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Abstract

We consider discounted repeated two-person zero-sum games. We show that

even when players have different discount factors (in which case the repeated

game is not a zero-sum game), an outcome is subgame perfect if and only if

all of its components are Nash equilibria of the stage game. This implies that

in all subgame perfect equilibria, each player’s payoff is equal to his minmax

payoff. In conclusion, the competitive nature of two-player zero-sum games is

not altered when the game is repeated.
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1 Introduction

In a two-person zero-sum game, one player’s gain is the other’s loss. Therefore, this

class of game is regarded as the prototype example of a strictly competitive game.

A well known result (see, for example, Myerson (1997, Theorem 3.2)) shows that in

all Nash equilibria of such games, every player receives his minmax payoff, i.e., the

lowest payoff that he can guarantee to himself.

It is clear that the same conclusion applies to a discounted repeated two-person

zero-sum game when both players have the same discount factor. Indeed, such a

(repeated) game is itself a two-person zero-sum game. Furthermore, since all Nash

equilibria yield the minmax payoff to both players, it follows easily that all subgame

perfect equilibrium outcomes must consist of repetitions of (possibly different) Nash

equilibria of the stage game. Thus, any departure from competitive, minmax behavior

is impossible.

However, when players have different discount factors, the repeated game is no

longer a zero-sum one. Thus, one may conjecture that the equilibrium set will expand,

in particular, by allowing players to obtain higher payoffs than the minmax one.

Indeed, intuitively, we could think that the player with the smaller discount factor is

willing to bear losses in the future if she is compensated with some gains in the present;

and that the player with the higher discount factor is willing to play accordingly since

his losses today will be compensated with future gains. In short, intuition suggests

that with different discount factors it might be possible to have subgame perfect

equilibria where non stage-game equilibria are played in some periods.

Our main result shows that this intuition is misleading. In fact, for discounted

repeated two-person zero-sum games with possibly different discount factors for both

players, we show that the subgame perfect equilibrium outcomes consist of repetitions

of Nash equilibria of the stage game and, consequently, that players receive their

minmax payoff. Our result implies that the competitive character of two-player zero-

sum games is not altered when the game is repeated, not even when the players

discount the future at different rates.
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2 Notation and Definitions

A two-person zero-sum game G is defined by G = (A1, A2, u1, u2), where for all

i = 1, 2, Ai is a finite set of player i’s actions, ui : A1 × A2 → R is player i’s payoff

function and players’ payoff functions satisfy u1(a)+u2(a) = 0 for all a ∈ A = A1×A2.

Let Si = ∆(Ai), S = S1 × S2 and ui : S → R be the usual mixed extension.

Let, for i = 1, 2, vi = mins−i
maxsi ui(si, s−i), and NE = {s ∈ S : ui(s) ≥

ui(s̃i, s−i) for all s̃i ∈ Si and i = 1, 2}. The set NE(G) is the set of Nash equilibria

of G, and vi is the minmax payoff for player i.

The supergame of G consists of an infinite sequence of repetitions of G taking

place in periods t = 1, 2, 3, . . . . At period t the players make simultaneous moves

denoted by sti ∈ Si and then each player learns his opponent’s move.

For k ≥ 1, a k-stage history is a k-length sequence hk = (s1, . . . , sk), where, for

all 1 ≤ t ≤ k, st ∈ S; the space of all k-stage histories is Hk, i.e., Hk = Sk.1 In the

notation H0 stands for the unique 0-stage history. The set of all histories is defined

by H =
⋃∞
n=0Hn.

It is assumed that at stage k each player knows hk, that is, each player knows

the actions that were played in all previous stages. A strategy for player i, i = 1, 2,

is a function fi : H → Si mapping histories into actions. The set of player i’s

strategies is denoted by Fi, and F = F1 × F2 is the joint strategy space. Every

strategy f = (f1, f2) ∈ F induces an outcome π(f) as follows: π1(f) = f(H0) and

πk(f) = f(π1(f), . . . , πk−1(f)) for k ∈ N. Let Π = S × S × · · · = S∞.

Given an individual strategy fi ∈ Fi and a history h = (s1, . . . , sk) ∈ H we denote

the strategy induced by fi at h by fi|h. This strategy is defined pointwise on H: for

all h̄ = (s̄1, . . . , s̄k̄) ∈ H, then (fi|h)(h̄) = fi(s
1, . . . , sk, s̄1, . . . , s̄k̄). We use f |h to

denote (f1|h, f2|h) for every f ∈ F and h ∈ H.

We assume that all players discount the future, although with a possibly different

discount factor. Let δi ∈ (0, 1) denote the discount factor of player i, i = 1, 2. Thus

1As in Aumann (1964), we are assuming that players can observe the mixed strategies chosen.
This assumption is not crucial to our work since, as Theorem 1 will show, equilibrium play is
independent of the history.
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the payoff in the supergame G∞(δ1, δ2) of G is given by

Ui(f) =
∞∑
t=1

δt−1
i ui(π

t(f)).

Also, for any π ∈ Π, t ∈ N, and i = 1, 2, let V t
i (π) =

∑∞
r=t δ

r−t
i ui(π

r) be the

continuation payoff of player i at date t if the outcome path π is played. For simplicity,

we write Vi(π) instead of V 1
i (π).

A strategy vector f ∈ F is a Nash equilibrium of G∞(δ1, δ2) if Ui(f) ≥ Ui(f̂i, f−i)

for all i = 1, 2 and all f̂i ∈ Fi. A strategy vector f ∈ F is a subgame perfect equilibrium

(SPE) of G∞(δ1, δ2) if f |h is a Nash equilibrium for all h ∈ H. An outcome path

π ∈ Π is a subgame perfect outcome if there exists a SPE f such that π = π(f).

We use EΠ (G, δ1, δ2) to denote the set of subgame perfect equilibrium outcomes of

G∞(δ1, δ2).

3 Equilibrium Outcomes

In this section we state and prove our main result. It shows that all equilibrium

outcomes of the repeated game are repetitions of stage game Nash equilibria, im-

plying that, although the supergame is not necessarily a zero-sum game, the strict

competitive character of the stage game is maintained.

Theorem 1 For all two-person zero-sum games G and all δ1, δ2 ∈ (0, 1), EΠ (G, δ1, δ2) =

NE(G)∞ and ui(π
k) = vi for all π ∈ EΠ (G, δ1, δ2), i = 1, 2, and k ∈ N.

The conclusion of Theorem 1 is clear when δ1 = δ2 because in this case the

supergame is itself a zero-sum game. Although this is no longer the case when players

have different discount factors, the above case is still useful. In fact, our proof involves

comparing the payoff of the most impatient player with the payoff he would obtain

were he as patient as his opponent.

The comparison mentioned above requires the following result regarding power

series. Before we state it, we recall the following notions (see, for instance, Rudin
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(1964)). Given a sequence {ak}∞k=0 of real numbers and x ∈ R, the series
∑∞

k=0 akx
k

is called a power series. To the sequence {ak}∞k=0 corresponds r ∈ R such that the

series converges if |x| < r and diverges if |x| > r; the (extended real) number is

called the radius of convergence of the series. For all x ∈ (−r, r) and t ∈ N, define

f(x) =
∑∞

k=0 akx
k and ft(x) =

∑∞
k=0 at+kx

k. Lemma 1 provides a useful formula for

the derivative of ft.

Lemma 1 For all x ∈ (−r, r) and t ∈ N, f ′t(x) =
∑∞

k=1 ft+k(x)xk−1 .

Proof. We have that f ′t(x) =
∑∞

k=1 kakx
k−1 and f ′t(x) is absolutely convergent

(see Rudin (1964, Theorem 8.1)). Let A = {(i, k) ∈ N2 : 1 ≤ k <∞, 1 ≤ i ≤ k}, B =

{(i, k) ∈ N2 : i ≤ k <∞, 1 ≤ i <∞} and note that A = B. Since f ′t(x) is absolutely

convergent, we obtain f ′t(x) =
∑∞

k=1

∑k
i=1 at+kx

k−1 =
∑

A at+kx
k−1 =

∑
B at+kx

k−1 =∑∞
i=1

∑∞
k=i at+kx

k−1 =
∑∞

i=1 x
i−1

∑∞
k=0 at+i+kx

k =
∑∞

i=1 ft+i(x)xi−1 and the result

follows.

We next turn to the proof of Theorem 1.

Proof of Theorem 1. Let δ1, δ2 ∈ (0, 1) and assume that δ1 ≤ δ2. Define

a game G̃ by G̃ = (A1, A2, ũ1, u2) where ũ1(a) = u1(a) − v1. Hence, G̃ is a two-

player, (−v1)-sum game and ṽ1 = 0. Furthermore, Ṽ t
1 (π) = V t

1 (π) − v1/(1 − δ1) for

all outcomes π. Let M be such that |ui(s)| ≤M for all i = 1, 2.

The following claim establishes that the more patient a player is, the higher is his

payoff of any SPE outcome.

Claim 1 For all SPE outcomes π and all t ∈ N, Ṽ t
1 (π; δ1) ≤ Ṽ t

1 (π; δ2).

Proof of Claim 1. The conclusion is obvious if δ1 = δ2; hence, we may assume

that δ1 < δ2. Denote ft+k(δ) = Ṽ t+k
1 (π; δ) =

∑∞
j=0 ũ1(πt+k+j)δ

j for all k ∈ N0. Since

π is SPE, then ft+k(δ1) ≥ ṽ1 = 0 for all k ∈ N0.

We claim that f
(n)
t (δ1) ≥ 0 for all n, t ∈ N0. By the above, we have that f

(0)
t (δ1) ≥

0 for all t ∈ N0. Suppose that f
(n−1)
t (δ1) ≥ 0 for all t ∈ N0. Then, for all t ∈ N0,

Lemma 1 implies that f
(n)
t (δ1) = [f

(n−1)
t ]′(δ1) =

∑∞
k=1 f

(n−1)
t+k (δ1)δk−1

1 ≥ 0.
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The result then follows using the Taylor series for ft around δ1 (see Rudin (1964,

Theorem 8.4)) since

ft(δ2)− ft(δ1) =
∞∑
k=1

f
(k)
t (δ1)

k!
(δ2 − δ1)k ≥ 0.

If π is a SPE outcome of the supergame of G̃, then Ṽ t
i (π; δi) ≥ ṽi/(1− δi) for all

t ∈ N and i = 1, 2. It then follows from Lemma 1 that

v2

1− δ2

=
ṽ1

1− δ1

+
ṽ2

1− δ2

≤ Ṽ t
1 (π; δ1)+Ṽ t

2 (π; δ2) ≤ Ṽ t
1 (π; δ2)+Ṽ t

2 (π; δ2) = − v1

1− δ2

=
v2

1− δ2

Thus, Ṽ t
i (π) = ṽi/(1− δi), and so, V t

i (π) = vi/(1− δi) for all t ∈ N and i = 1, 2.

Let π(0) be a SPE outcome and let (π(0), π(1), π(2)) be a SPE simple strategy

supporting π0 as the equilibrium outcome (see Abreu (1988, Proposition 5)). Then,

V t
i (π(0)) = ui(π

(0),t) + δiV
t+1
i (π(0)) ≥ sup

si 6=π
(0),t
i

ui(si, π
(0),t
−i ) + δiVi(π

(i)),

together with V t+1
i (π(0)) = Vi(π

(i)) = vi/(1− δi) (since π(i) and {π(0),k}∞k=t+1 are SPE

outcomes), implies that ui(π
(0),t) ≥ sup

si 6=π
(0),t
i

ui(si, π
(0),t
−i ) for all t and i. Hence, π(0),t

is a Nash equilibrium of G for all t.

4 Conclusion

We have shown that equilibrium outcomes of repeated two-person, zero-sum games

have the property that in every period a Nash equilibrium of the stage game is played.

This result is interesting because it shows that the strict competitiveness embodied

in two-person, zero-sum (normal-form) games extends to the repeated version even

when players have different discount factors.
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Abstract

We consider the classical axiomatic Nash bargaining framework and propose

a constructive proof of its solution. On the first part of this paper we prove

Nash’s solution is the result of a maximization problem; on the second part,

through the properties of maximand’s indifference curves we derive that it must

be equal to xy.
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1 Introduction

In the Nash Bargaining problem introduced in Nash (1950) two players decide unan-

imously on a utility allocation from a set S ⊂ R2
+ of possible alternatives, and an

utility pair of x∗ ∈ S is established as an agreement. If they do not cooperate and

fail to reach an agreement the outcome is a vector of predetermined payoff d ∈ R2
+,

known as the disagreement point. The bargaining game is a pair (S,d), in which S is

the set of utilities available when a good is being bargained and d is the disagreement

point. A bargaining solution c(S,d) is a map that to each bargaining problem (S,d)

defines an agreement c(S,d) ∈ S ∪ {d}.

Nash Bargaining solution is characterized by fulfilling some principles, the Nash

axioms, is not a descriptive concept, as there is no strategic interaction among players,

but a normative one, the choice function of the bargaining game must, in certain sense,

be well behaved, it is as if there was a ”fair arbitrator”, Mariotti (1999), choosing

what the final allocation should be if the principles were respected. The axioms

Pareto optimality, Symmetry, Affine transformation, and Independence of Irrelevant

Alternatives and in particular the relation that they create between the agreement

of different bargaining games, are sufficient for the bargaining solution c(·) to be the

result of a maximization process. That is, the requisite that a choice c(·) respects

Nash axioms gives enough consistency and structure for the bargaining solution to

be the result of the maximization of a function f(x,d) for x ∈ S. This maximand

function f(x,d) can be interpreted as a social function defined on the utility pair

of the players x ∈ R2
+. In particular Nash proved that the choice function must be

c(S) = argmaxx∈S f(x,d), the social function is f(x,d) = (x− dx)(y − dy).

Nash The constructive proof this paper will derive is divided in two main parts.

The first proves that the choice function defined on the sets S ⊂ R2
+ is the result of

a maximization of a social function defined on the points x ∈ R2
+. To establish this

we will use a result from Peters and Wakker (1991) that states when a solution can

be determined by a maximization process:

Corollary 5.7 1. Let c(·) be a Pareto optimal, continuous choice function then the

2



following two conditions are equivalent:

1. c(·) satisfies Independence of Irrelevant Alternatives

2. c(S,d) maximizes a real valued function f on S ∈ S.

So, in order to prove that c(·) is the result of the maximization of a real valued

function f(·), it is necessary to prove that the choice function is continuous. Deriving

that c(S,d) = argmaxx∈S f(x,d).

The second part of the paper proves that the social function being maximized is

f(x,d) = (x − dx)(y − dy). Naturally, any strictly increasing transformation of f(·)

can also be used as the social function. For this reason what is important, when

identifying the social function, is to look their indifference curves, because they must

be constant over all the alternative formulations.

In the next section we present notation and definitions we will use throughout the

text, in section 3 we prove Nash Bargaining solution is a maximization process, in

section 4 that the maximand of this process is u(x, y) and then we conclude.

2 Notation and Definitions

A vector in R2
+ will be denoted by a bold letter usually x and its coordinates are repre-

sented like x = (x, y). The set of compact and convex sets of R2
+ is S. For a set S ∈ S,

the maximum value of the first coordinate of S is S1 = max {x : ∃y ∈ R, (x, y) ∈ S},

and the second coordinate maximum S2 is defined in the same way. S+ is the set of

the compact and convex subsets of R2
+ with S1S2 > 0. For any S ∈ S+ there is a

function gS : [0, S1] → [0, S2] that defines the maximum value of the second coordi-

nate when the first is x, hence for any (x, y) ∈ S, y ≤ gS(x). Due to the convexity of

S this function must be concave, next claim is proven on the appendix.

Claim 1. There is a concave function gs(x) : [0, S
1] → [0, S2] such that (x, gS(x)) ∈ S

and if (x, y) ∈ S then y ≤ gS(x).

The bargaining problem is defined for pairs (S,d), in which S is convex and

compact, and it exist a x ∈ S such that x ≫ d. The Nash bargaining solution
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is a correspondence that to each (S,d) gives c(S,d) ⊆ S ∪ d. We will normalize

the disagreement point and work with d = 0. This can be done without loss of

generality because it is assumed that affine transformations of utility do not change

the preference representation. Therefore, a bargaining game, from now on will be

defined just on a utility set S. The hypothesis that exists a x ∈ S such that x ≫ d

becomes x ≫ 0, so S1S2 > 0 and the bargaining game will then be defined on S+.

The bargaining solution is a correspondence c : S+ � R2
+ with c(S) ⊆ S.

A set is comprehensive if for any x ∈ S, any x′ ≤ x, x′ ∈ S, if for any x ∈ S

the rectangle made by the vertices
{
(0, 0); (x, 0); (0, y); (x, y)

}
is contained in the set.

The comprehensive hull of a set S ∈ S is comp(S) =
{
x′ : x′ ≤ x, for any x ∈ S

}
.

In the first part of the proof, in which we prove that the bargaining solution is a

maximization process, we will work exclusively with comprehensive sets.

The convex hull of S ∈ S is the smallest convex set that contains S:

ch(S) =
{
x′ : x′ = λ1x1 + λ2x2 with λ1 + λ2 = 1, λ1, λ2 ≥ 0, ∀x1,x2 ∈ S

}
A set is symmetric if (x, y) ∈ S implies (y, x) ∈ S. An affine transformation of

x = (x, y) ∈ R2
+, for α = (α1, α2) ∈ R2

+ and β = (β1, β2) ∈ R2
+, is β + αx =

(
β1 +

α1x, β2 + α2x
)
. An affine transformation of a set S is β +αS =

{
β +αx : x ∈ S

}
.

One transformation we need to use intensively in section 3 is to affine transform,

with β = 0, the set S in a way that x ∈ S is transformed into x̃ ∈ R2
+. This type of

transformation will be denoted by S(x,x̃) and the proportion factor α is α = x̃
x
, then

S(x,x̃) = αS = x̃
x
S =

(
x̃
x
, ỹ
y

)
S.

The metrics we use in this paper are such that the distance between two points

d(x,x′) = max
{
|x − x′|, |y − y′|

}
; the distance from a set to point is d(x, S ′) =

infx′∈S′ d(x,x′); and the Hausdorff distance between two sets is

d(S, S ′) = max
{
sup
x∈S

d(x, S ′), sup
x′∈S

d(x′, S)
}

.

The Nash axioms are:
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Pareto Optimality(PO) ∀S ∈ S+,@x ∈ S \ c(S) : x ≥ c(S)

Independence of Irrelevant Alternatives(IIA) ∀S, S ′ ∈ S+, S ′ ⊆ S with c(S) ∈

S ′ then c(S) = c(S ′)

Symmetry (Sym) ∀S ∈ S+ symmetric then c(S)1 = c(S)2

Affine Transformations(AT) ∀S ∈ S, ∀α,β ∈ R2
+, c

(
β +αS

)
= β +αc(S)

The interpretation of the first axiom, PO, is that a point should not be chosen if there

is an option better for one player without damaging the other. IIA states that if the

set of utilities is shrunk to S ′ ⊆ S but the original solution c(S) is still available in

S ′, c(S) ∈ S ′, then c(S) should be the choice of the new bargaining c(S ′) = c(S). All

axioms implicitly assume that the choice of the bargaining is unique, although this

doesn’t have to be the case. We will prove that in fact the choice is unique. Until

then we will use a different version of this axiom that allows for the multiplicity of

choices 1

IIAm ∀S, S ′ ∈ S, S ′ ⊆ S if c(S,d) ∩ S ′ ̸= ∅ then c(S ′,d) = c(S,d) ∩ S ′

The Sym axiom defines the bargaining power of each player, and states that both

players have equal strength, when facing a symmetric set the bargaining solution

should establish an equal division for both. The AT axiom says that the change

in the bargaining solution is equal to the change in the bargaining set, an affine

transformation of players’ utility set changes the agreement in exactly the same way.

3 Maximization of a Social Function

The proof of choice function continuity will be done by reductio ad absurdum, as-

suming that c(Sk) = xk converges to x′ a point different from c(S) = x∗. Therefore

there is a sequence of converging sets Sk → S, Sk, S ∈ S+, such that c(Sk) 9 c(S),

contradicting the continuity of the bargaining solution.

1All the other axioms can be immediately adapted for the possibility of a multiplicity of agree-
ments
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In this case there is a sequence of convergent comprehensive sets comp(Sk) →

comp(S) such that c
(
comp(Sk)

)
9 c

(
comp(S)

)
, because c

(
comp(X)

)
= c(X) by

PO and IIAm. Hence, continuity of c(·) can be studied through comprehensive sets

and in this section, even if it is not clearly mentioned, the sets are always comprehen-

sive. Notice that in case S is a comprehensive set the function gS(·) is nonincreasing.

What will be shown is that if the solution c(·) was not continuous, c(Sk) 9 c(S),

there would be a set S ′ with the bargaining solution c(S ′) belonging to the interior

of some Sk, being therefore worse than c(Sk); and c(Sk) belonging to the interior of

S ′ and so worse than c(S ′). Thus creating a contradiction, because c(Sk) can not be

worse than c(S ′) that is worse than c(Sk), as it will be prove. The set S ′, that will

show this contradiction, will be an affine transformation of S, one that changes the

point x∗ = c(S) to a point in the interior of S, x̃, so S ′ = S(x,x̃). The next lemma

will prove that such a point x̃, and therefore a set S ′ in the stated conditions, exists.

Lemma 1. ∀x,x′ ∈ S with x ≫ 0 and gS(x) ̸= gS(x
′), then ∃x̃ ∈ int(S) such that

x′ ∈ int
(
S(x,x̃)

)
.

To show that x′ ∈ int
(
S(x,x̃)

)
we first need to understand when does a point that

belongs to S also belong to S(x,x̃). We know that x belongs to the set S if its first

coordinate is smaller than the maximum x ≤ S1 and the second coordinate smaller

than the maximum at x, y ≤ gS(x), next claim state sufficient conditions for this to

happen in the affine transformed set S(x,x̃).

Claim 2. If x′ ∈ S, x′ ≤ x̃
x
S1 and gS(x

′) ≤ gS(x,x̃)
(x′) then x′ ∈ S(x,x̃).

Proof. For any given set Σ ∈ S+ and α ∈ R2
+, if x = (x, y) ∈ Σ, we know that x ≤ Σ1,

and α1x ≤ α1Σ
1, consequently (αΣ)1 = α1Σ

1. S(x,x̃) =
x̃
x
S then S1

(x,x̃) =
x̃
x
S1, as, by

hypothesis x′ ≤ x̃
x
S1, then x′ ≤ S1

(x,x̃).

By definition of gS(·), if x′ ∈ S we must have y′ ≤ gS(x
′), by hypothesis gS(x

′) ≤

gS(x,x̃)
(x′), then y′ ≤ gS(x,x̃)

(x′). By reason of x′ ≤ S1
(x,x̃) and y′ ≤ gS(x,x̃)

(x′), x′

belongs to S(x,x̃).
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The next claim states that if the affine transformation changes x to x̃ then, as

long as x̃ is between x and x′, the first coordinate of x′ will always fulfill the condition

established in the previous claim.

Claim 3. For x,x′ ∈ S, with x′ ̸= x for any x̃ ∈
(
min {x, x′} ,max {x, x′}

)
then

x′ < x̃
x
S1.

Proof. If x′ = min {x′, x}, x′ < x̃ < x ≤ S1, S1/x ≥ 1 and x′ < x̃ ≤ x̃(S1/x); if

x′ = max {x, x′}, x < x̃ < x′, then x̃
x
> 1, and x′ ≤ S1 < x̃

x
S1

The following is an intermediate result that will help us prove for the second

coordinate what the previous claim did for the first. If we affine transform the point

x into one point of the frontier of S, x̃ ∈ S with ỹ = gS(x̃), the maximum value of

x′ ∈ [0, S1
(x,x̃)] on the new set , gS(x,x̃)

(x′), will be bigger than gS(x̃)
gS(x)

gS(x
x′

x̃
).

Claim 4. ∀x, x̃ ∈ S with x, x̃ ≫ 0 and ỹ = gS(x̃), if x
′ ∈ [0, S1

(x,x̃)] then gS(x,x̃)
(x′) ≥

gS(x̃)
gS(x)

gS(x̄) in which x̄ = xx′

x̃
.

Proof. In general we know that for any x′ ∈ αS, ∃x ∈ S such that αx = (α1x, α2y) =

(x′, y′) = x′. As y ≤ gS(x) and x = x′

α1
, y ≤ gS(

x′

α1
), so y′ = α2y ≤ α2gs(x) =

α2gS(
x′

α1
). This inequality is valid for any y′, inclusively for y′ = gαS(x

′) and we can

conclude that gαS(x
′) ≤ α2gS(

x′

α1
).

However we can find a point in S for which the inequality becomes an equality, thus

proving that gαS(x
′) = α2gS(

x′

α1
). For (x, gs(x)) ∈ S, α

(
x, gs(x)

)
=

(
α1x, α2gS(x)

)
=(

x′, α2gS(
x′

α1
)
)
∈ αS, and exists a x′ ∈ αS with y′ = α2gS(

x′

α1
). Therefore

gαS(x
′) = α2gS

( x′

α1

)
(1)

So gS(x,x̃)
(x′) = g x̃

x
S(x

′), using equation (1) with α = x̃
x

= ( x̃
x
, ỹ
y
), gS(x,x̃)

(x′) =

ỹ
y
gS(

x
x̃
x′) = ỹ

y
gS(x̄). With ỹ = gS(x̃) and because y ≤ gS(x)

gS(x,x̃)
(x′) ≥ gS(x̃)

gS(x)
gS(x̄) (2)
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Now we will deduce a result for the second coordinate to fulfill the condition of

claim (2).

Claim 5. ∀x,x′ ∈ S with x ≫ 0 and gS(x) ̸= gS(x
′), for x̃ ∈ S such that x̃ ∈(

min {x, x′} ,max {x, x′}
)
and ỹ = gS(x̃) then gS(x,x̃)

(x′) > gS(x
′).

Proof. As x̃ ∈
(
min {x, x′} ,max {x, x′}

)
claim ( 3) is applicable and x′ ≤ x̃

x
S1 =

S1
(x,x̃). Therefore conditions to apply claim (4) are satisfied and gS(x,x̃)

(x′) ≥ gS(x̃)
gS(x)

gS(x̄)

taking logarithms and considering w(·) = log gS(·) we get

log
(
gS(x,x̃)

(x′)
)
≥ w(x̃)− w(x) + w(x̄)

As min {x, x′} < x̃ < max {x, x′} there is a 0 < θ < 1 such that x̃ = xθx′1−θ

and x̄ = x
x̃
x′ = x1−θx′θ. Using a particular case of Jensen’s inequality we know that

xθx′1−θ ≤ θx+(1−θ)x′ and as the function w(·) is non increasing w(x̃) = w(xθx′1−θ) ≥

w
(
θx + (1 − θ)x′

)
> θw(x) + (1 − θ)w(x′), the last inequality is derived from strict

concavity of wS(·), (the logarithm is a strictly concave function and gS(·) is a concave

function) and gS(x) ̸= gS(x
′). Applying this reason to the entire equation

log
(
gS(x,x̃)

(x′)
)
≥ w(x̃)− w(x) + w(x̄) = w

(
xθx′1−θ)− w(x) + w

(
x1−θx′θ)

non-increasing︷︸︸︷
≥ w

(
θx+ (1− θ)x′)− w(x) + w

(
(1− θ)x+ θx′) concavity︷︸︸︷

>[
θw(x) + (1− θ)w(x′)

]
− w(x) +

[
(1− θ)w(x) + θw(x′)

]
= w(x′)

Taking exponentials in this inequality we prove that gS(x,x̃)
(x′) > gS(x

′).

The next result involves almost no derivation, however it is essential for later use,

and for that reason, it has a lemma of its own.
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Lemma 2. ∀x,x′ ∈ S with x ≫ 0 and gS(x) ̸= gS(x
′) for x̃ ∈ S such that x̃ ∈(

min {x, x′} ,max {x, x′}
)
and ỹ = gS(x̃) then

(
x′, gS(x

′)
)
∈ S(x,x̃).

Proof. By claim (3) x′ ≤ x̃
x
S1, claim (5) insures that gS(x,x̃)

(x′) > gS(x
′), and with

these conditions we can apply claim (2) and derive that
(
x′, gS(x

′)
)
∈ S(x,x̃).

By now we prepared the sufficient results to prove lemma (1) which will be the

main instrument for proving the continuity of the bargaining solution c(·).

Proof. By claim (2) it is sufficient to find s̃ ∈ int(S) such that x′ < x̃
x
S1 and gS(x

′) <

gS(x,x̃)
(x′). By claim (3) as long as x̃ ∈

(
min {x, x′} ,max {x, x′}

)
, the first inequality

is respected. With ỹ = gS(x̃), by claim (5), gS(x,x̃)
(x′) > gS(x

′) ≥ y′. We saw on claim

(4) that gS(x,x̃)
(x′) = ỹ

y
gS(x

′ x
x̃
), and so is continuous on ỹ, if instead of ỹ = gS(x̃)

we choose a value of ỹ sufficiently close to gS(x̃) the inequality is preserved and the

second condition of claim (2) is satisfied. Concluding x̃ ∈
(
min {x, x′} ,max {x, x′}

)
and ỹ < gS(x̃), hence x̃ = (x̃, ỹ) ∈ int(S).

Up until now we used only the PO and the AT axioms, (jointly with the convexity

restriction of the bargaining set). The next two theorems will bring Sym and IIAm

into play. In theorem (2) the first of these axioms is used to prove that the bargaining

choice of any set has both players receiving strictly positive payoff, that is for any

S ∈ S+, c(S)1c(S)2 > 0. Theorem (1) proves, through the use of lemma (1), that

the IIAm is equivalent to Nash’s IIA, by saying that the set of choices for any set

only has one element, |c(S)| = 1. For this reason after the proof we will use Nash’s

original axiom.

Theorem 1. : ∀S ∈ S, |c(S)| = 1.

Proof. If S = {(0, 0)} the solution must be unique. If S1 = 0 then by Pareto opti-

mality c(S) = (0, S2) and |c(S)| = 1. If Si > 0 for both i = 1, 2 and the choices of

the bargaining function are more than one, |c(S)| ≥ 2, take x,x′ ∈ c(S). Suppose

x = x′ then by Pareto optimality y = gs(x) = gS(x
′) = y′ and x = x′ contradicting

the hypothesis of |c(S)| ≥ 2. For this reason we must have x ̸= x′ and y ̸= y′. Due
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to S1 > 0, S2 > 0 and gS(x) = y ̸= y′ = gS(x
′), we can apply lemma (1), ∃x̃ ∈ int(S)

such that x′ ∈ int
(
S(x,x̃)

)
. We know c

(
S(x,x̃)

)
= c

(
x̃
x
S
)
= x̃

x
c
(
S
)
∋ x̃

x
x = x̃. As

x̃ ∈ S then x̃ ∈ S(x,x̃) ∩ S ⊆ S(x,x̃), and, by IIAm axiom, we get x̃ ∈ c
(
S(x,x̃) ∩ S

)
.

Lemma (1) guarantees that x′ ∈ int
(
S(x,x̃)

)
then x′ ∈ S(x,x̃) ∩ S and by IIAm,

x′ ∈ c
(
S(x,x̃) ∩ S

)
. But we have an interior point, and therefore pareto dominated,

as one of the choices of S(x,x̃), contradicting this way PO axiom. Thus we can not

have |c(S)| ≥ 2.

Theorem 2. : If Si > 0 then c(S)i > 0 with i = 1, 2.

Proof. If C(S)1 = 0 due to the non increasing frontier of the set S, gS(·) is non

increasing, gS
(
0
)
= S2, and by PO c(S)2 = gS

(
c(S)1

)
= S2, so C(S) = (0, S2).

Choosing α ∈ R2
+ such that α1 = 1 and α2 = S1/S2, then c(αS) = (0, S1). Con-

sider ∆ = ch
{
(0, 0), (0, S1), (S1, 0)

}
,
{
(0, 0), (0, S1), (S1, 0)

}
⊂ αS and αS is convex,

then ∆ ⊆ αS and by IIA, c(∆) = (0, S1). ∆ is symmetric and by symmetry axiom

c1(∆) = c2(∆), we get a contradiction.

After this small digression we go back to proving the continuity of the bargaining

solution. The next very simple claim shows that if a sequence of sets
{
Sk

}∞
k=1

converge

to S then a convergent sequence of points with xk ∈ Sk must converge to a point in

S, the limit of Sk.

Claim 6. : If Sk → S and Sk ∋ xk → x then x ∈ S

Proof. if x /∈ S, define d(x, S) = ϵ. As xk → x, ∃K ∈ N where xk ∈ Bϵ/2(x),∀k >

K. By triangle inequality

d(x, S) ≤ d(xk,x) + d(xk, S) ⇔ d(xk, S) ≥ d(x, S)− d(xk,x) ⇔ d(xk, S) ≥ ϵ/2

Then d(Sk, S) ≥ ϵ/2, ∀k > K, meaning that Sk 9 S, a contradiction.
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An immediate and simple implication of the IIA axiom is that two sets with

different bargaining choices cannot simultaneously contain the other’s solution. The

next claim, which will be used in the next theorem, proves it.

Claim 7. : S, S ′ ∈ S+, c(S) ̸= c(S ′) and c(S) ∈ S ′, then c(S ′) /∈ S.

Proof. c(S) ∈ S ′, so c(S) ∈ S ∩ S ′, then by IIA c(S ′ ∩ S) = c(S). If c(S ′) ∈ S then

by IIA c(S ′ ∩ S) = c(S ′), we get a contradiction once c(S ′) ̸= c(S).

Theorem 3. The function c(·) is continuous on S+.

Proof. Assume c(·) is not continuous, then exists a sequence of sets Sk ∈ S+ conver-

gent to S ∈ S+, Sk → S, but the bargaining choice c(Sk) = xk does not converge

to x∗ = c(S), xk 9 x∗. Let’s start by also assuming that {xk}∞k=1 is convergent to

the point x′ ∈ R2
+. As S ∈ S+, S1 > 0 and S2 > 0, theorem (2) insures x∗ ≫ 0.

With α = (1, x∗
y∗), αSk → αS, and c(αSk) = αc(Sk) → αx′ ̸= αx∗ = αc(S), with

αc(S) = (x∗, x∗). Therefore, if the sets Sk → S and c(Sk) 9 c(S), then exists sets

S ′
k → S ′ with c(S ′

k) 9 c(S ′) with the additional property c(S ′)1 = c(S ′)2. So we will

assume that x∗ = (x∗, x∗).

Case 1: x∗ = x′ or x∗ = y′

We will show that exists a point in x̄k ∈ Sk, and in the line x = y, so x̄k = (xk, xk),

such that for large k x̄k it is better than the choice c(Sk). To prove that such point

exist we will start by claiming that there is a sequence of points (dk, dk) ∈ Sk which

converges to the solution of set S, x∗ = c(S).

Claim 8. If c(S) = (x∗, x∗), Sk → S, then dk = max{d : (d, d) ∈ Sk} → x∗

Proof. Define Sk|1 = {s : (s, s) ∈ Sk} and S|1 = {s : (s, s) ∈ S}. As d(Sk, S) → 0,

for any s̃ ∈ S|1, d(s̃, Sk) → 0, that is, for any ϵ > 0, ∃s̃k ∈ Sk with d(s̃, s̃k) < ϵ.

Take s̄k = (1, 1)min{s̃k,1, s̃k,2}, due to the comprehensive nature of the sets Sk,

if s̃k ∈ Sk then as s̄k ≤ s̃k, s̄k ∈ Sk. The distance between s̄k and s̃ at each

coordinate is the same, as they both belong to the line x = y and d(s̄k, s̃) =
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max
{
|s̄k,1 − s̃1|, |s̄k,2 − s̃2|

}
= |s̄k,1 − s̃1| = |min

{
s̃k,1, s̃k,2

}
− s̃1|. Thus we con-

clude that d(s̄k, s̃) ≤ max{|s̃k,1− s̃1|, |s̃k,2− s̃1|} = d(s̃k, s̃) < ϵ. The same calculation

could be done for any point in s̃k ∈ Sk|1, we then find a point s̃ ∈ S with d
(
s̃k, s̃

)
< ϵ

and for s̄ = (1, 1)min{s̃1, s̃2}, d
(
s̃k, s̄

)
< ϵ for k big enough, proving that Sk|1 → S|1.

Notice that due to pareto optimality x∗ = max {s : (s, s) ∈ S} = max{s : s ∈ S|1}

and dk = max{s : s ∈ Sk|1}. As the maximum function is continuous dk = max{s :

s ∈ Sk|1} → max{s : s ∈ S|1} = x∗.

The points we are looking for, points x̄k which are better than c(Sk), will be created

by defining the mean of the coordinates of c(Sk) = xk = (xk, yk), so x̄k =
xk+yk

2
. The

next result shows that the point on the line x = y with coordinates equal to x̄k,

x̄k = x̄k(1, 1) does, for large k, also belong to set Sk.

Claim 9. ∃K ∈ N : k > K, x̄k ∈ Sk

Proof. By hypothesis
{
xk

}∞
k=1

is a convergent sequence, by claim (6) limxk = x′ ∈ S.

Without loss of generality assume x∗ = x′ (in the present case, either this is true or

x∗ = y′) as x∗ ̸= x′, by pareto optimality y′ < y∗ = x∗. Defining, consistently,

x̄′ = x′+y′

2
we have that x̄k → x̄′ = x′+y′

2
< x∗+y∗

2
= x∗. By claim (8) dk → x∗, so

∃k ∈ N such that x̄k < dk. By definition of dk, dk = (dk, dk) ∈ Sk also 0 ∈ Sk, and

∃α ∈ (0, 1) such that x̄k = αdk+(1−α)0, hence x̄k ∈ Sk due to Sk being convex.

We know x̄k ∈ Sk and that c(Sk) = xk, we will now find a set Ak with c(Ak) = x̄k

and xk ∈ Ak, contradicting in this way claim (7). The setAk = ch {(0, 0); (xk, yk), (yk, xk)}

is symmetric, and by axiom Sym, c(Ak) must be such that c(Ak)1 = c(Ak)2, by PO

axiom c(Ak) = x̄k. By the previous claim (9) c(Ak) = x̄k ∈ Sk for large k, and by

construction of Ak, c(Sk) = xk ∈ Ak, but x̄k ̸= xk, (remember x̄k = ȳk but xk ̸= yk

for large k because x′ ̸= y′), we get a contradiction.

Case 2 Now we will consider the case in which x∗ ̸= x′ and x∗ ̸= y′. If we prove

that it exists x̃ ∈ S, such that for at least one k ∈ N, xk ∈ S(x∗,x̃) and x̃ ∈ Sk we

get a contradiction, because c
(
S(x∗,x̃)

)
= x̃ and c(Sk) = xk contradicting claim (7),
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as long as xk ̸= x̃. As Si > 0 and lemma (1) is applicable, ∃x̃ ∈ int(S) such that

x′ ∈ int
(
S(x∗,x̃)

)
, therefore, as xk → x′, xk ∈ int

(
S(x∗,x̃)

)
for large k. Because

x̃ ∈ int(S) and Sk → S, then x̃ ∈ Sk for large k. The contradiction is obtained, and

therefore c(·) must be continuous.

We started by assuming that {xk}∞k=1 was convergent, if it is not convergent, as

Sk → S, for big values of k, Sk ⊂ R =
{
s : 0 ≤ s ≤

(
S1 + 1, S2 + 1

)}
. The rectangle

R is compact and for the sequence {xk}∞k=1 ⊂ R not to converge is because it has

(at least) two subsequences converging to different values. However, as we just saw,

any converging subsequence must converge to x∗, hence it is impossible to have two

subsequences converging to a value that is not x∗.

Corollary 1. If c(·) is symmetric, pareto optimal, IIA and ILT then c(S) maximizes

a real valued function f on S ∈ S

Proof. As c(·) is symmetric, pareto optimal, IIA and ILT then by theorem (3) c(·)

is continuous in S, and by corollary 5.7 in Peters and Wakker(91) c(S) maximizes a

real valued function.

4 The Social Function is u(x, y) = xy

Thus far we discovered that the choice function c(·) is the result of the maximization

process of a social function f(·). In this chapter we will deduce the shape of this func-

tion, but as it is well known f(·) is not unique, any positive monotonic transformation

of it can be used as a social function. To unveil the shape of one of those functions, we

will initially concentrate on properties of the curves that represent the lower bound of

the upper contour set, yk(·). Later we will prove that these curves are the indifference

curves of a particular social function h(·), and it is supported on this function that

the Nash bargaining solution will be derived. But first of all, we will prove that any

function f(·) representing the bargaining solution c(S) = argmaxx∈S f(x) must be
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strictly quasiconcave, this is a basic stepping stone on the following derivation. In

this section we will use intensively lines with negative slope as the bargaining set, so,

before advancing, some results and definitions need to be introduced.

Definition 1. Let L− be the set of negatively sloped lines in R2
+

L− =
{
S ∈ S+ : ∃a > 0, b ≤ 0,∀(s1, s2) ∈ S, s2 = a+ bs1

}
(3)

The following set of results for lines in L− are proved in the appendix. a[L] is the

constant coefficient, b[L] is the slope of L; Li is the maximum value assumed by the

ith argument.

Proposition 1. For L,L′ ∈ L−, and for α = (α1, α2) ≫ 0

1. a[L] = L2 and b[L] = −L2

L1

2. αL ∈ L− and a[αL] = α2a[L] and b[αL] = α2

α1
b[L]

3. ∃α ∈ R2
+ such that αL = L′ with α2 =

a[L′]
a[L]

and α1 =
a[L′]
a[L]

b[L]
b[L′]

4. ∀x ∈ R2
+ , ∃L ∈ L− such that c(L) = x

4.1 f(x, y) is strictly quasiconcave

Theorem 4. If c(S) = argmaxx∈S f(x) then f(x, y) is strictly quasiconcave.

Proof. A direct implication of the PO axiom is that the function f(x, y) must be

strictly increasing in both arguments. For any L ∈ L−, with gL(x) : [0, L
1] → [0, L2]

such that (x, gL(x)) ∈ L, define t(x) = f
(
x, gL(x)

)
. We will prove that ∃x2 ∈

[0, L1] such that t(·) is strictly increasing for x ∈ [0, x2] and strictly decreasing if

x ∈ [x2, L
1]. Choose x2 = c(S) =

(
x2, gL(x2)

)
, if, for any x0 < x1 < x2 with

xi = (xi, gL(xi)), x0 ∈ L(x2,x1) then t(·) is strictly increasing for x < x2. Because

x1 = c
(
L(x2,x1)

)
= argmaxx∈L(x2,x1)

f(x), then f(x1) > f(x),∀x ∈ L(x2,x1). So

we only need to prove that x0 ∈ L(x2,x1). In lemma (2) we proved that when x̃ ∈(
min {x, x′} ,max {x, x′}

)
, ỹ = gS(x̃) and gS(x) ̸= gS(x

′) then
(
x′, gS(x

′)
)
∈ S(x,x̃).
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Replacing x, x′, x̃ by x2, x0, x1, then x1 ∈ (x0, x2) and we obtain the desired result

that x0 ∈ S(x2,x1). To prove that f(·) is decreasing when x > x2 we use the same

reasoning, this time with x1 ∈ (x2, x0), and prove again that x0 ∈ S(x2,x1).

For the function f(·) to be strictly quasiconcave, for any x0,x1 and any α ∈ (0, 1),

xα = αx0+(1−α)x1 we have that f(xα) > max{f(x0), f(x1)}. Let L[x0,x1] ∈ S+

stand for the line that passes through x0 and x1. Let x2 be the point at which

t(x2) > t(x), ∀x ∈ [0, L1]. When:

• x0 < x1 ≤ x2, as previously seen, t(x) is increasing between x0 and x1 and, as

x0 < xα < x1, f(xα) = t(xα) > t(x0) ≥ min{f(x0), f(x1)}.

• x2 ≤ x0 < x1 then x0 < xα < x1, as t(·) is decreasing for x > x2, t(xα) > t(x1),

f(xα) > f(x1) ≥ min{f(x0), f(x1)}.

• x0 ≤ x2 ≤ x1, and x0 < xα ≤ x2, t(xα) > t(x0) and f(xα) > f(x0) ≥

min{f(x0), f(x1)}.

• x0 ≤ x2 ≤ x1 and x2 ≤ xα < x1, t(xα) > t(x1) and f(xα) > f(x1) ≥

min{f(x0), f(x1)}

We conclude that f(xα) = t(xα) > min{t(x1), t(x2)} = min{f(x1), f(x2)} and

for any possibility f(xα) = f(αx1 +(1−α)x2) > min{f(x1), f(x2)}, the function is

strictly quasiconcave.

4.2 The Properties of yk(x)

The curves yk(·) are built on the following way: for a fixed x ∈ R+ and for a possible

value of f(·), k, we find the set of y’s such that f(x, y) ≥ k, and from this set we

choose the infimum. Firstly, we need to prove that yk(·) is well defined, that is, that

for the relevant values of k, the sets
{
y ∈ R+ : f(x, y) ≥ k

}
are non empty for all

x. The next theorem will show it. In the proof of this result we will use an operator

T (L) which transforms a line L ∈ L− into another line T (L). The new line T (L) is
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such that it passes through c(L), this way we guarantee that the choice of the new

line c
(
T (L)

)
is better than c(L), and also, due to theorem (4) better than any point

on the line T (L) between c(L) and c
(
T (L)

)
.

What T (L) will do, for a given line L in L−, is to pick the points c(L) = (x∗, y∗),

the bargaining solution, and the point (x
∗+xm

2
, 0), in which xm = L1, and with these

two points define a new line L′ = T (L) that passes through them. L′ is such that it’s

parameters a = a[L′] and b = b[L′] solve the following equations:

y∗ = a+ bx∗

0 = a+ bx
∗+xm

2

⇔

b = −2 y∗

xm−x∗

a = −bx
∗+xm

2

(4)

In theorem (2) we derived that c(L′) ≫ 0 so xm > x∗, hence b < 0 and a > 0,

meaning that L′ ∈ L−. Lets define the operation of transforming a line L in the new

line L′ formally.

Definition 2. Let T : L− → L− with x∗ = c(L) ∈ T (L) and (x∗+xm

2
, 0) ∈ T (L).

We can apply the operator T (·) to a line that is already the result of an application

of the operator, and have T
(
T (L)

)
= T 2(L). We can proceed like this n times and

getting the line T n(L). The next result establishes that the application of the T (·)

operator n times is like multiplying the initial line L by a constant α ∈ R2
+ n times.

Lemma 3. ∀n ∈ N and ∀L ∈ L−, T n(L) = αnL with α1 < 1

Proof. We will prove this result by induction. First, for n = 1, we will derive the

value of α such that L′ = T (L) = αL. The maximum in the first coordinate of L′

is, due to the negative slope of L′, when y = 0, and this is by definition (2) of T (·),

x′m = x∗+xm

2
. By lemma (2) y∗ > 0 then x∗ < xm, and x′m = x∗+xm

2
< xm. Also as α

is such that αL = L′ has, by (3) of proposition (1), α1 = a[L′]
a[L]

b[L]
b[L′]

using number (1)

of the same lemma we get that

α1 =
L2′

L2

[
−L2

L1

−L
′2

L
′1

]
=

L
′1

L1
=

x′m

xm
=

1 + x∗/xm

2
< 1
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.

Any point (x, y) belonging to the initial line L must, due to the equality (1) of

proposition (1), satisfy the equation y = ym − ym

xmx, then y∗ = ym − ym

xmx∗. Re-

placing this on equation (4), we obtain the formula b = b[L′] = −2
ym− ym

xm
x∗

xm−x∗ =

−2ym xm−x∗

xm(xm−x∗)
= −2 ym

xm = 2b[L], the new line has twice the slope of the initial

one. We know the slope of any line is the ratio of the maximums, this ratio of line

L′ = T (L) is y′m

x′m and so y′m

x′m = 2 ym

xm . Using this equality on equation (2) of proposition

(1) we derive α2 =
a[L′]
a[L]

= L′2

L2 = y′m

ym
= 2x′m

xm = 2α1, α = (α1, 2α1). The claim is true

for n = 1.

Suppose the claim is true to n − 1 and T n−1(L) = αn−1L. T n(L) = T
(
T n−1(L)

)
so T n(L) passes by c

(
T n−1(L)

)
= c

(
αn−1L

)
= αn−1c(L) = αn−1(x∗, y∗). If the

maximum of the first coordinate in L is xm the maximum in αL is α1x
m, consequently

the maximum in T n−1(L) is αn−1
1 xm, and T n(L) passes also by

(
αn−1
1 xm+αn−1

1 x∗

2
, 0
)
=

αn−1
1

(
xm+x∗

2
, 0
)
. As T n(L) and T n−1(L) are in L− by proposition (1), ∃β ∈ R2

+ such

that T n(L) = βT n−1(L), we will find the value of such β.

The coefficients, an and bn, of the line that passes by α
n−1
1

(
xm+x∗

2
, 0
)
andαn−1(x∗, y∗)

solve the following system of equations

αn−1
2 y∗ = an + bnα

n−1
1 x∗

0 = an + bnα
n−1
1

x∗+xm

2

⇔

 bn = −2
(
α2

α1

)n−1 y∗

xm−x∗

an = −bnα
n−1
1

x∗+xm

2

We already saw that y∗
xm−x∗ = ym

xm and bn = −2n ym

xm , because α2 = 2α1. Due to

bn = β2

β1
bn−1, and to bn−1 = −Tn−1(L)2

Tn−1(L)1
= −2n−1 ym

xm we get 2n ym

xm = β2

β1
2n−1 ym

xm , deriving

β2

β1
= 2. β1 is the ratio of the maximums in the first component of T n−1(L) and

T n(L), β1 =
αn−1
1

xm+x∗
2

αn−1
1 xm = α1. β1 = α1 then β2 = 2β1 = 2α1 = α2. Concluding

T n(L) = βT n−1(L) = αT n−1(L) = αnL.

Lemma 4. ∀x0 = (x0, y0) ∈ R2
+ and ∀0 < x1 < x0, ∃y1 : f(x1) > f(x0).

Proof. Let us first define c
(
T n(L)

)
= zn = (zn1 , z

n
2 ). Due to the way T (·) was
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built, in particular to zn−1 = c(T n−1(L)) ∈ T n(L) and zn ̸= zn−1 we know that

f(zn) > f(zn−1), and we can conclude that f(zn) > f(z0). Choosing L in a way

that (x0, y0) ∈ L we have that f(z0) > f(x0, y0) and f(zn) > f(x0, y0). zn1 = αn
1z

0
1 ,

as α1 < 1, it is possible to find an n such that zn1 = αn
1z

0
1 ≤ x1 < αn−1

1 z01 = zn−1
1 .

Chose y1 in a way that x1 = (x1, y1) ∈ T n(L). Due to theorem (4) we know that

the function f(·) is decreasing along the line T n(L) for x > zn1 , as zn1 ≤ x1 < zn−1
1

then f(x1) > f(zn−1) because both x1 and zn−1 belong to T n(L). Finally f(x1) >

f(zn−1) ≥ f(x0).

Theorem 5. ∀x ∈ R2
+, ∀w ∈ R+ the set {z : f(w, z) ≥ f(x)} is non empty.

Proof. x = (x, y) if w < x by lemma (4) ∃z such that f(w, z) > f(x) and the set

{z : f(w, z) ≥ f(x)} is non empty. If w > x then, due to pareto optimality, the

function f(·) increasing in both arguments f(w, y) > f(x).

Now we can define the function yk(·) for any k ∈ ch
{
f(x) : x ∈ R2

+

}
, knowing it

is well defined for any x, once an immediate implication of the theorem (5) is that

the set Y k
x = {y ∈ R+ : f(x, y) ≥ k} is non empty.

Definition 3. Let U = ch
{
f(x) : x ∈ R2

+

}
, for k ∈ U then

yk(x) = inf{y ∈ R+ : f(x, y) ≥ k} (5)

The two next claims prove that yk(x) is strictly decreasing and strictly convex.

Claim 10. The function yk(x) is decreasing and strictly decreasing if yk(x) > 0.

Proof. When x > x′, f(x, y) ≥ f(x′, y) and Y k
x ⊇ Y k

x′ , hence inf Y k
x ≤ inf Y k

x′ , meaning

yk(x) ≤ yk(x
′), and yk(x) is decreasing.

Assume yk(x) = yk(x
′), then ∀x̃ ∈ (x′, x), yk(x

′) ≥ yk(x̃) ≥ yk(x) = yk(x
′), and

yk(x̃) = yk(x). Also ∀ϵ > 0, f
(
x̃, yk(x̃) + ϵ

)
> k, if f

(
x̃, yk(x̃) + ϵ

)
≤ k, as f(·) is

strictly increasing for any ϵ′ < ϵ, f
(
x̃, yk(x̃)+ ϵ′

)
< f

(
x̃, yk(x̃)+ ϵ

)
≤ k, meaning that
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f(x̃, y) ≥ k only if y ≥ yk(x̃) + ϵ, then yk(x̃) = inf{y ∈ R+ : f(x̃, y) ≥ k} ≥ yk(x̃) + ϵ,

and we get a contradiction yk(x̃) ≥ yk(x̃)+ϵ. By a similar argument f
(
x̃, yk(x̃)−ϵ

)
<

k, otherwise yk(x̃) ≤ yk(x̃)− ϵ.

Pick a point x̃ ∈ R2
+ such that x̃ ∈ (x, x′) and ỹ = yk(x̃), let the line L ∈ L−

be such that c(L) = x̃ and chose x̄ = (x̄, ȳ) with x < x̄ < x̃. As x̄ < x̃ and

b[L] < 0 we have that ȳ = a[L] + b[L]x̄ > a[L] + b[L]x̃ = ỹ, define ỹ
ȳ
< α2 < 1. With

α = (1, α2) the choice c
(
αL

)
= αc(L) =

(
x̃, α2yk(x̃)

)
, and as α2yk(x̃) < yk(x̃) we

have, for some ϵ = yk(x̃) − α2yk(x̃) > 0, f
(
c
(
αL

))
= f

(
αc(L)

)
= f

(
x̃, α2yk(x̃)

)
=

f
(
x̃, yk(x̃) − ϵ

)
< k. However α(x̄, ȳ) = (x̄, α2ȳ) and α2ȳ > ỹ = yk(x̃), yk(·) is con-

stant in (x, x′) yk(x̃) = yk(x̄), hence α2ȳ > yk(x̄). And with ϵ = α2ȳ − yk(x̄) > 0,

f(x̄, α2ȳ) = f(x̄, yk(x̄) + ϵ) > k. So f(αx̄) = f(x̄, α2ȳ) > f
(
c
(
αL

))
, we got a

contradiction because f
(
c
(
αL

))
should be the biggest in αL, yk(·) must be strictly

decreasing.

Claim 11. The function yk(x) is strictly convex.

Proof. Pick two points x,x′ in R2
+, with both points on the same indifference curve,

x =
(
x, yk(x)

)
and x′ =

(
x′, yk(x

′)
)
, for any α ∈ [0, 1] define xα = αx + (1 − α)x′.

Take two converging sequences {ynx}∞n=1 and {ynx′}∞n=1 with ynx → yk(x), y
n
x′ → yk(x

′)

and ynx > yk(x), y
n
x′ > yk(x

′). As we saw in the previous proof f(x, ynx) > k and

f(x, ynx′) > k, with yαn = αynx +(1−α)ynx′ , by function f(·) quasiconcavity, lemma (4),

we know that f(xα, yαn) ≥ min{f
(
x, ynx

)
, f

(
x′, ynx′

)
} > k. Therefore yαn ∈ Y k

xα , and

yk(x
α) = inf Y k

xα ≤ yαn , and yk(x
α) ≤ limn y

α
n = limn αy

n
x + (1− α)ynx′ = αyk(x) + (1−

α)yk(x
′). This result is verified for any x, x′ and xα, consequently the function yk(·)

is convex.

If yk(·) is not strictly convex, exists x and x′ such that yk(x
α) = αyk(x) + (1 −

α)yk(x
′), as yk(·) is convex we know Avriel, Diewert, Schaible, and Zang (2010, p.17)

that the function R(x′, x) = yk(x
′)−yk(x)
x′−x

is nondecreasing in x for a fixed x′, (and

nondecreasing in x′ for a fixed x). Then R(xα, x) = yk(x
α)−yk(x)
xα−x

=
(1−α)

(
yk(x

′)−yk(x)
)

(1−α)(x′−x)
=

R(x′, x), as the functionR(x′, x) nondecreases for xα ≤ xβ ≤ x′, R(xα, x) ≤ R(xβ, x) ≤
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R(x′, x), then R(x′, x) = R(xβ, x), which is equivalent to yk(x
β) = βyk(x) + (1 −

β)yk(x
′). By a similar argument to the one used in claim (10), we know f

(
xβ, yk(x

β)−

ϵ
)
< k < f

(
xβ, yk(x

β) + ϵ
)
, for any ϵ > 0.

Pick a point x̃ over the line yk(·) such that: x̃ ∈ (x, x′) and ỹ = yk(x̃); pick the line

L̃ such that c(L̃) = x̃ and b[L] ̸= b = yk(x)−yk(x
′)

x−x′ . A point x̃ and a line L̃ with those

conditions always exists. Consider the line L =
{
(x, y) : y = 2− x

}
, it is symmetric

and c(L) = (1, 1), so x̃ = c(x̃L). If the initial point chosen x̃ is such that the slope

b(x̃L) = b, pick x̄, another point over the indifference curve yk(·), so ȳ = yk(x̄). The

line x̄L, that has x̄ = c
(
x̄L

)
can be rewritten as x̄

x̃
x̃L, with α = x̄

x̃
=

(
x̄
x̃
, ȳ
ỹ

)
and

using point (2) of proposition (1), b[x̄L] = b[αx̃L] = α2

α1
b[x̃L] = α2

α1
b. Calculating

α2

α1
= ȳ/ỹ

x̃/x̄
= ȳ/x̄

ỹ/x̃
= a/x̄+b

a/x̃+b
̸= 1, and b[x̄L] ̸= b, because ỹ = yk(x̃) = a + bx̃ and

ȳ = yk(x̄) = a+ bx̄.

Having chosen the point x̃ and the line L̃ and knowing that yk(·) is a line for

any value between x and x′, we can write that yk(x̄) = a + bx̄ for any x < x̄ < x′.

The point x̃ = (x̃, ỹ) is on both lines, L̃ and yk(·), so yk(x̃) = a + bỹ = a[L̃] + b[L̃]x̃.

Suppose that b[L̃] > b, pick a point x̄ such that x < x̃ < x̄ < x′ and let x̄ = (x̄, ȳ) ∈ L̃,

as the point is on the line L̃, ȳ = a[L̃] + b[L̃]x̄. Calculate ȳ − yk(x̄)

ȳ − yk(x̄) =
[
a[L̃] + b[L̃]x̄

]
−
[
a+ bx̄

]
=
[
a[L̃] + b[L̃]x̃+ b[L̃](x̄− x̃)

]
−

[
a+ bx̃+ b(x̄− x̃)

]
=b[L̃](x̄− x̃)− b(x̄− x̃) = (b[L̃]− b)(x̄− x̃)

As b[L̃] > b and x̄ > x̃, ȳ − yk(x̄) > 0. Chose α2 with yk(x̄)
ȳ

< α2 < 1 and

α = (1, α2), we know c(αL̃) = (x̃, α2ỹ) and α2ỹ < ỹ = yk(x̃), so f
(
c
(
αL̃

))
< k.

However, αx̄ ∈ αL and α2ȳ > yk(x̄), therefore f(αx̄) > k and we get a contradic-

tion, because f
(
c
(
αL̃

))
< k < f(αx̄), c

(
αL̃

)
is not the best. yk(·) must be strictly

convex. If b[L̃] < b the proof follows the same lines but choosing a point x̄ with

x < x̄ < x̃ < x′.
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Convexity of yk(·) implies that lateral derivatives of yk(·) exist everywhere Avriel,

Diewert, Schaible, and Zang (2010, p. 20). The next theorem will prove that yk(·) is

differentiable, and from there goes to show that it is at the tangency between L and

yk(·) that the maximum is attained. This theorem starts to unveil that the curves of

yk(·) are the indifference curves of the social function.

Theorem 6. The point x = (x, y) ∈ R2
+ is the choice of a line L = {(x, y) : y = a+ bx},

c(L) = x, if and only if for k = f(x), y′k(x) = b

This theorem assumes one strong fact not yet proven, namely the differentiability

of yk(x), so we will need to show that this is true. Before that, however, we need to

prove a milder version of the necessary condition of the theorem, that the point x̃ on

the line L with y′k(x̃
−) ≤ b ≤ y′k(x̃

+) must be the choice on the set L, x̃ = c(L).

Claim 12. If the line L = {(x, y) : y = a+ bx} is such that x̃ =
(
x̃, yk(x̃)

)
∈ L and

y′k(x̃
−) ≤ b ≤ y′k(x̃

+) then c(L) = x̃.

Proof. As x̃ ∈ L then yk(x̃) = a+ bx̃. We know Rk(x, x̃) =
yk(x)−yk(x̃)

x−x̃
is increasing in

x, so y′k(x̃
−) = limϵ↓0 Rk(x̃− ϵ, x̃) > Rk(x, x̃) for x < x̃. Then Rk(x, x̃) < y′(x̃−) ≤ b,

and after some easy calculation we get that b(x − x̃) < yk(x) − yk(x̃), using that

yk(x̃) = a+ bx̃, a+ bx < yk(x) for any x < x̃. So the function gk(x) = yk(x)− (a+ bx)

is positive whenever x < x̃. The function gk(·) is, due to yk(·) convexity, also convex.

And R̄k(x, x̃) =
gk(x)−gk(x̃)

x−x̃
is increasing in x. For x0 < x1 < x̃, R̄k(x0, x̃) < R̄k(x1, x̃)

due to gk(x̃) = 0 we get gk(x0)
x0−x̃

< gk(x1)
x1−x̃

and as x0 − x̃ < 0, gk(x0) > gk(x1)
x0−x̃
x1−x̃

,

as x̃−x0

x̃−x1
> 1 we get gk(x0) > gk(x1). The function gk(x) is decreasing for x < x̃.

Applying the same calculations for x > x̃ we conclude gk(x) is increasing in this

case. Therefore, for any given ϵ > 0, we can chose the maximum of gk(x) in a closed

neighbourhood of x̃, cl
(
Nϵ(x̃)

)
, and we know from the increasing-decreasing nature

of gk(x) that the maximum will be on one of the most distant point from x̃, we define

aϵ = sup
x∈cl

(
Nϵ(x̃)

) gk(x) = max{gk(x̃−ϵ), gk(x̃+ϵ)}. Let Aϵ = {x : gk(x) ≤ aϵ} be the

set of points x for which the line L is at distance aϵ or less from yk(x). Again by the

nature of gk(x), those points must belong to the ϵ neighbourhood of x̃, Aϵ ⊆ cl
(
Nϵ(x̃)

)
.

Define
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Laϵ =
{
(x, y) : y = a+ bx+ aϵ

}
For the points (x, y) ∈ Laϵ : if x ∈ Aϵ then gk(x) ≤ aϵ ⇔ yk(x) ≤ a + bx + aϵ = y

and f(x, y) ≥ k; if x /∈ Aϵ, gk(x) > aϵ ⇔ yk(x) > a + bx + aϵ = y and f(x, y) < k.

Hence with c(Laϵ) = argmaxx∈Laϵ
f(x), c(Laϵ)1 ∈ Aϵ ⊆ cl

(
Nϵ(x̃)

)
. gk(x) is contin-

uous then aϵ ↓ 0 when ϵ ↓ 0, and Laϵ → L, by theorem (3) c(Laϵ) → c(L). As

c(Lϵ)1 ∈ cl
(
Nϵ(x̃)

)
→ {x̃}, c(L) =

(
x̃, yk(x̃)

)
= x̃.

The previous claim is sufficient to establish that functions yk(·) are differentiable

everywhere.

Claim 13. ∀k, yk(·) is differentiable.

Proof. If yk(·) is not differentiable ∃x such that y′k(x
−) < y′k(x

+), pick two lines L and

L′ to which
(
x, yk(x)

)
belongs, and y′k(x

−) < b[L] < b[L′] < y′k(x
+). By claim (12) the

optimal point is c(L) = c(L′) =
(
x, yk(x)

)
, but the α ∈ R2

+ such that αL = L′ must

be different from (1, 1), otherwise L = L′, therefore c(L′) = C(αL) = αc(L) ̸= c(L),

a contradiction. It cannot exist x with y′k(x
−) < y′k(x

+).

We can now prove the theorem (6)

Proof. By claim (13) the curves yk(·) are differentiable, using this result on claim

(12) we get that if x = (x, y) ∈ L, with y = yk(x) and b[L] = y′k(x) then c(L) = x.

To prove sufficiency, assume that it is possible for (x, y) = c(L) with yk(x) = y but

b[L] = b ̸= y′k(x). Let’s assume y′k(x) > b, then limϵ→0
yk(x+ϵ)−yk(x)

ϵ
> b, meaning that

there is an ϵ̄ > 0 such that for any |ϵ′| < ϵ̄, yk(x+ϵ′)−yk(x)
ϵ′

> b, for the point x we know

yk(x) = a+ bx and for ϵ′ < 0, we get yk(x+ ϵ′) < yk(x)+ bϵ′ = a+ b(x+ ϵ′), in which,

naturally, as a = a[L] and b = b[L],
(
x + ϵ′, a + b(x + ϵ′)

)
∈ L, if x + ϵ′ > 0. But by

theorem (2) c(L) ≫ 0 and for small ϵ′, x + ϵ′ > 0, due to a + b(x + ϵ′) > yk(x + ϵ′),

f
(
x+ ϵ′, yk(x+ ϵ′)

)
> k = f(x), a contradiction, x can not be c(L).
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Claim 14. ∀b < 0, ∀k ∈ U , ∃x ∈ R+ such that y′k(x) = b.

Proof. If condition is not satisfied then either b ∈ ch
{
y′k(x) : x ∈ R+

}
or b /∈

ch
{
y′k(x) : x ∈ R+

}
. If it is the first case then yk(·) must be discontinuous at one

point x̄, and limx→x̄− y′k(x) > limx→x̄+ y′k(x), by an argument equal to the one used

in claim (13) we prove such a discontinuity creates a contradiction with AT axiom.

If b /∈ ch
{
y′k(x) : x ∈ R+

}
, lets assume that b ≤ inf

{
y′k(x) : x ∈ R+

}
, as the y′k(·)

is increasing (a convex function derivative is increasing) then b ≤ limx→0+ y′k(x). For

x > 0, b < y′k(x), and we know R(x, x′) = yk(x)−yk(x
′)

x−x′ is increasing in x′ for a fixed x, so

limϵ→0R(x, x+ ϵ) > b, then R(x, x′) > b, for x′ > x. So yk(x)−yk(x
′)

x−x′ > b, and noticing

that x− x′ < 0, yk(x)− yk(x
′) < b(x− x′) as this inequality is valid for any positive

x, we can take limits, limx→0 yk(x)−yk(x
′) < −bx′. Then limx→0 yk(x) < yk(x

′)− bx′,

and the function yk(·) is bounded near the origin, let θ = limx→0 yk(x).

Let the line Lϵ =
{
(x, y) : y = θϵ + bx

}
with θϵ = yk(ϵ) − bϵ. If (x, y) ∈ Lϵ

and x < ϵ , as R(ϵ, x) is increasing and y′k(x) > b then R(ϵ, x) > y′k(x) > b. So

yk(ϵ)−yk(x)
ϵ−x

> b and yk(ϵ)−yk(x) > b(ϵ−x), replacing yk(ϵ) = θϵ+bϵ, θϵ+bx > yk(x), and

f(x, y) = f(x, θϵ + bx) > k. If (x, y) ∈ Lϵ and x > ϵ then f(x, y) = f(x, θϵ + bx) < k.

Therefore c(Lϵ)1 ≤ ϵ. And L =
{
(x, y) : y = θ+bx

}
is the limit of Lϵ, and by theorem

(3) c(Lϵ) → c(L) and c(L)1 = 0, contradicting theorem (2). Therefore it must exist a

x ∈ R with y′k(x) = b.

If b ≥ sup
{
y′k(x) : x ∈ R+

}
the reasoning is similar. We know R(x, x′) is in-

creasing in x and R(x, x′) < R(x′ + ϵ, x′) < y′k(x
′) < b < 0, for any x < x′. Then

yk(x)−yk(x
′)

x−x′ < b, and yk(x
′) < yk(x) + b(x′ − x). As b < 0 then the last inequality

means that for a big value of x′, with a fixed x, yk(x
′) < 0, a contradiction as yk(·) is

positive.

4.3 The Function h(x)

Any increasing transformation of the social function also represents the same prefer-

ences, meaning that we can be dealing with different kinds of functions. I will use

23



one particular function to represent the choice c(S). This function h(x) is based on

the values of f(x) when x = 1. For a given f(x), such that c(S) = argmaxx∈S f(x),

for any point x we pick γ(x) = inf{z : f(1, z) ≥ f(x)}. That is, along the vertical

line x = 1, we are picking the smallest y among those that have a f -value bigger then

f(x). That γ(x) is well defined is an immediate consequence of lemma (4), and we

can now define h(x) = f
(
1, γ(x)

)
. We will show that h(·) represents the same choice

as the function f(·) for any set S ∈ S. For that we need first to establish the function

h(·) is strictly quasiconcanve.

Theorem 7. h(x, y) is strictly quasiconcave.

Claim 15. If f(x) > f(x′) then h(x) ≥ h(x′); and if f(x) = f(x′) then h(x) =

h(x′)

Proof. If f(x) > f(x′) and z ∈ R+ is such that f(1, z) ≥ f(x) then f(1, z) ≥ f(x)

meaning that {z : f(1, z) ≥ f(x)} ⊆ {z : f(1, z) ≥ f(x′)} and γ(x) = inf{z :

f(1, z) ≥ f(x)} ≥ inf
{
z : f(1, z) ≥ f(x′)

}
= γ(x′). From this we conclude

h
(
x
)
= f

(
1, γ(x)

)
≥ f

(
1, γ(x′)

)
= h

(
x′). If f(x) = f(x′), the equality of the

sets {z : f(1, z) ≥ f(x)} = {z : f(1, z) ≥ f(x′)} establishes γ(x) = γ(x′) and natu-

rally h
(
x
)
= h

(
x′).

Claim 16. If h(xα) = min{h(x), h(x′)} then h(xβ) = min{h(x), h(x′)} either for

all β with 0 ≤ β ≤ α, or for all β, with α ≤ β ≤ 1

Proof. If x ≪ x′ and h(xα) = min{h(x), h(x′)} = h(x) then h(xα) = h(x), and due

to the f(·) being strictly increasing in both arguments, for 0 ≤ β ≤ α, x ≪ xβ ≪ xα

and f(x) < f(xβ) < f(xα), by claim (15) h(x) ≤ h(xβ) ≤ h(xα) = h(x).

If x ̸≪ x′ and x′ ̸≪ x the line passing through both points L[x,x′] has negative

slope: (x̃, ỹ) ∈ L[x,x′], ỹ = y+ y′−y
x′−x

(x̃−x), therefore the slope of the line b
[
L[x,x′]

]
=

y′−y
x′−x

is negative. According to theorem (4), there is a x∗ ∈ (x, x′) such that for points

in L[x,x′], f
(
x̃, ỹ) is increasing for values of x̃ < x∗ and decreasing for x̃ > x∗.

If xα ∈ [x, x∗] thenf(x) < f(xα) and ∀0 ≤ β ≤ α, f(x) < f(xβ) < f(xα) and

24



min{h(x), h(x′)} ≤ h(x) ≤ h(xβ) ≤ h(xα) = min{h(x), h(x′)}, hence h(xβ) =

h(xα) = min{h(x), h(x′)}.

If xα ∈ [x∗, x′] then∀β, α ≤ β ≤ 1, x∗ ≤ xα < xβ < x′, by theorem (4), f(xα) >

f(xβ) > f(x′), and min{h(x), h(x′)} = h(xα) ≥ h(xβ) ≥ h(x) ≥ min{h(x), h(x′)},

hence h(xβ) = h(xα) = min{h(x), h(x′)}.

Claim 17. If ∃x,x′ ∈ R2
+ such that h(xβ) = h(x), ∀β ∈ [θ1, θ2] then, ∃γ ∈ R+ with

f(1, γ − ϵ) < f(xβ) < f(1, γ + ϵ),∀ϵ > 0 and ∀β ∈ [θ1, θ2]

Proof. As h(xβ) = f
(
1, γ(xβ)

)
and f(1, z) is strictly increasing in z, when h(xβ) =

h(x) then γ(xβ) = γ(x) = γ. Therefore γ = inf
{
z : f(1, z) ≥ f(xβ)

}
, so for any

ϵ > 0, ∃γ′ < γ + ϵ such that f(1, γ′) ≥ f(xβ) and as the function is increasing

f(1, γ + ϵ) > f(1, γ′) ≥ f(xβ) for any β ∈ [θ1, θ2]. Any γ′ < γ is not in the set{
z : f(1, z) ≥ f(xβ)

}
meaning that for any ϵ > 0, f(1, γ − ϵ) < f(1, γ) ≤ f(xβ).

Lemma 5. For any k0 < k1 such that ∃x ∈ R+ with yk1(x) = yk0(x) then ∀x′ ∈

R+, yk1(x
′) = yk0(x

′)

Proof. Suppose a x′ with yk1(x
′) ̸= yk0(x

′) exists, and without loss of generality as-

sume x′ > x. Pick the maximum from the set A = {x̃ ∈ R+ : yk1(x̃) = yk0(x̃) and x ≤

x̃ ≤ x′}. The maximum exists because: the set is nonempty, x ∈ A; it is limited,

because x ≤ x̃ ≤ x′; and it is closed, as a result of yk1(·) and yk0(·) being differen-

tiable by claim (13), and hence continuous functions. The existence of a maximum

is guaranteed by Weirstrass extreme value theorem, and for simplicity let’s assume

the maximum is x. The function g(z) := yk1(z) − yk0(z) is differentiable, it is the

difference of two differentiable functions, and using the mean value theorem we know

that ∃c ∈ (x, x′) such that g(x′)−g(x)
x′−x

= g′(c). Noticing that g(x) = yk1(x)−yk0(x) = 0,

and, as k1 > k0, yk1(x
′) > yk0(x

′), we conclude that b = g(x′)−g(x)
x′−x

> 0. Therefore

∃c ∈ (x, x′) such that y′k1(c) = b+ y′k0(c) and y′k0(c) ≤ y′k1(c). Due to convexity y′k1(x̃)

is increasing, then the point d such that y′k1(d) = y′k0(c), must be d < c.
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We now will pick two parallel lines L, L′ with a slope equal to y′k0(c) = y′k1(d),

L passing by (c, yk0(c)) and L′ passing by (d, yk1(d). By claim (12) that c(L) =(
c, yk0(c)

)
and c(L′) =

(
d, yk1(d)

)
. We will then see that the relation L′ = αL creates

a contradiction with d < c. The line L =
{
(x, y) : y = yk0(c)+y′k0(c)(x−c), ∀x, y ≥ 0

}
is tangent to yk0(·) at the point c, c(L) = c(L) =

(
c, yk0(c)

)
. The line L′ =

{
(x, y) :

y = yk1(d) + y′k0(c)(x − d),∀x, y ≥ 0
}

is tangent to yk1(·) at the point d and has

c(L′) =
(
d, yk1(d)

)
. It is possible to find α ∈ R2

+ such that L′ = αL, and we know

by proposition (1) that b[αL] = α1

α2
b[L]. b[L] = b[L′] so α1 = α2. By the same lemma

a[L′] = a[αL] = α1a[L], and α1 = a[L′]
a[L]

. From L and L′ definitions we know that

a[L] = yk0(c)− y′k0(c)c and that a[L′] = yk1(d)− y′k1(d)d = yk1(d)− y′k0(c)d.

We will study the the sign of a[L′]− a[L], knowing d < c

a[L′]− a[L] =
[
yk1(d)− y′k0(c)d

]
−

[
yk0(c)− y′k0(c)c

]
=yk1(d)− yk0(c) + y′k0(c)(c− d)

>yk0(d)− yk0(c) + y′k0(c)(c− d)

=(c− d)
[
y′k0(c)−

yk0(c)− yk0(d)

c− d

]
For a strictly convex function R(x̃, x̃′) =

yk0 (x̃)−yk0 (x̃
′)

x̃−x̃′ is strictly increasing in x̃′

for a fixed x̃ so as d < c, R(c, c+ ϵ) > R(c, d) and y′k0(c) = limϵ↓0 R(c, c+ ϵ) > R(c, d).

And so we conclude that a[L′]− a[L] > 0 for the case d < c, and α1 =
a[L′]
a[L]

> 1.

With c(L′) = c(αL) = αc(L) , then d = c(L′)1 = α1c(L)1 = α1c > c but this

contradicts the previous conclusion that d < c, so we can’t have yk1(x
′) ̸= yk0(x

′).

We have now gathered sufficient results to prove theorem ( 7).

Proof. That h(·) is quasiconcave is straightforward, xα = αx + (1 − α)x′, by f(·)

quasiconcacvity f(xα) ≥ min{f(x), f(x′)} and by claim (15) we derive h(xα) ≥

min{h(x), h(x′)}.

If h(·) is quasiconcave but not strict quaisconvave function then ∃x,x′ ∈ R2
+

and α ∈ (0, 1) such that xα = min{h(x), h(x′)}, and by claim (16), h(xβ) =
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min{h(x), h(x′)} either for all 0 ≤ β ≤ α or for α ≤ β ≤ 1. Let’s assume that

it is the first case 0 ≤ β ≤ α. Function f(·) is strictly quasiconcave and we know

it is increasing-decreasing along any line, therefore it has a maximum and a min-

imum along a limited line, m = min
β∈[0,α]

f(xβ) and M = max
β∈[0,α]

f(xβ). By claim

(17), ∃γ > 0 such that for any ϵ > 0, f(1, γ − ϵ) < m < M < f(1, γ + ϵ), hence

γ = inf {y : f(1, y) ≥ m} = inf {y : f(1, y) ≥ M}, which is the same as ym(1) = yM(1)

and by lemma (5) we know ym(x) = yM(x) for any x. Due to m ≤ f(xβ, yβ) ≤ M ,

yM(xβ) = inf
{
y : f(xβ, y) ≥ M

}
≥ yβ and ym(x

β) = inf
{
y : f(xβ, y) ≥ m

}
≤ yβ.

Due to ym(x
β) = yM(xβ) we get that yβ ≤ yM(xβ) = ym(x

β) ≤ yβ, and therefore

ym(x
β) = yβ. For any β ∈ [0, α], ym

(
βx + (1 − β)x′) = βy + (1 − β)y′ and the

function ym(·) is not strictly convex contradicting claim (11). h(·) must be a strictly

quasiconvave function.

The conditions are now gathered to show that the function h(·) also represents

the bargaining solution c(·).

Theorem 8. x∗ = argmaxx∈S h(x) if and only if x∗ = argmaxx∈S f(x), ∀S ∈ S.

Proof. As the function h(·) is striclty quasiconcave if h(x∗) = h(x′), h(xα) > h(x∗),

for this reason the maximizer of h(·) in S, when S is a convex set, is unique. If

h(x∗) > h(x), ∀x ∈ S by negation of the first result in claim (15) we get f(x∗) ≥

f(x), also by negation of the second result of the same claim, h(x∗) ̸= h(x) implies

f(x∗) ̸= f(x), so f(x∗) > f(x). We may conclude that if x∗ = argmaxx∈S h(x) then

x∗ = argmaxx∈S f(x)

Again by claim (15) when f(x∗) > f(x′), h(x∗) ≥ h(x′), if h(x∗) = h(x′), strict

quasiconcavity of h(·) implies h(xα) > h(x∗) and from what was seen previously this

also means f(xα) > f(x∗), a contradiction once f(x∗) is the maximum, therefore

h(x∗) ≥ h(x′) and h(x∗) ̸= h(x′). We may conclude that x∗ = argmaxx∈S h(x) if

x∗ = argmaxx∈S f(x).

The proof that the social function being maximized is in fact u(x, y) = xy relies
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on the fact that yk(·) are the indifference curves of the function h(·). The next lemma

proves it.

Lemma 6. If h(x, y) = k then y = yk(x).

Proof. Suppose h(x, y) = k and y < yk(x), for any y < ỹ < yk(x), f(x, ỹ) < k, if

f(x, ỹ) ≥ k, then ỹ ∈ {y′ : f(x, y′) ≥ k} and yk(x) = inf{y : f(x, y) ≥ k} ≤ ỹ, a

contradiction. So k = h(x, y) = f
(
1, γ(x, y)

)
> f(x, ỹ), and γ(x, y) ∈ {z : f(1, z) ≥

f(x, ỹ)} and naturally γ(x, y) ≥ inf{z : f(1, z) ≥ f(x, ỹ)} = γ(x, ỹ). This implies

h(x, y) = f(1, γ(x, y)) ≥ f(1, γ(x, ỹ)) = h(x, ỹ), but as y < ỹ this result contradicts

h(·) being strictly increasing in both factors. If h(x, y) = k and y > yk(x) the prrof

is done in the same way.

Theorem 9. The function u(x, y) = xy represents the bargaining solution c(·)

Proof. First we will prove that ∀k, xy′k(x)

y(k)
= −1. Let L be a line with c(L) = x∗,

then for a certain k, h(x∗) = k, by lemma (6) y∗ = yk(x
∗), and by claim (12), it

must be that y′k(x
∗) = b[L]. Chose α1 > 0 and calculate yk(α1x) then derive α2 from

α2yk(x
∗) = yk(α1x∗). This way x∗ = (x∗, yk(x

∗)) and αx∗ = (α1x
∗, α2yk(x

∗)) =

(α1x
∗, yk(α1x∗)) belong to the same indifference curve and h(αx∗) = k. Using the

result of claim (12) again, for αx∗ = c(αL) it must be that y′k(α1x
∗) = b[αL] =

α2

α1
y′k(x

∗), where the last equality comes from proposition (1). Simplifying both equa-

tions,

 α2yk(x
∗) = yk(α1x∗)

y′k(α1x
∗) = α2

α1
y′k(x

∗)

⇔

 α2 =
yk(α1x∗)
yk(x∗)

y′k(α1x∗)

y′k(x
∗)

= yk(α1x∗)
α1yk(x∗)

these equations are valid for any α1 > 0 so with α1 =
x′

x∗ replaced in the second, we

get x′ y′k(x
′)

yk(x′)
= x∗ y′k(x

∗)

yk(x∗)
, and we conclude that x

y′k(x)

yk(x)
is equal to all values of x and must

be constant. When b[L] = −1 or Lm
1 = Lm

2 the line L is symmetric and c(L)1 = c(L)2,

yk(x
∗) = x∗ and at this point, using again the claim (12), y′k(x

∗) = b[L] = −1, so

x∗ y′k(x
∗)

yk(x∗)
= −1 and due to x

y′k(x)

yk(x)
being constant, x

y′k(x)

yk(x)
= −1.
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Now we will prove that the function u(x, y) = xy represents the bargaining solution

c(·). Start by defining the function u(x) = k1 if h(1, k1) = h(x). Clearly the function

u(·) represents the same ordering as the function h(·). If x∗ = argmaxx∈S h(x) ⇔

h(x∗) > h(x), ∀x ∈ S ⇔ h
(
1, γ(x∗)

)
> h

(
1, γ(x)

)
, ∀x ∈ S then by definition of the

function u(·),u(x∗) = γ(x∗) > γ(x) = u(x), ∀x ∈ S ⇔ x∗ = argmaxx∈S u(x). The

indifference curves are the same under u(·) and h(·). Consider the indifference curve

Hk =
{
x : h(x) = k

}
, it then exists a zk such that h(1, zk) = k, that is (1, zk) ∈ Hk.

So if x′ ∈ Hk ⇔ x′ ∈
{
x : γ(x) = zk

}
⇔ x′ ∈

{
x : u(x) = zk

}
. And the indifference

curves are the same.

Solving the differential equation of the previous claim x
y′k(x)

yk(x)
= −1 we get that

yk(x) = 1
x
ak. For x = 1, yk(1) = k because u(1, k) = k, thus xyk(x) = k. So

u(x, y) = k when xy = k, then u(x, y) = xy.

5 Conclusion

In this paper we developed a new method to find Nash’s solution to the bargaining

problem. Peters and Wakker (1991) provides the conditions for the result that the

Nash bargaining solution to be the result of a maximization process. Then, from the

properties of this maximand’s indifference curves the Nash solution is found. The

mathematical arguments used in this paper are mainly of real analysis origin and are

not directly adaptable to different bargaining structures, such as for example those

defined in Peters and Vermeulen (2012), Conley and Wilkie (1996) or to Kalai and

Smorodinsky (1975). However, axiomatic bargaining does exhibit algebraic properties

which can be explored in future research to overcome this limitation. Namely, we can

regard the AT axiom as a morphism, and with the right definition of the multiplication

operation on the bargaining sets, each bargaining model can then be interpreted

algebraically. The study of the different axiomatic bargainings under this algebraic

and more general framework will likely extend the understanding we detain of them.
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Appendices

A

Claim 1. There is a concave function gs(x) : [0, S
1] → [0, S2] such that (x, gS(x)) ∈ S

and if (x, y) ∈ S then y ≤ gS(x).

Proof. Consider gS(x) = max(x,y)∈S y. As S is compact and the function f(y) = y is

continuous, gS(x) is well defined for all x. For any two points in x, x′ ∈ [0, S1], define

x =
(
x, gS(x)

)
and x′ =

(
x′, gS(x

′)
)
, clearly, by definition of gS(·), x,x′ ∈ S. Due

to convexity of S for any α ∈ [0, 1], αx + (1 − α)x′ =
(
αx + (1 − α)x′, αgS(x) +

(1 − α)gS(x
′)
)

∈ S, as gS(x̃) ≥ ỹ, ∀y with (x̃, ỹ) ∈ S then gS

(
αx + (1 − α)x′

)
≥

αgS(x) + (1− α)gS(x
′), the function is concave.

Proposition 1. For L,L′ ∈ L−, for α = (α1, α2) ≫ 0

1. a[L] = Lm
2 and b[L] = −Lm

2

Lm
1

2. αL ∈ L− and a[αL] = α2a[L] and b[αL] = α2

α1
b[L]

3. ∃α ∈ R2
+ such that αL = L′ with α2 =

a[L′]
a[L]

and α1 =
a[L′]
a[L]

b[L]
b[L′]

4. ∀x ∈ R2
+ , ∃L ∈ L− such that c(L) = x

Proof. (1)If the set L =
{
(x, y) : y = a + bx

}
∈ L−, then a[L] = a > 0 and

b[L] = b < 0. y(x) = a+ bx < a = y(0), the maximum value of the second argument

is L2
m = a. Inverting the equation y(x) = a + bx as x(y) = 1

b
y − a

b
as 1

b
< 0

x(y) ≤ −a
b
= x(0) and the maximum value of the first argument is L1

m = −a
b
, and

b = −L2
m

L1
m
.

(2) If S = {(s1, s2) : s2 = a+ bs1, with s1 ≥ 0, s2 ≥ 0},

αS ={(α1s1, α2s2) : s2 = a+ bs1, with s1 ≥ 0, s2 ≥ 0}

={(α1s1, α2s2) : α2s2 = α2a+
α2

α1

bα1s1, with α1s1 ≥ 0, α2s2 ≥ 0}
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={(s̃1, s̃2) : s̃2 = ã+ b̃s̃1, s̃1 ≥ 0, s̃2 ≥ 0}

In the last equality we used that ã = α2a and b̃ = α2

α1
b, as a > 0, b ≤ 0, α1 > 0

and α2 > 0, then ã > 0 and b̃ ≤ 0. Therefore αS ∈ L−, a[αL] = α2a[L] and

b[αL] = α2

α1
b[L]

(3) For two lines to be equal, both coefficients of the lines must be equal, if

αL = L′ then a[αL] = a[L′] and b[αL] = b[L′] using the result of point (2) we get

a[αL] = α2a[L] = a[L′]

b[αL] = α2

α1
b[L] = b[L′]

⇔

α2 = a[L′]
a[L]

α1 = α2
b[L]
b[L′]

(4) Consider symmetric the line L =
{
(x, y) : x + y = 2

}
, the choice must be

along the line x = y, c(L) = (1, 1), for any x ∈ R2
+, take xL and c(xL) = xc(L) = x.
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Abstract

Multiplayer bargaining is a game in which all possible divisions are equi-

librium outcomes. This paper presents the classical subgame perfect equilibria

strategies and analyses their weak robustness, namely the use of weakly domi-

nated strategies. The paper then develops a refined equilibrium concept, based

on trembling hand perfection, in order to overcome such weakness. Conclud-

ing that none of the classical equilibrium strategies survives the imposition of

the extra robustness and, albeit using more complex strategies, the equilibrium

outcomes don’t change.
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1 Introduction

In n-players bargaining there is an infinite divisible good to be shared among them.

The division is obtained by the following procedure: at each moment a player proposes

a division, the other n−1 players vote in favor or against it. If all agree the division is

made accordingly; if at least one player votes against it, the game goes on to another

round, with another player proposing a different division and a new suffrage taking

place. The game ends when a proposal is accepted by all. At each round, the good

in question loses value by δ.

The classical and better known result on multiplayer bargaining is that all divisions

are Subgame Perfect Nash Equilibria (SPNE) outcomes of the game, meaning that all

divisions can be agreed in equilibria. Crucial to obtain this result is the existence of a

credible and painful threat for deviators of the ”right” track. Herrero (1985) proposes

an ingenious mechanism of doing this, creating a strategy in which at least one player

is unsatisfied with a deviation proposal. For this strategy she used a state variable, if

the proponent does not propose as implied by the state, the state changes to a new

one in which the player worst off in this division receives everything. Players do not

want to deviate because in the punishment state they will receive nothing. For this

strategy to be an equilibrium the discount value cannot be very small, namely with

3 players δ > 1/2. Haller (1986) noted that an equilibrium for all divisions could

be extended to δ ≤ 1/2. This strategy also uses a state variable and punishment

threats that attribute everything to one player only, the main difference is in the

repliers’ actions, with players accepting only if the proposition is equal to the state -

any difference, even if all repliers are awarded , is rejected. The belief players have

that the proposition will be rejected renders them indifferent between accepting and

rejecting the offer, and they thus opt for refusing it. Other equilibrium strategies can

be developed, namely one with agreement at time T and other with no agreement at

all. On both of these the major force is also the belief that others will reject different

proposals, without it players would act differently from what is defined. Of notice is

that all these equilibria do not depend on the replies, and that it is unorthodox for
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players not to accept better proposals unless they are punished by doing so. This is

a major shortcoming of this equilibrium: players, without being punished by acting

differently, are choosing to play a dominated strategy.

This is an evident weakness of the equilibria concept used. In Haller ’s strategy

players in specific history states accept zero offerings because they do not expect

to receive more in the future if they reject them. They are powerless to change the

outcome, it is a resigned acceptance. In Herrero’s strategy players propose divisions in

which they receive zero. Again this is a hopeless proposition and only happens thanks

to the belief that others will also follow a resigned action course, as players believe

others will reject, they believe their own actions do not have any effect. The need of

unanimity gives total power to all players in terms of rejecting a proposal, and other

players’ actions will have no impact. This case, of the players’ actions having no effect

on the outcome of the game, may result in the best and more accurate strategies not

being played and originates non sensible equilibria. Players only choose their best

available actions in singleton information sets, if, for example, players knew what

others had voted before them, making their information set at the moment of voting

a singleton, then players knew that if they accepted a good proposition then others

could also do it. This conviction would make them vote in favor of the good division.

This type of structure in games and the possible appearance of non sensible equilibria

is very well known, and has been studied and solved by the use of refined equilibria

notions.

In this work we develop two different equilibrium concepts to analyse the game,

based on Selten’s (1975) perfect equilibria, and introduce the possibilities of small

mistakes by the players. Perfect Equilibrium(PE) imposes that all players in all his-

tories commit a minor mistake, and therefore imposes mistakes in an infinite game

with a continuum of actions, to our knowledge a concept with such characteristics was

not defined previously in the literature. Although it involves some different options

it owes much to the work of Simon and Stinchcombe (1995) and Carbonell-Nicolau

(2011), that developed existence results of the Perfect Equilibria strategies for nor-

mal form games with a continuum action space with continuous and discontinuous
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utilities, respectively. The use of trembles involves some distortion of the game and

should be used with parsimony. As the reason for the SPNE not to work is the non

singleton information set at the reply, and in order to introduce the minimum distor-

tions possible, we also create an equilibrium refinement that only imposes trembles

on the replies, Perfect Equilibrium in Replies (PER). When referring simultaneously

to both these concepts we will talk of them as Trembling Hand.

When a perturbed game is played, if the strategy does not punish replies, as is

the case in the strategies already described, players will always accept propositions

that give them more than what they would receive in future if the proposition were

to be refused, (although this may seems obvious it is not what happens in the Haller

equilibrium, in which better propositions are rejected in face of the expected rejection

of the other replier). Thus, they accept this proposition even if the chance of others

accepting it is very small. This property of the Trembling Hand equilibrium strategies

which are simultaneously independent of replies is the pivotal point to show that

Haller ’s strategy is not Trembling Hand. This strategy support the equilibrium by

punishing a deviator with attributing him zero, and he has no possibility of receiving

more unless someone deviates along the way. But if any player can make a mistake,

for example accepting a different proposition, the deviator will never accept zero, he

will keep looking for an opponent to make a mistake. The deviator will always refuse

a zero proposition and the strategies are not equilibrium strategies.

However, if in Herrero we modify the punishment divisions slightly, in a way in

which all players receive a positive quantity, even if very small, and maintain the rest

of the equilibrium structure, then this Modified Herrero strategy is a PER. And with

a further modification it is PE. These strategies serve as a good example because

one is PER and not PE, the other, with the additional modification, is PE and

not PER, which shows that the PE set is not stricter than PER; it also illustrates

the implications of PE definition. With a less restrictive notion the initial modified

strategy would be a PE, however the example also clarifies the rationale for the

restrictive definition of PE.

For δ ≤ 1/2 there is no easy equilibrium solution that works for all points in the
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simplex, there are points in which all players receive a strictly positive fraction of the

good that are not Trembling Hand outcomes for reply independent strategies. So, for

these divisions to be a Trembling Hand equilibrium outcome, we need a strategy that

also punishes the replies. The strategy we will build, strategy ρ, has two punishment

states per player, instead of one as hitherto: one to punish deviations and another one

to punish deviations from deviations. The trick used is that the second punishment

state avoids deviations from the first punishment state and the first punishment

state avoids deviations from the second. Thus, a sensible choice of these punishment

divisions is enough to insure that all strictly positive divisions are outcomes of a

Trembling Hand strategy. As in Haller ’s strategy, in ρ players will only accept the

proposition correspondent to the state, but in this strategy they are punished if they

don’t. The remarkable in this ρ strategy is the undominance of it, it is the only

best reply, and for this reason respects the conditions necessary to be even a stronger

equilibria notion. We can generalize this strategy, the same way as we have done

with Haller ’s, to allow an agreement date latter than the initial moment. For the

sake of completeness, another strategy that permits divisions with players receiving

zero will also be presented. This strategy is naturally weakly dominated, but on the

approximation games it is not. There is a mechanism of awarding the well behaved

players when another one deviates, the chance of receiving this award serves of an

incentive for players to accept receiving or proposing for themselves zero. They are

hoping that a player deviates and they receive the premium for the compliance.

We will now proceed to introduce notation and the classical equilibrium strategies

of Haller and Herrero in section 2. In section 3 the new equilibrium concepts are

defined and a proof that the classical equilibrium strategies are not Trembling Hand

is given. In the section 4 some new strategies, that are Trembling Hand, are defined.

Finally in section 5 a conclusion is provided.
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2 Notation and Classical Equilibria

2.1 Game and Notation

Although the majority of the results to be presented are easily generalized for more

players in this paper we will focus on the game with only 3 players. The set of players

is I = {1, 2, 3}. At the moment t ∈ N a proposal is one point of the unitary simplex

pt = (pt1, p
t
2, p

t
3) ∈ ∆, with ∆ =

{
(x1, x2, x3) :

∑3
i=1 xi ≤ 1, xi ≥ 0

}
and pti the part

attributed to player i. The proponent at t is the player i(t); with i(t) the function

that determines the proponent, it has a cycle of period 3, i(t) : T 7→ I and i(t) = {i ∈

I : ∃m ∈ N0, t = i+3m}. t(i) : I ⇒ T is the correspondence that defines the moments

in which player i proposes, these moments are t(i) = {t ∈ T : ∃m ∈ N0, t = i+ 3m}.

Player’s j 6= i(t) response to the proposal is an action taken on {0, 1}; with atj,

the action of j at t, being 0 if j rejects the proposition received, and 1 if the player

accepts it. So ati ∈ {0, 1} if i(t) 6= i or ati ∈ ∆ if i(t) = i. For the sake of simplicity

define the set of actions available for i at t by

Ati =

{0, 1} if i 6= i(t)

∆ if i = i(t)

The vector of all actions taken at moment t is at = (at1, a
t
2, a

t
3) and the space of

all actions at t is At = At1 × At2 × At3 = {0, 1}2 ×∆ = ∆̄.

For t ≥ 1, a stage history can be either a history after or before the proposition

is done, and a distinction between these two cases is necessary. We therefore define

at moment t in history h the stage history is ht,1 for the proposal and ht,2 for the

responses, ht = (ht,1, ht,2). A (t− 1, 2)-history in which t− 1 propositions and voting

have taken place is denoted by h|t−1,2 = (a1, . . . , at−1); and a (t, 1)-history, when a

proposition has already been done at t but no replies have been received yet, h|t,1 =

(a1, . . . , at−1, ati(t)), in which, for all 1 ≤ k ≤ t − 1, ak ∈ ∆̄ and ati(t) ∈ ∆; the space

of (t, 2)-stage histories is H t,2 =
∏t

k=1 ∆̄ = ∆̄t, and the space of all (t, 1)-histories is

H t,1 = H(t−1),2 × ∆ = ∆̄t−1 × ∆. H0,2 stands for ∅ the unique 0-stage history. The
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set of all histories is H =
⋃∞
t=1(H t,1 ∪H t,2).

The length of a history, τ(h) is a function from the set of histories into the stage

moment τ : H 7→ N0×{1, 2}, so τ(h) = (t, k) t ∈ N0 being the moment of the history,

and k ∈ {1, 2} whether the voting has already been made k = 2 or not k = 1. t(h) is

the moment of history h, so τ(h) = (t(h), k) and i(h) = i(t(h)) the proponent at h.

For a history h with t(h) > t, h|t,k is the history h until stage (t, k). h+ and h− are

respectively the history h plus one more stage or without the last stage, and it will

be used only when the marginal actions are obvious from the context. It is assumed

that at stage (t, k) each player knows h|t,k, that is, each player knows the actions that

were played in all previous stages. (h, h̄) is the history h followed by h̄.

A pure strategy for player i is a function si : H → {0, 1} ∪∆, with si(h) ∈ At(h
+)

i

mapping histories into actions. The set of player i pure strategies is denoted by

Si, and S = S1 × S2 × S3 is the joint pure strategy space. Every pure strategy

s = (s1, s2, s3) ∈ S induces a path after the history h, $s(h). At h the action

will be s(h), then if an agrement has not been reached s
(
h, s(h)

)
are the actions

played, so we can define the future after h when s is the strategy as $s(h) =

{h, s(h), s
(
h, s(h)

)
, s
(
s
(
h, s(h)

))
, . . . }. A strategy s induces, as well, a division d(s)

and a moment in which the agreed division occurs t(s). The moment t(s) = t is

when mini∈−i(h) s
t
i(h

s
t,2) = 11, and division is d(s) = ht(s),1. If there is no agree-

ment, by convention, e(s) = +∞ and d(s) = 0. The utility for a given strategy is

Πt
i(s|h) = vi

(
t(s|h), di(s|h)

)
, is increasing with the share received di(s) and decreas-

ing with the time until agreement t(s), Πt
i(s|h) = δt(s|h)−td(s|h), payment function

can also be written (in a similar fashion to the definition of payment when mixed

actions are used) as Πt
i(s|h) =

∑
h̄∈$s(h) δ

t(h̄)−t(h)π(h, h̄), in which π(h̃) is the value of

the division agreed at the last moment of h̃, and therefore is the product of the last

moment actions π(h̃) = h̃t,1h̃t,2j h̃
t,2
k , k, j /∈ −i(h̃).

Herrero (1985) was the first2 to prove that all points in ∆ are equilibria outcomes

when, δ > 1/2. Later Haller noted that if the repliers’ strategies were stricter the

1The usual notation will be followed for a player i ∈ I, −i = I \ {i}
2Although he never published his results, Shaked is also attributed with the creation of such

strategies, see, for example, Sutton (1986) or Osborne and Rubinstein (1990)
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equilibria could extend to any δ. Due to the dynamic character of the game the

equilibrium concept used is the Subgame Perfect Nash Equilibrium that we hereby

define.

Definition 1. s ∈ S is a SPNE if Πt
i(s|h) ≥ Πt

i(s
′
i, s−i|h) ∀h ∈ H,∀i ∈ I and

∀s′i ∈ Si

The utility function in the bargaining game can be written, as noted before, in the

form Πt
i(s) =

∑∞
τ=1 δ

τaτ with aτ the payments at t+τ , that is either zero or the value

of the agreed division at t+ τ , and is bounded by 1. It is relatively straightforward to

see that if two strategies share the same future path for a long period their actualized

payment will be similar, therefore the utility function is continuous at infinity and

the one shot deviation principle is valid. To prove that a given strategy is an SPNE

we need only to look for alternative strategies that are different on one information

set. For this purpose we define the one shot deviation strategy.

Definition 2. The set of One Shot Deviation(OSD) strategies from si at h is

OSD(si, h) = {γi ∈ Si : γi(h) 6= si(h) and γi(h
′) = s′i(h

′),∀h′ ∈ H \ h}

2.2 Haller Equilibrium Strategy

In this subsection we will present the equilibrium defined by Haller (1986), a proof

that such strategy is a SPNE will be presented for completeness. 3 This strategy uses

a state function r(h) : H → E that, for any history h, tracks if any player has deviated

from the planed, and induces a punishment for that player. There is a bond between

the state and the division to be proposed under the strategy, for this reason we use

the same symbol for a state and the division associated with it. E = {e0, e1, e2, e3}

is set of states, e0 is any point in ∆, ei is the division in which player i receives 1,

eik =

1 , if k = i

0 , if k 6= i

. At h ∈ H t,2, if the player i = i(t) did not propose r(h) the

state changes to ei(t+1), in which the player i receives nothing. The state at the initial

3In the proof we are only looking for better pure strategies, if no pure strategy is better then no
mixed strategy can be better either.
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moment h = ∅ is r(h) = e0. Transition takes place immediately after the proposal

and before the replies so for τ(h) = (t, 2), r(h) = r(h−). For τ(h) = (t, 1),

r(h) =

r(h
−) if ht,1 = r(h−)

ei(t+1) if ht,1 6= r(h−)

Now we will present the equilibrium strategy.

Definition 3. Haller Equilibrium Strategy In Haller’s equilibrium strategy for h

such that τ(h) = (t− 1, 2), si(t)(h) = r(h), so the proposition will always be equal to

the state. For τ(h) = (t, 2) replier’s j 6= i(h) strategy is

sj(h) =

1 se ht,1 = r(h−)

0 se ht,1 6= r(h−)

Repliers accept the proposition if it is equal to the state and reject it if it is

different, note that for replier j the share offered to him is as important as the share

offered to others, what matters is that the proposition is equal to r(h−) so the share

of all players is relevant.

Table 1: Haller’s Strategy

State ej

Player i Proposal ej

Accept p p = ej

Theorem 1. Haller’s strategy is an SPNEand any e0 ∈ ∆ is anSPNEequilibrium

outcome.

Proof. s is Haller’s strategy with r(∅) = e0, for any but fixed e0 ∈ ∆. We will

prove that there is no history h after which one player i can change his strategy

to s′i ∈ OSD(si, h) and improve his payment. Let us start by noting that due to

r(h) = r(h−) for τ(h) = (t, 2), ht,2 has no influence in the state, whatever are the

responses the state does not change.
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For i = i(t), τ (h) = (t− 1, 2) If all players play according to the strategy s,

i proposes r(h) and all others accept, Πt
i(s|h) = ri(h). If s′i ∈ OSD(si, h) then

p = s′i(h) 6= si(h) = r(h), i made a different proposal, repliers j, k only accept

if the proposal is p = r(h+) = ei(t+1), the state after the deviated proposition.

So if there is an immediate agreement i’s payoff is Πt
i(s
′
i, s−i|h) = e

i(t+1)
i = 0, if

there is not Πt
i(s
′
i, s−i|h) = δΠt+1

i (s′i, s−i|h+) = δΠt+1
i (s|h+) = δe

i(t+1)
i = 0. Clearly

Πt
i(s
′
i, s−i|h) ≤ Πt

i(s|h) for any OSD(si, h), the proponent i(t) has no advantage in

altering his strategy.

For j 6= i(t) and τ (h) = (t, 1) we have two possibilities for the player to act

unaccording to s, either to accept a proposal different from r(h) or to reject the

proposal of r(h). When the proposal is equal to the state ht,1 = r(h), if all players

act by s the proposition is accepted and Πt
j(s|h) = rj(h). If s′j ∈ OSD(sj, h), j refuses

the proposition, s′j(h) = 0, we can define the stage history ht,2 =
(
s′j(h), sk(h)

)
=

(0, 1) and h+ = (h, ht,2). The state does not change, as the state is independent of

the replies, so r(h+) = r(h). j’s refusal delays the agreement one period, because

after h+ all players follow s and the agreement is r(h+) = r(h). Πt
j(s
′
j, s−j|h) =

δΠt+1
j (s′j, s−j|h+) = δΠt+1

j (s|h+) = δrj(h
+) = δrj(h) ≤ rj(h), and we conclude that

Πt(s′j, s−j|h) ≤ Πt
j(s|h). When the proposal is not equal to the state ht,1 6= r(h), that

mean the proponent i(h) has deviated from the strategy and the state is r(h) = ei(t+1).

If −i(h) follow s the proposal is refused, the state is r(h+) = r(h) = ei(t+1), where

h+ = (h, (0, 0)), and Πt
j(s|h) = δΠt+1

j (s|h+) = δe
i(t+1)
j . If j follows s′j ∈ OSD(sj, h)

accepting the proposition, s′j(h) = 1. The proposal will still be declined by the

other player and there will be no change in state caused by j response, and r(h̄+) =

ei(t+1), with h̄+ = (h, (1, 0)). Πt
j(s
′
j, s−j|h) = δΠt+1

j (s|h̄+) = δe
i(t+1)
j = δΠt+1

j (s|h+) =

Πt
j(s|h). Player j does not improve by changing strategy.

2.3 Herrero’s Strategy

Being less general than Haller’s strategy Herrero proposed an equilibrium strategy

that is less fragile. In this case the players’ acceptance is not reduced to one division

only, they apparently consider only their own share, and the acceptance rule has a
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threshold. The punishment scheme is activated if a player does not propose what he

was supposed to. A state function defining the state at history h and which division

should be proposed (again there is an identification between state and proposal)

r(h) : H → E, is updated after each proposal but before the replies, so r(h) = r(h−)

when τ(h) = (t, 2). The states are again E = {e0, e1, e2, e3}, with ei the division in

which player i receives the totality, the initial state is r(∅) = e0.

Define k(p, t) as the replier worst off in proposition p made at t (of smaller index

if there is more than one), k(p, t) = min
{
j ∈ I \ i(t) : pj = mink∈I\i(t) pk

}
. The state

is defined in the following way for τ(h) = (t, 1)

r(h) =

r(h
−) if ht,1 = r(h−)

ek if ht,1 6= r(h−)

Briefly, if the player made the expected proposal, ht,1 = r(h−), there is no state

change; if he did not, then the strategy enters in a punishment scheme of i(h) that

gives everything to player k = k(ht,1, t). Herrero’s strategy is resumed on the following

table and formally defined subsequently.

Table 2: Herrero’s startegy

State ej

Player i Proposal ej

Reply pi ≥ δeji

Definition 4. Herrero’s Strategy The proponent always proposes r(h), si(h)(h) =

r(h), the strategy for repliers j 6= i(h) is

sj(h) =

1 if ht,1j ≥ δr(h)j

0 if ht,1j < δr(h)j

Theorem 2. For δ > 1/2 Herrero’s strategy isSPNEfor any eo ∈ ∆.

Proof. We will use the one shot deviation principle once more. Let’s start by see-

ing that at h ∈ H t−1,2 the player i = i(t)i = i(t)i = i(t) gains nothing by acting differently from s;

when all players act accordingly, i utility is Πt
i(s|h) = r(h)i. If i uses s′i ∈ OSD(s, h)
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and makes a different proposition, p 6= r(h), there is immediately a change of state

to r(h+) = ek with k = k(p, t) 6= i. If h++ = (h, p, r) where r is the reply to

ht,1, r ∈ {0, 1}2, if min rj = 0, at least one player refused the proposition and

Πt
i(s
′
i, s−i|h) = δΠt+1

i (s|h++) = δr(h++)i = δeki = 0 ≤ Πt
i(si, s−i|h). Then the only

way i can improve is when all players accept. After proposition p 6= r(h), state

becomes ek, with k the player receiving the minimum, according to s for k to ac-

cept pk = min{pj, pk} ≥ δ, then pj ≥ δ the total amount given to the repliers for

both of them to accept the proposal must be at least 2δ, as the total cannot be

bigger than a unity we conclude that δ ≤ 1/2, contradicting the initial hypothesis.

So both repliers can not accept the out of equilibrium proposition simultaneously.

For j 6= i(t)j 6= i(t)j 6= i(t) and τ(h) = (t, 1)τ(h) = (t, 1)τ(h) = (t, 1) the payment for player j under s depends on the ac-

tions of the other replier k as well, if ht,1ι ≥ δr(h)ι, for ι = j, k all repliers will

accept, minι∈−i(h) sι(h) = 1, payment is immediate and equal to ht,1j = Πt
j(s|h); if

any of the repliers reject (due to his share being smaller than the established by the

state), minι∈−i(h) sι(h) = 0 the agreement is delayed one period but the state is not

changed, as the state do not depend on the replies, h+ =
(
h,
(
sj(h), sk(h)

))
∈ H t,2

and r(h+) = r(h). In this case Πt
j(s|h) = δΠt+1

j (s|h+) = δr(h+)j = δr(h)j. And

we can conclude that Πt
j(s|h) ≥ δr(h)j independently of the replies. At this mo-

ment there are two ways in which the players can act contrarily to the strategy

s: to accept a proposal that should be refused or to reject one that should be

accepted. In neither one does the player improve. If sj(h) = 1sj(h) = 1sj(h) = 1, player j chooses

s′j ∈ OSD(sj, h), then s′j(h) = 0 his payment is Πt
j(s
′
j, s−j|h) = δΠt+1

j (s′j, s−j|h+),

with h+ =
(
h,
(
s′j(h), sk(h)

))
, as r(h+) = r(h), the state do not depend on the

replies, Πt+1
j (s′j, s−j|h+) = Πt+1

j (sj, s−j|h+) = r(h+)j = r(h)j. j’s rejection leads

to Πt
j(s
′
j, s−j|h) = δr(h)j, Πt

j(s
′
i, sj|h) ≤ Πt

j(s|h). When sj(h) = 0sj(h) = 0sj(h) = 0 then a strategy

s′j ∈ OSD(sj, h) has s′j(h) = 1. If player k accepts, sk(h) = 1, the agreement is

immediate and the payment of j is ht,1j . It is smaller than δr(h)j because according

to sj a proposal should only be rejected, sj(h) = 0, if ht,1 < δr(h)j. If sk(h) = 0 the

agreement is postponed and j’s payment is δΠt+1
j (s|h+). We can therefore define the

payment of j as

12



Πt
j(s
′
j, s−j|h) =sk(h)ht,1j + (1− sk(h))δΠt+1

j (s′j, s−j|h+)

=sk(h)ht,1j + (1− sk(h))δΠt+1
j (sjsjsj, s−j|h+)

=sk(h)ht,1j + (1− sk(h))δr(h+)j

≤sk(h)δr(h)j + (1− sk(h)) δr(hhh)j = δr(h)j ≤ Πt
j(s|h)

It is of note that under Haller’s and Herrero’s strategies all divisions are equi-

librium outcomes, even Pareto dominated divisions, however agreement is always

reached at t = 1. It is possible to use the fact that player’s payment is zero to obtain

anSPNE for which the agreement is reached later, t(s) > 1, a minor adaptation of

Haller’s strategies is enough.4 The two following theorems are proved in appendix A.

Theorem 3. ∀e0 ∈ ∆, ∀T ∈ N, exists a strategy s SPNEwith e(s) = T and d(s) = e0

Another atypical equilibrium outcome is when an agreement is never obtained.

This case happens when at least one player at each round refuse the received pro-

posal, no agreement is then established at a finite moment and the game is played

indefinitely. The next theorem will prove the existence of such kind of equilibrium

strategies.

Theorem 4. There is an SPNEstrategy s ∈ S in which no division is agreed upon

and e(σ) =∞.

3 Trembling Hand Equilibria

3.1 Trembling Hand Equilibria

In Haller’s strategy repliers, without being punished by acting differently, reject

propositions that leave them better off, they are choosing weakly dominated strate-

4The adaptation could be made in Herrero’s strategy, the principle would be the same, if a player
deviates before the agreement date T , the punishment path of Herrero’s strategy is triggered.
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gies. At the moment of an answer, when player j rejects the proposition, whatever k

does, the proposal will still be rejected, the agreement moment will be delayed, and

j’s action is, for the time being, useless, then he can either accept or reject, that his

payment doesn’t change.

This is typical of voting systems, a similar problem is, for example, presented

in Acemoglu, Egorov, and Sonin (2009), in which three individuals are choosing by

majority rule between a or b, and each player strictly prefers option a to b. The non-

intuitive possibility that all three individuals vote for option b is a Nash equilibrium.

When any two players vote for b, it is a weak best response for the third one to do

so as well. It is the belief that all other players will vote for the worst option that

makes him vote for it as well. The same happens in multiplayer bargaining, when a

replier believes the other is rejecting the proposal, he is indifferent between accepting

and rejecting it. If both players think the same way there may be a rejection of a

good proposal for both. This problem is an amply known weakness of SPNE, and

was in the origin of the sequential and perfect equilibrium concepts, for example.

Van Damme (1991, p.9) identifies the problem with the fact that not all information

sets are singletons,

(...)for a subgame perfect equilibrium to be sensible, it is necessary

that this equilibrium prescribes at each information set which is singleton

a choice which maximizes the expected payoff after that information set.

Note that the restriction to singleton information sets is necessary to en-

sure that the the expected payoff after the information set is well defined.

This restriction, however, has the consequence that not all subgame perfect

equilibria which satisfy this additional condition are sensible.

So, if all information sets are singleton, the SPNE is sensible, if they are not

then there might be a problem in some equilibria strategies. If the information set is

non singleton a choice of an action that is not the best may happen, the use of the

concept is, in this case, questionable. Haller’s strategy clearly demonstrates that a

refined equilibrium concept should be used in the multibargaining game.
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For the purpose of this paper we propose two concepts in the vein of Perfect

Equilibria of Selten (1975), different from SPNE, that try to overcome the described

problem by adding small randomness to player’s actions. This way all player’s actions

are decisive in every moment, all their actions and choices have an impact on the future

payments. The concepts used are very similar in their philosophy, but the first only

imposes trembles on replies, while the second imposes trembles also at the proposition

moment. We adopt an equilibrium notion in which players only make mistakes in

replies, because it is at these moments that the information sets are non singleton.

The proponent’s information set is a singleton, he always knows what the repliers have

just done and all the previous history. His strategy must thus maximize the payment

after all histories, as proposals always impact the outcome, and SPNE is a sensible

equilibrium for these cases. In this way, in order to avoid unnecessary complications

and due to the requirement of trembling inducing distortions to the game, we opted

for introducing the minimum distortions necessary by using the concept of Perfect

Equilibrium in Replies (PER). However there is a limitation in using this concept,

we are imposing mistakes in a moment where players only have two possibilities but

do not impose it when the players have a continuum of possibilities. For the sake

of completeness, we will also develop our analysis for the case in which trembles

happens at every moments of the game, and we will call this Perfect Equilibrium

(PE). The use of two different concepts also shows that the core of results obtained

is not dependent on the particular notion used. Before defining these new concepts

it is indispensable to define what a mixed strategy is.

3.2 Mixed Strategy

A mixed strategy for this game will be defined in terms of behavioral mixed strate-

gies, meaning that to each h the player will chose a probability distribution over

the possibilities Ah available at the time.5 According to Aumann (1961), to choose a

mixed distribution at each h is equivalent to choosing a mixed strategy over all simple

strategies. This result is Khun’s theorem adaptation for the case of infinite extensive

5With the natural definition Ah = {0, 1} if τ(h) = (t, 1) and Ah = ∆ if τ(h) = (t− 1, 2).
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games with continuum space of actions. Denoting F(X, σX) the set of probabilities

measures over the set X with σ-algebra σX . At moment h, with Ah the actions avail-

able to the players, a behavioral strategy at h for each i is to pick a probability measure

σi(h) ∈ F(Ah,B(Ah))
6. A behavioral mixed strategy for player i, σi is a behavioral

mixed strategy for every history σi(h), ∀h ∈ H, the set of all possible behavioral

mixed strategy is Σi. A behavioral mixed strategy is σ = (σ1, σ2, σ3).

To define the payment function it is important to know not only the agreement

distribution over ∆, i.e. to know what is the probability measure on B(∆̄), but also

the moment that agreement is done. For that purpose we will define one probability

measure based on the behavioral mixed strategy, σ. kσ̄h defines the probability over

the future histories of dimension k after h, it is therefore defined on the sigma-algebra

B
(
∆̄k
)
.

kσ̄h will be defined iteratively. We start by the probability measure of the histories

ending on the period next to h. For that, for each h ∈ H t,2, define 1σh(O) = σh(O),

with O ∈ B(∆̄). If at h the proposal was accepted and ht,2 = (1, 1) then no path

was followed and in that case 1σh(O) = 0 for any O ∈ B(∆̄). Define the probability

measure over future histories of size 2 like

2σ̄h(O) =

∫
h̄∈∆̄

σ(h,h̄)(O|h̄)∂
(

1σ̄h
)

In which O|h̄ is the projection of O ∈ B(∆̄)2 on the last coordinate O|h̄ =
{
h̃ ∈

∆̄ :
(
h̄, h̃
)
∈ O

}
, and clearly a measurable set on B(∆̄). Using the same idea it is

possible to define, recursively, k+1σ̄h the probability measure among the histories with

duration k + 1 superior to h when σ is the played strategy, for O ∈ B(∆̄k+1)

k+1σ̄h(O) =

∫
h̄∈∆̄k

σ(h,h̄)(O|h̄)∂
(
kσ̄h
)

.

For h̄ ∈ ∆̄k means that h̄ = (h̄1, h̄2, . . . , h̄k), where h̄j ∈ ∆̄, i.e. h̄j,1 ∈ ∆ and

h̄j,2, h̄j,3 ∈ {0, 1}. Define for h ∈ H t̃,2, the immediate payment at time t̃, π(h) =

6For Ah = ∆ we will use the Borelian σ-algebra
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ht̃1h
t̃
2h

t̃
3, if both repliers accept π(h) = ht̃1, if either rejects π(h) = 0̄. π(h) is clearly

continuous in h. The payment at t = t(h), under the mixed strategy σ can be defined

as

Πt
i(σ|h) =

∑
k

δk
∫
h̄∈∆̄k

π(h, h̄)∂
(
kσ̄h
)

The expected payment is a discounted sum of a stream of expected values received

at each moment when σ is played, at h player i expects to receive
∫
h̄∈∆̄k π(h, h̄)∂

(
kσh
)

in the moment t(h) + k.

The next result will show the continuity of the function Πt
i(·|h), so if σn → σ

then Πt
i(σ

n|h) → Πt
i(σ|h) for any h. The convergence concept we will use in the

strategies space is the strong convergence of measures, so σn → σ if σnh(O)→ σh(O)

for all O ∈ B(Ah), we mean the setwise convergence, with the metric d(µ, ν) =

suph∈H supA∈B(Ah) |µ(A) − ν(A)|. The next theorem proves the payment function

continuity.

Theorem 5. Πt
i(σ|h) is continuous for all h ∈ H.

Proof. If σnh → σh, as for each n, 1σ
n
h(O) = σnh(O) then 1σ̄

n
h(O) → 1σ̄h(O). By

induction and using Fatou’s lemma with varying measure Royden (1968, p. 231),

lim inf
n

k+1σ̄
n
h(O) = lim inf

n

∫
h̄∈∆̄k

σn(h,h̄)(O|h̄)∂
(
kσ̄

n
h

)
≥
∫
h̄∈∆̄k

lim inf
n
σn(h,h̄)(O|h̄)∂

(
kσ̄h
)

=

∫
h̄∈∆̄k

σ(h,h̄)(O|h̄)∂
(
kσ̄h
)

= k+1σ̄h(O)

When lim infn k+1σ̄
n
h(O) ≥ k+1σ̄h(O) is valid for all open sets then k+1σ̄

n
h weakly

converges to k+1σh, and by Portmaentau lemma we know this implies
∫
h̄∈∆̄k π(h, h̄)∂

(
k+1σ̄

n
h

)
→∫

h̄∈∆̄k π(h, h̄)∂
(
k+1σ̄h

)
, as π(h, h̄) is continuous in ∆̄k. And it follows that Πt

i(σ|h) is

continuous.
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We can define a best repply to σ at h for player i as

BRi(σ|h) =
{
σ′h ∈ F(Ah,B(Ah)) : Πt

i(σ
′
h, σ−h|h) ≥ sup

µh∈F(Ah,B(Ah))

Πt
i(µh, σ−h|h)

}

3.3 Trembling Hand Equilibria

The questions raised by Osborne and Rubinstein (1990, p.250), justify the use of an

agent strategic form of the game in both Trembling Hand definitions. The PER is

almost a direct translation of Selten’s Perfect Equilibrium for the multiplayer bar-

gaining game. We use approximation games in which both actions at the moment of

replies are played with at least ε probability, and for a strategy to be PER it must be

an accumulation point of the SPNEof the approximation games, with ε ↓ 0. The rea-

son to assume that all actions at all replies must be played with the same probability

is due to the symmetric character of the game. To allow one player to accept with

a different probability than another one is to destroy this character and to implicitly

change an important characteristic of the game. For this reason, even in the PE, we

will always assume equal restrictions at equal moments, that is, at the replies the

restrictions are equal no matter the moment or the player, and at the propositions as

well.

Definition 5. Let Σε
i =

{
σi ∈ Σi : σi(k|h) ≥ ε,∀h ∈ H1, k ∈ {0, 1}

}
, σ is a Perfect

Equilibrium in Replies if it is an accumulation point of a sequence of
{
σε
}
{ε↓0},

with σε a best reply at all histories h in the set Σε
i, that is

Πt
i(σ

ε|h) ≥ Πt
i

(
σ′
ε
h,i, σ

ε
−(h,i)|h

)
,∀σ′εh,i ∈ Σε

i ∩OSDi(σ
ε, h) (1)

In contrast to PER, that imposes trembles in a finite set, the Perfect Equilibrium

notion imposes it also in the uncountable set ∆, and thus is more difficult to define.

To our knowledge there is no theory or good examples where to draw from for this con-

cept. The main difficulty is the extensive structure of the bargaining game together

with a continuum of actions (at the propositions). Simon and Stinchcombe (1995)

developed a concept of Perfect Equilibria for normal form games with a continuum of
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actions, Carbonell-Nicolau (2011) creates an alternative but equivalent characteriza-

tion of Perfect Equilibria in the context of games with discontinuous utilities. These

will serve as a basis to define the equilibrium notion on extensive games. The Selten

(1975) PE on a finite action demands that all points must be chosen with a strict

positive probability, on the approximation games; Simon and Stinchcombe (1995)

transposed this imposition in the continuous action case to all open sets which must

be played with positive probability (on the approximation games). So for all h ∈ H2,

if O is an open subset of ∆ then σεi(h)(O|h) > 0. Again if we only used this type

of restriction at each moment we would be destroying the game symmetry. It can

happen that if some actions are chosen with a certain probability (in the trembles) a

strategy is an equilibrium, but if a kind of uniform restriction was set to all actions (in

the trembles), i.e. a blindness imposition on the trembles, then this strategy might

not hold. Later we will present a case where the specific shape of this criteria makes

a difference. In multiplayer bargaining the need a stricter criteria is clear by the sym-

metric nature of the game, if there is not a stronger restriction on the type of allowed

mistakes this symmetric nature can be lost, and this changes and distorts the struc-

ture of the game entirely. For this reason the criteria we will use is σεi(h)(O|h) ≥ ελ(O),

with λ(·) proportional to Lebesgue measure in order for λ(∆) = 1, this way we insure

a certain blindness, and all mistakes are equally (un)probable. σε should also be a

rest reply at all moments of history and converge (strongly) to the equilibrium strat-

egy. In this game there is no obvious reason to assume strong convergence, however

due to the strategic nature of games the approximation strategies should play each

action or set of actions with almost the same probability as the equilibrium strategy,

to assume a more weak convergence notion might lead to equilibrium strategies in

the initial game which were not played in the approximation games.

Definition 6. Σ
ε

h = {σh ∈ Σh : σh(O) ≥ ελ(O), ∀O ⊆ Ah open set}. σ is a Perfect

Equilibria if it is an accumulation point of a sequence of
{
σε
}
{ε↓0} with σε a best

reply at all histories h in the set Σ̄ε
i, that is

Πt
i

(
σε|h

)
≥ Πt

i(σ
′ε
h,i, σ

ε
−(h,i)|h),∀σ′εh,i ∈ Σ

ε

h ∩OSDi(σ
ε, h)
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3.4 Trembling Hand Equilibria and Classical Strategies

One property common to all equilibria presented in section (2) is that replies do not

play a role in the future of the game. In case of the rejection of a proposal, who

rejected the proposal is not relevant to the future path of the game. In this type of

strategies, defined as Reply Independent, when one of the trembling hand concepts

is in use, as there are no future consequences of accepting or rejecting proposals,

and there is always the possibility that the other player accepts, those that leave the

players better off should be accepted. The next result will prove this, but first we

formally define a Reply Independent strategy, as a strategy where the same action is

taken for two histories with the same propositions (but possibly with different replies).

Definition 7. The strategy σ is Reply Independent if for any h and h̃ with τ(h) =

τ(h̃) and ht,1 = h̃t,1, ∀t ≤ t(h), then σ(h) = σ(h̃).

Σp ⊂ Σ is the set of all Reply Independent strategies.

If a strategy is Reply Independent, σ ∈ Σp, when a proposal is rejected the

payment is always the same no matter what the concrete reply vector r ∈ R is,

with R = {(0, 0), (0, 1), (1, 0)} the set of responses where a proposition is rejected. So

Πt+1
i

(
σ|h, r

)
= Πt+1

i

(
σ|h, r′

)
, ∀r, r′ ∈ R. We can then define, for a Reply Independent

strategy, the future payment after a proposal being refused pσi (h) = Πt+1
i

(
σ|h, r

)
,

∀r ∈ R with τ(h) = (t, 1). We are now in conditions to show that if a strategy is

trembling hand equilibrium and reply independent, then good proposals are always

accepted.

Theorem 6. If a simple, reply independent with immediate agreement at each history

strategy σ, is Trembling Hand then σj(1|h) = 1 if ht,1j > pσj (h) and σj(1|h) = 0 for

ht,1i < pσj (h).

Proof. As the strategy is simple it exists a d ∈ ∆ such that σi(h)

(
d
∣∣h) = 1 and

σj
(
1
∣∣h, d) = 1 for j 6= i(h). Therefore, given the definition of a PE, the approximation

strategy σε, for the proponent i(h), must be σεi(h)

(
O
∣∣h) = ελ(O) + (1 − ε)χd(O),
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otherwise the distance between the strategies would be bigger than ε7. For the same

reason, the replier, receiving the expected proposition d, chooses to σεj
(
1
∣∣h, d) = 1−ε.

When a proposition d̃ different from d is received the payoff in each of the possibilities

is

Πt
j

(
1, σε−{j,h}

∣∣h, d̃) =σεk
(
1
∣∣h, d̃)d̃j + δσεk

(
0
∣∣h, d̃)Πt+1

j

(
σε
∣∣h, d̃, 1, 0)

Πt
j

(
0, σε−{j,h}

∣∣h, d̃) =δσεk
(
1
∣∣h, d̃)Πt+1

j

(
σε
∣∣h, d̃, 0, 1)+ δσεk

(
0
∣∣h, d̃)Πt+1

j

(
σε
∣∣h, d̃, 0, 0)

Simplifying the notation h̃r =
(
h, d̃, r

)
and Πr

ε = Πt+1
j

(
σε
∣∣h, d̃, r). Player j accepts

the proposition d̃, with d̃j > δpσj (h̃), if

Πt
j

(
1, σε−{j,h}

∣∣∣h, d̃) > Πt
j

(
0, σε−{j,h}

∣∣h, d̃)⇔ σεk
(
1
∣∣h, d̃)

1− σεk
(
1
∣∣h, d̃) > δ

Π00
ε − Π10

ε

d̃j − δΠ01
ε

The following claim will be used to calculate Π00
ε − Π10

ε .

Claim 1. For h1, h2 ∈ H t,1 with the same proposition’s history, hk,11 = hk,12 for k ≤ t,

then

∣∣∣∣Πt
j

(
σε
∣∣h1

)
− Πt

j

(
σε
∣∣h2

)∣∣∣∣ ≤ 7ε.

Proof. If h1, h2 ∈ H t,1 then a proposition has already been done at t and the payoff

can be divided into the several components one for each possible reply pair

∣∣∣∣Πt
j

(
σε
∣∣h1

)
− Πt

j

(
σε
∣∣h2

)∣∣∣∣ ≤ δ

∣∣∣∣∑
r∈R

σε(r|h1)Πt+1
j

(
σε
∣∣h1, r

)
− σε(r|h2)Πt+1

j

(
σε
∣∣h2, r

)∣∣∣∣
+ ht,1j

∣∣∣∣σε(1, 1|h1)− σε(1, 1|h2)

∣∣∣∣ ≤
≤δ
∑
r∈R

σε(r|h1)

∣∣∣∣Πt+1
j

(
σε
∣∣h1, r

)
− Πt+1

j

(
σε
∣∣h2, r

)∣∣∣∣+

∣∣∣∣σε(r|h1)− σε(r|h2)

∣∣∣∣Πt+1
j

(
σε
∣∣h2, r

)
+ ht,1j

∣∣∣∣σε(1, 1|h1)− σε(1, 1|h2)

∣∣∣∣ ≤
7With χa(B) the indicator function

χa(B) =

{
1 if a ∈ B
0 if a /∈ B
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≤δ
∑
r∈R

σε(r|h1)
(
1− (1− ε)3

)
+ 2εΠt+1

j

(
σε
∣∣h2, r

)
+ 2εht,1j ≤ 7ε

The first inequality is the result of the triangle inequality; the second from the

equality σε(r|h2)Πt+1
j

(
σε
∣∣h2, r

)
= σε(r|h1)Πt+1

j

(
σε
∣∣h2, r

)
+
(
σε(r|h2)−σε(r|h1)

)
Πt+1
j

(
σε
∣∣h2, r

)
;

the third inequality from the fact that after the proposition, |σε(r|h) − σ(r|h)| ≤

ε, then, due to reply independence, σ(r|h1) = σ(r|h2), and by σε
(
p, 1, 1

∣∣h1, r
)

=

σε
(
p, 1, 1

∣∣h2, r
)

= (1− ε)3 and therefore

∣∣∣∣Πt
j

(
σε
∣∣h1

)
− Πt

j

(
σε
∣∣h2

)∣∣∣∣ ≤ 1− (1− ε)3.

Calculating Π00
ε − Π10

ε ,

Π00
ε =

∫
p∈∆\d

Πt+1
j

(
σε
∣∣h̃00, p

)
∂
(
σε(h̃00)

)
+ (1− ε)3d

Π10
ε =

∫
p∈∆\d

Πt+1
j

(
σε
∣∣h̃10, p

)
∂
(
σε(h̃10)

)
+ (1− ε)3d

As seen before, due to the reply independence of σ, the proposition is the same after

h̃00 and h̃10, σε is also equal after h̃00 and h̃10 and Π00
ε −Π10

ε =
∫
p∈∆\d Πt+1

j

(
σε
∣∣h̃00, p

)
−

Πt+1
j

(
σε
∣∣h̃10, p

)
∂
(
σεi (·|h̃r)

)
. Using the result of claim(1),

∣∣∣Π00
ε −Π10

ε

∣∣∣ ≤ ∫p∈∆\d 7ε∂
(
σεi (·|h̃r)

)
=

7ε2. We know that σεk
(
1
∣∣h, d̃) ≥ ε and for small ε, ε

1−ε > 7ε2, then it must be that

σεk
(
1
∣∣h, d̃)

1− σεk
(
1
∣∣h, d̃) > Π00

ε − Π10
ε

d̃j − δΠ01
ε

If the proposition is better than the future payment d̃j > δpσj (h̃) then in the

approximating strategy player j always accepts the proposal σεj(1|h, d̃) = 1− ε.

The same reasoning can be applied for a strategy σ to be PER, the future propo-

sitions, even in σε, are the same whatever the actions of the repliers, and so a better

proposition will always be accepted.

An immediate consequence of the previous result is that Haller’s strategy (and

it’s derivatives) are not Trembling Hand equilibria, since repliers only accept a unique

22



proposal and for that reason it cannot sustain the hypothesis of small errors. Without

penalizing the answers it was relatively clear that this would happen.

Corollary 1. Haller’s strategy is not Trembling Hand equilibrium.

Herrero’s strategy is different, it respects the previous result, but it still maintains

a shortcoming, not all the played strategies are non-dominated, for instance when a

player accepts a division that attributes him zero he is playing a weakly dominated

strategy. The next theorem shows that Herrero’s is not a Trembling Hand equilibrium,

the proof is done in the appendix for the Perfect Equilibrium concept, but it could

be done for PER following the exact same lines, step by step, for this reason we do

not explicitly prove it herein.

Theorem 7. Herrero’s strategy is not a Trembling Hand equilibrium

4 New Equilibra Strategies

4.1 Herrero Modified

On this section we will construct two strategies based on Herrero, HM1 and HM2,

the first is PER and the second PE and in both almost all divisions can be established

as equilibrium outcomes. They serve as an example of two important properties of

the Trembling Hand. Counterintuitevely the set of strategies that are PE is not a

subset of those that are PER. In fact HM1 is PER without being PE, and HM2 is

PE without being PER. And secondly they show, specially HM2, how crucial the

details of PE are definition and how they might affect which strategies are equilibria.

These strategies are equal except for the reply to a very specific proposal, in HM1

that proposal is accepted, in HM2 it is rejected. The main change to the original

Herrero strategy is the states and the punishment divisions which they establish,

instead of the vectors ei, both HM use ē1, ē2, ē3

ēij =

1− 2η if j 6= i

η if j = i
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With 0 < η < δ/2 − 1/4. This way we ensure to all players a positive payment,

although small, and this positive payoff creates an incentive for the players not to

reject the proposition, because if they do it the payment they can get devalues with

time.

The function that tracks the state (and therefore the proposition which should be

settled on) is as in Herrero’s strategy, it changes only after the proposition. When

the proposition does not coincide with the state, there is a change to a state that

rewards the worst off player in the ”out of equilibrium” proposition. Formally state

transition is defined in the same way as Herrero’s but with the states changed from

ei to ēi. HM1 is equal to Herrero’s strategy but with the new states instead of ei.

Both strategies are presented in the next two tables.

Table 3: HM1

State ēj

Player i Proposal ēj

Accept pi ≥ δēji

The moment in which HM2 is different from HM1 is when the share proposed to

the replier that will not propose on the next round coincides to what he would receive

there, that is the share proposed to him is δēji . Only in this case are the strategies

different with that replier accepting the proposal in HM1 and rejecting it in HM2.

Table 4: HM2

State ēj

Player i
Proposal ēj

Accept
pi > δēji and i 6= i(h+)

pi ≥ δēji and i = i(h+)

Theorem 8. For δ > 1/2, HM1 is PER and it is not PE, HM2 is PE and it is not

PER

Proof. We will start seeing that HM1 is PER and can not be PE, this happens

because in the approximating games the only best reply is when a proposition of
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δēji is received, to accept it, and by this reason HM2 can never be the limit of an

approximating strategy. Take s for the HM1 and sε for the approximating strategy.

At h ∈ H t−1,2 for the proponent i = i(t)i = i(t)i = i(t) we will prove that Πt
i(s|h) > Πt

i(s
′
i, s−i|h)

for all s′i ∈ OSD(si, h), and due to continuity of payment function Πt
i(si, s

ε
−i|h) >

Πt
i(s
′
i, s

ε
−i|h). If s is played after τ(h) = (t − 1, 2), i receives Πt

i(s|h) = r(h)i ≥ η.

If it makes a proposition p different from r(h), the state changes before voting to

r
(
h, p
)

= ēk with k = k(p, t) 6= i. If the proposal ht,1 is rejected the future payment

is δēki = δη < η. If it is accepted k = k(p, t) accepts only if ht,1k ≥ δ(1 − 2η); as

ht,1j ≥ ht,1k , then ht,1j ≥ δ(1−2η), and ht,1i = 1−
∑

j 6=i h
t,1
j = 1−2δ(1−2η). But, due to

η < δ/2−1/4, 1−2δ(1−2η) < η and for the proposal to be accepted by all the repliers

the proponent must receive less than η ≤ Πt
i(s|h) = r(h)i. So, no matter whether

the proposal is accepted or rejected, the proponent always gets worst by playing a

different strategy. For sεi to be a best reply it must coincide with si as PER does not

impose any restriction on the proposition distribution sεi
(
O
∣∣h) = si

(
O
∣∣h) = χr(h)(O).

For a replier j 6= i(t)j 6= i(t)j 6= i(t). The strategy s is simple, reply independent and the

agreement is established at the first moment therefore as proved in theorem (6),

sεj(1|h) = 1− ε if ht,1j > δr(h)j and sεj(1|h) = ε if if ht,1j < δr(h)j. The only case that

rest to be analysed in when ht,1j = δr(h)j. Define the set of possible histories when

the strategy σε is played after h

Hsε(h) = {h̄ ∈ H : sε(h̄|h) > 0}

For h̄ ∈ Hsε and τ(h̄) = (t + 1, 2), we know that the state of h̄ is r(h) and that

the proposition at h̄t+1,1 was r(h). This because in the proposition stage sε and s

define the same action, si(h̄)(h̄
−) = r(h̄−) = r(h) and sε

i(h̄)

(
r(h)|h̄

)
= 1. This way

h̄t+1,1 = r(h). The proposition coincides with the state and there is no state change,

r(h̄) = r(h). Using the same reasoning for any t′ if τ(h′) = (t′, 2) and h′ ∈ Hsε(h),

we conclude that r(h′) = r(h), and the proposition after h is always the same r(h)

if strategy sε is played. If proposal ht,1 is rejected the continuation payment can be
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written as

Πt+1
j

(
sε
∣∣h, r) = δ

∑
k

p(at+k = 1)δkr(h)j < δr(h)j

In which p(at+k = 1) is the probability that an agreement is reached t + k periods

after h, when sε is played. Then, when the player accepts, his payment is ht,1j s
ε
k(1|h)+

sεk(0|h)Πt+1
j

(
sε
∣∣h). If he rejects the payment is Πt+1

j

(
sε
∣∣h). So when ht,1j ≥ δr(h)j >

Πt
j

(
sε
∣∣h) the best for j it to accept with maximum allowed probability, and sεj(1|h) =

1− ε. The convergent strategy is

sεi(h)(x|h) =

1 if x = r(h)

0 if x 6= r(h)

sεj(x|h) =

1− ε if ht,1 ≥ r(h)j

ε if ht,1 < r(h)j

The same derivation is valid for the strategy HM2 to be a PER. By the domi-

nance principle the proposition must be equal to the state; because of strategy’s reply

independence, whenever the proposition is bigger than future earnings to accept it is

the best reply and when it is smaller the best is to reject it; and in case of equality as

the future proponents will always play r(h) the replier should accept the proposition

to avoid devaluation. Therefore the best reply approximation strategy must be equal

to sε, but these strategies converge to HM1, and we conclude that HM2 can not be

PER.

To prove that HM1 was a PER we also proved that HM2 was not PER, because if

a best reply approximation strategy to HM2 existed, it had to be equal to the approxi-

mation strategy to HM1, and this approximation strategy, obviously, cannot converge

to HM2. The same happens with the proof that HM2 is a PE, it will also prove that

HM1 is not a PE because the approximation strategy should be the same. The propo-

sition in HM2 is the same as in HM1 the player always proposes a division equal to the

state, and if he does not he is strongly penalized afterwards, Πt
i(σ|h) > Πt

i(σ
′
i, σ−i|h),

therefore for an approximation strategy σε, Πt
i(σi, σ

ε
−i|h) > Πt

i(σ
′
i, σ

ε
−i|h). So, for an

approximation strategy to σ to be a best reply in the approximation game, it should

be equal to σ with maximum probability, so σεi(h)

(
r(h)

∣∣h) = 1− ε and to respect the
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other condition to be PE we must have that for any O ∈ B(∆)

σεi(h)

(
O
∣∣h) = (1− ε)χr(h)(O) + ελ(O)

HM2 is a simple, reply independent with immediate agreement strategy, the deriva-

tion made in theorem(6) is applicable and at history h if the proposition ht,1j is such

that ht,1j > δr(h)j the best reply in the approximation strategy is to accept with

probability 1− ε and if ht,1j < δr(h)j the best is to reject with maximum probability.

Then for j 6= i(h)

σεj(1
∣∣h) =

1− ε if ht,1j > δr(h)

ε if ht,1j < δr(h)

Before looking at what happens when ht,1j = δr(h)j two notes are important. First,

all the conclusions were equally valid if instead we were trying to prove that HM1 is

PE. Second, what we determine of the structure of σε is enough to conclude that if

two histories h, h′ ∈ H t−1,2 have the same state, players’ payoff, under the strategy

σε, is the same, because the only moment where the actions can be different is when

one of the players received a proposition pj = δr(h)j, but the measure of this case is

null. The next claim proves this.

Claim 2. If h, h′ ∈ H t−1,2 then Πt
j

(
σε
∣∣h) = Πt

j

(
σε
∣∣h′) with r(h) = r(h′)

Proof. Define ∆̄∗ =
{

(p, r) ∈ ∆ × {0, 1}2 : pi = δēji , i, j = 1, 2, 3
}

, and 1σ
ε
(
∆̄∗
∣∣h) =

σε
(
∆̄∗
∣∣h) ≤∑i,j σ

ε
({
p ∈ ∆ : pi = δēji

}∣∣h) =
∑

i,j ελ
({
p ∈ ∆ : pi = δēji

}∣∣h) = 0. If

∆̄+ = ∆̄ \ ∆̄∗ then σε
(
∆̄+

∣∣h) = 1. By induction

k+1σ̄
ε
(
∆̄k+1

+

∣∣h) =

∫
h̄∈∆̄k

σεh,h̄

(
∆̄k+1

+|h̄

)
∂
(
kσ̄

ε
h

)
=

∫
h̄∈∆̄k

+

σεh,h̄

(
∆̄+

)
∂
(
kσ̄

ε
h

)
=

∫
h̄∈∆̄k

+

σεh,h̄
(
∆̄
)
∂
(
kσ̄

ε
h

)
= k+1σ̄

ε
(
∆̄k+1

∣∣h)
Where the first equality holds because kσ̄

ε
(
∆̄k

+\∆̄k
+

∣∣h) = 0 by induction hypothesis

and because if h̄ ∈ ∆̄k
+ then ∆̄+|h̄ = ∆+. Therefore
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Πt
j

(
σε
∣∣h) =

∞∑
k=0

δk
∫
h̄∈∆̄k

π(h, h̄)∂
(
kσ̄

ε
h

)
=
∞∑
k=0

δk
∫
h̄∈∆̄+

k
π(h, h̄)∂

(
kσ̄

ε
h

)
=
∞∑
k=0

δk
∫
h̄∈∆̄+

k
π(h, h̄)∂

(
kσ̄

ε
h′
)

=
∞∑
k=0

δk
∫
h̄∈∆̄k

π(h, h̄)∂
(
kσ̄

ε
h′
)

=Πt
j

(
σε
∣∣h′)

There are two possibilities of ht,1j = δēij, either i = j or i 6= j. If it is the first

case, in the proposition ht,1, j was the worst player, he has received the smaller share

so it must be that ht,1j ≤ 1
2
, but η is such that δ(1 − 2η) > 1

2
, an implication of

η < δ/2− 1/4, so ht,1j < δējj. This way we need to consider only when the proposition

ht,1 attributes to player j the share ht,1j = δη, and attributes less to the other replier k.

To determine the best reply of j we must compare Πt
j(σ

a
j , σ

ε
−j|h) with Πt

j(σ
r
j , σ

ε
−{j,h}|h),

knowing that the other replier k rejects the proposition with probability 1− ε.Πt
j(σ

r
j , σ

ε
−{j,h}|h) = (1− ε)δΠt+1

j

(
σε
∣∣h, 0, 0)+ δεΠt+1

j

(
σε|h, 0, 1

)
Πt
j(σ

a
j , σ

ε
−{j,h}|h) = (1− ε)δΠt+1

j

(
σε
∣∣h, 1, 0)+ εδη

Due to the state being the same in the histories (h, 1, 0) and (h, 0, 0) we know that

Πt+1
i (σε|h, 1, 0) = Πt+1

(
σε|h, 0, 0

)
, by claim (2), the difference in payment between the

two actions resumes itself to Πt
j(σ

a
j , σ

ε
−i|h)−Πt

j(σ
r
j , σ

ε
−j|h) = δε

(
η−Πt+1

j

(
σε|h, 0, 1

))
.

First, we will see in detail what is Πt+1
j

(
σε|h, 0, 1

)
. It has 3 ”types” of payment:

when there are no mistakes, the proponent proposes r(h) and both repliers accept,

this happens with probability (1−ε)3, and contribution to j’s payoff is (1−ε)3η; when

the proponent does the right proposal but at least one of the repliers do a mistake

and the expected payoff from this histories is (1 − ε)δ
∑

r∈R prΠ
t+1
j

(
σε
∣∣h, r(h), r

)
,

with pr the probability of the reply be r, if r = (k, j) ∈ {(0, 0), (0, 1), (1, 0)} then

pr = (1− ε)k+jε2−k−j; and lastly, when the proponent makes the wrong proposal. For

the moment, let us call this expected value εEj. As before Πt+2
j

(
σε|h̃, r(h), r

)
does
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not depend on the specific reply r and we can relabel it as Πt+2
j , with h̃ = (h, 0, 1).

Summing all up we get

η − Πt+1
j

(
σε|h, 0, 1

)
= η −

[
(1− ε)3η + (1− ε)δ

∑
r∈R

prΠ
t+2
j + εEj

]
= η(3ε− 3ε2 − ε3)− (1− ε)

(
1− (1− ε)2

)
δΠt+2

j − εEj

= ε
[
η(3− 3ε− ε2)− (2− 3ε+ ε2)δΠt+2

j − Ej
]

The signal of Πt
j(1, σ

ε
−{j,h}|h) − Πt

j(0, σ
ε
−{j,h}|h) for small values of ε is equal to

3η−2δη−e, we assumed that Ej → e and used that Πt+2
j in the expression converges

to η.It is the signal of 3η− 2δη− e that determines the best action for player j. This

signal depends crucially on the value of e and to understand it we need to look to

the structure of Ej. When a proposition is not done according to the state, there is

a state transition to ēw. Define ∆w the set of points of ∆ that, when proposed, the

state change to ēw. Divide each of these sets in three: ∆1,0
w in which, when σ is being

played, player j accepts the propositions but player k rejects; ∆0,1
w player j rejects

but player k accepts; and, ∆0,0
w in which both players reject8910

Ej =
∑

w∈−i(t+1)

∑
r∈R

∫
p∈∆r

w

δσε(r|h̃, p)Πt+2
j

(
σε|h̃, p, r

)
∂σε(h̃) +O(ε)

=
∑

w∈−i(t+1)

∑
r∈R

∫
p∈∆r

w

δ(1− ε)2Πt+2
j

(
σε|h̃, p, r

)
∂σε(h̃) +O(ε)

=
∑

w∈−i(t+1)

∫
p∈∆w

δ(1− ε)2Πt+2
j

(
σε
∣∣ēw)∂σε(h̃) +O(ε)

= δΠt+2
j

(
σε
∣∣ēw1

)
σε
(
∆w1

∣∣h̃)(1− ε)2 + δΠt+2
j

(
σε
∣∣ēw1

)
σε(∆w2 |h̃)(1− ε)2 +O(ε)

8Notice that at least one of the players rejects the proposition namely if the state changes to ek

the player k always reject under σ, and by that ∆0,1
k is empty. It is only defined to ease the formulas.

9We are using the big O notation, symbolizing that f(ε) ∈ O(ε) when f(ε)
ε ≤ k for small values

of ε for some k
10There is a slight abuse on notation here because σε(∆|h) = ε and we are using it as if σε(∆|h) = 1,

E was multiplied by ε on the payment function.
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The first equality results from the division of the set ∆ into several parts and from

knowing that at each set ∆r
w the probability of a reply different from r is at most

ε(1 − ε); the second from the probability of r being (1 − ε)2; the third is due to the

union of the sets ∆r
w for a fixed player w and by claim(2) the payoff is equal for all

histories that have the same state, we define Πt+2
j

(
σε
∣∣ēw) as the payment in the state

ēw.

Taking limits of the expression for Ej: if the player j is the proponent at t+1 then

he will always receive the same in both states Πt+2
j

(
σε
∣∣ēw1

)
= Πt+2

j

(
σε
∣∣ēw2

)
= η, and

e = δη. And we can calculate that η−Πt+1
j

(
σε|h, 0, 1

)
converges to 3− 2δη− δη > 0.

For small values of ε, if j is the next proponent j = i(t + 1), he should accept the

proposition ht,1 when ht,1j = δēij with maximum probability; if j is not the next

proponent, as σε(∆w1|h̃) = σε(∆w2|h̃) = 1/2 the limit of E is e = δ 1
2
(1 − η), and

3η − 2δη − e = 3η − 2δη − δ 1
2
(1 − η) = 1/2

(
6η − 3δη − δ

)
, and it is better for

j to accept the proposition if η > δ
6−3δ

. But this inequality is incompatible with

η < δ/2 − 1/4, these conditions cannot be fulfilled simultaneously. Therefore for

small values of ε the replier should reject the proposition ht,1j = δη.

Summing up the conclusions, if ht,1j = δη and r(h) 6= ēj then

σεj(1|h) =

1− ε if j = i(t+ 1)

ε if j 6= i(t+ 1)

(2)

Clearly σε is convergent to HM2, so it is a PE. For HM1 to be a PE σε must be the

approximation strategy, and therefore HM1 is not a PE.

The subtleties of the PE definition are evident, if we adopted a less stricter no-

tion and didn’t impose the condition that σε(O|h) ≥ ελ(O) but one similar to that of

Simon and Stinchcombe (1995) then HM1 would also be PE. For example if the trem-

bles in the proposition had a very small σε(∆j|h) we could find a different convergent

sequence, but that would mean the proponent was usingthe distribution function on

the trembles strategically.
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4.2 A Strictly Undominated Equilibrium Strategy for all δ

We saw that if the strategies do not penalize the replies players will accept better

proposals. One clear conclusion is that whenever the proposal is greater than δ, the

repliers will accept it. If this discount factor is small, δ < 1/2, it is possible to

propose a division that both repliers accept. Given that δ < 1/2, pick an ε and set

ptj = δ + ε for j 6= i(h), ptj > δ ≥ δΠt+1
j (σ|(h, r)), and due to theorem (6) all j accept

the proposition. Any division d with di(t) < 1− 2δ is not a Trembling Hand.

In this section we will build a strategy that is Trembling Hand equilibrium for all

δ, and for almost all divisions (d(σ) � 0̄). This strategy is strictly non-dominated,

so the actions taken at each information set are the unique best reply. To establish

it and according to theorem (6) it is necessary either to use mixed strategies, that

the strategy does not establish the agreement immediately or to penalize the replies.

In this case we opt to penalize the out of equilibrium replies, for this we will use

two punishment ”states” (by player). The set of all states for this strategy is E =

{e0, e1, e2, e3, e1
a, e

2
a, e

3
a} . The idea of two states per player is to allow to punish a

proposer i when he deviates from ek with eia, and punish with ei when he deviates

from eia. Again to each state corresponds one particular division, therefore e ∈ E is

a division vector, with the share given to player k being kth-coordinate of e. To the

corresponding state the division vector is

eik =

ε1 if k 6= i mod 3 + 1

1− 2ε1 if k = i+ 1 eia,k =


ε1 if k ∈ −{i, i mod 3 + 1}

ε2 if k = i

1− ε1 − ε2 if k = i mod 3 + 1

ε’s are chosen in a way that: δε1 < ε2 < ε1; and, ε1 < mini∈I e
0
i . Notice that due

to ε1 < mini∈I e
0
i and

∑
i∈I e

0
i ≤ 1, 3ε1 ≤ 1 and naturally 2ε1 < 1 guaranteeing that

ei ∈ ∆.

The strategy, ρ, defines that players should make a proposition equal to the state

and reject all the propositions which are different (in this sense it is like Haller’s

strategy, but this time robust to minor randomness, because it penalizes out of the
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path answers). State changes happen after the voting, so the transition takes place

in histories that belong to H t,2. The state effectively changes to a different state only

when the proposal or one of the responses is different from what is defined by ρ; when

both are different it is the reply that defines the new state; if both players reply in an

unexpected way it is the player with the smaller index who is punished. The following

table sums up the transition.

State tansition

Different Proposal Different Reply
state player i(h) player k

e0 ei(h) eka
ej e

i(h)
a eka

eja ei(h) eka

In a rigorous manner, the function r(h) that determines the state, r(.) : H → E, at

the initial state is r(∅) = e0; as there is no state change from (t, 1) to (t, 2) no matter

what the proposition at (t, 1) was, for histories h with τ(h) = (t, 1), r(h) = r(h−);

for a history h ending after a voting stage τ(h) = (t, 2) the state is

r(h) =



e
i(h) if r(h|t−1,2) ∈ {e0, e1

a, e
2
a, e

3
a}

e
i(h)
a if r(h|t−1,2) ∈ {e1, e2, e3}

ht,1 6= r(h|t−1,2) or ht,2 = 0̄

eka if ht,2 6= ρj(h
|t,1)

The first and second branches define the new state when a player makes a propo-

sition different from the state ht,1 6= r(h|t−1,2) and all repliers act accordingly voting

against the proposal, ht,2 = 0̄; the new state is ei(h) or e
i(h)
a depending on the initial

one. The third branch defines the state when a replier is incongruent with the strat-

egy. k is the player of smaller index who plays differently from what was expected,

k = min{j ∈ −i(h) : ht,2j 6= ρj(h
|t,1)}.

The strategy for the proponent i(h) is ρi(h)(x|h) = χr(h)(x). The player i(h) plays

x with probability 1 if x = r(h) and with probability 0 if it is not. For the replier
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j 6= i(h), ρj defines that if a proposal is the same as the state it should always be

accepted, if it is different it should be rejected, formally

ρj(x|h) =

χ{1}(x) if ht,1 = r(h−)

χ{0}(x) if ht,1 6= r(h−)

for x ∈ {0, 1}, meaning that j always accepts if the proposal is equal to the state

and always rejects otherwise.

To prove ρ is an equilibrium for any δ we will use the next two claims, both proved

in the appendix. The first proves that a strategy is a Trembling Hand equilibrium,

without the need to look for the specific ε strategy that converges to it, if dominant.

The second claim proves that if a strategy is strictly better than all OSD strategies,

then it is strictly better than all strategies.

Claim 3. When inf
{

Πt
i(σ|h) − Πt

i(σ
′
i, σ−i|h) : ∀h ∈ H,∀σ′i ∈ OSD(σi, h)

}
> 0 then

σ is an Trembling Hand equilibrium.

The classical OSD result state that Πt
i(s|h) ≥ Πt

i(s
′
i, s−i|h) for all s′i ∈ Si is

equivalent to Πt
i(s|h) ≥ Πt

i(s̄i, s−i|h) for all s̄i ∈ OSD(si, h) and all h. Given the

previous claim, a similar result but with a strict inequality is useful, this way we only

need to prove the strict inequality for OSD strategies. The following simple claim

proves this result for our game.

Claim 4. If Πt
i(s|h) > Πt

i(s
′
i, s−i|h), for all s′i ∈ OSD(si, h) and for all h ∈ H, then

Πt
i(s|h) > Πt

i(s̄i, s−i|h), for all s̄i ∈ Σi \ si and for all h ∈ H

Theorem 9. Πt
i(ρ|h) > Πt

i(ρ
′
i, ρ−i|h), ∀i ∈ I, h ∈ H and ρ′i ∈ Σi.

Proof. If ρ is strictly better than all OSD(ρi, h) for all i and h, then by claim(4)

we get the intended result. In the state e ∈ E after history τ(h) = (t − 1, 2),

when the proposition at t has not been made yet, if all players follow the strategy

ρ, i(h) proposes e, repliers accept, agreement is immediate and the player’s payment

is Πt
i(ρ|h) = ei. If τ(h) = (t, 1) and the proposal has been made, payment depends

on whether the proposition coincided with the state or not. If it did, agreement is
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immediate; if it did not, agreement is postponed one period, and the proposition is

r
(
h, 0̄
)
. Remember state transition only happens after voting, so e = r(h) = r(h−)

Πt
i(ρ|h) = χ{e}(h

t,1)ei +
(
1− χ{e}(ht,1)

)
δr(h, 0̄)i

The vector of zeros 0̄ appears because, according to the strategy ρ, all players

reject a proposal not equal to state. So if a proposal is equal to state χ{e}(h
t,1) = 1

and Πt
i(ρ|h) = ei; if not, χ{e}(h

t,1) = 0 repliers vote against it and payment is δr(h, 0̄)i.

Now we will see that using OSD strategies leaves the players worst off than getting

along with ρ.

When r(h) = ek, k 6= 0 and τ (h) = (t− 1, 2), with i = i(t), ρ′i ∈ OSD(ρi, h),

player i makes a proposition ht,1 different from ek, all players j ∈ −i reject the

proposition ρj(0|h+) = 1 so ht,2 = 0̄. With h++ = (h, ht,1, ht,2) r(h++) = eia, then

Πt
i(ρ
′
i, ρ−i|h) = δΠt+1

i (ρ′i, ρ−i|h++) = δΠt+1
i (ρi, ρ−i|h++) = δr(h++) = δeia,i = δε2. We

already derived Πt
i(ρ|h) = eki ≥ ε1 as δε2 < ε1 we conclude that player i is strictly

worse.

For τ (h) = (t, 1), two cases for a deviating strategy are possible: ht,1 = r(h−),

the proposal was according to the state or it was not, ht,1 6= r(h−). If it was not

and a player j accepts the proposal, ρ′j ∈ OSD(ρj, h) considering 1 = ρ′j(1|h) 6=

ρj(1|h) = 0. In h the other replier rejects and the proposal is not accepted, then

Πt
j

(
ρ′j, ρ−j|h

)
= δΠt+1

j (ρ|h+) with h+ = (h, ht,2) and ht,2k = χj(k), only j accepts

the proposal. r(h+) = eja and Πt
j(ρ
′
j, ρ−j|h) = δeja,j = δε2. If j had rejected the

state had changed as well, because ht,1 6= r(h−), but this time to r(h, 0̄) = e
i(h)
a ,

Πt
j(ρ|h) = δΠt+1

j (ρ|h, 0̄) = δr(h, 0̄)j = δe
i(h)
a,j ≥ δε1 remembering ε2 < ε1, it is proved

that j’s payment worsens.

If the proposition was equal to the state ht,1 = r(h−), for j not following ρ

means the player rejects ht,1. If it behaved as ρj the agreement was immediate and

Πt
j(ρ|h) = ekj ≥ ε1. But if the player j refused and he was the only one to do it,

proposal was rejected and r(h+) = eja. This way Πt
j(ρ
′
j, ρ−j|h) = δeja,j = δε2; ε1 > δε2,

player j worsens if he does not follow the strategy.
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When r(h) = eka, τ(h) = (t− 1, 2). Suppose proposer i follows ρ′i ∈ OSD(ρi, h),

proposing something different from r(h), by ρ definition all repliers will refuse it, the

state will change to r(h++) = ei and future payment is Πt
i(ρ
′
i, ρ−i|h) = δeii = δε1 <

ε2 ≤ eka,i = Πt
i(ρ|h), player i gets strictly worse by playing ρ′i.

τ(h) = (t, 1) and j 6= i(h), two possibilities for the strategy to be OSD of ρj

in pure strategies, when ht,1 = r(h−) and ρ′j(0|h) = 1 or when ht,1 6= r(h−) and

ρ′j(1|h) = 1. In the first case j rejects the ht,1, the agreement is only established in

the next moment, the state changes to r(h+) = eja, then Πt
j(ρ
′
j, ρ−j|h) = δeja,j = δε2;

if j followed ρj, Πt
j(ρ|h) = eka,j ≥ ε2 > δε2 = Πt

j(ρ
′
j, ρ−j|h). In the other case,

when j accepts improperly ht,1 6= r(h−), the other replier rejected it and delayed

the agreement to next period, the state changed to eja penalizing j for the proposal’s

acceptance, Πt
j(ρ
′
j, ρ−j|h) = δeja,j = δε2. If j had rejected the proposition the state

would change to ei(h) and the payment Πt
j(ρ|h) = δe

i(h)
j ≥ δε1, and Πt

j(ρ
′
j, ρ−j|h) <

Πt
j(ρ|h).

r(h) = e0, if i = i(h) opts for a OSD(ρi, h), the proposition is not e0, repliers

refuse it, the state changes to ei, the agreement is delayed to t + 1, and i is harmed

Πt
i(ρ
′
i, ρ−i|h) = δΠt

i(ρ|h+) = δε1 < ε1 < mink∈I e
0
k ≤ e0

i = Πt
i(ρ|h).

For the repliers there are, once more, two hypothesis for OSD in pure strategies,

when ht,1 = r(h−) with ρ′j(0|h) = 1, or when ht,1 6= r(h−) and ρ′j(1|h) = 1. In the

first case the proposition is refused by the other repliers and j is penalized on the deal

agreed in the next period Πt
j(ρ
′
j, ρ−j|h) = δeja,j = δε2 < e0

j = Πt
j(ρ|h), j is worse off.

On the second case j accepts a proposal that is refused, the agreement obtained in the

next moment is eja where j is clearly worse than in ei(h), Πt
j(ρ
′
j, ρ−j|h) = δΠt

j(ρ|h+) =

δε2 < δε1 ≤ δe
i(h)
j = Πt

j(ρ|h).

4.3 All divisions are a PE outcome

So far we provided strategies that establish as agreement outcomes only elements of

the set
{

(x1, x2, . . . , xn) :
∑n

i=1 xi ≤ 1, xi > 0
}

. The next strategy using an out off

equilibrium incentive mechanism for players that follow it establishes that all possible

divisions in ∆ are Trembling Hand equilibrium outcomes.
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For that consider the set of states E =
⋃
i 6=j{ei, ei,j, ēi,j}, where ei ∈ ∆ are as

previously defined and the new states eij ∈ ∆ are: eiji = γ1, eijj = γ2, and eijk = 0, for

k /∈ {i, j}, for example e31 = (γ2, 0, γ1); ēiji = γ3, ēijj = γ4, and ēijk = 0, for k /∈ {i, j},

so, for example, ē23 =
(
0, γ3, γ4

)
. For each history h there is a state r(h) ∈ E. The

strategy for h ∈ H t−1,2 is for the proponent to always propose a division equal to the

state si(h)(h) = r(h); for h ∈ H t,1 the player j ∈ −i(h) accepts if the proposal was

equal to the state and rejects otherwise.

sj(h) =

1, if ht,1 = r(h−)

0, if ht,1 6= r(h−)

To define the state transition we need to use a function from history to the set of

subsets of player g(h) : H2 → 2I , that tracks which players moved as defined in s at

the last moment ht = (ht,1, ht,2).

g(h) =
{
i ∈ I :

(
i 6= i(h) and si(h

|t,1) = ht,2i
)

or
(
i = i(h) and si(h

|t−1,2) = ht,1
)}

When all players follow s the agreement is immediate, the proponent plays r(h)

and both repliers accept it, so if h was not an ending history, some of the players did

not play according to the strategy and either the proponent or at least one replier

deviated. Therefore there is an impossibility of g(h) = I in a non ending history h.

That is, a history with ht,2 6= (1, 1) must have g(h) 6= I.

There is an order for the players at each moment of time determined by the next

moment that the players propose. Define at each t and for each player i, ti = min{t̃ :

t̃ > t and t̃ ∈ t(i)}, and we say i proposes before j at t, i ≺t j, if ti < tj. Take ḡ(h) to

be the ordered pair with the same elements of g(h) ordered by ≺t(h). One example,

if g(h) = {1, 3} and t(h) = 4 the next proponent is player 2, then player 3 followed

by 1, so 3 ≺4 1 and ḡ(h) = (3, 1).

Transition occurs only after the voting stage, so if τ(h) = (t, 2), r(h) = r(h−).
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For h = (t, 2)11

r(h) =


r(h|t,1), if g(h) = ∅

eḡ(h), if i(h) /∈ g(h)

ēḡ(h), if i(h) ∈ g(h)

Players that did not follow the strategy are punished by receiving zero in the next

state. A player is willing to accept (or propose) 0 based on the possibility of the

other player making a mistake, and in that case, the well behaved player receives a

premium. The proof that this strategy is a Trembling Hand equilibrium is fastidious

and cumbersome and left for the appendix.

Theorem 10. The strategy s is a PE12.

5 Conclusion

The present work serves the purpose of refining the equilibrium theory of the multi-

player bargaining. After introducing common SPNE equilibrium strategies the fol-

lowing is an attempt of creating a sound equilibrium refinement of repeated with

continuum of action games. It proves that none of the classical equilibria resists mi-

nor refinements, but that using more complex strategies it is possible to sustain any

division as an equilibrium outcome.

11For notation convenience on the definition of r(h) let ēi = ei
12The strategy defined is PER as well, and all points in ∆ are also PER outcomes. In fact a

simpler strategy can sustain any division as a PER, one with less states, in particular with half the
states of s, with γ1 = γ3 = 2/3 and γ2 = γ4 = 1/3
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Appendices

A

A.1 Equilibria with e(s) 6= 1

Theorem 3. ∀e0 ∈ ∆, T ∈ N, exists s ∈ S SPNEwith e(s) = T and d(s) = e0

Proof. For any e0 ∈ ∆ and T ∈ N, r(h) defines the state for any history, there is one

more state than in Haller’s strategy, the set of states is E =
{
δT+1e0, e0, e1, e2, e3

}
. For

the initial history the state is r(∅) = δT+1e0; when t > 0 and h ∈ H t,2 is r(h) = r(h−);

and for h ∈ H t,1 is

r(h) =


r(h−) if ht,1 = r(h−) and t 6= T − 1

e0 if ht,1 = r(h−) and t = T − 1

ei(t+1) if ht,1 6= r(h)

The strategy is like in Haller’s to propose a division equal to the state si(h)(h) =

r(h) with τ(h) = (t− 1, 2), and when τ(h) = (t, 1) repliers j 6= i(h) follow

sj(h) =

1 if ht,1 = r(h) and t ≥ T

0 if ht,1 6= rt−1(h) or t < T

We need to prove two distinct points, first that e(s) = T and d(s) = e0; second

that s is SPNE. The first result is relatively straightforward lets define $s as the

history path when the strategy s was played since the beginning. If all players act

accordingly to s, sj(h) = 0 for all repliers j 6= i(h) and history h with t(h) < T , then

the time of agreement must be t(s) ≥ T . At the stage (T −1, 1), r($
|T−1,1
s ) = δT+1e0,

proposition is done, and according to the transition state function the state changes

to e0 and repliers both reject the proposition. At time T proposition will be e0,

considering i = i(T ), si($
|T−1,2
s ) = e0 = r($

|T−1,1
s ), repliers will accept sj(ψ

|T,1) = 1.

The agreement is established at t(s) = T and the division reached d(s) = e0.
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s is SPNE. If there was some deviation on propositions the strategy enters in

a punishment scheme, meaning that r(h) ∈
{
e1, e2, e3

}
and at these states it just

replicate Haller’s strategy, which we already proved is an SPNE. If a history h has

t(h) ≥ T the strategy is just equal to Haller’s so it respects SPNEcondition. To

prove s is an SPNE it is only missing that s is the best option for histories with

t(h) < T and in which the players did not deviate, h = ψτ(h). If the proponent

i = i(h) does not deviate is payment is Πt
j(s|h) = δT−te0

i if he proposes something

different, both repliers reject the proposal and the game enters in a punishment of i

Πt
j(s
′
i, s−i|h) = δΠt+1

j (s|h+) = eki = 0. The proponent does not improve. If j 6= i(h),

τ(h) = (t, 1) and ht,1 = r(h) the agreement will be reached in T − t periods, the

payment of following s is Πt
j(s|h) = δT−te0

i . When j plays s′j ∈ OSD(sj, h), s′j(h) = 1

player j contradicts s accepting the proposal, but replier k still rejects it and so,

with h+ =
(
h, (0, 1)

)
, Πt

j(s
′
j, s−j|h) = δΠt+1

j (s|h+) = δ
[
δT−t−1e0

]
= Πt

j(s|h). Player j

receives the same, not improving by changing strategy.

A.2 Equilibria with e(s) =∞

Theorem 4. There is a strategy s ∈ S SPNEin which no division is agreed upon and

e(σ) =∞.

Proof. This strategy involves players that are not interested in bargaining, they want

all or nothing, this way they always propose everything to themselves and reject

everything that is less than it. So, the strategy is the following, for any proponent

i = i(h), si(h) = ei. For any replier j 6= i, sj(h) =

1 if ht,1 = ej

0 if ht,1j 6= ej

. It is clear

that no agreement can be reached in finite time, the replier j only accept ej and the

other replier, k, ek, therefore they will never accept the same proposal, so ∀h ∈ H,

Πt
i(s|h) = 0 and by convention t(s) =∞. We still need to prove that s is an SPNE.

When τ (h) = (t− 1, 2), whatever the proposal s′i ∈ OSD(si, h) of i = i(h) it will

be always rejected by one of the repliers, and i(h) payment does not increase by

using it. So, whatever the proposition h̄t,1 = s′i(h), Πt
i(s
′
i, s−i|h) = δΠt+1

i (s|h̄) = 0.
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When τ (h) = (t, 1), the replier j 6= i(h) cannot improve his payment. If under s

he rejected the proposal, sj(h) = 0 on the alternative strategy s′j ∈ OSD(sj, h) he

must accept it, 1 = s′j(h). The payment of j is: ht,1j if k accepted the proposition;

and is δΠt+1
j (s|h+) = 0 , if k rejected it, with h+ = (h, (1, 0)),. So j’s payment is

Πt
j(s
′
j, s−j|h) = sk(h)ht,1j + (1− sk(h)) δΠt+1

j (s|h+) = sk(h)ht,1j . But sk(h) = 1, only

when ht,1 = ek, meaning that ht,1j = ekj = 0, and Πt
j(s
′
j, s−j|h) = 0. Replier cannot

improve by accepting when before he was rejecting. If under s the replier accepted

the proposal, that meant the proposal was ht,1 = ej, but the other replier rejected

it, so Πt
j(s|h) = δΠt+1

j (s|h+) = 0. If s′j(h) = 0 then nothing really changes the game

goes to the next round and players will again try to get everything to themselves,

so Πt
j(s
′
j, s−j|h) = δΠt+1

j (s|h+) = 0 the change of reply does not improve replier’s

payoff.

A.3 Herrero’s strategy is not a PE

Theorem 7. Herrero’s strategy is not a PE.

Proof. Let σ be the Herrero’s strategy, assume it is PE and σε is the approximation

sequence converging to it, σε
ε↓0−→ σ, with σε having the properties of definition (6).

Claim 5. When i is the proponent at h, ∃ε̄ > 0, ∀ε < ε̄, Πt
i(σ

ε|h) > ε.

Proof. Consider γi ∈ ∆ is a vector with γij = γ0/2 for j 6= i and γii = 1 − γ0, with

γ0 > 0. Define the strategy σ′i ∈ Σε
i in which i proposes with probability 1 − ε the

vector γi, and rejects any offer made with probability 1− ε. So σ′εi(x|h) = 1− ε when:

i(h) 6= i and x = 0; or when i(h) = i and x = γi.

At the history h, if i proposes γi the state will be r(h+) = ek, with h+ = (h, γi),

for j 6= k, γ0/2 > 0 = Πt
j(σ|h); and for the replier k we have γ0/2 < δ = Πt

k(σ|h+)

then by theorem (6), for small ε

σεj(1|h+) = 1− ε (3)

σεk(1|h+) = ε (4)
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Defining ah ∈ {0, 1} as ah = 0 if an agreement is not reached in the stage that starts

at h and ah = 1 if an agreement is obtained. We can calculate p(ah = 0) as the

probability of no agreement at h ∈ H t,1 when
(
σ′εi , σ

ε
−i

)
is being played and i is the

proponent i(h) = i .

p
(
ah = 0

)
=

∫
h̄∈∆

σε−i(R
∣∣h, h̄)∂

(
σ′i
ε) ≥ ∫

h̄∈∆

σε−i
(
{0, 1} × {0}

∣∣h, h̄)∂(σ′iε)
=

∫
h̄∈∆

σεj
(
0
∣∣h, h̄)∂(σ′iε) ≥ σ′

ε
i

(
γi
∣∣h)σεj(0∣∣h, γi)

=(1− ε)2

Notice that the lower bound p
(
ah = 0

)
≥ (1 − ε)2 is independent of the his-

tory and for any t such that i(t) = i we get that the probability of no agree-

ment at t has the same lower bound, we can then define at in coherence with ah

and calculate p
(
at = 0

)
≥ (1 − ε)2 if i(t) = i. The probability of agreement

p
(
ah = 1

)
≥ σ′εi

(
γi
∣∣h)σεj(1∣∣h, γi)σεk(1∣∣h, γi) = (1 − ε)2ε, and p

(
at = 1

)
≥ (1 − ε)2ε,

with i(t) 6= i.

If the proponent is i(h) = j 6= i then the probability of no agreement in the

moment after h, must be p
(
ah = 0

)
≥ 1 − ε because in σ′εi player i refuse any

proposition with probability 1− ε.

p
(
ah = 0

)
=

∫
h̄∈∆

σ′
ε
−j(R

∣∣h, h̄)∂
(
σεj
)
≥
∫
h̄∈∆

σ
′ε
i (0
∣∣h, h̄)∂

(
σεj
)

=

∫
h̄∈∆

(
1− ε

)
∂
(
σεj
)

= 1− ε

In this case, it happens as when i(h) = i, the calculations to find the lower bound

do not depend on the specific history and therefore p(at = 0) ≥ 1 − ε. Define qt as

the probability of not obtaining an agreement on the round that starts at t, i.e. qt

is the probability a disagreement is obtained in t, t+ 1, t+ 2, qt = p(at = 0)p(at+1 =

0)p(at+2 = 0) ≥ (1− ε)2(1− ε)(1− ε) = η1.

Denoting Pt+k by the probability an agreement of γ is reached at t + k. If at
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t, i(t) = i, then the probability the agreement is immediate is Pt = p(at = 1) ≥

σ
′ε
i (γ
∣∣h)σεj

(
1
∣∣h, γ)σεk(1∣∣h, γ) = (1 − ε)2ε = η0; for an agreement to be delayed until

t+3, then no agreement can happen in t, t+1 or t+2, so Pt+3 = qtp(at+3 = 1) ≥ η1η0;

for Pt+3k we must have no agreement in any round starting at t + 3τ , 0 ≤ τ < k,

therefore Pt+3k =
k−1∏
τ=0

qt+τp(at+3k = 1) ≥ ηk1η0. Now we can calculate a lower bound

for the payment of player i under the strategy σ
′ε
i

Πt
i(σ
′ε|h) =

+∞∑
k=0

δk
∫
h̄∈∆̄k

π(h, h̄)i∂
(
kσ
′ε
h

)
≥
∑
k∈t(i)

δk
∫
h̄∈∆̄k

π(h, h̄)i∂
(
kσ
′ε
h

)
=

+∞∑
k=0

δ3k

∫
h̄∈∆̄3k

π(h, h̄)i∂
(

3kσ
′ε
h

)
≥

+∞∑
k=0

δ3k(1− γ)Pt+3k

≥
+∞∑
k=0

δ3k(1− γ)ηk1η0 =
(1− γ)η0

1− δ3η1

=
(1− γ)(1− ε)2

1− δ3(1− ε)4
ε

As (1−γ)(1−ε)2
1−δ3(1−ε)4 →

1−γ
1−δ3 . If γ < δ3, Πt

i(σ
′
i, σ

ε
−i|h) > ε for small values of ε.

For σ to be an PE it must be an accumulation point of a sequence of approximating

games, consider the ε approximating game and the σε equilibrium. We will look for

a particular history in which no convergent σε to σ is simultaneously the best reply.

For that consider the history h with τ = (t, 1), in which player 1 was the proponent,

i(h) = 1, and the proposition done was equal to the state ht,1 = r(h−) = e3; in this

specific history player 3, by theorem (6), accepts with maximum probability, 1− ε.

For player 2 consider the strategies σa2 , σ
r
2 ∈ OSD(σε2, h) in which σa2(1|h) = 1,

σr2(0|h) = 1. For σ to be a PE, for small ε, Πt
2(σa2 , σ

ε
−2|h) ≥ Πt

2(σr2, σ
ε
−2|h) To simplify

the following formulas we write Πt+1
2

(
σε
∣∣h, r) = Πr

ε

If player 2 accepts the proposition his payment is

Πt
2(σai , σ

ε
−i|h) =δσε3(0|h)Πt+1

2

(
σε
∣∣h, (1, 0)

)
+ δσε3(1|h)e3

2

=δεΠt+1
2

(
σε
∣∣h, (1, 0)

)
= δεΠ1,0

ε
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If 2 rejects his payment is

Πt
2(σri , σ

ε
−i|h)) =δσε3(0|h)Πt+1

2

(
σε
∣∣h, (0, 0)

)
+ δσε3(1|h)Πt+1

2

(
σε
∣∣h, (0, 1)

)
=δεΠt+1

2

(
σε
∣∣h, (0, 0)

)
+ δ(1− ε)Πt+1

2

(
σε
∣∣h, (0, 1)

)
=δεΠ0,0

ε + δ(1− ε)Π0,1
ε

Rewriting the necessary inequality for σ to be PE,

Πt
2

(
σa2 , σ

ε
−2

∣∣h) ≥ Πt
2

(
σr2, σ

ε
−2

∣∣h)⇔ εΠ1,0
ε ≥ εΠ0,0

ε + (1− ε)Π0,1
ε

⇔ε
(
Π1,0
ε − Π0,0

ε

)
≥ (1− ε)Π0,1

ε ⇔
Π1,0
ε − Π0,0

ε

Π0,1
ε

≥ 1− ε
ε

(5)

Because of:

• Π1,0
ε = Πt+1

2

(
σε
∣∣∣h, (e3, 1, 0)

)
< 1;

• Π0,0
ε = Πt+1

2

(
σε
∣∣∣h, (e3, 0, 0)

)
> ε, because σεi must be a best reply to σε at

all histories h, then Πt+1
2

(
σε
∣∣∣h, (e3, 0, 0)

)
≥ Πt+1

2

(
σ′ε2, σ

ε
−2

∣∣∣h, (e3, 0, 0)
)
> ε by

claim (5);

• Π0,1
ε = Πt+1

2

(
σε
∣∣∣h, (e3, 0, 1)

)
> ε by the same reason as previous point.

the inequality (5) can’t be verified, σ is not a PE.

A.4 Dominating Strategy is Trembling Hand

Claim 3. When inf
{

Πt
i(σ|h) − Πt

i(σ
′
i, σ−i|h) : ∀h ∈ H,∀σ′i ∈ OSD(σi, h)

}
> 0 then

σ is PE and a PER.

Proof. This proof is tailored for the PE, but it’s adaptation for the existence of PER

is immediate and direct. First we will prove that the strategy σ to be in the theorem

conditions need to be simple, that is ∀h ∈ H, ∃{a} ∈ Ah such that σi(a|h) = 1

Lemma 1. If Πt
i(σ|h) > Πt

i(σ
′
i, σ−i|h), ∀σ′i ∈ OSD(σi, h) then σi(.|h) is a simple

strategy.
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Proof. If σi(.|h) is not a simple action, there exists a A ⊆ Ah, such that σi(A|h) > 0

and σi(A
c|h) > 0, where Ac = Ah \ A. Define σ′i(O|h) = σi(O∩A|h)

σi(A|h)
and σ′′i (O|h) =

σi(O∩Ac|h)
σi(Ac|h)

.

Πt
i(σ|h) =

∫
a∈Ah

Πt
i(a, σ−h|h)∂σi(.|h)

=σ(A)

∫
a∈A

Πt
i(a, σ−h|h)∂

(
σi(.|h)

σ(A)

)
+ σ(Ac)

∫
a∈Ac

Πt
i(a, σ−h|h)∂

(
σi(.|h)

σ(Ac)

)
=σ(A)

∫
a∈A

Πt
i(a, σ−h|h)∂σ′i(.|h) + σ(Ac)

∫
a∈Ac

Πt
i(a, σ−h|h)∂σ′′i (.|h)

=σ(A)

∫
a∈Ah

Πt
i(a, σ−h|h)∂σ′i(.|h) + σ(Ac)

∫
a∈Ah

Πt
i(a, σ−h|h)∂σ′′i (.|h)

=σ(A)Πt
i(σ
′
i, σ−i|h) + σ(Ac)Πt

i(σ
′′
i , σ−i|h)

By hypothesis Πt
i(σ|h) > Πt

i(σ
′
i, σ−i|h) and Πt

i(σ|h) > Πt
i(σ
′′
i , σ−i|h) but as Πt

i(σ|h) =

σi(A|h)Πt
i(σ
′|h) + σi(A

c|h)Πt
i(σ
′′|h) we would conclude that Πt

i(σ|h) > Πt
i(σ|h). So

σi(.|h) must be simple.

For each ε > 0 define σεi (O|h) = (1−ε)σi(O|h)+ελi(O|h), if h ∈ H t,2, with λ(·) the

measure proportional to Lebesgue measure; and σεi (O|h) = (1− ε)σi(O|h) + ελi(O|h)

in which λi(O|h) = |O|
2

, O ⊆
{

0, 1
}

. It is clear that σε(O|h) → σi(O|h) and to be

a PE we just need to insure it is the best reply. Next result proves that there is an

absolute convergence of Πt
i(σ

ε|h) to Πt
i(σ|h) in h.

Lemma 2. ∀ξ > 0, ∃ε̄ > 0, that ∀h ∈ H, and ∀ε < ε̄, |Πt
i(σ

ε|h)− Πt
i(σ|h)| < ξ

Proof. By the previous lemma (1) σ is simple, accordingly it is possibly to define the

path after h when σ is played $σ(h) = {h, h0
σ, h

1
σ, . . .}, ($σ(h) can be finite). Without

loss of generality we suppose player 1 is proposing, h0
σ = (h0

σ,1, h
0
σ,2, h

0
σ,3), and

σε(h0
σ|h) = σε1(h0

σ,1|h)σε2(h0
σ,2|h, h0

σ,1)σε3(h0
σ,3|h, h0

σ,1)

Due to σεi ≥ (1− ε)σi,

σε(h0
σ|h) ≥

[
(1−ε)σ1(h0

σ,1|h)

][
(1−ε)σ2(h0

σ,2|h, h0
σ,2)

][
(1−ε)σ3(h0

σ,3|h, h0
σ,1)

]
= (1−ε)3
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we are only considering when the players follow σ, which happens for each player

with probability 1− ε. Then 1σ
ε(h0

σ|h) ≥ (1− ε)3, and

∫
h̄∈∆̄

π(h, h̄)∂
(

1σ̄
ε
h

)
= π(h, h0

σ)(1− ε)3 +

∫
h̄∈∆̄

π(h, h̄)∂
(

1σ̃
ε
h

)
= π(h, h0

σ)(1− ε)3 +R1

Where 1σ̃
ε
h(O) = 1σ

ε
h(O)−(1−ε)3χh0σ(O), for anyO ∈ B(∆̄), andR1 =

∫
h̄∈∆̄

π(h, h̄)∂
(

1σ̃
ε
h

)
.

The next moment if σ is played after h is the triple of actions h1
σ, the probability of

observing (h0
σ, h

1
σ), when σε is played is 2σ

ε(h0
σ, h

1
σ|h) ≥ 1σ

ε(h0
σ|h)σε(h1

σ|h, h0
σ), by the

same reasoning as before σε(h1
σ|h, h0

σ) ≥ (1− ε)3, and 2σ
ε(h1

σ|h) ≥ (1− ε)6. Hence,

∫
h̄∈∆̄2

π(h, h̄)∂
(

2σ̄
ε
h

)
= π(h, h0

σ, h
1
σ) 2σ̄

ε(h0
σ, h

1
σ|h) +

∫
h̄∈∆̄2

π(h, h̄)∂
(

2σ̃
ε
h

)
= π(h, h0

σ, h
1
σ)(1− ε)6 +R2

With the natural definition for R2 =
∫
h̄∈∆̄2 π(h, h̄)∂

(
2σ̃

ε
h

)
and 2σ̃

ε
h(O) = 2σ

ε
h(O)−

(1 − ε)6χ(h0σ ,h
1
σ)(O) for any O ∈ B(∆̄2).Abusing slightly on the notation, defin-

ing h
|k
σ = (h, h0

σ, . . . h
k
σ) and developing the previous calculations for all the mo-

ments, the payment when σε is played is Πt
i(σ

ε|h) =
∑

k δ
k
∫
h̄∈∆̄k π(h, h̄)∂

(
kσ

ε
h

)
=∑

k δ
k
[
π(h

|k
σ )(1 − ε)3k + Rk

]
. With Rk =

∫
h̄∈∆̄k π(h, h̄)∂

(
kσ̃

ε
h

)
≤
∫
h̄∈∆̄k 1∂

(
kσ̃

ε
h

)
=

kσ̄
ε
h(∆̃

k) = 1− (1− ε)3k. We may write Πt
i(σ|h) =

∑
k δ

kπ(h
|k
σ ) consequently

∣∣∣Πt
i(σ|h)− Πt

i(σ
ε|h)
∣∣∣ ≤ ∣∣∣∑

k

δkπ(h|kσ )

(
1− (1− ε)3k

)∣∣∣+
∑
k

δkRk

≤
∑
k

δk
(

1− (1− ε)3k

)
+
∑
k

δk
(

1− (1− ε)3k

)
= 2

∑
k

(
δk −

(
δ(1− ε)3

)k)
= 2

1

1− δ
− 1

1− δ(1− ε)3

= 2δ
1− (1− ε)3

(1− δ)(1− δ(1− ε)3)
≤ 2δ

3ε− 3ε2 + ε3

(1− δ)2
= f(ε)
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Any σ′εi ∈ OSD(σεi , h) can be built as σ′ε ∈ Σε can be written as σ′εi(O|h) =

(1−ε)σ′i(O|h)+ελi(O|h), with σ′i ∈ OSD(σi, h) and λi(O|h) defined as before. It can

be proved in the same way as the previous claim that
∣∣∣Πt

i(σ
′ε
i , σ

ε
−i|h)−Πt

i(σ
′
i, σ−i|h)

∣∣∣ <
f(ε).

Then with a = inf
{

Πt
i(σ|h)−Πt

i(σ
′
i, σ−i|h) : ∀h ∈ H,∀σ′i ∈ OSD(σi, h)

}
, if ξ = a

2
,

then it is possible to find ε such that,
∣∣∣Πt

i(σ|h) − Πt
i(σ

ε|h)
∣∣∣ < a

2
and

∣∣∣Πt
i(σ
′
i, σ−i|h) −

Πt
i(σ
′ε
i , σ

ε
−i|h)

∣∣∣ < a
2
. Therefore Πt

i(σ
ε|h) > Πt

i(σi|h) − a
2
≥ Πt

i(σ
′
i, σ−i|h) + a

2
>

Πt
i(σ
′ε
i , σ

ε
−i|h), and σε is in fact the best reply for any h in Σε.

A.5 OSD Dominating Strategy is Dominating

Claim 4. If Πt
i(s|h) > Πt

i(s
′
i, s−i|h), for all s′i ∈ OSD(si, h) and for all h ∈ H, then

Πt
i(s|h) > Πt

i(s̄i, s−i|h), for all s̄i ∈ Σi \ si and for all h ∈ H

Proof. By lemma (1) the strategy s is a simple strategy. We will now see that si also

strongly dominate all s̄i ∈ Si when s is being played. As s is a simple strategy we can

define the sequence of future histories after h, H(s|h), and has only one sequence.

For the strategy s̄ assume it is also simple and that the future play ends on finite

time, therefore (h, h̄1, . . . , h̄T ) = H(s̄|h), is the only path of the strategy s̄ after h.

The payment only depend on this path and so we can easily define that Πt
i(s̄|h) =

δTπ(h, h̄1, . . . , h̄T )i; and, as (h, h1, . . . , hT ) = H(s|h), Πt
i(s|h) = δTπ(h, h1, . . . , hT )i.

Now supported on the strategy s̄ we will construct T strategies that are equal to

s̄ at one stage of history and equal to s everywhere else. These new strategies will

be either equal to s or OSD(s, ·). For that purpose define h̃0 = h, for 1 ≤ k ≤ T ,

h̃k = (h, h̄1, . . . , h̄k) and the strategy s̃k for player i as

s̃ki (h̃) =

 si(h̃) if h̃ 6= h̃k

s̄i(h̃) if h̃ = h̃k

So s̃k is in fact either a OSD(si, h̃k) or is equal to si everywhere, if s̄i(h̃
k) = si(h̃

k).

For the other players j 6= i s̃j = s̄j = sj. Using these new strategies s̃k(·) we can
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rewrite Πt
i(s|h)−Πt

i(s̄|h) = Πt
i(s|h̃0)−Πt

i(s̃
0|h̃0) + Πt

i(s̃
0|h̃0)−Πt

i(s̄|h), and repeating

this procedure for Πt
i(s̃

1|h̃1) we get

Πt
i(s|h)− Πt

i(s̄|h̃0) =
[
Πt
i(s|h)− Πt

i(s̃
0|h̃0)

]
+
[
Πt
i(s̃

0|h̃0)− δΠt+1
i (s̃1|h̃1)

]
+
[
δΠt+1

i (s̃1|h̃1)− Πt
i(s̄|h)

]
=
[
Πt
i(s|h)− Πt

i(s̃
0|h̃0)

]
+ δ
[
Πt+1
i (s|h̃1)− Πt+1

i (s̃1|h̃1)
]

+
[
δΠt

i(s̃
1|h̃1)− Πt

i(s̄|h)
]

For the equality we used that s̃0(h̃0) = s̄(h̃) = s̄(h̃0) = h̄1, so if T > 1, h̄1 is a non

ending history, and Πt
i(s̃

0|h̃0) = δΠt+1
i (s̃0|h̃0, h̄1) = δΠt+1

i (s|h̃1), by definition s̃0 is

equal to s for all histories different from h̃0. Repeating T times we get

Πt
i(s|h)− Πt

i(s̄|h) =
T−1∑
k=0

δk
(

Πt+k
i (s|h̃k)− Πt+k

i (s̃k|h̃k)
)

+ δT−1Πt+T−1
i

(
s̃T−1|h̃T−1

)
− Πt

i(s̄|h)

=
T−1∑
k=0

δk
(

Πt+k
i (s|h̃k)− Πt+k

i (s̃k|h̃k)
)

The equality results from s̃T−1
(
h̃T−1

)
= s̄(h̃T−1) = h̄T , as this is an ending history,

Πt+T−1
i (s̃T−1

∣∣h̃T−1) = δπ
(
h̃T−1, h̄T

)
, so δT−1Πt+T−1

i

(
s̃T−1|h̃T−1

)
= Πt

i(s̄|h). As si and

s̄i are different, at least one of s̃ki is different from si and s̃ki ∈ OSD(si, h̃k), by hy-

pothesis Πt+k
i (s|h̃k) > Πt+k

i (s̃k|h̃k), for the others we know Πt+k
i (s|h̃k) = Πt+k

i (s̃k|h̃k)

and we conclude Πt
i(s|h)− Πt

i(s̄|h) > 0.

If H(s̄|h) is of infinite size, let the size of history h be t = t(h) and τ be the size

of the first history in H(s̄|h) in which the strategies s and s̄ define different actions,

so s̄(h̃τ ) 6= s(h̃τ ), and s̄(h̃τ ′) = s(h̃τ ′), for any 0 ≤ τ ′ < τ . Set ε = Πt+τ
i (s|h̃τ ) −

Πt+τ
i (s̃τ

∣∣h̃τ ), ε > 0 due to s̃τi ∈ OSD(si, h̃τ ) and the hypothesis that si is strictly

better than all OSD at the departure history. The first t+ T moments of H(s̄|h) are

h̃T , if T is such that δT−τ < ε. Developing the same calculations as before

Πt
i(s|h)− Πt

i(s̄|h) =
T−1∑
k=0

δk
(

Πt+k
i (s|h̃k)− Πt+k

i (s̃k|h̃k)
)

+ δT−1Πt+T−1
i

(
s̃T−1|h̃T−1

)
− Πt

i(s̄|h)
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≥ δτε+ δT−1Πt+T−1
i

(
s̃T−1|h̃T−1

)
− Πt

i(s̄|h) > 0

A.6 All divisions are a PE outcome

Theorem 10. The strategy s is a PE.

Remember that the strategy is

sj(h) =

1, if ht,1 = r(h−)

0, if ht,1 6= r(h−)

with g(h) the set of player that did not follow the strategy

g(h) =
{
i ∈ I :

(
i 6= i(h) and si(h

|t,1) 6= ht,2i
)

or
(
i = i(h) and si(h

|t−1,2) 6= ht,1
)}

the state transition is

r(h) =


r(h|t,1), if g(h) = I

eḡ(h), if i(h) /∈ g(h)

ēḡ(h), if i(h) ∈ g(h) 6= I

For s to be a PE there must exist a sequence of approximating strategies sε, with

sε
ε↓0−→ s. This strategy is a totally mixed strategy, and in replies both possibilities

assume positive probability, but the action that doesn’t coincide with s is played only

with ε probability, so for j 6= i(h) and h ∈ H t,1

sεj(1|h) =

1− ε, if ht,1 = r(h|t−1,2)

ε, if ht,1 6= r(h|t−1,2)

For h ∈ H t−1,2, we assume that in sεi(h)(h), i(h) plays r(h) with probability 1− ε and

has a uniform distribution on ∆, sεi(h)(O|h) = ελ(O). It is clear that sε → s, and for
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s to be a PE we need prove that sε is a best reply.

Before calculating the payment there are some facts about sε that facilitate the

job. Note that the strategy, as function of h, only depends on the state of history

e = r(h), so it could be defined sε(a|h) = sε(a|e) for a ∈ Ah. When sε is played

after h the future states are determined by the initial state r(h) = e, the actions

taken (dependent on sε(a|e)) and by the proponent at h, i(h). So for two different

histories h and h̃ if they share the proponent i(h) = i(h̃) and the state r(h) = r(h̃)

then the future play will have the same distribution, i.e. ks
ε
h = ks

ε
h̃

for all k ∈ N. By

this reason the future payment is the same at h and at h̃, Π
t(h)
i (sε|h) = Π

t(h̃)
i

(
sε|h̃

)
.

Therefore, we can define equivalent classes of histories where the future payment

is the same if the strategy sε is played. For e ∈ E and i ∈ I define the classes

[e, k] =
{
h ∈ H : r(h) = e and i(h) = k

}
.

Without loss of generality we focus on player 1 and for notation simplicity define

Π
t(h)
1 (sε|h) = Πk

e , if h ∈ [e, k]. When all players follow sε, 1 is the proponent, p the

proposal and e the state, 1’s payment Π1
e is composed of several parcels presented in

the following table.

Table 5: Π1
e parcels

Player 1

p = e p 6= e
Player 2

Accept Reject Accept Reject

Player 3
Accept e1 Π2

e31 p1 Π2
ē2

Reject Π2
e21 Π2

e1 Π2
ē3 Π2

ē23

The content on the table will be explained through the example of one cell. Sup-

pose player 1 proposed e and player 2 accepted, as it should, but player 3 rejected,

the proposition is rejected and agreement is delayed, the players that followed the

strategy s were 1 and 2, g(h) = (1, 2), as 1 was the proposer, next round proposer is

2 so ḡ(h) = (2, 1). The proposer, player 1, played accordingly, the new state will be

e21, and 1’s payment that comes from future agreement is δΠ2
e21 . All the possibilities

are covered in the table. To obtain 1’s expected payoff we multiply each possibility
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by the respective probability.

Π1
e =(1− ε)

[
e1s

ε
−1

(
1, 1|ht,1 = e

)
+ δsε−1

(
0, 1|ht,1 = e

)
Π2
e31+

δsε−1

(
1, 0|ht,1 = e

)
Π2
e21 + δsε−1

(
0, 0|ht,1 = e

)
Π2
e1

]
+ E1

=e1(1− ε)3 + δε(1− ε)2Π2
e31 + δε(1− ε)2Π2

e21 + δ(1− ε)ε2Π2
e1 + E1

(6)

For two different states e and ẽ all but the first term on (6) are equal, so Π1
e−Π1

ẽ =

(e1−ẽ1)(1−ε)3. This equality simplify extremely Πk
e , for example, we use the fact that

player 1 receives nothing in the states e2, e3 and ē23, to state that Π1
e2 = Π1

e3 = Π1
e23 .

The expected payment from a proposition p different from the state when 1 is

the proponent can be: p1 if accepted by all repliers, (this happens with probability

ε2, propositions that are different from state are accepted only with ε probability by

each player); δΠ2
e2 if player 3 rejected and 2 accepted; δΠ2

e3 if player 2 rejected and

3 accepted; and δΠ2
ē23 if both players rejected the proposition p 6= e, and the state

changed to ē23

E1 =

∫
p∈∆\r(h)

p1ε
2 + δε(1− ε)Π2

e2 + δ(1− ε)εΠ2
e3 + δ(1− ε)2Π2

ē23∂
(
sεi(h)

)
=

∫
p∈∆\r(h)

p1ε
2 + δ(1− ε2)Π2

e2∂
(
sεi(h)

)
=p̄s

ε

ε3 + δε(1− ε2)Π2
e2

The payoff of player 1 when 2 and 3 are the proponents is:

Π2
e =e1(1− ε)3 + δε(1− ε)2Π3

e12 + δε(1− ε)2Π3
e32 + δε2(1− ε)Π3

e2 + E2

Π3
e =e1(1− ε)3 + δε(1− ε)2Π1

e13 + δε(1− ε)2Π1
e23 + δε2(1− ε)Π1

e3 + E3 (7)

Developing the same fastidious calculous for the trembling on propositions when

player 2 and 3 are the proponents, E2 and E3, that we did for E1, replacing ∆̃ =

∆ \ r(h) and remembering that ē31 = (γ4, 0, γ3) and ē12 = (γ3, γ4, 0) we get
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E2 =

∫
p∈∆̃

pε2 + δε(1− ε)Π3
e3 + δ(1− ε)εΠ3

e1 + δ(1− ε)2Π3
ē31∂s

ε
2(h)

=p̄s
ε

ε3 + δ(1− ε)
∫
p∈∆̃

εΠ3
e2 + ε

[
(1− ε)3 + Π3

e2

]
+ (1− ε)

[
γ4(1− ε)3 + Π3

e2

]
∂sε2(h)

=p̄s
ε

ε3 + δ(1− ε)
∫
p∈∆̃

ε(1− ε)3 + γ4(1− ε)4 + (1 + ε)Π3
e2∂s

ε
2(h)

=p̄s
ε

ε3 + εδ(1− ε)4 [ε+ γ4(1− ε)] + εδ(1− ε2)Π3
e2

E3 =

∫
p∈∆̃

pε2 + δε(1− ε)Π1
e1 + δ(1− ε)εΠ1

e2 + δ(1− ε)2Π1
ē12∂s

ε
3(h)

=p̄s
ε

ε3 + δ(1− ε)
∫
p∈∆̃

ε
[
Π1
e2 + (1− ε)3

]
+ εΠ1

e2 + (1− ε)
[
Π1
e2 + γ3(1− ε)3

]
∂sε3(h)

=p̄s
ε

ε3 + δ(1− ε)
∫
p∈∆̃

(1− ε)3 [ε+ γ3(1− ε)] + (1 + ε)Π1
e2∂s

ε
3(h)

=p̄s
ε

ε3 + εδ(1− ε)4 [ε+ γ3(1− ε)] + εδ(1− ε2)Π3
e2

We will focus on the state e2, later we prove no more state needs to be analysed.

Replacing e by e2 and using relations like Πk
e12 = Πk

e13 , Π2
e13 = Π2

e2 + γ1(1 − ε)3 and

Π2
e1 = Π2

e2 + (1− ε)3 in the equations (6) and (7).

Π1
e2 =δε(1− ε)2Π2

e31 + δε(1− ε)2Π2
e21 + δε2(1− ε)Π2

e1 + E1

=δε(1− ε)
[
2(1− ε)Π2

e31 + εΠ2
e1

]
+ E1

=δε(1− ε)
[
2(1− ε)

(
Π2
e2 + (1− ε)3γ2

)
+ ε
(
Π2
e2 + (1− ε)3

)]
+ E1

=δε(1− ε)
[
(2(1− ε) + ε) Π2

e2 + 2(1− ε)4γ2 + ε(1− ε)3
]

+ E1

=δε(1− ε)
[
(2− ε)Π2

e2 + (1− ε)3 (2(1− ε)γ2 + ε)
]

+
[
p̄s
ε

ε3 + δε(1− ε2)Π2
e2

]
=δε(1− ε)

[
3Π2

e2 + (1− ε)3 (2(1− ε)γ2 + ε)
]

+ p̄s
ε

ε3

=3δε(1− ε)Π2
e2 + δε(1− ε)4 [2(1− ε)γ2 + ε] + p̄s

ε

ε3
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Π2
e2 = δε(1− ε)2Π3

e12 + δε(1− ε)2Π3
e32 + δε2(1− ε)Π1

e2 + E2

= δε(1− ε)
[
(1− ε)Π3

e12 + (1− ε)Π3
e32 + εΠ1

e2

]
+ E2

= δε(1− ε)
[
(1− ε)

(
Π3
e2 + γ1(1− ε)3

)
+ (1− ε)Π3

e2 + εΠ1
e2

]
+ E2

= δε(1− ε)
[
(2− ε)Π3

e2 + γ1(1− ε)4
]

+ E2

= δε(1− ε)
[
(2− ε)Π3

e2 + γ1(1− ε)4
]

+
[
p̄s
ε

ε3 + εδ(1− ε)4 [ε+ γ4(1− ε)] + δε(1− ε2)Π3
e2

]
= 3δε(1− ε)Π3

e2 + εδ(1− ε)4 [ε+ (1− ε)(γ4 + γ1)] + p̄s
ε

ε3

Π3
e2 =δε(1− ε)2Π1

e13 + δε(1− ε)2Π1
e23 + δε2(1− ε)Π1

e3 + E3

=δε(1− ε)
[
(1− ε)

(
Π1
e2 + γ1(1− ε)3

)
+ Π1

e2

]
+ E3

=δε(1− ε)
[
(2− ε)Π1

e2 + γ1(1− ε)4
]

+
[
p̄s
ε

ε3 + εδ(1− ε)4 [ε+ γ3(1− ε)] + εδ(1− ε2)Π3
e2

]
=3δε(1− ε)Π3

e2 + εδ(1− ε)4 [ε+ (γ3 + γ1)(1− ε)] + p̄s
ε

ε3

We get the following system of equations
Π1
e2 = 3δε(1− ε)Π2

e2 + δε(1− ε)4 [ε+ (1− ε)2γ2] + p̄s
ε
ε3

Π2
e2 = 3δε(1− ε)Π3

e2 + εδ(1− ε)4 [ε+ (1− ε)(γ4 + γ1)] + p̄s
ε
ε3

Π3
e2 = 3δε(1− ε)Π1

e2 + εδ(1− ε)4 [ε+ (1− ε)(γ3 + γ1)] + p̄s
ε
ε3

With ξ0 = 3δε(1−ε), ξ1 = εδ(1−ε)4 and β1 = ε+(1−ε)2γ2, β2 = ε+(1−ε)(γ4+γ1),

β3 = ε+ (1− ε)(γ3 + γ1) we can rewrite the system as


Π1
e2 = ξ1β1 + ξ0Π2

e2 + p̄s
ε
ε3

Π2
e2 = ξ1β2 + ξ0Π3

e2 + p̄s
ε
ε3

Π3
e2 = ξ1β3 + ξ0Π3

e1 + p̄s
ε
ε3

Solving the system we get the values of Πk
e2 , for k = 1, 2, 3
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Π1
e2 = ξ1

1−ξ30
(β1 + ξ0β2 + ξ2

0β3) + p̄

Π2
e2 = ξ1

1−ξ30
(β2 + ξ0β3 + ξ2

0β1) + p̄

Π3
e2 = ξ1

1−ξ30
(β3 + ξ0β1 + ξ2

0β2) + p̄

And can now calculate the following limits for later use.


lim
ε↓0

Π1
e2/ε = 2δγ2

lim
ε↓0

Π2
e2/ε = δ(γ4 + γ1)

lim
ε↓0

Π3
e2/ε = δ(γ3 + γ1)

(8)

To analyse the best response of player 1 in state e2 when sε is being played we

consider the strategies sa1, s
r
1 ∈ OSD(sε1, h) in which sa1(1|h) = 1, sr1(0|h) = 1. For s

to be a PE, for small ε, Πt
1(sa1, s

ε
−1|h) ≥ Πt

1(sr1, s
ε
−1|h)

When player 3 is the proponent and proposed e2 with r(h−) = e2, the payment

for player 1 in each of his actions is:

• Πt
1(sa1, s

ε
−1|h) = 0.(1− ε) + δεΠ1

e13 = δεΠ1
e13

• Πt
1(sr1, s

ε
−1|h) = (1− ε)δΠ1

e23 + εδΠ1
e3

And the difference between the two payoffs is

Πt
1(sa1, s

ε
−1|h)− Πt

1(sr1, s
ε
−1|h) =δεΠ1

e13 −
[
(1− ε)δΠ1

e23 + εδΠ1
e31

]
=δε

[
Π1
e3 + γ1(1− ε)3

]
− (1− ε)δΠ1

e32 − εδΠ1
e3

=δεγ1(1− ε)3 − (1− ε)δΠ1
e32

=(1− ε)δ
(
γ1ε(1− ε)2 − Π1

e2

)
=(1− ε)εδ

(
γ1(1− ε)2 −

Π1
e2

ε

)

As
Π1
e2

ε
→ 2δγ2, if γ1 > 2δγ2 the inequality Πt

1(sa1, s
ε
−1|h) ≥ Πt

1(sr1, s
ε
−1|h) is verified

for small values of ε.
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If in the state e2 player 3 made a proposition e 6= e2 player 1 payment in case

of acceptance is Πt
1(sa1, s

ε
−1|h) = e1s

ε
2(1|h, e) + δsε2(0|h, e)Π1

e2 ≤ ε + δ(1 − ε)Π1
e2 or in

case of rejecting Πt
1(sr1, s

ε
−1|h) = δsε2(1|h, e)Π1

e1 + δsε2(0|h, e)Π1
ē12 . As sε2(1|h, e) → 0,

Π1
e2 → 0 and Π1

ē12 → γ3, Πt
1(sr1, s

ε
−1|h)−Πt

1(sa1, s
ε
−1|h)→ δγ3 > 0, for small ε the best

option to player 1 is to reject the proposal.

If player 2 proposed e2 with r(h−) = e2,the payment for player 1 in each of his

actions is:

• Πt
1(sa1, s

ε
−1|h) = 0.(1− ε) + δεΠ3

e12 = δεΠ1
e13

• Πt
1(sr1, s

ε
−1|h) = (1− ε)δΠ1

e32 + εδΠ1
e2

And the difference between the two payoffs is

Πt
1(sa1, s

ε
−1|h)− Πt

1(sr1, s
ε
−1|h) =δεΠ3

e12 −
[
(1− ε)δΠ3

e32 + εδΠ3
e2

]
=δε

[
Π3
e2 + γ1(1− ε)3

]
− (1− ε)δΠ3

e2 − εδΠ3
e2

=δ(1− ε)
(
εγ1(1− ε)2 − Π3

e2

)
=δε(1− ε)

(
γ1(1− ε)2 −

Π3
e2

ε

)

As seen in (8)
Π3
e2

ε
→ δ(γ3 + γ1), and

[
Πt

1(sa1, s
ε
−1|h) − Πt

1(sr1, s
ε
−1|h)

]
/ε → γ1 −

δ(γ3 + γ1) and if γ1 >
δ

1−δγ3 the necessary inequality is verified.

In the case player 2 made a proposition different from the state, it can be proved

that player 1 is better by rejecting the proposition, this is done in the same way as

when player 3 proposed a different division. Nothing changes in the proof.

When player 1 is proposing, and state is e2, consider the twoOSD(sε1, h), snd1 (e2|h) =

1, the ”non-deviating” strategy in which 1 always proposes e2 after h, and the ”devi-

ating” strategy with player always proposing e, sd1(e|h) = 1, different from e2. For s

to be Perfect Equilibria Πt
1(snd1 , s

ε
−1|h) ≥ Πt

1(sd1, s
ε
−1|h) for small values of ε.
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Πt
1(sd1, s

ε
−1|h) ≤ 1.ε2 + δε(1− ε)Π2

e3 + δε(1− ε)Π2
e2 + δ(1− ε)2Π2

ē23

= ε2 + δ(1− ε2)Π2
e2

Πt
1(snd1 , s

ε
−1|h) = δε(1− ε)Π2

e31 + δε(1− ε)Π2
e21 + δε2Π2

e1

= 2δε(1− ε)Π2
e31 + δε2Π2

e1

= δ(2− ε)εΠ2
e2 + 2δε(1− ε)4γ2 + δε2(1− ε)3

= δ(2− ε)εΠ2
e2 + δε(1− ε)3 [2γ2(1− ε) + ε]

Πt
1(snd1 , s

ε
−1|h)−Πt

1(sd1, s
ε
−1|h) ≥

[
δ(2− ε)ε− δ(1− ε2)

]
Π2
e2 + δε(1− ε)3 [2γ2(1− ε) + ε]− ε2

= δ(2ε− 1)Π2
e2 + δε(1− ε)3 [2γ2(1− ε) + ε]− ε2

= δε

{
(2ε− 1)

Π2
e2

ε
+ (1− ε)3 [2γ2(1− ε) + ε]− ε

δ

}

And the expression inside the curly brackets, using again (8), converges to −δ(γ1+

γ4) + 2γ2, and if 2γ2 > δ(γ1 + γ4) the necessary inequality is assured.

The set of inequalities for s to be a PE are
γ1 ≥ 2δγ2

γ1 ≥ δ
1−δγ3

2γ2 ≥ δ(γ1 + γ4)

⇔


γ1 ≥ 2δ

1+2δ

γ1 ≥ δ
1−δγ3

γ1 ≤ 2−δ
2+δ

+ δ
2+δ

γ3

(9)

We assumed γ1+γ2 = γ3+γ4 = 1. These equations are all compatible, if γ1 >
2δ

1+2δ

and γ3 < min
{

1−δ
δ
, 2−δ

1+2δ
1−δ
δ

}
and solution, for each δ exists.

We will now see that for the other states e ∈ E, player 1 never improve is payment

by deviating from strategy sε. First when 1 is the proponent. Notice that for the pro-

ponent the expected payment of a deviation does not depend on the state, it is always

equal no matter what the initial state was, Πt
1(s′1, s

ε
−1|e) = Πt

1(s′1, s
ε
−1|e2). Hence, if the
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proposition is equal to the state, as Πt
1(sε|e) ≥ Πt

1(sε|e2), and if in e2 deviating was not

profitable in e it is not as well, Πt
1(sε|e) ≥ Πt

1(sε|e2) ≥ Πt
1(s′1, s

ε
−1|e2) = Πt

1(s′1, s
ε
−1|e).

When 1 is the replier and the proposition is not equal to the state e, 1’s ex-

pected payment by rejecting the proposal is the same as when rejecting a propo-

sition not equal to the state and the state was e2. So if r(h−) = e and ht,1 6= e,

and r(h̃−) = e2 and h̃t,1 6= e2. With sr1 ∈ OSD(sε1, h) and s̃r1 ∈ OSD(sε1, h̃), are

the OSD strategies that reject the deviating proposition at h and h̃, respectively,

Πt
1(sr1, s

ε
−1|h) = Πt

1(s̃r1, s
ε
−1|h̃). The same is valid if the player accepts the deviating

proposition, his payment is exactly the same in state e to what it was in state e2.

Defining sa1 ∈ OSD(sε1, h) and s̃a1 ∈ OSD(sε1, h̃) as the OSD strategies that accept

the deviating proposition at h and h̃, respectively, Πt
1(sa1, s

ε
−1|h) = Πt

1(s̃a1, s
ε
−1|h̃). Ac-

cordingly, if in r(h̃) = e2 there was no advantage in accepting a deviating proposal,

Πt
1(sa1, s

ε
−1|h̃) ≥ Πt

1(sr1, s
ε
−1|h̃) in r(h) = e there is no advantage also, because the

payments are equal in both states, Πt
1(sa1, s

ε
−1|h) ≥ Πt

1(sr1, s
ε
−1|h).

The same reasoning can be applied to the histories in which the last proposition

was equal to the state r(h) = ht,1 = e. The player’s payoff by rejecting the proposition

is equal to the payoff when he rejects r(h̃) = h̃t,1 = e2. That is, the OSD strategies

that reject the propositions, sr1 ∈ OSD(sε1, h) and s̃r1 ∈ OSD(sε1, h̃), have the same

payment Πt
1(sr1, s

ε
−1|h) = Πt

1(s̃r1, s
ε
−1|h̃). As Πt

1(sε|h) − Πt
1(sε|h̃) = (e1 − e2

1)(1 − ε)3.

Due to the state’s definition, for any e ∈ E, e1 ≥ e2
1, therefore Πt

1(sε|h) ≥ Πt
1(sε|h̃),

and we conclude that Πt
1(sε|h) ≥ Πt

1(sε|h̃) ≥ Πt
1(s̃r1, s

ε
−1|h̃) = Πt

1(sr1, s
ε
−1|h). Not to

deviate is the best for player 1 when the proposition coincide with the state. This

way 1 has no advantage in choosing a different strategy for any of states in E.

Due to the symmetry of the strategies used in sε to exist a state in which any

player i had something to gain by deviating then there must also exist a state where

1 would gain by playing the same deviating strategy. As there is not such case, there

is no player and no state in which there is a profitable deviation, for this reason sε is

a best reply to itself, and s is a PE.
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