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Abstract 

This paper studies the monthly flows of bond fund geographically focused on Europe and on the 

United States in the period between 2002 and 2012, with special attention to the effect of the 

financial crisis of 2008. Through the usage of the panel quantile regression model, this study aims 

to identify which funds, in terms of their characteristics, are more likely to suffer a run. The main 

finding is that the impact of the characteristics of fund flows is not equal for all funds, varying with 

issuer entity, the state of the economy as well as the focus of the fund. During the financial crisis, 

runs were more pronounced, situation that still affects funds geographically focused on Europe. 
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1. Introduction 

Since the global financial crisis in 2008, the global economy has experienced a slow growth, 

which exposed the unsustainable fiscal policies of many countries around the world namely in 

Europe. This debt crisis had and still has a negative impact on the global financial markets, where 

investors’ reactions to any bad news coming were fast, leading, in most of the times, to runs of all 

types of securities and funds. 

Nowadays, this is one of the most important problems affecting the world economy and, until 

now, with no end in sight. This is a crisis that is considered by many economists as the worst after 

the economic depression that also emerged in the United States at the end of 1920’s: The Great 

Depression of 1929. At that time, the desire to misallocate funds was greater, especially in banks 

where depositors withdraw their deposits from banks for the fear of the safety of their money. 

Therefore, runs are a phenomenon that can largely be explained by investors’ actions and its 

empirical evidence started a long time ago. Diamond and Dybvig (1983) is one of the most 

important literature references about runs that tries to explain how runs propagate in our society, 

focusing on the problem of the maturity transformation and its relation with the investors’ actions. 

Another important theory, developed by Jacklin and Bhattacharya (1988), is based on the 

relationship between insolvent banks and runs. 

In this paper, I study runs on bond funds in the period between 2002 and 2012, with special focus 

on the financial crisis of 2008. Bond funds are not all equal, they have their own characteristics that 

should be taken into account. This study will also be focused on both Sovereign and Corporate bond 

funds, more specifically on the impact that each bond issuer type has on fund runs, its determinants 

and how that is linked to the country’s credit rating. Though, the goal of this study is to identify 

which funds, in terms of their characteristics, are more likely to suffer a run. 

I use monthly flows of bond funds between 2002 and 2012, geographically focused on the 

United States and Europe, to determine whether the issuer entity influences or not flows’ directions, 
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as well as, the country credit rating. At the end, I will determine which funds’ characteristics are the 

most significant to explain funds flow. To conduct this analysis, I use a panel quantile regression 

model to better account for the shape of the flows distribution, as well as for the characteristics of 

fund flows. It is shown that during the financial crisis period runs are more pronounced than in the 

remaining periods, although, more recently, there are some significant outflows, namely for Europe. 

Regarding the characteristics of funds, higher funds return tend to have larger outflows and inflows 

in the left and right tails, respectively, until the crisis period for corporate funds. After crisis, older 

corporate funds with higher returns tend to have lower outflows in the left tail in the US, but larger 

outflows in the same tail in Europe. For sovereign funds, before crisis, in the US, the ones with 

higher TER and owned by institutional investors tend to have low outflows in the left tail, similarly 

to what happen in Europe in the right tail. During the crisis period, in both regions, funds with higher 

returns and owned by institutional investors face larger outflows both in the left and right tails. After 

crisis, large-scale funds have large outflows in the right tail, with institutional investors having lower 

outflows in the left tail. As a consequence, the impact of the characteristics of fund flows is not equal 

for all funds, it varies with issuer entity, the state of the economy as well as the focus of the fund. 

The remainder paper proceeds as follows1. Section 2 describes the importance of bond funds in 

the United States and Europe, while in Section 3 it is provided a short literature review on runs. 

Section 4 focuses on the used data set of this empirical study. In Section 5 it is discussed the 

methodology, whereas in Section 6 it presents the empirical results. Section 7 concludes the study. 

 

2. The importance of Bond funds in the US and Europe 

Globalisation is a set of transformations in the global political and economic orders that has been 

gaining importance since the end of the twentieth century, especially in what concerns to bond 

                                                           
1 This study contains 25 pages (pp. 1-25). The appendices pages (pp. 26-33) are a complement of the content presented in the main 

text. All tables and figures are numbered consecutively following their order of appearance. In appendix, the same happens but the 
numbers are preceded by “A.”. 
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markets. Although US has traditionally dominated the world’s bond markets, European bond 

market is now trying to reverse the past history. Table 1 presents the yearly number of Total Net 

Assets (TNA) of the funds only for the regions under analysis (Europe and the US) until the end of 

20122. TNA is defined as the sum of all total fund value (in $ million). TNA have mostly been 

showing an increasing tendency since 2002, evidencing the increase popularity of bond funds. The 

exception years are from 2007 to 2009, when the total net assets of funds with geographic 

investment focus on Europe and the US presented a decrease of almost $1.5 million. This is a 

decrease that can be easily explained by the liquidity crisis that started affecting both regions in 

2007, causing significant reduction to the value of this type of funds. Specifically, this reduction was 

more pronounced among European countries, namely Portugal, Spain, Italy and France, countries 

that on average suffer more with the liquidity crisis. After 2009, TNA of European and American 

bond funds totalled $60.4 million, of which 66% were geographically focused on the US continent. 

Regarding European countries, Greece was the one that significantly underperformed the European 

average by presenting a decrease of 52% after 2009. 

Table 1: Yearly Number of Total Net Assets (partial) 

Region 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 N 

Europe 597 5,113 7,228 7,955 8,228 8,436 7,327 6,496 6,881 7,036 6,752 398 

U.S. 6,798 8,084 8,399 8,375 8,499 8,945 8,760 9,482 11,800 13,200 14,700 337 
Note: The presented numbers are in thousands. 

3. Literature Review 

Fund Runs are events that have been studied for a long time. One of the most important literature 

references about runs tries to explain how runs propagate in our society. Through a careful 

description and analysis, Diamond and Dybvig (1983) (hereafter: DD) constructed a model that 

analyses the problem of maturity transformation in bank runs in the real economy taking into 

consideration the relation between the economics of banking and policies’ issues. In their 

                                                           
2 For a complete version of this table, which includes the yearly number of TNA of the funds across European countries, 

see Table A.3 in the appendix. 
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equilibrium, they find that financing bank’s long-terms loans with short-term deposits can lead to 

bank runs, since some later depositors withdraw their deposits because of their sense of panic that 

other late depositors also would withdraw, causing a snow-ball effect that would then result in a 

possible bank failing. Another important finding of the author is related with deposits’ insurance 

with which the government intervention can eliminate the runs. 

Jackelin (1987) used the DD model assumptions to understand what would happen with firms, 

but instead of using insurance financed by taxes, the author uses dividends and shares, achieving a 

different equilibrium from DD’s one. In his equilibrium, consumers can trade dividends for firm’s 

shares, by giving the option for late consumers to invest their dividends by buying shares at market 

price, the same shares that early consumers sold after obtaining their dividends, eliminating the 

possibility of occurrence of a run. Gorton and Pennacchi (1993) try to give a solution for this 

problem that arises from the maturity gap, proposing the elimination of this gap with narrow banks 

leaning on short-term securities, which would avoid bank runs. 

Another common feature in most of the runs’ studies is the relation between funds persistent 

performance and runs. Brown, Goetzmann, Ibbotson and Ross (1992) used a non-parametric 

method to study the relation between past and future mutual fund performances. They present 

numerical examples favoring the evidence of predictable returns between past and future 

performance in mutual funds. Other important reference on performance and runs is the one from 

Chen, Goldstein and Jiang (2010) that empirically studied the relationship between payoff 

complementaries and financial fragility concerning mutual fund outflows. According to this study, 

illiquid funds tend to have stronger payoff complementaries and, consequently, the outflows are 

more sensitive to bad performance, a situation that is more common in funds held by retail investors. 

More recently, Schmidt et al. (2013) studied daily investor flows to and from individual money 

market mutual funds during September and October of 2008. Using vector autoregression (VAR) 
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models, the authors found that outflows were more concentrated in funds with lower liquidity 

among institutional investors that moved their money mostly from Commercial Papers into U.S. 

government’s funds. 

European literature on runs is very scarce when compared to the American one. Jank and 

Wedow (2010) investigated the returns and flows of German money market funds over the period 

of 1996-2008. The main conclusion of the paper is that in liquid times some money market funds’ 

managers enhanced their returns by investing in less liquid assets, outperforming other funds as long 

as liquidity in the market was high. However, during the liquidity crisis of 2007/2008, illiquid funds 

experienced runs. 

 

4. Data and initial results 

4.1.  Sample, Data and Descriptive Statistics 

The initial sample includes 70,688 bond funds from 2002 to 2012 collected from the Lipper 

database. Exchange listed, index-tracking, funds-of-funds and close-end funds were eliminated, as 

well as funds that were not considered as primary ones, reducing the initial sample to 25,083 bond 

funds. The fund investment can have different focus which is based on the Lipper geographic focus 

and it can be a single country, a geographic region or the global one. In order to better organize the 

sample, five regions are created: Asia-Pacific, Emerging Markets, Europe, Global and North 

America (hereafter: US), but only the Europe and United States ones are used in this analysis. 

Monthly data is used to better analyse both retail and institutional investors’ actions across the 

sample period. In what concerns to the bond issuer, the data set is divided between Sovereign funds 

and Corporate ones. The variables are then winsorized at the bottom and top in 1% to eliminate 

extreme outliers of the sample3. 

                                                           
3 Table A.1 presents in detail the definition of the variables used in this study. 



8 

 

Because bond funds are not all equal it is important to identify the main variables that had a 

major impact on current fund flows. Control variables include lagged flow (𝐿𝑎𝑔𝐹𝑙𝑜𝑤), total 

expense ratio (𝑇𝐸𝑅), flow standard deviation (𝐹𝑙𝑜𝑤 𝑆. 𝐷.), the logarithm of total net assets (𝑆𝑖𝑧𝑒), 

the cumulative flow (𝐶𝑓𝑙𝑜𝑤), the total load (𝐿𝑜𝑎𝑑), fund age (𝐴𝑔𝑒), the lagged return (𝐿𝑎𝑔𝑅𝑒𝑡) 

and a dummy variable for the bond issuer type (𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘). Table A.2 in the appendix provides 

the descriptive statistics of the stated variables for Europe (panel A) and the US (panel B) regions. 

4.2. Fund Flows 

One of the main variables of this study is the fund net flow (Flow). 𝐹𝑙𝑜𝑤𝑖𝑡 is defined as the net 

growth in TNA of the fund 𝑖 in the month 𝑡, assuming that flows occur at the end of each month: 

𝐹𝑙𝑜𝑤𝑖𝑡 =
𝑇𝑁𝐴𝑖𝑡−𝑇𝑁𝐴𝑖𝑡−1(1+𝑅𝑒𝑡𝑖𝑡)

𝑇𝑁𝐴𝑖𝑡−1
,           (1) 

where 𝑇𝑁𝐴𝑖𝑡 is the total net asset value of each fund 𝑖 (in $ Million) at the end of the month 𝑡, and 

𝑅𝑒𝑡𝑖𝑡 is the fund 𝑖 raw return in month 𝑡. Table A.4 of the appendix shows descriptive statistics of 

fund flows until December of 2012. Specifically, the mean, standard deviation and a range of 

quantiles during the sample period are presented for each European country and for the US. 

Through the analysis of the table, we conclude that the average flow from 2002 to 2012 is, in the 

majority of the countries, nearly zero. It is also interesting to notice that, although the US have a 

longer history with bond funds, between 2002 and 2012, the number of funds geographically 

focused on Europe are higher than the ones geographically focused on the US. 

4.3. Flow distribution 

Figure 1 shows the monthly aggregated flows as a percentage of total assets of both issuing 

entities to the US (panel A) and Europe (panel B) regions between 2006 and 20124. 

  

                                                           
4 Note that, because this is a set of funds with geographic focus in the US and Europe, it does not mean that all 

individual bond funds had exactly the same behaviour as the set during the stated period. 
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Figure 1: Monthly flows from/to bond funds by issuing entity 

 
Panel A: United States monthly funds  Panel B: European monthly flows 

Depending on the time, the risk associated with each individual (corporate and sovereign) fund 

varies implying decisive changes in funds’ flows. Considering the US case, corporate funds had 

higher outflows than the sovereign ones during the peak of the liquidity crisis of 2008. More 

specifically, corporate funds presented a maximum outflow of 3.6% in October 2008, the same 

month in which sovereign funds also achieved their maximum outflow, of 1.6%. After that month, 

both types of funds showed a good recovery, specially the corporate ones that in July 2009 presented 

inflows of 3.2%, similarly to what happened to sovereign funds that also had a good rebound in 

2009, by achieving inflows of almost 2.5% in September of that year. This sovereign decrease in 

2010 can be seen as the reflex of investors’ fear due to the American midterm elections of 

November 2010, where the Republicans regained the control of the chamber. 

European funds’ behaviour is somehow related with the US funds’ one. Once the US dominates 

the world’s bond markets, a negative impact in the US economy can have consequences all over 

the world. The collapse of Lehman Brothers in 2008 strongly affected Europe since many of the 

European countries had funds in dollar currency and experienced large outflows. Like what 

happened with the US funds in 2008, European geographically focused funds also had the largest 

outflows since 2006. However, contrarily to the US, in Europe, sovereign funds were the ones that 

showed the largest outflows, with a maximum of more than 3.7% in October of 2008, against the 

3.3% in corporate funds. In 2009, both European sovereign and corporate funds restored their 
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inflows, although the sovereign ones performed better and earlier, achieving a maximum inflow of 

4.2% in May, in contrast to the 1.2% accomplishing by corporate funds in July. 

We can easily see that Europe and the US differ in time and in issuing entities’ runs. In the 

former, since mid-2008, corporate funds tend to underperform the sovereign ones, contrarily to what 

happens in the US, where corporate funds tend to outperform the sovereign ones, in the sense that, 

in Europe, corporate funds tend to have lower inflows and larger outflows than sovereign funds, in 

opposition to what happens in the US. Note that, in Europe most of the companies are facing 

financial problems which makes them less appellative for investors and therefore their bond funds 

face higher outflows. However, for the US, the empirical evidence is the opposite. Because 

American companies tend to be more financially stable, investors tend to put more of their effort 

into corporate funds resulting in higher inflows than for sovereign funds. Regarding the time, 

Europe presented less stability of flows than the US after the peak of 2008, situation that can be 

explained by the financial difficulties that some of the European countries have constantly been 

facing since the emergence of the liquidity crisis. 

It is also interesting to view what happened in some European countries, namely the comparison 

between those that have been facing higher financial problems (such as Portugal and Greece) and 

those that are considered financially stable (such as Germany and Austria). Note that Austria and 

Germany are countries financially stable, with higher credit ratings than Greece or Portugal. More 

specifically, according to Standard and Poor’s (thereafter: S&P) and Moody’s, both Austria and 

Germany had the highest credit rating possible until the beginning of 2012: AAA and Aaa, 

respectively given by S&P and Moody’s5. Regarding Portugal and Greece, the story is much 

different. Considering only the period between 2002 and 2012, Portugal credit rating had six 

                                                           
5 Thereafter, it will only be stated S&P downgrades/upgrades to avoid repeated information, since Moody’s downgrades/upgrades 
tends to coincide with S&P ones. 
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consecutive downgrades from AA in 2004 to BB in 2012, much better than the Greek situation that 

on the same period had eight consecutive downgrades, from A+ in 2003 to CCC in 2012. 

Due to all these changes, it is important to check if a country credit rating is somehow linked to 

funds outflows. Figure 2 shows the monthly aggregated flows as a percentage change of total assets 

for Austria (top left panel), Germany (top right panel), Greece (bottom left panel) and Portugal 

(bottom right panel). Focusing on the top panel of figure 2, we see that, although Austria and 

Germany are stable countries, they also tend to have outflows both in corporate and sovereign funds, 

especially in corporate funds. More specifically, Austria and Germany had a large corporate outflow 

in mid-2009 that, in Austria, was rapidly compensated by an inflow on the same type of funds 

months later. Note that the largest outflows and inflows occurred in corporate funds. Sovereign 

funds also presented months with outflows, but their magnitude was much lower. 

If we now focus on the bottom panel, we see that sovereign funds in Greece and Portugal are 

relatively more recent than the corporate’s. However, that fact does not prevent outflows in these 

countries. More specifically, Greece had large outflows at the end of 2010, contrarily to what 

happened in Portugal that registered a large inflow at the beginning of 2011, followed then by an 

equivalent outflow. Regarding the corporate funds, Greece flows alternated between in and 

outflows with the largest inflow magnitude in July 2009. For Portugal, corporate funds also alternate 

between in and outflows, but with lower magnitude than in Greece. Therefore, a country credit 

rating has impact on the fund flows, especially in the sovereign ones. 
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Figure 2 - Monthly flows from/to Austria, Germany, Greece and Portugal 

 

 

To get a better picture and a more comprehensive analysis of the extremes situations that 

happened in the bond funds markets, we should look at the tails of the flow distribution of both 

regions. More precisely, the percentage outflows of the 10th, 50th (median) and 90th quantiles of 

funds were studied and the results are presented in figure A.1 of the appendix. Starting with the 

corporate funds, in Europe (left panel A) the vertical distance between the 10th and 90th quantiles 

varied across the years. The widest distance was at the time of the emergence of the liquidity crisis, 

where it was verified the largest outflows in all tails of the distribution. Regarding the median, 

beyond the outflow in 2008, it had a slightly inflow at the beginning of 2011, that also reached the 

right tail of the distribution, contrarily to what happened to the left tail, that has been experiencing 

outflows since mid-2011. Like what happened in Europe, in the US (right panel A) the widest 

vertical distance between the right and left tails occurred in 2008, when all the tails suffered the 

largest outflows. After that year the median tended to be stable, contrary to what happened with the 

right tail of the distribution that experienced larger inflows. 
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Regarding the sovereign funds, Europe (left panel B) presents a wide vertical distance between 

right and left tails than the US (right panel B). In the former, this vertical distance increased 

significantly in 2008, keeping unstable and with an increase trend until 2011, when the left tail 

presented a larger outflow than the right tail. The median was stable during all periods, except for 

the emergence of the financial crisis and in 2011, when it experienced a slight outflow. In the US 

the more pronounced vertical difference occurred, once again, during the liquidity crisis’ peak. From 

then on, there were some instability both on right and left tails, but its vertical distance became tight, 

compared to what happened in Europe. 

Therefore, it is possible to conclude that there is heterogeneity in the behaviour of European and 

the US’ fund flows, independently from the issue entity. This heterogeneity is specially pronounced 

at the time of the emergency of the liquidity crisis in 2008, when funds had outflows between 10% 

and 15% both in Europe and in the US. 

4.4. Flows persistence 

Financial data always exhibits some form of autocorrelation, namely in the conditional variance, 

showing a strong persistence. This strong persistence has been documented in several studies 

(Domian & Reichenstein 1998, Jank & Wedow 2010, Schmidt et al. 2013) and it is important to 

better understand the funds’ performance. Persistence in flows in times of large outflows can have 

a negative impact on funds’ performance since large outflows create fear of that fund among 

investors that eventually will stop to invest in it, leading to a possible run. In this section, the 

persistency in flows will be studied through a parametric method, based on estimates of panel 

regressions of the form of an autoregressive model, and a non-parametric method, suggested by 

Brown et al. (1992), Brown & Goetzmann (1995) and Jank & Wedow (2010). 

I first use a parametric method, an AR(1) is estimated based on lagged flow of the monthly funds 

under analysis between 2002 and 2012: 

𝐹𝑙𝑜𝑤𝑖𝑡 = 𝛼𝑡 + 𝜕𝐹𝑙𝑜𝑤𝑖𝑡−1 + 𝜀𝑖𝑡,    (2) 
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where 𝐹𝑙𝑜𝑤𝑖𝑡 is the net growth in TNA of fund 𝑖 at month 𝑡. 𝜕 represents the persistence measure 

and captures the common shock across all funds, whereas 𝛼𝑡 captures the additional shocks that 

each fund faced. 

Although there will be used two different methods to study the persistence in flows, at the end 

we should get the same conclusion. The null hypothesis for both methods is the same: past flow 

performance is unrelated with future flow performance. 

Figure A.2 in the appendix shows the coefficients estimates for both corporate (panel A) and 

sovereign (panel B) bond funds, for the European and the US regions. Focusing on the top left panel, 

Europe presents an average autocorrelation of 0.25 before the crisis period, value that increases to 

more than 0.4 at the peak of the 2008 financial crisis. Since then, the average autocorrelation of the 

European corporate funds decreased but to higher values than the ones that were verified before the 

emergence of the crisis. Similarly, the US average autocorrelation of corporate bonds funds also 

increased a lot at the end of 2008, achieving a value of 0.4. However, whereas European corporate 

funds still face an autocorrelation much higher than the one before crisis, the US average 

autocorrelation decreased to values similar to the ones before crisis. 

About sovereign funds autocorrelation, before crisis both European and the US regions 

presented an average autocorrelation of 0.3. However, during 2008, the average US sovereign funds 

autocorrelation more than doubled its value before crisis, contrary to what happened with the 

European corporate funds that had its increase slightly later and less pronounced. It is important to 

notice that the behaviour of the after peak period autocorrelations in both regions is slightly different. 

In the US there was a considerably decrease of the value of the autocorrelation at the beginning of 

2011 that was extended until mid-2012, when there was a fast local peak. On the other side of the 

Atlantic, European sovereign funds’ autocorrelation had a significant decrease at the end of 2009, 
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but after that year the autocorrelation tended to increase. Therefore, based on the parametric, we 

reject the null hypothesis that the past flow is unrelated to future flows. 

Alternatively, a non-parametric methodology is performed. In this method, funds are considered 

as Winners or Losers depending on their performance over consecutive periods. A fund is 

considered as Winner (Loser) if its performance is above (below) the median performance. This 

process was done twice, so that in the second time it would be possible to identify repeated winners 

and losers. Thus, a Winner-Winner (WW) is a fund that was Winner in the previous period and still 

is Winner in the current period. Loser-Loser (LL), Winner-Loser (WL) and Loser-Winner (LW) 

follow the same idea of WW. Table A.5 in the appendix summarizes the frequency with which 

winners and losers repeat, as well as the respective odds-ratio (OR) calculated through the following 

formula for each year: 

𝑂𝑅𝑡 =
𝑊𝑊𝑡×𝐿𝐿𝑡

𝑊𝐿𝑡×𝐿𝑊𝑡
            (3) 

As previously stated, under the null hypothesis the past flow performance in the previous year is 

unrelated to the current flow performance. In that case, the odds-ratio equals one and the logarithm 

of the odds-ratio follows a standard normal distribution: 

ln (𝑂𝑅)

𝜎ln(𝑂𝑅)
6
~𝑁(0,1)     (4) 

For all years, we reject the null hypothesis at a 1% significance level that consequently means 

that the winners of the previous year correspond to the winner of the current year. Therefore, we 

reach the same conclusion both with the parametric and the non-parametric methods that bond fund 

flows are strongly persistence especially during crises. 

4.5. Control Variables 

Focusing on table A.2 in the appendix, the main differences between both regions occur in the 

size, cumulative flow, load and age of bond funds. The US funds presented on average higher total 

                                                           
6 The standard error of the odds-ratio logarithm was approximated by Brown & Goetzmann (1995) method: 

𝜎ln(𝑂𝑅) = √(
1

𝑊𝑊
+

1

𝐿𝐿
+

1

𝑊𝐿
+

1

𝐿𝑊
) 
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net assets than European funds, which is visible through the size of funds ($4.37 and $4.06 million, 

respectively) and the cumulative flows ($680.73 and $435.51 million, respectively). Another 

important difference is related with the fund age that in the US tends to be larger than in Europe 

(192.07 against 160.49 months, respectively). On the other hand, load tends to be larger in Europe 

than in the US ($2.63 against $2.01), as well as the total expense ratio (0.93 for Europe and 0.90 for 

the US). 

Table A.6 shows the cross-sectional correlations of the control variables, for all sample (panel 

A) and for the largest outflows (panel B), for the European region. Focusing on panel A, flow 

standard deviation correlates positively with both lagged flow and total expense ratio (0.411 and 

0.103 respectively), but negatively with size, age and benchmark (-0.317, -0.552 and -0.355, 

respectively). As expected, size and cumulative flow have a positive correlation (0.694), as well as 

load and total expensive ratio (0.475). Regarding panel B, the correlations among the control 

variables are identical to the top panel ones, but now they tend to have lower values, as is the case 

of correlation between size and cumulative flow (0.629). In what concerns to the sign of the 

correlations, the main differences occur with correlations between benchmark and the other control 

variables that now are more negatively than positively correlated. 

Table A.7 provides the correlations among control variables for the US region. In panel A it is 

shown the correlations for all sample. Similarly to what happen in the European region, size and 

cumulative flow are highly correlated with each other (0.687). On the other side, cumulative flow 

is negatively correlated with total expense ratio and flow standard deviation (-0.202 and -0.165, 

respectively). As expected the latter is also negatively correlated with the size of funds (-0.315). 

Concerning the bottom panel, the correlations among the variables tended to decrease, but in the 

majority of the cases keeping its sign. The change in sign occurs mainly in benchmark correlations. 

  



17 

 

5. Methodology 

So far the results are not enough to understand which variables can drive a fund run. Because of 

that, in this section I will propose a model that might help us to achieve the main variables that 

explain fund runs. 

Funds can be seen as a game in real life. Independently of the type of game, when a game is 

good and popular it tends to draw the attention of several players that will want to play more time 

regardless the other players opinion.. However, when a game is not sufficiently good to draw 

players’ attention it will lose its popularity and consequently its players and, at the end, nobody will 

want to play that game. Financially speaking, whenever a fund has a good flow performance it tends 

to attract more investors to put part of their effort into this fund. When the fund performance is good, 

independently of its origin, investors have no fear to invest and do not take into account moves of 

the other players. However, when the fund performance starts to decrease investors will tend to 

deviate their investment from this bad fund starting a snow-ball effect, more specifically a fund run. 

Due to all those specifications, the model needs to take into consideration both common and 

specific fund shocks. For that, the model is based on three main conditional quantiles regressions - 

10th, 50th and 90th – that will account for the two types of shocks and it will be developed around the 

mean quantile and then it will diverge for the right and left tails. The advantage of using quantile 

regression instead of panel OLS is that with the former the whole shape of the distribution is taken 

into account rather than just the simple mean as it happens with the latter. 

The following model was introduced by Koenker & Bassett (1978) and more recently used by 

Schmidt et al. (2013). Let the dependent variable be 𝑌𝑖𝑡 and the independent conditioning variables 

be the matrix 𝑋𝑖𝑡, in such way that: 

𝑌𝑖𝑡 = 𝑓(𝑋𝑖𝑡, 𝛽) + 𝜀𝑖𝑡         (5) 

and satisfies the econometric zero conditional mean assumption that 𝐸[𝜀𝑖𝑡|𝑋𝑖,𝑡] = 0, with the 

restriction that 𝑃[𝜀𝑖𝑡 < 0|𝑋𝑖𝑡] = 𝛼, ∀ 𝛼 𝜖 (0,1). In this case, 𝛼 is associated with the quantile of 



18 

 

interest and therefore whenever we change its value we are automatically changing the quantile of 

interest. In order to account for all quantiles of interest, the following quantiles regressions 

specifications were taken into consideration: 

𝑌𝑖𝑡 = 𝑓0(𝑋𝑖𝑡, 𝛽) = 𝑋𝑖𝑡
′ 𝛽0 + 𝜀𝑖𝑡

0                           𝑃[𝜀𝑖𝑡
0 < 0|𝑋𝑖𝑡] = 0.5

𝑌𝑖𝑡 = 𝑓1(𝑋𝑖𝑡, 𝛽) = 𝑋𝑖𝑡
′ 𝛽0 − exp [𝑋𝑖𝑡

′ 𝛽1] + 𝜀𝑖𝑡
1 𝑃[𝜀𝑖𝑡

1 < 0|𝑋𝑖𝑡] = 0.1

𝑌𝑖𝑡 = 𝑓2(𝑋𝑖𝑡, 𝛽) = 𝑋𝑖𝑡
′ 𝛽0 + exp [𝑋𝑖𝑡

′ 𝛽2] + 𝜀𝑖𝑡
2 𝑃[𝜀𝑖𝑡

2 < 0|𝑋𝑖𝑡] = 0.9

           (6) 

The different betas captures different shocks. 𝛽0 is responsible for the common shock that affects 

all funds, whereas 𝛽1 and 𝛽2 capture the additional effect of shocks that affect the left and right tails, 

respectively, of the distribution. 

The stated model can be written in a different way, using positive random variables with 

𝑃[𝜂𝑖𝑡 < 1|𝑋𝑖𝑡] = 0.8 and a Bernoulli random variable (𝐷𝑖𝑡) that equals one with a probability of 0.57: 

𝑌𝑖𝑡 = 𝑋𝑖𝑡
′ 𝛽0 − 𝐷𝑖𝑡 exp[𝑋𝑖𝑡

′ 𝛽1] 𝜂𝑖𝑡 + (1 − 𝐷𝑖𝑡)exp [𝑋𝑖𝑡
′ 𝛽2]𝜂𝑖𝑡           (7) 

The parameters were then estimated following the process stated in Schmidt (2012). The 

estimation of 𝛽0 was based on linear quantile regression and only after this estimation had been 

made it was possible to proceed with the estimation of both 𝛽1 and 𝛽2 by dividing the sample 

according to the sign of the residuals (positive for 𝛽1 and negative for 𝛽2) and doing additional 

linear quantile regression on the logarithm of the same residuals8. 𝛽0 was then replaced by the 

estimated one, 𝛽0̂, in the median quantile regression. The same was done for both left and right tails, 

but with a slight difference at the time of estimating the respective standard errors. For both 𝛽1 and 

𝛽2, the respective standard errors were estimated through bootstrapping, since the theoretical 

distribution of the sub-sample was unknown. The bootstrap algorithm drew many independent 

bootstrap samples through replication and then estimated both 𝛽1 and 𝛽2 standard errors. 

 

                                                           
7 To understand why the probability equals 0.5, notice that if 𝑃(𝜂𝑖𝑡 < 1|𝑋𝑖𝑡) = 0.8, then 𝑃(𝑌𝑖𝑡 < 𝑋𝑖𝑡

′ 𝛽0 − exp[𝑋𝑖𝑡
′ 𝛽1]| 𝑋𝑖𝑡) =

𝑃(𝐷𝑖𝑡 = 1|𝑋𝑖𝑡) × 𝑃(𝜂𝑖𝑡 > 1|𝑋𝑖𝑡) = 0.5 × (1 − 0.8) = 0.1 
8 Notice that 𝜀𝑖𝑡 = 𝑌𝑖𝑡 − 𝑋𝑖𝑡

′ 𝛽0 and if 𝑌𝑖𝑡 − 𝑋𝑖𝑡
′ 𝛽0 > 0 then 𝑌𝑖𝑡 − 𝑋𝑖𝑡𝛽0 = exp[𝑋𝑖𝑡

′ 𝛽2] 𝜂𝑖𝑡. Taking the logs we get log[𝑌𝑖𝑡 − 𝑋𝑖𝑡
′ 𝛽0] =

𝑋𝑖𝑡
′ 𝛽2 + 𝑙𝑜𝑔𝜂𝑖𝑡. Because it was assumed that 𝑃(𝜂𝑖𝑡 < 1|𝑋𝑖𝑡) = 𝑃(𝑙𝑜𝑔 𝜂𝑖𝑡 < 0|𝑋𝑖𝑡) = 0.8, the transformed model imposes that 𝛼 =

0.8. 
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6. Empirical results 

The stated model helps us to better understand which funds are more vulnerable to a possible 

run. In order to figure out both common and specific shocks, the whole sample is firstly evaluated 

and then divided in three sub-samples that are evaluated individually. The first sub-sample includes 

monthly observations from year 2002 to 2006 (thereafter: “Before Crisis”), the second from year 

2007 to 2011 (“Crisis Period”) and the last sub-sample is only composed by year 2012 (“After 

Crisis”) due to the lack of observations after that year. The analysis is repeated for the European and 

the US regions, taking into consideration both corporate and sovereign funds. For all cases, the 

dependent variable is the monthly fund flow, calculated as the percentage of lagged Total Net 

Assets. In the following two tables (2 and 3), there are represented the common shock estimated 

coefficients (“Common Shock”) that in the last section are represented by β0, as well as the left and 

right tails estimated coefficients (“Left Tail” and “Right Tail”), respectively denominated by β1 and 

β2 in the last section. 

6.1. Corporate funds 

6.1.1. All sample 

Table 2 provides the estimated coefficients of the quantile regression from equation (6) for 

corporate funds geographically focused on the US and Europe. From the observation of panel A, it 

is possible to conclude that the main explanatory variables predict fund flow. The exception is the 

institutional class that is only statistically significant for the right tail, representing the funds with 

largest inflows (lowest outflows), meaning that funds owned by institutional investors had lower 

inflows than retailed ones. Returns have an important statistical significance, since they are the 

estimator that has the highest coefficient across all shocks, stating that high return in left tail funds 

tend to have larger outflows. Moreover, regarding the flow standard deviation, although it is always 

statistically significant, its coefficient increases a lot when we consider left and right tails, reflecting 

the tendency for capital to enter into those funds. Age coefficient has a small negative impact on 
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fund flows prediction, which means that older funds with high returns tend to have largest outflows 

in the left tail.  Contrarily to what happens with the US, in Europe (panel B) all control variables are 

statistically significant to predict funds flow. Here, returns have a negative impact in flow prediction 

in the left tail, having coefficients much lower than in the US case. Flow standard deviation also 

presents a great coefficient variation when we consider either left or right tails compared to what 

happens in the common shock. In this case, older funds owned by institutional investors tend to 

have lower inflows than the ones owned by retail investors in the right tail. 

6.1.2. Before Crisis 

Through the observation of column “Before Crisis” of panel A it is possible to conclude that 

funds with high returns have more outflows in the left tail of the distribution, contrarily to what 

happens with funds with higher returns where, on the right tail, they tend to have the largest inflows. 

Moreover, funds with higher TER contribute to lower outflows in the left tail and lower inflows in 

the right tail. Regarding panel B, most of the variables are significant to flow prediction. On average, 

funds which are owned by institutional investors, tend to have larger outflows in the left tail than in 

the right tail. In what concerns to the flow standard deviation, it is very strong in both tails, indicating 

high flow persistence. About the TER, the right tail has lower inflows. 

6.1.3. Crisis Period 

Panel A tells us that, once again, that larger return funds tend to have the largest outflows in the 

left tail and larger inflows in the right tail of the distribution. About age, it also has a negative impact 

in both left and right tails. During this period most investors tend to choose the right tail of the 

distribution, contrarily to what happened in the period before, where TER coefficient was much 

higher in the left tail. In the European case (panel B), funds with higher returns tend to face larger 

outflows in the left tail, contrarily to what happens in the right tail, where high return funds tend to 

have lower outflows. Once again, the flow standard deviation tends to be stronger in tails than in the 



21 

 

median. Those results are in agreement with panel A of figure A.1 in the appendix which shows 

that in the US investors tend to choose the right tail but in Europe they tend to invest in the left tail. 

6.1.4. After Crisis 

Focusing now on the “After Crisis” column, in the US, older funds with high returns tend to 

have lower outflows in the left tail, contrarily to what happens in Europe, where older funds with 

higher returns tend to have larger outflows. It is important to note that in this period, the effect of the 

coefficients decreases compared to the crisis period. 

Table 2 – Fund Flow Panel Regressions: Corporate bond funds 

   
Panel A: United States    Panel B: Europe 

Note: 

The numbers inside brackets represents the t-values. 

*, ** and *** indicate significance at the 10%, 5% and 1% level, respectively. 

 

Variable 
Common Shock 

All sample Before Crisis Crisis Period After Crisis 

Return 0.14794*** 0.20007*** 0.1336*** 0.1454*** 

  [37.2] [22.8] [28.2] [7.5] 

TER -0.00076*** -0.17567*** -0.00055*** 0.00219*** 

  [-4.1] [-5.9] [-2.1] [3.4] 

FlowS..D. 0.04629*** 0.04528*** 0.04589*** 0.04955*** 

  [26.2] [14.7] [18.5] [8.6] 

Age -0.00001*** -0.00001*** -0.00001*** -0.00001*** 

  [-15.5] [-9.5] [-10.0] [-4.6] 

Inst. Class 0.00021 -0.00052 0.00069* 0.00175* 

  [0.8] [-1.3] [1.7] [1.7] 

         

Variable 
Left Tail 

All sample Before Crisis Crisis Period After Crisis 

Return -4.33449*** -6.80262*** -3.90074*** 1.47043 

  [-10.6] [-10.9] [-7.9] [1.1] 

TER 0.07036*** 0.14438*** 0.03061 -0.21623** 

  [4.4] [5.6] [1.2] [-2.5] 

FlowS..D. 8.07815*** 9.15864*** 7.78503*** 7.48785*** 

  [42.4] [27.8] [30.3] [21.6] 

Age -0.00098*** -0.00124*** -0.00087*** 0.00002 

  [-11.3] [-8.1] [-6.7] [0.1] 

Inst. Class 0.02856 0.05702 0.00798 -0.03570 

  [1.4] [1.1] [0.2] [-0.7] 

          

Variable 
Right Tail 

All sample Before Crisis Crisis Period After Crisis 

Return 4.5153*** 5.02828*** 4.43703*** 2.9107* 

  [10.0] [6.2] [9.5] [1.9] 

TER 0.01318 -0.04498* 0.07717** 0.02679 

  [0.8] [-1.8] [2.4] [0.5] 

FlowS..D. 11.8211*** 13.4069*** 11.7718*** 9.1782*** 

  [62.8] [43.6] [39.5] [22.7] 

Age -0.00122*** -0.00105*** -0.00134*** -0.00095*** 

  [-15.1] [-8.7] [-9.5] [-5.7] 

Inst. Class -0.14418*** -0.20761*** -0.11660*** 0.09017 

  [-5.2] [-4.3] [-3.0] [0.8] 

 

Variable 
Common Shock 

All sample Before Crisis Crisis Period After Crisis 

Return 0.01497*** -0.0095*** 0.0201364*** 0.01617*** 

  [9.3] [-2.5] [8.8] [3.3] 

TER -0.00397*** -0.00541*** -0.00468*** -0.00170*** 

  [-29.5] [-20.7] [-20.9] [-4.9] 

FlowS..D. 0.00239** 0.01779*** -0.00879*** 0.00462* 

  [2.1] [7.6] [-4.6] [1.8] 

Age -0.00002*** -0.00003*** -0.00003*** -0.00001*** 

  [-36.0] [-20.9] [-26.9] [-8.3] 

Inst. Class 0.00058*** -0.00149*** 0.00128*** 0.00273*** 

  [3.4] [-4.1] [4.8] [6.3] 

          

Variable 
Left Tail 

All sample Before Crisis Crisis Period After Crisis 

Return -1.38841*** 0.71650 -1.78379*** -1.32812* 

  [-8.7] [1.5] [-8.1] [-1.9] 

TER 0.02721 0.07617*** -0.00473 -0.09445 

  [1.6] [2.8] [-0.2] [-1.2] 

FlowS..D. 10.849*** 10.131*** 11.79*** 7.2916*** 

  [51.9] [38.8] [76.5] [10.8] 

Age 0.00030*** -0.00045*** 0.00077*** -0.00082*** 

  [2.9] [-2.6] [6.1] [-3.2] 

Inst. Class 0.06785*** -0.22457*** 0.19930*** 0.11603* 

  [2.8] [-4.7] [4.9] [1.9] 

          

Variable 
Right Tail 

All sample Before Crisis Crisis Period After Crisis 

Return 0.76939*** 0.46705 1.0031*** 1.9246** 

  [3.3] [1.1] [3.4] [2.2] 

TER -0.10645*** -0.24612*** -0.05084 -0.04559 

  [-5.4] [-7.2] [-1.4] [-0.6] 

FlowS..D. 14.3515*** 15.1533*** 14.5904*** 11.7074*** 

  [62.2] [40.2] [76.4] [19.7] 

Age -0.00069*** -0.00123*** -0.00029*** -0.0011*** 

  [-6.1] [-9.9] [-3.1] [-5.0] 

Inst. Class -0.19162*** -0.18663*** -0.18913*** -0.1943*** 

  [-5.6] [-4.2] [-5.5] [-2.7] 
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6.2. Sovereign funds 

6.2.1. All sample 

Table 3 presents the results of the estimated quantile regression of equation (6) for sovereign 

funds geographically focused on the US and Europe. In most of the cases of panel A, all the 

variables are statistically important to predict sovereign funds flow. The only exception is for the 

flow standard deviation in the common shock. Once again, age has a negative impact for all shocks, 

as well as the fund return in the left tail, meaning that older funds with high returns face higher 

outflows. However, in the right tail, higher funds return tend to have large inflows if owned by retail 

investors. Regarding European sovereign funds (panel B), flow standard deviation presents the 

highest coefficient in both tails, indicating, for the right tail case, the tendency for capital to enter the 

fund. In the common shock, age and TER have a negative impact on the flow prediction, situation 

that is not verified in the left tail, where only return coefficient is negative, meaning that funds with 

higher returns tended to have the largest outflows in the left tail. Similarly to what happens in the 

US, institutional investors tend to have larger out/inflows than retail investors in all shocks in the 

left/right tail. 

6.2.2. Before Crisis 

In this period, for both regions, TER coefficient is much higher in the left than in the right tail 

(0.138 against -0.034, respectively, for the US and 0.244 against 0.011, for Europe). Regarding 

funds’ age coefficient in both regions, the coefficients are very small and negative for both left and 

right tails, which means that its contribution to funds’ flow prediction has a small impact. 

6.2.3. Crisis Period 

By the peak of the crisis, in the US, higher return funds have larger outflows than in Europe for 

the respective left tail of the distribution. Regarding the flow standard deviation, in both regions, it 

strongly predicts cross-sectional differences in outflows in both left and right tails. In addition, in 

both regions, institutional investors tend to have lower inflows in the right tail than retail investors. 
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This fact is more pronounced in the US funds than in the European ones, contrary to what happens 

in the left tail, which is in agreement with panel B of figure A.1. 

6.2.4. After Crisis 

After the considered period of crisis, flow standard deviation continues to strongly predict 

outflows in both tails, contrary to what happens with age in both regions. Regarding TER, that is 

close to the scale of investment, in both regions, the large-scale funds tend to have larger inflows in 

the right tail of the distribution. Institutional class is again an important variable for funds flow 

prediction in both regions, with institutional investors having less outflows than the retail ones in 

the left tail of the distribution. 

 

Table 3 – Fund Flow Panel Regressions: Sovereign bond funds 

 
Panel A: United States    Panel B: Europe 

Variable 
Common Shock 

All sample Before Crisis Crisis Period After Crisis 

Return 0.13072*** 0.0711*** 0.1904*** 0.21148*** 

  [13.8] [5.1] [14.8] [4.9] 

TER -0.00670*** -0.00618*** -0.00685*** -0.00679*** 

  [-17.7] [-12.9] [-11.0] [-5.2] 

FlowS.D. 0.00413 -0.00574 0.00710 0.0592*** 

  [1.3] [-1.4] [1.4] [5.7] 

Age -0.00001*** -0.00002*** -0.00001*** -0.00001 

  [-12.9] [-10.8] [-8.3] [-2.4] 

Inst. Class -0.00225*** -0.00181*** -0.00265*** -0.00318*** 

  [-8.1] [-4.9] [-6.1] [-3.6] 

          

Variable 
Left Tail 

All sample Before Crisis Crisis Period After Crisis 

Return -4.67164*** -3.13096 -4.02424*** -4.99736 

  [-4.7] [-1.9] [-3.8] [-0.8] 

TER 0.17074*** 0.13828*** 0.14459*** 0.18240 

  [5.6] [2.5] [2.8] [1.4] 

Flow S.D. 8.67483*** 9.08335*** 8.84643*** 6.17624*** 

  [25.2] [24.3] [19.7] [5.2] 

Age -0.00091*** -0.00140*** -0.00036 -0.00011 

  [-6.6] [-12.9] [-1.4] [-0.1] 

Inst. Class 0.14350*** 0.05199 0.18508*** 0.29248*** 

  [4.9] [1.3] [5.3] [2.9] 

          

Variable 
Right Tail 

All sample Before Crisis Crisis Period After Crisis 

Return 7.20362*** 6.6417*** 6.3429*** 1.38876 

  [12.2] [4.1] [5.6] [0.4] 

TER -0.09617* -0.03394 -0.23895*** -0.16882 

  [-1.8] [-0.5] [-3.2] [-0.9] 

Flow S.D. 12.891*** 12.358*** 13.587*** 12.239*** 

  [26.8] [20.3] [27.7] [9.0] 

Age -0.00033*** -0.00092*** -0.00010 0.00118*** 

  [-2.6] [-6.5] [-0.6] [6.3] 

Inst. Class -0.17599*** -0.20645*** -0.16786*** -0.02088 

  [-6.4] [-6.4] [-3.7] [-0.2] 

 

 
Variable 

Common Shock 

All sample Before Crisis Crisis Period After Crisis 

Return 0.00546*** -0.01032 0.00775*** 0.0078** 

  [3.1] [-1.4] [4.0] [2.5] 

TER -0.00125*** -0.00361*** -0.00125*** -0.00018 

  [-7.9] [-6.5] [-6.6] [-0.8] 

FlowS.D. 0.01052*** 0.01901*** 0.01212*** 0.0069*** 

  [8.8] [4.1] [8.3] [4.3] 

Age -0.00001*** -0.00001*** -0.00002*** 0.00000* 

  [-14.8] [-3.1] [-22.0] [-1.7] 

Inst. Class 0.00176*** 0.00020 0.001867*** 0.00145*** 

  [7.9] [0.3] [7.1] [3.8] 

          

Variable 
Left Tail 

All sample Before Crisis Crisis Period After Crisis 

Return -0.58552* 1.89339 -0.96958 0.28939 

  [-1.7] [1.6] [-1.6] [0.2] 

TER 0.11028*** 0.24418* 0.03837 0.1979** 

  [2.6] [1.9] [0.7] [2.1] 

FlowS.D. 9.18306*** 7.80744*** 9.40889*** 7.13697*** 

  [32.4] [10.3] [31.9] [8.9] 

Age 0.00225*** -0.00178*** 0.00350*** 0.00212*** 

  [9.6] [-6.6] [6.4] [4.3] 

Inst. Class 0.27901*** -0.20560 0.28795*** 0.91373*** 

  [3.2] [-1.3] [3.3] [2.9] 

          

Variable 
Right Tail 

All sample Before Crisis Crisis Period After Crisis 

Return 1.18743* -1.85177* 2.27370*** 0.29794 

  [1.7] [-1.9] [2.6] [0.3] 

TER -0.11197** 0.01124 -0.06544 -0.10115 

  [-2.2] [0.2] [-1.3] [-1.1] 

FlowS.D. 19.6469*** 15.358*** 20.4961*** 18.5317*** 

  [36.4] [29.4] [32.3] [38.1] 

Age 0.00309*** -0.00096** 0.00213*** 0.00711*** 

  [7.1] [-2.3] [4.8] [10.6] 

Inst. Class 0.11717 0.15812 -0.10268 0.96967*** 

  [1.6] [1.1] [-1.1] [3.7] 
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7. Conclusion 

As time goes by, bond funds have been gaining importance in the finance of economies, but 

there is still a lot of work to do to better understand runs of those types of funds. With this thesis I 

provide an empirical analysis of runs on bond funds during the period between 2002 and 2012 and 

its original contribution lies in identifying which funds, in terms of their characteristics, are more 

likely to suffer a run. 

I find that cross-sectional correlations tend to have a similar impact on both US’ and European 

funds, although in the case of the bond issuer entity, it influences more the US’ funds than the 

European ones. Regarding the European case, countries with lower credit rating tend to have, on 

average, more outflows than countries with higher credit ratings, especially with sovereign funds, 

which indicates that higher risk level countries tend to face more funds runs. 

Based on the panel quantile regressions, during the financial crisis period runs are more 

pronounced than in the remaining periods. Regarding the characteristics of funds, higher fund return 

tend to have larger outflows and inflows in the left and right tails, respectively, until the crisis period 

for corporate funds. After crisis, those older corporate funds with higher returns tend to have lower 

outflows in the left tail in the US, but larger outflows in the same tail for Europe, which indicates 

that most of the corporate geographically focused on Europe are still facing significant outflows. 

Regarding sovereign funds, before crisis, in the US, funds higher TER and owned by institutional 

investors tend to have low outflows in the left tail, similarly to what happens in Europe in the right 

tail. During the crisis period, in both regions, funds with higher returns and owned by institutional 

investors face larger outflows both in the left and right tails. After crisis, large-scale funds have large 

outflows in the right tail, with institutional investors having lower outflows in the left tail. 

To sum up, for the European case, runs continued to be pronounced after the peak crisis period, 

situation that is not as visible for the US case. Those results are consistent with most of the recent 

papers about runs during the financial crisis, namely with Schmidt et al. (2013) empirical study. 
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Appendices 

Table A.1 – Definition of the variables 

This table presents the definition of the variables used in this study. All variables were obtained 

from Lipper database. 

Variable Definition 

ID Lipper ID 

Date Time ID 

Name Fund name 

Primary Dummy that takes the value of one if primary share class 

Status Asset status - active, liquidate or merged 

Domicile name Domicile country name 

Currency Fund currency 

Institutional Class Dummy that takes the value of one if institutional class share 

Asset Universe Asset Universe equals Mutual Funds 

Asset Type Asset type equals Bond 

Geographic focus Geographic focus of the fund 

Total Expense Ratio Total cost of a fund share as percentage of total assets 

Total Net Assets Fund Value (Million) USD 

Return Fund return in USD 

Benchmark Fund bond type 

Flow Fund flows as a percentage of previous period Total Net Assets 

Fund age Number of months since the fund's inception 

Size Logarithm of the Total Net Asset of a fund share 

Load Total load (front- plus back-end load) charged by a fund shares 
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Table A.2 – Descriptive statistics of the control variables 

This table presents the descriptive statistics of the cross-sectional bond funds for Europe (Panel 

A) and the US (Panel B) regions between 2002 and 2012. LagFlow is the lagged fund flow as a 

percentage of lagged Total Net Assets, TER represents the total expense ratio of the fund, Flow 

S.D. is the standard deviation of monthly percentages changes in funds’ assets, Size stands for the 

logarithm of the Total Net Asset of a fund share, Cflow represents the cumulative flow, Load is 

the total load (front- plus back-end load) charged by a fund shares, Age stands for the fund age 

calculated since its inception and LagReturn is the lagged fund return. 

 

Panel A: European bond funds 

Variable Mean S.D. Min 
Quantiles 

Max 
0.25 Mdn 0.75 

LagFlow 0.00 0.10 -0.35 -0.02 0.00 0.01 0.62 

TER 0.93 0.43 0.04 0.61 0.93 1.19 2.38 

Flow S.D. 0.08 0.05 0.00 0.04 0.07 0.11 0.56 

Size 4.06 1.82 -2.53 2.97 4.16 5.29 8.16 

Cflow 435.51 911.70 0.16 39.68 129.11 401.57 7010.80 

Load 2.63 2.31 0.00 0.30 2.50 4.00 11.50 

Age 160.49 97.05 0.00 92.37 152.20 217.10 600.67 

LagReturn 0.01 0.03 -0.09 -0.01 0.01 0.03 0.09 

 

Panel B: US bond funds 

Variable Mean S.D. Min 
Quantiles 

Max 
0.25 Mdn 0.75 

LagFlow 0.01 0.10 -0.35 -0.02 0.00 0.01 0.62 

TER 0.90 0.44 0.04 0.61 0.83 1.08 2.38 

Flow S.D. 0.08 0.06 0.00 0.03 0.07 0.11 0.49 

Size 4.37 1.97 -2.53 3.21 4.49 5.72 8.16 

Cflow 680.73 1330.11 0.16 50.80 180.20 612.40 7010.80 

Load 2.01 2.61 0.00 0.00 0.10 4.00 11.50 

Age 192.07 120.61 0.93 99.43 186.70 267.87 1362.57 

LagReturn 0.00 0.02 -0.09 0.00 0.00 0.01 0.09 
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Table A.3 – Yearly Number of Total Net Assets (TNA) 

The table presents the TNA of the funds across European countries and the US until the end of 2012. TNA is 

defined as the sum of all total fund value (in $ million). All the values presented below are in $ thousand 

million. 

Country 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 N 

Austria 0.158 54.00 77.61 81.68 81.08 74.72 70.50 66.94 62.77 59.58 55.82 6.27 

Belgium 5.533 23.71 24.03 19.21 17.29 14.03 14.10 17.38 15.55 13.43 6.902 2.00 

Czech Republic 11.79 23.34 28.66 33.74 41.68 47.30 47.86 32.96 35.82 34.17 28.95 3.14 

Denmark 2.846 10.83 15.80 18.70 15.92 28.53 43.80 47.92 49.77 74.34 91.86 3.90 

Estonia - - - - - 0.221 0.941 0.674 0.148 - - 0.03 

Finland - 0.499 0.460 0.181 0.157 0.023 - - - - - 0.06 

France 1.823 35.85 67.11 75.99 59.79 46.95 44.13 33.23 28.29 26.24 21.18 5.86 

Germany 13.38 166.0 247.4 234.5 219.6 181.2 158.6 146.0 147.9 149.6 144.2 8.21 

Greece 5.808 9.048 10.64 10.37 5.801 0.844 0.829 0.922 3.135 3.262 1.495 0.90 

Hungary 0.586 1.423 0.809 1.194 1.920 25.53 18.42 11.87 19.27 19.34 14.10 3.06 

Italy 0.419 34.31 49.85 41.95 54.44 38.61 22.58 25.51 16.75 19.07 25.47 1.07 

Lithuania - - 0.010 0.003 0.013 0.054 0.136 0.026 0.046 0.000 - 0.08 

Netherlands 0.209 1.329 1.168 3.876 6.354 6.272 6.757 6.183 6.101 5.398 4.764 0.94 

Norway 0.548 1.914 5.189 9.771 14.59 0.606 26.96 27.40 43.21 0.978 84.88 1.74 

Poland 19.44 38.09 24.01 35.38 32.39 30.61 34.24 32.50 45.88 49.26 58.42 3.94 

Portugal 7.450 10.66 20.22 23.11 18.36 11.22 9.086 7.058 9.291 10.64 10.78 0.90 

Romania - - - - - - 0.210 0.739 2.460 3.155 3.024 0.06 

Slovakia - 0.145 1.250 2.464 2.895 2.720 3.041 2.585 2.626 2.418 1.903 0.61 

Spain 19.73 56.58 76.23 82.53 72.28 57.61 51.76 3.382 77.43 214.4 241.1 15.0 

Sweden 4.337 37.98 60.53 70.77 80.31 92.87 118.7 115.1 136.2 160.2 174.5 3.84 

Switzerland 1.802 157.7 248.7 292.5 379.4 446.1 446.0 420.7 461.9 538.6 533.0 16.2 

United Kingdom 26.04 518.5 765.0 931.7 1,177 1,370 1,219 1,098 1,154 1,210 1,286 37.6 

Europe 596.6 5,113 7,228 7,955 8,228 8,436 7,327 6,496 6,881 7,036 6,752 398 

U.S. 6,798 8,084 8,399 8,375 8,499 8,945 8,760 9,482 11,800 13,200 14,700 337 
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Table A.4 – Descriptive statistics of funds flows as of December 2012 

This table shows the descriptive statistics of funds flows as of December 2012. Specifically, the 

mean, standard deviation and a range of quantiles during the sample period is presented for each 

European country and for the US. 

 

Country N Mean S.D. Min 
Quantiles 

Max 
0.25 Mdn 0.75 

Austria 3,705 0.00 0.06 -0.35 -0.01 0.00 0.00 0.62 

Belgium 1,531 -0.01 0.09 -0.35 -0.02 0.00 0.00 0.62 

Czech Republic 2,330 0.00 0.08 -0.35 -0.01 0.00 0.00 0.62 

Denmark 2,854 0.01 0.10 -0.35 -0.02 0.00 0.01 0.62 

Estonia 33 0.02 0.08 -0.16 0.00 0.00 0.00 0.33 

Finland 45 -0.05 0.08 -0.35 -0.05 -0.02 -0.01 0.09 

France 5,175 -0.01 0.06 -0.35 -0.02 -0.01 0.00 0.62 

Germany 6,961 -0.01 0.07 -0.35 -0.02 -0.01 0.00 0.62 

Greece 470 -0.01 0.09 -0.35 -0.02 -0.01 0.00 0.62 

Hungary 1,990 0.00 0.10 -0.35 -0.03 -0.01 0.02 0.62 

Italy 930 0.01 0.14 -0.35 -0.03 -0.01 0.01 0.62 

Lithuania 56 0.04 0.23 -0.35 -0.06 0.00 0.11 0.62 

Netherlands 369 -0.02 0.05 -0.33 -0.03 -0.01 0.00 0.17 

Norway 1,444 0.02 0.11 -0.35 -0.01 0.00 0.04 0.62 

Poland 3,273 0.03 0.15 -0.35 -0.04 0.00 0.05 0.62 

Portugal 769 -0.01 0.07 -0.35 -0.02 0.00 0.00 0.62 

Romania 58 0.05 0.13 0.00 0.00 0.00 0.03 0.62 

Slovakia 499 0.00 0.09 -0.35 -0.02 0.00 0.01 0.62 

Spain 13,469 0.00 0.09 -0.35 -0.02 0.00 0.00 0.62 

Sweden 2,927 0.01 0.09 -0.35 -0.02 0.00 0.02 0.62 

Switzerland 14,409 0.00 0.08 -0.35 -0.01 0.00 0.01 0.62 

United Kingdom 30,369 0.01 0.09 -0.35 -0.01 0.00 0.01 0.62 

Europe 319,182 0.00 0.10 -0.35 -0.02 0.00 0.01 0.62 

U.S. 308,803 0.01 0.10 -0.35 -0.02 0.00 0.01 0.62 
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Figure A.1 – Quantiles of monthly flows 

This figure shows the quantiles of monthly flows for Europe and the US. In Panel A it is shown 

the quantiles for corporate funds for both regions, whereas in Panel B it is represented the 

quantiles for sovereign funds. 

Panel A: Corporate Funds 

 

 

Panel B – Sovereign Funds 
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Figure A.2 – AR(1) coefficients 

This figure shows the AR(1) coefficients estimates for both corporate (Panel A) and sovereign 

(Panel B) bond funds, for the European and the US regions. 

 

Panel A – AR(1) coefficients estimates for Corporate funds 

  

 

 

Panel B – AR(1) coefficients estimates for sovereign funds 

  

 

Table A.5 – Performance Persistence of Bond Funds: Repeated Winners and Losers 

Funds were classified into winners (annual flow above media) and losers (annual flow below 

median) for each year between 2002 and 2012. Winner-Winner (WW) shows the number of funds 

that were winners in the previous period and still are Winner in the current period. Winner-Loser 

(WL) indicates the number of funds that were winners in the previous period but are not in the 

current period. The null hypothesis, past flow performance in the previous year is unrelated to the 

future flow performance, was tested through the odds-ratio: (WWt x LLt)/(WLt x LWt). 
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Year Total 
Winner- Winner- Loser- Loser- Odds- 

z 
Winner Loser Winner Loser ratio 

2002 5,132 1,526 368 2,302 936 1.7 7.5 

2003 5,279 1,136 1,139 1,116 1,888 1.7 9.3 

2004 5,320 1,155 1,176 1,001 1,988 2.0 11.8 

2005 5,378 1,136 865 1,402 1,975 1.9 10.8 

2006 5,340 1,264 990 1,363 1,723 1.6 8.6 

2007 5,260 1,315 866 1,606 1,473 1.4 5.8 

2008 5,236 1,045 1,253 952 1,986 1.7 9.6 

2009 5,599 1,000 1,382 888 2,329 1.9 11.2 

2010 6,009 1,274 1,243 1,427 2,065 1.5 7.5 

2011 6,454 1,185 1,574 1,080 2,615 1.8 11.4 

2012 6,938 1,316 1,666 1,154 2,802 1.9 12.8 

 
Table A.6 – Cross-sectional correlations of the control variables for Europe 

This table presents the cross-sectional correlations of the control variables for Europe. The top 

panel shows the correlations for all sample, whereas the bottom panel presents the same 

correlations but for the funds that had the largest outflows between 2002 and 2012. 

 

Panel A: All sample correlations 

Correlation LagFlow TER Flow S.D. Size Cflow Load Age LagReturn Benchmark 

LagFlow 1.000                 

TER -0.013 1.000               

Flow S.D. 0.105 -0.009 1.000             

Size 0.013 -0.184 -0.204 1.000           

Cflow -0.010 -0.070 -0.111 0.643 1.000         

Load 0.011 0.132 0.028 0.008 -0.022 1.000       

Age -0.058 0.035 -0.287 0.214 0.148 -0.165 1.000     

LagReturn 0.030 0.001 -0.002 0.015 0.009 -0.002 0.008 1.000   

Benchmark 0.012 -0.016 0.039 -0.052 -0.063 0.149 -0.149 -0.007 1.000 
 

Panel B: Correlations of the bottom tercile 

Correlation LagFlow TER Flow S.D. Size Cflow Load Age LagReturn Benchmark 

LagFlow 1.000                 

TER 0.034 1.000               

Flow S.D. 0.371 0.025   1.000             

Size -0.089 -0.176 -0.239 1.000        

Cflow -0.069 -0.059 -0.136 0.629 1.000       

Load 0.009 0.174 0.047 0.007 -0.003 1.000      

Age -0.105 0.022 -0.303 0.227 0.153 -0.121 1.000     

LagReturn 0.019 0.024 0.002 0.015 0.003 0.003 0.004 1.000   

Benchmark 0.034 -0.019 0.073 -0.034 -0.036 0.067 -0.092 0.018 1.000 
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Table A.7 – Cross-sectional correlations of the control variables for the US 

This table presents the cross-sectional correlations of the control variables for the US. The top 

panel shows the correlations for all sample, whereas the bottom panel presents the same 

correlations but for the funds that had the largest outflows between 2002 and 2012. 

 

Panel A: All sample correlations 

Correlation LagFlow TER Flow S.D. Size Cflow Load Age LagReturn Benchmark 

LagFlow 1.000         

TER -0.010 1.000        

Flow S.D. 0.140 0.069 1.000       

Size 0.010 -0.312 -0.315 1.000      

Cflow 0.000 -0.202 -0.165 0.687 1.000     

Load 0.021 0.372 -0.042 -0.036 -0.047 1.000    

Age -0.090 -0.066 -0.542 0.371 0.274 0.038 1.000   

LagReturn 0.048 0.021 0.001 0.028 0.021 0.022 -0.001 1.000  

Benchmark -0.033 -0.291 -0.378 0.089 0.010 -0.103 0.278 -0.030 1.000 
 

 

Panel B: Correlations of the bottom tercile 

Correlation LagFlow TER Flow S.D. Size Cflow Load Age LagReturn Benchmark 

LagFlow 1.000                 

TER 0.075 1.000               

Flow S.D. 0.411 0.103 1.000             

Size -0.169 -0.280 -0.317 1.000           

Cflow -0.104 -0.178 -0.182 0.694 1.000         

Load 0.021 0.475 -0.004 -0.099 -0.083 1.000       

Age -0.216 -0.097 -0.552 0.354 0.284 -0.006 1.000     

LagReturn 0.031 0.024 0.006 0.037 0.025 0.015 -0.006 1.000  

Benchmark -0.155 -0.329 -0.355 0.077 0.008 -0.142 0.262 -0.039 1.000 

 


