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Abstract

Two-stage voting systems are commonly used, not only in political elections but in many

other types of contests such as the Academy of Motion Pictures Arts and Sciences (AMPAS)

awards. These methods are nonetheless more costly than single-stage ones. In this paper we

will compare the performance of di¤erent one-stage and two-stage voting systems. In particular,

we will analyse the impact of the introduction of a second stage in the ability of electing the

Condorcet winner and rejecting the Condorcet loser. Through simulation, we will conclude
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that under two-stage systems with only two nominees in the second stage, the likelihood of

respecting the Condorcet criteria increases signi�cantly. However, with three nominees in the

second stage, results are ambiguous, depending on the degree of homogeneity of preferences.
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1 Introduction

Selecting the best alternative from a given set would seem a fairly simple problem but the social

choice literature shows that this is a very complex issue. Di¤erent methods may lead to di¤erent

outcomes and, more importantly, all of them fail to simultaneously respect a given set of desirable

conditions, both in terms of selecting a social preference and a social choice. This is what the

well-known Arrow (1963) and Gibbard-Satterthwaite (1975) theorems respectively show.

Even though all systems fail to behave optimally, some may violate more conditions than others

or simply violate a given condition more often (in a frequency analysis). Since the literature is far

from an agreement on the best voting system, we observe a multiplicity of methods being used when

it comes to selecting an alternative from a given set. For instance, in the main political election

systems around world more than twenty di¤erent methods are used. Furthermore, these methods

di¤er from those typically used in other contexts, such as sports.

Plurality voting1 is one of the most well known voting systems. Under this method voters cast

a single vote and the alternative with the highest number of votes wins. More than 75 countries

use it in elections. Approval voting is a simple system with attractive conditions but it is not that

commonly used. Under this method, voters are allowed to vote for more than one candidate, and

the candidate with the highest number of votes wins. It is currently considered by many social

choice researchers as a good substitute for plurality, solving some of the problems that arise under

this method. Instant Runo¤ Voting2 is widely used in political elections, such as the election for

party leader in the UK, the Irish presidential elections and the Australian elections for the House

1Also known as FPTP (�rst-past-the-post method used in USA presidential elections and in more than seventy
�ve political elections around the world)

2Also referred to as Alternative Voting (UK), Preferential Ballot (Canada) or Ranked Choice Voting (US)
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of Representatives. It is also used in some US states as well as in New Zealand. In addition, this

method is used in the AMPAS awards when selecting the nominees and this year, for the �rst time,

it was used as the voting system to select the best picture out of ten nominees. This method requires

voters to rank their candidates and the winner is selected after a sequential process of elimination

of weaker candidates. In each round, the candidate with the least number of �rst-place positions in

individual rankings is eliminated from every voter�s ranking. It is, therefore, a method where the

whole ranking of alternatives matters.

According to Fishburn and Brams (1978), one-stage approval voting is �the most sincere and the

most strategyproof�method3 . This means that, under one-stage approval voting, agents will have

fewer incentives to misreport their preferences. Moreover, approval voting ensures that whenever a

Condorcet winner exists, under admissible strategies4 , it is the one chosen. In this speci�c sense,

it is superior to many other widely used voting systems such as plurality. However, Fishburn and

Brams do not include two-stage systems in their analysis.

Nurmi (1983) analyses a comprehensive list of �ve binary methods, three one-stage methods and

�ve multistage non-binary systems. The main debated criteria are used to analyse these methods

and the aim is a �synthesis of the assessments of procedures with respect to various criteria�. In

the same fashion, Richelson (1975, 1978, 1981) analyses a smaller group of systems with respect

to a broader set of criteria. Both these analyses aim to synthesize and not to conclude about the

best method to be used. Some methods respect more conditions than others, however we cannot

infer which conditions are more socially desirable. Moreover, under such a binary analysis we are

not able to analyse the frequency at which a given condition is violated by a speci�c method. For

3Compared to plurality and negative voting
4Dichotomous preferences
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these reasons no de�nite conclusion on the best method can arise.

However, besides Nurmi (1983), little attention has been given to the optimality of two-stage

systems. This is highly unexpected as these methods are more and more used in every type of

election. More than seventy countries use the runo¤ system in their major political elections. This

is the case of French and Portuguese presidential elections.

Nonetheless, two-stage systems cost more. Having two rounds, where voters need to cast a vote

twice, means, ceteribus paribus, additional costs: more resources must be used to organize the extra

ballot. Political instabilities may also arise inbetween the two rounds which inevitably adds to the

economic cost of the election. Furthermore, it should be considered that, if voters are required to

vote too often, a two-stage system might lead to voter fatigue resulting in a reduced voter turnout

(lower percentage of people casting a vote/ going to the polls). Thus, the question to be answered

is why are these systems used? What makes them an attractive alternative?

It is worth noticing that, in some cases, having two-stages is a necessary condition. This is the

case of the AMPAS where a smaller list of alternatives must be created in order to become public

and where they aim for di¤erent people voting at di¤erent stages of the election (i.e., only members

of the directing branch vote for the nominees for directing but the whole membership votes for the

winner). Therefore, a second ballot is mandatory. In these cases the question that remains is which

method should be used? Or is the system currently in use optimal?

Summing up, two main questions need to be answered:

1. When it is not necessary to elect in two steps, which would be the reasons for using two-stage

methods?
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2. When there is a need for a two-stage election process, which method should be used? In other

words, in which aspects is a speci�c system better than the others?

Note that these two questions are connected. In order to answer the �rst question, we need to

study the impact of changing from a one-ballot voting scheme to a two-stage system. We will take

three major one-stage voting systems with already known characteristics and add a second step

to the process. We will analyse the di¤erences in performances when a second stage is introduced

where plurality is the system used to select the winner. Then, using this information, we are able

to answer the second question as well.

In order to answer the set of questions, we will organize the paper in the following way. First,

in section 2, we will present a brief summary of the conditions that the three one-stage methods

(plurality, approval and instant runo¤ ) violate or meet. In section 3, we will proceed with a binary

analysis on the impact of changing from a one-stage system to a system where we add an extra

stage where plurality is the system used. First, we will study the case where two nominees are

selected to the second stage and afterwards we will add an extra nominee to the picture. Lastly in

this section, we will compare all the two-stage systems and try to then infer if any of them seems

to be more socially desirable. As mentioned before, a binary analysis is not enough to infer on

the best election method. For that reson a deeper analysis should be performed. In section 4,

we will focus on the Condorcet criteria and we will try to quantify, in terms of frequency, which

of the methods seem to respect this criterion more often. To do this, we will proceed through

simulation creating preferences, both under impartial culture and single-peakedness assumption,

and consequently analyse the outcome of the di¤erent systems. In section 5, conclusions about the

optimality of di¤erent two-stage methods will be drawn.
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2 One-stage systems

In this chapter we will compare three di¤erent one-stage stage voting systems in their ability to

respect a given set of desirable conditions.

After carefully considering all the conditions analysed in literature, we decided to focus our

analysis on those more frequently used, excluding those that are respected by all the voting systems

that we look into5 .

2.1 The Conditions

Let � be the nonempty �nite set of all possible alternatives and let Pi be the individual linear strict

preference relation over �. Then, consider function S that represents the social choice function.

This function takes a given subset  of � and chooses the best social set of alternatives in it (which

can be a singleton) given the preferences of all agents, P . This set is therefore the social choice.

Summing up, the function assigns a subset S(; P ) of � to each (; P ) situation.

Every social choice relies on preferences that agents reveal. Having a social choice consistent

with those individual preferences is highly desirable. The following criteria impose this consistency

of social choice functions with individual preferences from di¤erent perspectives.

Criterion 1 Pareto optimality (PO): Take the subset  of � and consider x and y contained in

. A social choice function, S, is Pareto optimal if and only if , when we observe that every single

agent prefers x to y, then y cannot be chosen. Formally, x Pi y,8i) y =2 S(; P ).

5Such as neutrality and anonymity
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Criterion 2 Condorcet winner (CW): A Condorcet winner is an alternative that wins every pair-

wise contest against all the other alternatives. In other words, x is the Condorcet winner of  under

P if ] fi : xPiyg > ] fi : yPixg for all y 2 , y 6= x: Every social choice function S that guarantees

the choice of the Condorcet winner, whenever one exists, respects the Condorcet winner criterion.

So S will satisfy the Condorcet winner criterion if, when x 2  is the Condorcet winner of  under

P , we have x 2 S(; P ).

Criterion 3 Condorcet Loser (CL): A Condorcet loser is an alternative that loses every pairwise

comparison with all the alternatives available. In other words, x is the Condorcet loser of  under P

if ] fi : yPixg > ] fi : xPiyg for all y 2 , y 6= x: Every social choice function S that guarantees that

the Condorcet loser is never chosen, whenever one exists, respects the Condorcet loser criterion. So

S will satisfy the Condorcet loser criterion if, when x 2  is the Condorcet loser of  under P , we

have x =2 S(; P ).

The last three criteria are important, in the sense that they make the social choice more in

line with individual preferences. Any violation of these criteria means that a strong inconsistency

between the social choice function and the implicit individual preferences exists.

In addition, we would desire changes in individual preferences to consistently change social

preferences and consequently the social choice. This is what the following two criteria try to

guarantee.

Criterion 4 Monotonicity (MON): Take P ,  and x 2 . Then, obtain P� from P by raising

x in one or more preference orderings (and everything else remains unchanged). S is monotonic

whenever x 2 S(; P ) ) x 2 S(; P 0). So if x was already considered as one of the optimal
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social choices, then it should remain so when we raise its position in at least one agent�s preference

ordering.

Criterion 5 Independence of Irrelevant Alternatives (IIA)6 :

S satis�es independence of irrelevant alternatives if for all (x; y) � � and for all P and P 0:

For all i where x Pi y, now we have x P 0i y;

For all i where y Pi x, now we have y P 0i x;

Then we must have x socially preferred to y under P 0, if x was socially preferred to y under

P , or y socially preferred to x under P 0 if it was also so under P . Formally xPsy ) xP
0

sy and

yPsx) yP
0

sx
7 .

Note that what is discussed here is more than the social choice: we discussed the social preference

ordering. We will assume di¤erent ways of de�ninig criteria for social orderings according to each

of the voting systems. However, we must be aware that many other di¤erent criteria could be

assumed.

The next criterion can be seen as more of a consistency check. Guaranteeing that voters be-

have consistently while facing di¤erent subsets of a larger set is what the weak axiom of revealed

preferences tries to ensure.

Criterion 6 Weak Axiom of Revealed Preferences (WARP): take a subset m of , m �  and

6Also known as Sen�s property alpha or as Cherno¤ �s condition
7Ps stands for social strict preference relation, which can also be represented in a binary preference fashion as

�s
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consider P . A social choice function, S, respects WARP whenever: m \ S(; P ) 6= ? ) m \

S(; P ) = S(m;P ).

So, we take a subset m of  and the set of socially optimal alternatives from , S(; P ). If m

contains any of the previous optimal alternatives then the new set of optimal alternatives should

consist of those that were previously optimal and are still available, m \ S(; P ). As stated by

Nurmi (1983) �methods satisfying WARP choose alternatives that are winners in all subsets of

alternatives they belong to�. Furthermore, �if two alternatives are chosen from a given subset of

alternatives either both or neither of them will be chosen from any set that contains the subset �

(Plott 1976).

2.2 Plurality, Approval and Instant Runo¤

We will now proceed to the analysis of one-stage voting systems, de�ning and comparing three

di¤erent systems in their ability to respect the above criteria. It is truly important to understand

how these one-stage methods behave so that we can analyse the impact, in the performance of these

systems, of the introduction of a second stage.

In our analysis, we will not be interested in studying abstention or blank votes and for that

reason we will ignore these cases. This means that, under any voting system, agents will cast at

least one vote (and obviously cannot vote for all the candidates).
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2.2.1 Plurality

Under plurality, each voter casts one vote. The winning alternative (or set of alternatives) is the

one that gets the highest number of votes. Formally, let V (y) be the number of votes for the

alternative y, for all y 2 . Then the plurality rule is de�ned in the following way: S(; P ) =

fx 2  : V (x) � V (y) for all y 2 g.

Plurality can also be used to derive a social ordering where the alternatives will be socially

ranked according to the number of votes they get.

2.2.2 Approval

Suppose there are m alternatives. Under approval, each voter can give each alternative either one

or no vote (approve or disapprove) with the restriction that no more than m�1 alternatives can be

approved. In addition, we will impose the condition that voters must approve at least one of them

so that abstention and blank votes are completely left out. The alternative that gets the highest

number of approvals wins. Again, if there is a tie, more than one alternative can win the election.

Formally, let A(y) be the number of approvals that alternative y collects during the ballot, for all

y 2 . The approval rule goes as follows, S(; P ) = fx 2  : A(x) � A(y); for all y 2 g.

Voters will approve all the alternatives that give them at least certain utility level, which we will

denote as the threshold level of utility. This threshold level of utility may vary given the size of the

set m 2 . Intuitively, we would expect that the larger the size of the subset, the more alternatives

should be approved and the smaller the set, the more demanding agents will become and so fewer

alternatives should be approved.
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We will take advantage of this possibly variable threshold level, in order to avoid situations in

which voters who would vote for some candidates in a set would rather abstain in a subset of this

set. To reconcile simplicity with the no-abstention assumption we will assume that the threshold

utility level may only vary if the subset has no alternative that would be approved under  or if

the subset is only composed of previously approved alternatives. We will also assume that this

threshold level varies the minimum possible. In the �rst case, only the alternative ranked �rst for

the agent will be approved while in the second case, the agent will approve all except the last. It

will be, as if the agent is forced to approve a candidate, in the �rst scenario, or to drop one approval,

in the second scenario. Note that, under these assumptions and with only two candidates, plurality

and approval are equivalent.

In a social ordering context, we will assume that alternatives will be socially ranked according

to the number of approvals they get. The social choice is the most preferred alternative while the

alternative with the smallest number of approvals is the least socially desirable one.

2.2.3 Instant Runo¤

Under this voting system, agents are required to rank candidates from most to least preferred.

Under sincere voting8 , this ranking corresponds to each voters�preference order. The alternative

that is ranked �rst the fewest times is eliminated9 . After elimination, results are readjusted so

that, in each voter�s ranking, the eliminated alternative is substituted by the one following it in

the original one. This process is repeated, until no further elimination can be done. Note that,

8Voting uniquely to express preferences with no strategic intention; no preference misreporting.
9 In a tie situation, di¤erent rules can be used. A possible criterion would be to eliminate the alternative with

more last place attribution. A rule consistent to what we have de�ned for other voting systems would be to eliminate
all the tied candidates so that no tie breaking criterion is used. This is the rule behind our formal de�nition of the
instant runo¤ voting system.
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although this voting system may involve a lot of steps, agents are only required to vote once.

Formally, de�ne: I1(; P ) = fx 2  : V (x) � V (y); for all y 2 g. Taking only into account the

set  n I1 preferences are readjusted, and we get I2( n I1; P ). This process is repeated until we get

Ii+1( n I1 n I2 n : : : n Ii) = f�g ;and Ii is the set of winners.

In what concerns the social ranking of alternatives we will follow an order of elimination cri-

terion. In that sense, the alternative that is eliminated �rst will be the one we consider the less

socially preferred, while the last one (the social choice) is, obviously, the most preferred one.

We will now give an example of how these three systems work.

Example 1 Let there be ten voters and four alternatives fx; y; v; zg and let 1 and 0 respectively

stand for approval and non-approval:

4 voters 3 voters 2 voter 1 voter

x(1) v(1) y(1) z(1)

y(1) y(1) v(0) v(0)

v(0) z(0) z(0) y(0)

z(0) x(0) x(0) x(0)

Table 1

� Plurality winner: alternative x with four votes.

� Approval winner: alternative y with nine approvals.

� Instant runo¤ winner: alternative v. The process goes in the following way: z, with only one
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�rst place attribution, is the �rst alternative eliminated. We get:

4 voters 3 voters 2 voters 1 voter

x v y v

y y v y

v x x x

Table 2

Now, y is eliminated because it is now the one alternative with the fewest �rst place attributions.

Hence we get the �nal table:

4 voters 3 voters 2 voters 1 voter

x v v v

v x x x

Table 3

Hence, v is the winner under instant runo¤.

These three systems respect di¤erent optimality conditions. However, there is one thing they

all have in common, which is the fact that all of them can induce strategic behaviour (although,

as stated in Fisburn and Brams (1978), approval seems to do this less often). In addition, they all

fail to ensure that the Condorcet winner is elected, whenever one exists, (Nurmi 1983). However,

under �admissible strategies�, approval voting is compatible with choosing the Condorcet winner

(Fishburn and Brams 1981).
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Fishburn amd Brams (1978) show that plurality fails to respect the weak axiom of revealed

preferences. Moreover, under plurality, we can never assure that the Condorcet loser is not among

the social choice. Since under our assumptions plurality may be constructed from approval, where

voters only approve their preferred candidate, approval voting also fails to respect the weak axiom

of revealed preferences and the Condorcet loser criterion.

In addition, approval is the only system of the three that violates Pareto optimality. As showed

by Nurmi (1983), plurality obviously respects Pareto optimality. It is straightfoward that instant

runo¤ , being a sequential elimination process based on plurality rule, would also never elect y when

x Pi y for all i. However, under one-stage approval, this can no longer be ensured in case of a tie.

Consider the example:

Example 2 Take m = fx; y; zg and the following individual preferences:

Voter 1 Voter 2 Voter 3

x(1) z(1) x(1)

y(1) x(0) y(1)

z(0) y(0) z(0)

Table 4

Under approval we would get fx; yg as the set of winners. Then we have x Pi y for all i and at

the same time y 2 S(m;P ). Therefore, approval violates Pareto optimality.

Instant runo¤ voting is the only method that respects Condorcet loser criterion but it is also

the only one violating monotonicity. Under instant runo¤ , candidates are sequentially eliminated.
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Therefore, any change in individual preferences is capable of changing the order of elimination

of alternatives. This does not happen under plurality and approval as both are completly static

methods. For the same reasons, the weak axiom of revealed preferences is not veri�ed by instant

runo¤ voting.

All the three one-ballot systems fail to respect the independence of irrelevant alternatives con-

dition. To illustrate this, let us take a look of the following examples:

Example 3  = fx; y; zg and we have nine voters with the following preferences, P :

4 voters 2 voters 3 voters

x(1) y(1) z(1)

y(0) x(0) y(0)

z(0) z(0) x(0)

Table 5

Under plurality (approval) the socially preferred candidate is x followed by z and the last one

would be y: x Ps z Ps y

Now suppose that, for the last group of voters, we maintain x and y �s relative position and

take z to the end of the ranking which is equivalent to removing z from the set. So we changed the

position of an irrelevant alternative in what concerns x and y. If S was to respect IIA, we expected

x to still be socially preferred to y.
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4 voters 2 voters 3 voters

x(1) y(1) y(1)

y(0) x(0) x(0)

z(0) z(0) z(0)

Table 6

Note that now y is socially preferred to x which is in turn preferred to z. So, the social relative

position of x and y has changed while individual ranking between x and y was kept unchanged.

Therefore, plurality and, consequentially, approval violate independence of irrelevant alternatives.

Now let us take the case of instant runo¤ .

Example 4 Take  = fx; y; v; zg;
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4 voters 3 voters 2 voters 1 voter 2 voters

x z y v v

y y v y z

v v x z y

z x z x x

Table 7

Under instant runo¤, the �rst elimination is y, followed by z and then x. Hence, v is the winner.

So, the social preference is as follows: v Ps x Ps z Ps y.

Take the �rst group of voters and change x and y�s positions without changing the others.

4 voters 3 voters 2 voters 1 voter 2 voters

y z y v v

x y v y z

v v x z y

z x z x x

Table 8

Now, x is the �rst one to be eliminated, followed by z=v and then by v=z (there is a tie between

the two alternatives however, in this case, the order of elimination is irrelevant for the outcome of
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the election). In this case, y is the winner.

Clearly, the order of elimination matters because if we take a glance at the social ranking, this

is what we observe: y Ps v Ps z Ps x:

Even though y and v�s individual relative position did not change, we observe that in the social

ranking their position di¤er. The same can be concluded about x and z and also about y and z.

Therefore, the instant runo¤ voting procedure also violates independence of irrelevant alternatives.

Summing up,

How do one-stage systems perform in what concerns the discussed criteria?

Plurality Approval Instant Runo¤

PO 1 0 1

CW 0 0 0

CL 0 0 1

MON 1 1 0

IIA 0 0 0

WARP 0 0 0

Table 9

If we take a look at these results we might be led to conclude that approval performs worse than

plurality. In fact, in a binary prespective, and taking only these conditions into account, approval

seems to violate more conditions that plurality does. In any case, we should take into account
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that Fishburn and Brams (1978) argue that approval voting respects strategyproofness more than

plurality - and therefore plurality may actually violate the criteria it seems to meet. And although

strategyproofness is not within the scope of our analysis, this binary analysis is still insu¢ cient in

order to compare the performances of di¤erent methods: we cannot infer about the frequency of

violation of each of the conditions. In fact, we may have both systems violating a speci�c condition

but then one of them violating this condition more often.

3 Introduction of a second stage

The �rst question we set ourselves to answer: do systems perform better when a second stage is

introduced?

In a �rst step, we will consider a second stage, where only two alternatives compete under

plurality rule. Therefore, in the �rst stage, two nominees are chosen according to a speci�c voting

rule and then a second stage is needed to elect the winner through plurality. The reason why we

want to analyse the two-nominees case is because it is the one that is most extensively used in

political elections.

For the two-nominee scenario, we will not analyse the two-stage instant runo¤ as in this case

the second ballot would become trivial. In other words, using instant runo¤ until one alternative is

selected or interrupting the process when we get the two nominees and then selecting the winner by

plurality always leads to the same result. Hence, there would be no di¤erence between the one-stage

and two-stage case.

However we will analyse the two-stage instant runo¤ case when we allow for a third nominee
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in the second stage. Under this three-nominee scenario, we will �rst analyse the impact of shifting

from a one-stage system to a two-stage system. Afterwards, we will proceed analysing the three

three-nominee two-stage systems, trying to draw some preliminary conclusions on which methods

should be better and why.

Note that, in all runo¤ methods, a tie situation may occur in the �rst stage and in this type

of cases a tie breaking criterion would be needed as runo¤ systems de�ne a speci�c number of

alternatives going to the second stage. We could specify for instance a lexicographic criterion10 .

Consider, however, that in large elections such as the presidential election the likelihood of a tie

situation is extremely low. In fact, in many cases the election rules specify no tie-breaking criterion.

For that reason and for all two-stage voting systems, we will not specify any criterion to solve ties

in the �rst stage.

3.1 Two-nominee Case

3.1.1 Plurality Runo¤

Under two-nominee plurality runo¤ , voters are required to vote twice. In the �rst stage, two

nominees are chosen under plurality. Then, these two nominees will compete alone in a second

stage. The nominee that gets more votes in the second stage wins. If both alternatives get the

maximum number of votes, they will both be considered winners of the election.

It is straightforward that, under sincere voting, a second stage becomes trivial when one of the

candidates gets the majority of votes in the �rst stage. This is the reason why, in reality, a second

10This way we could avoid randomness without losing anonymity of individuals. Nonetheless, neutrality is lost.
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stage is only needed if the majority is not reached by any of the candidates in the �rst round. Yet,

note that in case a second stage exists results remain unchanged. However, for simplicity, in our

simulations we will always proceed to a second stage even when unnecessary.

3.1.2 Approval Runo¤

This method goes as follows. In the �rst stage agents vote by approving or disapproving candidates.

The two candidates with the highest number of approvals go to a second stage where the winner

is selected through plurality. Analogously to plurality runo¤ , we would expect approval runo¤ to

be the simple approval voting repeated twice. However, under our assumptions and with only

two candidates, plurality and approval are equivalent. Hence, with a second phase with only two

nominees, using plurality rule or approval is the same. Moreover, in the three-nominee scenario will

also choose to use plurality in the second stage. This allows for comparisons with other two-stage

methods that use plurality in the second stage11 . Therefore, from now on, we will refer to approval -

plurality as approval runo¤ .

3.1.3 Performance

The purpose of this analysis is to understand if there is any evidence of a better performance of

methods, when a second stage is added to the picture. If we look carefully at plurality runo¤ and

approval runo¤, we can see that some of the criteria respected were lost but others now become

respected. We will ignore tie situations in the nominees�selection. Let us then proceed with this

analysis.

11Moreover it makes simulations more easy to perform (section 4)
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Claim 1 Take x and y of a given set , where x Pi y, for all i. Then x is the winner in a pairwise

comparison between x and y. Moreover, when more alternatives are added to the picture and using

plurality as the voting system two scenarios with two di¤erent implications can occur:

1. V (x) > 0) V (x) > V (y) or,

2. V (x) = 0) V (x) = V (y)

It is easy to understand that if no agent ranks x �rst (V (x) = 0), then no agent will rank y as

well, because all of them strictly prefer x to y. In addition, it is straighforward that, in all other

scenarios x would always get a higher number of votes that y does.

Proposition 1 Two-nominee plurality runo¤ is Pareto optimal

Proof. Suppose not. Assume that we have x Pi y, for all i and at the same time S(; P ) = y.

If y wins the election then it had to win a pairwise comparison in the second stage. For that reason

we can be sure that x was not among the nominees (Claim 1). This means that when we compared

all the alternatives in the �rst stage y had at least as many votes as x. Through Claim 1 we know

that it can only be the case of V (x) = V (y) = 0. This means that no agent ranks x or y �rst. Two

things can be concluded so far:

1. A tie breaking criteria had to be used in the �rst stage and y was the selected alternative.

2. The second nominee has to be the only alternative of the set with V (:) > 0 and, for that reason,

ranks �rst in all individual preferences (otherwise y would not be among the nominees).
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Then y could not win a pairwise comparison with this other nominee which contradicts S(; P ) =

y.

Proposition 2 Two-nominee approval runo¤ is inconsistent with Pareto optimality.

We could be led to think that the fact that Pareto optimality is respected by plurality, together

with fact that, in the last stage, plurality is the system used, would be su¢ cient to guarantee that

if x Pi y for all i, then y could not win. However, this is not so. In particular when we consider

speci�c tie situations in the �rst stage.

Example 5 Take the following situation:

voter 1 voter 2 voter 3

x(1) v(1) x(1)

y(1) x(0) y(1)

z(0) z(0) v(1)

v(0) y(0) z(0)

Table 10

Let A(: ) be the function that assigns the number of approvals for each alternative. We have A(z) =

0, A(x) = A(y) = A(v) = 2. Therefore, there is a tie. Now suppose that, under a given tie-breaking

criterion, we get v and y as the alternatives selected to the second stage. In that case, y will be the

winner.
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Note that, nonetheless, approval runo¤ would only break Pareto optimality in this speci�c tie

situation which is unlikely in large elections.

Proposition 3 Two-nominee plurality runo¤ and approval runo¤ are inconsistent with the monotonic-

ity criterion.

Proof. Suppose the following situation,

6 voters 5 voters 4 voters 2 voters

x(1) z(1) y(1) y(1)

y(0) x(0) z(0) z(0)

z(0) y(0) x(0) x(0)

Table 11

Clearly, x and y, with six votes each, will be the alternatives passing on to the second stage. In

a pairwise comparison between x and y this is what we observe,

6 voters 5 voters 4 voters 2 voters

x(1) x(1) y(1) y(1)

y(0) y(0) x(0) x(0)

Table 12

Therefore, x is the winner under both two-nominee plurality runo¤ and approval runo¤.

Now suppose that we raise the relative position of x for the last group of voters. Note that
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no assumption was made on how the threshold utility level in the approval decision would vary in

these situations. Take the case where voters decide to only approve one alternative (equivalent to

plurality). According to the monotonicity criterion, x should still be the optimal social choice under

plurality runo¤ and approval runo¤. However, any change in relative positions may now change

the alternatives that proceed to the second stage and for that reason, it may in�uence the result. Let

us take a more detailed look into the consequences of this change.

6 voters 5 voters 4 voters 2 voters

x(1) z(1) y(1) x(1)

y(0) x(0) z(0) y(0)

z(0) y(0) x(0) z(0)

Table 13

Now, x and z are the two nominees, and so these will be the alternatives competing in the second

stage.

6 voters 5 voters 4 voters 2 voters

x(1) z(1) z(1) x(1)

y(0) x(0) x(0) z(0)

Table 14

Therefore, z beats x and wins the election.
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Obviously, we could guarantee that approval runo¤ ensures monotonicity under a speci�c as-

sumption on how the threshold level of utility varies. More speci�cally, if we assume that voters

will approve the exact same alternatives than they approved before together with the raised alter-

native, whenever reasonable (e.g. the alternative was raised to the top or right next to an approved

alternative). This would be enough to guarantee that the exact same alternatives would go to the

second stage and, hence, the social choice would be the same. In these cases, no alternative would

be hurt if it were better ranked in a speci�c individual preference ordering.

However, in general, under a two-stage system, a candidate can be clearly made worse o¤ by

being �liked more�in a group of voters. Equivalently, we observe that an alternative can be helped

if it is in a lower position in a given individual ranking of preferences. In our example, x is the

winner under some initial preferences and loses its victory when a group of voters actually likes x

even more than they did before. In contrast, z is the new winner and is in a worse position in a

speci�c individual ranking and in the exact same position in all others. This happens because y

is now at a lower position, in such a way that it has no longer su¢ cient votes to move on to the

second stage. Consequently, x has now to compete with z instead which has a stronger relative

position than x in the majority of voters�preferences.

The need of pre-selecting candidates makes any change of relative position of alternatives very

much relevant even if it might seem irrelevant at �rst glance. This is why monotonicity is now

violated but was not before, under the one-stage version of the runo¤ systems.

For the very same reasons, we can say that independence of irrelevant alternatives is still unre-

spected by the two two-nominee runo¤ systems. The reasoning is straightforward and therefore we

will state it without proof.
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Proposition 4 Independence of irrelevant alternatives is still not respected by two-nominee plural-

ity runo¤ and approval runo¤.

Other conditions that were previously violated still are. This is the case of the weak axiom of

revealed preferences and Condorcet winner criterion.

Proposition 5 Two nominee plurality runo¤ and approval runo¤ violate the weak axiom of revealed

preferences.

Proof. Consider the following case,

 = fv; x; y; zg

3 voters 2 voters 3 voters

x(1) y(1) v(1)

v(0) z(0) y(0)

y(0) x(0) z(0)

z(0) v(0) x(0)

Table 15

x and v are the two nominees. Hence, in the second stage we obtain,

3 voters 2 voters 3 voters

x(1) x(1) v(1)

v(0) v(0) x(0)

Table 16
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The selected alternative is therefore x.

Now take a subset m of  , m = fx; y; zg

3 voters 2 voters 3 voters

x(1) y(1) y(1)

y(0) z(0) z(0)

z(0) x(0) x(0)

Table 17

If plurality and approval runo¤ were to respect the weak axiom of revealed preferences, x should

still be the winner, as m \ S(; P ) 6= ;; hence S(m;P ) = m \ S(; P ) = x. However, this is not

the case. The fact that v is no longer available, changes the alternatives going to the second stage.

Now, x and y compete in a second round and, in this case, x is no longer the winner. y wins and

therefore, S(m;P ) 6= m \ S(; P ). Both plurality runo¤ and approval runo¤ violate WARP.

Proposition 6 Condorcet winner criterion is still not respected by the two-nominee approval runo¤

and plurality runo¤
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Proof. Consider the following situation,

4 voters 3 voters 2 voters

x(1) y(1) z(1)

z(0) z(0) y(0)

y(0) x(0) x(0)

Table18

The two nominees are x and y. However the Condorcet winner is z as it beats both x and y in

pairwise comparisons. Clearly, the Condorcet winner criterion is violated by both plurality runo¤

and consequently by approval runo¤ .

So far, we have veri�ed thatmonotonicity is lost and that the weak axiom of revealed preferences,

independence of irrelevant alternatives and the Condorcet winner criterion are still violated when

a second stage is added.

Proposition 7 Both two-nominee plurality runo¤ and approval runo¤ respect the Condorcet loser

criterion.

Proof. A Condorcet loser is the alternative that loses all pairwise comparisons. Hence, if x is

the Condorcet loser of the set  and V (: ) is the function that counts the number of votes that each

alternative has, we know that V (x) < V (y), where y is the alternative pairwise compared to x, and

this is true for all y 2 .
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A necessary condition for a social choice, in any of these two runo¤ systems, is to win the second

round of elections. Taking x and an unspeci�ed y 2  as the two nominees in the second stage,

for x to win it will need V (x) � V (y). So, either x is not a Condorcet loser or it does not win the

second round. In the instance of both happening we would therefore reach a contradiction.

Hence, even if it happens to be among the nominees, the very de�nition of Condorcet loser

ensures that it cannot win the last stage of the election.

3.2 Three-nominee case

3.2.1 Plurality and Approval Runo¤

When another nominee is added to the picture, the conditions that were violated before will remain

so, as the reason why they were violated before had nothing to do with the number of nominees but

due to the voting system procedure itself. The fact that independence of irrelevant alternatives,

monotonicity and the weak axiom of revealed preferences, are violated, by both two-nominee plural-

ity and approval runo¤ , is a consequence of the existence of a second stage and not of the number

of nominees in the second stage. Changes in the individual order of preferences, or in the set of

alternatives may change the alternatives that make it to the second stage and hence, the winner

might be di¤erent. This could happen whether we have two, three or more nominees. Moreover,

the fact that Pareto optimality is violated under approval runo¤ has only to do with the method

used in the �rst stage (approval) which is exactly the same when we introduce another nominee.

This is why we state without proof that these three criteria are still violated when we add an extra

nominee to the procedure.
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Two-nominee plurality runo¤ and approval runo¤ were only able to respect two and one condi-

tion respectively. One of these conditions, Pareto optimality (only respected by plurality runo¤ ), is

respected because of the voting system itself and the fact that it is respected has again no relation

with the number of nominees in the second stage. Note, however, that the reason why both the

runo¤ voting systems were consistent with Condorcet loser criterion before was not due to the

scheme used in the second stage. In fact, plurality voting is typically inconsistent with Condorcet

loser condition. What guarantees that the Condorcet loser is not among the elected alternatives, is

the fact that we have two alternatives being compared in the second stage, and Condorcet losers are

denominated so because they lose all pairwise comparisons. Hence, by adding one more nominee to

the second stage, Condorcet loser condition is now violated by both plurality and approval runo¤ .

3.2.2 Two-stage instant runo¤

In a similar fashion to the approval runo¤ , the two-stage instant runo¤ will not be the instant

runo¤ repeated twice. As a matter of fact, this would lead to a trivial and so unnecessary extra

stage. Results would di¤er and due to that the only plausible reason to use such scheme would

be the necessity of a second stage. But even in the Oscar case, where the phase with nominees is

necessary, plurality is the system chosen for the second stage after a �rst stage where instant runo¤

is used12 . We will denote the voting system where instant runo¤ is used in the �rst stage and

plurality in the second to select the best alternative from a set of three nominees as the two-stage

instant runo¤ .

Again, all previously violated criteria will remain so. Furthermore, some previously respected

12With the exception of the 2010 Best Picture Academy Award, that now asks the members of the academy to
rank the ten nominees according to their preferences. In this case, instant runo¤ is repeated twice.
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criteria might be lost. The ability to reject the Condorcet loser is the only condition that is lost

when an extra stage is added to the picture and the reason is again straightforward. The two-stage

instant runo¤ is still Pareto optimal. If xPi y, for all i, even though we cannot guarantee that y

is not among the nominees, we know that if it is, so is x and then the fact that we use plurality in

the second stage ensures that y will never be chosen.

We can summarize the results in the following tables:

Plurality Plurality Runo¤ (two-nominee) Plurality Runo¤ (three-nominee)

PO 1 1 1

CW 0 0 0

CL 0 1 0

MON 1 0 0

IIA 0 0 0

WARP 0 0 0

Table 19
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Approval Approval Runo¤ (two-nominee) Approval Runo¤ (three-nominee)

PO 0 0 0

CW 0 0 0

CL 0 1 0

MON 1 0 0

IIA 0 0 0

WARP 0 0 0

Table 20

Instant Runo¤ two-stage Instant Runo¤ (three-nominee)

PO 1 1

CW 0 0

CL 1 0

MON 0 0

IIA 0 0

WARP 0 0

Table 21

It is worth remarking that we have assumed throught that agents will not vote strategically.
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This assumption will be discussed in more detail in the next section.

Apart from that, if we take a look at the tables, we could get the wrong impression and trust

that, by introducing a second stage, nothing gets signi�cantly better. This, however, would be at

odds with the worldwide use of two-stage systems (even when two stages are not strictly necessary)

which are more costly and time-consuming. Also, we might be led to conclude that no signi�cant

di¤erence exists between the analysed voting systems.

Note however that this is a binary analysis that provides little information. Some conditions

may be less or more violated than they were before and so, stating that a given criterion is still

violated is not enough for a thorough analysis. Having that in mind, a frequency analysis with

preference simulation will be our next step, focusing on the two Condorcet criteria.

4 Frequency analysis

In this section, we will analyse the e¤ects of the introduction of a second stage but from a di¤erent

perspective.

The Condorcet winner is the alternative that beats all the others in pairwise contests. As stated

by Saari and Newenhizen (1985), �the Condorcet winner appears to capture the true choice of the

voters�. However, none of our voting systems can guarantee that the Condorcet winner is elected

whenever it exists.

In turn, the election of the Condorcet loser could be seen as even more problematic. The

fact that an alternative that loses all pairwise comparisons is elected as the winner of a given set

means that the system leads to a poor re�ection of individual preferences. Hence, respecting the
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Condorcet loser criterion would be clearly desirable. Unfortunately, not all voting systems are

capable of behaving this way. For that reason, it is also important to understand whether we can

see an improvement in this context by introducing a second stage.

Through simulation of preferences, it is possible to analyse the scale to which a given condition

is violated under di¤erent voting systems. In our case, we will be able to tell if, by introducing a

second stage, we are able to elect the Condorcet winner more often than we were with a single-stage

system. The same approach will allow us to check if the Condorcet loser is selected fewer times,

when a second stage is introduced. Moreover, we will be able to compare the di¤erent two-stage

systems in terms of frequency of violation of the Condorcet criteria.

4.1 Simulation method

Simulation is needed to get individual preferences. A lot of assumptions can be made about these

preferences. We will start by simulating the model using the most common assumption about

preferences. Afterwards, we will try to con�rm the results we got using di¤erent assumption about

preferences. This will allow us to get more reliable results.

4.1.1 Impartial Culture

The impartial culture assumption (IC ) is widely used due to its simplicity. Under IC, each individual

has equal probability of having each of the possible preference pro�les. If we have n alternatives

then, the probability of a given individual having a speci�c pro�le is 1/n!. This seems a pretty

obvious and simple assumption in general however, in many situations, it is unrealistic. This is

the case of presidential elections. Typically, the fact that someone prefers a given candidate might
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in�uence my choice and at the same time my favourite candidate is correlated to my second favourite

candidate, and so on. Take the following example.

x=extreme right wing candidate

y=centre candidate

z=extreme left wing candidate

Suppose that x is my favourite candidate. Typically, z will be my least preferred candidate as

its platform ideals supposedly di¤er more from mine than y�s ideals do. So, preferring y after x is

much more likely than preferring z after x and therefore this leaves y as the worst alternative. We

may then observe that preference pro�les are not equally likely.

Anyway, in many situations, this assumption makes sense and due to its lack of complexity

we shall proceed based on it. But we will also consider an alternative approach in order to check

whether the results are robust to changes in assumptions.

4.1.2 Single-peakedness

Under impartial culture, preferences are completely heterogeneous which might not be as realistic

as desirable. To simulate more homogeneous preferences, we will work under the assumption of

single-peaked preferences. Under this assumption, we know that voters�preferences re�ect the fact

that agents are worse o¤, the further away they are from their ideal choice.

Example 6 Suppose the case of �ve alternatives, organized left to right in one dimension: fa; b; c; d; eg.

Suppose that c is the ideal choice for a given voter. Then, when this voter compares alternatives to
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the left of c it strictly preferes the one that its closer to the ideal choice. The same is true while

comparing alternatives to the right of c.

Under single-peakedness, preferences ordered like fc; e; d; b; ag are not allowed because e should

be less preferred than d due to the fact that e is further from the ideal point c. Note, however, that

we are not able to tell which of the alternatives, b and d, are �more similar�to c hence, we can only

compare alternatives to the right of the preferred one or to the left between themselves. Preferences

ordered like fc; b; a; d; eg are allowed as we may, in fact, have a preferred to d even if a is further

from ideal choice c. This makes sense as for a multiplicity of reasons voters may for instance have

a preference for the alternatives to the left of the ideal choice over the right alternatives.

So, after simulating the model under impartial culture, we will try to understand how things

work if we assume single-peakedness of preferences.

4.2 The model

In this section, our concern is to understand how the ability of electing the Condorcet winner changes

according to the voting system. We know that none of the methods used is able to guarantee the

election of the pairwise comparison winner when it exists. However, we are now interested in

analysing which method respects this condition more often. In particular, we want to verify if

the introduction of a second stage generates an improvement in this context. The same should be

veri�ed about the Condorcet loser.

To replicate a voting situation we need voters, with their respective preferences, and a voting

system to select the winner. In theory, besides preferences, we would still need the actual vote
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however, we are assuming sincere voting and therefore, votes re�ect true preferences of each agent.

This may seem a poor assumption as agents tend to maximize the utility of their vote, the so-called

strategic vote. However, Blais, Laslier, Sauger and Van der Straeten (2009) show that sincere

voting works better for a very complex voting system while strategic voting works better for simple

methods. Furthermore, they suggest that the probability of sincere voting might also depend on the

number of candidates. In addition, Laslier (2009) proves that for a large electorate, in the absence

of ties, the best response under approval voting is sincere.

The fact that, in our model, we will rely on a voting situation where most complex voting

systems are used (runo¤ systems) and the fact that we will have seven candidates competing (while

most studies use three) makes the sincere voting assumption more realistic than it would seem at

�rst glance. Under some voting systems, such as instant runo¤ , the �fty voters would �nd it di¢ cult

to fully understand each of the seven candidates�probability of winning (pivot probabilities) and

so, a complete rational behaviour would be di¢ cult in reality. Understanding the optimal strategy

would require a complicated reasoning and consequently, agents would hardly �nd a clear utility

maximizing voting strategy. Computational complexity would most likely lead to sincere voting.

In the model, we replicate a voting situation with �fty voters expressing their true preferences

for seven candidates where ties are not allowed and so only one of the alternatives can win. Ties

are broken randomly.

We only allow for one winner mainly due to practical reasons when comparing outcomes of the

di¤erent voting systems. Furthermore, this is what typically happens in reality where the majority

of situations asks for a single winner. Therefore, we observe the need of tie breaking rules in

contests and in elections. A random choice of the winner in a case of tying seems to be a plausible
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assumption in this case. In these cases, we will therefore assume a random choice of the winner.

In approval voting, the approval criterion that we have chosen was a random one. The computer

would randomly select voters�threshold line. A potential improvement of the model would be, for

instance, to understand how in reality an approval decision is made and to try to replicate it in the

model. When Laslier and Van der Straeten (2008) collected the French data for the presidential

elections, they concluded that, under a set of sixteen alternatives, voters would approve, on average

3,15 of them. They also found that the distribution around this point was smooth and that one-

name ballots were rare. This is the kind of information that can be used to replicate real situations

and, therefore, to reach more reliable results.

We will compare eight di¤erent voting systems�outcomes with what would be the Condorcet

method winner, the so-called Condorcet winner (if it exists), and the Condorcet loser. Keep in

mind that our aim is to see if the introduction of a second stage makes the Condorcet winner and

the Condorcet loser criteria more often respected.

In order to do so, we will simulate a hundred thousand voting situations. These situations only

di¤er in voters�preferences which are a hundred thousand times drawn randomly and independently

from a given set of preferences. This set of preferences is di¤erent depending on the assumptions

we make about them. Under single-peakedness, for instance, we have the set of all possible single-

peaked preferences while under impartial culture all preference orderings may appear. In each of

the individual situations, composed of �fty voters and seven candidates, we will have a set of ten

di¤erent outcomes, each one corresponding to a given method (eight di¤erent voting systems plus

the Condorcet winner and Condorcet loser). This will be repeated a hundred thousand times and

so, in the end, we will have a hundred thousand by ten matrix of results.
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The ideia in this simulation was to deviate from the typical three candidate approach. Because

we are working with two-stage systems we will be making a pre-selection of alternatives before

the winner is actually chosen. Then, due to the reason that we want our results to apply not

only to political elections, e.g. presidential elections, but also to a multiplicity of situations such

as the Oscar case we will be working in two distinct situations: two-nominee two-stage systems

and three-nominee two-stage systems. The fact that we are making pre-extractions of alternatives

makes it already clear that three candidates is not enough. Then, the fact that we will need in some

situations to work with three nominees makes it clear that even �ve nominees might be insu¢ cient.

However, having more candidates makes our analysis more and more complex. In particular, in

the case of three nominees and impartial culture we have a set of 6 possible agents� preference

pro�les while in the case of seven candidates for instance this number rises to 5040. Moreover,

constantly working with information of 3*50*10000 dimension is quite di¤erent from working with

a 7*50*10000 dimension information . For that reason we were not able to analyse the case of

more than seven candidates, due to computational restrictions. Trying to reconcile an acceptable

number of candidates with an acceptable number of voters together with an acceptable number

of simulations and analysing at the same time eight voting systems and two criteria is a complex

problem and restrictions will bind.

The results will be analysed as described previously and a consistent frequency analysis will be

drawn.

It is important to underline that, in spite of computational complexity, the number of candidates

and voters is completely adjustable. In fact, we would suggest as a further improvement of this

study to change these variables and see how the results would di¤er accordingly. Another possible

change for a more complete study would be to choose a di¤erent criterion and repeat the procedure.
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Some conditions could be easily programmed and so the same kind of study could be done with

no signi�cant extra e¤ort. In addition, this model could be useful in cases where we have data

on agents�preferences as it would allow us to predict which candidate would be the winner under

sincere voting and afterwards, compare it with the actual winner. Furthermore, we could verify

how the voting system choice would determine the election winner.

Before looking at the outcome of the simulation, let us �rst take a look at some important

theoretical results. Note that these results hold independently of the assumption on preferences.

Claim 2 In the absence os ties, whenever we select candidates for a second stage, under any of the

methods, the winner of the equivalent one-stage method will be among the set of nominees .

The reasoning of this claim is straightforward. Note that, for instance, under plurality runo¤ ,

we use plurality to elect the nominees. The same can be said about approval runo¤ and two-stage

instant runo¤ . Hence, if a given alternative was the winner under plurality it is obviously among the

two or three more voted alternatives. Therefore, this alternative will be among the set of nominees.

Claim 3 In every voting situation, where the Condorcet winner is chosen under a one-stage method

and no ties have occured, it will also be chosen under its two-stage equivalent when only two nominees

are pre-selected.

Proof. If the Condorcet winner was chosen, under a one-stage system, we know that it will

for sure be among the two nominees (Claim 2). Then, by the de�nition of a Condorcet winner, we

know that it will be elected through plurality when only two alternatives are compared.

For these reasons, we already get the intuition that when a second stage with two nominees is
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introduced, things very hardly get worse. This fact is re�ected in our simulation�s results under

both the assumptions made on preferences.

It is important to stress the fact that all the results obtained were completely robust as if we were

to simulate the voting situations 10 times instead of 10000 there would be no signi�cant change.

4.2.1 Results under IC

After the voting situations were simulated, we were able to verify how often Condorcet winners

were elected, under each of the voting systems in question.

Let us take a take a look at the results:

Condorcet winners in the simulation under IC

Total number of CW 44694

Relative number of CW 44; 694%

Table 22
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Voting systems and the Condorcet winner criterion under IC

Voting System Absolute Frequency of CW election Relative Frequency of CW election

Plurality 24113 53; 951%

Plurality Runo¤ (two-nominee) 33495 74; 943%

Plurality Runo¤ (three-nominee) 31801 71; 153%

Approval 27499 61; 527%

Approval Runo¤ (two-nominee) 37266 83; 380%

Approval Runo¤ (three-nominee) 35101 78; 536%

Instant Runo¤ 39378 88; 106%

Two-stage instant runo¤ 33009 73; 856%

Table 23

For approval and plurality, introducing a second stage increases the probability of electing the

Condorcet winner, when one exists. This improvement is particularly strong in the two-nominee

case. This leads us to the intuitive conclusion that, many times, when Condorcet winners are not

elected, they are, in fact, among the two or three most-voted alternatives.

In the case of instant runo¤ , the introduction of a second stage is not bene�cial. Note however,

that instant runo¤ was already a multi-stage process but where voters only needed to vote once.

In the seven candidates case, instant runo¤ is in fact, a six-stage process of elimination of weaker

candidates. What we actually do in the two-stage instant runo¤ is to accelerate the process, by

skipping one of the steps. The �rst stage is an instant runo¤ procedure interrupted after its fourth

44



stage and then, we add an extra step, where plurality is used to select to winner from three nominees.

The two-stage instant runo¤ is therefore a �ve-stage process, yet, voters are required to vote twice.

Consequently, it has, in practice, fewer stages than instant runo¤ has. The result is as expected.

So, given this interpretation of the two-stage instant runo¤ , we may conclude that under im-

partial culture more stages increase the probability of election of a Condorcet winner. This is the

reason why, instant runo¤ , is the most e¢ cient of the eight voting systems in what respects the

Condorcet winner criterion. By looking at the data, we conclude that, under instant runo¤ , we are

able to elect more �fteen thousand and two hundred sixty �ve Condorcet winners that were not

previously selected through plurality. This is a large number and comes as a result of an e¢ cient

elimination of weaker alternatives.

In what respects the two-stage voting procedures, approval runo¤ voting seems to be the most

e¢ cient of all. Plurality runo¤ comes o¤ as the least appealing in what concerns the Condorcet

winner election. Although di¤erences between the three two-stage systems are not as strong as

the di¤erences between one-stage and two-stage systems, we observe that, if we look to the relative

frequency as an e¢ ciency rate, three-nominee approval runo¤ is 4,48 percentage points more e¢ -

cient than two-stage instant runo¤ and 7,383 percentage points more e¢ cient than three-nominee

plurality runo¤.

We may acknowledge that each version of approval voting beats plurality in its equivalent coun-

terpart and therefore this supports the idea that approval is a good substitute for plurality.

The very same analysis was done for the Condorcet loser criterion. Here, our goal is to verify

if the introduction of a second stage reduces the probability of electing a Condorcet loser. In fact,

having an additional stage decreases signi�cantly the likelihood of selecting a Condorcet loser as
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the social choice. In the extreme cases, where there are only two nominees in the second stage, the

likelihood of this is reduced to zero.

The results are as following:

Condorcet losers in the simulation under IC

Total Number of CL 44659

Relative number of CL 44; 659%

Table 24

Voting systems and the Condorcet loser criterion under IC

Absolute frequency of CL election Relative frequency of CL election

Plurality 418 0; 93523%

Plurality Runo¤ (2 nominees) 0 0

Plurality Runo¤ (3 nominees) 80 0; 17914%

Approval 89 0; 19929%

Approval Runo¤ (2 nominees) 0 0

Approval Runo¤ (3 nominees) 17 0; 03807%

Instant Runo¤ 0 0

Two-stage instant runo¤ 78 0; 174657%

Table 25
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If we take a look at the results, the �rst thing to be noticed is that the violation of the Condorcet

loser criterion is a problem with a signi�cantly smaller dimension than the violation of the Condorcet

winner criterion. The frequency at which each voting system selects the Condorcet loser as the

election winner is never superior to 1%, while the frequency of violation of the Condorcet winner

criterion reaches 46% in plurality�s case.

Although, overall, numbers are almost insigni�cant in the Condorcet loser criterion�s case, we

observe that, under plurality and approval, when we add an extra stage, even if we use three

nominees, we are able to reduce the probability of an undesirable election of the Condorcet loser by

more than 80%. Obviously, and for reasons stated previously, when we have only two nominees, we

are able to guarantee that no Condorcet loser is ever selected as the social choice. In these cases,

the e¢ ciency rate, which can be seen as the relative frequency of non-election of the Condorcet loser

when one exists, is 100%. Note that, this is also the case of instant runo¤, although in theory it

is a one-stage voting system. A two-stage instant runo¤ , having three nominees competing in the

last stage, can only perform worse than instant runo¤ . In fact, two-stage instant runo¤ only has

an e¢ ciency rate of approximately 99,83 %, as with this method, the Condorcet loser is elected 78

times.

Again, excluding instant runo¤ and focusing on three-nominee runo¤s, approval runo¤ is the

most e¢ cient in what respects the Condorcet loser criterion. Furthermore, all types of approval

voting outperform their plurality counterparts.

Exactly in the same fashion as in the Condorcet winner analysis, instant runo¤ is the most

e¢ cient one-stage method and the reason for this is that it is, in fact, a six-stage voting system

even though voters only need to cast a vote once. In what concerns three-nominee two-stage voting
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systems, approval runo¤ voting excels, electing the Condorcet loser 79 % less often than plurality

runo¤ and 78 % less often than two-stage instant runo¤ .

We can once again conclude that, under impartial culture, introducing a second stage improves

voting systems ability to respect the Condorcet loser criterion.

4.2.2 Results under single-peakedness

The results under single-peakedness are quite di¤erent and the reason is clear. Under single-

peakedness, the center alternatives are the most likely to win. Take the case of seven candidates

organized left to right in one dimension, fa; b; c; d; e; f; gg. Note that there is only one possible

preference pro�le ranking a as the top alternative, which is fa; b; c; d; e; f; gg, while there are twenty

possible preference pro�les ranking d at the top. In fact, the set of all possible single-peaked

preferences, with seven candidates, is composed of sixty-four di¤erent preference orderings.
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The distribution of single-peaked preference orderings according to the top-ranked alternative

Number of preferences ranking a �rst 1

Number of preferences ranking b �rst 6

Number of preferences ranking c �rst 15

Number of preferences ranking d �rst 20

Number of preferences ranking e �rst 15

Number of preferences ranking f �rst 6

Number of preferences ranking g �rst 1

Table 26

Therefore, a random draw from the whole set of single-peaked preferences will make it more

likely to have d as the Condorcet winner. Comparing a and d; we know that agents preferring

candidates to the right of d will prefer d to a. Moreover, some agents preferring candidates to the

left might also prefer d to a. Candidate d could therefore easily get a majority against a. The fact

that, in our sample, the number of preferences where d is the top candidate is much larger than the

ones where b is the top candidate also makes it easier for d to beat b. Finally, we would expect d

to beat c as well, even though we might expect this to be less likely than the previous cases (and

note that for e,f and g the reasoning is symmetric). In fact, 98% of the times where a Condorcet

winner exists in our simulation, it is indeed d. In the remaining 2% of cases, the winner is either c

or e.

Moreover, under homogenous preferences, we expect the existence of both a Condorcet winner
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and Condorcet loser to be easier to obtain. Actually, in our simulation, we concluded that 98; 263%

of the times we had a Condorcet winner. This is almost 120% more Condorcet winners than we

had under impartial culture. As expected, the probability of the existence of a Condorcet loser also

increased substantially. Under impartial culture we found a Condorcet loser approximately 45% of

the times while under single-peakedness this number rises to 89%

In what concerns the Condorcet loser criterion and under single-peakedness, an important con-

clusions is that very seldom would a method choose a or g as winners. In fact, none of the methods,

each using one hundred thousand simulations, ever elects the Condorcet loser. However, this was

not the case under impartial culture because preferences were much more heterogeneous and so,

at �rst glance, it would not be so easy to detect a Condorcet loser in a speci�c situation with

�fty voters and seven candidates. Here, however, we would barely need calculations to see that a

Condorcet loser would be either a or g.

Claim 4 Under single peakedness, every preference pro�le ranks either a or g as the least preferred

alternative.

The reasoning of this claim is straightfoward and so we state it without proof.

Proposition 8 Under single-peakedness, whenever a Condorcet loser exists, it will be one of the

more extreme alternatives.

Proof. Take for instance, without loss of generality, the case of a given set of seven alternatives,

organized left to right as follows: fa; b; c; d; e; f; gg. Here, whenever a Condorcet loser exists, we

can be sure that it is either a or g.
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Through claim 4, we know that one of three things can happen:

1. a is the alternative that ranks last in the majority of voters�preferences

2. g is the alternative that ranks last in the majority of votes�preferences

3. a and g rank last with the exact same frequency

If we consider case 1, we can immediatly conclude that if we compare a to any other alternative,

we would have a lose that pairwise contest because a is ranked last in more than 50% of the

preference orderings. This way, no candidate other than a could be the Condorcet loser.

The reasoning is similar for scenario 2 but with g as the Condorcet loser instead.

Under Scenario 3, we know that if we compare a to g, the two alternatives will tie and therefore

neither a nor g can be the Condorcet loser, which by de�nition requires the alternative to strictly

lose every pairwise comparison. Aditionally, note that no other alternative can in fact be the

Condorcet loser. Both a and g are ranked in a lower position than all the other alternatives in at

least 50% of the preferences�pro�les.

We can therefore conclude that, under single-peakedness, when a Condorcet loser exists, it is

either the extreme right alternative (in this case g) or the extreme left alternative (a).

This is the reason why, in our simulation, we always observe either a, g or no Condorcet loser

at all. Moreover, it becomes almost impossible for one of our methods to elect the Condorcet loser.

Let us check speci�c results.
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Condorcet winners in the simulation under single-peakedness

Total number of CW 98263

Relative number of CW 98; 263%

Table 27

Voting systems and the Condorcet winner criterion under single-peakedness

Voting System Absolute Frequency of CW election Relative Frequency of CW election

Plurality 66033 67; 200%

Plurality Runo¤ (2 nominees) 87934 89; 488%

Plurality Runo¤ (3 nominees) 34770 35; 385%

Approval 73004 74; 294%

Approval Runo¤ (2 nominees) 91821 93; 444%

Approval Runo¤ (3 nominees) 34254 34; 860%

Instant Runo¤ 86695 88; 228%

Two-stage instant runo¤ 31625 32; 184%

Table 28

As expected (claim 3), introducing a second stage, with two nominees to be elected, only makes

things better. If we look at the results, plurality runo¤ with two nominees elects the Condorcet
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winner around 33% more times than plurality. This number reduces to 25% when we compare

two-nominee approval runo¤ with one-stage approval. Consequently, we �nd evidence that the

introduction a second stage, where the winner is chosen from a set of two nominees, improves the

chances of electing the Condorcet winner.

Suprisingly enough, this improvement is no longer observed when we add a nominee to the

second stage. Let us then try to understand why three-nominee two-stage procedures perform this

ine¢ ciently under single-peakedness while under impartial culture they performed with much more

success and accuracy than any one-stage method.

Under single-peaked preferences and in particular in our simulation, taking all the methods

into consideration, more than 90% of the times the three nominees are the center candidates. For

instance, if we have fa; b; c; d; e; f; gg as the set of alternatives, the center candidates will be fc; d; eg.

After getting these three nominees, plurality will be the system used to select the winner under all

the two-stage systems. Note that c will obtain all the votes to the left of d, e will obtain all the

votes to the right and d will only obtain votes of agents who rank d as the top candidate. So, it

is enough to have less than one third of the agents ranking d as the top alternative to know that

c or e will win the election, even if we have d as the Condorcet winner. For that reason, we have

three-nominee two-stage systems performing much worse than their one-stage counterparts.
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Condorcet losers in the simulation under single-peakedness

Total Number of CL 89 044

Relative number of CL 89; 044 %

Table 29

As stated before, under single-peakedness, no method, in a total of a hundred thousand sim-

ulations, ever elects the Condorcet loser. The main reason for this is the fact that under single-

peakedness we have much more homogeneous preferences than before. We now have 99% more

Condorcet losers than under impartial culture which is demonstrates the homogeneity of prefer-

ences. Under single-peakedness, we would seldom �nd a Condorcet loser among the two or three

second-stage nominees and, for that reason, it is much easier to reject a Condorcet loser than it

was under impartial culture. Actually, we can say that, in practice, it becomes almost impossible

to violate the Condorcet loser criteria although theoretically it is not (under one-stage and three-

nominee two-stage methods). The following example shows that it is indeed possible to violate the

Condorcet loser criterion, even under single peakedness.

Example 7 Take the case of seven alternatives fa; b; c; d; e; f; gg and 26 voters with the following

preferences over the set of candidates:
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11 voters 6 voters 5 voters 4 voters

a(1) g(1) c(1) f(1)

b(0) f(0) d(0) g(0)

c(0) e(0) e(0) e(0)

d(0) d(0) f(0) d(0)

e(0) c(0) g(0) c(0)

f(0) b(0) b(0) b(0)

g(0) a(0) a(0) a(0)

Table 30

Note that a loses all pairwise comparisons with any alternative other that itself and therefore,

by de�nition, it is the Condorcet loser of this set of preferences.

However, at the same time, we elect it as the social choice, S (; P ), under one-stage plurality

and approval as well under two-stage instant runo¤ and three nominee two-stage plurality and

approval.

5 Conclusions

Two-stage systems are more and more commonly used. We see them in the main political elections

all over the world as well as many other important contests. The Academy of Motion Picture Arts
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and Sciences (AMPAS), for instance, uses a two-stage system in the process os selecting the Oscar

winner, for each category.

However, ceteris paribus, adding a second stage is costly. These systems require voters to go to

the polls twice and, in the case of political elections, political instability may rise in-between stages.

Therefore, it is imperative to understand why people use these systems. Trying to understand how

two-stage systems perform better than one-stage systems, is the main focus of this paper.

We have analysed the impact of moving from a one-stage to a two-stage procedure in three

di¤erent methods: plurality, approval and instant runo¤ voting system. We have studied both

cases of two-nominee and three-nominee selection. The performance of the di¤erent methods was

evaluated according to their ability to respect six di¤erent criteria which are currently among the

most debated ones in the literature.

At �rst, in a �rst binary approach, nothing seems to get signi�cantly better, when one adds

to the picture a second stage where plurality is the system used. For this reason, we decided to

focus on the Condorcet criteria and proceed with a frequency analysis in order to understand if

these criteria are respected more or less frequently, when a second stage is introduced. The ability

to select the Condorcet winner, by many considered the true winner, and rejecting the Condorcet

loser is somewhat desirable. For this reason, the two Condorcet criteria were the ones chosen to be

analysed in a frequency context.

Through simulation, under speci�c conditions, such as the number of candidates and number

of voters, we were able to verify that, in the cases of plurality and approval, the Condorcet winner

criterion is less frequently violated if a second stage is introduced, where plurality is the system

used to select the winner from a set of two nominees. This fact was veri�ed under two distinct
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assumptions on preferences: impartial culture and single-peakedness.

However, when we have three nominees competing together in the second stage, we can no

longer state that an extra stage increases the probability of electing the Condorcet winner, when

one exists. It will now depend on the degree of homogeneity of preferences. Under impartial culture,

for instance, we observe that although the three-nominee runo¤s do not perform as e¢ ciently as

the two-nominee ones, they perform much more successfully than one-stage systems. Hence, having

an extra stage is undoubtedly bene�cial in what concerns voting systems�capability of electing the

so called Condorcet winner. Unfortunately, this is no longer true when we face more homogeneous

preferences such as the case of single-peaked ones. Under this strong assumption on preferences,

having an extra stage where three candidates will compete under plurality, has a negative e¤ect on

the method�s ability to respect the Condorcet winner criterion. We observed that one-stage systems

are capable of electing at least one hundred percent more Condorcet winners than their three-

nominee two-stage equivalents. These numbers are signi�cant and should be taken into account

while discussing the optimality of two-stage systems.

Instant runo¤ is the most e¢ cient one-stage system. This is because it is in fact a multi-stage

procedure with only two nominees in the last stage, except that voters only need to cast their

vote once. In fact, under impartial culture, it performs better than all the two-stage systems as

well. In addition, under any assumption on preferences, instant runo¤ performs better than its

three-nominee two-stage equivalent, the two-stage instant runo¤ . Among the two-nominee two-

stage systems, approval runo¤ is the one that stands out in its capability of electing the Condorcet

winner.

In what concerns the Condorcet loser criterion, introducing a second stage is bene�cial under
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any voting system. Under two-nominee runo¤s, Condorcet losers, by de�nition, can never be

elected. Moreover, under three nominees, the probability of electing a Condorcet loser decreases

signi�cantly, independently of the assumptions made on preferences. Approval runo¤ is again the

two-stage system that more e¢ ciently satis�es this Condorcet criterion. Elections that by design

require a second stage should carefully consider the hypothesis of adopting approval runo¤ as their

voting method to select the winner.

Note that, under any assumption on preferences, all approval methods beat their plurality coun-

terparts in the ability to respect the Condorcet criteria. This may leads us to think that if we were

to use approval in the second stage, results would most likely be improved. In particular, under

single-peakedness, it could actually be the case that three-nominee runo¤s would again perform

better than their one-stage counterparts, in what concers the Condorcet winner criterion.

Although very strong assumptions were made on preferences, it is important to understand, that

under some circumstances, having a second stage, where plurality is the system used, might not be

bene�cial in what concerns the Condorcet winner criterion. Its positive input depends really on the

number of nominees and the type of preferences agents have. The more homeogeneous preferences

are, the less appealing the three-nominee two-stage systems will be. The fact that these systems are

used among many di¤erent contexts, and in very important elections makes this kind of analysis

particularly useful.

However, this analysis is not enough to infer about the overall optimality of two-stage systems. In

spite of the computational complexity, using approval in the second stage would allow for insightful

conclusions on the subject. The same can be said of repeating the simulation for a di¤erent number

of candidates and voters. Additional criteria could also be analysed so that we may fully understand
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the main advantages of using a more expensive system, such as the two-stage system. It would also

be bene�tial for the study to analyse how the incentives for strategic behaviour change, when a

second stage is introduced.
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