and ‖Σ11,y (τ)− Σ11,y (τ ∗)‖ = op (lT ). We now turn

to the order of probability of Cy. We start to establish the asymptotic behaviour of the

partial sum of the vector of residuals. We can rewrite
i∑
t=1

ût (τ) as:

i∑
t=1

ût (τ) =
i∑
t=1

(ut − γft (τ̂ , τ ∗)) +
i∑
t=1

DTt (τ)

(
γ

∑T
t=1 ft (τ, τ ∗)DTt (τ)∑T

t=1DTt (τ)2
−
∑T

t=1 DTt (τ)ut∑T
t=1DTt (τ)2

)

= (I) + (II) (2.43)

where ft (τ, τ ∗) = 1 (Tτ ∗ < t ≤ Tτ) [t− Tτ ∗] + 1 (t > Tτ)T (τ − τ ∗). Now for (I) in

(2.43), we have that:

∥∥∥∥∥
i∑
t=1

(ut − γft (τ, τ ∗))

∥∥∥∥∥ ≤
∥∥∥∥∥

i∑
t=1

ut

∥∥∥∥∥+

∥∥∥∥γ 1

2
(Td)2

∥∥∥∥+
∥∥γT 2d (i− τ ∗)

∥∥

Hence, from the shrinking shifts assumption, we have that T−
3
2

i∑
t=1

(ust − γsft (τ̂ , τ ∗)) =

T−
3
2

i∑
t=1

ust+op (1) for s = 1, . . . , k∗ and T−
1
2

i∑
t=1

(ust − γsft (τ̂ , τ ∗)) = T−
1
2

i∑
t=1

ust+op (1)

for s = k∗+1, . . . , n. The same line of proof can be used to show that the dominant term

of (II) in (2.43) is −
i∑
t=1

DTt (τ)

∑T
t=1DTt (τ)ut∑T
t=1DTt (τ)2

. The described asymptotic properties

for (I) and (II) implies that C11,y = Op

(
T 2
)
C12,y = Op (T ), C21,y = Op (T ) and C22,y =

Op (1). Now the proof follows similar lines from Busetti (2002). The eigenvalues of
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Σy (τ)−1Cy (τ) are the solution of the characteristic polynomial:

|Cy − Λy,jΣy| = |C11,y − Λy,jΣ11,y|

×
∣∣C22,y − Λy,jΣ22,y − (C21,y − Λy,jΣ21,y) (C11,y − Λy,jΣ11,y)

−1 (C12,y − Λy,jΣ12,y)
∣∣

= 0

Therefore, Λy,s = Op

(
T

l

)
for s = 1, . . . , k∗ and Λy,s = Op (1) for s = k∗ + 1, . . . , n and(

l

T

)
ξy,k (τ) = Op (1) if k < k∗ and ξy,k (τ) = Op (1) if k ≥ k∗.

(b) With the same line of proof from Harvey et al. (2009) we observe that the dominant

term of the difference on the OLS variance matrix estimators for the model in differences,

Σ∆y (τ)− Σ∆y (τ ∗) for l = 0, is given by:

d (τ ∗ − 1)

(2τ ∗ − τ − 1)
γγ′

Given that γ = o
(
T−

1
2

)
for s = 1, . . . , , k∗ and γ = o

(
T−

3
2

)
for s = k∗ + 1, . . . , n it

follows that ‖Σ11,∆y (τ)− Σ11,∆y (τ ∗)‖ = op

(
T−

1
2

)
. Now if we relax the restriction on l

it follows as in 2.42 that ‖Σy (τ)− Σy (τ ∗)‖ = Op

(
lT−

1
2

)
. As regards to C∆y, we again

analyze first the asymptotic properties of the partial sum of the vector of residuals from

the model in differences. We can rewrite
i∑
t=1

v̂t as:

i∑
t=1

v̂t (τ) =

(
γ

i∑
t=1

fDUt (τ ∗, τ) +
i∑
t=1

vt

)

+
i∑
t=1

DUt (τ)

(∑T
t=1 DUt (τ) vt∑T
t=1 DUt (τ)2

− γ
∑T

t=1 DUt (τ) fDUt (τ ∗, τ)∑T
t=1DUt (τ)2

)
= (I) + (II)

where fDUt (τ ∗, τ) = 1 (Tτ ∗ < t ≤ Tτ). Now for (I) we have that ‖(I)‖ ≤

∥∥∥∥∥
i∑
t=1

vt

∥∥∥∥∥ +

‖γTd‖ which implies that γs

i∑
t=1

fDUt (τ ∗, τ) +
i∑
t=1

vs,t = T−
1
2

i∑
t=1

vs,t + op (1) for s =

1, . . . , k∗ and γs

i∑
t=1

fDUt (τ ∗, τ) +
i∑
t=1

vs,t =
i∑
t=1

vs,t + op (1) for s = k∗ + 1, . . . , n.

With the same arguments it is possible to show that the dominant term of (II) is
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−
i∑
t=1

DUt (τ)

∑T
t=1 DUt (τ) vt∑T
t=1 DUt (τ)2

. Hence it follows that C11,y = Op (1) C12,y = Op

(
T−

1
2

)
,

C21,y = Op

(
T−

1
2

)
and C22,y = Op

(
T−1

)
. The eigenvalues of Σ∆y (τ)−1C∆y (τ) are the

solution of the characteristic polynomial:

|C∆y − Λ∆y,jΣ∆y| = |C11,∆y − Λ∆y,jΣ11,∆y|

× |C22,∆y − Λ∆y,jΣ22,∆y−

(C21,∆y − Λ∆y,jΣ21,∆y) (C11,∆y − Λ∆y,jΣ11,∆y)
−1 (C12,∆y − Λ∆y,jΣ12,∆y) |

= 0

Therefore, Λ∆y,s = Op (1) for s = 1, . . . , k∗ and Λ∆y,s = Op

(
l

T

)
for s = k∗ + 1, . . . , n

which determines that ξ∆y,k (τ) = Op (1) if k < k∗ and

(
T

l

)
ξ∆y,k (τ) = Op (1) if k ≥

k∗.

Proof of Theorem 9. The proof follows the same lines of the proof of Proposition

7 from Bai and Perron (1998) and Theorem 1 from Kejriwal and Perron (2010) and is,

therefore, omitted for the sake of brevity.
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Tab. 2.2: Asymptotic critical values for the sequential test Wλ(l + 1|l).

Number of Dependent Variables, n
l ψ 2 3 4 5 6 7 8

0.1 10.19 12.72 14.24 16.77 18.13 20.70 21.85
0 0.05 12.17 14.30 16.65 18.49 20.86 22.24 23.92

0.01 16.68 18.90 20.83 22.65 24.71 26.28 27.25
0.1 12.15 14.21 16.63 18.41 20.67 22.21 23.88

1 0.05 14.69 16.13 18.19 20.55 22.27 24.20 25.36
0.01 17.57 19.82 22.56 23.40 25.29 28.51 29.23
0.1 13.55 15.54 17.37 19.81 21.76 22.90 24.84

2 0.05 15.42 17.69 18.96 21.21 23.23 24.87 26.30
0.01 18.80 21.32 22.84 23.98 25.83 29.81 29.76
0.1 14.63 16.10 18.17 20.45 22.23 24.20 25.34

3 0.05 16.16 18.57 20.35 22.01 24.13 25.70 26.78
0.01 19.16 22.44 23.52 24.44 26.79 30.15 30.28
0.1 15.01 16.80 18.66 21.06 22.82 24.77 25.74

4 0.05 16.59 18.86 20.77 22.56 24.70 26.27 27.25
0.01 19.24 23.15 24.15 24.67 27.51 30.34 30.54

Tab. 2.3: Empirical size of Wλ (τ∗) test for τ∗ = 0.5, 5% nominal level .

ρ T k∗

0 1 2 3
100 0.005 0.020 0.033 0.078
200 0.034 0.065 0.076 0.072

0 300 0.042 0.066 0.075 0.063
400 0.039 0.071 0.067 0.057
500 0.043 0.068 0.066 0.051
1000 0.049 0.058 0.056 0.054
100 0.007 0.024 0.039 0.082
200 0.039 0.081 0.081 0.074

0.4 300 0.043 0.083 0.082 0.065
400 0.047 0.080 0.078 0.055
500 0.048 0.077 0.069 0.060
1000 0.050 0.060 0.058 0.050
100 0.024 0.046 0.053 0.073
200 0.074 0.164 0.132 0.071

0.8 300 0.070 0.149 0.129 0.065
400 0.071 0.127 0.104 0.061
500 0.071 0.120 0.093 0.052
1000 0.054 0.083 0.067 0.049
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Tab. 2.4: Empirical size and power of Wλ test, 5% nominal level .

n = 2 n = 3
γ ρ T k∗

0 1 2
0 0.008 0.046 0.057

0.2 100 0.989 0.844 0.07
0.4 0.99 0.862 0.086
0 0 0.019 0.07 0.03

0.2 200 1 0.993 0.041
0.4 1 0.994 0.051
0 0.01 0.076 0.057

0.2 100 0.945 0.73 0.067
0.4 0.962 0.801 0.09
0 0.5 0.022 0.101 0.033

0.2 200 1 0.989 0.044
0.4 1 0.993 0.051

γ ρ T k∗

0 1 2 3
0 0.003 0.014 0.017 0.021

0.2 100 0.914 0.732 0.307 0.029
0.4 0.919 0.774 0.363 0.035
0 0 0.018 0.088 0.134 0.029

0.2 200 1 1 0.962 0.034
0.4 1 1 0.965 0.046
0 0.008 0.032 0.026 0.022

0.2 100 0.749 0.525 0.161 0.027
0.4 0.796 0.642 0.248 0.036
0 0.5 0.033 0.166 0.156 0.029

0.2 200 1 0.999 0.929 0.035
0.4 1 1 0.936 0.053

Tab. 2.5: Group countries common trend breaks in the top 1% Income Share

Number of breaks
(Sequential)

Break dates Test statistic m = 1

Country group Wλ PQ Wλ PQ Wλ PQ
Anglo-saxon 1 3 1979 1937, 1953, 1982 19.7** 172.3***
Continental Europe 0 2 - 1943, 1976 7.3 153.5***
Nordic 1 3 1939 1939, 1961, 1991 40.3*** 25.7***
Asia 0 3 - 1945, 1959, 1983 7.9 192.3***
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3. NEOCLASSICAL, SEMI-ENDOGENOUS OR ENDOGENOUS

GROWTH THEORY? EVIDENCE BASED ON NEW STRUCTURAL

CHANGE TESTS

With Luis C. Nunes and Paulo M. M. Rodrigues1

3.1 Introduction

Determining the nature of the trend (i.e. whether it is deterministic or stochastic) and

whether structural breaks are present in per capita output has been of considerable in-

terest in the literature. These two important and interrelated topics have very important

macroeconomic and econometric implications. First, as firstly put forward by Nelson

and Plosser (1982), if per capita output has a unit root (stochastic trend) then real

disturbances are likely to be the most important source of macroeconomic fluctuations

as opposed to disturbances with only a transitory impact, in agreement with the Real

Business Cycle Theory. However, if the trend in per capita output is deterministic then

it is expected to have small and infrequent real shocks and so disturbances with only

a transitory impact such as monetary shocks are the ones that explain a large fraction

of business cycle fluctuations. Second, the interpretation and usefulness of simple linear

regression models in which output is involved depends on the nature of the trend as OLS

may produce spurious results in the presence of a stochastic trend as shown by Granger

and Newbold (1974) and later demonstrated analytically by Phillips (1986).

The seminal work of Nelson and Plosser (1982) contrasted the null hypothesis of a

unit root against the alternative of trend stationarity for 14 U.S. long historical time

series and did not reject the unit root hypothesis for U.S. real per capita GNP.

1Financial support from Fundação para a Ciência e Tecnologia is acknowledged.



A vast discussion in the literature followed this work and tried to confirm or corrobo-

rate Nelson and Plosser’s conclusions through new and improved unit root tests, but with

no apparent consensus. An important consideration on unit root testing put forward by

Perron (1989) is that with unmodeled structural breaks in the deterministic trend one

can hardly reject the unit root hypothesis even if the series is trend stationary (albeit

with breaks). Perron (1989) argued by simple visual inspection that the 1929 crash was

responsible for a trend break. Using 2.5 percent significance level, he rejected the unit

root hypothesis in real per capita GNP contradicting Nelson and Plosser’s results. How-

ever, Perron’s (1989) exogeneity assumption, corresponding to the Great Depression, was

subject to strong criticism (see Christiano, 1992) and, consequently, to a considerable

number of new unit-root test procedures which estimate the break point endogenously

under the alternative hypothesis (see,inter alia, Zivot and Andrews, 1992, Perron, 1997,

Vogelsang and Perron, 1998, Perron and Rodriguez, 2003). For example, Zivot and An-

drews (1992) clearly does not find statistical evidence against the unit root hypothesis in

per capita output as opposed to Perron (1989), but in Perron (1997) statistical evidence

is much more ambiguous. Recently, this line of work has also attracted significant criti-

cism because these procedures do not allow for a structural break to occur under the null

hypothesis, only under the alternative and hence are not invariant to the magnitude of

the shift in level and/or slope of the trend function (see Kim and Perron, 2009, Carrion-i

Silvestre et al., 2009, Harris et al., 2009). Kim and Perron (2009) devised testing pro-

cedures which allow for one trend break under both the null and alternative hypotheses

and rejected the unit root hypothesis for per capita output supporting Perron (1989).

Additionally to the debate on unit root nonstationarity versus stationarity with breaks,

the issue of structural change in the deterministic component of per capita output also

deserves careful assessment in its own right. If one does not appropriately specify the

trend function then the model will provide inconsistent estimates and poor forecasting

performance. Moreover, if one writes a simple linear regression model of log real per

capita output on a time trend, the trend coefficient will represent the average growth

rate, a quantity of substantial interest and that we will give special attention in this
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paper.

One of the important topics that highlights the importance of studying the stability

of the output growth rate is the competition between neoclassical, semi-endogenous and

endogenous growth theories for the model that best describes what we observe in the

data. Jones (1995a, 2002, 2005) contrasted the observed substantial and permanent

rise of investment in human capital and R&D with the remarkable stability of U.S.

per capita output. If we take these models seriously, then we should have observed

permanent positive shifts on the rate of economic growth, according to the endogenous

growth literature, or, at least, short run increases and long run ”level effects” according

to the neoclassical and semi-endogenous growth models. However, the growth rate of

U.S. per capita output has been remarkably stable since the end of the 19th century.

Moreover, Jones (1995b) documents that several variables that should lead to permanent

changes in the long run growth rate or, at least, have ”level effects” exhibited large,

persistent movements, generally in the ”growth-increasing” direction in OECD economies,

at least, since the World War II. Based on the documented increase of these variables,

Papell and Prodan (2005) classified several countries according to three mutually exclusive

hypotheses, each compatible with a certain class of economic growth models:

(a) The “Summer-Weil-Jones” or “constant trend” hypothesis, originally suggested by

David Weil and Lawrence Summers and subsequently considered in Jones (1995b),

which argues that a simple time trend with slope equal to the average growth rate

should describe very accurately the log of per capita output. Some temporary de-

partures from this line are allowed, corresponding to large exogenous shocks on the

economy and subsequent recovery, but the linear trend should return to its original

path. Jones (2002) developed a model to reconcile the conflicting evidence between

the rising investment in human capital and R&D and the stability of the U.S. growth

rate and provided explanations to this phenomenon: either the permanent effects

associated with all these factors have been offseting leaving the growth rate constant

or the sequence of transitional dynamics has been generating higher average growth

rates than the steady-state value.
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(b) ‘The “Jones-Solow” or “level shift” hypothesis, which favors the neoclassical (Solow,

1956) and the Jones’ (Jones, 1995a, 2005) semi-endogenous growth theories. It de-

fends that, after policy changes such as rise in the human capital or R & D investment,

output growth may change in the short run but should return to its original value in

the long run. However, these changes should lead to long-run increases in the level

of per capita GDP.

(c) The “Romer” or “slope shift” hypothesis postulated by Romer (1986) suggests that

policy changes should alter the growth rate of per capita output permanently .

The objective of this paper, considering the hypotheses previously indicated (i.e. the

“constant trend”, the “level shift” and the “slope shift” hypotheses), is to analyze which

economic growth theory seems to better characterize the growth path of per capita out-

put of a large set of countries. The literature closely related to this paper which also

addresses this issue is Ben-David and Papell (1995) who pre-tested the unit root hypoth-

esis with the Zivot and Andrews (1992) approach and then used the Vogelsang (1997)

test, with critical values corresponding to the resultant order of integration, to search for

evidence for one break in the trend function. Papell and Prodan (2005) and Papell and

Prodan (2011) pre-tested for the existence of a unit root with the ADF test discussed

in Papell and Prodan (2007) that allows for two endogenous break points but with the

second break restricted to have only a slope shift. After filtering out the non stationary

countries, they used a modification of the sequential procedure by Bai (1999), as sug-

gested by Prodan (2008), to estimate the number of breaks. Finally, for countries with

more than 1 break they formally tested the constant trend and level shift hypotheses

with a standard F statistic. However, these approaches have several limitations: first,

the unit root pre-testing procedure imposes, but does not estimate the number of breaks

in the trend function. Second, the unit root test is based on search procedures under

the alternative hypothesis and does not render pivotal asymptotic distributions in the

presence of trend breaks under the null hypothesis as previously indicated. Third, it

is well known that this sequence of pre-testing procedures can generate substantial size

and power distortions (even asymptotically) specially if the first step statistics have poor
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finite sample properties.

Recent developments have provided different solutions to the problem of testing for

the presence of structural breaks without unit root pre-testing. For instance, Perron and

Yabu (2009), Kejriwal and Perron (2010), Harvey et al. (2009) and Nunes and Sobreira

(2010) (hereafter NS) introduced statistical procedures to test for and estimate structural

breaks in the trend function that are robust as to whether the noise component is I(0) or

I(1) so that no unit root pre-testing is needed. Kejriwal and Lopez (2012) took advantage

of these recent econometric developments to test three hypotheses labeled with the same

names as ours but they actually used different definitions for each hypothesis. For the

”constant trend” hypothesis they do not allow a country to return to its original level of

per capita GDP and GDP growth after the transitional period following a large shock.

For the ”level shift” hypothesis they do not allow a country to return to its steady state

value of GDP growth after the transitional period following a large shock.

To categorize countries according to the “constant trend”, ”level shift” and “growth

shift” hypotheses we need first to identify when large and exogenous shocks occurred for

each country. We use the framework in NS as it allows for direct estimation of the number

and timing of breaks in the slope of the deterministic trend function. If no breaks are

found then we interpret that result as evidence favoring the ”constant trend” hypothesis

and consequently suggesting the neoclassical growth theory. If only one break is detected,

that favors the ”slope shift” hypothesis and the endogenous growth models are favored

in this case. Finally, if two breaks are found then three situations may occur: i) it may

happen that, after the last break, both the level and growth rate of per capita output

return to its long run hypothetical value if there were no trend breaks. This situation

enters in the ”constant trend” setup; ii) it is possible that, after the last break, the growth

rate but not the level of per capita output returns to its original path. This enters in

the ”level shift” hypothesis case. Finally, we may observe that neither the level nor the

growth rate of per capita GDP have returned to their original paths. This favors the

”slope shift” hypothesis. To test these hypotheses we need to test additional restrictions

on the coefficients of the linear regression model conditional on the regimes estimated
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with the aforementioned framework of NS.

Hence, this paper provides a further contribution to the econometric literature: How

can we test additional restrictions on the trend function given the estimated break dates

obtained in a first step? It turns out that given the fast rate of convergence of the esti-

mators of the break dates we prove that a standard F-test will converge asymptotically

to the usual chi-square distribution with the number of degrees of freedom corresponding

to the number of restrictions. This result turns out to be very useful not only for the

particular problem treated in this paper but for any study in which general linear restric-

tions of the trend function across regimes need to be tested after estimating the number

and timing of the breaks in a first step.

We apply our procedure to long historical per capita GDP series for an extensive

set of countries. Statistical evidence supports the “constant trend” hypothesis for nine

countries: Austria, Germany, Switzerland, Canada, United States, Chile, Sweden, Aus-

tralia and New Zealand. Only six countries seem to be compatible with the “level shift”

hypothesis: France, Netherlands, Brazil, Denmark, Japan and Italy. Finally, we found

evidence to conclude that eight countries satisfy the “growth shift” hypothesis: Belgium,

Uruguay, Finland, Norway, United Kingdom, Sri Lanka, Portugal and Spain.

This paper is organized as follows. The introductory note in Section 3.2 briefly dis-

cusses the motivation to employ this two-step procedure to classify countries according

to the three economic growth hypotheses. Section 3.2.1 presents the general econometric

setup and underlying assumptions to analyze possible changes and patterns in the steady

state growth rate. Section 3.2.2 presents testing procedures for our first step analysis

that estimates the number of breaks in the steady state growth rate and respective break

dates. Section 3.2.3 presents the statistic to test general linear restrictions on the coeffi-

cients, conditional on the results from the first step, discusses its asymptotic properties

and shows how it can be used for the objective of the paper. Section 3.3 presents and dis-

cusses empirical results and provides a definite categorization of the countries analyzed.

Section 3.4 provides some brief concluding remarks.
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3.2 Assumptions and Methodology

In this section we discuss the empirical approach used to classify countries according to

the “constant trend”, the “level shift” and the “slope shift” hypotheses.

In section 3.2.1 we present a general econometric model for long-term per capita

output and describe in detail its underlying assumptions. In section 3.2.2 we describe

the procedure proposed by NS that tests for the existence, the number and the timing of

trend breaks. This is the first step in our approach and, contrary to Papell and Prodan

(2005) and Papell and Prodan (2011), we do not need to pre-test the unit root hypothesis

since these tests are robust as to whether the underlying errors are I(0) or I(1).

If statistical evidence indicates that all countries have zero or only one break in the

per capita GDP growth rate then our empirical analysis would stop, since no evidence

for the existence of trend breaks favors the “constant trend” hypothesis. On the other

hand, if there is evidence for the presence of one break in trend then this favors the “slope

shift” hypothesis, as a changing steady-state growth rate is compatible with the Romer-

type endogenous growth models. Finally, if our testing procedure detects the presence of

two or more breaks in the trend function, then either the neoclassical, semi-endogenous

or the endogenous growth theory may hold. A first possibility is that, after the first

large shock (which typically coincides with the World Wars or The Great Depression),

the output growth rate deviated from its steady state value but, after enough time has

passed, transition dynamics return the economy to its steady state growth path. This

reasoning is in line with the “constant trend” hypothesis which defends that not only

the steady-state growth rate but also the trend function as a whole should be equal

except in the transition period. A second possibility, compatible with the neoclassical

or semi-endogenous “level shift” hypothesis, occurs when only the steady state growth

rates remain the same before the first break and after transitional dynamics. As a final

possibility, we may observe that, after the recovery from the shock, the economy enters a

new and different steady state growth path in contradiction with the neoclassical growth

theory but perfectly compatible with endogenous growth models. These three different
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and mutually exclusive behaviors of the long-run trend and growth rates are associated

with specific linear restrictions on the breaking trend model described in section 3.2.3.

Additionally, that section outlines the approach used to test general linear restrictions

and establishes the large sample properties of our proposed statistics.

3.2.1 Econometric Model and Assumptions

The most general setup to model the behavior of long-term per capita output is the

disjoint broken linear trend model as discussed in NS and Kejriwal and Perron (2010).

We will consider using their framework now to test for additional restrictions on the trend

breaks coefficients. Hence, the log real per capita GDP, denoted by yt (t = 1, . . . , T ), is a

univariate time series process that is assumed to be generated by the following equation

that includes a constant, a linear trend and m structural breaks in the trend function

which may occur at dates {T ∗1 , . . . , T ∗m}:

yt = α + βt+
m∑
j=1

δjDUt
(
τ ∗j
)

+
m∑
j=1

γjDTt
(
τ ∗j
)

+ ut t = 1, ..., T, (3.1)

where DUt
(
τ ∗j
)

:= 1
(
t > T ∗j

)
and DTt

(
τ ∗j
)

:= 1
(
t > T ∗j

) (
t− T ∗j

)
capture the eventual

jth break, in the level and slope, respectively, occurring at date T ∗j := bτ ∗j T c for j =

1, ...,m. Notice that the first differenced form of equation (3.1) is given by:

∆yt = β +
m∑
j=1

δjDt

(
τ ∗j
)

+
m∑
j=1

γjDUt
(
τ ∗j
)

+ vt t = 2, ..., T, (3.2)

where Dt

(
τ ∗j
)

= 1
(
t = T ∗j + 1

)
. From both equations (3.1) and (3.2), it is readily seen

that the slope coefficient is the long-run, or steady state, growth rate. Hence, in this

unrestricted version of the model we allow for different steady state growth rates across

regimes. Until the occurrence of the first structural break at T ∗1 , the slope coefficient is

equal to β. After T ∗1 the long-run growth rate changes from β to β + γ1 and the level

shifts by δ1. At break point T ∗2 the steady-state growth rate changes from β + γ1 to

β+γ1 +γ2 and the level shifts by δ2. Generally, in period T ∗j the slope coefficient changes
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from β +

j−1∑
i=1

γi to β +

j∑
i=1

γi while the level shifts by δj. Note that whenever δj 6= 0, the

trend function becomes discontinuous at the break date T ∗j .

The disturbance term ut is assumed to have an AR(1) representation,

ut = ρut−1 + εt, t = 2, ..., T, u1 = ε1, (3.3)

where εt in (3.3) satisfies the following assumption (see Sayginsoy and Vogelsang, 2004,

pp. 2-3, for more details):

Assumption 6. The stochastic process εt is such that:

εt = C(L)ηt, C (L) =
∞∑
i=0

ciL
i

with C(1)2 > 0 and
∞∑
i=0

i|ci| <∞, and where ηt is a martingale difference sequence with

unit conditional variance and sup
t
E
(
η4
t

)
<∞.

Notice that the conditions stated in Assumption 6 are quite general. In particular,

we allow for the presence of substantial serial correlation in the errors of the AR(1)

representation of ut. The autoregressive coefficient, ρ, is allowed to be either smaller or

equal to 1 in absolute value so that real per capita output can either be I(0) or I(1),

respectively.

Our goal is to classify countries according to the “constant trend”, the “level shift”

and the “slope shift” hypotheses. We approach this problem in two steps: first, we test for

the existence of slope breaks in the trend function and estimate both the number and the

timing of the change points. This is done unrestrictedly using the methods suggested by

NS which are briefly discussed in the next section. Second, conditional on the estimated

number of breaks, break dates and coefficients, we build a statistical framework to test

general linear restrictions on the coefficients of the linear disjoint broken trend model

in section 3.2.3. This amounts to testing the null hypothesis H0 : RΦ = r against the

two-sided alternative hypothesis H0 : RΦ 6= r where R is a q by 2 (m+ 1) matrix with

rank q and r is a q-dimensional vector of constants. These procedures are all made robust
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to whether ut is I(0) or I(1) so that |ρ| ≤ 1. Then we show how the three aforementioned

hypotheses can be formulated as linear restrictions on the parameters of the breaking

trend model.

3.2.2 Detection and estimation of the number of breaks

In this section we present the methodology used to estimate the number of breaks in the

slope of the trend function of per capita output and the respective break dates. We use

the extension of Harvey et al. (2009) to the multiple structural breaks setting developed

by NS.

Initially, NS analyzes a sup F type test of no slope breaks against the alternative

hypothesis that there are m slope breaks. The test involves estimating equations (3.1)

and (3.2) by OLS for all candidate break fractions τm = (τ1, . . . , τm). The sup F statistics

are obtained from,

z∗0 (m|0) := sup
τm∈Λm

z0 (τm) (3.4)

and

z∗1 (m|0) := sup
τm∈Λm

z1 (τm) (3.5)

where z0 (τm) and z1 (τm) denote, respectively, standard F statistics for testing γ1 =

. . . = γm from the estimated equations (3.1) and (3.2). To account for general forms

of serial correlation in the data, z0 (τm) and z1 (τm) were “standardized” by a Bartlett

long run variance estimate obtained from the residuals of the estimated equations (3.1)

and (3.2). Λm specifies the dates allowed for the search of the structural breaks and is

given by Λm = {(τ1, ..., τm) : |τi+1 − τi| ≥ η, τ1 ≥ η, τm ≤ 1− η}. Basically, this set rules

out dates that are close to each other and/or close to the beginning/end of the sample to

guarantee invertibility of the moments matrix and enough neighborhood observations to

identify the true break points (see Andrews and Ploberger, 1994, Bai and Perron, 1998,

for more details). Finally, the break point estimators are the global maximizers of the

objective functions: τ̂m := arg sup
τm∈Λm

z0 (τm) and τ̃m := arg sup
τm∈Λm

z1 (τm).

Now, since z∗0 (m|0) and z∗1 (m|0) converge to a non degenerate asymptotic distri-
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bution if and only if the data are, respectively, I(0) and I(1) (see Theorem 5 from NS),

these test statistics were weighted by a weight function which is asymptotically binary

and ensures that, in the limit, z∗0 (m|0) is selected if ut is I(0) and z∗1 (m|0) is chosen

when ut is I(1). Hence, this weighted z statistic, z∗λ (m|0), is given by:

z∗λ (m|0) := λ (τ̂m, τ̃m)z∗0 (m|0) + bmξ [1− λ (τ̂m, τ̃m)]z∗1 (m|0) (3.6)

where bmξ is a constant that ensures that for a given significance level ξ and null hypothesis

of no trend breaks the critical values of the asymptotic distribution of z∗λ is the same in

both I(0) and I(1) cases. NS studied different forms of the weight function suggested by

Harvey et al. (2009) and concluded that the one with the best finite sample properties

for the multiple trend breaks case was given by:

λ (τ̂m, τ̃m) := exp
[
−{gmS0(τ̂m)S1(τ̃m)}6] (3.7)

where gm = 500 + 750 × (m − 1) and S0(τ̂m) and S1(τ̃m) denote the KPSS statistics

based on the residuals from the estimated equations (3.1) and (3.2) with associated

break fractions τ̂m and τ̃m. The z∗λ (m|0) statistic can then be used to test the null of

no slope breaks against the alternative hypothesis that there are m slope breaks without

making any assumptions about the errors being I(0) or I(1) since λ (τ̂m, τ̃m)
p→ 1 if ut is

I(0) and λ (τ̂m, τ̃m)
p→ 0 if ut is I(1) and bξ ensures comparability with the same critical

value in both cases. The final estimator for the vector of break fractions is obtained from

λ (τ̂m, τ̃m) τ̂m + [1− λ (τ̂m, τ̃m)] τ̃m.

A problem arises in this setup as we have to specify the number of breaks under the

alternative hypothesis and we may not have that information. Following Bai and Perron

(1998), NS considered the class of double maximum tests of the null of no trend break

against the alternative hypothesis of an unknown number of breaks in the trend slope up

to some maximum M whose robust version can generally be written as:

Dmaxz∗λ :=
{
λ
(
τ̂M , τ̃M

)
×Dmaxz∗0

}
+ bMξ

{
[1− λ

(
τ̂M , τ̃M

)
]×Dmaxz∗1

}
(3.8)
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where Dmaxz∗d := max
1≤m≤M

ad,mz∗d (m|0) , d = 0, 1, and bMξ denotes a constant that can be

chosen, as before, in a way that guarantees the same critical values for both I(0) and I(1)

cases.

NS analyzed the two standard choices for the constants ad,j: the UDmaxz∗λ test

where ad,1 = ... = ad,M = 1, and the WDmaxz∗λ test with ad,1 = 1 and for m > 1,

ad,m =
Cd (ξ, 1)

Cd (ξ,m)
where Cd (ξ,m) is the asymptotic critical value of the test z∗d for a

significance level ξ and m breaks.

To consistently estimate both the true number and timing of breaks, NS proposed a

sequential testing procedure in the same spirit as Bai and Perron (1998). The sequential

test statistic for testing the null hypothesis of l breaks against the alternative of l + 1

breaks is constructed as a weighted average of the maximum value from (l + 1) sup F

type statistics associated with testing the null hypothesis γl+1 = 0 versus the alternative

γl+1 6= 0 in the model in levels:

yt = α+βt+
l∑

j=1

δjDUt (τ̂j)+
l∑

j=1

γjDTt (τ̂j)+δl+1DUt (ζ)+γl+1DTt (ζ)+ut t = 1, ..., T,

(3.9)

and in first differences:

∆yt = β +
l∑

j=1

δjDt (τ̃j) +
l∑

j=1

γjDUt (τ̃j) + δl+1Dt (ζ) + γl+1DUt (ζ) + vt t = 2, ..., T,

(3.10)

in each segment set by the estimated partitions (τ̂1, . . . , τ̂l) and (τ̃1, . . . , τ̃l). Formally,

if we let z0 (τ̂1, .., τ̂i−1, ζ, τ̂i, .., τ̂l) and z1 (τ̃1, .., τ̃i−1, ζ, τ̃i, .., τ̃l) denote, respectively, the

standard F-statistics for testing the null hypothesis γl+1 = 0 versus the alternative γl+1 6=

0 from the estimated equations (3.9) and (3.10) then the sequential test statistic for the

model in levels is given by:

z∗0 (l + 1|l) := max
1≤i≤l+1

sup
ζ∈Λ0,i

z0 (τ̂1, .., τ̂i−1, ζ, τ̂i, .., τ̂l)
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and for the model in first differences, the sequential test statistic is,

z∗1 (l + 1|l) := max
1≤i≤l+1

sup
ζ∈Λ1,i

z1 (τ̃1, .., τ̃i−1, ζ, τ̃i, .., τ̃l)

where the possible eligible break fractions ζ are contained in the following sets in which

η is the trimming parameter:

Λ0,i = {ζ : τ̂i−1 + (τ̂i − τ̂i−1) η ≤ ζ ≤ τ̂i − (τ̂i − τ̂i−1) η} (3.11)

and

Λ1,i = {ζ : τ̃i−1 + (τ̃i − τ̃i−1) η ≤ ζ ≤ τ̃i − (τ̃i − τ̃i−1) η} (3.12)

with τ̂0 = 0 and τ̂l+1 = 1. Here, as before, Bartlett long run variance estimates are used

for z∗0 (l + 1|l) and z∗1 (l + 1|l). For the exact same reasons outlined above for z∗0 (m|0)

and z∗1 (m|0), the I(0)/I(1) dichotomy demands a weighted average of z∗0 (l + 1|l) and

z∗1 (l + 1|l) so that the new weighted sequential z statistic can be used to estimate the

number of breaks without making any assumption about the errors being I(0) or I(1).

The weighted sequential z statistic, z∗λ (l + 1|l), is then given by:

z∗λ (l + 1|l) := λ
(
τ̂ l+1, τ̃ l+1

)
z∗0 (l + 1|l) + b

l+1|l
ξ

[
1− λ

(
τ̂ l+1, τ̃ l+1

)]
z∗1 (l + 1|l) (3.13)

where, as before, b
l+1|l
ξ is the constant that ensures that for a given significance level ξ

and null hypothesis of l trend breaks the critical values of the asymptotic distribution of

z∗λ (l + 1|l) are the same in both I(0) and I(1) cases.

The z∗λ (l + 1|l) can then be used to estimate the number of breaks in the trend slope

without making any assumption about the errors being I(0) or I(1). The benchmark

procedure starts with l = 0, by using the z∗λ (1|0) to test for the presence of one break. If

the null hypothesis is rejected, we set l = 1 and perform the z∗λ(2|1) test. The procedure

is repeated until the z∗λ (l + 1|l) test cannot reject the null hypothesis of l breaks.

In small samples, for some particular combinations of breaks in the trend slope, this

sequential procedure may not perform well. For instance, in the presence of two breaks
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of opposite sign, the z∗λ (1|0) may have low power in identifying the two breaks, causing

the sequential estimation procedure to stop too soon as can be observed in Table 4 from

NS. To obviate this problem, NS suggested the use of the z∗λ (2|0) or a double maximum

test Dmaxz∗λ whenever the z∗λ (1|0) does not reject the null hypothesis of no break. If

z∗λ (2|0) or the double maximum test do not reject H0 then we conclude that there are no

trend breaks. Otherwise, we proceed to z∗λ (3|2) . They called these sequential procedures

Seqz∗λ (1|0) , Seqz∗λ (2|0) , SeqUDmaxz∗λ and SeqWDmaxz∗λ. Figure 3.1 summarizes

the necessary steps to implement each type of the sequential tests presented. Critical

values and constants, bξ,m and b
l+1|l
ξ , necessary for the implementation of each test are

reported in Tables 1 and 2 of NS for a trimming parameter η = 0.15 which is going to be

used throughout this paper as well.

3.2.3 Testing for general linear restrictions on the trend function across regimes

The sequential procedure discussed in Section 3.2.2 acts as a formal statistical pre-test

for the presence of structural breaks in the per capita output growth rate. It also allows,

in a first stage, to estimate the number of structural breaks and the timing in which

these have occurred. Now after establishing the regimes set by the partitions τ̂m and

τ̃m we are in a position to construct a statistic to test for general linear restrictions on

the coefficients of the linear disjoint broken trend model, conditional on the estimated

number of breaks, break dates and coefficients. This statistical test will then be used to

categorize countries according to the “constant trend”, the “level shift” and the “slope

shift” hypotheses previously discussed. For notational convenience, we suppress the index

m from τ̂m and τ̃m. Hence, τ̂ and τ̃ are the estimated break fractions if the true number

of structural breaks in the trend function are set in (3.4) and (3.5).

We still do not require any a priori knowledge as to whether the noise component

is I(0) or I(1). Consequently, since the asymptotic behavior of the test statistics based

on levels and first differences depends on the I(0)/I(1) dichotomy, as in Section 3.2.2, we

construct the test procedure as a weighted average of the tests appropriate for the case

of I(0) and I(1) environments so that it becomes robust to both possibilities.
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To expose explicitly how the method works, it is useful to express equations (3.1)

and (3.2) in matrix notation. We start by stacking all the coefficients from (3.1) ex-

cept α in a 2m + 1 vector, i.e., Φ = (δ1, . . . , δm, β, γ1, . . . , γm)′. We do not include α

in Φ because this parameter is not identified in the first-differenced model (3.2). We

also stack the regressors from the model in levels in the 2m + 1 vector XDT,t(τ) =

(DUt (τ1) , . . . , DUt (τm) , t, DTt (τ1) , . . . , DTt (τm))′ . Hence, equation (3.1) can be writ-

ten as,

yt = α +XDT,t(τ
∗)′Φ + ut t = 1, ..., T. (3.14)

Similarly, also the regressors from the model in first differences can be stacked in a 2m+1

vector, as XDU,t(τ) = (Dt (τ1) , . . . , Dt (τm) , 1, DUt (τ1) , . . . , DUt (τm))′ so that (3.2) can

be rewritten as,

∆yt = XDU,t(τ
∗)′Φ + ∆ut t = 2, ..., T. (3.15)

Now suppose first that m and τ ∗ are known and ut is known to be I(0). We want to build

a statistical procedure to test general linear restrictions on the coefficient vector Φ. This

amounts to testing the null hypothesis H0 : RΦ = r against the two-sided alternative

hypothesis HA : RΦ 6= r where R is a q by 2m + 1 matrix with rank q and r is a q

dimensional vector of constants. Then, the appropriate statistical inference method of

testing H0 against HA rejects for H0 large values of the F statistic computed from (3.14)

by OLS. In other words, the statistic of interest, zR
0 is

zR
0 =

(
RΦ̂− r

)′ [
RV̂ (Φ̂)R′

]−1 (
RΦ̂− r

)
/q (3.16)

where

Φ̂ =

[
T∑
t=1

{
XDT,t(τ̂)−XDT (τ̂)

}{
XDT,t(τ̂)−XDT (τ̂)

}′]−1 [ T∑
t=1

{
XDT,t(τ̂)−XDT (τ̂)

}
yt

]
(3.17)

and

V̂ (Φ̂) = ω̂2

[
T∑
t=1

{
XDT,t(τ̂)−XDT (τ̂)

}{
XDT,t(τ̂)−XDT (τ̂)

}′]−1

(3.18)
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where ω̂2 denotes the Bartlett long run variance estimator obtained from the residuals

of the regression described by equation (3.1). Under these assumptions, it is well known

that q ·zR
0 has a χ2

q asymptotic distribution.

On the other hand, suppose now that m and τ ∗ continue to be known but ut is now

I(1), that is ρ = 1 in (3.3). The appropriate statistical inference method of testing H0

against HA consists of estimating the coefficient vector Φ in equation (3.15) by OLS so

that the noise component becomes I(0) and reject H0 for large values of the zR
1 statistic

defined as,

zR
1 =

(
RΦ̃− r

)′ [
RṼ (Φ̃)R′

]−1 (
RΦ̃− r

)
/q (3.19)

Φ̃ =

[
T∑
t=2

XDU,t(τ̃)XDU,t(τ̃)′

]−1 [ T∑
t=2

XDU,t(τ̃)∆yt

]
(3.20)

and

Ṽ (Φ̃) = ω̃2

[
T∑
t=2

XDU,t(τ̃)XDU,t(τ̃)′

]−1

(3.21)

where ω̃2 is the Bartlett long run variance estimator obtained from the residuals of the

regression described by equation (3.2). Under these assumptions and the normality of

the errors, we have that q · zR
1 also has a χ2

q asymptotic distribution. As discussed in

Remarks 1 and 5 from Perron and Yabu (2009) the normality of the noise component is

needed because the level shift dummies, DUt(τ
∗), become impulse dummies, Dt(τ

∗), with

a single outlier at T ∗+ 1 when we apply first differences to Model (3.1). Consequently, if

the linear restrictions to be tested do not involve parameters δ1, . . . , δm it is possible to

rule out the normality assumption and still attain the chi-square asymptotic distribution.

In practice, the precise number of structural breaks and their dates are rarely known.

The approach to overcome this limitation is to use first the sequential procedure described

in Section 3.2.2 to obtain m̂ and τ̂ and replace τ ∗ in (3.16) and (3.19) by τ̂ and τ̃ ,

respectively. The next theorem shows that the asymptotic distribution of zR
0 and zR

1 is

the same regardless of whether we use the true or the estimated break fractions.

Theorem 10. Let the time series process yt be generated according to (3.1) and (3.3)

with γj 6= 0, j = 1, ...,m under H0 : RΦ = r and let Assumption 6 hold. If:
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(a) ut is I(0), then q ·zR
0

d→ χ2
q.

(b) ut is I(1), then q ·zR
1

d→ χ2
q.

Now since the order of integration of ut is not known in practice we need a weight

function that converges to unity if ut is I(0) and to zero if ut is I(1) such that the weighted

F-statistic collapses asymptotically to the F-statistic corresponding to the true order of

integration. Since the KPSS tests applied to the levels and first differenced data are

invariant with respect to the values of parameters α, β, δ1, . . . , δm, γ1, . . . , γm in (3.1) we

conclude that the relevant large sample properties of the KPSS procedure applied to the

levels and first differenced data are exactly the same as described in Lemma 1 from NS for

the known break fraction case and in Lemma 2 from NS for the unknown break fraction

case regardless of whether H0 or HA holds. Hence, we have that both under H0 and

HA, λ (τ̂ , τ̃)
p→ 1 if ut is I(0) and λ (τ̂ , τ̃)

p→ 0 if ut is I(1). Moreover, it does so at an

exponential rate which ensures that the appropriate F statistic is selected asymptotically

even if the other F statistic diverges in probability at a polynomial rate. Based on these

results, the proposed statistic to test general linear restrictions on the trend function

across regimes is an analogue of the z∗λ statistics in (3.6) and (3.13) and is given by,

zR
λ = λ (τ̂ , τ̃)zR

0 + [1− λ (τ̂ , τ̃)]zR
1 (3.22)

From the arguments presented above, we are now in position to state the following corol-

lary regarding the large sample behavior of the zR
λ statistic:

Corollary 12. Let the time series process yt be generated according to (3.1) and (3.3)

with γj 6= 0, j = 1, ...,m under H0 : RΦ = r and let Assumption 6 hold. If:

(a) ut is I(0), then q ·zR
λ

d→ χ2
q.

(b) ut is I(1), then q ·zR
λ

d→ χ2
q.

From Corollary 12 we conclude that, regardless of whether ut is I(0) or I(1), q · zR
λ

achieves the chi-square distribution with q degrees of freedom and so the two-sided test
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of H0 against HA is straightforward to implement using critical values from a chi-squared

distribution with degrees of freedom corresponding to the total number of restrictions

being tested. The zR
λ statistic is going to be a useful statistical tool to classify the

countries according to the “linear trend”, “level shift” and “growth shift” hypothesis.

Note that, as mentioned in the introductory note of Section 3.2, if we find evidence

for the presence of two or more trend breaks this result is not sufficient to favor any of

these three hypothesis. To support the “linear trend” hypothesis the deterministic trend

following the last break has to be a linear projection of the trend function until the first

break. This amounts to formally test the following two restrictions:

γ1 + · · ·+ γm = 0 (3.23)

which imposes the slope of the trend function to be the same in the first and final regimes,

and

δ1 + . . .+ δm + γ1 (T ∗m − T ∗1 ) + . . .+ γm−1

(
T ∗m − T ∗m−1

)
= 0 (3.24)

that restricts the trend function from the last regime to be equal to the deterministic

trend from the first regime. This set of restrictions can be casted in the format RΦ = r

if R and r are defined as,

R =

0 . . . 0 0 1 . . . 1 1

1 . . . 1 0 (T ∗m − T ∗1 ) . . .
(
T ∗m − T ∗m−1

)
0

 , r =

0

0

 . (3.25)

If we perform the zR
λ test and fail to reject this set of restrictions then we conclude that

the corresponding country satisfies the neoclassical ‘linear trend” hypothesis. Rejection

of the set of restrictions in (3.25) does not automatically imply the choice of the en-

dogenous growth theory. In fact, both Jones’ semi-endogenous and Solow’s neoclassical

growth models allow for changing growth rates. Jones (1995a, 2002, 2005) documents

that, at least, since the World War II, several policy variables exhibited large, persistent

movements, generally in the ”growth-increasing” direction in several OECD countries.

According to the semi-endogenous and neoclassical theories, per capita output should
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have deviated from the steady state level after these changes inducing temporary higher

than steady state growth rates. However, transitional dynamics should force a gradual

decline in the growth rate until it attains its steady-state value. After these shocks, we

should observe the same original steady state growth rate but a higher long run per

capita output level. Hence, the “level shift” hypothesis is tested formally with the first

restriction in (3.25) that the slope coefficient before the first break and after the last

break should be equal:

R =

[
0 . . . 0 0 1 . . . 1

]
, r = 0 (3.26)

The failure to reject restriction (3.26) with zR
λ test is taken to imply that the “level shift”

hypothesis holds for the analyzed country. Finally, if both sets of restrictions defined in

(3.25) and in (3.26) are rejected this is interpreted as evidence against the “neoclassi-

cal” and “semi-endogenous” predictions and compatible with Romer endogenous growth

theory or the “growth shift” hypothesis.

Since, in practice, we do not know (T ∗1 , . . . , T
∗
m) we replace these values in (3.25) and

(3.26) by its estimates obtained from the first step procedure.

3.3 Results of the Economic Growth hypotheses tests

After describing the econometric methodology to be used we are now in position to classify

the countries according to the “linear trend”, “level shift” and “growth shift” hypotheses.

We used data on per capita GDP from 1870 to 2008 for the following countries:

Austria, Belgium, France, Germany, Netherlands, Switzerland, Canada, United States,

Brazil, Chile, Uruguay, Sweden, Denmark, Finland, Norway, United Kingdom, Japan,

Sri Lanka, Australia, New Zealand, Italy, Portugal and Spain. This dataset was obtained

from Maddison (2009).
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3.3.1 Testing for Breaks in Steady State Growth

Our analysis starts by identifying which shocks have affected significantly the real per

capita GDP growth rate. Given that our dataset includes long historical time series for an

extensive set of countries, by simple inspection of Economic History it is straightforward

to write a large list of candidate economic events that could have had a strong impact on

the output growth path of each country. A data dependent algorithm is therefore needed

to select those shocks that in fact had a statistically significant effect on the steady state

growth rate and to specify exactly when the consequent change in trend started.

Hence, the first step tests for the existence of (one or multiple) structural breaks in the

trend function without assuming any a priori knowledge of the candidate break points.

Table 3.1 reports results from application of z∗λ (m|0) for m = 1, 2, 3, the UDmaxz∗λ

and WDmaxz∗λ tests with M = 3 to per capita GDP series for various countries at the

10%, 5% and 1% significance levels. When the null is rejected at 5% level, we present the

estimated break dates in parentheses. All tests fail to reject the null of no trend break at

all significance levels considered for Switzerland, Canada, United States, Chile, Sweden

and Australia. The z∗λ (3|0) rejects the no break in trend hypothesis for New Zealand at

10% level but not at 5% level. Since all other tests fail to reject the null, we consider that

there is not enough evidence to conclude that this country had any structural break in

the slope of the trend function. Therefore, all these countries are in favor of the “constant

trend” hypothesis.

In opposition, we reject the null of no trend break in all tests considered for Sri Lanka,

Portugal, Spain (at all significance levels considered), Japan, Italy (at all significance

levels considered except for z∗λ (1|0)), Belgium, Netherlands, Finland and Norway (at 5%

level or higher). Interestingly, for the United Kingdom the constant trend hypothesis is

rejected when we apply the z∗λ (1|0) and z∗λ (2|0) tests even at 1% significance level but

doesn’t reject the null neither for z∗λ (3|0) nor for the Dmaxz∗λ tests for all significance

levels considered. This may be explained by the loss of power due to allowing for more

breaks than necessary as observed in Figures 1 to 3 from NS.

Since the implementation of z∗λ (m|0) tests require the specification of the number of
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trend breaks under the alternative hypothesis and the Dmaxz∗λ tests do not estimate

the break dates if the null is rejected, additional statistical procedures are needed to

determine the exact number and timing of trend breaks. Hence, it is of practical relevance

to implement recursive methods as described in Section 3.2.2 to estimate the number

of structural breaks. Table 3.2 reports number of breaks and respective break dates

estimated from the implementation of the sequential procedures to GDP per capita series

of the countries analyzed. Results for all the sequential procedures in Table 3.2 show

statistical evidence of two trend breaks for Netherlands, Japan, United Kingdom and

Italy and one break in slope for Belgium, Finland, Norway, Sri Lanka, Portugal and

Spain. Hence, our results clearly support the “growth shift” hypothesis for the second

enumerated group of countries but are not conclusive for those countries where two breaks

have been found. For this group of countries, we need to apply restricted structural change

tests to classify between the three economic growth hypotheses. The results of these tests

are discussed in the next section.

We find ambiguous results for Uruguay as the decision to reject or not the null hy-

pothesis depends on the test implemented: we reject the null with z∗λ (1|0), WDmaxz∗λ,

z∗λ (3|0) tests but not with z∗λ (2|0) and the UDmaxz∗λ tests at 5% significance level. To

help solving this discrepancy we take advantage of results from the sequential procedures

in Table 3.2. Here the results are unanimous and identify one trend break for Uruguay

which is supportive of the “growth shift” hypothesis and provide no evidence for breaks

in France in line with the “constant trend” hypothesis.

The results for the remaining countries may also seem startling at first sight: for

Austria, Germany and Brazil, the application of z∗λ class of statistics rejects the null

against two and three trend breaks under the alternative but surprisingly fails to reject

against one trend break at 5% significance level. The Dmaxz∗λ tests seem to confirm the

results from z∗λ (2|0) and z∗λ (3|0) as they always reject the no breaking trend hypothesis

at 5% level. France and Denmark again fail to reject the null against one trend break

even at 10% level but the remaining tests show more ambiguous results: for Denmark the

“constant trend” hypothesis is rejected if we use z∗λ (2|0) test but is only rejected at 10%
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level according to z∗λ (3|0) and Dmaxz∗λ tests. For France the z∗λ (3|0) and WDmaxz∗λ

tests find evidence for trend breaks at 5% level but the z∗λ (2|0) and UDmaxz∗λ tests

only reject the null at 10% significance level.

This mixed evidence is also observed for the sequential procedures: the Seqz∗λ (1|0)

procedure finds no evidence for trend breaks in total opposition to the two breaks evi-

denced by the Seqz∗λ(2|0) except for France where two breaks are only detected if we use

SeqWDmaxz∗λ method. The SeqUDmaxz∗λ and SeqWDmaxz∗λ procedures reinforce

the no breaks conclusion of Seqz∗λ (1|0) for Denmark and the two breaks conclusion of

Seqz∗λ(2|0) for Austria, Germany and Brazil. We pursue our analysis with two trend

breaks for these five countries and actually the battery of tests discussed in the next

section provide insights to this conflicting evidence.

3.3.2 Restricted Structural Breaks and Economic Growth hypotheses

After the first structural break, did GDP per capita growth rate deviated from its steady

state value but transition dynamics returned the economy to its steady state growth

path? Or even in a stronger sense did per capita output trend returned to the no break

counterfactual trend path? Or, contrarily, after the structural break, no transition dy-

namics is observed and the economy continues on a new and different steady state growth

path?

The statistical answers to these questions are discussed in this section. Table 3.3

reports results for restricted structural change tests applied to countries that have shown

evidence for 2 trend breaks. The second and third columns present F-statistics and

p-values associated with testing that steady state growth rates from the first and last

regimes are equal. This amounts to testing the null hypothesis defined in (3.26) with

m = 2. The zR
λ fails to reject the null hypothesis at 5% significance level for all listed

countries except United Kingdom. We conclude that evidence favors the ”growth shift”

hypothesis for the United Kingdom. These results also explain the disparate evidence

as regards to the number of slope changes in the trend function for Austria, France,

Germany, Brazil and Denmark: Prodan (2008) and NS document that it is very likely
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that the standard sequential procedure cannot reject the null of no breaks in the presence

of structural breaks of opposite sign. These countries represent the most problematic case

because not only the direction is opposite but statistical evidence shows that γ1 = γ2, i.e,

the second structural break cancels the effect on the growth rate of the first structural

break.

But can we say that not only the steady state growth rate but the all the trend function

has been constant over time except during the period between the two estimated break

dates? The fourth and fifth columns report F-statistics and p-values for testing that

the trend function from the last regime is a linear projection of the trend from the first

regime. Here the null hypothesis is given by (3.25) under the assumption that two breaks

occurred at times
(
T̂1, T̂2

)
if the model is estimated in levels or

(
T̃1, T̃2

)
if the model

is estimated in first differences. We fail to reject the null even at 20% significance level

for Austria and Germany. This result clearly supports the “constant trend” hypothesis.

We obtain rejections at 5% level for Netherlands and Denmark and even at 1% level

for France, Brazil, Japan and Italy and so we conclude that the “weaker” “level shift”

hypothesis holds for these countries.

Figures 3.2 to 3.6 plot the variable of interest, GDP per capita measured in logarithms,

for the countries analyzed. We superimposed the estimated break dates and the fitted

values of the unrestricted model. For those countries with two statistically significant

structural breaks we also superimposed the fitted values of the model restricted by the

“level shift” hypothesis and restricted by the “constant trend” hypothesis. From simple

visual inspection, we think that the estimated break dates correspond reasonably well to

the timings when the trend function behavior changes in an important way. Also, for

countries that did not reject the restrictions, the fitted restricted model seems to adjust

well to the observed movements of the data.

In summary, according to the previous econometric analysis we may divide countries

considered according to the economic growth theory hypotheses in the following way:
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Economic Growth Hypotheses Countries that best fit each hypothesis

“Summer-Weil-Jones” or “con-
stant trend”

Austria, Germany, Switzerland, Canada, United
States, Chile, Sweden, Australia, New Zealand

“Jones-Solow” or “level shift”
France, Netherlands, Brazil, Denmark, Japan,
Italy

“Romer” or “slope shift”
Belgium, Uruguay, Finland, Norway, United King-
dom, Sri Lanka, Portugal, Spain

3.4 Conclusion

In this paper we have proposed an econometric procedure to classify countries according

to the economic growth hypothesis that best describes the behavior of its real GDP

per capita. Our method is implemented in two steps: first, we select the number and

timing of changes in the slope of the per capita output deterministic trend. However,

this information may not be enough for proper classification because if we detect more

than one trend break then different configurations of the slope changes may assign each

country to different hypotheses. Hence, in the second step, given the estimated number

and timing of the trend breaks, we build a statistical framework to test for general linear

restrictions on the level and slope of the linear trend function.

In the same spirit as Harvey et al. (2009), both tests are made robust to the I(0)/I(1)

dichotomy via the use of weighted averages of two conventional F statistics, one appro-

priate for an I(0) environment and the other when the data are I(1). Hence, our approach

surpasses technical and methodological limitations from previous approaches to the same

research question.

Since the economic growth hypotheses considered are formulated as linear restrictions

on the parameters of the breaking trend model, we are now able to classify the countries

according to the different hypotheses.

We find evidence favoring the “constant trend” hypothesis for nine countries: Aus-

tria, Germany, Switzerland, Canada, United States, Chile, Sweden, Australia and New
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Zealand. The results of our tests support the “level shift” hypothesis for six countries:

France, Netherlands, Brazil, Denmark, Japan and Italy. Finally, there is a third group of

eight countries where statistical evidence favors the “growth shift” hypothesis: Belgium,

Uruguay, Finland, Norway, United Kingdom, Sri Lanka, Portugal and Spain.

To conclude we briefly discuss some issues that are on the research agenda: First, since

the results from the restricted structural change tests are asymptotic by nature, there is

certainly the need to evaluate the quality of the asymptotic approximation and the finite

sample power of the tests via Monte Carlo simulations. Second, we have focused in this

paper on pre-testing slope changes in the deterministic trend function allowing for simul-

taneous breaks in level. If the test does not detect a change in slope this automatically

assigned the country to the “constant trend” hypothesis. For those countries with no

evidence for a significant change in slope, it would also be useful to apply robust methods

to detect level breaks while accommodating a deterministic linear trend developed by

Harvey et al. (2010). The level shifts may or may not prevent the linear trend following

the last level shift to be strictly a linear projection of the trend preceding the first level

shift. In spite of the invariant steady state growth rates across regimes, it is debatable as

to whether the first case corresponds to the “level shift” hypothesis and so it would be

interesting to accommodate this extension in our analysis. Finally, since the econometric

framework analyzed is quite general it would be interesting to implement the two step

econometric procedure to a tourism dataset where it is very important to infer about how

soon can the industry recover from previous significantly negative shocks.
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Mathematical Appendix

Proof of Theorem 10. According to Perron and Zhu (2005) τ̂ = τ ∗ +Op

(
T−1

)
if ut

is I(0) and from Bai and Perron (1998) τ̃ = τ ∗+Op

(
T−1

)
if ut is I(1). Though the proof

from Perron and Zhu (2005) is for the single break case, their results continue to hold for

the multiple breaks case as argued by Kejriwal and Perron (2010). Using these results on

the asymptotic properties of τ̂ and τ̃ it is possible to show that Υ0(Φ̂(τ̂) − Φ̂(τ ∗))
p→ 0

and Υ0

(
V̂ (Φ̂(τ̂))− V̂ (Φ̂(τ ∗))

)
p→ 0 if ut is I(0). Similarly, for the model in differences we

find that Υ1(Φ̃(τ̃)− Φ̃(τ ∗))
p→ 0 and Υ1

(
Ṽ (Φ̃(τ̃))− Ṽ (Φ̃(τ ∗))

)
p→ 0 if ut is I(1). Here Υ0

and Υ1 are the appropriate normalization matrices of the corresponding OLS estimators.

Hence zR
0 (τ̂)−zR

0 (τ ∗)
p→ 0 if ut is I(0) and zR

1 (τ̃)−zR
1 (τ ∗)

p→ 0 if ut is I(1). The rest of

the proof now follows from the fact that q ·zR
0 (τ ∗)

d→ χ2
q if ut is I(0) and q ·zR

1 (τ ∗)
d→ χ2

q

if ut is I(1).
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Tab. 3.1: Empirical Application of z∗λ and Dmaxz∗λ tests to real GDP per capita

Countries z∗λ (m|0) UDmaxz∗λ WDmaxz∗λ
m = 1 m = 2 m = 3

Austria 7.98* 10.90*** 8.62** 10.35** 11.78**
(1944) (1943,1964) (1919,1943,1964)

Belgium 11.30** 9.09** 8.83*** 11.44** 11.24**
(1941) (1941,1973) (1920,1941,1973)

France 7.24 8.17* 9.61*** 8.87* 12.23**
(1922,1943) (1922,1943,1972)

Germany 5.63 12.40*** 10.09*** 11.78** 13.41**
(1944,1965) (1922,1944,1965)

Netherlands 10.85** 10.83*** 10.45*** 10.99** 13.31**
(1943) (1923,1944) (1922,1943,1969)

Switzerland 2.37 6.18 4.87 5.87 6.68

Canada 2.41 4.75 4.11 4.51 5.23

United States 2.13 2.49 2.52 2.36 3.21

Brazil 8.50* 10.50** 10.66*** 9.97** 13.57**
(1892) (1940,1979) (1917,1940,1979)

Chile 5.29 5.53 5.59 5.35 7.11

Uruguay 10.40** 1.71 8.19** 8.51* 10.71**
(1922) (1906,1953,1968)

Sweden 3.49 5.10 5.55 5.13 7.07

Denmark 6.70 9.39** 7.00* 8.92* 10.15*
(1939,1972) (1909,1939,1972)

Finland 11.72** 9.33** 7.38** 11.87** 11.37**
(1916) (1916,1937) (1916,1937,1972)

Norway 12.00** 9.84** 7.96** 12.15** 11.64**
(1943) (1942,1979) (1904,1942,1979)

United Kingdom 48.63*** 30.56*** 4.01 6.04 5.78
(1935) (1902,1924)

Japan 10.93** 44.50*** 36.14*** 42.26*** 48.11***
(1943) (1943,1972) (1914,1943,1972)

Sri Lanka 17.57*** 11.14*** 10.05*** 17.79*** 17.04***
(1974) (1898,1974) (1898,1946,1974)

Australia 6.25 5.42 3.92 6.32 6.05

New Zealand 4.74 6.97 6.70* 6.62 8.53
(1909,1931,1965)

Italy 11.98** 18.43*** 16.77*** 17.51*** 21.35***
(1943) (1943,1968) (1914,1943,1968)

Portugal 16.01*** 21.18*** 18.95*** 20.12*** 24.12***
(1940) (1950,1972) (1920,1950,1972)

Spain 15.88*** 13.84*** 13.67*** 16.08*** 17.40***
(1948) (1948,1973) (1927,1948,1973)

Notes: *, ** and *** refers to rejection at the 10%, 5% and 1% significance level, respectively. Where rejections are

obtained for the z∗λ(0|m) test at 5% significance level , the estimated break dates are reported in parentheses.
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Tab. 3.2: Empirical Application of Sequential tests to real GDP per capita

Countries\Test Seqz∗λ (1|0) Seqz∗λ (2|0) SeqUDmaxz∗λ SeqWDmaxz∗λ
Austria 0 2 2 2

(1943,1964) (1943,1964) (1943,1964)

Belgium 1 1 1 1
(1941) (1941) (1941) (1941)

France 0 0 0 2
(1922,1943)

Germany 0 2 2 2
(1944,1965) (1944,1965) (1944,1965)

Netherlands 2 2 2 2
(1923,1944) (1923,1944) (1923,1944) (1923,1944)

Switzerland 0 0 0 0

Canada 0 0 0 0

United States 0 0 0 0

Brazil 0 2 2 2
(1940,1979) (1940,1979) (1940,1979)

Chile 0 0 0 0

Uruguay 1 1 1 1
(1922) (1922) (1922) (1922)

Sweden 0 0 0 0

Denmark 0 2 0 0
(1939,1972)

Finland 1 1 1 1
(1916) (1916) (1916) (1916)

Norway 1 1 1 1
(1943) (1943) (1943) (1943)

United Kingdom 2 2 2 2
(1902,1924) (1902,1924) (1902,1924) (1902,1924)

Japan 2 2 2 2
(1943,1972) (1943,1972) (1943,1972) (1943,1972)

Sri Lanka 1 1 1 1
(1974) (1974) (1974) (1974)

Australia 0 0 0 0

New Zealand 0 0 0 0

Italy 2 2 2 2
(1943,1968) (1943,1968) (1943,1968) (1943,1968)

Portugal 1 1 1 1
(1940) (1940) (1940) (1940)

Spain 1 1 1 1
(1948) (1948) (1948) (1948)
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Tab. 3.3: Restricted Structural Change Tests

Countries\Test “Level shift” hypothesis “Constant trend” hypothesis
zR
λ statistic p-value zR

λ statistic p-value
Austria 1.76 0.42 1.41 0.24
France 3.06* 0.22 5.36*** 0.00

Germany 0.53 0.77 1.45 0.23
Netherlands 2.92* 0.23 3.32** 0.04

Brazil 0.06 0.97 6.30*** 0.00
Denmark 0.50 0.78 4.42** 0.01

United Kingdom 53.18*** 0.00 40.42*** 0.00
Japan 0.33 0.85 10.38*** 0.00
Italy 1.78 0.41 9.80*** 0.00

Tab. 3.4: Estimated growth rates , in percentage terms, for the “growth shift”\“level shift”
hypothesis

Countries\Growth rates Unrestricted Model (growth shift) Restricted Model (level shift)
1st regime 2nd regime 3rd regime 1st regime 2nd regime 3rd regime

Austria 1.07 3.00 2.65 1.65 3.00 1.65
France 1.26 -1.36 3.46 2.48 -1.36 2.48

Germany 1.62 3.55 1.89 1.72 3.55 1.72
Netherlands 0.98 -3.07 3.52 2.36 -3.07 2.36

Brazil 0.80 3.47 0.76 0.79 3.47 0.79
Denmark 1.59 3.04 1.62 1.60 3.04 1.60

United Kingdom 1.09 0.49 1.84 1.63 0.49 1.63
Japan 1.84 4.98 1.97 1.88 4.98 1.88
Italy 0.97 5.45 1.88 1.29 5.45 1.29

Tab. 3.5: Estimated growth rates , in percentage terms, for the “growth shift”\“constant
trend” hypothesis

Countries\Growth rates Unrestricted Model (growth shift) Restricted Model (constant trend)
1st regime 2nd regime 3rd regime 1st regime 2nd regime 3rd regime

Austria 1.07 3.00 2.65 1.86 1.93 1.86
France 1.26 -1.36 3.46 1.79 2.25 1.79

Germany 1.62 3.55 1.89 1.76 3.34 1.76
Netherlands 0.98 -3.07 3.52 1.59 1.00 1.59

Brazil 0.80 3.47 0.76 1.59 1.50 1.59
Denmark 1.59 3.04 1.62 1.82 2.37 1.82

United Kingdom 1.09 0.49 1.84 1.45 1.39 1.45
Japan 1.84 4.98 1.97 2.49 2.81 2.49
Italy 0.97 5.45 1.88 1.87 2.91 1.87
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Fig. 3.1: Sequential Tests procedure

170



Fig. 3.2: Real GDP per capita - Western Europe
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Fig. 3.3: Real GDP per capita - North/South America
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Fig. 3.4: Real GDP per capita - Northern Europe
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Fig. 3.5: Real GDP per capita - Asia and Oceania
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Fig. 3.6: Real GDP per capita - Southern Europe
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