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Abstract

The use of empirically calibrated moment-rotation modakst taccount for strength and stiffness
deterioration of steel frame members is paramount in etialythe performance of steel structures prone
to collapse under seismic loading. These deteriorationetsaare typically used as zero-length springs
in a concentrated plasticity formulation; however, a aaliton procedure is required when they are used
to represent the moment-curvatud — x) behavior in distributed plasticity formulations because t
resulting moment-rotatiofM — 8) response depends on the element integration method. Aqtiasge
integration method for using deterioration models in felbesed elements is developed and validated
using flexural stiffness modifications parameters to recthee exact solution for linear problems while
ensuring objective softening response. To guarantee a@ectesults in both the linear and nonlinear
range of response, the flexural stiffness modification patara are computed at the beginning of the

analysis as a function of the user-specified plastic hinggtke With this approach, moment-rotation
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models that account for strength and stiffness deteramratan be applied in conjunction with force-
based plastic hinge beam-column elements to support sellppediction without increased modeling
complexity.

Keywords: Component Deterioration; Earthquake Engineering; Foesed Finite Elements; Plastic

Hinge Calibration; Steel

INTRODUCTION

Performance-based seismic design and assessment reapgueate nonlinear finite element models
that can capture the full range of structural response &dedcwith various performance targets. In
the development of realistic finite element models, two naaipects need to be taken into consideration.
First, modes of strength and stiffness deterioration dukiage accumulation that could lead to local or
global collapse need to be identified. Second, the modelstfoctural components need to be reliable,
robust, and computationally efficient for the entire ranf¢he analysis. Idealized beam and column
models for nonlinear structural analysis vary greatly rm&of complexity and computational efficiency,
from phenomenological models, such as concentrated @tgstodels and distributed plasticity beam-
column elements, to complex continuum models based on {siress or solid finite-elements.

Concentrated plasticity models (Clough et al. 1965), cordigtvo parallel elements, one with
elastic-perfectly plastic behavior to represent yieldamgl the other with elastic response to represent
post-yield hardening. Following the formal proposal by &gon (1969), where nonlinear zero-length
moment rotation springs are located at both ends of a liakstic beam-column element, this type of
approach became the reference model in the developmeng ebticentrated plasticity models. Many
hysteretic laws have been proposed in the last decadesrdouptdior the most relevant phenomena
influencing member response up to collapse: cyclic dettimn in stiffness (Takeda et al. 1970) and
strength (Pincheira et al. 1999; Sivaselvan and Reinhorf)2@nching under load reversal (Roufaiel
and Meyer 1987), among many others have developed diffpteariomenological models that define
the behavior of the concentrated plastic hinges. Even ththugse models were developed several years
ago, they have been recently proposed as the main methodtforating seismic demands of frame

structures (Ibarra and Krawinkler 2005; Medina and KrawgnR005; Haselton and Deierlein 2007)
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and have been presented as the preferred modeling appmodica ATC-72 guidelines (PEER/ATC
2010). These models allow for reliable estimation of thersé& demands in structures up to the onset
of collapse with limited computational cost.

On the opposite end of the spectrum@®H models, continuum models are generally accepted
as the most reliable approach for estimating the seismiaddmof structures to localized and global
collapse. However, these models are typically complex agdire very time-consuming computations.
Distributed plasticity finite elements offer a compromissvieeen concentrated plasticity models and
continuum finite element models.

Three formulations for distributed plasticity elementsédndeen proposed in the literature: force-
based beam-column elements (Spacone and Filippou 1992nKefer and Filippou 1997), displace-
ment based beam-column elements (Taylor 1977; Kang 197d)thee mixed formulation based beam-
column elements (Alemdar and White 2005). Mixed formulagitypically yield the best results in non-
linear structural analysis, but they have not been widebpéetl in the finite element software typically
employed in PBEE analyses.

Force-based beam-column elements have been shown to betagkaus over displacement-based
elements for material nonlinear frame analysis (Neuenharfe Filippou 1997; Alemdar and White
2005; Calabrese et al. 2010) by avoiding the discretizatfatractural members into numerous finite
elements, thereby reducing the number of model degreeseddm. In these formulations, the behavior
of a section is described by a fiber model or a stress resydtasticity model (El-Tawil and Deierlein
1998).

Despite these advantages, localization issues relatenhtoljective strain-softening response (Cole-
man and Spacone 2001) led to the development of force-bastdléngth plastic hinge beam-column
elementsELPH elements in short) by Scott and Fenves (2006) and AddessCemdpi (2007). Con-
ceptually, these elements are composed of two discretéigplaages and a linear elastic region, all
of which are incorporated in the element integration methbarough the selection of experimentally
calibrated plastic hinge lengths and appropriate defmitibthe integration scheme, localization can be

avoided. The main advantages of flePH elements are: (i) the explicit definition of the plastic heng
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length, which allows for the recovery of meaningful local€s-section results (e.g. curvatures and bend-
ing moments), (ii) a clear distinction between beam-colunatasticity from the nonlinear behavior of
connections, and (iii) a reduced number of nodes, elememntsiagrees of freedom. These advantages
motivate the search for alternate calibration approachgsesented in this paper. Although, these ele-
ments have been used successfully in simulating the sergsponse of structures (Berry et al. 2008),
they require the definition of a moment-curvature relatnmsand plastic hinge length to represent a
desired moment-rotation behavior.

Based on a large database of experimental results, Ligndsramdnkler (2011) have developed and
validated multi-linear moment-rotation relationshipattban be used to capture plastic hinge behavior
in simulating the deteriorating response of steel stresttio collapse. Other authors have reported sim-
ilar moment-rotation relationships for reinforced conerstructures (Haselton and Deierlein 2007) and
load-displacement relationships for timber structuresiéiite 1995), which account for other modes of
deterioration not typically observed in steel structufidse developed moment-rotatioM — 0) relation-
ships can be used directly in concentrated plastic hi@drH) elements following approaches presented
in Ibarra and Krawinkler (2005). However, several othermbemlumn elements formulations, such as
theFLPH elements, require the definition of moment-curvature i@tahips in the plastic hinge regions.
For example, for thenodifiedGauss-Radau integration scheme (Scott and Fenves 2006} thleeend
points weights are equal to the plastic hinge ledgthmoment-curvature relationships are required for
the two end sections. The direct scaling of the momentiostaelationship by the plastic length, in or-
der to obtain a moment-curvatuple —x) relationship (i.e. by dividing each rotation by (xi = 6i/Lp)),
at first may seem a logical approach. However, this leadgdémeous results when no further calibration
is performed, as shown by Scott and Ryan (2013) for the comrase of elasto-plastic behavior with
linear strain hardening under anti-symmetric bending.

The objective of this paper is to present a plastic-hingdaion approach that allows for simulation
of structures using finite-length plastic-hinge elemehtt use thenodifiedGauss-Radau integration
scheme and make use of recent multi-linear moment-rotaomstitutive laws that have been derived

from experimental results. This calibration procedurelmamplemented in a finite element framework,
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decreasing the user’'s modeling effort, while providinguaate and reliable results.

The calibration procedure includes the definition of sectiexural stiffness modification parameters
at the beginning of the nonlinear structural analysis. €hasdification parameters are computed as a
function of the plastic hinge to span length ratio by comguariof the element flexibility and the target
flexibility.

The proposed calibration methodology improves the quailitgt reliability of the results obtained
without a notable increase either in computation cost dnéncomplexity of structural model. Nonethe-
less, it is worth noting that the influence of other effectattare typically considered in 2-D frame
modeling of built infrastructure still need to be taken iattcount. Examples of relevant effects are slab
stiffness and strength deterioration on cyclic perforneamicbeams, diaphragm action, load distribution,
and mathematical representation of damping, among otiBarpta and Krawinkler 1999). The vali-
dation of the calibration approach is performed for nordingtatic (pushover) analyses. However, for
full implementation in finite element software, nonlinegclic static and dynamic analyses including
strength and stiffness deterioration are needed in theduas these cases fall outside the scope of this
paper. In addition, the proposed calibration scheme wasdseloped for thenodifiedGauss-Radau
scheme, as it is found to be advantageous over other methaagly by avoiding localization issues, in
the analysis of structures to seismic loading and is imptggtkein a finite-length plastic hinge (FLPH)
element (Scott and Fenves 2006). The application of theregion approach to other integration meth-

ods falls outside the scope of this work.

PROBLEM STATEMENT

Empirical steel component deterioration moment-rotation kehavior

In order to simulate component deterioration, Ibarra aralmkler (2005) proposed a phenomeno-
logical model to simulate the deterioration of steel eletmewhich Lignos and Krawinkler (2011)
adapted to define deteriorating moment-rotation relaliggssfor plastic hinges in steel elements us-
ing data from a large set of experimental tests. The hystdsehavior of the steel components is based
on the force-displacement envelope (backbone curve}rdites in Figure 1. Although steel structures

are often modeled considering elasto-plastic constautehavior with linear strain hardening, during a
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severe ground motion, significant inelastic cyclic defaiiores cause deterioration of elements, reduc-
ing their strength and stiffness. This deterioration isgigant in the analysis of steel structures under
cyclic lateral loads as it influences not only the resistasfcie structure, but also its stiffness and its
resulting dynamic behavior. The backbone curve for the tatbmpnoment-rotation modeM — 6) is de-
fined in terms of: (i) yield strength and rotatiady and®6y); (i) capping strength and associated rotation
for monotonic loading N and®c); (iii) plastic rotation for monotonic loadingd); (iv) post-capping
rotation @pc); (V) residual strengtivl, = k x My; and (vi) ultimate rotationfly). Other model param-
eters permit the definition of cyclic strength, post-cappmtrength, accelerated reloading stiffness and

unloading stiffness deterioration (Lignos and Krawink2@d.2).

CPH models

The empirical models described above can be used directtiidrzero-length moment-rotation
springs of CPH elements. In the case of double curvature or anti-symmb#aiaing, which is the
reference case for the empirical moment-rotation modeds us Ibarra and Krawinkler (2005) as well
as in Lignos and Krawinkler (2011), the global element aiflexural stiffness of the one component
CPH becomes EI/L, whereEl is the cross-section flexural stiffness dnds the element length. The
flexibilities of the zero-length moment-rotation springglahe element interior are additive, giving the

total element flexibility:

f=f +fine +1; (1)

wherefiy; is the flexibility of the linear-elastic element interiordaf) andf; are the flexibilities of the
springs at endsandJ, respectively.

The correct linear-elastic solution for the entire elemsinly obtained if the end rotational springs
are approximated as rigid-plastic. Thus, linear elastissisection stiffness of the springs at both ends
are affected by a constant(typically greater than 1000) such that the initial stifeeof the springs is
large, but not so large as to pose numerical instabilityhags/a in Appendix . Since the elastic stiffness

of the member is related to the elastic stiffness of the ianat springs and the beam-column element,
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which are connected in series, the stiffness of the eleméerior is also affected by, and is expressed

as:

1
Elmog = E1"—~ (2)
n
which translates to spring initial stiffness given by:
El
= Oomod g (3)

L

Following the methodology in Ibarra and Krawinkler (2008 ratio of post-yield to elastic stiffness

of the springo’ (ratio of the tangent stiffneskr, to the linear elastic stiffnesky,) is given by:

/_kTm_ a

" kn 1+nx(1-q) @)

wherea is the nominal post-yielding to elastic stiffness ratio arids assigned to the end springs in
the CPH model to reproduce the correct moment-rotation behavidh@imember. The ratia’ is thus
defined such that the correct nonlinear moment-rotatidimesis of the member, defined as< 6E1/L,

is recovered.

Finite-length plastic hinge elements

TheFLPH element developed by Scott and Fenves (2006) is based oorttleelfased beam-column
finite element formulation by Spacone et al. (1996) and ukesative numerical integration schemes
to account for user-defined plastic hinge lengths. The fbased beam-column finite element is for-
mulated assuming small displacements in a simply-suppdrdsic system free of rigid-body displace-
ments. Figure 2 illustrates the basic system in which théovexf element-end forces, the vector of
element deformations, the internal section forces(x), and section deformations(x), are shown for
a two-dimensional element. Section forces corresponde@smal force and bending moments, while

the section deformations correspond to axial strain anzature.
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Equilibrium between the section forcg) at a locatiorx, and basic element forceds given by:

S(X) = b(x)a+so(x) (5)

whereb(x) is the interpolation function matrix, argg(x) corresponds to a particular solution associated
with element loads. Equation 5 can be expanded into diffdems depending on the number of di-
mensions of the problem and the beam theory selected. Fawthdimensional EulerBernoulli beam-
column element, the basic forces are- {q1,q2,093}" and the section forces as&x) = {N(x),M(x)} T,

all of which are shown in Figure 2. Compatibility between edsrindeformations and section deforma-

tionseis expressed as:

V= /OLb(x)Te(x) dx (6)

The element flexibility matrix is obtained through lineation of the element deformationswith
respect to basic forcepand is given by:
ov L
f= N / b(x) Tfs(X)b(x) dx 7)
Jq 0
wherefs is the section flexibility, equal to the inverse of the settsiffnessfs = kgl. The section
stiffness is obtained from linearization of the constitatielationship between section forces and section
deformationsks = ds/de, at the current element state. The implementation dethtiseoforce-based
element formulation into a displacement-based softwane yweesented by Neuenhofer and Filippou

(1997) and are not reproduced here for brevity.

Numerical evaluation of Equation 6 is given by:
Ne
V= (b el :Ei) Wi (8)
50

whereNp is the number of integration points over the element lengtil; andw; are the associated
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locations and weights. The element flexibility is therefgreen by:

Np

f= .Zl(beSb“:Ei)W‘ 9)

The main issue related to use of this formulation is the laaibn of strain and displacement re-
sponses that can be obtained in the case of strain-softegspgnse of force-based distributed plastic-
ity elements (Coleman and Spacone 2001). Scott and Fenve§)(2ad Addessi and Ciampi (2007)
proposed methods for force-based finite length plasticen(RggPH) integration, where the element is
divided in three segments, two corresponding to the plastiges at both ends, with lengithy andL 3,
and a linear segment connecting both hinges (see Figure 3(@)s, Equation 6 simplifies to:

L—Lpy L

i b(x)Te(x)dx+ L b(x)"e(x)dx (10)

V= /O " b(x)Te(x)dx+
Various approaches were proposed by Scott and Fenves (a@@6)\ddessi and Ciampi (2007) to
evaluate this integral numerically; however, the focushers theModified Gauss-Radau integration
scheme which retains the correct linear elastic solutiolewtsing the specified plastic hinge lengths as
the integration weights at the element ends.
In this method both end sections are assigned a nonlineavioehwhereas the element interior is

typically assumed to have an elastic behavior, althoughassumption is not necessary. The flexibility

of theFLPH element can be computed as:

f= /L b(x)Tfs(x)b(x)dx+ [ b(X)Tfsx)b(x)dx+ [ b(x)Tfs(x)b(x)dx (11)

Lint LpJ

whereLiq is the length of the linear-elastic element interior.
Using themodifiedGauss-Radau integration scheme for the plastic hinge regiégquation 11 can

be rewritten as:
Npi Npi+NpJ

fi= 3 (BT blyg i + /Lim b(x)"fs(x)b(x)dx-+ i_%ﬂ(besb'X—Ei)Wi (12)
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22 WhereNp andNpj are the number of integration points associated with thstiglainges at the element

213 ends. For thenodified Gauss-Radau integratiddy = Npj = 2. The element interior term can be
214 computed exactly when the element interior is elastic ardetlre no member loads. Nonetheless, the
25 element interior can also be analyzed numerically. In thise¢the Gauss-Legendre integration scheme
zs IS appropriate to integrate the element interior. If tw@gration points are placed in this region, a total
217 of six integration points are defined along the element lengihe locatiorg; of the integration points

zs  associated with themodifiedGauss-Radau plastic hinge integration, represented ind-Rfa), are given

219 by
220 &= 1{&1,&int,&a} (13)
21 Where:
8
& = { T}
G = { Ao+ x (1- L) sap+ i x (14 3) ) (14)
EJ - { - LT!
223 The corresponding weightg are given by:
22 W = {W|, Wint, W3} (15)
»s  Where:
wi = {Lpi;3Lpi }
226 Wint = {%, %} (16)
wy = {3Lps;Lpa}
227 In this case, the element flexibility is then given by:
T
228 f= (b fsb| ZEi)Wi (17)
2,0k

»e  Where this equation is consistent with points and weightsvehin Figure 3(a).
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CALIBRATION OF FORCE-BASED FINITE-LENGTH PLASTIC HINGE EL EMENTS

TheFLPH formulation requires the definition of moment-curvaturatienships in the plastic hinge
region, and subsequent procedures to relate these ralaifiento the moment-rotation response of the
element. In this section, a novel method for calibratiorhef inoment-rotation behavior of finite-length
plastic hinge force-based frame elements is proposed biatrany plastic hinge lengths. With this ap-
proach, moment-rotation models that account for strengthstiffness deterioration can be applied in
conjunction withFLPH models to support collapse prediction of frame structurBise approach in-
cludes an automatic calibration procedure embedded inuheerical integration of the element, freeing
the analyst of this task. The calibration procedure is fdataa for thenmodifiedGauss-Radau integration
scheme. However, it can be applied to other plastic hingdodstproposed by Scott and Fenves (2006)
and Addessi and Ciampi (2007), function of the weight andtlooaof the integration points used in the

calibration.

Calibration Procedure

The main goals of this procedure are to:

1. Use empirical moment-rotation relationships that aotéar strength and stiffness deterioration
to model the flexural behavior of the plastic hinge region;

2. Guarantee that the flexural stiffness is recovered fontirainal prismatic element during the
entire analysis; and

3. Allow the definition of arbitrary plastic hinge lengths the analyst.

The presented calibration procedure is performed at theegielevel through the introduction of
section flexural stiffness modification parameters at irgksections of the beam-column element mak-
ing it possible to scale a moment-rotation relation in otdesbtain moment-curvature relations for the

plastic hinge regions. Defining the moment-rotation séiffe of the plastic hinge regions as:

B 06EI

kv—o = 3 (18)
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and making use of a user-defined plastic hinge length atrestiat of the element{ andLp; for ends

| andJ, respectively), the moment-curvature relations can bexeéfas:

o6El

km—x = X Lpg gy (19)

As highlighted by Scott and Ryan (2013), the moment-rotadiah moment-curvature relations are iden-
tical for Lpy 53/L = 1/6. However, for any other plastic hinge length, the definitaf the moment-
curvature via direct scaling of the moment-rotation givgrBguation 19 yields incorrect section stiff-
ness, which in turn lead to incorrect member stiffness. Tibi@tion procedure presented herein com-
pensates for the incorrect stiffness of the plastic hingenerd-curvature relationship by modifying the
flexural stiffness of each of the four internal sectionsggmation point€2, &3, &4 andés in Figure 3(a)),
assumed to remain linear elastic throughout the analysiisgwne of three different parametes, 32,
andf3, shown in Figure 3(b).

The 3 modification parameters are quantified such that the elefiesatiility matrix is: (i) within the
elastic region, equal to the analytical solution for antidggismatic element; (ii) after yielding, identical
to the target flexibility, i.e. is similar to the user-definéld— 6 behavior. The target flexibility matrix in
the elastic and nonlinear regions can be provided byCiREl model using Equations 1 to 4. Then, the
modification parameters are defined based on the equivabéiice flexibility matrices associated with
the CPH andFLPH models. The target flexibility can be computed using diffiémodels and herein
the models defined by Lignos and Krawinkler (2011) are usetthénderivations. In the calibration
procedure, double curvature or anti-symmetric bendingssiaed to obtain the elastic stiffness of the
structural element. This is a common result of the lateradiing and boundary conditions considered in
seismic analysis of frame structures. In this case, theéieklementM — 0 stiffness is &1 /L. However,
the calibration procedure shown herein is valid for any eletmoment-rotation stiffness and moment

gradient.
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Derivation of Modification Parameters

For the 2D beam-column element, a system of three integratems corresponding to each of
the unique flexural coefficients of the element flexibilitytrnais constructed. The flexibility matrix
coefficients obtained from Equation 17, corresponding ¢éd-lbPH, are equated to the flexibility matrix
coefficients obtained from Equation 1, associated witiP& model and the empirical model. From this
system of equations, the three elastic stiffness modifingiarameter$i, B2, and33, can be computed
as a function of p, Lpj, L andn, which is the elastic stiffness modification parameter el@PH model.
The code for solving the system of equations, which is imgletad in thevxMaximasoftware (Souza

et al. 2003) and is presented in the Appendix II. Wheands to infinity,31, B2 and33 are given by:

~ 54Lp1L® — BLpi (B0Lpi +60Lpy)L? + 6Lpi (96LF +288piLpy +96L3;)L — BLpi (2565 Lpy + 256 piLF5)
L(3L —16Lpy) (L2 — 20LLy, +4|_pJ|_+64L,2),)
By — 3(4Llpi — L +4Lpy)(3L2 —12L Ly — 12LLpg+32LpLpy) 20)
2 - L(3L — 16Lp) (3L — 16Lpy)
 54Lpal® — BLpy(B0Lpi + 60Lpy)L? + 6Lpa(96LF; + 288 p1Lpy+96LE )L — BLpy(256.5 Lpy + 256 piL5))

L(3L — 16Lp ) (L2~ 20LLpy+4Lp L +64L2))

If both plastic hinges have the same length,lLg= Ly = Lpj, Equation 20 simplifies significantly

to:

6(3L%Lp—24LL2+32L3)
Br = Bs=- 5
L(L—8Lp)
3(3L3—-48L2Lp+224L L5 — 256L3)

P2 = L(3L— 16L )2 (21)

It is worth noting that in Equation 21 there are singulasitie3; and3 for L,/L = 1/8 and inf3;
for Lp/L = 3/16, which correspond to cases in which: (i) the length of fasti& element interiot.int,
is equal to zero and (ii) the two internal integration pot&nd€s shown in Figure 3(b) are co-located.
In Figure 4 the flexural stiffness modification parameterSaiiation 21 are represented as a function

of the plastic hinge length to span ratig/L. Both parameterf; andf3z are equal for alL,/L ratios, as
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both plastic hinges have the same flexural stiffre8E L, /L = 026EILp/L. Note that the calibration
procedure is valid whehjnt < 0, i.e.Lp/L > 1/8.

The proposed calibration procedure is illustrated in Fedgufor the specific case of a nonlinear static
(pushover) analysis. The pushover analysis is conductembiyolling aj" degree of freedom (DOF).
Furthermore, the displacemddt and pseudo-tim@ are initialized to zero, and the displacement in-
crementdUs for the control DOF and the reference load pattég; are also initialized. The stiffness
matrix Ks is computed in théorm stiffness matriyrocedure (see Figure 6) at the beginning of each
analysis step and each NR iteration. In this procedure, éhenpetersx; anda, are calculated based
on the committed (converged in a previous step) elemene$oand deformations, as well as the tan-
gent stiffness. In the first analysis step, the sectionn&t# modification parametes, 3> and 33 are
computed, as shown in Figure 6. Once the stiffness modificgtarameters are computed, the stiffness
matrix is computed through inversion of the flexibility matrThe stiffness matrix is obtained consid-
ering the integration points (IPs) of theodifiedGauss-Radau integration scheme shown in Figure 3(b).
Transformation from the basic to the local coordinate sysseperformed with the matriRs. From this
point onward a traditional NR algorithm is used, repeathmgadbove procedure at the beginning of each
analysis step and at each NR iteration. Different stratecp@ be used in updating the model state deter-
mination, namely: (i) update state of the model domain (disgments, pseudo-time, forces) using the
residual tangent displacement from the previous itera(igndecrease the displacement increment and
update the model domain trying to overcome convergencdeara (iii) change the numerical method
used (either for this analysis step only or for all remairstgps); and (iv) change the tolerance criteria
(if that is admissible for the case being analyzed). In cagdNR method is not able to converge after a
user-defined maximum number of iterationgay, the analysis is stopped, and is considered not to have
converged. lllustrative examples are presented in theviallg sections. Different solution algorithms
may be used to solve the nonlinear residual equations (De Boed. 2012; Scott and Fenves 2010).
The Newton-Raphson (NR) algorithm is one of the most widelyls®l is a robust method for solving
nonlinear algebraic equations of equilibrium. In this figFigure 5) the flowchart for the calibration

procedure is exemplified using the NR algorithm.
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NUMERICAL EXAMPLES

The proposed methodology was applied to a set of simply stgghbeams subjected to end moments
and considering different plastic hinge lengths, as wed asnple steel frame structure. The beams are
analyzed considering a pushover analysis, where rotaticmsncremented until reaching an ultimate
rotation. For the first beam, equal moments are applied dt sagport, while in the second case, the
moment applied at the left support is half of that appliedhtoright support. The steel element properties,

including the parameters considered for the deterioratiodel, are presented in Table 1.

Example 1

A simply supported beam is analyzed considering equal msvaerd rotations applied at both ends.
Figure 7(a) shows the element end moment plotted againgti¢neent end rotation. A local response,
corresponding to the rotation of a section at a distdnceom the support is also plotted against the end
moment in Figure 7(b). The rotation at a distahgdrom the support, in th€PH model, must consider
the rotation of the zero-length spring and the deformatidhe elastic segment of length,.

In this figure, the plastic rotation of tH@PH model is computed obtained by adding the rotation of
the zero-length spring to the rotation of the elastic elerogar a length ot ,. The former is obtained
by multiplying the curvaturey) of the end section of the element by.

The CPH curve denotes the results obtained using a concentratsticgi@nge model, following the
procedure employed by Lignos and Krawinkler (2012), andeserns a benchmark. Figure 7(a) shows
that end rotations obtained using tB#H model present an initial linear elastic response up to the
yielding point, defined by the yielding moment-rotationrddi,cpH — 8ycpH. Then, a linear hardening
region connects the yielding point to the capping poi¢ ¢pH — 6c.cpH) and a linear softening region
links the capping point to the residual moment-rotatiomp@; cpy — 6;cpH), Which is followed by
a plastic region that extends &y. The second model considerdeLPH § corresponds to the use of
finite length plastic hinge elements, defining the momemtature relation through direct scaling of the
rotation parameter$, 6, 6, 6, andB) by the plastic hinge length, and no further calibration. The
results show that this approach leads to erroneous reasltse elastic stiffness obtained is significantly

lower than the target, and higher rotations are obtainelddrsbftening branch. If the moment curvature
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is calibrated (curvé&LPH M) using the proposed method, it is possible to reproduc€id behavior

of the beam exactly for the entire analysis. Although thégloesponse is in perfect agreement, Figure
7(b) shows that the local response is different whenGReél or theFLPH M models are used. For the
FLPH models, local response in Figure 7(b) corresponds to tlegiation of the end section curvature
(x) over the plastic hinge length, (X x Lp). This result is equal for theLPH Sand theFLPH M
models since the end sections of both models are defined milaismanner (only the interior sections
are affected by the flexural modification parameters).

Figure 9(a) shows the errors associated with the differertets and different plastic hinge lengths.
The errors are defined as the ratio between the computedssbbpiee elastic, hardening, and softening
branches, and the respective target moment-rotation deimé&ignos and Krawinkler (2011). The
results show that: (i) th€LPH M calibration procedure provides accurate results when eoedpto
the results obtained usingPH for the elastic, hardening and softening ranges of the resgdii) the
FLPH Sprocedure, where a scaled moment-curvature relation ¢swibout further calibration, results
in significant errors. It is worth noting that only far,/L = 1/6 does thécLPH Smodel result in the
exact moment-rotation at yielding and at the capping pa@stpreviously shown by Scott and Ryan
(2013). The results from this example highlight the the ativges of the calibration procedure proposed
herein, namely showing that accurate results can be achievearying lengths of the plastic hinge and

for cases considering softening.

Example 2

To show calibration for other moment gradients in the beaameht, an identical beam to that from
the previous example is analyzed considering the left momgunal to half of the right moment. As a
result the left end of the beam is always in the elastic raagd,the beam does not deform in double
curvature. However, as shown in Figure 8, the results obthiior a plastic hinge length,/L =1/16 are
consistent with those obtained in Example 1. In fact, thelte®btained with the scaled moment cur-
vature relation without calibratioFCLPH § show significant errors from the elastic range, propagatin
over the entire range of analysis. When calibration is cared FLPH M) the results are corrected and

perfect agreement is found betwe€RH andFLPH M models. Figure 9(b) shows the results obtained
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considering several plastic hinge lengths. The errors@rgated by comparing the slopes of the elastic,
hardening and softening branches of the Bd’H elements with th€ PH model. Results show that the
analysis presented fdr,/L = 1/16 is valid for all values of the plastic hinge length. Furthere, the
results show that the proposed calibration procedure ikcayte to different moment gradients besides

anti-symmetric bending.

Frame structure

A single-bay three-story frame with uniform stiffness atr@isgth over its height (see Figure 10) is
used to illustrate the application of the calibration phae described above. A dead load of 889.6kN is
applied to each story, giving a total structure weighbf 2669kN. The flexural stiffneds| is identical
for beams and columns with values given in Table 1. Plastigés form at beam ends and at base
columns. The other columns are assumed to remain elassboler analyses of the frame are conducted
in the OpenSees framework (McKenna et al. 2000) using a Ba@elometric transformation for the
columns. Results obtained with modtlPH M are compared to results obtained using@ftH models.

It is worth noting that in steel W-shape beams with shapefadk = Mp/My) of approximately 1.12,
the plastic hinge length is taken as 10% of the distance fegtee point of maximum moment and the
inflection point (Bruneau et al. 1998). This value is slighélyger, approximately 12.5%, at the center
of beams that are subjected to distributed loads. Thus, énipers in a state of anti-symmetric double
curvature, it is suggested that a plastic hinge length beEtlg20 andL /16 be used.

Figure 11(a) shows the normalized base shéay\() versus roof drift ratio for the three models and
Figure 11(b) illustrates the beam moment-rotation respofiie results obtained for this frame show
that the conclusions drawn for the two previous exampleg, m@melyFLPH Sshould not be used as a
procedure for converting from empirical moment-rotatiefations to moment-curvature relations when
FLPH elements are used, aRtlPH M is an adequate procedure that produces objective resuiftowti

computationally expensive iterative/updating procedure

CONCLUSIONS
The present work proposes a calibration procedure thavsibe use of finite-length plastic hinge

(FLPH) force-based beam-column elements for steel moment franaesexhibit softening response
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at the section and element levels. The use of scaled butibrateld moment-curvature relationships in
FLPH elements leads to significant errors in both local and glasgdonses and is therefore not adequate
for structural analysis. The new calibration procedureadgrmed at the element level through the in-
troduction of section flexural stiffness modification paedens 8), which are computed at the beginning
of the analysis as a function of the user defined plastic hieggths. The modification parameters are
obtained by equating element flexural coefficients of thallety matrix and target flexibility matrix,
where the latter is given by the user-defined moment-rotaigtation and is computed in this work using
aCPH model. Nonlinear static analyses of two simply supporteghieand pushover analysis of a steel
moment-resisting frame were performed considering diffeplastic hinge lengths. The results illus-
trate that the exact linear elastic stiffness can be reeoviar linear problems while ensuring objective
response after the onset of deterioration. The cases dtadigvell as error analysis based on analyti-
cal expressions show that the calibration procedure isl ¥afiany moment gradient. Even though the
proposed calibration procedure has only been validatethidti-linear moment-rotation relationships,
itis, in principle, possible to use it with other constitgtilaws, where moment-rotation can be related to
moment-curvature by a user-defined plastic hinge lengtb.cHfibration procedure was validated at the
section level for bending moments and rotations only, builar approaches may be used for cases in
which the interaction between bending and axial deformatie considered. The accuracy and stability
of the proposed calibration procedure remains to be stddragbnlinear dynamic time-history analysis

of steel moment frame buildings.
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Appendix I. ERROR IN THE MODEL ELASTIC STIFFNESS ASSOCIATED WITH THE CPH SPRINGS
ELASTIC STIFFNESS AMPLIFICATION FACTOR

In CPH models, the elastic stiffness amplification factay ghould be chosen carefully as an exces-
sively large value would pose numerical problems, whilelae/éhat is not sufficiently large will lead to
erroneous results in the elastic range. In this Appendaste stiffness errors associated with values of
n < 1000 are computed.

Considering that each member can be represented by two extnatl springs and an elastic frame
element in series, the flexibilities of the springs and tlaenie element in &PH element are additive.

Using the tangent stiffnessdsg, andkr 3, of each rotational spring, the member flexibility is:

1/kr O L 2 -1 o o
/ + (A.1)

b= — X
o o 6B |1 2| |o 1/kr

To recover the correct linear-elastic solution for the re@iPH model, the end rotational springs
need to be approximated as rigid-plastic with an initidfrstiss that is large, but not so large to pose
numerical instability. This is akin to the selection of largenalty values when enforcing multi-point
constraints in a structural model (Cook et al. 2001). Theratiflexibility coefficient fp(1,1) to the
exact linear-elastic solutioh/(3EI) is plotted in Figure 12 versus the elastic stiffness amjgliian
factor, which scales the characteristic element stiffiidgs (ki = nx EI/L).

As shown in Figure 12, the ratio between the elastic stifnmesovered using differemtvalues for
theCPH model and the target elastic stiffnetg8EI) varies from 1.30 (30% error) for= 10 to 1.003
(0.3% error) fom = 1000. Thus, to recover the elastic solution with negligdsers, it is suggested that
a value ofn = 1000 be used.

Although the suggested value nf> 1000 allows for recovery of the elastic stiffness, sevetal a
thors have highlighted that there is an increased likelihmicmon-convergence of nonlinear time-history
response analyses if such a large valua & used. For this reason, Zareian and Medina (2010) have
suggested the use of= 10. However, the use of such a low valuenofan lead to overestimating the

elastic flexibility of the elements up to 30%, which coulddela approximately 13% error in natural
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Appendix [I. COMPUTATION OF THE SECTION FLEXURAL STIFFNESS MODIFICATION

PARAMETERS

The following code was implemented in thexMaximasoftware (Souza et al. 2003).

e Unknowns
B1,B2,B3

e Input data

W [Lp|,3>< Lp|,3>< LpJ,LpJ],
mp @ [0 x6xLpi/L,B1,Bs,02 x 6x Lpy/L];

e Computation of the element flexibility matrix (flexural terimsly)
f1 : matrix ([0, 0], [0,0Q]);
e Plastic hinges integration points

for i : 1 to 4 do
(fy : fp+transposgmatrix ([0,0], [y[i]/L — 1,y[i]/L])).
matrix ([0, 0], [y(i]/L — L,y[i]/L]) > wli]) x
(1/(mpi] < ED));

e Interior region

f1 . fi+integrate(transposdmatrix ([0, 0], [x/L — 1,x/L])).
matrix ([0, 0], [x/L — 1,x/L]) x (1/(B2 x EI)),
X, 4 x Lp|,L—4>< LpJ);

e Computation of the target flexibility matrix usingGPH model (flexural terms only)

e CPH model parameters

Elmod : Elx(n+1)/n;
Kspring : N6 x Elmog/L;
mp @ [(01)/(1+nx (1-ag)),(az2)/(1+nx(1-0az))];

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A7)
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e Model flexibility matrix

fo + matrix ([1/(mp[1] x Kspring), 0], [0,1/(MpP2[2] X Kspring)]);

f, . fa+integrate(transposgmatrix ([0,0], [x/L — 1,x/L])). (A.8)
matrix ([0,0], [x/L — 1,x/L]) x (1/(Elmod)),
x,0,L);

e Solve the system of equations for obtaining unknowns

eq @ 1,1 = fof1,1];

e : fi[1,2] = f[1,2];

e : f1[2,2] = f3[2,2]; (A.9)
[

sol : solve[eq, e, ea], [B1,B2,B3));

Although the previous step already gives a solution for tfablem, it is useful to obtain the
solution without dependency am Thus, the solutiorsol, is evaluated when tends to infinity

limit (sol, n,inf); (A.10)
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Table 1. Element properties for numerical examples

Geometric parameterg Moment-rotation model parameters
Inertia (") | Area @) | My (kNm) | Mc/My | B, (rad) | B¢ (rad)
Example 1and 2 0.0002 0.0073 320.78 1.05 | 0.0692 | 0.168
Frame Beams 0.0111 0.0551 1911.0 1.05 0.025 0.25
Frame Columns  0.0111 0.0551 969.0 1.05 0.03 0.35
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Figure 1. Adapted modified Ibarra-Krawinkler model: (a) backbon
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(a) Modified Gauss-Radau Integration
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Calibration procedure

START n=1; U=0; A=0; dUs, Prer

‘ form stiffness matrix (see Fig. 6) ‘

l

n"analysis step; i=1; Prer; Ki Us; A; Pr \

Update displacements: Ur=UrdUY

A-pseudo-time
Prer- load pattern

J - control DOF

‘ form stiffness matrix (see Fig. 6)

]

Update model Domain
Compute residual forces R=PrPr

]

‘ i" Newton-Raphson iteration ‘

]

‘ form stiffness matrix (see Fig. 6)‘

l

Update model Domain
Compute residual forces R~=P+Pr

NR iteration
converged?

Final load
step?

Figure 5. Calibration procedure for a nonlinear static structura | (pushover) analysis
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‘ Form Stiffness Matrix Procedure ‘

START Update basic displacements: Ub=AxUr

Ar = local to basic
transformation matrix

l

Sectional constitutive relation. For the end IPS (§1,¢6) compute a7 and a2
ar=ks(11)"/ ks(X1)°

az=ks(%6)"/ ks(Xs)°

!

Compute element flexibility matrix:

6
f=2b" bl W,
=

where:

B, o= [1/EA 0 fopetys=[t/EA 0 | Fopxeg, =fEA 0
0 1o,,6ElL 0 UB,.El 0 1/B,E

Compute B7, B2 and Bsupon
evaluation of Lp and L

YES @

NO
‘ Compute flexibility matrix for all IPs

|

Ly
L
I

‘ Compute stiffness matrix at basic level: ko=f" ‘
1
‘ Compute stiffness matrix at local level: Ki=Ar.ko. Ar

l

‘ Compute vector of resisting forces Pr END

Figure 6. Flowchart for computation of element stiffness mat rix
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(a) Global Response
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Figure 7. Example 1 - basic system with equal moments at both en

Lp/L=1/16

10 15 20
Normalized Rotation G/Gy

30

y

Normalized Moment M/M

36

(b) Local Response
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Normalized Moment M/M

(a) Global Response
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(b) Local Response
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Figure 8. Example 2 - basic system with different moments at bot
Lp/L=1/16
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(a)

Elastic Region

50— T T
M M
__ 30 ' .
5 20r " |—CPH |4
LE ---FLPH S
10+ g ==FLPH M|
0
(i)
_10 . . . .
0 05 0.1 0.15 0.2 0.25
Plastic hinge length to span ratio L,/L
Hardening Region
0.5 T T T
. —CPH
0.4r -, ] M ---FLPHS| -+
AT ==FLPH M
0.3- e b
3
S )
s 0.2 “
0.1~ R - i
o -
(iii)
0.1 . . . .
0 0.05 0.1 0.15 0.2 0.25
Plastic hinge length to span ratio Lp/L
Softening Region
5 T T T
—CPH
- N i —--FLPHS|
NS --FLPHM
g’ 1
NP . |
1 i
0
v)
1 . . . .
0 . .2 0.25

Figure 9. Errors in the slopes of the elastic, hardening and sof
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and FLPH M models during a monotonic analysis
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Figure 10. Steel moment frame
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(a) Pushover Curve (b) Beam Response
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Figure 11. Example three-story frame used to demonstrate the pro posed calibration procedures
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3r r(n=1000)=1.003 |

r(n=10)=1.30

[r(n=100)=1.03] [r(n=500)=1.006|

Ratio of flexibility coefficient fb(1,1) to the exact
linear—elastic solution r= fb(l,l) / LI(3EI)

O 10 10 500 1000
Amplification factor n
Figure 12. Computed elastic flexibility coefficient of concen trated plasticity model versus rigid-

plastic approximation of end springs
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