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ABSTRACT 

The aim of this work is the production of a biofuel - biodiesel, from an innovate and 

renewable source - chicken feather meal, combining the biocatalysis in supercritical 

environment - supercritical carbon dioxide. 

In a first phase of this project, it’s carried out the study of the extraction of oil from chicken 

feather meal (CFM). The solvent, carbon dioxide in supercritical conditions (sc-CO2), passes 

through an extractor filled with raw material, CFM. CO2, due to its properties, extracts 

nonpolar compounds, such as triglycerides in which chicken feather meal has in its 

constitution. It was shown that the optimal extraction conditions are at 300 bar and 313.15 K. 

Regarding the solvent flow rate, further studies are needed to do in order to establish if the 

best extraction yield is obtained at 75 or 150 gCO2/min. In fact, the extraction efficiency, in 

both cases, is very high, yielding 94,2 and 96,2% of extraction efficiency, respectively. 

In a second phase of the project, it’s carried out the study of transesterification reaction from 

the oil extracted from CFM. Thus, there was performing a continuous process integrating the 

oil extraction with the transesterification reaction. Therefore, using also the supercritical 

carbon dioxide as a solvent, was used the Lipozyme® RM IM to catalyse the 

transesterification reaction. Thus, initially, the carbon dioxide passes through an extractor 

filled with CFM inside. When it’s saturated in oil (triglycerides), it leaves the extractor and 

enters in a reactor filled with Lipozyme® RM IM. Here is where the transesterification 

reaction takes place, converting the oil into biodiesel. The oil, dissolved into sc-CO2 leaves 

the reactor. It was demonstrated that the optimum reaction conditions are at 250 bar, 313,15 K 

with a molar ratio of oil:methanol 1:12 and with a solvent flow rate 75 gCO2/min, yielding 

98,54 ± 0,49% of biodiesel. 

In the third and last part of the project was performed the fractionation process of the products 

obtained in the transesterification reaction. Thus, the conditions of pressure and temperature 

and changing in the two separators/cyclones in order to get the unreacted triglycerides in the 

first separator and, in the second, the biodiesel with a higher purity, even though in smaller 

amounts. It was shown that at 100 bar and 333,15 K it is obtained biodiesel with higher 

quality (93,89 ± 2,89% of yield). 

Keywords: Biodiesel; Supercritical carbon dioxide; Residues from food industry; Chicken 

feather meal; Lipozyme® RM IM. 
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RESUMO 

O objectivo deste trabalho consiste na produção de um biocombustível – biodiesel, a partir de 

uma fonte inovadora e renovável – farinha de penas de galinha, recorrendo à biocatálise num 

ambiente supercrítico – dióxido de carbono supercrítico.  

Numa primeira fase deste projeto, realizou-se o estudo da extração de óleo da farinha de 

penas de galinha (CFM). O solvente, dióxido de carbono em condições supercríticas (sc-CO2), 

passa por um extractor, contendo no interior a matéria prima. O CO2, devido às suas 

propriedades, extrai compostos apolares, como é o caso dos trigliceridos que a farinha de 

penas de galinha possui. Ficou demonstrado que as condições ótimas de extração são a 300 

bar e 313,15K. Relativamente ao caudal mássico do solvente, são necessários mais estudos de 

modo a comprovar se o melhor rendimento de extração é obtido a 75 ou 150 gCO2/min. 

Efetivamente, a eficiência de extração em ambos os casos é bastante elevada, tendo-se obtido 

94,2 e 96,2% de eficiência de extração, respectivamente.  

Numa segunda fase do projeto, realizou-se o estudo da reação de transesterificação, a partir 

do óleo extraído da farinha de penas de galinha. Assim, realizou-se um processo em contínuo 

integrando a extração do óleo com a reação de transesterificação. Para isso, além de se usar 

novamente o dióxido de carbono como solvente, utilizou-se a Lipozyme® RM IM para 

catalisar a reação de transesterificação. Assim, o dióxido de carbono passa inicialmente por 

um extrator, contendo no interior a matéria prima. Este satura-se em óleo (triglicéridos) 

saindo do extractor e entra no reator, contendo a Lipozyme® RM IM no seu interior. Aqui 

ocorre a reação de transesterificação, convertendo o óleo em biodiesel. Este (o óleo), 

dissolvido no sc-CO2, deixa o reator. Ficou demonstrado que as condições ótimas de reação 

são a 250 bar, 313,15K com uma proporção de óleo:metanol de 1:12 e com um caudal 

mássico de solvente a 75 gCO2/min, tendo-se obtido 98,54 ± 0,49% de rendimento de reação. 

Numa ultima e terceira fase do projeto realizou-se o fracionamento dos produtos obtidos na 

reação de transesterificação. Assim, alterou-se as condições de pressão e temperatura nos dois 

separadores/ciclones com o intuito de obter os trigliceridos que não reagiram na totalidade no 

primeiro separador e, no segundo, obter o biodiesel com uma pureza mais elevada, mesmo 

que em menores quantidades. Ficou demonstrado que a 100 bar e 333,15K obtém-se biodiesel 

com maior grau de pureza (93,89 ± 2,89% de rendimento). 

Palavras-chave: Biodiesel; Dióxido de carbono supercrítico; Resíduos da industria 

alimentar; Farinha de penas de galinhas; Lipozyme® RM IM.  
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1. INTRODUCTION 

1.1. MOTIVATION 

1.1.1.  ENERGY DEMAND 

From the 19th century, when Industrial Revolution occurred, until now, the world has been 

dependent on fossil fuels. Currently, the world produce a total of 12,6 billions tones of oil 

equivalent for energy use, in which 31,8% is from oil (that includes crude oil, shale oil, oil 

sands and NGLs – the liquid content of natural gas where this is recovered separately) and 

31,5% from coal (referring to commercial solid fuels only, i.e. bituminous coal and anthracite 

– hard coal, and lignite and brown – sub-bituminous – coal) [1]. The massive consumption 

and production of fossil fuels have some disadvantages such as: (i) concentration in few and 

problematic regions of the world, which can cause economical and social issues; (ii) 

imminent risk of running out; and (iii) cause serious concern over global warming by 

greenhouse gas emissions (particles, volatile organic compounds, COx, NOx, and SOx), 

therefore, affecting directly the public health and the environment [2], [3]. Since 1872, the 

crude oil has increased to over $100 per barrel and it is causing severe negative impact on the 

world economy, as it can be seen on Figure 1.1.1.  

 

Figure 1.1.1 - Crude oil prices, since 1872 to 2011, in the world [1]. 

This increase of the crude oil price is related with its massive consumption, as it can be seen 

on Figure 1.1.2. According to BP statistical review of world energy, published in December 

2012, the company estimates that the world’s proven reserves of oil are 1,6 billion of barrel 
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[1] (Figure 1.1.3), which indicates that the world have abundant oil, for now. But taken into 

account the world crude oil consumption that would account to only 40 years of uninterrupted 

supply of oil, just based on the volume accessible and proven reserves. The theory of peak oil 

(the maximum point from which the supply of the planet begin to reduce), Figure 1.1.4, has 

become a controversial issue in recent years, and it is expected that will occurs on the next 

year, 2014 [4]. 

 

 

Figure 1.1.2 - World oil consumption since 1965 to 2011 [1]. 

 

 

Figure 1.1.3 - World oil proved reserves since 1980 to 2011 [1]. 

 

According to William Colton1, “Energy is fundamental to our way of life and our future 

prosperity” [5]. If demand continues to grow like this, the production of oil begins to decline 

and the world will enface severe problems. 

                                                        

1 Will M. Colton is the vice president (corporate strategic planning) of the ExxonMobil Company. 
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Figure 1.1.4 – Theory of peak oil. 
 

Effectively, the International Energy Outlook 2013 (IEO2013) projects that world energy 

consumption will grow more than 50% between 2010 and 2040, and fossil fuels continue to 

supply almost 80% of world energy use through 2040 [6], Figure 1.1.5.  

 

 

 

 

 

 

 

Figure 1.1.5 – World total energy consumption, since 2009 to 2040 projections [6].   
   (NOTES: 1 quadrillion Btu = 1015 Btu = 1,055 J = 22,34x10-8 metric tonnes). 
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1.1.2.  CLIMATE CHANGE CAUSED BY FOSSIL FUELS 

Human activities contribute to climate change by causing changes in Earth’s atmosphere in 

the amounts of greenhouse gases (GHG), aerosols (small particles) and cloudiness. The 

largest contribution comes from the excessive use of fossil fuels (as mentioned in 1.1.1). The 

improvement in global average temperature since the mid-20th century is due to the increase 

of GHG concentrations.  

Greenhouse gases absorb and emit radiation at specific wavelengths within the spectrum of 

thermal infrared radiation emitted by the Earth’s surface. The four principal GHG are carbon 

dioxide (CO2), methane (CH4), nitrous oxide (N2O) and the halocarbons (group of gases 

containing fluorine, chlorine and bromine). Although CO2 is not present in large quantities in 

the atmosphere (and is release through natural processes such as respiration and volcano 

eruptions), humans have increased atmospheric CO2 concentration since the Industrial 

Revolution (deforestation, land use changes, burning fossil fuels). Carbon dioxide is a GHG 

that contributes to global warming and climate change. Since 1960, atmospheric CO2 

concentration has increased more than 25%, Figure 1.1.6 and Appendix - Figure 6.2.1 [7], [8].  

 

Figure 1.1.6 – World atmospheric CO2 monthly concentration, since 1960 to 2013 [7]. 

There are many factors that influence the atmospheric CO2 concentration, however it can be 

decompose into four factors: 

1. Population; 

2. Gross domestic product per capita (GDP); 

3. Energy intensity (i.e. total primary energy supply (TPES) per GDP); 

4. Carbon intensity (i.e. CO2 emissions per TPES). 
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Climate change mitigation is one of the driving forces behind a growing demand of renewable 

energy technologies. In addition to reducing GHG emissions, these technologies also offer 

benefits with respect to air pollution and health compared to fossil fuels. However, to evaluate 

the overall problematic issue on the environment and health, a lifecycle assessment gives a 

quantitative comparison of ‘cradle to grave’2 emissions across different energy technologies. 

Figure 1.1.7 illustrates the lifecycle structure for renewable energy, nuclear power and fossil 

fuels [9].  

 

Figure 1.1.7 – Illustrative system for energy production and use illustrating role of renewable energy along with other production 
options (Adapted from [9]). 

 

Two sectors produced nearly two-thirds of global CO2 emissions in 2010: electricity and heat 

generate 41%, while transport produced 22%, Figure 1.1.8 [8].  

 

                                                        

2 ‘Cradle-to-grave’ is the full life cycle assessment from resource extraction (‘cradle’) phase to disposal phase (‘grave’). 



MASTER THESIS 
BIODIESEL PRODUCTION FROM CHICKEN FEATHER MEAL, COMBINING BIOCATALYSIS AND SUPERCRITICAL TECHNOLOGY 

MARIANA ISABEL CORREIA D’ALMEIDA MENDES GAMEIRO 8 

 

Figure 1.1.8 – World CO2 emissions by sector, in 2010 [8].  
   *Other includes commercial/public services, agriculture/forestry, fishing, energy industries other than electricity 
and heat generation, and other emissions not specified elsewhere.  

According to decreasing of petroleum resources (due to excessive use of fossil fuels), 

increasing of GHG (and, consequently, amplification of greenhouse effect) and, subsequently, 

the climate change, the renewable energy technologies offer an alternative of energy from 

fossil fuels. 

1.1.3. BIOFUELS 

The production of this renewable energy has been increased over the years, Figure 1.1.9. 

 

Figure 1.1.9 - Biofuels production in the world since 1995 to 2011 [10], [11]. 
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Effectively, there are many studies of biofuels production from renewable feedstock. The 

most common biofuels can be produced from sugar or the starch portion of plants like corn 

[10], [11], sugarcane [12], sunflower [13], soybean [14], lard [15], [16], tallow [16], 

vegetable oil [17–20], animal fat [21–23], lignocellulosic materials [24] and microalgae [25].  

Biofuels provide several benefits such as: alleviation from foreign oil dependence, the 

security of energy supply, produce lower greenhouse gas emissions, use renewable feedstock 

resource, provide rural development (which can improve more jobs and income generation 

through labour-intensive agriculture) and it give a cheaper energy imports [9].  

However, biofuels have also many drawbacks that hinder their application, such as the fact 

that biofuels production aren’t enough to fully meet the demands for fuel, but can contribute 

to sustainable renewable energy resources and reduce the demand for fossil fuels. Another 

disadvantage of biofuels production is the significant impact on feedstock prices. Naturally, 

the use of feedstock for biofuels production will, in principle, increase their prices – mainly 

due to increases in feedstock demands and corresponding higher marginal cost [26].  

Furthermore, the land use for biofuels raw material production is another form of 

environmental impact. Two different impacts: (i) direct land use change (dLUC) – occurs 

when bioenergy feedstock production modifies an existing land use, resulting in a change in 

above and below-ground carbon stocks; (ii) indirect land use change (iLUC) – occurs when a 

change in production level of an agricultural products (i.e. a reduction in food or feed 

production induced by agricultural land conversion to produce a bioenergy feedstock) leads to 

a market-mediated shift in a land management activities outside the region of primary 

production expansion (iLUC is not directly observable and is complex to model and difficult 

to attribute to a single cause as multiple actors, industry, countries, policies and markets 

dynamically interact) [9], [27].  

There are a large variety of different biofuels, such as biodiesel, bioethanol, bio-oil, synfuel, 

biomethanol, hydrogen and biomethane. Their feedstock sources can be divided into animal 

fat, oil crops, sugar plant, starchy plants, cellulosic biomass and wet biomass. Finally, these 

biofuels can be classified into liquid or gaseous biofuels (Figure 1.1.10). 
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Figure 1.1.10 - Pathways of several biofuels (adapted from [28]). 

The best strategic approach to produced biofuels is to avail the wastes from several industries 

sectors because they (i) do not compete directly with food production, (ii) can be bred 

specifically for energy purposes, (iii) allow the integration of waste management operations 

with a variety of other industries offering prospects for industrial symbiosis at the local level. 

A few studies have been done in wastes recovery, such as the production of biodiesel from 

coffee ground. In fact, recent decades have seen a significant rise in coffee production and 

consumption, which increased the coffee waste generation [29], [30]. Thereby, waste 

management will lead to valorisation strategies, which will contribute for the economy and 

for the environment. 

Over the years, world meat production increased a lot and reached 230 million tons in 2010, 

from which 42,7%, 33,4% and 23,9% corresponds to pork, poultry and beef, respectively [21] 

(Figure 1.1.11). In Portugal, the chicken meat production has increased dramatically and so, 

its predicted that producer price reduces a lot, as it can be seen in Figure 1.3.2. Consequently, 

in the poultry industry, there are many types of residues that are wasteful. Then, since the 

non-edible products have a certain amount of fat/oil in its constitution, it’s become a good 

feedstock for biodiesel production.  
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Therefore, this work will focus in the use of chicken feather meal (non-edible product of 

poultry industry) for biodiesel production. In chapter 1.3 – Chicken feather meal, the use of 

chicken feather meal, for biodiesel production, will be further discussed.  

 

Figure 1.1.11 - World meat Production in 2010. 
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1.2. BIODIESEL 

1.2.1. DEFINITION, ADVANTAGES AND DRAWBACKS 

Biodiesel is an alternative fuel that can be produced from any material that contains long-

chain of alkyl esters (methyl, propyl or ethyl). Thus, various vegetable fats and oils, animal 

fats, wastes greases, and edible oil processing wastes can be used as feedstock for biodiesel 

production. The purity and composition of the feedstock determinates the yield of the 

products. Generally, feedstock with higher content of free fatty acids (FFA), water, 

phosphorus, sulphur or other impurities, more difficult the procedure becomes [31]. 

Biodiesel is a clean source of energy, i.e. it is an environmental friendly fuel, biodegradable, 

nontoxic (when burned as a fuel, doesn’t realise toxic emissions), renewable and it’s 

economical. Biodiesel contains almost no sulphur and does not contribute to green house gas 

due to their closed carbon cycle. This biofuel is also miscible with usual diesel and it has 

excellent lubricity, with high flash point. EPA research shows that biodiesel reduces most 

emissions from usual petroleum diesel, depending on the blend level. A B100 (i.e. 100% of 

biodiesel), from soybean oil, reduces life cycle CO2 emissions by 78%; a B5 blend reduces 

the life cycle CO2 emission by 3,8%. Oxides of nitrogen (NOx; which contribute to smog 

formation) increased slightly with biodiesel: a B50 with 5% and a B≤5 the contamination is 

almost insignificant (± 0,1% in NOx emissions) [32]. 

Figure 1.2.1 - Basic emission correlation. Average emission impacts of biodiesel from soybean oil. (Source: U.S. EPA) 

Biodiesel has a higher cetane number3, resulting in a large combustion efficiency, and it also 

has a higher oxygen content which improves the combustion process too (leading to a 

                                                        

3 Cetane number is related with the time between the fuel injection and the start of the combustion. Higher cetane number reflects 
in a high quality of combustion because the time between the injection and combustion is short. However, if it is lower, the 
combustion is inadequate which results in smog formation, as well as increase gas emissions.  
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decreased level of polluting emissions) [3], [17], [33–38]. Another benefit of biodiesel is that 

it can reduce dependency on crude oil. When this biofuel is used instead of common diesel, it 

does reduce the amount of crude oil used, which leads to a decreasing demand of petrodiesel 

[39].  

According to European Biodiesel Board [40], the commercial biodiesel must have (Table 

1.2.1): 

Table 1.2.1 - Properties of biodiesel according to European Biodiesel Board. 
PROPERTY TEST METHOD LIMITS UNITS 

ESTER CONTENT EN14103 96,5 % (min) 

DENSITY (AT 288,15K) EN14214 900 kg/m3 (max) 

FLASH POINT EN14214 374,15 K (min) 

SULPHUR CONTENT  EN14214 10 mg/kg (max) 

CARBON RESIDUE CEN 0,3 % (m/m) (max) 

CETONE NUMBER EN590 and EN14214 51 (min) 

WATER CONTENT EN14214 500 mg/kg (max) 

TOTAL CONTAMINATION EN126624 24 mg/kg (max) 

LINOLENIC ACID CONTENT5 EN14103 12 % (m/m) (max) 

POLY-UNSATURATED FAME6 EN14214 1 % (m/m) (max) 

METHANOL CONTENT EN14214 0,2 % (m/m) (max) 

FREE GLYCEROL EN14106:2003 0,02 % (m/m) (max) 

MONO, DI AND TRIGLYCERIDE EN14105 0,80 % (m/m) (max) 

TOTAL GLYCEROL EN14105 0,25 % (m/m) (max) 

PHOSPHOROUS CONTENT EN14107 4 mg/kg (max) 

Biodiesel besides it advantages, also has disadvantages. This biofuel has a higher viscosity 

than the conventional diesel, however it is not flammable and explosive, such as the 

petroleum diesel, because the flash point of the biodiesel is 403 K, and the usual diesel has 

337 K [41]. It can be the perfect alternative fuel, when compared to several other one, 

because biodiesel doesn’t require changes to a vehicle to be used7 [39].  

However, the heating value of the biodiesel is lower comparing to petroleum, but it is higher 

than coal. Yet, the cost of biodiesel is, probably, the main obstacle to commercialization of 

this product. [42] The biodiesel price varies depending on the feedstock that is used: 

geographic area, variability in crop production from season to season, the price of the crude 

petroleum and other factors [43]. Although, the cost of biodiesel can be reduced by using low 
                                                        

4 The method is under review so that the measurement accuracy can be improved. 
5 Linolenic acid is a fatty acid, which is considered to have a relatively high oxidation rate. 
6 FAME: fatty acids methyl esters; poly-unsaturated with ≥ 4 bounds. 
7 Ethanol requires specialized changes to the fuel injection system. Natural gas and propane need special tanks to be installed and 
changes to the fuel injection system must be made as well. The electricity also needs a full different engine. So, because of all 
this changes, or you either run the alternative fuel, or you do not run the vehicle at all. 
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cost feedstock such as the waste residues, like animal fat. Actually, it is reported that its price 

will reduce, approximately, to the half with this kind of feedstock [44].  

The biodiesel production in the world has been increasing, as it can be seen on Figure 1.2.2. 

 

Figure 1.2.2 - Biodiesel world production (black rectangle) and consumption (blue rectangle) since 2000 to 2011 [45]. 

 

1.2.2.  CONVERSION OF TRIGLYCERIDE TO BIODIESEL: TRANSESTERIFICATION 

REACTION 

The direct use of vegetable oils (large triglyceride molecule content with high molecular 

mass) isn’t adequate in motors devices because of their: (i) low stability against oxidation 

(and the subsequent reactions of polymerization), (ii) high viscosity, and (iii) low volatility, 

which influences on the formation of relatively high amount of ashes due to incomplete 

combustion. Therefore, tryacylglycerides (TAG) has to be cleavage into smaller molecules 

(pyrolysis). There exists several processes to produce biodiesel from renewable raw material 

(pyrolysis, or cracking, and microemulsions, which are both an expensive processes and the 

biodiesel has low quality), however, transesterification reaction seems to be the most viable 

oil modification process [46], [47], [48].   

Biodiesel is made from renewable feedstock such as vegetable oil, animal fat or even 

microalgae. It is mainly consisted of alkyl esters of fatty acids (FAAE), obtained by 

transesterification of lipid (acquired from the feedstock used) with an alcohol. The methanol 

is one of the alcohols that can be used as alkyl donor8 (alcohol takes the place of the ester 

linkage to glycerol), due to advantages as easy recovering and it has low cost [49]. The 

transesterification is a three-step consecutive reaction (Figure 1.2.4), in which diglycerides 
                                                        

8 When methanol is used as alkyl donor, the biodiesel is consisted of FAME, fatty acids methyl esters.  
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Triglyceride (TG) + R’OH 

Diglyceride (DG) + R’OH 

Monoglyceride (MG) + R’OH 

Catalyst Diglyceride (DG) + R’COOR1 

Monoglyceride (MG) + R’COOR2 

Glycerol (GL) + R’COOR3 

and monoglycerides are formed as an intermediate compounds. Three moles of FAME and 

one mole of glycerol are produced for every mole of triglyceride (TG), or triacylglycerol 

(TAG), that undergoes completely conversion (Figure 1.2.3) [50]. It is a reversible reaction 

and accordingly, an excess of alcohol can be used to shift the equilibrium to the products side.  

Transesterification reaction can be affected by several factors, such as the nature of TAG, 

type of alcohol used, molar ratio oil:methanol, type of catalyst, temperature and reaction time. 

 

Figure 1.2.3 – General reaction of transesterification of triacilglycerols with alcohol (R’ groups = fatty acids) 

 

  

 
 
 
 
 
 
Figure 1.2.4 - Three-step consecutive and reversible reactions in the transesterification process. 

 

Chemically, the lipids from the feedstock are mainly consisted in TAG (Figure 1.2.5). 

Glycerides are named as the number fatty acids existing in the molecule. Monoglycerides 

contain only one fatty acid (FA), diglycerides contain two FA and triglycerides contain three 

FA, bonded to a single glycerol molecule9. Consequently, the FA can differ by nature, by the 

number, position of the double bonds in the carbon chain and can be saturated or unsaturated. 

The principal saturated acids are lauric acid (C12:0), palmitic acid (C16:0) and stearic acid 

(C18:0). The more common unsaturated acids are oleic acid (C18:1), linoleic acid (C18:2) 

and linolenic acid (C18:3) (Appendix - Table  6.3.1).  

                                                        

9 When a FA are not bound to some other molecule, are know as free fatty acids (FFA).  
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Figure 1.2.5 – Structure of a triglyceride molecule. 

 

Figure 1.2.6 - General reaction of saponification of FA. 

 

Figure 1.2.7 - General reaction of esterification of FA.  

 

1.2.3.  INDUSTRIAL CONVENTIONAL PROCESS 

Transesterification reactions can be base-catalysed, acid-catalysed or even enzymatic. 

Currently, in conventional industries is applied transesterification base-catalysed. This 

reaction takes almost one hour, at room temperature. Despite the high yield, the presence of 

an alkali (i.e., sodium hydroxide – NaOH, potassium hydroxide – KOH) would lead to the 

saponification of the FFA and consequent loss of valuable material. Consequently, this 

saponification reaction (Figure 1.2.6) converts the reagents into ‘soap’. This by-product must 

be removed, resulting in high production cost. Furthermore, the water released during the 

esterification10 of FFA (Figure 1.2.7), inhibits the transesterification of the TAG (because 

instead of the biodiesel production – FAME, there are formation of fatty acid salts). In acid-

catalysed transesterification reaction there’s no formation of soap, but higher temperature and 

                                                        

10 Esterification reaction of FFA: 
 FFA + Alcohol ⟶ Biodiesel + Water 
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higher substrate molar ratio are required (up to 30:1). Besides these facts, it demands three to 

four days to complete and has lower yield than when hydroxide catalyst [48]. It must have to 

be divided into two different stages: (i) esterification of FFA with presence of an acid 

(sulphuric acid, sulfonic acid or hydrochloric acid) and heat; (ii) transesterification of TAG in 

a basic medium [51]. In enzymatic-catalysed process, lipase is the enzyme used for biodiesel 

production. There are two major categories of enzymatic biocatalyst, (in both cases, the 

enzyme is immobilized): (i) extracellular lipases (extracted from several microorganisms, as 

Mucor miehei, Rhizopus oryzae, Candida Antarctica and Pseudomonas cepacia); (ii) 

intracellular lipase [48].  

Normally, enzymes operate under mild conditions and there are easily recovered from the 

reaction mixtures. Since the enzymes can be extracted from microorganisms, genetic 

engineering can be applied in order to improve their catalytic effect (for biodiesel production), 

thermostability, fatty acid chain length specificity, substrate specificity, alcohol chain length 

specificity, methanol and ethanol tolerance and pH stability [52]. In Table 1.2.2 is indicate the 

pros and cons of using lipase as biocatalyst comparing the alkaline process, once is the one 

that is industrially used.  

Table 1.2.2 – Comparison of enzymatic technology vs. conventional alkaline technology, for biodiesel production [48] 
 ENZYMATIC PROCESS ALKALINE PROCESS 
PRESENCE OF FFA FFA are converted into FAME FFA are converted into soaps 

WATER CONTENT ON THE 
OIL 

It does not influence negatively or positively 
the enzyme 

It provides soaps formation. It may 
also hydrolyse the oil and more 
soap is formed 

BIODIESEL YIELD High, ± 90% Very high, ≥ 96% 

GLYCEROL RECOVERY Easy, glycerol recovered with high quality Complex, glycerol recovered with 
low quality 

CATALYST RECOVERY AND 
RECYCLE 

Easy, is separated from the reaction mixture 
by filtration. Or it’s not necessary when is 
used PBR (pack bed reactor). The enzyme 
can be reutilized 

Not profitable, because of the 
successive washing steps or it is lost 
as soaps. 

ENERGY COST Low, temperature range 293,15-298,15K Medium, temperature range 333,15-
353,15K 

CATALYST COST Very high Low 

ENVIRONMENTAL IMPACT Low 
Medium, because of the alkaline 
and saline mixtures and there is 
wastewater treatment required 

PROCESS PRODUCTIVITY Low High 

 

Methanol and ethanol are the alcohols commonly used for transesterification reaction. As said 

before, according to the stoichiometric equation, three moles of alcohol would react with one 

mole of TAG to give three moles of FAME and one mole of glycerol. In other words, an 
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alcohol to oil molar ration of at least 3:1 is necessary for complete reaction. With both 

alcohols, emulsions normally form (this emulsions are caused, in part, by the formation of the 

intermediate MG and DG, which have both polar hydroxyl groups and nonpolar hydrocarbon 

chains). In methanolysis, the emulsions formed would break down easily to form a lower 

glycerol rich layer and upper methyl ester rich layer. In the case of ethanolysis, the emulsions 

formed are much more stable due to the presence of a large non-polar group in ethanol, 

resulting a separation and purification of biodiesel more difficult [53]. Based on these facts, 

methanol is the best choice for biodiesel production, resulting in an higher yield [54]. 
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1.3. CHICKEN FEATHER MEAL  

1.3.1.  POULTRY INDUSTRY AND RENDERING 

Generally, a by-product is defined as a secondary product acquired during the manufacture of 

a principal system. A animal by-product is any part of an animal carcass or any material of 

animal origin not intended for human consumption. They are a product of food industry, 

particularly from food processing and dairy plants, which includes animals that die on farm, 

surplus or waste materials from slaughterhouses and a range of surplus or rejected foodstuffs 

including catering wastes that contain products of animal origin whether cooked or uncooked. 

Meat production as incresead over the years (Figure 1.3.1) and in 2011 was produced almost 

230 million tonnes in which 30% corresponds to chicken meat (90 million tonnes).  

 

Figure 1.3.1 - World meat production, since 1961 to 2011 [55]. 

 

In Portugal, chicken meat production has also increased dramatically as it can be seen on 

Figure 1.3.2 and consequently, its predicted that produtor price reduces (Figure 1.3.2), which 

stimulates its consumption. Accordingly to IACA – Associação Portuguesa dos Industriais de 

Alimentos Compostos para Animais, in 2011, Portugal produced 939 tonnes of chicken 

feather meal (Figure 1.3.3) [56]. Feathers are effectivelly a waste product generated in large 

quantities from commercial processing.  
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Figure 1.3.2 – Portugal production of chicken meat, in tones, since 1991 to 2011 [57], and Portugal producer price of chicken 
meat, since 1991 to 2010 [58]. 
 

 

Figure 1.3.3 - Chicken feather meal quantity in Portugal, since 2009 to 2011 [56]. 

 

Feather waste has been used as feedstuff for poultry and livestock [59–61]. Figure 1.3.4 

shows the main constituent parts of chickens. The non-edible by-products, exhibited in this 

figure, are the most used in most cases for the manufacture of chicken meal. In 2011, Portugal 

slaughtered 472.209 chicken per day [62]. Considering the Paulo Ferroli study, this number 

corresponds to 228 tonnes of chicken by-products that are dailly produced, in which 18 

tonnes are from chicken feather [61]. Thus, chicken feather meal is consisted in the non-

edible by-products of pultry industry.  
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Figure 1.3.4 – Constituent parts of the chicken, in percentage. (Adapted from [61]) 
   The non-edible sub-products are the chicken feather meal (CFM). 

 

 

Figure 1.3.5 – Chicken feather meal used in this work. 

 

1.3.2. CHARACTERIZATION OF CHICKEN FEATHER MEAL 

According to IACA, chicken feathers meal are produced by hydrolysis, followed by drying 

and milling [56]. These by-products are cheap and biodegradable and once that feathers are 

coated by oil/fat, it’s become a good feedstock for biofuel production. The nutrient 

composition of chicken feather meal is shown in Table 1.3.1. 
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Table 1.3.1 - Nutrient composition of chicken feathers meal (adapted from [63]). 
ITEM CHICKEN FEATHER MEAL REF. 

Crude protein, % 75 - 85 [63], [64], [65] 
Fat, % 7 - 12 [22], [63], [66] 
Calcium, % 0,3  
Phosphorus, % 0,5  
AMINO ACIDS   

Methionine, % 0,6  
Cystine, % 4,3  
Lysine, % 2,3  
Threonine, % 3,8  
Isoleucine, % 3,9  
Valine, % 5,9  
Tryptophan, % 0,6  
Arginine, % 5,6  
Histidine, % 0,9  
Leucine, % 6,9  
Phenylalanine, % 3,9  
Tyrosine, % 2,5  
Glycine, % 6,1  
Serine, % 8,5  

 

The production of alternative biofuels should be economically and technically attractive to 

compete with currently used fossil fuels [67], and chicken feather meal offers another 

promissing feedstock source for biodiesel production (Figure 1.3.5).  
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1.4. BIOCATALYSIS 

1.4.1. ENZYME – BIOLOGICAL CATALYST 

Enzymes are biological catalysts systems and are remarkable molecular devices that 

determine the profile of chemical transformations. The most impressive feature of enzymes is 

their catalytic power and specificity. The catalysis occurs at a particular site in enzymes – 

active site/center (Figure 1.4.1).  

 

Figure 1.4.1 - Illustration of the enzyme, active site, enzyme-substrate complex and products formation. 

Almost all know enzymes are proteins. However, proteins don’t have an absolute monopoly 

on catalysis. They have the ability to catalyse reaction under mild conditions, with a very high 

degree of substrate specificity, thus decreasing the formation of by-products. Enzymes 

catalyse reaction by stabilizing transition states, the highest-energy species in reaction 

pathways. Generally, binding between the substrate and the enzyme is a process that occurs 

with negative Gibbs energy, and therefore, stabilizes the substrate. This occurs because the 

affinity of the enzyme for the transition state is greater than the substrate, which explains the 

decrease in the Gibbs energy, associated with activation of enzyme activity [68]. Enzymes 

also work by lowering the reaction activation energy and they are not consumed, nor do they 

alter the reactions equilibrium.  

The choice of catalyst for industrial process lies in its energy efficiency. However, the 

selectivity underlies the increasing demand for enzymes for this purpose, including selectivity 

to the substrate, enantioselectivity (when one enantiomer is formed in preference to the other), 

regioselectivity (the preference of one direction of chemical bond making or breaking over all 
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other possible directions) and chemoselectivity (refers to the selectivity of one function group 

in the presence of others) [69]. Enzyme-catalysed processes are gradually replacing chemical 

processes in many areas of industry, such as: starch and fuel, food (including dairy), baking, 

animal feed, textile, pulp and paper, fats and oils, organic synthesis and also personal care 

[70].  

Enzymes are classified based on reactions that catalyse. They are divided into six major 

classes, with several subclasses (Table 1.4.1) and lipases are included in hydrolases type. 

Table 1.4.1 - The six major classes of enzymes and their function [68]. 
CLASSIFICATION REACTION TYPE 

OXIDOREDUCTASES Are involved in oxidation and reduction 
TRANSFERASES Transfer functional group (e.g. amino or phosphate groups) 
HYDROLASES 
• LIPASE Transfer water, e.g., they catalyse the hydrolysis of a substrate 

LYASES Add (or remove) the elements of water, ammonia, or carbon dioxide (CO2) 
to (or from) double bounds. 

ISOMERASES Catalyse rearrangements of atoms within a molecule 
LIGASES Join two molecules 

 

1.4.2. IMMOBILIZED ENZYMES 

The high cost of enzymes often makes the enzymatic processes economically unattractive. 

However, they can be used in an immobilized form, which allows its recovery and reuse [38]. 

Enzymes can catalyse reactions in different states: as individual molecules in solution, in 

aggregates with other entities or even as attached/immobilized to surfaces. Immobilized 

enzymes are currently the object of considerable interest due to the expected benefits over 

soluble enzymes or alternative technologies [71]. Immobilized enzymes are physically 

confined, or localized, in a certain defined region of space with retention of their catalytic 

activities, and which can be used repeatedly and continuously. The use of immobilized 

enzyme, in industrial processes, has increased the technical performance and their economy. 

Thus, the enzyme immobilization has as advantages: (i) catalyst reuse (e.g. this technique 

improves enzyme lifetime, which reduces the cost of the production); (ii) easier reactor 

operation; (iii) easier product separation; (iv) wider choice of reactor configuration. Therefore, 

immobilization of enzymes makes them more attractive for industrial processes. Yet, it can 

promote some disadvantages: (i) loss or reduction in activity; (ii) diffusional limitation; (iii) 

additional cost [72]. However, the loss or reduction of enzyme activity is compensated by 

enhanced operational stability. Effectively, there are four main methods of immobilization of 
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enzymes: i) adsorption (ii) covalent binding (iii) affinity immobilization (iv) entrapment [73]. 

In this work, enzymes are immobilized on a porous matrix. 

1.4.3. ENZYMATIC TRANSESTERIFICATION 

In catalysed biodiesel production, the enzyme used is a lipase – hydrolase. Lipase is a group 

of enzymes, water soluble, that catalyses the hydrolysis and synthesis of TAG, e.g. catalyse 

the hydrolysis of ester bonds. The action of these enzymes on the substrate is a result of a 

nucleophilic attack on the carbonyl carbon atom from ester groups. In this work it was used 

the Lipozyme RM (obtained from the Rhizomucor miehei fungus).  

Substrate specificity of these enzymes consists in the competence of discriminating structural 

features of acyl chains [length, number of carbons, position or configuration of double bonds, 

presence of branched groups, nature of acyl source – e.g. FFA, alkyl ester (methyl, ethyl or 

propyl esters), glycerol]. The differences in catalysis by lipases for biodiesel synthesis are 

their regiospecificity, regarding the length of hydrocarbon chain of fatty acid. In general, the 

lipase regioselectivity can be divided into three types: (i) 1,3 – specific (hydrolase ester bonds 

in positions 1 or 3 of TAG), (ii) 2 – specific (hydrolase ester bond in position 2 of TAG), (iii) 

nonspecific (which do not distinguish the positions of ester bonds to be cleaved). In biodiesel 

production, the narrow regioselectivity of overall lipases are not applicable. Therefore, for 

biodiesel production, the lipases display both wide substrate specificity and regiospecificity 

[48].   

The advantages of enzymatic transesterification over chemical catalysis are notable. With 

enzymatic transesterification, there’s no formation of soaps (during transesterification 

reaction), which deteriorate the biodiesel quality. Besides that, with this enzymatic process, 

the glycerol (a by-product of transesterification reaction) is recovery with high quality. 

Consequently, there’s no need of multi-step purification of biodiesel, such as: neutralization 

steps of the catalyst and water washes, which increase the production cost.  

In general, the enzymatic process allows transesterification of glycerides with high FFA 

contents. Moreover, it is a less energy intensive process. Additionally, the easy recovery of 

enzymes gives them reusability, reducing production cost [74]. So, the enzymatic 

transesterification of TAG offers an environmental more attractive option to the conventional 

process [75].  

There are several factors that influence the enzymatic biodiesel synthesis [76]: 
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• Oil source; 

• Reaction temperature; 

• Choice of acyl acceptors to oil molar ratio; 

• Amount of water in the system; 

• Type of lipase. 

Reaction temperature may vary from 296,15 to 323,15K. When is used the Lipozyme RM in 

biodiesel transesterification, the optimum temperature is lower than 313,15K. In general, 

increasing the temperature leads to an increase of the reaction rate of biodiesel production. 

However, when the temperature is above the optimum, this leads to decreased catalytic 

activity of the enzyme, due to denaturation and inactivation of the enzyme. Although, with 

immobilized enzymes, they provide a more rigid external backbone for lipase molecule, 

leading to the increase of the optimum temperature and higher reaction rates [76].  

1.4.4.  ENZYME INACTIVATION TRIGGERED BY ALCOHOLS 

As written before (1.2.2.  Conversion of triglyceride to Biodiesel: Transesterification 

reaction), the molar ratio between alcohol to oil, in transesterification reaction, is, at least, 3:1, 

for complete process. Therefore, an excess of alcohol can be used to shift the equilibrium to 

the products side [48]. Methanol is the least expensive alcohol and is widely used for 

biodiesel production. However, methanolysis can provide an enzymatic inhibition because the 

polar short chain of this alcohol is a major problem for biodiesel production. Actually, the 

transesterification with longer-chain of fatty alcohols is more efficiently than with methanol 

(C1), or even ethanol (C2). Fatty alcohols (or long-chain alcohols), with carbon lengths 

higher than three (> C3), are completely dissolved in the oil, in the stoichiometric amount that 

is needed. Y. Shimada et al. had reported that low methanolysis is due to the inactivation of 

lipases by contact with insoluble methanol which exists as drops in the oil [77].  

1.4.5.  ENZYME INACTIVATION TRIGGERED BY GLYCEROL 

Once that glycerol possesses high viscosity, it may inhibit the enzyme activity. If occurs an 

accumulation of this product in reaction mixture, glycerol may cover the enzyme surface 

resulting in a reduction of reaction yield [48], [78], [79], [80]. However, Watanable et. al. has 

reported that glycerol can increase enzyme stability [79].  
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1.5. SUPERCRITICAL FLUIDS (SCFS) 

The critical point represents the maximum pressure and temperature at which the liquid and 

gas phase of a fluid are in equilibrium. Therefore, critical temperature (Tc) is obtained above 

in which liquid-vapour phases can not be formed by increasing temperature at constant 

pressure. Moreover, the critical pressure (Pc) is obtained above in which liquid-vapour phases 

can not be formed by increasing temperature at constant pressure [81]. Thus, in the 

supercritical environment, only one phase exists and consequently, there’s no surface tension. 

An example of supercritical phase diagram is demonstrated on Figure 1.5.1. These fluids have 

particular physical and chemical properties which offers a suitable variety of applications, e.g. 

natural products extractions/fractionation (for food and pharmaceutical products) [82], 

reactions [82], powder technology [82], paints, coatings, polymer processing [83], ceramics 

and carbons manufacture, foams, aerogels [84], impregnation [85] and also dyeing (process of 

adding colour to textile products) [86], [87]. In SCFs, physicochemical properties (e.g. 

density, diffusivity, dielectric constant and viscosity) can be easily controlled by changing the 

pressure, and/or the temperature. The solvating power of these solvents depends on the 

density, but in general, SCFs have high solvating power [88]. In fact, supercritical fluids are 

compressed in liquid-like densities, which promotes the interaction (dispersion, polar 

hydrogen bonding) with solute molecules. In the supercritical region, the solvent power is 

similar with the liquids, and the transport properties are common to gases.  

Thus, SCFs becomes a good alternative over organic solvents [88]. The overall conditions of 

supercritical fluids can facilitate the mixing of compounds resulting in a better heat and mass 

transfer. It can also promote a higher reaction, when comparing with other solvents, which are 

toxic, expensive and demand extra separation processes. By adding modifiers to a SCF, like 

methanol, its polarity can be changed. Despite the high investment demanding to apply this 

technology in industrial processes, disposal costs are much less since those fluids can be 

easily recovered and recycled. 
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Figure 1.5.1 - Supercritical phase diagram. 

 

Any pure compound can acquired supercritical conditions (Table 1.5.1). In this work its use 

the supercritical carbon dioxide (CO2) and its properties is exhibited on Table 1.5.2. Carbon 

dioxide is the solvent that is normally used because it is considered environmental friendly, it 

has supercritical conditions relatively easy to work with, when compared with other possible 

supercritical solvents (without turning it economically unattractive) and is available in high 

purity at low cost. CO2 exists on the atmosphere and is a major by-product in several 

industrial processes (in terms of availability, it’s almost as readily abundant as H2O), 

therefore, in small amounts is non-toxic and isn’t a volatile organic compound (VOC) not 

contributing to smog formation. Additionally, and as it was written before (1.1.2. Climate 

change caused by fossil fuels) CO2 is the major GHG causing global warming and climate 

change. Therefore, it’s important to recycling this by-product gas, reducing emissions into 

atmosphere. CO2 is also non-flammable which is an advantage over conventional liquid 

solvents [89].  

Although hydrogen, methane and oxygen have the lowest critical conditions (Tc and Pc), they 

are compounds highly inflammable (except the oxygen), thus these solvents are considered 

dangerous to work with.  
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Table 1.5.1 - Critical point for pure components [81]. 
COMPONENT TC (K) PC (MPa) 

Hydrogen 33,00 1,29 

Oxygen 154,60 5,04 

Methane 190,7 4,6 

Ethylene 282,40 5,04 

Carbon Dioxide 304,15 7,38 

Ethane 305,40 4,88 

Methanol 512,60 8,09 

Ethanol 513,90 6,14 

Water 647,30 22,12 

 

Table 1.5.2 - CO2 properties as liquid, supercritical and vapour [90]. 
 LIQUID SUPERCRITICAL 

(AT 350 BAR AND 335,15K) VAPOUR 

DENSITY (kg⋅m-3) 1170  856 1,87  
VISCOSITY (N⋅m-2⋅S) 2,5×10-4 8,2×10-5 1,4X10-5 

THERMAL CONDUCTIVITY 
(W⋅m-1⋅K-1) 0,17975 0,1 0,0146 

 

To choose a good supercritical solvent, several aspects must be consider: (i) solubility of 

material in the supercritical fluid, i.e. it’s solvent capacity and selecticity (ii) viscosity that the 

fluid adquired in supercritical region, (iii) diffusivity of the supercritical fluid, (vi) the mass 

and heat transfer capacity that SCF have and (v) conditions required to achivied supercritical 

region, because of the economical and safety issues. 

Sc-CO2 (supercritical CO2) is achieved over 7,4 MPa and 304 K conditions (Figure 1.5.2). 

Carbon dioxide always behaves as an non-polar solvent, therefore it has good solvent 

properties for extraction of non-polar components such as hydrocarbons (lipids), which are 

water-insoluble compounds. However, because of this phisical caracteristics, Sc-CO2 doesn’t 

dissolve hydrophilic compounds such as sugars and proteins, mineral species like salts and 

metals. The solvent properties of Sc-CO2 can be easily modified regulating temperature and 

pressure. Changing this conditons will influence the CO2 solubility with a certain compound 

and this fact is related with its density. Therefore, the separation process is easier to obtain. 

Effectively, manipulating the temperature and pressure conditions, a decrease of a certain 

compound solubility occur, resulting in a precipitation and there are no costs associated with 

solvent waste dispostal [91]. 
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Figure 1.5.2 - Supercritical CO2 phase diagram.  

 



MASTER THESIS 
BIODIESEL PRODUCTION FROM CHICKEN FEATHER MEAL, COMBINING BIOCATALYSIS AND SUPERCRITICAL TECHNOLOGY 

MARIANA ISABEL CORREIA D’ALMEIDA MENDES GAMEIRO 33 

1.6. SUPERCRITICAL FLUID EXTRACTION 

In the recent years, supercritical fluids have emerged substantially, due to a growth in the 

research and development activities, focused on new approaches, as well as oil extraction, an 

alternative tecnhology over the tradicional solvent extraction.  

Supercritical fluid extraction (SCFE) consists into 2 levels: (i) extraction of compounds 

soluble in SCF solvent, (ii) separation/fraccionation of the extracted solutes from the SCF 

solvent. Effectively, there are 2 kinds of extractions, depending on the experiment purpose 

[92]: 

1. Carrier material separator: where the raw material becomes the final product, 

without the component/s that isn’t/aren’t desirable. As an exemple, there is the 

decaffeination process of green tea [93]. 

2. Extract material separation: consists in the removal of desirable compunds, from the 

initial residue. Exemples of this experiment are the oil (lipids) [94–96] or 

antioxidants extraction [97]. 

In this work, oil extraction from chicken feather meal was carried out, using a supercritical 

fluid. In a first instance, removal of oil with this technology does not appear ecomic, due to 

the cost of high-pressure batch process. However, there exists areas in which SCFE can be 

useful in the extraction of high-value oils: food, pharmaceutical and cosmetic applications 

[98]. Moreover, in this work – biodiesel production using SCF, biodiesel isn’t the only 

reaction product. Glycerol (Gly) is the majour by-product of transesterification reaction, and 

can be used as a high-value compound, which could be useful for counterpoise the operating 

cost of biodiesel production. 

The most important parameters to perform extraction, or separation, processes are the 

solubility and phase equilibrium of the systems. The separation of the soluble compounds 

from the SCF is carried out by modifying the thermodynamic properties of the solvent: the 

solvation power of it can be modified by manipulating the pressure and temperature. 

Decreasing the pressure will lead to a reduction of the fluid density and, consequently, a 

reduction of the solvent power. Operating with temperature can occur 2 differents situations: 

increasing the temperature, the CO2 density decrease which leads to a lower solvent power of 

the solvent and, consequently, decrease the solute solubility into sc-CO2. However, increasing 

the temperature, the vapour pressure of the solute increased, which increases the solvation 

power of the solvent and the solute solubility into sc-CO2 is higher. Additionally, the 
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separation can be perform by an external agent, such as an adsorbent, where no significant 

pressure change occurs. Though, despite a lower operiting cost, the recovery of the product 

from the adsorbent is difficult. Therefore, to avoid a high losses of the product, the adsorption 

step may be replaced by and absorption step. The product dissolved in the SCF solvent is 

aborbed by a wash fluid in a countercurrent flow, using a packed column or spray tower 

under pressure. 

In this work, the separation process was achived by decreasing the pressure. However, and as 

it was written before, the products obtained in transesterification process are the unreacted 

methanol, triglycerides, FAME, glycerol, MG and DG. The ideal separation process is the 

fractionation, based on the different solubilities of the compounds to be separated in sc-CO2, 

i.e. the compounds that are desirable to extracted are insoluble on the solvent, while all the 

other compunds are soluble. Therefore, in these cases, it is possible to perform an extraction 

in sucessive steps, in order to achieve the maximum difference in solubility among the 

compounds to be recovered and all the other compounds in the mixture. The scope of this 

operation is to induce the selective precipitation of different compound families as a function 

of their different saturation conditions in the SCF. For example, in a first separation process it 

is possible to operate at high CO2 density (584,71 kg/m3, 120 bar, 323,15K) followed by a 

second extraction step at low CO2 density (104, 85 kg/m3, 50 bar, 323,15K). The most soluble 

compounds are extracted during the first step and the less soluble in the second [99]. The 

Figure 1.6.1 ilustrates an ideal muti-step separation process, when 3 compounds are needed to 

separate.  

 

Figure 1.6.1 – Diagram of a separation process in series.  

 



MASTER THESIS 
BIODIESEL PRODUCTION FROM CHICKEN FEATHER MEAL, COMBINING BIOCATALYSIS AND SUPERCRITICAL TECHNOLOGY 

MARIANA ISABEL CORREIA D’ALMEIDA MENDES GAMEIRO 35 

The first separator operates at T1 and P1 conditions, in which components B and C are soluble 

in the sc-CO2 and component A doesn’t, and than precipitats and it’s recovered. Components 

B and C go to the second seperator, dissolved on CO2. The second separator operated at T2 

and P2 where component B isn’t soluble and is precipitat and recovered, while component C 

continues soluble in the solvent (CO2) and flows to the third separator. In this last separator, 

the conditions applyied are T3 and P3 where component C is finally unsoluble on the solvent 

and precipitates. To not contribute to envrionmental damage, the CO2 without any component 

dissolved, is recycled to the process. 
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1.7. SUPERCRITICAL TECHNOLOGY COMBINING WITH BIOCATALYSIS IN 

BIODIESEL PRODUCTION 

Economical and financial issues are the major concern in industrial applications. The 

conventional process of biodiesel production (1.2.3. Industrial conventional process) is the 

base catalysed. However, it has some drawbacks, such as the hight cost of biodiesel 

purification and environmental issues. Effectively, to produce biodiesel with this method, 

more energy is required and it uses hazard compounds to the environment. Moreover, if oil 

has FFA and water on his constitution, it may produces soaps, due to saponification reaction, 

and decreased the reaction yield. Besides these, to obtain pure biodiesel with alkali catalysis, 

additional separation/purification processes must be apply. This separation process is based 

on a large amount of water and, consequently, effluents are produced. Therefore, there are 

several negative factors when alkali catalysis is applied for biodiesel production. 

To overcome the drawbacks usually associated with the use of conventional process for 

biodiesel production, supercritical technology has been applied in several studies. Many 

researchers proposed a non-catalytic process using supercritical methanol (sc-MeOH) [15], 

[19], [20], [100–102]. The advantages of using this solvent over the conventional process 

include a faster reaction rate, easy product purification and the ability of using inexpensive 

feedstock, without any treatment. However, the Tc of methanol is high (512,60 K), which 

causes high energy required for the process. The sc-CO2 acquires mild supercritical 

conditions and it’s a good alternative over sc-MeOH.  

The biodiesel production using enzymes, as catalyst, is a promising choice to apply in 

transesterification reaction and is a matter of great scientific and technological interest. The 

biodiesel usage over diesel from fossil fuels and the production of many chemicals raw 

materials for food, pharmaceutical and cosmetic industries has inspired researchers in the 

biotransformation of feedstock with the desired of end result of high-added products, or 

drastic reduction in environmental investments.  

As mentioned before (1.4.2 Immobilized Enzymes), enzymes can be used in the immobilized 

form, which has advantages over the enzymes in solution and/or in aggregates. In the point of 

view of an industrial application, the use of immobilized enzymes seems to be a better choice 

due to its reutilization and improvement of catalyst lifetime, which reflects in a reduction of 

production cost. 
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Enzymatic reactions at high pressures, the enzyme behaviour in sc-CO2 is very important 

because the loss of activity may lead to undesirable reaction – low reaction rates and low 

product production [103]. These enzyme modifications can occur because of changes in 

protein structure, causing denaturation, under extreme conditions and, consequently, lead to a 

loss of activity. Hence, it’s very important to guarantee a good performance of the enzyme 

under supercritical conditions. However, biocatalysis in sc-CO2 may offer advantages, since 

the solubility is greatly influences by fluid temperature and pressure adjustments, the 

separation process can be easily achieved by a pressure reduction [25]. Lanza et al., 

investigated the influence of sc-CO2 on lipase performance and reported that the residual 

activity of Novozym-435 was approximately 90%.  

The biodiesel production under supercritical conditions, and combining biocatalysis, has a 

high capital cost investment. Despite the advantages that have over the conventional process, 

in the first instance, seems to be economically unviable. However, a combined continuous 

process of extracting oil, from chicken feather meal using sc-CO2 and, consequently, the use 

of the extracted oil for biodiesel production, using immobilized lipase in the same solvent, in 

a one integrated process, would economically be feasible. Effectively, the extracted oil is 

already dissolved on the sc-CO2 (solvent) and enters directly to the reactor to produce 

biodiesel, without the need for further expensive pumping.  

In Figure 1.2.4, the transesterification is a three-step consecutive reaction, in which 

diglycerides and monoglycerides are formed as an intermediate compounds and triglycerides 

are consumed until no more TG exists in the reaction to convert into FAME.  

Figure 1.7.1 – Typical temporal profiles of monoglyceride (MG – blue line), diglyceride (DG – red line), triglyceride (TG – 
black line) and fatty acid methyl ester (FAME – green line) in supercritical transesterification (adapted from [104]). 
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As written before (1.2.2 Conversion of triglyceride to Biodiesel: Transesterification reaction), 

the transesterification reaction consists in: 1 mol of triglyceride reacts with 3 mols of alcohol 

in order to produce 1 mol of glycerol and 3 moles of fatty acid alkyl esters. The alcohol that is 

used on this work is the methanol. As it can be seen on the Figure 2.2.6, methanol is 

introduced on the system, by a liquid pump, at a constant flow rate and, additionally, the CO2 

is recycled. It’s necessary to guarantee that there aren’t accumulation of methanol in the 

solvent (CO2) because it can cause problems in the reaction, such as: (i) realization of the 

experiment with determinated conditions and, effictively, the proportion of oil:methanol isn’t 

the expected and, consequently, (ii) can lead to a denaturation of the enzyme and decreased 

the reaction yield. To avoid this situation, after the separators (i.e. before the recycled CO2 

enters again in the system), the amount of methanol must be measured. Therefore, a sample is 

collected from the system (in this part), the CO2 is measured by a flow meter and the 

methanol is recovered in a trap with liquid nitrogen and acetone (± 263,15K). The methanol 

solubility in carbon dioxide at 313,15K and 56,313 atm (57,1 bar) is 0,8%. In the experiments 

performed, there wasn’t significant quantity of methanol in the recycled solvent in which the 

maximum of methanol achivied was 0,3% dissolved in the CO2.  
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1.8. ONE-POT BIODIESEL PRODUCTION: OIL EXTRACTION AND 

TRANSESTERIFICATION REACTION IN ONE SINGLE STEP PROCESS WITH 

SUPERCRITICAL TECHNOLOGY 

Biodiesel can be also made in one single step process and this is possible by taking advantage 

of the characteristics of supercritical fluids – the ability to be used as an extractaction agent 

and reaction solvent.  

 
Figure 1.8.1 – One-pot biodiesel production, oil extraction and transesterification reaction in one single step. 

In one-pot biodiesel production occurs two different processes in a packed bed reactor, filled 

with raw material (in which contains oil in it’s constitution): oil extraction and the 

transesterification reaction of that oil into FAME (Figure 1.8.1). Several studies have been 

done with this technique, using algae [105] or spent cofee ground [106] as raw material, and 

methanol and carbon dioxide as solvents. To perform this system it is necessary to know the 

phase behaviour and reactivity of each of the system components. This approach can be done 

using (i) only sc-MeOH, (ii) using sc-MeOH and CO2 as co-solvent [107], or (iii) using sc-

CO2/MeOH and a catalyst. sc-MeOH technique has the advantage that could act as an agent 

of TG extraction and simultaneous direct transesterification reaction solvent and reactant, 

which means that does not require any addition of catalyst. Non-catalytic process can be 

superior to catalytic reaction in terms of reaction time and yield [108] and it reduces the total 

cost of biodiesel production. However, the supercritical conditions of methanol are high 

(512,60 K and 8,09 MPa) and, consequently, it demands a further energy consuption when 

compared with sc-CO2. Moreover, methanol, in supercritical conditions, doesn’t required 

pretreatment of the feedstock since the impurities don’t affect the reaction (the same when 

using sc-CO2). As mentioned before, the presence of FFA and water influences the 

transesterification reaction. Effectively, three reactions occurs simultaneously: 

transesterification, alkyl esterification of FA and hydrolysis of TG (inverted reaction of 
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esterification). Once that the alkyl esterification is a faster reaction than transesterification, it 

ensures that all FFAs (present in the feedstock, or formed in TG hydrolysis) are completely 

transformed into FAME [109]. However, using sc-MeOH, the molar ratio between 

oil:methanol is higher and, consequently, the methanol must have be removed from the 

system. 

The addition of a co-solvent in a sc-MeOH system can decrease the critical point of methanol, 

allowing the supercritical reaction to be carried out under milder conditions. Carbon dioxide 

is a good solvent, increasing the homogeneity of the systems and do not affect the reaction 

mechanism. Therefore, comparing with the conventional supercritical methanol method, less 

energy is required for the process because the reaction temperature required is significantly 

reduced and, consequently, the process is safer and the production costs is lower [100], [110]. 

However, the reaction conditions are substantively higher when compared with the process 

used in this work, which reflects in a lower production cost.  
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2. MATERIALS AND METHODS 

2.1. MATERIALS 

2.1.1.  RAW MATERIAL, CHEMICALS AND COMPOUNDS 

Chicken feather meal was supplied by Sr. João Silva, from Lusiaves (Industrial Zone of 

Lavos – Figueira da Foz). Animal feed, from Avenal Rações – Fluffy Manutenção, was 

purchased and used. 

Carbon dioxide (CO2, MW = 44,01 g/mol) with purity higher then 95% were used and 

supplied from Air Liquid (Portugal), as well as liquid nitrogen (N2, MW = 28,01 g/mol). 

The enzyme used for transesterification reaction was the Lipozyme® RM IM (1,3 specific 

lipase from Rhizomucor miehei fungus, immobilized on ion exchange resin) purchases from 

Novozymes A/S, Bagsvaerd, Denmark.    

Methanol for transesterification reaction and Bligh and Dyer method (CH3OH, MW = 33,04 

g/mol, PA grade, Sigma-Aldrich), n-heptane for chromatography (CH3(CH2)5CH3, MW = 

100,20 g/mol, 99% pure, Carlo Erba Reagents), n-hexane for chromatography and extraction 

experiments (CH3(CH2)5CH3, MW = 86,18 g/mol, Carlo Erba Reagents), tricaprin (C33H62O6, 

MW = 554,84 g/mol, ≥ 98% pure, TCl), pyridine (C5H5N, MW = 79,10 g/mol, ≥99% pure, 

Carlo Erba), N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) (C6H12F3NOSi, MW= 

119,25 g/mol, 97% pure, Alfa Aesar), chloroform (CHCl3, MW = 119,38 g/mol, ≥ 99% pure, 

Carlo Erba Reagents), ethylene glycol (C2H6O2, MW = 62,07 g/mol, purity NA, Merck) and 

acetone (C3H6O, MW = 58,08 g/mol, Valente e Ribeiro Lda.®) were purchased and used. 

2.1.2.  EXPERIMENTAL SETUP 

2.1.2.1. OIL EXTRACTION  

For oil extraction, carbon dioxide (gaseous CO2) was cooled by cryostat (JP Selecta, s.a.) and 

then it’s (liquid CO2) pumped by a liquid pump (Nikkiso) with a determinate mass flow. The 

liquid CO2 passes through a vessel and is measured with a flow meter (Rheonik, 01.08). After, 

the solvent is heated by a heat exchanger (heating from a water bath (Julabo ED) to a desired 

temperature (supercritical CO2). Then, Sc-CO2 enters into the extractor (height = 60 cm, inner 

diameter = 5,5 cm) that is heated by a heating tape (Horst, HBS 723,15K/623,15K). The 
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pressure is controlled by a Back Pressure Regulator – BPR (Tescom Europe) and afterward, 

the products are collected in a cyclone (Separadex 4140/CY01 AS2), also heated by a heating 

tape (Horst, HBS 723,15K/623,15K). The CO2 is separated from the product by a pressure 

drop (returning to a gas-phase), and then the solvent is recovered for another set, and is 

passage is controlled by an electro-pneumatic positioner (ABB Automation Products GmbH, 

Process Automation, TZIDC). Before pumping, CO2 is first cooled. 

2.1.2.2. CONTINUOUS PRODUCTION OF BIODIESEL AT PILOT SCALE 

For continuous production of biodiesel at pilot scale, CO2 passes through a flow meter 

(Rheonik, RHM 01 GNT) and then is cooled by a water spiral-cooling vessel. All the cooling 

system on the pilot plant is guaranteed by a recirculating cooler (Julabo FL 2503) that chilled 

the water to a desired value and, by vessels, cooled the CO2 where is needed to be refrigerated. 

After, the CO2 is pump by a liquid pump (Lewa EHM 1) with a desired flow rate, which is 

measured by a flow meter (Rheonik, 01.08). The liquid CO2 is then heated by a water bath 

(Lauda) to a desired temperature. Afterward, the Sc-CO2 enters into an extractor vessel 

(316SS with internal diameter of 6,4 cm and 59,6 cm of height) that’s is completely packed 

with raw material (± 500g of chicken feather meal between two metallic porous plates and an 

amount of cotton to avoid undesired entrainment effect) where the extraction occurred. 

Before the extraction, it was additionally pumped methanol, for reaction occurs, by a HPLC 

pump (Gilson 305). In this pilot plant there are 4 extraction vessels that could be used in 

series, in a continuous extraction, however this experiment wasn’t performed. All the 

extraction vessels were heat by heating tapes (Horst). Besides these 4 extractions vessels, 

there exist another one with the double of the capacity that is used only for storage the CO2. It 

help’s the decompression/compression procedures and avoid CO2 waste. The pressure in the 

extractors was measured with a pressure transducer (Wika, model 881.14.600).  

After the oil extraction, the mixture (CO2 and extracted oil) passes through a vessel directly to 

the reactor (with internal diameter of 2,5 cm and 60 cm of height), heated by a heating jacket 

(Horst), filled with the enzyme (the enzyme was packed between an amount of cotton to 

avoid undesired entrainment, and in the top of the reactor it was put also a metallic porous 

plate for the same reason). The pressure in the reactor was measured with a pressure 

transducer (Wika) and it was controlled by an electro-pneumatic control valve (von Rohr 

Armaturen AG, VEGP 700 F59). After the reaction, the mixture was separated with 3 

cyclones (Separadex 4140/CY01 AS2) connected in series, all heated by water baths (Lauda) 

through a heating jacket. In the middle of the first and the other two cyclones, there exists a 

BPR (Tescom Europe) that can control the pressure in the first cyclone, for separations 
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experiments. The products were collected and CO2 was recycled for another cycle, but first it 

is filtered  (Stainless steel high pressure filters, Parker) and then, it was cooled before pumped 

with the liquid pump. 

For security advises, the pilot plant was provided with several rupture discs (HIP – High 

Pressure Equipment Company) to avoid overpressurization or potentially damaging vacuum 

conditions of the vessels. Moreover, all the high-pressure vessels, valves and fitting are from 

HIP and Swagelok.  
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2.2. EXPERIMENTAL SET-UP 

Figure 2.2.1 – Figure 2.2.4 are photography’s of the high-pressure installations, used in this 

work, for oil extraction and continuous production of biodiesel.  

2.2.1.  HIGH-PRESSURE INSTALLATION FOR OIL EXTRACTION 

 

Figure 2.2.1 – High-pressure installation used for oil extraction. 
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2.2.2.  HIGH-PRESSURE INSTALLATION FOR CONTINOUS PRODUCTION OF BIODIESEL  

 

Figure 2.2.2 – High-pressure pilot installation used for continuous biodiesel production. 

 

 

 

Figure 2.2.3 – Detail image of pilot high-pressure pilot installation. A, B – Recirculating cooler; C – Compressor (green) and 
liquid pump (yellow). 
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Figure 2.2.4 – Detail image of pilot high-pressure pilot installation: A – Extractors, B – Electro-pneumatic control valve, C – 
Reactor, D – Cyclones, E – Liquid pump (for methanol). 

 

The flow sheets of the installations are illustrated on Figure 2.2.5 and Figure 2.2.6. 
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Figure 2.2.5 – Scheme of the high-pressure apparatus for oil extraction with a solvent recycling system. 
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Figure 2.2.6 – Scheme of the high-pressure apparatus for continuous biodiesel production with a solvent recycling system. 
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2.3. SAMPLE ANALYSIS 

2.3.1.  SOXHLET EXTRACTION  

The practice of solid-liquid extraction is dating from, approximately, 3500 BC, in the 

preparation of teas and perfumes [111]. The soxhlet extraction is an extraction method that 

uses organic solvents. Has it can be seen on Figure 2.3.1, this apparatus has 3 compartments: 

a continuously heat round-bottom flask – to store the extracting organic solvent (n-hexane), 

the Soxhlet extractor – in which a packet of residue is inside and where the steam (from the 

solvent) goes through and is recover by a cooled reflux condenser. Subsequently, the vapour 

is condensed and channelled into the Soxhlet extractor again. Once the organic solvent 

(liquid) in the extractor reaches the overflow level, a siphon unloads the organic solvent-lipids 

mixture back into the round-bottom flask. This cycle is repeated for 6 hours, to guarantee that 

no more lipids can be extracted from the residue. Although this apparatus is good for solid-

liquid extraction, is requires high energy [94]. 

 

 

. 

 

 

 

 

 

 

 

Figure 2.3.1 – Soxhlet apparatus. 
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2.3.2.  BLIGH AND DYER METHOD (OIL EXTRACTION) 

The Bligh and Dyer modified method (1959), was used to perform lipid extraction from 

chicken feather meal. In this method are also used organic solvents, methanol and chloroform. 

Firstly, 1g of residue is added to 100ml of methanol:chloroform:water (10:5:4) solution and 

then is submitted to a magnetic stirring, for at least 4 hours, or until complete lipid extraction. 

Subsequently, the solvents mixture with lipids is submitted to centrifugation for ±10 min, and 

then, the liquid phase is removed, (which corresponds the chloroform phase containing total 

lipids – fatty acids and sterols) and is placed into a separatory funnel. This step is repeated 

until the liquid phase has no colour. Afterward, the volume is corrected: per 100ml of 

MeOH:CHCl3:H2O (10:5:4) is added 60ml of MeOH:CHCl3 (1:1). Then, the separatory 

funnel is shake gently and let stand for at least 3 hours, or until two phases are completely 

formed. Finally, the lower phase (containing lipids) is collected and filtered to a soxhlet flask 

and, subsequently, the organic solvent is evaporated on a rotavapour.  

 

2.3.3.  DIRECT TRANSESTERIFICATION – LEPAGE & ROY METHOD 

To analyse fatty acids contents of fat existent in the extracted oil (from chicken feather meal), 

was used the direct transesterification, derived by Lepage and Roy (1984), resulting the 

formation of methyl esters. Thus, 10-25 mg of oil extracts were transmethylated with 2 mL of 

methanol:acetyl chloride (95:5 v/v) and 0,2 mL of heptadecanoic acid (Sigma-Aldrich) in 

hexane (Carlo Erba), (5 mg/mL), used as internal standard. The mixture was well sealed, 

without any contact with light, and heated (at 353,15-358,15 K) for 1 hour. After this step, the 

vail was cooled at room temperature and then was diluted with 2 mL of n-heptane and 2 mL 

of water, to help the phase separation. Afterward, the heptadecanoic phase (the upper one) 

was transferred to a cotton filter bed with an anhydrous sodium sulphate (Fluka) and filtered, 

collecting the sample. Before the analysis with gas chromatography (GC), the sample was 

evaporated and then was added 1 mL of n-heptane. 

 

2.3.4. GAS CHROMATOGRAPHY 

Triglycerides (TG), diglycerides (DG), monoglycerides (MG), glycerol (Gly) and fatty acid 

methyl esters (FAME) were quantitatively determined by gas chromatography (GC) with on-

Column injection – Thermo Scientific Trace GC Ultra (Figure 2.3.2), equipped with a flame 
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ionization detector (FID), with a ZB-5HT Inferno column, 10 m x 0,32 mm, 0,10 µm film 

thickness and polarity of 8 from Zebron. The column is filled with 5%-phenyl and 95%-

dimethylpolysiloxane in the stationary phase (non-polar).  

 

Figure 2.3.2 – Gas chromatograph on-column Thermo Scientific Trace GC Ultra and two vials, used in this analytical method. 

Gas chromatography is an analytical method used for separating and analysing compounds 

passing through a capillary column by the flow of inert gas (mobile phase) – helium (He), 

Argon (Ar) or Nitrogen (N2). The column contains a stationary liquid phase absorbed to the 

surface in an inert solid where the sample to analyse is retained. The compounds can be 

separated by their affinity (polarity) with the stationary phase or by its boiling points. With an 

on-column injection the sample is directly introduced in the interior of the column with a 

syringe, without depressurize it. On this work, all compounds (TG, DG, MG, Gly and FAME) 

are separated according to the boiling points and unsaturated compounds are eluted before the 

corresponding saturated acids of the same chain length.  

The method used was the EN 14105 modified, exhibited on Table 2.3.1. 

Table 2.3.1 – Selected instrument and modified EN 14105 method for the Trace GC Ultra and TriPlus AS.  
TRACE GC ULTRA 

INJECTOR True cold on-column 
CARRIER GAS Helium, 1 ml min-1 
FID 653,15 K 

OVEN PROGRAM 
353,15 K (1 min) to 453,15 K at 288,15 K 
min-1, then to 503,15 K at 280,15 K min-1, 
then to 638,15 K (4 min) at 283,15 K min-1 

TRIPLUS AUTOSAMPLER 
SYRINGE SIZE 10 µl with 80 mm needle 
INJECTED VOLUME 1 µl 
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Peak identification was carried out using known standards and the Chrom-Card software.  

 

2.3.4.1. EXTRACTED OIL ANALYSIS  

To analyse the fatty acid content in the extracted oil, it was necessary to perform Lepage & 

Roy method, explained above (2.3.3  Direct transesterification – Lepage & Roy Method). The 

typical chromatogram obtained is showed in Figure 2.3.3. The molar concentrations of fatty 

acids were correlated with their corresponding peak areas using linearization parameters of 

calibration curves previously done. The relationship between concentrations and peak area is 

showed on Equation 2.3.1, and angular/linear coefficient of each fatty acid is exhibited on 

Table 2.3.2.  

Equation 2.3.1 – Relationship between sample concentration and peak area.  
       (A = area; IS = internal standard, heptadecanoic acid)  

𝐴!"
𝐴!"

= 𝛼
[𝐹𝐴]
[𝐼𝑆]

+ 𝛽 

Table 2.3.2 – Linearization parameters of calibration curves to correlate concentrations and GC peaks areas of fatty acids. 
FATTY ACID ANGULAR COEFFICIENT (α) LINEAR COEFFICIENT (β) 

LAURIC C12 1,0364 0,0033 

MYRISTIC C14:0 0,9868 0,0027 

PALMITIC C16:0 1,0260 -0,0004 

PALMITOLEIC  C16:1 1,0655 0,0011 

STEARIC C18:0 0,7020 -0,0033 

OLEIC C18:1 0,9419 0,0014 

LINOLEIC C18:2 1,1519 0,0010 

LINOLENIC C18:3 1,4692 0,0005 

EICOSANOIC C20:0 1,0570 -0,0025 
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Figure 2.3.3 – Typical chromatogram obtained by GC for oil analysis.  

 

2.3.4.2. SAMPLES OBTAINED IN TRANSESTERIFICATION REACTION  

To determinate the molar concentration of free fatty acids, as well as glycerine and FAME 

(products of transesterification reaction), calibration curves were previously done. Thus, two 

internal standards are required: 1,2,4-butanetriol (IS1) for glycerine, and tricaprin (IS2) for 

mono-, di- and triglycerides. Four reference compounds were also needed – glycerine, mono-

olein, dio-olein and trio-olein. Once that glycerine and mono- and diglycerides are polar and 

high boiling components, they have to be derivatized to increase their volatility and reduce 

activity before injection into GC. The method used requires derivatization with MSTFA (N-

methyl-N-trimethylsilyltrifluoroacetamide) in pyridine, which transforms theses compounds 

into more volatile silylated derivatives. Therefore, for each 100 mg homogenized sample, 80 

µl of IS1 (1 mg/ml), 100 µl of IS2 (8 mg/ml) and 100 µl of MSTFA were added to a 10 ml 

vial, which was hermetically sealed and shaken vigorously. After 15 minutes, 8 ml of n-

heptane were added. For analysis, 1 µl of the reaction mixture was automatically injected into 

the GC, following the instrumental conditions showed on Table 2.3.1. Peak identification and 

measurements were carried out using Chrom-Card software.  
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The relationships between concentrations and peak area are showed on Equation 2.3.2 and 

Equation 2.3.3, and angular/linear coefficient of each compound is exhibited on Table 2.3.3. 

The typical chromatogram obtained is showed in Figure 2.3.4. 

 

Equation 2.3.2 – Relationship between FAME (mono-, di- and triglycerides) concentration and peak area.  
       (A = area; IS2 = internal standard 2, tricapin) 

𝐴!",!",!"  !"
𝐴!"!

= 𝛼
[𝑇𝐺,𝐷𝐺  𝑜𝑟  𝑀𝐺]

[𝐼𝑆2]
+ 𝛽 

Equation 2.3.3 – Relationship between glycerine concentration and peak area.  
       (A = area; IS1 = internal standard 1, 1,2,4-butanetriol) 

𝐴!"#
𝐴!"!

= 𝛼
[𝐺𝑙𝑦]
[𝐼𝑆1]

+ 𝛽 

Table 2.3.3 – Linearization parameters of calibration curves to correlate concentrations and GC peaks areas of methyl esters and 
glycerol. 
 

COMPOUND ANGULAR COEFFICIENT (α) LINEAR COEFFICIENT (β) 
MONOLEIN 0,4048 0,0249 

DIOLEIN 1,1002 -0,0145 

MONOLEI 1,3830 -0,0154 

GLYCEROL 1,1225 0,0105 

 

 

 

Figure 2.3.4 – Typical chromatogram obtained by GC for FAME analysis. 
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For calculate FAME yield, using molar concentrations of TG, DG and MG was used the 

Equation 2.3.4. 

Equation 2.3.4 – FAME yield equation ([TG]i is the triglyceride concentration in the reaction sample if there had been no 
reaction, i.e. the initial value. [TG], [DG] and [MG] are the final concentrations of tri-, di- and monoglycerides in the reaction 
sample, respectively). 

𝜂 =
[𝑇𝐺]!×3 − ([𝑇𝐺]×3 + [𝐷𝐺]×2 + [𝑀𝐺]×1)

[𝑇𝐺]!×3
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RESULTS AND DISCUSSION 
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3. RESULTS AND DISCUSSION 

3.1. OIL EXTRACTION EXPERIMENTS WITH SC-CO2 

Oil extraction was first determined by two different extractions methods, using organic 

solvents: Soxhlet extraction and Bligh and Dyer method.  

Curves of cumulated oil extraction yield (in %, goil/gtotal of CFM) versus extraction time, in the 

conditions applied (temperature, pressure and flow rate) are shown on Figure 3.1.2 – Figure 

3.1.14. 

In all these graphics, it is possible to distinguish two different behaviours, which reflect two 

different extraction mechanics. Effectively, the first linear curve demonstrates a faster 

extraction due to the removal of oil that is readily available at the solid surface. In this phase 

the extraction kinetics is governed by the equilibrium solubility of the oil in CO2 and by the 

external mass transfer effect. The second region of the graphics shows a decreasing extraction 

rate due to the oil removal from deeper in the particles of the residue. The effect of internal 

diffusion – internal mass transfer resistance, controls this phase of extraction kinetics.  

3.1.1.   OIL EXTRACTION FROM ANIMAL FEED 

The main objective of this work is the production of biodiesel from chicken feather meal. 

However, it was previously extracted oil from animal feed (AF) because chicken feather meal 

wasn’t available yet, and the nutrient compositions are both similar, Table 3.1.1. Once the AF 

had been purchased in square pieces, it had to be ground with the aid of a coffee grinder 

(Krups F203 fast-touch coffee grinder). 

Supercritical fluid oil extraction (SCFOE) from AF was carried out in a pilot scale apparatus, 

Figure 2.2.1/Figure 2.2.5. The extraction conditions are illustrated on Table 3.1.2.	  	  

Extraction experiments were carry out with one extractor filled with ± 500g of grounded AF 

and samples were collected every 10 minutes, until complete extraction. The studied 

parameters were pressure and temperature, at a constant CO2 flow rate of 150 g/min.  

Effectively, it was perform a method to evaluate the quantity of oil present in AF, soxhlet 

extraction. From this procedure, it was extracted 6,55 ± 0,07% of oil and, in this work, we’ll 

assume this value as the maximum of oil that could be extracted from AF. The extraction 
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efficiency was determined from the cumulative mass of the extracted fat divided by total 

amount of fat that present in animal feed (Equation 3.1.1), and range from 49,3% to 158,8% 

(goil/gfeed), (Table 3.2.1). 

Equation 3.1.1 – Extraction efficiency equation. 

𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛  𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑚!"#"$%&'()  !"##  !"#.!"#

𝑚!""#×𝑚!"#.!"#  (!"#!!"#  !"#.)
×100 

 
 Table 3.1.1 - Nutrient composition of animal feed and chicken feather meal ([112]). 

The water content was measured by Karl Fischer method11 (KF) (831 and 756 Coulometric 

Karl Fischer titrator, Metrohm USA Inc. ®). The humidity of dry and normal AF (not dry) is 

3,7 and 9,4% of water content, respectively.  

Besides the presence of water in AF, unsaponifiable matter in oil is also significant. 

Unsaponifiable matter includes those substances (higher aliphatic alcohols, sterols, pigments 

and hydrocarbons) frequently found dissolved in oils, which cannot be saponified by the 

conventional treatment, but are soluble in ordinary oil solvents. To analysed the 

unsaponifiable matter present on the extracted oil, the AOCS Official Method Ca 6b-53 

(reapproved in 2009) was used, and it was obtained 3,63% of unsaponifiable matter.  

 Table 3.1.2 – Conditions applied on oil extraction (temperature and pressure) from AF, at 150 gCO2/min, exhibiting the 
extractions rate (goil/min) and it efficiency (%). 

 

                                                        

11 A Karl Fischer (KF) titration determines the water content in a sample, based on an iodine/iodide redox reaction. It’s a titration 
method where water reacts with iodine until the water is consumed and the endpoint is reached. This determination of water 
content with KF is advantageous over to a determination based on weigh loss, because KF is not affected by volatile compounds. 
12 At 300 bar, 313,15K and 150 gCO2/min was perform a two experiments. 

ITEM ANIMAL FEED CHICKEN FEATHER MEAL REF. 
Crude protein, % 27 – 30 75 - 85 [63–65] 
Fat, % 9 – 15 7 - 12 [21], [22], [60] 
Calcium, % 1,3 – 2 0,3  
Phosphorus, % 1,3 0,5  

TEMPERATURE 
(K) 

PRESSURE 
(bar) 

EXTRACTION RATE 
(goil/min) 

EXTRACTION 
EFFICIENCY (%) 

313,15 

200 1,39 124,6 

250 2,19 126,1 

300 1,94 100,8 ± 30,512 

323,15 
250 

1,66 105,8 

333,15 1,87 126,2 

338,15 200 1,08 135,4 
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In Figure 3.1.1 is shown the extraction efficiencies, with increased pressure, at different 

temperatures.   

Firstly, and as it was mentioned before, the maximum oil that could be extracted from the 

residue is 6,55 ± 0,07% and, in the experiments – Figure 3.1.2 and Figure 3.1.3, it was 

obtained higher extraction yields (≥ 100%). Effectively, it was extracted oil in a range of 

extraction efficiency 56,5% – 158,8%, which indicates that it was extracted more than lipids 

(oil). In fact, the presence of unsaponifiable matter (3,63%) and the water content (3,7%dry 

AF/9,4%normal AF), do not account for all the extra extractable material. However, the 

homogeneity of AF square pieces can be reason for these values, i.e. the composition of the 

squares can be different, which could justify the extraction efficiencies values obtained.  

 

Figure 3.1.1 – Extraction efficiencies, obtained on oil extraction from AF, at 323,15 – 343,15 K.  
   (The orange rectangle is illustrating the experiments that obtained extraction efficiencies above the 100%.) 

 

3.1.1.1. ISOTHERMAL KINETIC EXPERIMENTS 

The pressure is one of the properties that can alter the thermodynamic properties of 

supercritical fluids. In this chapter (3.1.1. Oil extraction from animal feed) is presenting the 

experiments made, of oil extraction from AF, investigating the effect of changing the pressure 

at a constant temperature. 

                                                        

13 At 300 bar, 338,15K and 150 gCO2/min was perform a two experiments. 
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Isothermal kinetic experiments of oil extraction are exhibited on Figure 3.1.2 and Figure 3.1.3, 

and its extraction rates are illustrated on Table 3.1.2. At constant temperature of 313,15 and 

338,15 K, the pressures studied were 200, 250 and 300 bar. The results of pressure effect on 

oil extraction are not consistent, resulting in yields higher than 100%. As it can be seen on 

Table 3.1.3, at a constant temperature, the increase of pressure results in an increase of CO2 

density, which means that the solvation power of oil also increases. So, the solvent capacity to 

solubilize the lipids, from de AF, is higher at higher pressures. This phenomenon reflects in 

an increasing of oil extraction. However, it wasn’t verified in the extractions of oil, from AF. 	  

Table 3.1.3 – Density of Sc-CO2 (kg/m3) at 313,15 and 338,15K, changing the pressure. 
TEMPERATURE (K) PRESSURE (bar) DENSITY (kg/m3) 

313,15 
200 839,81 
250 879,49 
300 909,89 

338,15 
200 691,71 
250 761,94 
300 808,95 

 

In Figure 3.1.2 is shown the kinetic extraction at 313,15 K, at different the pressure. At 

constant temperature, it is expected to obtain higher extractions rates at higher pressures (300 

bar). However, the higher extraction rate obtained was at 250 bar (2,19 goil/min), which is not 

coherent and, so, the kinetic curve behaviour was unpredictable. 

 

 
Figure 3.1.2 - Isothermal (313,15K) kinetic curve of oil extraction from AF from a single extractor, using sc-CO2 as solvent, with 
a CO2 flow rate 150 g/min, at 200/250/300 bar. 
 
 

Increasing temperature to 338,15 K (Figure 3.1.3), the kinetic curves were also unpredictable. 

The experiment that acquires higher extraction rate was at 250 bar (2,00 goil/min), followed by 

200 (1,08 goil/min) and then 300 bar (0,973 goil/min). In accordance with supercritical fluids 

properties, at a constant temperature, the increase of pressure lead to an increase of solvation 
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power of the solvent, promoting the oil extraction. However, in the experiments that were 

made, at 313,15 and 338,15K, is not found this increase, in which should be evident. 

 

 
Figure 3.1.3 - Isothermal (338,15K) kinetic curve of oil extraction from AF from a single extractor, using sc-CO2 as solvent, with 
a CO2 flow rate 150 g/min, at 200/250/300 bar. 

 

Therefore, from the results obtained, it can be concluded that the isothermal kinetic 

experiments were not coherent at both temperatures.  

Although, increasing the temperature in 25K, it was found a decrease in the extraction rates at 

all the pressure studied. This behaviour can be explained by the possible presence of volatile 

compounds that evaporate at higher temperatures. In addition, increasing the temperature can 

also promote degradation of some compounds in the mixture, reflected in the extraction rate. 

Consequently, more experiments should be done to understand the kinetic curve behaviour. 

3.1.1.2. ISOBARIC KINETIC EXPERIMENTS 

As mentioned before, changing the pressure and temperature can easily alter the 

thermodynamic properties of supercritical fluids. In the previously subchapter was 

demonstrated the effect of the pressure in the extraction rate. Now, it will be analysed the 

effect of the temperature, at a constant pressure. 

The kinetics curves of isobaric experiments are showed on Figure 3.1.4, and extraction rates 

and extraction efficiencies are illustrated on Table 3.1.2. The temperatures studied (at 

constant pressure – 250 bar) were 313,15/323,15/333,15/338,15 and 343,15 K.  

The effect of varying the temperature, at a constant pressure, could reflects into two different 

effects: (i) if on one hand, increasing temperature, the vapour pressure of the solute also 

increases, which results on an increase of solvation power of oil, (ii) on the other hand, 

0	


20	


40	


60	


80	


100	


120	


140	


160	


180	


200	


0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	
 160	


Ex
tr

ac
tio

n 
ef

fic
ie

nc
y 

(%
)	


Time(min)	


338,15 K	


200 bars	


250 bars	


300 bars	




MASTER THESIS 
BIODIESEL PRODUCTION FROM CHICKEN FEATHER MEAL, COMBINING BIOCATALYSIS AND SUPERCRITICAL TECHNOLOGY 

MARIANA ISABEL CORREIA D’ALMEIDA MENDES GAMEIRO 70 

increasing temperature, the solvent density (CO2) decreases, which leads to a decrease of 

solvation power.   

Analysing Figure 3.1.4, increasing the temperature from 323,15 to 343,15K, it’s possible to 

note an increase in the extraction rate (1,66 to 1,97 goil/min), which means that the vapour 

pressure effect prevails at these conditions. Though, at 313,15K the extraction rate is higher 

(2,19 goil/min), which indicates that the other effect (CO2 density) is present at this 

temperature, i.e. at lower temperatures, the solvent density increase, leading to an increase of 

solvation power of oil. 

However, the extraction rate at 338,15K (2,00 goil/min) is not coherent with the other 

conditions, which can be an experimental error.  

 
Figure 3.1.4 - Isobaric (250 bar) kinetic curve of oil extraction from AF from a single extractor, using sc-CO2 as solvent, with a 
CO2 flow rate 150 g/min, at 313,15/323,15/333,15/343,15 K. 

 
 

Considering isothermal and isobaric experiments, more experiments should be done to 

understand the behaviour of the kinetic curves obtained with the oil extraction from AF.  

 

3.1.1.1. FATTY ACID COMPOSITION OF EXTRACTED OIL  

Analysis of FA content of extracted oil from AF, with hexane and sc-CO2, was conducted 

using GC. A total of 7 fatty acids were identified on soxhlet extraction and 9 fatty acids with 

sc-CO2, both methods extracted high proportion of unsaturated fats than saturated, as 

observed in Figure 3.1.5 and Table 3.1.4. The fatty acids were present in similar proportions 

to the oil extracted with hexane and with sc-CO2, which indicate that all the fatty acids 

extracted with hexane are also soluble in sc-CO2. In general, the extracted oil is mainly 

constitute by palmitic acid (C16:0), oleic acid (C18:1) and linoleic acid (C18:2).  
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Figure 3.1.5 – Fatty acid content of extracted oil from animal feed, with hexane and sc-CO2 extraction.  

 

Table 3.1.4 – Fatty acid content on extracted oil, from animal feed. 
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apparatus)	
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FATTY ACID WT.,% 
SOXHLET EXTRACTION SC-CO2 EXTRACTION 

C14:0 0,99 ± 0,04% 0,97 ± 0,37% 

C16:0 23,14 ± 0,13% 23,77 ± 0,67% 

C16:1 3,40 ± 0,06% 3,29 ± 0,44% 

C18:0 5,81 ± 0,21% 5,38 ± 0,34% 

C18:1 36,98 ± 0,01% 36,41 ± 0,90% 

C18:2 28,03 ± 0,26% 28,53 ± 0,26% 

C18:3 1,64 ± 0,04% 1,57 ± 0,16% 

C20:0 0 ± 0,00% 0,11 ± 0,16% 

C20:1 0 ± 0,00% 0,45 ± 0,00% 
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3.1.2.  OIL EXTRACTION FROM CHICKEN FEATHER MEAL 

As mentioned before (1.3.1. Poultry industry and rendering), chicken feather meal offers a 

promising feedstock source for biodiesel production. In the last 10 years, the chicken meat is 

increasingly embedded in the diet of the consumers. Not just because the preference due to 

the price/quality ratio, but also because of the awareness of healthy eating has also increased 

during this period. Thus, due to this high consume of chicken meat, feather meal (non-edible 

sub-product, Figure 1.3.4) became a by-product of poultry industry. Hence, it is 

biodegradable and it has oil in its constitution, CFM becomes a good feedstock for biodiesel 

production.  

SCFOE from chicken feather meal (CFM) was carried out in a pilot scale apparatus, Figure 

2.2.2/Figure 2.2.6. The extraction conditions are illustrated on Table 3.1.5. 

Table 3.1.5 - Conditions applied on oil extraction (temperature, pressure and CO2 flow rate) from CFM, exhibiting the 
extractions rate (goil/min) and it efficiency (%). 

TEMPERATURE 
(K) 

PRESSURE 
(bar) 

EXTRACTION 
RATE (goil/min) 

MAXIMUM 
EXTRACTION 
YIELD (%)14 

EXTRACTION 
YIELD 

t = 30 MIN (%)15 

CO2 FLOW RATE 
(g/min) 

308,15 200 0,65  91,3 57,29 

150 
313,15 

200 0,68  88,7 55,98 
250 0,96 94,6 79,27 
300 1,09 96,2 86,90 

338,15 
200 0,31  96,9 34,80 
250 0,85  98,9 67,02 
300 0,97 93,8 87,71 

313,15 300 
1,21  91,1 81,38 200 
0,89  91,7 78,36 100 
0,83  94,2 64,71 75 

 

Extraction experiments were carry out with one extractor filled with ± 500g of CFM and 

samples were collected every 10 min, until complete extraction. In Figure 3.1.6 is 

demonstrated the extracted oil in these experiments.  

The objective of this chapter is the optimization of oil extraction from CFM. Therefore, three 

parameters are considering: temperature, pressure and CO2 flow rate. Effectively, the quantity 

of oil present in AF was evaluated by two different methods to, (i) soxhlet extraction and (ii) 

Bligh and Dyer method. From these procedures, it was extracted 7,14% and 7,3% of oil, 

respectively, and, in this work, we will assume these values as the maximum of oil that could 

be extracted from CFM. The extraction efficiency was determined from the cumulative mass 

                                                        

14 Extraction efficiency obtained with complete oil extraction from CFM.  
15 Extraction efficiency obtained at 30 min of oil extraction from CFM. 
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of the extracted oil divided by total amount lipids fat that present in animal feed (Equation 

3.1.1), and range from 89% to 99% (Table 3.1.5). 

The water content was also measured by KF (831 and 756 Coulometric Karl Fischer titrator, 

Metrohm USA Inc.®) and the humidity of dry and normal CFM (not dry) is 2,1 and 7,3%, 

respectively.  

Additionally, the unsaponifiable matter of CFM was also analysed (AOCS Official Method 

Ca 6b-53 (reapproved in 2009)) and it has 1%, which is in accordance with the literature [21], 

[63]. 

 

Figure 3.1.6 – Extracted oil with supercritical CO2 

 

In Figure 3.1.7 is shown the extraction efficiencies, obtained on oil extraction from CFM, 

with increased pressure, at different temperatures. 

 

Figure 3.1.7 – Extraction efficiencies, obtained on oil extraction from CFM, at 308,15 – 338,15 K. 
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The oil extraction from CFM, using sc-CO2 as an extracting agent, was successfully achieved.  

Effectively, as it was mentioned before, the maximum of oil that could be extracted from the 

residue is 7,14% and, in all the extractions performed, the extraction efficiencies were high, 

ranging from 89 to 99% (goil/gfeed).  

 

3.1.2.1. ISOTHERMAL KINETIC EXPERIMENTS 

Isothermal kinetic experiments of oil extraction are exhibited on Figure 3.1.8 and Figure 3.1.9, 

and it extraction rates are illustrated on Table 3.1.5.  

At constant temperature to 313,15K, Figure 3.1.8, and with CO2 flow rate of 150 g/min, the 

pressures studied were 200, 250 and 300 bar. The result of the pressure effect on the oil 

extraction suggests that the efficiency increased with pressure increasing, which is in 

accordance with the literature [96], [113], [114]. This is due to the increase of sc-CO2 density 

and, consequently, the solvation power of oil increases, which means that the solvent capacity 

to solubilize the lipids, from the CFM, is higher. Effectively, the CO2 density at 200 bar and 

313,15K, is 839,8 kg/m3 and at 300 bar is 909,9 kg/m3. Therefore, in the first 30 minutes of 

extraction, the extraction rate at 200 bar is 0,68 goil/min, which is lower comparing with 

higher pressure. At 300 bar it can be extracted, in the first 30 minutes of experiment, 

considerably more oil per minute, 1,09 goil/min. 

Increasing the temperature to 338,15K, (Figure 3.1.9) at constant pressure, the kinetic 

behaviour was the same. Increasing the pressure, the extraction rate is higher. However, 

comparing the extraction rates at 313,15 and 338,15K, at the same pressure, at higher 

temperature, lower extraction rates are obtained. The CO2 density is showed on Table 3.1.3 

and, analysing these values at these temperatures, the density is higher at 313,15K (i.e. at 200 

bar, the CO2 density at 313,15K is 839,8 kg/m3; at 338,15K is 691,7 kg/m3, lower than at 

313,15K). Moreover, at higher temperatures is required more time for complete extraction. At 

338,15K and 200 bar, it needs a longer time to achieved complete extraction, 160 minutes, 

while at higher pressures, the extraction is complete at 70 minutes. 
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Figure 3.1.8 – Isothermal (313,15K) kinetic curve of oil extraction from CFM from a single extractor, using sc-CO2 as solvent, 
with a CO2 flow rate 150 g/min, at 200/250/300 bar. 

 

 

Figure 3.1.9 – Isothermal (338,15K) kinetic curve of oil extraction from CFM from a single extractor, using sc-CO2 as solvent, 
with a CO2 flow rate 150 g/min, at 200/250/300 bar. 

 

3.1.2.2. ISOBARIC KINETIC EXPERIMENTS 

Considering isobaric kinetic experiments of oil extraction, results are exhibited on Figure 

3.1.10, Figure 3.1.11 and Figure 3.1.12 , and extraction rates are illustrated on Table 3.1.5. At 

constant pressure of 200, 250 and 300 bar and with CO2 flow rate of 150 g/min, the studying 

temperatures were 313,15 and 338,15K. Besides CO2 density (which is higher at lower 

temperatures), increasing temperature the solvation capacity decreases. However, at constant 

pressure, decreasing the temperature, another effect could be identified, the vapour pressure 

of solutes decrease, which leads to a lower solubility of oil in supercritical fluids caused by 

the volatility effect [115]. Therefore, at the pressure conditions studied, the first effect 

prevails, i.e. the density effect is more pronounced than the volatility, enhancing the 

extraction efficiency with decreasing temperature. This phenomenon is called retrogradation 

and is typical in regions of supercritical fluids. This effect does not occur in all extractions 

experiments. Actually, at a constant pressure, if the extraction efficiency increases with 
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temperature, means that the volatility effect prevails [114].  It was also studied the extraction 

of oil from CFM at lower temperature – 308,15K (Figure 3.1.12), and the behaviour was 

similar to the 313,15K experiment, at 200 bar (150 gCO2/min), because the CO2 density is alike, 

929,11 kg/m3 (20 kg/m3 higher than at 313,15K). 

 

 

Figure 3.1.10 – Isobaric (300 bar) kinetic curve of oil extraction from CFM from a single extractor, using sc-CO2 as solvent, with 
a CO2 flow rate 150 g/min, at 313,15 and 338,15K. 

 

 

 

Figure 3.1.11 – Isobaric (250 bar) kinetic curve of oil extraction from CFM from a single extractor, using sc-CO2 as solvent, with 
a CO2 flow rate 150 g/min, at 313,15 and 338,15K.  
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Figure 3.1.12 – Isobaric (200 bar) kinetic curve of oil extraction from CFM from a single extractor, using sc-CO2 as solvent, with 
a CO2 flow rate 150 g/min, at 308,15, 313,15 and 338,15K. 

 

Considering these results, it can be concluded that the best conditions for oil extraction from 

CFM at a constant CO2 flow rate of 150 g/min, are at lower temperature and higher pressures, 

which means: 308,15 or 313,15K and 300 bar. 

In Figure 3.1.13 is shown the effect of solubility with an increase of pressure at difference 

temperatures. As mentioned before, in the experiments made, the density effect prevails. 

However, at a constant pressure of 300 bar, in both temperatures the extraction rates are 

similar. This is the crossover point where the density effect no longer prevails, and the 

volatility effect starts to reveal.  

 

Figure 3.1.13 – Extraction efficiency (%), at 30 minutes of extraction, varying the pressure at different temperatures (308,15 – 
338,15K). 
       The green rectangle indicates the effect of density effect on the oil extraction. The orange rectangle indicates the 
crossover point, where the density effect no longer prevails, and the effect of volatility starts to reveal. 
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3.1.2.3.  CO2 FLOW RATE INFLUENCE 

The CO2 flow rate was also studied. To maximize the rate of oil extraction, the solvent flow 

rate must be enough to be completely diffusion limited. Therefore, the optimum flow rate is 

in the region where both diffusion and solubility are significant factors. Analysing Figure 

3.1.14, which refers to extraction conditions at 300 bar and 313,15K, varying the CO2 flow 

rate – 75, 100, 150 and 200 gCO2/min, experiments at higher flow rate seems to have superior 

extraction efficiency.  However, to guarantee this results, it was traced a graphic that 

represents the oil loading, Figure 3.1.15. At 200 gCO2/min flow rate, the residence time is 

lower than the other CO2 flow rates studied and, consequently, the solvent saturates very 

quickly. Because of this CO2 effect, the 200 gCO2/min curve in Figure 3.1.15 is inferior than 75 

gCO2/min. At this lower flow rate, the residence time is higher, which leads to an oil loading 

substantially greater and that’s why this curve has a higher slope. However, the important 

factor in oil extraction is to obtain the highest quantity of oil in a very short time. The loading 

of oil is an important factor, though, if the extractions at 313,15K/300bar/200-150gCO2min-1 

were comparing with 313,15K/300bar/100-75gCO2min-1, the experiments that had the highest 

extraction rate are at 200 (1,21 goil/min) and 150 gCO2/min (1,09 goil/min) of flow rate.  

 

 

Figure 3.1.14 – Kinetic curve of oil extraction from CFM from a single extractor, using sc-CO2 as solvent, at 300 bar and 
313,15K, changing CO2 flow rate: 75/100/200 gCO2/min. 
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Figure 3.1.15 – Loading of oil in the extraction experiments (mi = oil mass at time i; mi-1 = oil mass at time i-1), examining three 
different CO2 flow rate: 75,100 and 200 g/min. 
 

Considering what was mentioned before, Figure 3.1.16 illustrates the extraction efficiency 

(%), at 30 minutes of extraction, (conditions fixed: 300 bar and 313,15K) with increasing of 

CO2 flow rate. It seems, at a first instance, that at 150 gCO2/min is the best flow rate for the 

extraction because it has higher extraction efficiency at 30 minutes, 86,90%. 

 

Figure 3.1.16 – Extraction efficiency (%) obtained at 300 bar and 313,15K, varying the CO2 flow rate (g/min).  

 

However, it’s necessary to take into account the amount of CO2 needed to extract a certain 

amount of oil. Thus, Table 3.1.6 shows the mass of the extracted oil at 30 and 40 minutes (30’ 

and 40’, respectively), as well as the S/F (msolvent/mfeed,CFM). Considering the quantity of oil 

extracted at 30’ and 40’, and taking into account the quantity of CO2 needed to the extraction, 

the best solvent flow rates are 75, 100 and 150 gCO2/min. Effectively, at 40’, the higher and 

lower flow rates extracted almost the same quantity of oil. At a S/F (Table 3.1.6 and Figure 

3.1.17) of ± 9 at 30’, 31,6g of oil extracted is achieved while at 40’, only 29,5g of oil are 

extracted. Therefore, it seems that the extra 10’ do not improve the extraction process. 

Regarding CO2 flow rate at 30’, and although at 150 gCO2/min the extraction efficiency is 

higher, the energy demand must be taken into account. One must evaluate if the difference in 

the extracted oil, at higher flow rates, compensates the higher energy required. 
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Table 3.1.6 – Influence of solvent flow rate on oil extraction from CFM, at a constant extraction pressure (300bar) and at 
313,15K. 
    S/F = msolvent,CO2/mfeed, CFM;  
                        mextracted oil = mass of oil extracted;  
                        30’ = 30 minutes; 40’ = 40 minutes. 

Q (gCO2/min) mextracted oil (30’) S/F (30’) mextracted oil (40’) S/F (40’) 
75 gCO2/min 22,91 4,84 29,70 6,44 

100 gCO2/min 26,34 6,56 29,50 8,83 
150 gCO2/min 31,55 8,86 33,49 11,88 
200 gCO2/min 28,61 12,33 30,36 16,45 

 

 

Figure 3.1.17 – Amount of extracted oil, at 30 minutes, varying the S/F. 
            S/F = msolvent,CO2/mfeed, CFM 

 

 

3.1.2.4.  FATTY ACID COMPOSITION OF EXTRACTED OIL  

Analysis of the fatty acid fractions of the extracted oil, from CFM, with hexane and sc-CO2 
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identified on hexane extraction, and 8 on sc-CO2 extraction. Effectively, soxhlet extraction 

takes, at least, 6 hours to guarantee that no more lipids can be extracted from the residue and, 
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Figure 3.1.18 – Average of fatty acid content of extracted oil from chicken feather meal, with hexane and sc-CO2 extraction. 

 

Table 3.1.7 – Average of fatty acid content on extracted oil, from chicken feather meal, with soxhlet and sc-CO2 extraction (the 
shaded column shows literature values [116]). 
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3.2.  CONTINUOUS PRODUCTION OF BIODIESEL 

3.2.1. TRANSESTERIFICATION REACTION STUDY 

In the previously section was analysed the best conditions for oil extraction from CFM. The 

main objective of this work is the production of biodiesel from the oil extracted of CFM. 

Hence, to perform a continuous production of biodiesel, the system is based into two steps: 

first it’s perform the oil extraction from CFM and then, the same oil is used for the 

transesterification reaction to produce biodiesel. In this chapter, it will be analysed the best 

conditions for transesterification reaction.   

The continuous production of biodiesel was carried out in a pilot scale apparatus, Figure 2.2.2 

- Figure 2.2.4 and Figure 2.2.6. The oil extraction was carry out with one extractor filled with 

± 500g of CFM, followed by the reactor filled with 84 g of Lipozyme® RM IM. The oil 

extracted by sc-CO2 is reacted in the CO2 stream as it passes through the enzymatic reactor. 

Samples were collected every 10 min, until complete extraction (i.e. until no more oil can be 

converted into biodiesel, which takes 1 hour of each experiment). In Figure 3.2.1 is illustrated 

one sample obtained from biodiesel production. 

 

Figure 3.2.1 – Biodiesel produced in this work, from the extracted oil. 

 

The transesterification conditions are illustrated on Table 3.2.1. All reaction experiments were 

executed under 313,15 K and 250 bar. The temperature chosen was 313,15K because the 

extration of oil offers better results, and because of the enzyme stability [76]. In respect to 

pressure value, it was mentioned before that the extraction of oil has better results at 300 bar. 

However, for safety reasons, the experiments were carried out at 250 bar. 
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Table 3.2.1 – Conditions applied on transesterification reaction (CO2 flow rate and oil:methanol ratio) and FAME yield(%). 
CO2 FLOW RATE 

(g/min) 
FAMEAVERAGE (%) OIL:MEOH RATIO 

30 98,79 ± 0,01% 

1:24 

50 96,98 ± 0,06% 

75 94,66 ± 1,19% 

100 97,06 ± 0,05% 

150 96,72 ± 0,73% 

75 
98,54 ± 0,49% 1:12 

97,68 ± 0,63% 1:6 

150 91,69 ± 3,11% 1:12 

 

As mentioned before, there are several factors that influene the enzymatic biodiesel synthesis: 

oil sorce, reaction temperature, methanol to oil molar ratio, amount of water in the system and 

the type of lipase.  

The water presence is not a problem in this study because the CFM does not have enough 

water to influence it. Relatively to the choice of the catalyst, the use of Lipozyme® RM IM as 

been reported to be the best enzyme for transesterification reaction [117], as well has the 

optimum reaction temperature, 313,15K [76]. For biodiesel production, it’s necessary a 

presence of an alcohol, and in this work its use the methanol since it’s the least expensive 

alcohol. However, the presence of excess alcohol could lead to an enzyme inactivation. 

Therefore, the molar ratio between methanol:oil will be studied. Moreover, the residence time 

of the solvent will be take in consideration.  

3.2.1.1. RESIDENCE TIME OPTIMIZATION 

The residence time (tr) consists in the average amount of time that a particle spends in the 

reactor. It begins from the moment that a particle of a particular substance enters the system, 

and ends the moment that the same particle of that substance leaves the system. In these 

experiments, this measurement varies directly with the CO2 flow rate, i.e. the quantity of 

solvent that passes through the reactor. Therefore, the reactor was loaded with 84 g of enzyme 

(ρenzyme particle = 0,42 g/cm3), which fills 60 cm (h) of the reactor, with an internal radius of 1,25 

cm (r). At the experiment conditions with 150 gCO2/min (Q) at 313,15 K and 250 bar, its 

density is 0,89 g/cm3 (ρ). The residence time was calculated using the Equation 3.2.1.  
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Equation 3.2.1 – Residence time equation. 

𝑡! =
𝜌!"!
𝑄!"!

×𝜋×𝑟!×ℎ 

As written before (1.4.1 Enzyme – Biological catalyst), an enzyme has a certain number of 

active centres, where the reaction takes place. When the actives centres of the lipase are 

occupied, the enzyme is not able to convert more triglycerides into fatty acid methyl esters, 

which results in a drop of the yield. Besides this fact, the exposure of enzyme to methanol or 

glycerol could also affect the enzyme activity (1.4.4 and 1.4.5), leading to a lower reaction 

yield. 

The residence time is a very important factor for designing the reactor. Therefore, in a 

continuous process, the solvent flow rate and residence time are two important factors to take 

into account in the reactor design – not too big to not increase excessive cost effects, and not 

too small in which the residence time is insufficient for achieving a high yield.   

The molar ratio of oil:MeOH was fixed (1:24) and the residence time used were 4,14, 2,49, 

1,09, 0,82 and 0,54 minutes (30, 50, 75, 100 and 150 gCO2/min respectively). As it can be seen 

on Figure 3.2.2, all experiments, in general, obtained a high FAME yield. In fact, with a 

higher residence time (4,14’), it was obtained a higher yield. Decreasing this value, the yield 

also decreased though, the decrease was not too evident (1,87 ± 0,17% of difference). 

Effectively, the optimum residence time was not achieved yet. At the lower residence time, 

the yield remains high which means that it can be reduce in order to determined in which tr 

starts to influence the reaction yield.  

At 1,09 minutes of residence time, the yield droped 4,13% and, considering the other 

experiments, it’s expected to be an experimental error.  
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Figure 3.2.2 – Experimental results of CO2 flow rate study (75, 100 and 150 gCO2/min) at 1:24 molar ratio of oil:methanol. 

 

Consequently, it’s necessary to perform more experiments, in order to achieved the optimum 

residence time (lower than 0,54 minutes), for the continuous production of biodiesel.  

 

3.2.1.2. OIL:METHANOL RATIO OPTIMIZATION 

As mentioned before, according to the stoichiometric of transesterification reaction, three 

moles of alcohol reacts with one mole of TAG to give three moles of FAME and one mole of 

glycerol. In other words, an alcohol to oil molar ratio of, at least, 3:1 is necessary for 

complete reaction. Since it is a reversible reaction, an excess of alcohol can be used to shift 

the equilibrium to the products formation. However, the exposure of methanol to the enzyme 

can trigger enzyme denaturation [48].  

Therefore, in this section, the molar ratio is analysed, 1:6, 1:12 and 1:24. The residence time 

is fixed (1,09 minutes, 75 gCO2/min) and the transesterification reactions were perform at 250 

bar and 313,15K.  

As it can be seen on Figure 3.2.3, the optimum molar ratio oil:methanol is 1:12, achieving a 

reaction yield of 98,54 ± 0,49%. Nevertheless, the difference in yield between 1:6 and 1:12 is 

not significative.  

Decreasing the amount of methanol in the system (1:6), can lead to a lower yield because is 

not quantity enough to promote the direct transesterification reaction. However, at a higher 

molar ratio oil:methanol (1:24), it’s expected to be an experimental error, as it was mentioned 

before (3.2.1.1. Residence time optimization). 
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Figure 3.2.3 – Experimental results of molar ratio of oil:methanol study at 75 gCO2/min flow rate. 

 

Hence, to better understand the influence of the methanol in the transesterification reaction, 

it’s necessary to perform an experiment with a molar ratio oil:methanol 1:24, at the same 

conditions.  
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(3.2.1. Transesterification reaction study), at these conditions, the FAME yield was the 

lowest. Therefore, the objective is to improve this FAME yield.  

Theoretically, increasing the temperature at a fixed pressure, the CO2 density decreased, 

which results in a decreasing of solvation power of the solvent. Therefore, the oil solubility 

into sc-CO2 is lower which allows a recover of higher biodiesel purity in the gas phase. 

Additionally, increasing the temperature another effect could be reveal, the vapour pressure of 

the solute also increases, which results on an increase of oil in the gas phase. Increasing the 

pressure at a fixed temperature, the same effect is obtained. The CO2 density increased, which 

reflects on an increasing of the solvation power of the solvent. In this fractionation process 

it’s required a low solvation power of the solvent, in order to precipitated the desire product. 

In other words, it’s intended a highly selective solvent. 

The conditions applied are shown on Table 3.2.2. At 333,15K and 100/120 bar the solubility 

of the oil is low, which allows a recover of high quality biodiesel in the gas phase (Separator 

2), Figure 3.2.4. 

Table 3.2.2 – Conditions applied on fractionation process (pressure and temperature) and FAME content (%). 

 

 

 

In the Figure 3.2.4 is shown the FAME content obtained in the fractionation process. At a 

constant temperature of 333,15K, increasing the pressure should lead to an increase of oil 

solubility into sc-CO2 and consequently, the biodiesel recovered in gaseous phase has lower 

purity and, in the results obtained, this effect occurs. Effectively, at higher pressure, the 

solubility of oil in the Separator 1 is higher than with lower pressure. Thus, in this condition 

of fractionation, at 120 bar, the biodiesel that was recovered in the gas phase has a lower 

purity when comparing with the fractionation at 100 bar, 93,07 ± 3,52% and 93,89 ± 2,89%, 

respectively. 

However, in respect of the FAME content obtained in both processes, the difference is quite 

insignificant.  

PRESSURE  
SEPARATOR 1 (bar) 

PRESSURE  
SEPARATOR 2 (BAR) 

TEMPERATURE 
SEPARATOR 1 AND 2 (K) FAMEAVERAGE (%) 

55 55 328,15 94,66 ± 1,19% 

100 55 
333,15 

92,67 ± 2,70% 

120 55 88,96 ± 7,45% 
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Figure 3.2.4 – Experimental results of fractionation process, revealing the FAME content obtained in the gaseous phase 
(separator 2), when the pressure is changed. 

 

Accordingly to European Biodiesel Board, the biodiesel, for commercial use, must have 

96,5% of ester content. The biodiesel obtained in the fractionation process does not have this 

ester content. Thus, further experiments must be perform, in order to achieve this biodiesel 

purity.  
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4. CONCLUSION AND FUTURE WORK 

The main objective of the present work is the biodiesel production using a green raw material, 

chicken feather meal (CFM), combining biocatalysis and supercritical fluids. CFM is a by-

product of poultry industry and has 7,1% (goil/gCFM) of oil, making it a good alternative 

feedstock for biodiesel production. 

Primarily, the oil extraction from CFM using supercritical carbon dioxide (sc-CO2), as an 

extracting agent, was optimized. The highest extraction rate for oil extraction was obtained at 

300 bar and 313,15K. Considering the CO2 flow rate, the best extraction efficiency was 

obtained for a S/F of about ± 9. In the specific case of this work, a S/F of ± 9 corresponded to 

a flow rate of 150 gCO2/min, with a yield of 96,2%. Nevertheless, further studies are needed to 

evaluate the energetic cost of this process. So, it was proved that the sc-CO2 is a good 

extracting agent of oil from CFM. 

The second objective of this work was the integration of oil extraction and transesterification 

reaction, using methanol, Lipozyme® RM IM as catalyst and sc-CO2 as solvent. The best 

results were obtained at 250 bar, 313,15K, 75 gCO2/min and with a molar ratio of oil:methanol 

1:12. The fatty acid methyl ester (FAME) yield obtained was 98,54 ± 0,49%. So, it was 

proved that the extracted oil, from CFM, is a good feedstock for biodiesel production at the 

conditions applied and using methanol, Lipozyme® RM IM and sc-CO2 as solvent.  

To conclude this work, the fractionation process was performed in order to obtain biodiesel 

with higher quality, assuming a lower reaction yield. This can be advantageous for reducing 

reactor volume (and enzyme amount), thus, reducing investment and production cost. The 

best result was obtained at 100 bar and 333,15K. However, the FAME yield obtained was 

93,89 ± 2,89%, which is not in the limits established by the European Biodiesel Board: 96,5% 

of ester content. Thus, further experiments must have to perform in order to achieve this 

biodiesel purity.  
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6. APPENDIX 

6.1. APPENDIX A 

 
 
Appendix - Table  6.1.1 – World energy production in million tonnes of oil equivalent [1]. 

 

 

 

 

 

 

6.2. APPENDIX B 

 

 

 

 

 

 

 

Appendix - Figure 6.2.1 – Atmospheric concentration of important long-lived GHG over the last 2000 years. Increases since 
about 1750 are attributed to human activities in the industrial era (ppm = parts per million; ppb = parts per billion) (Adapted from 
[118]). 

 

 2009 2010 2011 
OIL  3869,3 3945,4 3995,6 

NATURAL GAS 2667,4 2866,7 2954,8 

COAL 3523,2 3726,7 3955,5 

NUCLEAR ENERGY 511,6 521,1 599,3 

HYDROELECTRICITY 737,5 778,9 791,5 

OTHER RENEWABLES 140,6 165,5 194,8 

BIOFUELS 51,8 58,4 58,9 

TOTAL 11501,4 12062,7 12550,4 
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6.3. APPENDIX C 

 
Appendix - Table  6.3.1 – Structures of fatty acids.  
  

 
 
 

6.4. APPENDIX D 

 
Appendix - Table  6.4.1 – Fatty acid content on extracted oil from chicken feather meal, with sc-CO2 extraction. 

FATTY ACID WT.,% (SC-CO2 EXTRACTION) 
313,15K - 200 BAR 313,15K - 250 BAR 313,15K - 300 BAR 338,15K - 200 BAR 338,15K - 250 BAR 338,15K - 300 BAR 

C12:0 - - - - - - 

C14:0 1,10 ± 0,08% 1,02 ± 0,18% 1,03 ± 0,20% 0,91 ± 0,16% 1,28 ± 0,00% 1,04 ± 0,27% 
C16:0 28,98 ± 0,14% 28,77 ± 0,02% 29,28 ± 0,81% 28,93 ± 0,04% 28,84 ± 0,18% 28,71 ± 0,24% 

C16:1 6,65 ± 0,00% 6,58 ±le 0,28% 5,98 ± 0,46% 6,71 ±0,02% 6,46 ± 0,09% 6,45 ± 0,02% 
C18:0 6,52 ± 0,07% 6,65 ± 0,18% 6,31 ± 0,71% 6,58 ± 0,06% 6,85 ± 0,05% 6,68 ± 0,18% 

C18:1 40,20 ± 0,47% 40,91 ± 0,17% 41,37 ± 1,46% 40,58 ± 0,04% 40,14 ± 0,36% 40,72 ± 0,24% 
C18:2 15,38 ± 0,12% 15,33 ± 0,10% 15,30 ± 0,12% 15,58 ± 0,21% 15,14 ± 0,17% 15,71 ± 0,52% 

C18:3 0,69 ± 0,04% 0,74 ± 0,01% 1,44 ± 0,00% 0,70 ± 0,03% 0,69 ± 0,01% 0,69 ± 0,05% 

C20:0 0,97 ± 0,00% - - - 1,19 ± 0,00% - 
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6.5. APPENDIX D 

6.5.1. CALIBRATION CURVES  
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