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Abstract5

The use of empirically calibrated moment-rotation models that account for strength and stiffness6

deterioration of steel frame members is paramount in evaluating the performance of steel structures prone7

to collapse under seismic loading. These deterioration models are typically used as zero-length springs8

in a concentrated plasticity formulation; however, a calibration procedure is required when they are used9

to represent the moment-curvature(M−χ) behavior in distributed plasticity formulations because the10

resulting moment-rotation(M−θ) response depends on the element integration method. A plastic hinge11

integration method for using deterioration models in force-based elements is developed and validated12

using flexural stiffness modifications parameters to recover the exact solution for linear problems while13

ensuring objective softening response. To guarantee accurate results in both the linear and nonlinear14

range of response, the flexural stiffness modification parameters are computed at the beginning of the15

analysis as a function of the user-specified plastic hinge length. With this approach, moment-rotation16
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models that account for strength and stiffness deterioration can be applied in conjunction with force-17

based plastic hinge beam-column elements to support collapse prediction without increased modeling18

complexity.19

Keywords: Component Deterioration; Earthquake Engineering; Force-based Finite Elements; Plastic20

Hinge Calibration; Steel21

INTRODUCTION22

Performance-based seismic design and assessment requiresaccurate nonlinear finite element models23

that can capture the full range of structural response associated with various performance targets. In24

the development of realistic finite element models, two mainaspects need to be taken into consideration.25

First, modes of strength and stiffness deterioration due todamage accumulation that could lead to local or26

global collapse need to be identified. Second, the models forstructural components need to be reliable,27

robust, and computationally efficient for the entire range of the analysis. Idealized beam and column28

models for nonlinear structural analysis vary greatly in terms of complexity and computational efficiency,29

from phenomenological models, such as concentrated plasticity models and distributed plasticity beam-30

column elements, to complex continuum models based on plane-stress or solid finite-elements.31

Concentrated plasticity models (Clough et al. 1965), consistof two parallel elements, one with32

elastic-perfectly plastic behavior to represent yieldingand the other with elastic response to represent33

post-yield hardening. Following the formal proposal by Giberson (1969), where nonlinear zero-length34

moment rotation springs are located at both ends of a linear-elastic beam-column element, this type of35

approach became the reference model in the development of the concentrated plasticity models. Many36

hysteretic laws have been proposed in the last decades accounting for the most relevant phenomena37

influencing member response up to collapse: cyclic deterioration in stiffness (Takeda et al. 1970) and38

strength (Pincheira et al. 1999; Sivaselvan and Reinhorn 2000), pinching under load reversal (Roufaiel39

and Meyer 1987), among many others have developed differentphenomenological models that define40

the behavior of the concentrated plastic hinges. Even though these models were developed several years41

ago, they have been recently proposed as the main method for estimating seismic demands of frame42

structures (Ibarra and Krawinkler 2005; Medina and Krawinkler 2005; Haselton and Deierlein 2007)43
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and have been presented as the preferred modeling approach in the ATC-72 guidelines (PEER/ATC44

2010). These models allow for reliable estimation of the seismic demands in structures up to the onset45

of collapse with limited computational cost.46

On the opposite end of the spectrum toCPH models, continuum models are generally accepted47

as the most reliable approach for estimating the seismic demands of structures to localized and global48

collapse. However, these models are typically complex and require very time-consuming computations.49

Distributed plasticity finite elements offer a compromise between concentrated plasticity models and50

continuum finite element models.51

Three formulations for distributed plasticity elements have been proposed in the literature: force-52

based beam-column elements (Spacone and Filippou 1992; Neuenhofer and Filippou 1997), displace-53

ment based beam-column elements (Taylor 1977; Kang 1977), and the mixed formulation based beam-54

column elements (Alemdar and White 2005). Mixed formulations typically yield the best results in non-55

linear structural analysis, but they have not been widely adopted in the finite element software typically56

employed in PBEE analyses.57

Force-based beam-column elements have been shown to be advantageous over displacement-based58

elements for material nonlinear frame analysis (Neuenhofer and Filippou 1997; Alemdar and White59

2005; Calabrese et al. 2010) by avoiding the discretization of structural members into numerous finite60

elements, thereby reducing the number of model degrees of freedom. In these formulations, the behavior61

of a section is described by a fiber model or a stress resultantplasticity model (El-Tawil and Deierlein62

1998).63

Despite these advantages, localization issues related to non-objective strain-softening response (Cole-64

man and Spacone 2001) led to the development of force-based finite-length plastic hinge beam-column65

elements (FLPH elements in short) by Scott and Fenves (2006) and Addessi andCiampi (2007). Con-66

ceptually, these elements are composed of two discrete plastic hinges and a linear elastic region, all67

of which are incorporated in the element integration method. Through the selection of experimentally68

calibrated plastic hinge lengths and appropriate definition of the integration scheme, localization can be69

avoided. The main advantages of theFLPH elements are: (i) the explicit definition of the plastic hinge70
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length, which allows for the recovery of meaningful local cross-section results (e.g. curvatures and bend-71

ing moments), (ii) a clear distinction between beam-columninelasticity from the nonlinear behavior of72

connections, and (iii) a reduced number of nodes, elements and degrees of freedom. These advantages73

motivate the search for alternate calibration approaches as presented in this paper. Although, these ele-74

ments have been used successfully in simulating the seismicresponse of structures (Berry et al. 2008),75

they require the definition of a moment-curvature relationship and plastic hinge length to represent a76

desired moment-rotation behavior.77

Based on a large database of experimental results, Lignos andKrawinkler (2011) have developed and78

validated multi-linear moment-rotation relationships that can be used to capture plastic hinge behavior79

in simulating the deteriorating response of steel structures to collapse. Other authors have reported sim-80

ilar moment-rotation relationships for reinforced concrete structures (Haselton and Deierlein 2007) and81

load-displacement relationships for timber structures (Foliente 1995), which account for other modes of82

deterioration not typically observed in steel structures.The developed moment-rotation(M−θ) relation-83

ships can be used directly in concentrated plastic hinge (CPH) elements following approaches presented84

in Ibarra and Krawinkler (2005). However, several other beam-column elements formulations, such as85

theFLPH elements, require the definition of moment-curvature relationships in the plastic hinge regions.86

For example, for themodifiedGauss-Radau integration scheme (Scott and Fenves 2006), where the end87

points weights are equal to the plastic hinge lengthLp, moment-curvature relationships are required for88

the two end sections. The direct scaling of the moment-rotation relationship by the plastic lengthLp in or-89

der to obtain a moment-curvature(M−χ) relationship (i.e. by dividing each rotation byLp (χi = θi/Lp)),90

at first may seem a logical approach. However, this leads to erroneous results when no further calibration91

is performed, as shown by Scott and Ryan (2013) for the common case of elasto-plastic behavior with92

linear strain hardening under anti-symmetric bending.93

The objective of this paper is to present a plastic-hinge calibration approach that allows for simulation94

of structures using finite-length plastic-hinge elements that use themodifiedGauss-Radau integration95

scheme and make use of recent multi-linear moment-rotationconstitutive laws that have been derived96

from experimental results. This calibration procedure canbe implemented in a finite element framework,97
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decreasing the user’s modeling effort, while providing accurate and reliable results.98

The calibration procedure includes the definition of section flexural stiffness modification parameters99

at the beginning of the nonlinear structural analysis. These modification parameters are computed as a100

function of the plastic hinge to span length ratio by comparison of the element flexibility and the target101

flexibility.102

The proposed calibration methodology improves the qualityand reliability of the results obtained103

without a notable increase either in computation cost or in the complexity of structural model. Nonethe-104

less, it is worth noting that the influence of other effects that are typically considered in 2-D frame105

modeling of built infrastructure still need to be taken intoaccount. Examples of relevant effects are slab106

stiffness and strength deterioration on cyclic performance of beams, diaphragm action, load distribution,107

and mathematical representation of damping, among others (Gupta and Krawinkler 1999). The vali-108

dation of the calibration approach is performed for nonlinear static (pushover) analyses. However, for109

full implementation in finite element software, nonlinear cyclic static and dynamic analyses including110

strength and stiffness deterioration are needed in the future, as these cases fall outside the scope of this111

paper. In addition, the proposed calibration scheme was only developed for themodifiedGauss-Radau112

scheme, as it is found to be advantageous over other methods,namely by avoiding localization issues, in113

the analysis of structures to seismic loading and is implemented in a finite-length plastic hinge (FLPH)114

element (Scott and Fenves 2006). The application of the calibration approach to other integration meth-115

ods falls outside the scope of this work.116

PROBLEM STATEMENT117

Empirical steel component deterioration moment-rotation behavior118

In order to simulate component deterioration, Ibarra and Krawinkler (2005) proposed a phenomeno-119

logical model to simulate the deterioration of steel elements, which Lignos and Krawinkler (2011)120

adapted to define deteriorating moment-rotation relationships for plastic hinges in steel elements us-121

ing data from a large set of experimental tests. The hysteretic behavior of the steel components is based122

on the force-displacement envelope (backbone curve) illustrated in Figure 1. Although steel structures123

are often modeled considering elasto-plastic constitutive behavior with linear strain hardening, during a124
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severe ground motion, significant inelastic cyclic deformations cause deterioration of elements, reduc-125

ing their strength and stiffness. This deterioration is significant in the analysis of steel structures under126

cyclic lateral loads as it influences not only the resistanceof the structure, but also its stiffness and its127

resulting dynamic behavior. The backbone curve for the adopted moment-rotation model (M−θ) is de-128

fined in terms of: (i) yield strength and rotation (My andθy); (ii) capping strength and associated rotation129

for monotonic loading (Mc andθc); (iii) plastic rotation for monotonic loading (θp); (iv) post-capping130

rotation (θpc); (v) residual strengthMr = κ×My; and (vi) ultimate rotation (θu). Other model param-131

eters permit the definition of cyclic strength, post-capping strength, accelerated reloading stiffness and132

unloading stiffness deterioration (Lignos and Krawinkler2012).133

CPH models134

The empirical models described above can be used directly inthe zero-length moment-rotation135

springs ofCPH elements. In the case of double curvature or anti-symmetricbending, which is the136

reference case for the empirical moment-rotation models used in Ibarra and Krawinkler (2005) as well137

as in Lignos and Krawinkler (2011), the global element initial flexural stiffness of the one component138

CPH becomes 6EI/L, whereEI is the cross-section flexural stiffness andL is the element length. The139

flexibilities of the zero-length moment-rotation springs and the element interior are additive, giving the140

total element flexibility:141

f = fI + f int + fJ (1)142

wheref int is the flexibility of the linear-elastic element interior and fI andfJ are the flexibilities of the143

springs at endsI andJ, respectively.144

The correct linear-elastic solution for the entire elementis only obtained if the end rotational springs145

are approximated as rigid-plastic. Thus, linear elastic cross-section stiffness of the springs at both ends146

are affected by a constantn (typically greater than 1000) such that the initial stiffness of the springs is147

large, but not so large as to pose numerical instability, as shown in Appendix I. Since the elastic stiffness148

of the member is related to the elastic stiffness of the rotational springs and the beam-column element,149
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which are connected in series, the stiffness of the element interior is also affected byn, and is expressed150

as:151

EImod= EI
n+1

n
(2)152

which translates to spring initial stiffness given by:153

km = n
6EImod

L
, m= I ,J (3)154

Following the methodology in Ibarra and Krawinkler (2005),the ratio of post-yield to elastic stiffness155

of the spring,α′ (ratio of the tangent stiffness,kTm, to the linear elastic stiffness,km) is given by:156

α′ =
kTm

km
=

α
1+n× (1−α)

(4)157

whereα is the nominal post-yielding to elastic stiffness ratio andα′ is assigned to the end springs in158

theCPH model to reproduce the correct moment-rotation behavior ofthe member. The ratioα′ is thus159

defined such that the correct nonlinear moment-rotation stiffness of the member, defined asα×6EI/L,160

is recovered.161

Finite-length plastic hinge elements162

TheFLPH element developed by Scott and Fenves (2006) is based on the force-based beam-column163

finite element formulation by Spacone et al. (1996) and uses alternative numerical integration schemes164

to account for user-defined plastic hinge lengths. The force-based beam-column finite element is for-165

mulated assuming small displacements in a simply-supported basic system free of rigid-body displace-166

ments. Figure 2 illustrates the basic system in which the vector of element-end forces,q, the vector of167

element deformations,v, the internal section forces,s(x), and section deformations,e(x), are shown for168

a two-dimensional element. Section forces correspond to the axial force and bending moments, while169

the section deformations correspond to axial strain and curvature.170

7 January 2014



Equilibrium between the section forcess(x) at a locationx, and basic element forcesq is given by:171

s(x) = b(x)q+s0(x) (5)172

whereb(x) is the interpolation function matrix, ands0(x) corresponds to a particular solution associated173

with element loads. Equation 5 can be expanded into different forms depending on the number of di-174

mensions of the problem and the beam theory selected. For thetwo-dimensional Euler−Bernoulli beam-175

column element, the basic forces areq = {q1,q2,q3}T and the section forces ares(x) = {N(x),M(x)}T ,176

all of which are shown in Figure 2. Compatibility between element deformationsv and section deforma-177

tionse is expressed as:178

v =
∫ L

0
b(x)Te(x) dx (6)179

The element flexibility matrix is obtained through linearization of the element deformationsv with180

respect to basic forcesq and is given by:181

f =
∂v
∂q

=
∫ L

0
b(x)T fS(x)b(x) dx (7)182

wherefS is the section flexibility, equal to the inverse of the section stiffnessfS = k−1
S . The section183

stiffness is obtained from linearization of the constitutive relationship between section forces and section184

deformations,kS = ∂s/∂e, at the current element state. The implementation details of the force-based185

element formulation into a displacement-based software were presented by Neuenhofer and Filippou186

(1997) and are not reproduced here for brevity.187

Numerical evaluation of Equation 6 is given by:188

v =
NP

∑
i=1

(

bTe|x=ξi

)

wi (8)189

whereNP is the number of integration points over the element length,andξi andwi are the associated190
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locations and weights. The element flexibility is thereforegiven by:191

f =
NP

∑
i=1

(bT fSb|x=ξi
)wi (9)192

The main issue related to use of this formulation is the localization of strain and displacement re-193

sponses that can be obtained in the case of strain-softeningresponse of force-based distributed plastic-194

ity elements (Coleman and Spacone 2001). Scott and Fenves (2006) and Addessi and Ciampi (2007)195

proposed methods for force-based finite length plastic hinge (FLPH) integration, where the element is196

divided in three segments, two corresponding to the plastichinges at both ends, with lengthLpI andLpJ,197

and a linear segment connecting both hinges (see Figure 3(a)). Thus, Equation 6 simplifies to:198

v =
∫ LpI

0
b(x)Te(x)dx+

∫ L−LpJ

LpI

b(x)Te(x)dx+
∫ L

L−LpJ

b(x)Te(x)dx (10)199

Various approaches were proposed by Scott and Fenves (2006)and Addessi and Ciampi (2007) to200

evaluate this integral numerically; however, the focus herein is theModifiedGauss-Radau integration201

scheme which retains the correct linear elastic solution while using the specified plastic hinge lengths as202

the integration weights at the element ends.203

In this method both end sections are assigned a nonlinear behavior, whereas the element interior is204

typically assumed to have an elastic behavior, although this assumption is not necessary. The flexibility205

of theFLPH element can be computed as:206

f =
∫

LpI

b(x)T fS(x)b(x)dx+
∫

Lint

b(x)T fS(x)b(x)dx+
∫

LpJ

b(x)T fS(x)b(x)dx (11)207

whereLint is the length of the linear-elastic element interior.208

Using themodifiedGauss-Radau integration scheme for the plastic hinge regions, Equation 11 can209

be rewritten as:210

f =
NpI

∑
i=1

(bT fsb|x=ξi
)wi +

∫
Lint

b(x)T fS(x)b(x)dx+
NpI+NpJ

∑
i=NpI+1

(bT fsb|x=ξi
)wi (12)211
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whereNpI andNpJ are the number of integration points associated with the plastic hinges at the element212

ends. For themodifiedGauss-Radau integrationNpI = NpJ = 2. The element interior term can be213

computed exactly when the element interior is elastic and there are no member loads. Nonetheless, the214

element interior can also be analyzed numerically. In this case, the Gauss-Legendre integration scheme215

is appropriate to integrate the element interior. If two integration points are placed in this region, a total216

of six integration points are defined along the element length. The locationξi of the integration points217

associated with themodifiedGauss-Radau plastic hinge integration, represented in Figure 3(a), are given218

by:219

ξ = {ξI ,ξint ,ξJ} (13)220

where:221

ξI =
{

0; 8LpI
3

}

ξint =
{

4Lp+
Lint
2 ×

(

1− 1√
3

)

;4Lp+
Lint
2 ×

(

1+ 1√
3

)}

ξJ =
{

L− 8LpJ
3 ;L

}

(14)222

The corresponding weightswi are given by:223

w = {wI ,wint ,wJ} (15)224

where:225

wI =
{

LpI;3LpI
}

wint =
{

Lint
2 ; Lint

2

}

wJ =
{

3LpJ;LpJ
}

(16)226

In this case, the element flexibility is then given by:227

f =
6

∑
i=1

(bT fsb|x=ξi
)wi (17)228

where this equation is consistent with points and weights shown in Figure 3(a).229
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CALIBRATION OF FORCE-BASED FINITE-LENGTH PLASTIC HINGE EL EMENTS230

TheFLPH formulation requires the definition of moment-curvature relationships in the plastic hinge231

region, and subsequent procedures to relate these relationships to the moment-rotation response of the232

element. In this section, a novel method for calibration of the moment-rotation behavior of finite-length233

plastic hinge force-based frame elements is proposed for arbitrary plastic hinge lengths. With this ap-234

proach, moment-rotation models that account for strength and stiffness deterioration can be applied in235

conjunction withFLPH models to support collapse prediction of frame structures.The approach in-236

cludes an automatic calibration procedure embedded in the numerical integration of the element, freeing237

the analyst of this task. The calibration procedure is formulated for themodifiedGauss-Radau integration238

scheme. However, it can be applied to other plastic hinge methods proposed by Scott and Fenves (2006)239

and Addessi and Ciampi (2007), function of the weight and location of the integration points used in the240

calibration.241

Calibration Procedure242

The main goals of this procedure are to:243

1. Use empirical moment-rotation relationships that account for strength and stiffness deterioration244

to model the flexural behavior of the plastic hinge region;245

2. Guarantee that the flexural stiffness is recovered for thenominal prismatic element during the246

entire analysis; and247

3. Allow the definition of arbitrary plastic hinge lengths bythe analyst.248

The presented calibration procedure is performed at the element level through the introduction of249

section flexural stiffness modification parameters at internal sections of the beam-column element mak-250

ing it possible to scale a moment-rotation relation in orderto obtain moment-curvature relations for the251

plastic hinge regions. Defining the moment-rotation stiffness of the plastic hinge regions as:252

kM−θ =
α6EI

L
(18)253
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and making use of a user-defined plastic hinge length at either end of the element (LpI andLpJ for ends254

I andJ, respectively), the moment-curvature relations can be defined as:255

kM−χ =
α6EI

L
×LP{I ,J} (19)256

As highlighted by Scott and Ryan (2013), the moment-rotationand moment-curvature relations are iden-257

tical for LP{I ,J}/L = 1/6. However, for any other plastic hinge length, the definition of the moment-258

curvature via direct scaling of the moment-rotation given by Equation 19 yields incorrect section stiff-259

ness, which in turn lead to incorrect member stiffness. The calibration procedure presented herein com-260

pensates for the incorrect stiffness of the plastic hinge moment-curvature relationship by modifying the261

flexural stiffness of each of the four internal sections (integration pointsξ2, ξ3, ξ4 andξ5 in Figure 3(a)),262

assumed to remain linear elastic throughout the analysis, using one of three different parameters,β1, β2,263

andβ3, shown in Figure 3(b).264

Theβ modification parameters are quantified such that the elementflexibility matrix is: (i) within the265

elastic region, equal to the analytical solution for an elastic prismatic element; (ii) after yielding, identical266

to the target flexibility, i.e. is similar to the user-definedM−θ behavior. The target flexibility matrix in267

the elastic and nonlinear regions can be provided by theCPH model using Equations 1 to 4. Then, the268

modification parameters are defined based on the equivalenceof the flexibility matrices associated with269

theCPH andFLPH models. The target flexibility can be computed using different models and herein270

the models defined by Lignos and Krawinkler (2011) are used inthe derivations. In the calibration271

procedure, double curvature or anti-symmetric bending is assumed to obtain the elastic stiffness of the272

structural element. This is a common result of the lateral loading and boundary conditions considered in273

seismic analysis of frame structures. In this case, the elastic elementM−θ stiffness is 6EI/L. However,274

the calibration procedure shown herein is valid for any element moment-rotation stiffness and moment275

gradient.276
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Derivation of Modification Parameters277

For the 2D beam-column element, a system of three integral equations corresponding to each of278

the unique flexural coefficients of the element flexibility matrix is constructed. The flexibility matrix279

coefficients obtained from Equation 17, corresponding to theFLPH, are equated to the flexibility matrix280

coefficients obtained from Equation 1, associated with aCPH model and the empirical model. From this281

system of equations, the three elastic stiffness modification parameters,β1, β2, andβ3, can be computed282

as a function ofLpI, LpJ, L andn, which is the elastic stiffness modification parameter of theCPH model.283

The code for solving the system of equations, which is implemented in thewxMaximasoftware (Souza284

et al. 2003) and is presented in the Appendix II. Whenn tends to infinity,β1, β2 andβ3 are given by:285

β1 = −
54LpIL3−6LpI(60LpI +60LpJ)L2+6LpI(96L2

pI +288LpILpJ+96L2
pJ)L−6LpI(256L2

pILpJ+256LpIL2
pJ)

L(3L−16LpJ)(L2−20LLpI +4LpJL+64L2
pI)

286

β2 = −3(4LpI −L+4LpJ)(3L2−12LLpI −12LLpJ+32LpILpJ)

L(3L−16LpI)(3L−16LpJ)
(20)287

β3 = −
54LpJL3−6LpJ(60LpI +60LpJ)L2+6LpJ(96L2

pI +288LpILpJ+96L2
pJ)L−6LpJ(256L2

pILpJ+256LpIL2
pJ)

L(3L−16LpI)(L2−20LLpJ+4LpIL+64L2
pJ)

288

289

If both plastic hinges have the same length, i.e.Lp = LpI = LpJ, Equation 20 simplifies significantly290

to:291

β1 = β3 =−
6
(

3L2Lp−24LL2
p+32L3

p

)

L(L−8Lp)2292

β2 =
3
(

3L3−48L2Lp+224LL2
p−256L3

p

)

L(3L−16Lp)2 (21)293

It is worth noting that in Equation 21 there are singularities in β1 andβ3 for Lp/L = 1/8 and inβ2294

for Lp/L = 3/16, which correspond to cases in which: (i) the length of the elastic element interior,Lint ,295

is equal to zero and (ii) the two internal integration pointsξ2 andξ5 shown in Figure 3(b) are co-located.296

In Figure 4 the flexural stiffness modification parameters ofEquation 21 are represented as a function297

of the plastic hinge length to span ratioLp/L. Both parametersβ1 andβ3 are equal for allLp/L ratios, as298
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both plastic hinges have the same flexural stiffnessα16EILp/L = α26EILp/L. Note that the calibration299

procedure is valid whenLint < 0, i.e.Lp/L > 1/8.300

The proposed calibration procedure is illustrated in Figure 5 for the specific case of a nonlinear static301

(pushover) analysis. The pushover analysis is conducted bycontrolling a jth degree of freedom (DOF).302

Furthermore, the displacementU f and pseudo-timeλ are initialized to zero, and the displacement in-303

crementdUf for the control DOF and the reference load patternPre f are also initialized. The stiffness304

matrix K f is computed in theform stiffness matrixprocedure (see Figure 6) at the beginning of each305

analysis step and each NR iteration. In this procedure, the parametersα1 andα2 are calculated based306

on the committed (converged in a previous step) element forces and deformations, as well as the tan-307

gent stiffness. In the first analysis step, the section stiffness modification parametersβ1, β2 andβ3 are308

computed, as shown in Figure 6. Once the stiffness modification parameters are computed, the stiffness309

matrix is computed through inversion of the flexibility matrix. The stiffness matrix is obtained consid-310

ering the integration points (IPs) of themodifiedGauss-Radau integration scheme shown in Figure 3(b).311

Transformation from the basic to the local coordinate system is performed with the matrixAf . From this312

point onward a traditional NR algorithm is used, repeating the above procedure at the beginning of each313

analysis step and at each NR iteration. Different strategies can be used in updating the model state deter-314

mination, namely: (i) update state of the model domain (displacements, pseudo-time, forces) using the315

residual tangent displacement from the previous iteration; (ii) decrease the displacement increment and316

update the model domain trying to overcome convergence problems; (iii) change the numerical method317

used (either for this analysis step only or for all remainingsteps); and (iv) change the tolerance criteria318

(if that is admissible for the case being analyzed). In case the NR method is not able to converge after a319

user-defined maximum number of iterations,imax, the analysis is stopped, and is considered not to have320

converged. Illustrative examples are presented in the following sections. Different solution algorithms321

may be used to solve the nonlinear residual equations (De Borst et al. 2012; Scott and Fenves 2010).322

The Newton-Raphson (NR) algorithm is one of the most widely used and is a robust method for solving323

nonlinear algebraic equations of equilibrium. In this figure (Figure 5) the flowchart for the calibration324

procedure is exemplified using the NR algorithm.325
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NUMERICAL EXAMPLES326

The proposed methodology was applied to a set of simply supported beams subjected to end moments327

and considering different plastic hinge lengths, as well asa simple steel frame structure. The beams are328

analyzed considering a pushover analysis, where rotationsare incremented until reaching an ultimate329

rotation. For the first beam, equal moments are applied at each support, while in the second case, the330

moment applied at the left support is half of that applied to the right support. The steel element properties,331

including the parameters considered for the deteriorationmodel, are presented in Table 1.332

Example 1333

A simply supported beam is analyzed considering equal moments and rotations applied at both ends.334

Figure 7(a) shows the element end moment plotted against theelement end rotation. A local response,335

corresponding to the rotation of a section at a distanceLp from the support is also plotted against the end336

moment in Figure 7(b). The rotation at a distanceLp from the support, in theCPH model, must consider337

the rotation of the zero-length spring and the deformation of the elastic segment of lengthLp.338

In this figure, the plastic rotation of theCPH model is computed obtained by adding the rotation of339

the zero-length spring to the rotation of the elastic element over a length ofLp. The former is obtained340

by multiplying the curvature (χ) of the end section of the element byLp.341

TheCPH curve denotes the results obtained using a concentrated plastic hinge model, following the342

procedure employed by Lignos and Krawinkler (2012), and serves as a benchmark. Figure 7(a) shows343

that end rotations obtained using theCPH model present an initial linear elastic response up to the344

yielding point, defined by the yielding moment-rotation pair My,CPH−θy,CPH. Then, a linear hardening345

region connects the yielding point to the capping point (Mc,CPH−θc,CPH) and a linear softening region346

links the capping point to the residual moment-rotation point (Mr,CPH− θr,CPH), which is followed by347

a plastic region that extends toθU . The second model considered (FLPH S) corresponds to the use of348

finite length plastic hinge elements, defining the moment-curvature relation through direct scaling of the349

rotation parameters (θy, θc, θpc, θr , andθu) by the plastic hinge lengthLp and no further calibration. The350

results show that this approach leads to erroneous results,as the elastic stiffness obtained is significantly351

lower than the target, and higher rotations are obtained in the softening branch. If the moment curvature352

15 January 2014



is calibrated (curveFLPH M) using the proposed method, it is possible to reproduce theCPH behavior353

of the beam exactly for the entire analysis. Although the global response is in perfect agreement, Figure354

7(b) shows that the local response is different when theCPH or theFLPH M models are used. For the355

FLPH models, local response in Figure 7(b) corresponds to the integration of the end section curvature356

(χ) over the plastic hinge lengthLp (χ× Lp). This result is equal for theFLPH S and theFLPH M357

models since the end sections of both models are defined in a similar manner (only the interior sections358

are affected by the flexural modification parameters).359

Figure 9(a) shows the errors associated with the different models and different plastic hinge lengths.360

The errors are defined as the ratio between the computed slopes of the elastic, hardening, and softening361

branches, and the respective target moment-rotation defined in Lignos and Krawinkler (2011). The362

results show that: (i) theFLPH M calibration procedure provides accurate results when compared to363

the results obtained usingCPH for the elastic, hardening and softening ranges of the response; (ii) the364

FLPH Sprocedure, where a scaled moment-curvature relation is used without further calibration, results365

in significant errors. It is worth noting that only forLp/L = 1/6 does theFLPH Smodel result in the366

exact moment-rotation at yielding and at the capping point,as previously shown by Scott and Ryan367

(2013). The results from this example highlight the the advantages of the calibration procedure proposed368

herein, namely showing that accurate results can be achieved for varying lengths of the plastic hinge and369

for cases considering softening.370

Example 2371

To show calibration for other moment gradients in the beam element, an identical beam to that from372

the previous example is analyzed considering the left moment equal to half of the right moment. As a373

result the left end of the beam is always in the elastic range,and the beam does not deform in double374

curvature. However, as shown in Figure 8, the results obtained for a plastic hinge lengthLp/L= 1/16 are375

consistent with those obtained in Example 1. In fact, the results obtained with the scaled moment cur-376

vature relation without calibration (FLPH S) show significant errors from the elastic range, propagating377

over the entire range of analysis. When calibration is considered (FLPH M) the results are corrected and378

perfect agreement is found betweenCPH andFLPH M models. Figure 9(b) shows the results obtained379
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considering several plastic hinge lengths. The errors are computed by comparing the slopes of the elastic,380

hardening and softening branches of the twoFLPH elements with theCPH model. Results show that the381

analysis presented forLp/L = 1/16 is valid for all values of the plastic hinge length. Furthermore, the382

results show that the proposed calibration procedure is applicable to different moment gradients besides383

anti-symmetric bending.384

Frame structure385

A single-bay three-story frame with uniform stiffness and strength over its height (see Figure 10) is386

used to illustrate the application of the calibration procedure described above. A dead load of 889.6kN is387

applied to each story, giving a total structure weightW of 2669kN. The flexural stiffnessEI is identical388

for beams and columns with values given in Table 1. Plastic hinges form at beam ends and at base389

columns. The other columns are assumed to remain elastic. Pushover analyses of the frame are conducted390

in the OpenSees framework (McKenna et al. 2000) using a P-Delta geometric transformation for the391

columns. Results obtained with modelFLPH M are compared to results obtained using theCPH models.392

It is worth noting that in steel W-shape beams with shape factors (k = Mp/My) of approximately 1.12,393

the plastic hinge length is taken as 10% of the distance between the point of maximum moment and the394

inflection point (Bruneau et al. 1998). This value is slightlylarger, approximately 12.5%, at the center395

of beams that are subjected to distributed loads. Thus, for members in a state of anti-symmetric double396

curvature, it is suggested that a plastic hinge length betweenL/20 andL/16 be used.397

Figure 11(a) shows the normalized base shear (V/W) versus roof drift ratio for the three models and398

Figure 11(b) illustrates the beam moment-rotation response. The results obtained for this frame show399

that the conclusions drawn for the two previous examples hold, namelyFLPH Sshould not be used as a400

procedure for converting from empirical moment-rotation relations to moment-curvature relations when401

FLPH elements are used, andFLPH M is an adequate procedure that produces objective results without402

computationally expensive iterative/updating procedures.403

CONCLUSIONS404

The present work proposes a calibration procedure that allows the use of finite-length plastic hinge405

(FLPH) force-based beam-column elements for steel moment framesthat exhibit softening response406
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at the section and element levels. The use of scaled but uncalibrated moment-curvature relationships in407

FLPH elements leads to significant errors in both local and globalresponses and is therefore not adequate408

for structural analysis. The new calibration procedure is performed at the element level through the in-409

troduction of section flexural stiffness modification parameters (β), which are computed at the beginning410

of the analysis as a function of the user defined plastic hingelengths. The modification parameters are411

obtained by equating element flexural coefficients of the flexibility matrix and target flexibility matrix,412

where the latter is given by the user-defined moment-rotation relation and is computed in this work using413

aCPH model. Nonlinear static analyses of two simply supported beams and pushover analysis of a steel414

moment-resisting frame were performed considering different plastic hinge lengths. The results illus-415

trate that the exact linear elastic stiffness can be recovered for linear problems while ensuring objective416

response after the onset of deterioration. The cases studied as well as error analysis based on analyti-417

cal expressions show that the calibration procedure is valid for any moment gradient. Even though the418

proposed calibration procedure has only been validated formulti-linear moment-rotation relationships,419

it is, in principle, possible to use it with other constitutive laws, where moment-rotation can be related to420

moment-curvature by a user-defined plastic hinge length. The calibration procedure was validated at the421

section level for bending moments and rotations only, but similar approaches may be used for cases in422

which the interaction between bending and axial deformations is considered. The accuracy and stability423

of the proposed calibration procedure remains to be studiedfor nonlinear dynamic time-history analysis424

of steel moment frame buildings.425
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Appendix I. ERROR IN THE MODEL ELASTIC STIFFNESS ASSOCIATED WITH THE CPH SPRINGS509

ELASTIC STIFFNESS AMPLIFICATION FACTOR510

In CPH models, the elastic stiffness amplification factor (n) should be chosen carefully as an exces-511

sively large value would pose numerical problems, while a value that is not sufficiently large will lead to512

erroneous results in the elastic range. In this Appendix, elastic stiffness errors associated with values of513

n< 1000 are computed.514

Considering that each member can be represented by two end rotational springs and an elastic frame515

element in series, the flexibilities of the springs and the frame element in aCPH element are additive.516

Using the tangent stiffnesses,kTI andkTJ, of each rotational spring, the member flexibility is:517

fb =







1/kTI 0

0 0






+

L
6EI

×







2 −1

−1 2






+







0 0

0 1/kTJ






(A.1)518

To recover the correct linear-elastic solution for the entire CPH model, the end rotational springs519

need to be approximated as rigid-plastic with an initial stiffness that is large, but not so large to pose520

numerical instability. This is akin to the selection of large penalty values when enforcing multi-point521

constraints in a structural model (Cook et al. 2001). The ratio of flexibility coefficient fb(1,1) to the522

exact linear-elastic solutionL/(3EI) is plotted in Figure 12 versus the elastic stiffness amplification523

factor, which scales the characteristic element stiffnessEI/L (kI = n×EI/L).524

As shown in Figure 12, the ratio between the elastic stiffness recovered using differentn values for525

theCPH model and the target elastic stiffness (L/3EI) varies from 1.30 (30% error) forn= 10 to 1.003526

(0.3% error) forn= 1000. Thus, to recover the elastic solution with negligibleerrors, it is suggested that527

a value ofn= 1000 be used.528

Although the suggested value ofn ≥ 1000 allows for recovery of the elastic stiffness, several au-529

thors have highlighted that there is an increased likelihood of non-convergence of nonlinear time-history530

response analyses if such a large value ofn is used. For this reason, Zareian and Medina (2010) have531

suggested the use ofn= 10. However, the use of such a low value ofn can lead to overestimating the532

elastic flexibility of the elements up to 30%, which could lead to approximately 13% error in natural533
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frequencies of vibration.534
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Appendix II. COMPUTATION OF THE SECTION FLEXURAL STIFFNESS MODIFICATION535

PARAMETERS536

.537

The following code was implemented in thewxMaximasoftware (Souza et al. 2003).538

• Unknowns539

β1,β2,β3 (A.2)540

• Input data541

y : [0,8/3×LpI,L−8/3×LpJ,L];542

w : [LpI,3×LpI,3×LpJ,LpJ]; (A.3)543

mp : [α1×6×LpI/L,β1,β3,α2×6×LpJ/L];544

• Computation of the element flexibility matrix (flexural termsonly)545

f1 : matrix ([0,0], [0,0]); (A.4)546

• Plastic hinges integration points547

for i : 1 to 4 do548

( f1 : f1+ transpose(matrix ([0,0], [y[i]/L−1,y[i]/L])). (A.5)549

matrix ([0,0], [y[i]/L−1,y[i]/L])×w[i])×550

(1/(mp[i]∗EI));551

• Interior region552

f1 : f1+ integrate(transpose(matrix ([0,0], [x/L−1,x/L])).553

matrix ([0,0], [x/L−1,x/L])× (1/(β2×EI)), (A.6)554

x,4×LpI,L−4×LpJ);555

• Computation of the target flexibility matrix using aCPH model (flexural terms only)556

• CPH model parameters557

EImod : EI× (n+1)/n;558

Kspring : n×6×EImod/L; (A.7)559

mp2 : [(α1)/(1+n× (1−α1)),(α2)/(1+n× (1−α2))];560
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• Model flexibility matrix561

f2 : matrix ([1/(mp2[1]×kspring),0], [0,1/(mp2[2]×kspring)]);562

f2 : f2+ integrate(transpose(matrix ([0,0], [x/L−1,x/L])). (A.8)563

matrix ([0,0], [x/L−1,x/L])× (1/(EImod)),564

x,0,L);565

• Solve the system of equations for obtaining unknowns566

eq1 : f1[1,1] = f2[1,1];567

eq2 : f1[1,2] = f2[1,2];568

eq3 : f1[2,2] = f2[2,2]; (A.9)569

sol : solve([eq1,eq2,eq3], [β1,β2,β3]);570

• Although the previous step already gives a solution for the problem, it is useful to obtain the571

solution without dependency onn. Thus, the solution,sol, is evaluated whenn tends to infinity572

limit (sol,n, in f ); (A.10)573
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Table 1. Element properties for numerical examples

Geometric parameters Moment-rotation model parameters
Inertia (m4) Area (m2) My (kNm) Mc/My θp (rad) θpc (rad)

Example 1 and 2 0.0002 0.0073 320.78 1.05 0.0692 0.168
Frame Beams 0.0111 0.0551 1911.0 1.05 0.025 0.25

Frame Columns 0.0111 0.0551 969.0 1.05 0.03 0.35
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Figure 5. Calibration procedure for a nonlinear static structura l (pushover) analysis
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Figure 7. Example 1 - basic system with equal moments at both en ds and plastic hinge length
Lp/L = 1/16
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Figure 8. Example 2 - basic system with different moments at bot h ends and plastic hinge length
Lp/L = 1/16
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Figure 9. Errors in the slopes of the elastic, hardening and sof tening regions for the CPH, FLPH S
and FLPH M models during a monotonic analysis
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Figure 11. Example three-story frame used to demonstrate the pro posed calibration procedures
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