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Abstract

The purpose of this thesis is the development of a formal semantical approach for extended
normal logic programs, where contradictions are tackled by means of a reduction ad ab-
surdum with respect to default negation mechanism, in the fashion of arti�cial intelligence
belief revision, that leads to a set of implicit revisions. We ful�lled these objectives in two
steps. The �rst one was the implementation of a total paraconsistent models semantics for
extended normal logic programsMHP , that combines the merits of two already existing se-
mantics: it inherits the existence property of the abductive minimal hypotheses semantics
MH, a semantics of total models, and the property of detection of support on contra-
diction of the paraconsistent well-founded semantics with explicit negation WFSXP , a
semantics of partial paraconsistent models. As for the second step, we developed a revision
procedure for inconsistent constrained theories, that tackles inconsistencies arising from
contradictions with respect to explicit negation, i.e., L and ¬L in the same model, and
stepping beyond, also tackles inconsistencies arising in more general constrained theories
(i.e., theories containing constraints of the type ⊥ ← A,not B, where A is a conjunction of
objective literals and not B stands for a conjunction of default literals). An algorithm for
inconsistency propagation detection was also developed. A characterization of the MHP

with respect to the semantic formal properties of relevance and cumulativity is furnished,
by resorting to a set of results that arose from a detailed study of these properties for a
class of 2-valued conservative extensions of the stable models semantics.

Keywords: total paraconsistent models, declarative debugging, inconsistency propaga-
tion detection, defectivity, excessiveness, irregularity.
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Resumo

O objetivo desta tese é o desenvolvimento de uma abordagem formal semântica para pro-
gramas lógicos normais estendidos (i.e., programas com dois tipos de negação: uma negação
explícita e a negação por omissão), na qual as contradições são resolvidas por meio de um
mecanismo de raciocínio por redução ao absurdo, ao estilo da revisão de crenças na in-
teligência arti�cial. Este objectivo foi alcançado em duas etapas. A primeira delas foi a
implementação de uma semântica de modelos totais para programas lógicos estendidos,
MHP , que combina os méritos de duas semânticas já existentes: herda a propriedade de
existência da semântica abdutiva de hipóteses mínimas MH, uma semântica de mode-
los totais para programas normais; herda também a propriedade de detecção de suporte
em contradição da semântica paraconsistente WFSXP , uma semântica de modelos para-
consistentes parciais para programas lógicos estendidos. A segunda etapa consistiu no
desenvolvimento de um algoritmo de revisão de teorias inconsistentes, que aborda não ape-
nas inconsistências decorrentes de contradições com respeito à negação explícita, ou seja
L e ¬L no mesmo modelo, mas também inconsistências com respeito a teorias contendo
restrições de integridade mais gerais, do tipo ⊥ ← A,not B, sendo A uma conjunção de
literais objectivos e not B uma conjunção de literais objectivos negados por omissão. Um
algoritmo de detecção de propagação de inconsistências foi também desenvolvido. É apre-
sentada uma caracterização detalhada da MHP com respeito às propriedades semânticas
formais de relevância e cumulatividade, utilizando um conjunto de resultados obtidos de
um estudo dessas propriedades para uma classe de extensões conservativas 2-valoradas da
semântica de modelos estáveis.

Palavras-chave: modelos totais paraconsistentes, revisão declarativa de programas lógi-
cos, detecção da propagação de inconsistências, defectividade, excesso, irregularidade.
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Chapter 1

Introduction

We make a brief overview of the historical developments in the �eld of logic programs se-
mantics, that headed to the implementation of 2-valued conservative extensions of the sta-
ble model semantics and of paraconsistent semantics, which are tools we use in this work.
Thereon, we justify the interest and succinctly present the essence of the results stated in
this thesis.

Arti�cial intelligence is about the design of entities (agents) capable of behaving intel-
ligently in some environment. Such an entity needs to access knowledge about this envi-
ronment, which in turn demands an unambiguous language for expressing this knowledge,
together with some way of manipulating sentences of the language in order to infer new
knowledge from the knowledge already acquired. Around 1960, McCarthy [Mcc59] �rst
proposed the use of logical formulas as a basis for a knowledge representation language of
this type. In his own words,

Expressing information in declarative sentences is far more modular than ex-
pressing it in segments of computer programs or in tables. Sentences can be
true in a much wider context than speci�c programs can be used. The supplier
of a fact does not have to understand much about how the receiver functions
or how or whether the receiver will use it. The same fact can be used for
many purposes, because the logical consequences of collections of facts can be
available.

The combination of logic as a representation language, with the theory of automated deduc-
tion, led Kowalski and Colmerauer to the creation of the �rst declarative logic programming
language, Prolog [CKRP73, vEK76]. The Prolog language has available the mechanism of
negation as failure, under which everything that cannot be �nitely proven true is concluded
false.1

1This �rst part of the introduction is a very close adaptation from [BG94].
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Chapter 1. Introduction

A number of semantics for normal logic programs, i.e., those with negation by default2,
appeared since then, two main of which are the 3-valued well-founded semantics, WFS
[GRS91], and the 2-valued stable model semantics SM [GL88]. The SM semantics is
generally accepted by the logic programs scienti�c community as the de facto standard 2-
valued semantics. Nevertheless there are advantageous properties the SM semantics lacks,
such as model existence for every normal logic program, relevance and cumulativity. Model
existence guarantees that every normal logic program has a semantics. This is important
to allow arbitrary updates and/or merges involving knowledge bases, possibly from di�er-
ent authors or sources [PP11]. Relevance allows for top-down query solving without the
need to always compute complete models, but just the sub-models that sustain the answer
to a query, though guaranteed extendable to whole ones [PP11]. As for cumulativity, it
allows the programmer to take advantage of tabling techniques [Swi99] for speeding up
computations [PP11].

It is thus reasonable to search for 2-valued semantics that extend conservatively the SM ,
meaning that for each normal logic program all the stable models are obtained, eventually
together with some other models in order to ensure some or all of the referred properties.
In [PP11] the authors developed the abductive minimal hypotheses semantics for normal
logic programs MH, which is an existential 2-valued models semantics. Abductive logic
programming is an extension of logic programming to perform abductive reasoning [DK02]
(see section 3.3). Consider as an example the following program P

p← not p

b← a

a←

which has no stable models, due to the rule p ← not p, but nonetheless has the MHP

model M = {a, b, p}, which is obtained after adding to P the abductive explanation (for
M) p, also called abductive hypothesis.

A limitation of the semantics for normal logic programs, is that they do not consider the
assertion of negation. Several authors [Wag91, Prz90a, GL90, PA92, KS90, GSC98, Prz90b]
have stressed the need to endow normal logic programs with a second kind of negation
operator, the explicit negation "¬", for representing contradictory knowledge, in addition
to the default negation operator "not", used for representing incomplete information. A
language containing an explicit negation operator, has two types of non default literals:
positive literals L, and explicitly negated literals ¬L, each admitting the corresponding
default negated version, respectively not L and not ¬L. There are plenty of examples that
display the need for explicitly negated literals in logic programming, both in the heads and
in the bodies of the rules.

Example 1.1. (adapted from [AP96]) Consider the statement "Penguins do not �y". This
statement may be represented within logic programming by no_fly(X) ← penguin(X).

2Negation by default is a semantic counterpart notion for the procedural Prolog notion of negation
as failure, brought from non-monotonic reasoning into logic programming semantics, as an adaptation of
the closed world assumption principle, CWA [Rei78]. Although both expressions are sometimes used as
synonyms, they are not the same (see [Llo87]).

2



Meanwhile if additionally we wish to represent the statement "Birds �y", fly(X) ←
birds(X), no connection results between the predicates no_fly(X) and fly(X), although
the intention of the programmer is to set them as contradictory (i.e., the predicates are
intended not to be both true or both false in a model). In this case it is suitable to have the
rule ¬fly(X)← penguin(X) instead of no_fly(X)← penguin(X), since a semantics that
deals with the operator "¬" will by de�nition consider predicates fly(X) and ¬fly(X) as
contradictory opposites.

Example 1.2. (adapted from [AP96]) Consider the statement "A school bus may cross
railway tracks under the condition that there is no approaching train". If we express
the statement with the rule cross ← not train, then the lack of information about the
presence of the train allows the bus to cross the tracks. In this case it is suitable to have
instead the rule cross ← ¬train, making cross depend on a proof of ¬train (of course it
is the programmer's responsibility to de�ne ¬train in a manner that caters to the need for
assuredness of the falsity of train).

As a consequence of the need for an explicit negation operator, a number of semantics that
interpret this type of operator have been proposed � those for extended normal logic pro-
grams. Among those are the paraconsistent semantics [ADP95, Ari02, BS89, PW89, Sak92],
which have the following advantageous property: if SEM is a paraconsistent semantics and
P an inconsistent extended normal logic program with respect to explicit negation, i.e. a
program where all the SEM models have at least a pair of contradictory literals, say b
and ¬b, then SEM(P ) is not mandatorily trivial � a trivial semantics of a logic program
being one that contains the literals L and ¬L, for every atom L of the language of P 3.
This has been shown an important property for frameworks of knowledge and reasoning
representation. This point is clari�ed by the next example.

Example 1.3. (adapted from [Ari02]) Consider the following program P .

a← r

q ←
r ←
¬r ← not ¬q.

Both q and r should be true in any reasonable semantics of P . Now ¬r is also true
since ¬q does not hold. This seems a natural interpretation of P , and hence P contains
contradictory information regarding r. However the true value of q is not related to any
contradictory information. The same cannot be said about a, which depends on r. Thus
a paraconsistent semantics should be able to spot the true value of q as not supported
on contradiction, and the true value of a as supported on contradiction, while r is itself
contradictory (and thus supported on its own contradiction).

With special interest for this work is the paraconsistent well-founded semantics with explicit
negation WFSXP [ADP95], which is a semantics of partial models for extended normal

3This characterization of a paraconsistent semantics is in line with Jakowski-da Costa's general de�nition
of paraconsistent theory : given a logic with a negation "¬", a theory T is paraconsistent i� it is inconsistent
and non-trivial (see [dCBB95]).

3



Chapter 1. Introduction

logic programs. The WFSXP envisages default negation and explicit negation necessarily
related through the coherence principle [PA92]: if ¬L holds, then not L should also hold
(similarly if L, then not ¬L). The WFSXP semantics of the program in example 1.3 is
(see chapter 5)

WFMP (P ) = {a, not a, not ¬a, r, not r,¬r, not ¬r, q, not ¬q}.

Notice that default consistency (i.e. L and not L cannot simultaneously be true) is not
enforced by WFSXP . This is a distinguish feature of this semantics, due to the adoption
of the coherence principle, which permits detection of support on contradiction: when L
and not L belong to a model, then L is supported on contradiction [ADP95]. TheWFSXP

reduces to the WFS on normal logic programs.

In chapter 5 we de�ne the paraconsistent minimal hypotheses semantics MHP , which com-
bines the merits of the MH and of the WFSXP . It is a semantics of total paraconsistent
models, meaning that given an extended normal logic program P and a MHP model M of
P , model M contains no unde�ned literals. It endows WFSXP with choice mechanisms
that allow reasoning by cases, in the style of MH. Let us illustrate this characterization
of the MHP with an example.

Example 1.4. Consider the following program P .

c←
a← not b

b← not a

¬c← a

¬c← b

r ← c

The WFSXP model of P is 4:

WFMP (P ) = 〈{c, r}+, {a, b}u, {¬a,¬b,¬c,¬r}−〉.

Notice that ¬c ∈ WFM−P (P ) due to the coherence principle. Now this model is not
inconsistent, either with respect to default negation, or with respect to explicit negation 5.
The literal r ∈WFM+

P (P ) does not have support on contradiction, because the WFSXP ,
being WFS based, retrieves a, b as unde�ned. Nevertheless it is argued in the literature
that a reasonable semantics for normal logic programs should rely on the intersection of 2-
valued models (see for instance [Dix96], section 3.5). As the subprogram {a← not b, b←
not a} is normal and depends on no other rule, a less skeptical semantics could retrieve
either a or b as positive, and thus ¬c would be positive and r would be supported on
contradiction. It is the case that the MHP semantics of P consists of the models

M1 = 〈{a, c,¬c, r}+, {¬a, b,¬b, c,¬c, r,¬r}−〉
M2 = 〈{b, c,¬c, r}+, {a,¬a,¬b, c,¬c, r,¬r}−〉,

4We represent the model with the alternative notation M = 〈M+,Mu,M−〉 and emphasize the valua-
tions by using the corresponding label "+, u,−".

5We will see in chapter 5 that a contradiction with respect to default negation (L and not L) only
occurs if a contradiction with respect to explicit negation also occurs with some literal L depends on.
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both of them showing r as supported on contradiction, because r and not r belong to both
models.

The main virtue of a paraconsistent semantics is that of preserving the information
that is free from contradiction, in the presence of contradictory information, by allowing
non trivial models. Notwithstanding, the existence of non-trivial models is of little use if
some mechanism to separate this two types of information is not at hand. By detecting
support on contradiction, the MHP has incorporated such a mechanism for contradictions
with respect to explicit negation. Meanwhile we may want to deal with broader inconsis-
tency theories than the ones which consider only a single type of constraint, ⊥ ← L,¬L.
That is why in chapter 6 we consider two procedures to deal with inconsistent theories,
with respect to constraint theories that contain more general constraints, say ⊥ ← a, not b.
In the presence of such more general constraints, the support on contradiction capability
disposed by the MHP semantics is not su�cient to detect all types of support on incon-
sistency that may now arise from the activation of integrity constraints. The procedures
we expound there to deal with more general inconsistent theories, are the following. We
consider a revision procedure that acts in the fashion of a declarative debugger [PDA93a],
i.e., the revision proceeds by deleting rules of a theory or by revising the CWA valua-
tion of certain literals, thus treating programs as malfunctioning devices needing repair.
This type of revision approach is of a syntactic nature, inline with a family of approaches
normally designated belief base, and thus di�erent from other type of "semantic �avored"
approaches normally designated belief set [DSTW12]. We consider also a procedure for
detecting support on contradiction, where the contradictory literals are those that appear
in the de�nition of the constraints whose bodies are veri�ed by some model. Having such
an inconsistency propagation detection procedure is of utmost importance, because: (1) it
ful�lls the very reason that underlies the existence of paraconsistent semantics, which is
the possibility of extracting information from inconsistent models; (2) it may be used to
get the sound information from an inconsistent theory, in cases where a revision process is
not considered, or in cases where a revision is not capable of eliminating all inconsistencies
in the resulting models.

In this introductory part of the thesis, we have already unveiled our proposals to accom-
plish the main goal of this work, which is to obtain a semantics that deals with inconsistent
theories, and then face the revision process by resorting to an abductive mechanism in the
style of the MH semantics. The ful�llment of this plan consists in the material presented
in chapters 5 and 6.

Meanwhile some issues concerning the characterization of the MHP with respect to the
properties of existence, relevance and cumulativity were also tackled. Those are important
properties from the computational point of view, as already referred. The main results
of our approach on these matters, are stated in chapter 4. There we de�ne a family of
2-valued conservative extensions of the SM semantics6, the a�x stable model semantics
family ASM , whose elements are 2-valued semantics for normal logic programs. The
purpose of establishing this family, is to present a general enough de�nition of 2-valued

6Meaning semantics that for each normal logic program retrieve all the stable models of the program,
eventually together with some other models in order to ensure some or all of the properties of existence,
relevance and cumulativity.
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Chapter 1. Introduction

model conservative extensions of the stable model semantics, which eventually represents
both a large and interesting number of semantics under this designation. In order to look
for a characterization of some semantics pertaining to the ASM family, with respect to
the properties of existence, relevance and cumulativity, we were led to the de�nition of
two subfamilies ASMh ⊂ ASM and ASMm ⊂ ASM . Semantics of the ASMh family
are minimal (positive) hypotheses generated abductive semantics, in the style of MH,
whilst semantics of the ASMm family are minimal models abductive semantics. We show
that a semantics SEM of any of these two families is cumulative i� for any normal logic
program P and any subset S ⊆ ∩

M∈SEM(P )
M+, we have SEM(P ) = SEM(P ∪ S), that

is, P and P ∪S have exactly the same 2-valued models, where M+ represents the positive
literals in M = 〈M+,M−〉 and M− comprises the atoms false by default. This is a very
interesting result, in our opinion, since it represents a de�nition of cumulativity not in
terms of sets of literals pertaining to all models of a program, but in terms of the models
of the program themselves, not considering their intersection. We also show this property
permits to spot cumulativity failure by means of counter-examples, even in some cases
where the programs used to set the counter-examples do not explicitly exhibit a failure
of cumulativity (see examples in section 4.3). By resorting to three semantics structural
properties �rst de�ned in this work, defectivity, excessiveness and irregularity, the following
relations are established for any semantics SEM of ASMh or ASMm families (see section
4.4):

1. Defectivity ⇔ ¬ Existence ⇔ ¬ Global to Local Relevance;

2. Defectivity ⇒ ¬ Cautious Monotony;

3. Excessiveness ⇒ ¬ Cut;

4. Irregularity ⇔ ¬ Local to Global Relevance,

where the properties global to local relevance and local to global relevance arise from split-
ting relevance into its two separate logic implications. All the results referred above may
turn into an easier job both the defeating as well as the proof of the properties of existence,
relevance and cumulativity, making it a matter of dealing with the structure of programs
(i.e., the layers of normal logic programs [PP11]) and with the decomposition of models
over that structure, thus avoiding in some cases proofs that may not be easy to obtain
using a direct proof strategy. The structural approach taken to establish the pro�le of
ASMh and ASMm families semantics, concerning the aforementioned properties, relies
heavily on the concept of layering of normal logic programs [PP11], and is thus in line with
a syntactic tackling of the semantics of normal logic programs.

The main results in this paper are enounced for the universe of �nite ground logic pro-
grams, meaning programs without variables and where the rules, considered as sequences
of symbols, have �nite length.

The main original contributions of this work, to be detailed in the sequel, are:

1. An improvement in the de�nition of the MH semantics that reduces the set of as-
sumable hypotheses of a program (see de�nition 3.16).
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2. The concept of simple relevance of a semantics, that allows query answering in a
brave reasoning fashion (see de�nition 3.18) .

3. The de�nition of cumulativity for the class ASMh ∪ASMm of semantics, as a state-
ment about sets of models instead of a statement about sets of atoms, which is
advantageous for the study of this property (see theorem 4.9).

4. The structural concepts of defectivity, excessiveness and irregularity, on the basis of
which some relations among the properties of existence, relevance and cumulativity
were de�ned, with advantage for the study of theses properties (see de�nitions 4.18,
4.19, 4.20).

5. As an example of the relations among properties mentioned in the last item, we have
shown that existence failure implies cautious monotony failure for the SM semantics.
This result, to the best of our knowledge, had not yet been settled.

6. A detailed characterization of the MH semantics with respect to the properties of
relevance and cumulativity.

7. The de�nition of the semantics Cyan that, to the best of our knowledge, is the �rst
de�ned 2-valued fair conservative extension of the SM semantics that is rational,
existential, relevant and cumulative.

8. A total models paraconsistent semantics MHP , that is existential, simple relevant
and has the capability of detecting support on contradiction (see de�nition 5.11).

9. A revision algorithm for inconsistent theories with respect to the MHP semantics
(see subsection 6.1.2).

10. An algorithm for computing the set of safe literals of the extended kernel of an
inconsistent theory with respect to the MHP semantics (see subsection 6.2.3).

We recommend reading the chapters in this thesis in the sequence they appear. How-
ever, if the reader is not interested in all the subjects, or is more keen on some topics rather
than others, we provide alternative reading paths as shown below.

2-3-4-7 Study of the properties of existence, cumulativity and relevance in a
subclass of the ASM family of 2-valued semantics.

2-3-5-6-7 Paraconsistent MHP semantics, plus revision and inconsistency
propagation detection methods (all sections in 2 and 3 are optional,
but section 3.3)
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Chapter 2

Structure of Noetherian Normal

Logic Programs

We present some outlining terminology for the structure of normal logic programs adopted
in this work.

We start by bring forward some usual terminology for normal logic programs, and some
rule dependency notions, in sections 2.1 and 2.2. Then we introduce the notions of layer-
ing and T-segment of a normal logic program. Layering is essential to de�ne the MH and
MHP semantics (chapters 3 and 5), whilst T -segment subtends all the structural properties
de�nitions presented in chapter 4.

2.1 Language and Terminology of Logic Programs

A normal logic program de�ned over a language L is a set of rules, each one of the form

b0 ← b1, · · · , bm, not c1, · · · , not cn (2.1)

where m,n are integer non negative numbers and bj , ck are atoms of L; bi and not ck are
generically designated literals, not ck being speci�cally designated default literal . The
operator "," stands for the conjunctive connective, the operator not stands for negation
by default and the operator "←" stands for a dependency operator that establishes a de-
pendence of b0 on the conjunction on the right side of "←". b0 is the head of the rule and
b1, · · · , bm, not c1, · · · , not cn is the body of the rule. A rule is named a fact if m = n = 0.
A program is de�nite if it has no default literals. A literal (program) is ground if it does
not contain variables. The set of all ground atoms of a normal logic program is called
Herbrand base of P , HP . The set of all ground terms of P is called Herbrand universe of
P , UP . If r is a rule of P , by its ground instance we mean any ground rule obtained from
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Chapter 2. Structure of Noetherian Normal Logic Programs

r by substituting ground terms from UP for all variables. A program is �nite if it has a
�nite number of rules 1. Given a program P , program Q is a subprogram of P if Q ⊆ P .
Although the main results in this thesis consider only �nite ground logic programs, the
notions de�ned in this chapter envisage the class of all ground normal logic programs with
a countable (possibly in�nite) set of rules.

For ease of exposition we henceforth use the following abbreviations: Atoms(E), is the set
of all atoms that appear in the ground structure E, where E can be a rule, a set of rules,
a set of logic expressions, etc; Bodies(E), is the set of all bodies that appear in the set of
ground rules E; if E is unitary, we may use "Body" instead of "Bodies"; depending on
the context, Body may refer to the conjunction of literals that forms the body of a rule (as
opposed to the set formed by those literals); Heads(E), is the set of all atoms that appear
in the heads of the set of rules E; if E is unitary, we may use "Head" instead of "Heads";
Facts(E), is the set of all facts that appear in the set of rules E; Loops(E), is the set
of all rules that pertain to a loop contained in the set of rules E (see de�nition 2.6 for
loop). We may compound some of these abbreviations, as for instance Atoms(Loops(P ))
or Atoms(Bodies(Loops(P ))) whose meaning is immediate.

2.2 Rule Dependencies

We establish some terminology concerning the dependencies among the elements of a nor-
mal logic program (atoms and rules) triggered by the dependency operator "←".

De�nition 2.1. Complete rule graph. (adapted from [Pin11]) Let P be a normal logic
program. The complete rule graph of P , denoted by CRG(P ), is the directed graph whose
vertices are the rules of P . Two vertices representing rules r and s de�ne an arc from r to
s i� Head(r) ∈ Atoms(Body(s)).

De�nition 2.2. Rule depending on a rule. (adapted from [Pin11]) Let r, s be two
rules of a normal logic program P . We say that s depends on r i� there is a directed path
in CRG(P) from r to s.

De�nition 2.3. Strongly connected components. (adapted from [Tar72, Pin11]) Let
P be a normal logic program. We dub strongly connected component, SCC, of P , any
maximal subset Q of P , such that for any two rules of Q, say r, s, rule r depends on rule
s and rule s depends on rule r.

De�nition 2.4. Atom depending on a rule. (adapted from [Pin11]) We say that
an atom b depends on a rule r in a normal logic program P i� there is a rule s, where
Head(s) = b, such that s depends on r. In particular b depends on s.

De�nition 2.5. Subprogram relevant to an atom. (adapted from [Dix95b, Pin11])
Let P be a normal logic program. We say that a rule r ∈ P is relevant to an atom a ∈ HP
i� a depends on r. The set of all rules of P relevant to a is represented by RelP (a), and is
named subprogram (of P ) relevant to a.

1In this work, if nothing else is said, by logic program we mean a �nite set of ground rules.
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2.3. Noetherian Normal Logic Programs

De�nition 2.6. Loop. (adapted from [Cos95]) We say that a set of ground rules P forms
a loop i� P is of the form

h1 ← l2, B1

h2 ← l3, B2

· · ·
hk ← lk+1, Bk

· · ·
hn ← l1, Bn

where li = hi, or li = not hi, and each Bi (may not exist) stands for the conjunction of a
�nite number of literals. We say that each rule hi ← li+1, Bi is involved in the loop through
the literal li+1 or through the atom involved in the literal li+1, where i+1 is replaced by 1 if
i = n. We say that the loop is an even loop over negation (resp. odd loop over negation), if
the set of literals {l1, l2, · · · , ln−1} contains an even (resp. odd) number of default literals.
In a SCC every rule is involved in at least one loop.

De�nition 2.7. Module of a normal logic program. (adapted from [Pin11]) Let P
be a normal logic program. Any SCC in P is called a module of P . A rule not pertaining
to any loop of P is also called a module of P . Nothing more is a module of P . We denote
the class of all modules of P by Modules(P ).

De�nition 2.8. Modules graph of a normal logic program. (adapted from [Pin11])
Let CRG(P ) be the complete rule graph of a normal logic program P . We call modules
graph of P to the graph MG(P ) = (Modules(P ), Arcs), where Arcs = {(x, y) : x, y ∈
Modules(P )} such that there is a directed path in the graph CRG(P ) from a rule of the
module x to a rule of module y. The modules graph of a normal logic program P is unique,
as per this de�nition.

2.3 Noetherian Normal Logic Programs

We de�ne the rule layering of a normal logic program, which labels every rule in the
program with a natural number. We consider only noetherian normal logic programs,
which are programs that contain no in�nite dependence descending chains of rules.

De�nition 2.9. In�nite descending dependence chain. We say that an in�nite set S
of ground rules forms an in�nite descending dependence chain i� the set of rules is of the
form:

h1 ← l2, B1

h2 ← l3, B2

· · ·
hn ← ln+1, Bn

· · ·

where (j 6= k)⇒ (hj 6= hk), j, k ∈ N and each li is either hi or not hi.
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Chapter 2. Structure of Noetherian Normal Logic Programs

We are interested in characterize the structure of any ground normal logic program
with no in�nite descending chains.

De�nition 2.10. Noetherian logic program. We say that a logic program P is noethe-
rian2 i� it does not contain in�nite descending dependence chains.

The following proposition is a characterization of the modules graph of a noetherian
normal logic program.

Proposition 2.1. The modules graph MG(P ) = (Modules(P ), Arcs) of a noetherian
normal logic program P , contains at least one vertex with zero indegree.

Proof. Suppose thatMG(P ) contains no vertex with zero indegree. The argument below
shows that this hypothesis leads to a contradition.

1. Chose any module of Modules(P ) and name it N1.

2. As indegree(N1) 6= 0, there is a rule r1 ∈ N1 that depends on a rule r2 of another
module. Let N2 be this other module.

3. As indegree(N2) 6= 0, rule r2 must depend on another rule r3 /∈ N2, where r3 /∈
N1 otherwise N1 and N2 would not be di�erent modules. Let N3 be the module
containing r3.

4. Keeping this reasoning going on, we obtain a descending chain of rules, r1, r2, r3, · · · ,
that is in�nite unless a module with zero indegree exists, which must be the case
since P is noetherian.

We now set forth a constructive de�nition of rule layering [Pin11] of a noetherian normal
logic program P .

De�nition 2.11. Rule layering. (adapted from [Pin11]) Let MG(P ) be the modules
graph of a noetherian normal logic program P and N the set of natural numbers. We de�ne
the rule layering (or just layering, for simplicity) of P as the labeling of rules corresponding
to the outcome of the total layer function,MG(P ) 7→ N, inductively de�ned as follows:

Step 1 LetMG1(P ) =MG(P ). Label with 1 all the rules in the zero indegree vertices of
MG1(P ). Erase fromMG1(P ) all the zero indegree vertices and the arcs emerging
from them, and nameMG2(P ) the resulting graph.

Step k Label with k all the rules in the zero indegree vertices of MGk(P ). Erase from
MGk(P ) all the zero indegree vertices and the arcs emerging from them, and name
MGk+1(P ) the resulting graph.

Every integer number T in the image of the layer function de�nes a layer of P , meaning
the set of rules of P labeled with number T .

The process of labeling in the above de�nition �nishes if P is �nite. By then:

2The designation "noetherian" is here adopted after the paper [Dix95b]
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2.3. Noetherian Normal Logic Programs

• Every rule of the normal logic program is labeled with an integer positive number;

• The rules belonging to the same module have the same label;

• The highest label involved in the process corresponds to the number of layers of P .

This concept of rule layering coincides with the notion of least rule layering presented in
[Pin11].

Proposition 2.2. Existence and unicity of layering. (adapted from [Pin11]) Every
normal logic program has a unique layering.

Proof. Immediate as per de�nition 2.11.

Through out this thesis we adopt the following conventions:

• Labels are denoted either by capital letters or else by natural numbers;

• Expressions such as "layer T" of a program, mean the set of rules with the label T
in the program;

• Expressions such as "a set of rules is in layer T", mean that all the rules of the set
are labeled with the label T ;

• To say that a set of rules is above (resp. below) the layer T , means that all the rules
of the set have labels greater (resp. lesser) than T .

The following representations [Pin11] are adopted in this thesis:

• P≤T (resp. P≥T ) is the subprogram of P consisting of the union of the rules in layer
T and layers below (resp. above) T .

• P<T (resp. P>T ) is the subprogram of P consisting of the union of the rules in layers
below (resp. above) the layer T .

• P T is the subprogram of P consisting of the rules in layer T .

Example 2.1. ([Pin11]) The following schema represents a program with the rules al-
ready separated into layers by the dashed lines. The labels of the layers are the integer
numbers T before the dashed lines, and each one of them refers to the sets of rules imme-
diately above, if T = 1, or to the set of rules between the dashed lines T − 1 and T , if
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T > 1.

x← not x

e← e

f ←
1−−−−−
b← not x

y ← not x

z ← f

2−−−−−
b← not b

d← not c

c← not d, not y, not a

3−−−−−

In the sequel, it will be useful the concept of T-segment de�ned below.

De�nition 2.12. T -segment of a normal logic program. Let P be a normal logic
program and T a layer of P . We say that P≤T is the T-segment of P i� Atoms(P≤T ) ∩
Heads(P>T ) = ∅.

Example 2.2. In the program of example 2.1 the 1-segment of P , P≤1, is the set of rules
above dashed line 1. Notice that the set of rules above dashed line 2 is not a segment of
the program, since Atoms(P≤2) ∩ Heads(P>2) = {b} 6= ∅. Hence the program does not
have a 2-segment.
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Chapter 3

Semantics for Normal Logic

Programs

We de�ne some semantic concepts needed ahead in this work, and make a brief presentation
of a number of 2-valued semantics for normal logic programs in order to provide background
for the chapters that follow.

The semantics of a logic program describes the intended meaning of the program, by
specifying its logical consequences. For logic programs two manners to specify a seman-
tics are relevant: procedural semantics and declarative semantics. A procedural semantics
provides an implementation-independent proof procedure from which logical consequences
of programs are derived. A declarative semantics is speci�ed by a model theory. Model
theories de�ne interpretations with respect to which a logic program is valid, meaning that
all the rules of the program are satis�ed. This is ful�lled by resorting to the Herbrand uni-
verse and Herbrand interpretations of a logic program. In this work we follow closely the
model-theoretical approach to de�ne normal logic programs semantics. Every semantics
SEM we de�ne/refer consists, for each normal logic program, in a subset of the set of all
classical models of the program. For a normal logic program P , the set SEM(P ) is the
set of all the SEM models of P , designated by semantics of P with respect to SEM or by
SEM semantics of P .1

The remaining of this chapter goes as follows. In section 3.1 we de�ne the notions of
interpretation, model and T -segment decomposition of a model. In section 3.2 we present
a brief overview of some normal logic programs semantics (several overviews of the subject
can be found in literature, e.g., [AB94, Dix96]). Finally in section 3.3 we de�ne in detail
the MH semantics.

1This �rst paragraph follows closely some parts of the works [LMR92, Alf93].
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3.1 Interpretations and Models

We next de�ne 2-valued and 3-valued Herbrand interpretations of normal logic programs.

De�nition 3.1. Interpretation. (adapted from [DP98]) An interpretation I of a normal
logic program P is a 3-tuple of the form

I = 〈I+, Iu, I−〉, (3.1)

where HP = I+ ∪ Iu ∪ I− and I+, Iu, I− represent the sets of atoms of the language of P
that are respectively positive, unde�ned and default false in I. If Iu = ∅ (resp. Iu 6= ∅),
then the interpretation is said to be a total (resp. partial) interpretation or a 2-valued (resp.
3-valued) interpretation.

For convenience, we may sometimes represent a 2-valued interpretation I by I = I+ ∪
not I−, or by I = 〈I+, I−〉, where not I− is the set of all the default negations of atoms of
I−. In some cases we may represent a 2-valued interpretation I by I+, being understood
that I− = HP \ I+. We may also represent a 3-valued interpretation I by I = I+∪not I−,
being understood that Iu = HP \ (I+ ∪ I−).

De�nition 3.2. Satisfaction. (adapted from [DP98]) Let I be an interpretation of a
normal logic program P . We say that,

1. I falsi�es a literal b (resp. not b) i� b ∈ I− (resp. b ∈ I+); I falsi�es the body of a
rule r ∈ P i� I falsi�es at least one literal of Body(r);

2. I veri�es a literal b (resp. not b) i� b ∈ I+ (resp. b ∈ I−); I veri�es the body of a
rule r ∈ P i� I veri�es all literals of Body(r);

3. I makes unde�ned a literal b (not b) i� b ∈ Iu; I makes unde�ned the body of a rule
r ∈ P i� I makes unde�ned a nonempty set of literals of Body(r) and veri�es all the
remaining ones;

4. I falsi�es a rule r i� I falsi�es Head(r) and does not falsify Body(r), or if I makes
unde�ned Head(r) and veri�es Body(r); I veri�es a rule r i� I does not falsify r.

We denote I |= l (resp. I |= r) the satisfaction of a literal l (resp. a rule r) by an
interpretation I.

De�nition 3.3. Model. [DP98] An interpretation I is a model of a normal logic program
P i� all rules in P are satis�ed by I.

If b is an atom of the language of P and M is a model of P with respect to some
semantics SEM , then we may state, for simplicity, that b ∈M+ (resp. b ∈Mu, b ∈M−)
by writing b = + (resp. b = u, b = −). A semantics SEM is 2-valued i� all SEM models
it retrieves are 2-valued models. A semantics SEM is 3-valued i� there is at least a normal
logic program P for which SEM(P ), the set of SEM models of P , contains at least one
3-valued model.

We next present the structural concept of T -segment decomposition of a model, concern-
ing 2-valued semantics, which will be used in the next chapter to characterize families of
2-valued conservative extensions of the SM semantics on the formal properties of existence,
relevance and cumulativity.
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De�nition 3.4. T -segment decomposition of a model. Let P be a normal logic
program, P≤T a segment of P , SEM a 2-valued semantics and M ∈ SEM(P ). We
call T -segment decomposition of the model M , to the 3-valued interpretation M≤T =
M+
≤T ∪ not M−≤T , where M

+
≤T = M+ ∩Atoms(P≤T ) and M−≤T = M− ∩Atoms(P≤T ).

The next operator shall be used in the sequel.

De�nition 3.5. 4 operator. Given a normal logic program Q, we denote by 4Q the
3-valued interpretation that can be read from Q in the following way: b ∈ (4Q)+ i�
(b ←) ∈ Q; b ∈ (4Q)u i� (b ←) /∈ Q and there is a rule r in Q such that Head(r) = b;
b ∈ (4Q)− i� b has no rule in Q.

The following condition is obeyed by all the semantics treated in this thesis. It is an
extension of a property named C1 in [PAA92] � we adopt the designation C1 for the variant
of this property here presented.

De�nition 3.6. C1 property. We say that a semantics SEM for normal logic programs
obeys the property C1 i� for any normal logic program P , any model M ∈ SEM(P )
and any rule r ∈ P , the following conditions are veri�ed: (1) if M satis�es Body(r) then
Head(r) ∈ M+ and rule r is satis�ed by M ; (2) if M falsi�es Body(r), then rule r is
satis�ed by M .

The following two orderings will be used through out the sequel.

De�nition 3.7. Classical truth ordering.2 The interpretations I1 = I+
1 ∪ not I

−
1 and

I2 = I+
2 ∪ not I

−
2 , satisfy the classical truth ordering relation I1 ≤t I2, i� I+

1 ⊆ I+
2 and

I−2 ⊆ I
−
1 .

De�nition 3.8. Knowledge ordering.3 The interpretations I1 = I+
1 ∪ not I

−
1 and

I2 = I+
2 ∪ not I

−
2 , satisfy the knowledge ordering relation I1 ≤K I2, i� I+

1 ⊆ I+
2 and

I−1 ⊆ I
−
2 .

3.2 Minimal Models Semantics

The motivation behind minimal models semantics, is based on the idea that one should
minimize positive information in the models as much as possible [AP96], limiting it to facts
explicitly implied by the program, and making everything else false. This may be taken as
an application of the Ockham's razor principle to logic programs semantics [Pin11]. The
minimal models semantics brie�y presented in this section are the least model semantics,
the stable model semantics and the well-founded semantics.

3.2.1 Least Model Semantics

The least model semantics [vEK76] is a semantics for de�nite logic programs. Given a
de�nite normal logic program P , the least model of P is the least �x-point of the TP
operator de�ned below.

2Given the logic values f (false), u (unde�ned) and t (true), their truth ordering is de�ned by f ≤t u ≤t t
[AP96].

3Given the logic values f (false), u (unde�ned) and t (true), their knowledge ordering is de�ned by
u ≤t f and u ≤t t [AP96].
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De�nition 3.9. Tp operator. (adapted from [Prz90a]) Let P be a de�nite ground logic
program and I a 2-valued interpretation. Then

TP (I) = {a : a← a1, · · · , an ∈ P and {a1, · · · , an} ⊆ I}. (3.2)

De�nition 3.10. Least model semantics. (adapted from [Prz90a]) The least 2-valued
model MP of a de�nite ground logic program P is equal to T ↑ωP (∅).

3.2.2 Stable Model Semantics

The stable models of a normal logic program may be computed as �xpoints of the Gelfond-
Lifschitz operator Γ de�ned below. This operator takes as arguments a normal logic pro-
gram P and a 2-valued interpretation of it I, and retrieves the 2-valued interpretation
ΓP (I).

De�nition 3.11. Γ operator. (adapted from [Prz90a]) Let P be a normal logic program
and I a 2-valued interpretation. The Gelfond-Lifschitz transformation of P modulo I, is the
program P

I obtained from P by performing the following transformations:

1. Remove from P all rules which contain a default literal not b, for every literal b ∈ HP
such that b ∈ I+;

2. Remove from the remaining rules all default literals.

Since the resulting program P
I is de�nite, it has a unique least 2-valued model M . We

de�ne ΓP (I) = M .

De�nition 3.12. Stable model semantics, SM. (adapted from [Prz90a]) A 2-valued
interpretation I is a stable model of a normal logic program P i� ΓP (I) = I.

3.2.3 Well-Founded Semantics

In [BDFZ01] the authors propose a reduction system comprising the following �ve oper-
ations, each of which transforms normal logic programs into normal logic programs while
keeping invariant the well-founded model [Gel93] of the programs: positive reduction, 7→P ,
negative reduction, 7→N , success, 7→S , failure, 7→F , and loop detection, 7→L (see de�nitions
in appendix A). We here represent this reduction system by 7→WFS :=7→P ∪ 7→N ∪ 7→S

∪ 7→F ∪ 7→L. Given a normal logic program P , the transformation P 7→∗WFS P̂ (where
7→∗WFS means the non deterministic performing of operations of the system until the re-
sulting program becomes invariant) is such that WFM(P̂ ) = WFM(P ). Program P̂ will
be here called the WFS remainder of P , or program remainder of P , or simply remainder
of P (these latter two designations are used in [BDFZ01]). The system 7→WFS is both
terminating and con�uent, meaning that for any �nite ground normal logic program the
number of operations needed to reach P̂ is �nite, and the order in which the operations
are performed is irrelevant.

De�nition 3.13. Well-founded semantics, WFS. (adapted from [Gel93, BDFZ01])
The well-founded model of a normal logic program P , WFM(P ), is the interpretation 4P̂ ,
where P 7→∗WFS P̂ .
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3.3 The Minimal Hypotheses Semantics, MH

In this section we state the role of abduction in obtaining a semantics of total models, and
after we de�ne with technical detail the MH semantics.

3.3.1 2-Valued Semantics through Abduction

Abductive logic programming is an extension of logic programming to perform abductive
reasoning [DK02]. The general de�nition of the abductive task, in the context of logic
programming, is as follows.

De�nition 3.14. Abductive task, abductive semantics, hypotheses. (adapted
from [DK02]) Given a normal logic program P and a query Q, the abductive task can be
characterized as the problem of �nding a set of literals Ω (abductive explanation for Q or
hypotheses for Q), from the language of P , such that P ∪ Ω |= Q, where the relation "|="
is in accordance with a certain set of criteria for rule satisfaction. The semantics obtained
as a result of this task is an abductive semantics.

In what concerns the SM semantics, the consideration of positive hypotheses involving
atoms from default literals, allows to obtain the single stable model of any logic program
P whenever WFMu(P ) = ∅ (the single stable model of P coincides with its well-founded
model). In this case, the abductive task takes Ω = ∅, and P |= Q, meaning that WFM(P )
satis�es Q. Moreover, one may also obtain the stable models that result from solving
even loops over negation, by resorting to sets of positive hypotheses Ω whose elements are
atoms that appear in default literals involved in such loops [PP11]. This approach can
be extended to obtain a semantics for normal logic programs that otherwise lack stable
models, as shown in the next example.

Example 3.1. In order for a program like P

a← not b

b← not c

c← not a

to have a 2-valued model M , a subset of {a, b, c} must be a part of M+. This can be
achieved by considering abductive extensions [DK02] P ∪Ω of the program P , where Ω is a
subset of {a, b, c}, such that P∪Ω has a stable model that is equal to its well-founded model
[PP11]. For example, if we consider the explanation Ω = {a}, the stable model obtained
for P ∪Ω, which coincides with the WFM(P ∪Ω), is {a, b}. In case we take, for instance,
the explanation Ω = {b} (resp. Ω = {c}), we get the stable model WFM(P ∪{b}) = {b, c}
(resp. WFM(P ∪ {c}) = {c, a}).

Abductive semantics allow us to envisage loops in normal logic programs as semantic
choice devices. This is one of the main features of the minimal hypotheses semantics, MH.

3.3.2 MH Models

To compute the MH semantics of a normal logic program, we need the variant 7→LWFS

of the reduction system 7→WFS , which results from 7→WFS by substituting the negative
reduction operation 7→N , by the layered negative reduction operation, 7→LN .
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De�nition 3.15. Layered negative reduction. (adapted from [PP11]) Let P1 and P2

be two ground normal logic programs. Program P2 results from P1 by layered negative
reduction, P1 7→LN P2, i� there is a rule r ∈ P1 and a default literal not b ∈ Body(r) such
that b ∈ Facts(P1), r is not in loop through b, and P2 = P1 \ {r}.

Given a normal logic program P , the transformation P 7→∗LWFS P̊ (where 7→∗LWFS

means the non deterministic performing of operations of the system 7→LWFS until the
resulting program becomes invariant) is such that 4P̊ = LWFS(P ), where LWFS(P )
stands for the layered well-founded model of P [Pin11] � the transformed program P̊ is
called LWFS remainder or layered remainder of program P (the latter designation is used
in [PP11]).

Theorem 3.1. (adapted from [PP11]) The system 7→LWFS is terminating and con�uent
when applied to any �nite ground normal logic program.

Proof. An immediate consequence of lemma 5.17.

Example 3.2. The layered remainder of program P below (left column) is the program
P̊ (right column) (the literals and rules eliminated in the computation of P̊ are striped
out):

b← h b← h

h← not p, b h← not p, b

p← not b p← not b

a← not c, b a← not c, b

d← not b d← not b

b← b←

Notice that rule d← not b in P is eliminated in P̊ by layered negative reduction, the body
of rule a ← not c, b became empty by success (which eliminates b) and positive reduction
(which eliminates not c), and b is eliminated from the body of rule h← not p, b by success.
The layered well-founded model of P is thus LWFM(P ) = 4P̊ = 〈{a, b}+, {h, p}u, {c, d}−〉.

MH being an abductive semantics, we shall now de�ne the assumable hypotheses set
and the minimal hypotheses model of a normal logic program.

De�nition 3.16. Assumable hypotheses set of a program. (adapted from [PP11])
Let P be a �nite normal logic program. We write Hyps(P ) to denote the assumable
hypotheses set 4 of P : those atoms that appear default negated in the bodies of rules of P̊
and which are not facts in P̊ .

All the assumable hypotheses of a normal logic program P belong to LWFMu(P ) =
(4P̊ )u, as per the de�nition above. The purpose of computing P̊ , is thus to �nd the set
of assumable hypotheses of P , which are then used to compute the minimal hypotheses
models of the program.

4This represents a slight variation on the original de�nition in [PP11] (where all the atoms that appear
default negated in the bodies of rules of P̊ are taken as assumable hypotheses). This new de�nition reduces
the set of assumable hypotheses, without changing the MH models obtained.
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De�nition 3.17. Minimal hypotheses model. (adapted from [PP11]) Let P be a
�nite normal logic program. Let Hyps(P ) be the assumable hypotheses set of P , and H
a subset of Hyps(P ). A 2-valued interpretation M of P is a minimal hypotheses model of
P i� M = WFM(P ∪H), being WFMu(P ∪H) = ∅, where H = ∅ or H is a nonempty
set that is minimal with respect to set inclusion (set inclusion minimality concerns only
nonempty Hs 5). I.e., the hypotheses set H is minimal but su�cient to determine (via the
well-founded model) the truth-value of all literals in the program.

The following result states the existence property of the MH semantics, i.e., every
normal logic program has a MH semantics.

Theorem 3.2. (adapted from [PP11]) Every normal logic program has at least one MH
model.

Proof. Given a normal logic program P , either some minimal model is a minimal hypothe-
ses model, or else no minimal model of P is a minimal hypotheses model. This last case
means there must exist a set of minimal hypotheses models that out rules the minimal
models from the set of all the MH models of P . Whatever the case may be, a minimal
hypotheses model always exists.6

Every stable model of a normal logic program is also a minimal hypotheses model of the
program. This justi�es the catering for whole models with empty hypotheses sets H = ∅,
which are stable models of programs whose layered remainders are strati�ed programs.
The reason hypotheses minimization does not contemplate empty hypotheses sets models,
is to allow loops to be taken as choice devices. For instance, program P in example 3.2
has the assumable hypotheses set Hyps(P ) = {p}, since not p appears in P̊ and p is not a
fact of P̊ 7. The MH models of P are

{a, b, not c, h, not p} with hypotheses set ∅
{a, b, not c, not h, p} with hypotheses set {p}.

If the empty hypotheses set were allowed in the hypotheses minimization, the non-empty
hypotheses set model would be discarded and we would be left with just the stable model
{a, b, not c, h, not p}.

Example 3.3. (adapted from [PP11]) Consider the following variation P of the vacation
problem: �ve friends are planning a joint vacation. First friend says "If we don't go to
place b, then we should go to place a", which corresponds to rule a ← not b; the same
rationale for the remaining rules.

a← not b

b← not a, not c

c← not d

d← not e, not a

e← not a, not c

5This point is clari�ed in the sequel.
6See example 3.3 to verify that a MH model may not be minimal.
7Notice that although not b appears in P̊ , b is not an assumable hypothesis of P since it is a fact of P̊ .
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We have P = P̊ . The hypotheses set of P is Hyps(P ) = {a, b, c, d, e}. The MH models of
P are

{a, not b, c, not d, not e} with hypotheses set {a}
{not a, b, not c, d, e} with hypotheses set {b, d}
{a, not b, c, not d, e} with hypotheses set {e}.

Notice that there are no MH models with hypotheses sets H = {b} or H = {d}, since in
these cases WFMu(P ∪ H) 6= ∅. Notice also that the model {a, not b, c, not d, e} is not
minimal.

The MH solution of the vacation problem has the following rationale: rule a← not b,
for example, states that the �rst friend prefers place b to place a, because a is suggested
in case b fails; each model of MH tries to satisfy the �rst options of the friends, by
considering them as hypotheses. The answer set solution to this type of problem, when
it exists, retrieves models that satisfy all the friends demands (rules) with the smallest
(with respect to set inclusion) possible number of places to visit (due to the minimality
of models). The example above shows this type of problem is not generally solvable by
resorting to answer sets semantics [Lif08], if we stick to the set of rules of P , since models
may not be minimal (e.g. {a, not b, c, not d, e} above). Should there be a transformation
on normal logic programs, let it be 7→Y , such that P 7→Y P ∗, where the MH models of P
could be extracted from the stable models of P ∗, then P ∗ would have a di�erent set of rules
and/or a di�erent language, with respect to P , which means that this type of problem is
speci�ed in a more elegant way if the solution is to be obtained via the MH semantics.
Yet, it is an open problem whether such a transformation exists.

3.3.3 Formal Properties of MH

A detailed characterization of the MH semantics with respect to the formal properties
of relevance and cumulativity is found in appendix B.3. Meanwhile the MH enjoys the
existence property, by theorem 3.2, and the simple relevance property, as shown below.

De�nition 3.18. Simple relevance. We say that a semantics SEM has the property of
simple relevance i� for any normal logic program P , whenever there is a SEM model Ml

of RelP (l) such that l ∈Ml, there is also a SEM model M of P such that l ∈M .

Proposition 3.3. MH semantics is simply relevant.

Proof. Let Ml ∈ MH(RelP (l)), with hypotheses Hl, and l ∈ Ml. Let P ∗ = P ∪M+
l and

M ∈ MH(P ∗) with hypotheses HM , HM ∩Hl = ∅ � we can see such a model must exist,
by making for example HM = ∅, if WFMu(P ∗) = ∅, or else HM being chosen among the
atoms that appear default negated in P̂ ∗, if WFMu(P ∗) 6= ∅. Then l ∈M . Now it is the
case that M ∈ MH(P ) because H = HM ∪Hl is a minimal hypotheses set for M by the
following argument:

1. Either HM ∪ Hl = ∅ and then M = WFM(P ) is a MH model of P , where
WFMu(P ) = ∅, as per de�nition 3.17, or else,

2. If b ∈ Hl, then WFMu(P ∪ (H \ {b})) 6= ∅ since RelP (l) is not solved � notice that
Heads(P \RelP (l)) ∩Atoms(RelP (l)) = ∅, and
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3. If b ∈ HM , then WFMu(P ∪ (H \ {b})) 6= ∅ since P ∗ is not solved;

4. As l ∈M the proposition is proved.
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Chapter 4

Conservative 2-Valued Extensions of

the Stable Model Semantics

We study strong and weak properties of some conservative 2-valued extensions of the stable
model semantics, under a structural point of view.

The SM semantics is generally accepted by the scienti�c community working on logic
programs semantics as the de facto standard 2-valued semantics. Nevertheless there are
some advantageous properties the SM semantics lacks such as (1) model existence for every
normal logic program, (2) relevance and (3) cumulativity [PP11]. It is known that all logic
programs that lack stable models contain odd loops over negation [Cos95]. It seems thus
reasonable to cater for models that a�ord odd loops, in order to accomplish a 2-valued
semantics for every normal logic program, whilst maintaining all other stable models. This
goal can be achieved by considering 2-valued conservative model extensions of the SM
semantics [PP11], where conservative means that for each normal logic program all its
stable models are obtained, possibly together with additional models. In this paper we
de�ne a family of 2-valued conservative extensions of the SM semantics, the a�x stable
model semantics family, ASM . The purpose of establishing this family is to present a
general enough de�nition of 2-valued model conservative extensions of the stable model
semantics, which eventually represents both a large and interesting set of semantics under
this designation. The family ASM is presented as a subset of a broader class, the fair
semantics family, which encompasses for sure a number of 2-valued semantics, so very lit-
tle demanding are the conditions in its de�nition. We de�ne two subfamilies of semantics,
ASMh $ ASM and ASMm $ ASM , and characterize them with respect to the properties
of relevance and cumulativity.

The structural approach taken in this chapter to establish the pro�le of semantics from
the families ASMh and ASMm, concerning the aforementioned properties, relies heavily
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on the concept of layering of normal logic programs [PP09], and is thus inline with a syn-
tactic tackling of the semantics of normal logic programs.

The remainder of this chapter proceeds as follows. In section 4.1 families ASM , ASMh and
ASMm are de�ned, as well as some semantics pertaining to them. In section 4.2 we de�ne
the formal properties we are dealing with for characterizing the families ASMh and ASMm.
In section 4.3 we study the property of cumulativity for the families ASMh and ASMm,
while in section 4.4 some results involving defectivity, excessiveness and irregularity are set
forth. Section 4.5 is dedicated to �nal remarks.

4.1 The ASM , ASMh and ASMm Semantics Families

In this section we de�ne a large enough family of abductive 2-valued semantics, the a�x
stable model family ASM , whose members are conservative extensions of the SM seman-
tics. The ASM is a subfamily of the broader class of 2-valued semantics, the fair family.
For this purpose, consider that every semantics SEM comes associated with a reduction
system, 7→SEM , that is, a set of syntactic operations that may successively reduce the
original program P , by eliminating rules or by eliminating literals from the bodies, �nally
producing a new program P ∗ that keeps invariant under any further operation of the re-
duction system, named the SEM remainder of P , here denoted remainderSEM (P ), such
that SEM(P ) = SEM(P ∗). It is implicit that this set of transformations is both ter-
minating and con�uent, meaning that for any �nite ground normal logic program P the
number of operations needed to reach P ∗ is �nite, and the order in which the operations
are performed is irrelevant. Let us suppose that this set of program transformations is not
stronger than the system 7→WFS associated with the WFS (see section 3.2.3), meaning
that the transformation of P into remainderSEM (P ) does neither eliminate more rules,
nor more literals, than the transformation of P into remainderWFS(P ). This is a reason-
able supposition, since if a semantics SEM allows for a stronger than the 7→WFS reduction
system, then the program remainderSEM (P ) may miss some of the stable models of P ,
which would out rule SEM as a conservative extension of the SM semantics, since every
stable model contains the well-founded model, in the knowledge ordering sense 1.

Together with a semantics SEM and the corresponding reduction system 7→SEM , comes
the division (by a set of atoms) concept.

De�nition 4.1. Division. Given a normal logic program P , a semantics SEM with the
corresponding reduction system 7→SEM , and a set of atoms A of the language of P , the
division of P by A is the operation whose result is the program remainderSEM (P ∪ A),
denoted by P/A.

Every terminating and con�uent reduction system has a corresponding division opera-
tion. We de�ne below a "weak enough" reduction system, here designated gracious, that
will be taken as the weakest possible reduction system for the 2-valued semantics consid-
ered in this work. It is designed with the aim of being weaker than the reduction systems
associated with the SM and the MH, meaning that all the reductions it performs are a

1See de�nition 3.8 for knowledge ordering.
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subset of the reductions performed by the systems 7→WFS and 7→LWFS . For that purpose,
we de�ne the layered variants of the operations of success, positive reduction and failure,
respectively layered success, layered positive reduction and layered failure, that are weaker
than the former operations, meaning that where the latter ones are applicable the former
ones also are.

De�nition 4.2. Layered Success.2 Let P1 and P2 be normal logic programs. We say
that program P2 results from P1 by a layered success operation, P1 7→LS P2, i� P2 is
obtained by applying on P1 a success operation, where the rule r of P1 used to perform the
operation is not in loop through the atom say b ∈ Body(r) used to ful�ll the operation.

De�nition 4.3. Gracious reduction system. We dub gracious reduction system, de-
noted by 7→G, the set of reduction operations consisting of the operations layered success,
layered negative reduction, positive reduction and failure.

The proposition below is immediate after lemma 5.17.

Proposition 4.1. The gracious reduction system is terminating and con�uent when
applied on any �nite ground normal logic program.

We now de�ne a large family of 2-valued semantics, the fair family, containing among
others the most important 2-valued semantics referred in this paper, and for sure a large
part of interesting 2-valued semantics, so very little demanding are the conditions therein.

De�nition 4.4. Fair semantics. We say that a 2-valued semantics SEM is a fair se-
mantics i�

1. SEM enjoys property C1;

2. For any normal logic program P , SEM(P ) is invariant under the reduction system
7→G;

3. SEM enjoys the property of division satisfaction: given a normal logic program
P and a segment T of P , if M1 ∈ SEM(P≤T ) and M2 ∈ SEM(P>T /M+

1 ), then
M2 ∈ SEM(P ).

Proposition 4.2. The SM and the MH are fair semantics.

Proof. Condition (1) is valid for both semantics; condition (2) is valid for both semantics,
since the reduction system 7→G is weaker than the reduction systems 7→WFM and 7→MH ;
condition (3) is valid for both semantics, since if M2 ∈ SM(P>T /M+

1 ) (resp. M2 ∈
MH(P>T /M+

1 )), then M2 is a SM (resp. MH model) of P , by de�nition of SM and
MH.

The concept of reduction system of a semantics motivates the concept of T -segment
support of a model, de�ned below.

De�nition 4.5. T-segment support. Let SEM be a 2-valued fair semantics, P a normal
logic program, P≤T a segment of P , and M ∈ SEM(P ). We say that M∗ ∈ SEM(P≤T )
T -segment supports M i� M ∈ SEM(P>T /M+

∗ ).

2This operation was proposed by Alexandre Pinto.

27



Chapter 4. Conservative 2-Valued Extensions of the Stable Model Semantics

We now put forward the de�nition of a�x stable model family of abductive semantics,
ASM , each member of it being a conservative extension of SM semantics. For that purpose
we start by de�ning a�x stable interpretation.

De�nition 4.6. A�x stable interpretation. Let P be a �nite ground normal logic
program, SEM a fair semantics, and X ⊆ (4 remainderSEM (P ))u. We say that I is
an a�x stable interpretation of P with respect to set X and semantics SEM (or simply a
SEM stable interpretation with a�x X) i� I = WFM(P ∪X) and WFMu(P ∪X) = ∅,
that is, I is the only stable model of the program P ∪X. We name X an a�x (or hypotheses
set) of interpretation I.

De�nition 4.7. A�x stable model semantics family, ASM. A fair semantics SEM
belongs to the a�x stable model semantics family, ASM , i� given a normal logic program
P , SEM(P ) contains all the stable models of P , in case they exist, plus a subset (possibly
empty) of the a�x stable interpretations of P , chosen by resorting to speci�cally enounced
criteria. An atom b of the language of P is true (false) under the semantics SEM i� b
pertains to every (neither) model in SEM(P ); in other cases b is unde�ned under the
semantics SEM .

Proposition 4.3. The SM semantics and theMH semantics belong to the ASM family.

Proof. The SM semantics corresponds to the case where the subset of a�x stable model
interpretations mentioned in de�nition 4.7 is empty. The MH semantics corresponds to
the case where the criteria mentioned in de�nition 4.7 relies in the minimality of the a�xes
with respect to set inclusion, being these a�xes subsets of the unde�ned set of atoms in
4 remainderSEM (P ).

The two subfamilies of ASM next de�ned, ASMh and ASMm, are the classes whose
formal properties we study in the remainder of this chapter. The notions of potential and
de facto hypotheses of a program with respect to a semantics of the ASM family, set out
below, are useful for clearer de�nitions of the classes ASMh and ASMm.

De�nition 4.8. Given a semantics SEM ∈ ASM and a normal logic program P , the
set of potential hypotheses of P with respect to SEM , is the union of all the sets of
hypotheses considered in the a�xes of the stable interpretations of P , while the set of
de facto hypotheses of P with respect to SEM , is the union of all the sets of hypotheses
considered in the a�xes of the models of P .

Example 4.1. Consider the SM semantics of program P ,

a← not b

b← not a

c← a

c← not c

where P = remainderWFS(P ). The only stable model of P is {a, c} with a�x {a}. Thus
a is the only de facto hypothesis of P , while the set of potential hypotheses is {a, b, c}.

De�nition 4.9. ASMh and ASMm families. For any semantics SEM of the ASMh

or ASMm families, and any normal logic program P :
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1. The potential hypotheses are among the atoms that, being not facts, appear default
negated in remainderSEM (P );

2. The taken models of P , are only those having non-empty minimal a�xes with respect
to set inclusion, plus the empty a�x one (should it exist), in case SEM ∈ ASMh;
the taken models of P are minimal in the classical sense, in case SEM ∈ ASMm.

We set forth some examples of ASMh and ASMm members. Besides SM , MH and
others, the following are members of the ASMh family3 :

MHLS: the reduction system is obtained by replacing the success operation in
7→LWFS by the layered success operation; the potential hypotheses of a normal logic
program P are the atoms that, being not facts, appear default negated in the corre-
sponding remainder.

MHLoop: the reduction system is 7→LWFS ; the potential hypotheses of a normal
logic program P are the atoms that, being not facts, appear default negated in
literals involved in loops in the remainderLWFS(P ).

MHSustainable: the reduction system is 7→LWFS ; the potential hypotheses of a nor-
mal logic program P are the atoms that, being not facts, appear default negated
in the remainderLWFS(P ), with the following additional condition: if H is a set of
hypotheses of a MHSustainable model M of P , then

∀h∈H [(H \ {h}) 6= ∅ ⇒ h ∈WFMu(P ∪ (H \ {h}))],

that is, no single hypothesis may be de�ned in the well-founded model if we join to
P all the other remaining hypotheses.

MHSustainable
min : the reduction system is 7→LWFS ; retrieves the minimal models con-

tained in MHSustainable(P ) for any normal logic program P . This semantics also
belongs to the ASMm family, since all models it retrieves are minimal.

MHRegular: the reduction system is 7→LWFS ; retrieves the same models as MH,
execept the irregular ones.

Besides SM and others, the following are members of the ASMm family:

Navy: the reduction system is 7→WFS . Given a normal logic program P , Navy(P )
contains all the minimal models of remainderWFS(P ).

Blue: the reduction system is 7→WFS . Given a normal logic program P , Blue(P )
contains all the models in Navy(P ∪K) where K is obtained after terminating the
following algorithm 4:
(a) Compute K = kernelNavy(remainderWFS(P )) � see de�nition 4.10, for a de�ni-
tion of kernel;
(b) Compute K ′ = kernelNavy(remainderWFS(P ∪K));
(c) If K 6= K ′, then let P be the new designation of program P ∪K ′; go to step (a).
Repeat steps (a) � (c) until K 6= K ′ comes false in (c).

3The �rst three semantics, besides MH, were suggested by Alexandre Pinto.
4This algorithm is presented in [Dix95a].
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Cyan: the reduction system is 7→WFS . Given a normal logic program P , compute
Cyan(P ) through the steps of Blue computation, but taking only the regular models
(see de�nition 4.20) to compute the semantic kernel at steps (a) and (b).

Green: the reduction system is 7→WFS . Given a normal logic program P , Green(P )
contains all the minimal models of remainderWFS(P ) that have the smallest (with
respect to set inclusion) subsets of classically unsupported atoms.

4.2 Advantageous Formal Properties

The set of formal properties we are dealing with in this work, for the purpose of char-
acterizing some of the semantics herein de�ned and/or referred, are existence, relevance,
cut and cautious monotony, de�ned below. Cut and cautious monotony, when both valid,
quali�es a semantics as cumulative. Cumulativity belongs to the class of strong semantics
properties, whilst relevance belongs to the class of weak properties [Dix95b]. For the pur-
pose of expediting the presentation of this chapter de�nitions and results, we present the
concept of semantic kernel of a normal logic program.

De�nition 4.10. Semantic kernel of a normal logic program. Let P be a normal
logic program and SEM a fair semantics. We de�ne the semantic kernel of P with respect
to SEM (or simply kernel of P with respect to SEM), denoted by kernelSEM (P ), as the
following subset of the Herbrand basis of P

kernelSEM (P ) =
⋂

M∈SEM(P )

M+,

where SEM(P ) 6= ∅.

De�nition 4.11. Existence. (adapted from [PP11]) We say a semantics SEM is exis-
tential i� every normal logic program has at least one SEM model.

De�nition 4.12. Cautious monotony. (adapted from [Dix95a]) We say a semantics
SEM enjoys the property of cautious monotony i� for every normal logic program P and
for every set S ⊆ kerSEM (P ) we have kerSEM (P ) ⊆ kerSEM (P ∪ S).

De�nition 4.13. Cut. (adapted from [Dix95a]) We say a semantics SEM enjoys the
property of cut i� for every normal logic program P and for every set S ⊆ kerSEM (P ) we
have kerSEM (P ∪ S) ⊆ kerSEM (P ).

De�nition 4.14. Cumulativity. (adapted from [Dix95a]) We say a semantics SEM
enjoys the property of cumulativity i� it enjoys both cut and cautious monotony.

De�nition 4.15. Relevance. (adapted from [Dix95b]) We say a semantics SEM enjoys
the property of relevance i� for every normal logic program P we have

∀a∈HP (a ∈ kerSEM (P )⇔ a ∈ kerSEM (RelP (a))),

where RelP (a) is the subprogram of P relevant to atom a.
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De�nition 4.16. Global to local relevance. We say a semantics SEM enjoys the
property of global to local relevance i� for every normal logic program P we have

∀a∈HP (a ∈ kerSEM (P )⇒ a ∈ kerSEM (RelP (a))).

De�nition 4.17. Local to global relevance. We say a semantics SEM enjoys the
property of local to global relevance i� for every program P we have

∀a∈HP (a ∈ kerSEM (RelP (a))⇒ a ∈ kerSEM (P )).

Thus a semantics enjoys the property of relevance i� it enjoys both "global to local"
and "local to global" relevance.

Notice that when we say, for instance, "the semantics SEM enjoys the property of cut", a
certain subset of logic programs is implicitly being taken as the domain of the semantics,
namely the subset of normal logic programs where SEM is de�ned. We say "stable model
semantics is not cumulative" because there are examples of normal logic programs that
have stable models whilst cumulativity fails for them. Anyway, it is of course correct to
say "the stable model semantics is cumulative in the domain of de�nite logic programs
[vEK76]".

4.3 Characterization of Cumulativity for ASMh and ASMm

Families

In this section we lay down a characterization of semantics of ASMh and ASMm fami-
lies, with respect to cumulativity, where it is shown that SEM is cumulative i� for any
�nite ground normal logic program P and any set S ⊆ kerSEM (P ) we have SEM(P ) =
SEM(P ∪ S).

Cautious monotony is characterized by proposition 4.4 and corollary 4.5 below.

Proposition 4.4. Let SEM be a semantics of ASMh or ASMm families. SEM is not
cautious monotonic i� there is a ground normal logic program P , a 2-valued interpretation
M of P and a subset S of kerSEM (P ), such that M ∈ SEM(P ∪ S) and M /∈ SEM(P ).

Proof. See appendix B.1.

Corollary 4.5. (of proposition 4.4) A semantics SEM of the ASMh ∪ ASMm class
is cautious monotonic i�, for every ground normal logic program P and for every subset
S ⊆ kerSEM (P ), it is the case that SEM(P ∪ S) ⊆ SEM(P ).

De�nition 4.12 of cautious monotony presupposes SEM(P ) 6= ∅. Meanwhile, proposi-
tion 4.10, in section 4.4, states the failure of cautious monotony if existence fails for any se-
mantics of ASMh or ASMm families. This means cautious monotony fails if SEM(P ) = ∅
or SEM(P ∪ S) = ∅.

Cut is characterized by proposition 4.6 and corollary 4.7 below.
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Proposition 4.6. Let SEM be a semantics of ASMh or ASMm families. SEM is not
cut i� there is a normal logic program P , a 2-valued interpretation M of P and a subset
S of kerSEM (P ), such that M ∈ SEM(P ) and M /∈ SEM(P ∪ S).

Proof. See appendix B.1.

Corollary 4.7. (of proposition 4.6) A semantics SEM of the ASMh ∪ ASMm class is
cut i�, for every ground normal logic program P and for every subset S ⊆ kerSEM (P ), it
is the case that SEM(P ) ⊆ SEM(P ∪ S).

De�nition 4.13 of cut, presupposes SEM(P ∪ S) 6= ∅. Meanwhile, if SEM(P ) 6= ∅
and SEM(P ∪ S) = ∅, then cut immediately fails for any semantics of ASMh or ASMm

families, as stated in the next proposition.

Proposition 4.8. Let SEM be a semantics of the ASMh or ASMm families, P a ground
normal logic program such that SEM(P ) 6= ∅, and S ⊆ kerSEM (P ). If SEM(P ∪S) = ∅,
then SEM is not cut.

Proof. See appendix B.1.

The failure of existence for a semantics of ASMh ∪ASMm, is not enough to establish
conclusions about cut � e.g., MH is existential but is not cut, Blue is existential and is
cut, SM is not existential and is cut, MHSustainable is not existential and is not cut.

The following theorem stems directly from the above characterizations.

Theorem 4.9. Let SEM be a semantics of ASMh or ASMm families. Then SEM is
cumulative i� SEM(P ) = SEM(P ∪ S), for any ground normal logic program P and any
subset S ⊆ kerSEM (P ).

Example 4.2. It is well-known that the SM semantics is cut [Dix95b]. Consider program
P

a← not b

b← not a

c← a

c← not c

whose only SM model is {a, c} with a�x {a}. Then kerSM (P ) = {a, c}. Meanwhile the
SM models of P∪{c} are {a, c} and {b, c}. Thus it is the case that SM(P ) ⊆ SM(P∪{a}),
as would be expected, after corollary 4.7, of a ASMm semantics that is cut.

Corollaries 4.5, 4.7 and theorem 4.9 allow us to conclude that a semantics of ASMh or
ASMm families is not cumulative, by resorting to counter examples, even in cases where the
programs used to set a counter example do not show explicitly a failure of this property.
This type of study is not within the reach of common procedures to spot the failure of
cumulativity (e.g. [Dix95a, Dix95b]), which generally proceed as follows: compute all the
SEM models of a program P , add to P subsets S ⊆ kerSEM (P ), and compute all the
models of the resulting programs P ∪ S, drawing a conclusion about cumulativity only in
the cases where kerSEM (P ) 6= kerSEM (P ∪ S). To make this point clear, consider the
following examples.
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Example 4.3. Let P be the 1-layer program

a← not b, not s d← b d← a

b← not a, not c d← not d c← k

c← not b, not k k ← a, d s← not a, d

whose SM models are {a, c, d, k} and {b, d, s}, and thus kerSM (P ) = {d}. Now P ∪{d} has
the stable models {a, c, d, k}, {b, d, s} and {c, d, s}, which gives us kerSM (P ) = kerSM (P ∪
{d}) = {d}. Hence no negative conclusion can be taken about cumulativity by means of
usual procedures. But using the result of theorem 4.9 it is immediate to conclude that the
SM does not enjoy the property of cumulativity, because SM(P ) 6= SM(P ∪ S). More
speci�cally, corollary 4.5 tells us, via this example, that the SM is not cautious monotonic.

Example 4.4. The following 1-layer program P shows that none of the semantics MH,
MHLS , MHLoop, MHSustainable and MHRegular is cautious monotonic or cut.

u← b a← not b

u← c b← not c

t← a c← h, u

t← h h← not h, not t

Let SEM represent any of these semantics. The minimal hypotheses models are the same
with respect to any of the four semantics: {a, c, u, t} with a�x {c}; {b, c, h, u, t} with
a�x {b, h}; {b, u, t} with a�x {t}. Thus kerSEM (P ) = {t, u}. Now it is the case that
remainderLWFS(P ∪ {u}) is the same for any of these semantics,

u← b a← not b t← h

u← c b← not c h← not h, not t

t← a c← h u←

(as a matter of fact, the remainder for the MHLS has the rule c← h, u instead of c← h,
but this does not change the sequel of this reasoning). The minimal hypotheses models of
remainderSEM (P ∪{u}) are the same with respect to any of the four semantics: {c, u, a, t}
with a�x {c}; {h, u, c, t, a} with a�x {h}; {t, b, u} with a�x {t}. Thus kerSEM (P ∪{u}) =
{t, u} = kerSEM (P ), and no conclusions about cumulativity can be drawn by means of the
usual procedures. MeanwhileM = {h, u, c, t, a}, with a�x {h}, is a minimal a�x model of
P ∪{u}, but is not a minimal a�x model of P , which by corollary 4.5 renders any of these
semantics not cautious monotonic. Also N = {b, c, h, u, t}, with a�x {b, h}, is a minimal
a�x model of P , but not a minimal a�x model of P ∪ {u}, which by corollary 4.7 renders
any of these semantics not cut.

It should be stressed that there are 2-valued cumulative semantics to which SEM(P ) 6=
SEM(P ∪ S) for some normal logic program P and S ⊆ kerSEM (P ) � theorem 4.9 states
this is not the case if SEM belongs to ASMh or ASMm families. Consider, for instance,
the semantics Picky de�ned as follows: for any normal logic program P , Picky(P ) =
SM(P ) i� kerSM (P ) = kerSM (P ∪S), for every S ⊆ kerSM (P ); otherwise Picky(P ) = ∅.
This semantics is cumulative, by de�nition, but it is not always the case that SEM(P ) =
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SEM(P ∪ S): for program P of example 4.3, we have Picky(P ) = {{a, d, c, k}, {b, d, s}}
and Picky(P ∪ {d}) = {{a, d, c, k}, {b, d, s}, {c, d, s}}. Picky is not a ASM semantics,
because it does not extend conservatively the SM semantics. Moreover, it can be shown
that Picky is not even a fair semantics.

4.4 Defectivity, Excessiveness and Irregularity

In this section we de�ne three structural properties of fair semantics, defectivity, exces-
siveness and irregularity, and show that for semantics of the ASMh or ASMm families,
defectivity is equivalent to the failure of existence and to the failure of global to local rel-
evance, and also implies the failure of cautious monotony, whilst excessiveness implies the
failure of cut, and irregularity is equivalent to the failure of local to global relevance. One
of the virtues of these structural properties, is that in some cases we do not even need to
compute all the models of a program to spot their validity, hence providing a shortcut to
detect the failure of existence, relevance or cumulativity, as we shall see in the sequel.

4.4.1 Defectivity

The rationale of the concept of defective semantics is the following: if a normal logic
program P has a segment, say P≤T , and a SEM modelM of P≤T that T -segment supports
no SEM model of P , that is SEM(P>T /M+) = ∅, then we say the semantics is defective,
in the sense that it "does not use" all the models of segment T in order to get whole models
of P .

De�nition 4.18. Defective semantics. A semantics SEM of the fair family is called
defective i� there is a normal logic program P , SEM(P ) 6= ∅, a segment P≤T of P , and a
SEM model M of the segment P≤T , such that M does not T -segment support any SEM
model of P , that is SEM(P>T /M+) = ∅. We also say that SEM is defective with respect
to segment T of program P , and that M is a defective model of P with respect to segment
T and semantics SEM .

Example 4.5. Program P in example 4.2 may be used to show that the SM semantics
is defective. The only SM model of P is N = {a, c} with a�x {a}, and P≤1 = {a ←
not b, b ← not a} has the stable model M = {not a, b} that does not 1-segment support
N since SM(P>1/{b}) = ∅.

It is clear from the de�nition that defectivity spots the non existence property of a
semantics. The next result shows a tight relation between existence and defectivity, for
semantics of the families ASMh and ASMm.

Proposition 4.10. Defectivity ⇔ ¬ Existence. A semantics SEM of ASMh or ASMm

families is defective i� it is non existential.

Proof. See appendix B.2.

This result allows to detect the failure of the existence property for semantics of ASMh

or ASMm families, by resorting to counter examples, even in some cases where the pro-
grams used as counter-examples have a semantics. E.g., the program P in example 4.2 can
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be used to detect the failure of existence for SM semantics, in spite of the existence of
stable models for program P , since it reveals the defectivity of SM . Notice that there are
2-valued semantics for which this property fails, e.g., MSupp

P [ABW88] which is not defec-

tive in spite of being not existential � it is the case that MSupp
P is not a ASM semantics,

since it does not extend conservatively the SM semantics.

The next result shows that for semantics of the ASMh or ASMm families, lack of existence
implies the failure of cautious monotony.

Proposition 4.11. ¬ Existence ⇒ ¬ Cautious monotony. If a semantics SEM of
the ASMh or ASMm families is not existential, then it is not cautious monotonic.

Proof. See appendix B.2.

Notice that there are 2-valued semantics for which this property fails, e.g., MSupp
P

[ABW88] which is not existential but is cautious monotonic � as referred above MSupp
P /∈

ASM .

The converse of this result, ¬ Cautious Monotony ⇒ ¬ Existence, is not valid for the
ASMh or ASMm families. To see this is the case, notice that on the side of ASMh family
the semantics MH is existential, although in example 4.4 it is show that this semantics is
not cautious monotonic; on the side of ASMm family, Green is not cautious monotonic,
since it mimics the SM behavior with respect to program in example 4.2, but is existential.

In [Dix95b], section 5.6, the author says, about a program related with the one in example
4.2, that the SM is not cumulative and that this fact does not depend on the nonexistence
of stable models. Although this claim is true when considering the program in example
4.2, proposition 4.11 above shows that the SM semantics could not be cautious monotonic
since it is non-existential. Thus a relation between these properties in what concerns the
SM , seems to be attainable only by considering the universe of the normal logic programs,
in the vein of the approach taken in this paper. It appears not to come out on a basis of
individual programs analysis.

The following corollary is immediate after propositions 4.10 and 4.11.

Corollary 4.12. Defectivity ⇒ ¬ Cautious monotony. If a semantics SEM of
ASMh or ASMm families is defective, then it is not cautious monotonic.

The next two results show that defectivity is equivalent to the failure of global to local
relevance, for any semantics of ASMh or ASMm families. Hence, due to proposition 4.10,
lack of existence immediately implies lack of relevance for semantics of these types.

Proposition 4.13. Defectivity ⇒ ¬ Global to local relevance. If a semantics SEM
of ASMh or ASMm families is defective, then it fails the property of global to local
relevance.

Proof. See appendix B.2.

Proposition 4.14. ¬ Global to local relevance ⇒ Defectivity. If a semantics SEM
of ASMh or ASMm families is not global to local relevant, then it is defective.
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Proof. See appendix B.2.

Proposition 4.13, together with example 4.5, show that SM semantics is not global to
local relevant and hence not relevant. The theorem below stems directly from the results
presented above in this section.

Theorem 4.15. The following relations are valid for any semantics of the ASMh or
ASMm families:

¬Existence⇔ Defectivity⇔ ¬Global to Local Relevance⇒ ¬Cautious Monotony

Proof. See appendix B.2.

4.4.2 Excessiveness and Irregularity

The rationale of the concept of excessive semantics is the following: if a normal logic
program P has a model N that is not T -segment supported by any SEM model of P≤T ,
meaning that for every model M∗ ∈ SEM(P≤T ) it is the case that N /∈ SEM(P>T /M+

∗ ),
then we say that model N (and thus the semantics) is excessive, in the sense that it
"goes beyond" the semantics of the segment P≤T by not being a "consequence" of it.
The concept of irregularity resembles excessiveness (see de�nition in the sequel), but they
exhibit a certain independence, meaning that they can both occur, both fail, or only one
of them fail in semantics of ASMh and ASMm families.

De�nition 4.19. Excessive semantics. A semantics SEM of the fair family is called
excessive i� there is a logic program P , a segment T of P , a model M ∈ SEM(P≤T ) and
a model N ∈ SEM(P ) such that:

1. M+ = N+
≤T , where N

+
≤T = N+ ∩Heads(P≤T );

2. For every model M∗ ∈ SEM(P≤T ) it is the case that N /∈ SEM(P>T ∪M+
∗ );

3. There is at last a SEM model N∗ of P , such that N∗ ∈ SEM(P>T ∪M+).

Example 4.6. The following program P shows that semantics MH, MHLS , MHLoop,
Navy and Green are excessive,

a← not b

b← not a

−−−−−1

u← a

u← b

−−−−−2

p← not p, not u

−−−−−3

q ← not q, not p

−−−−−4.
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In fact N = {a, u, p, not b, not q}, with a�x {a, p}, is a model of P under any of these
semantics, and no SEM model of P≤2, {a, not b, u} and {not a, b, u}, 2-segment supports
N , i.e., for every modelM∗ ∈ SEM(P≤2) it is the case that N /∈ SEM(P>2/M+

∗ ), because
the division "/" eliminates the rule in layer 3 via layered negative reduction operation, for
any SEM ∈ {MH,MHLS ,MHLoops, Navy,Green}.

De�nition 4.20. Irregular semantics. A semantics SEM of the fair family is called
irregular i� there is a normal logic program P , a segment T of P and a SEM model N of P ,
such that for no modelM of P≤T do we haveN+

≤T = M+, whereN+
≤T = N+∩Heads(P≤T ).

We also say that SEM is irregular with respect to segment T of program P , and that N is
an irregular model of P with respect to segment T and semantics SEM . A model that is
not irregular is called regular, and a semantics that produces only regular models is called
regular.

The following examples expose the independence of the concepts of excessiveness and
irregularity for semantics of the class ASMh∪ASMm, meaning the existence of semantics
in this class for any of the four possible cases of validity or failure of excessiveness and
irregularity.

Example 4.7. Program P below shows that the semantics MH, MHLS and MHLoop,
Green, Navy and Blue are all irregular.

a← not b

b← not a

−−−−−1

p← not p, not a

q ← not q, not b

In fact all these semantics admit the model N = {a, b, not p, not q}. The models of segment
P≤1 are {a, not b} and {b, not a}, none of whose positive sets of atoms equals N+

≤T = {a, b}.
As Blue is not excessive, this example shows irregularity ; excessiveness.

To see that there are excessive though not irregular semantics, consider the semantics
MHRegular de�ned as follows: for any normal logic program P , MHRegular(P ) has the
same models as MH(P ) except the irregular ones.

Example 4.8. The following program P shows that MHRegular may generate excessive
models but not irregular ones.

e← not e

−−−−−1

b← not b, not a, not e

a← not a, not b

In fact, theMHRegular models of P are {e, a}, with a�x {e, a} and {e, b}, with a�x {e, b}.
Now {e, b} is excessive, since {e, b} /∈ MH(P>1/{e}), but it is not irregular, by design of
MHRegular � notice that both models are regular. Thus excessiveness; irregularity.
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Examples 4.6 and 4.7 show that MH, for instance, is excessive and irregular. Mean-
while, Cyan is not excessive and is not irregular. The following result tells us that a stable
model is neither excessive nor irregular, and hence SM is a regular semantics.

Proposition 4.16. Let P be a normal logic program and M ∈ SM(P ). Then M is
neither excessive nor irregular.

Proof. See appendix B.2.

The ensuing result shows that for any semantics of ASMh or ASMm families, exces-
siveness implies the failure of cut.

Proposition 4.17. Excessiveness ⇒ ¬ Cut. If a semantics SEM of ASMh or ASMm

families is excessive, then it is not cut.

Proof. See appendix B.2.

This result, together with example 4.6, shows that semantics MH, MHLS , MHLoop,
Navy and Green are not cut.

The converse of this result, ¬ Cut ⇒ Excessiveness, is not valid for semantics of the fami-
lies ASMh or ASMm. For example, MHSustainable ∈ ASMh is not cut and not excessive.
The same for the semantics MHSustainable

min ∈ ASMm, where MHSustainable
min (P ) retrieves

the minimal models contained in MHSustainable(P ) for any normal logic program P .

The result that follows states that irregularity is equivalent to the failure of local to global
relevance, for semantics of ASMh or ASMm families.

Proposition 4.18. Irregularity ⇔ ¬ Local to global relevance. A semantics SEM
of ASMh or ASMm families is irregular i� it is not local to global relevant.

Proof. See appendix B.2.

This result, together with the program in example 4.7, shows that semantics MH,
MHLS and MHLoop, MHSustainable, Green, Navy and Blue fail local to global relevance,
and are thus not relevant. The following theorem stems directly from the statements of
propositions 4.17 and 4.18.

Theorem 4.19. The following relations stand for any semantics of ASMh or ASMm

families.

Excessiveness ⇒ ¬Cut
Irregularity⇔ ¬Local to Global Relevance

It should be noticed that for the class ASMh ∪ASMm:

• Defectivity and cut are unrelated properties: MHsustainable is defective and is not
cut; MH is not defective and is not cut; Blue is not defective and is cut; SM is
defective and is cut.
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• Excessiveness and cautious monotony are unrelated properties: SM is not cautious
monotonic and is not excessive; MH is not cautious monotonic and is excessive;
Navy is cautious monotonic and is excessive; Blue is cautious monotonic and is not
excessive.

• Irregularity and cautious monotony are unrelated properties: MH is irregular and is
not cautious monotonic; SM is not irregular and is not cautious monotonic; Navy is
irregular and is cautious monotonic; Cyan is not irregular and is cautious monotonic.

4.5 Final Remarks

We have presented in this chapter a study on the formal properties of 2-valued conservative
extensions of the SM semantics, under a structural point of view. For that purpose we
de�ned a large class of 2-valued semantics, the fair family, and took a particular subclass
of this family, the a�x stable model semantics, ASM , where all the semantics pertaining
to the ASM family are 2-valued conservative extensions of the SM semantics. Having de-
�ned the ASM family, we focused on two subsets of ASM , the classes ASMh and ASMm.
Our intention is to characterize semantics of these two classes on the properties of exis-
tence, relevance and cumulativity through the analysis of the decomposition of models with
respect to the layers of the programs. This point of view reveals itself advantageous on
various aspects, when compared to common processes for characterizing semantics on these
properties, as we have shown in this chapter: (1) It furnishes a larger universe of normal
logic programs that may be used as counter-examples to spot the failure of one or more
of these properties � e.g. corollaries 4.5, 4.7; (2) It reveals relations among the properties
that allow to draw conclusions on some of them on basis of held knowledge about others
� e.g. theorems 4.15 and 4.19. This last point builds on top of the structural properties
of defectivity, excessiveness and irregularity, that in certain cases require only the compu-
tation of a couple of models of a program to draw conclusions about the above referred
formal properties over the universe of normal logic programs, providing an alternative to
the sometimes harsh path of direct proofs.

If we consider the �ve formal properties of existence (∃), global to local relevance (gl),
local to global relevance (lg), cautious monotony (cm) and cut (cut), the validity or failure
of each of these properties allow the existence of 25 = 32 types of semantics. Meanwhile,
the study we present in this work shows that only 12 such types of semantics may ex-
ist in the classes ASMh and ASMm. They are represented in table 4.1, where 0 �ags
the failure of a property, and 1 means the property is veri�ed. The 20 missing semantics
correspond to cases where (∃ = 0 and gl = 1), or (∃ = 1 and gl = 0), or (∃ = 0 and
cm = 1), each of these cases going against the statement of theorem 4.15. The correspon-
dence of ASMh and ASMm semantics presented in this text and the entries in table 4.1
is as follows (see appendix B.3): 1. MHsustainable,MHSustainable

min 2. −− 3. −− 4. SM 5.
MH,MHLS ,MHLoop, Green 6. −− 7. Navy 8. Blue 9. MHRegular 10. −− 11. −− 12.
Cyan. Whether semantics of ASMh∪ASMm exist for the types marked with "−−", may
be taken as an open issue.

It is worth to notice that in the de�nitions ofMHRegular and Cyan, local to global relevance
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Table 4.1: The 12 possible types of ASMh and ASMm semantics
∃ gl lg cm cut

1 0 0 0 0 0
2 0 0 0 0 1
3 0 0 1 0 0
4 0 0 1 0 1
5 1 1 0 0 0
6 1 1 0 0 1
7 1 1 0 1 0
8 1 1 0 1 1
9 1 1 1 0 0
10 1 1 1 0 1
11 1 1 1 1 0
12 1 1 1 1 1

is gotten by excluding all irregular models. This is only possible because the structural
property of irregularity is equivalent to the failure of the formal property of local to global
relevance, when we consider the ASMh and ASMm families. The point here is that struc-
tural properties, as de�ned in this work, characterize models: we have defective models,
excessive models and irregular models. There is thus a path of investigation put forward
by this work, whose goal is to allow the design of semantics which enjoy some desired prop-
erties, by excluding the models responsible for the failure of those very same properties.
Were this possible with respect to cautious monotony and cut properties in the ASMh and
ASMm families, for example, and then cumulative semantics could be obtained by other
means than that of an iterative procedure (see suggestion 12 for future work in chapter 7).

The above research reveals a "syntactic" nature of the studied formal properties, and clearly
opens the possibility to tackle from a syntactic perspective other strong and weak properties
of semantics of logic programs. It also pro�ers a path of investigation to extend/rede�ne the
properties of defectivity, excessiveness and irregularity to n-valued logic program semantics,
n 6= 2.
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Chapter 5

A Paraconsistent Extension of the

Minimal Hypotheses Semantics,

MHP

In this chapter we present a paraconsistent abdutive semantics for extended normal logic
programs, the paraconsistent minimal hypotheses semantics MHP . Part of the contents o
this chapter is based upon our previous publication [AP13].

The MHP is a semantics of total paraconsistent models which combines the merits of
two already existing semantics: it inherits the existence property of the abductive mini-
mal hypotheses semantics MH [PP11], which is a semantics of total 2-valued models, and
the property of detection of support on contradiction of the paraconsistent well-founded
semantics with explicit negation WFSXP [ADP95], which is a semantics of partial para-
consistent models. The MHP enjoys also the property of simple relevance (de�nition 3.18
can be transcrited for extended normal logic programs), which permits top-down query
answering for brave reasoning purposes. Besides, the MHP lends itself to various types of
skeptical and brave reasoning, which include the possibility of drawing conclusions from
default inconsistent models in a nontrivial way. The MHP coincides with the MH on
normal logic programs, and with the WFSXP on strati�ed extended programs.

The rest of this chapter goes as follows. In section 5.1 we add some terminology for ex-
tended normal logic programs. Section 5.2 contains a characterization of the WFSXP

semantics, as embedded into the well-founded semantics by means of the t− o transforma-
tion there de�ned. In section 5.3 we describe the reduction system 7→bLWFS , that takes the
t− o transformed P t−o of an extended normal logic program P , and retrieves the balanced
layered remainder bP t−o of P . In section 5.4 we de�ne the MHP semantics, present the
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logic Six, that provides a truth-functional model theory to theMHp semantics, character-
ize the MHP on the properties of existence, relevance, cumulativity and simple relevance,
and �nally present a result on the computational complexity of the MHP . In section 5.5
we propose some forms of query answering for databases de�ned in the extended normal
logic programs language.

The main results in this chapter will be stated for �nite ground extended normal logic
programs.

5.1 Terminology of Extended Normal Logic Programs

De�nition 5.1. Extended normal logic program, ELP. (adapted from [ADP95]) An
extended normal logic program de�ned over a language L is a �nite set of ground extended
rules (or simply rules, for short), each one of the form

l0 ← l1, · · · , lm, not lm+1, · · · , not ln, (5.1)

where li, 0 ≤ i ≤ n, is an objective literal (either an atom b or its explicit negation, ¬b,
where ¬¬b = b); m,n are integer non negative numbers; the operator "," stands for the
classical conjunctive connective and the operator "not" stands for default negation (not l is
called a default literal). A literal (program) is ground if it does not contain variables. The
set of all ground objective literals involved in an extended normal logic program, plus their
explicit negations, is named the (extended) Herbrand base of P , denoted HP . If m = n = 0
a rule is called fact. A program containing no explicitly negated literals is called normal
program; a rule with no explicitly negated literals is called normal rule. Given a rule
r = l0 ← l1, · · · , lm, not lm+1, · · · , not ln, the objective literal l0 is the head of the rule and
l1, · · · , lm, not lm+1, · · · , not ln is the body of the rule.

The notions of interpretation, satisfaction and model, in the case of extended normal
logic programs, are the same as for normal logic programs (see de�nitions 3.1, 3.2, 3.3).
We say that an interpretation I is default consistent, or simply consistent, i� I+ ∩ I− = ∅.
We say that an interpretation I is contradictory i� for some pair of literals b,¬b we have
b ∈ I+ and ¬b ∈ I+. An interpretation I is coherent [DP98] i� for every explicit literal
b ∈ I+ we have ¬b ∈ I−.

5.2 The WFSXp Semantics

The WFSXp is a paraconsistent well-founded semantics for extended normal logic pro-
grams. The WFSXP model of an extended normal logic program may be computed by
means of a dedicated �xpoint operator [ADP95], as expounded in subsection 5.2.1 for pur-
poses of contextualization. In subsection 5.2.2, however, we present a de�nition of the
WFSXP by means of a program transformation for extended normal logic programs, here
dubbed t− o transformation, which embeds the WFSXP into the WFS. This means the
WFSXP model of an extended normal logic program P , denoted by WFMP (P ), may
be extracted from the well-founded model of the transformed program P t−o. The t − o
transformation is used to de�ne the MHP semantics, as will be seen in the sequel.
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The WFSXP envisages default negation and explicit negation necessarily related through
the coherence principle [PA92]: if ¬b holds, then not b should also hold (similarly, if b then
not ¬b).

5.2.1 Alternating Fixpoint De�nition of the WFSXP

We summarize the main aspects of the operator ΓΓS(), whose least �xpoint is used to
retrieve the WFSXP model of a program. This operator takes as arguments the empty
set and an extended normal logic program P , and it operates similarly to the composition
of two Gelfond-Lifschitz Γ operators (see de�nition 3.11 for "Γ" operator.

To impose the coherence principle, the authors in [ADP95] resort to the semi-normal version
of an extended logic program, de�ned as follows.

De�nition 5.2. Semi-normal version of a program. (adapted from [ADP95]) The
semi-normal version of an extended normal logic program P is the program PS obtained
from P by adding to the (possibly empty) body of each rule r ∈ P the default literal
not ¬Head(r).

Using the semi-normal version of an extended normal logic program, a new non-monotonic
operator, ΓS , may be de�ned.

Proposition 5.1. ΓS operator, [ADP95]. The operator ΓS is equivalent to the Γ
operator over the semi-normal version PS of an extended normal logic program P .

Proposition 5.2. Monotonicity of ΓΓS, [ADP95]. The operator ΓΓS is monotonic
under set-inclusion, for arbitrary sets of objective literals.

The WFSXP model of an extended normal logic program can be de�ned by means of
the �xpoint operator ΓΓS(), as stated by the next theorem.

Theorem 5.3. Alternating �xpoint de�nition of WFSXp, [ADP95]. Let P be
an extended logic program whose least �xpoint of ΓΓS is T . Then the paraconsistent
well-founded model of P is WFMp(P ) = T ∪ not (HP − ΓST ).

The next result states that theWFMP and theWFM of normal logic programs are the
same, if we neglect the default literals involving explicitly negated atoms in the WFMP .

Theorem 5.4. (adapted from [ADP95]) If P is a normal logic program, then the models
WFM(P ) and WFMP (P ) are equal, if we neglect the default literals involving explicitly
negated atoms in the WFMP (P ).

5.2.2 The t− o Transformation

In [DP97] the authors present a program transformation for extended normal logic pro-
grams, there dubbed T − TU transformation, that embeds the WFSXP into the WFS.
We present a variant de�nition of this transformation, here dubbed t − o transformation,
that alters the notation of the T − TU transform, for simplicity purposes, whilst keeping
its intended meaning.
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De�nition 5.3. t− o Transformation. (adapted from [DP97]) The t−o transformation,
maps an extended normal logic program P into a normal logic program P t−o, by means of
the two following steps:

1. Every explicitly negated literal in P , say ¬b, appears also in the transformed program,
where it must be read as a new atom, say ¬_b. Let P ∗ be the program resulting
from making these transformations on P .

2. Every rule r = (Head(r) ← Body(r)) in P ∗ is substituted by the following pair of
rules: (i) A rule also designated r, for simplicity, obtained from r ∈ P ∗ by placing
the superscript "o" in the atoms of default negations that appear in Body(r); (ii) A
rule ro, obtained from r ∈ P ∗ by adding to Body(r) the literal not ¬Head(r) (where
¬¬l = l)1, and by placing the superscript "o" in Head(r) and in every non default
negated literal of Body(r).

We call co-rules to each pair r, ro of rules in P t−o (each rule of the pair is the co-rule of
the other one), and co-atoms to each pair b, bo of atoms in P t−o (each atom of the pair is
the co-atom of the other one). To each atom of the language of P ∗, there corresponds the
pair of co-atoms l, lo of the language of P t−o and vice-versa.

Example 5.1. (adapted from [DP98]) The t− o transformed of the program P

a← ¬c, not b
b← ¬a, not c, not ¬b
¬a←

is the program P t−o:

a← ¬c, not bo ao ← ¬co, not b, not ¬a
b← ¬a, not co, not ¬bo bo ← ¬ao, not c, not ¬b
¬a← ¬ao ← not a

In what follows we adopt the conventions below concerning notation and terminology.

• In the notations r = (b← A,not Co), so = (d0 ← Eo, not F, not ¬d), A and F (resp.
Co and Eo) represent conjunctions of non superscript (resp. superscript) atoms, and
not Co (resp. not F ) represents the conjunction of the default negations of all atoms
appearing in Co (resp. F ).

• Given a pair of co-rules r, ro ∈ P t−o, we also call co-rules to the rules into which r, ro
are transformed by any transformation operation on P t−o de�ned along this text, for
simplicity, as long as none of the rules is erased.

• We call double loop to the t− o transformed of a loop.

The rules with the superscript "o" in the heads are used to derive the literals that are true
or unde�ned in the WFMp model, and the rules with no superscript in the heads are used
to derive the true literals of the WFMp model. This is stated in the next theorem.

1The literal not ¬Head(r) is added to enforce the coherence principle.
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Theorem 5.5. WFSXp is embeddable into WFS. (adapted from [DP98]) Let P
be an extended normal logic program. The following equivalences hold for an arbitrary
objective literal L of the language of P :

• L ∈WFMp(P ) i� L ∈WFM(P t−o);

• not L ∈WFMp(P ) i� not Lo ∈WFM(P t−o);

• ¬L ∈WFMp(P ) i� ¬L ∈WFM(P t−o);

• not ¬L ∈WFMp(P ) i� not ¬Lo ∈WFM(P t−o);

where the symbols ¬L,¬Lo on the right sides of the "i�s" must be taken as names of atoms
(they are not explicitly negated literals), in accordance with point 1 of de�nition 5.3

The below de�ned operator "5", will be handy in the sequel. It computes a paracon-
sistent model from a 3-valued interpretation I, containing superscript and non superscript
atoms, using the lexical correspondences stated in theorem 5.5.

De�nition 5.4. 5 operator. Given a 3-valued interpretation I = 〈I+, Iu, I−〉, where
I+, Iu, I− may contain 'o' superscript or otherwise nonsuperscript atoms, we denote by 5I
the interpretation obtained by means of the equivalences stated in theorem 5.5, substituting
WFM(P t−o) for I and WFMp(P ) for 5I.

The t − o transformed of a noetherian extended normal logic program is a noetherian
normal logic program, as shown bellow.

Proposition 5.6. Let P t−o be the t−o transformed of an extended normal logic program
P . Then P is noetherian i� P t−o is noetherian.

Proof. Let P t ⊆ P t−o (resp. P o ⊆ P t−o) be the set of rules with non superscript (resp.
superscript) heads in P t−o. Discarding the superscripts "o" in P t−o atoms, and the default
negations of explicitly negated literals added to the bodies of rules in P o, the sets of rules
in P , P t and P o are exactly the same, as per de�nition 5.3. Thus if there is an in�nite
descending chain of dependent rules in any of these three programs, then there must also
be such a chain in any one of the other two programs.

No transformation process envisaged in this work changes the noetherian character of a
logic program.

5.2.3 Characterization of the WFSXP Model

We present a characterization of the WFSXP model of an extended normal logic program
P , WFMP (P ), via the t− o transformed of P .

The next proposition and corollary characterize the valuations of the pairs of co-atoms
b, bo of the language of P t−o, with respect to the WFM(P t−o): it is the case that bo ≤t b
for any such pair (bo, b standing here for their valuations with respect to theWFM(P t−o)),
where ≤t is the truth ordering (see de�nition 3.7 for truth ordering).
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Proposition 5.7. Let P t−o be the t− o transformed of a �nite ground extended normal
logic program P . Let ΓnP t−o(∅) be the result of the nth self composition of the Gelfond-
Lifschitz Γ operator [GL88] on program P t−o, with argument ∅. Then for every n ∈ N and
for every atom b of the Herbrand base of P we have

bo ∈ ΓnP t−o(∅)⇒ b ∈ ΓnP t−o(∅). (5.2)

where ΓnP t−o(∅) is the least model of the Gelfond-Lifschitz transformation P t−o

Γn−1

Pt−o
(∅) , being

Γ0
P t−o(∅) = ∅.

Proof. See appendix C.1.

The following result is immediate after proposition 5.7.

Corollary 5.8. (of proposition 5.7) Let P t−o be the t − o transformed of an extended
normal logic program P . Let b, bo be two co-atoms of the language of P t−o. Then it is
not possible to have any of the following three types of valuations with respect to the
WFM(P t−o):

(a) b = − bo = +;

(b) b = − bo = u;

(c) b = u bo = +;

the only possible valuations being

(d) (b = −) and (bo = −), or (b = u) and (bo = −), or (b = +) and (bo = −);

(e) (b = u) and (bo = u), or (b = +) and (bo = u);

(f) (b = +) and (bo = +).

The following result relates unde�ned literals in theWFMP (P ) with pairs of unde�ned
co-atoms in the WFM(P t−o).

Corollary 5.9. (of theorem 5.5) Let P t−o be the t − o transformed of an extended
normal logic program P andWFMp(P ) = 5WFM(P t−o) the paraconsistent well-founded
model of P . Let also b be an atom of the language of P . Then b ∈ WFMu

P (P ) i�
b, bo ∈WFMu(P t−o).

Proof. Immediate after theorem 5.5.

De�nition 5.5. t− o remainder. Given an extended normal logic program P , we call
t− o remainder of P to the remainder 2 of the normal logic program P t−o, and denote it
by P̂ t−o.

The next result shows that given a rule ro ∈ P̂ t−o, the co-rule r is not erased from P̂ t−o.

2See subsection 3.2.3 for remainder of a normal logic program.
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Proposition 5.10. Let P t−o be the t−o transformed of an extended normal logic program
P and P̂ t−o its t − o remainder. For every rule ro ∈ P̂ t−o its co-rule r in P̂ t−o is either
an empty body rule or a nonempty body rule, i.e., r is not deleted by the computation of
P̂ t−o.

Proof. Let ro = (b0 ← Ao, not C, not ¬b) be a rule of P̂ t−o, and r = (b← A,not Co) its co-
rule. Then there is (1) neither an atom ao ∈ Ao such that ao ∈WFM−(P t−o), (2) nor an

atom c ∈ C such that c ∈WFM+(P t−o), otherwise ro would have been deleted from P̂ t−o.
By (1), (2) and corollary 5.8, there is neither an atom a ∈ A such that a ∈WFM−(P t−o),
nor an atom co ∈ Co such that co ∈ WFM+(P t−o). Thus the co-rule r cannot be erased
by the remainder computation, because the process does not falsify the body of r.

The following proposition states that for every atom b ∈ WFMu
P (P ) there is a pair of

nonempty body co-rules in P̂ t−o whose heads are b, bo.

Proposition 5.11. Let P t−o be the t−o transformed of an extended normal logic program
P and P̂ t−o its remainder. Given an atom b ∈WFMu

P (P ), there is at least a pair of co-rules

r, ro ∈ P̂ t−o, with nonempty bodies, such that head(r) = b and head(ro) = bo.

Proof. Immediate by corollary 5.9 and proposition 5.10.

The proposition below says that for each pair of nonempty body co-rules r, ro in P̂ t−o, there
is a pair of nonempty body co-rules s,so that r,ro depend on. In particular the co-rules
r,ro may depend on each other.

Proposition 5.12. For each pair of co-rules r, ro ∈ P̂ t−o that have nonempty bodies,
there is a pair of co-rules s, so ∈ P̂ t−o, also having nonempty bodies, with say Head(s) = c
and Head(so) = co, such that c appears in one of the bodies of the rules r, ro, while co

appears in the body of the other rule of the pair, and c ∈ WFMu
P (P ). In particular, we

may have r = s and ro = so.

Proof. Let r = (b← D,not F o) and ro = (bo ← Do, not F, not ¬b) be a pair of nonempty

body co-rules in P̂ t−o. Now there is (1) an atom d ∈ D such that d ∈ WFMu(P t−o), or
(2) an atom fo ∈ F o such that fo ∈ WFMu(P t−o), otherwise one of the rules, or both of

them, would either be eliminated from P̂ t−o, or else have an empty body. By corollary 5.8
and by being Body(r) and Body(ro) unde�ned with respect to the WFM(P t−o), we have
that in case (1) do ∈ WFMu(P t−o) and in case (2) f ∈ WFMu(P t−o), which renders at
least a pair of unde�ned co-atoms appearing in the bodies of the two rules. By theorem
5.5 it is d ∈ WFMu

P (P ) or f ∈ WFMu
P (P ). This, together with proposition 5.11, means

that there is a pair of co-rules s, so ∈ P̂ t−o, with heads d, do or f, fo and nonempty bodies,
where one of the rules r, ro depends on s and the other on so.

The next proposition states an equivalence between the existence of double loops in P̂ t−o

and the existence of unde�ned atoms in WFMu
P (P ).

Proposition 5.13. Let P t−o be the t−o transformed of an extended normal logic program
P , and P̂ t−o its t− o remainder. Then there is an unde�ned literal in WFMP (P ) i� P̂ t−o

contains a double loop.
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Proof.
"⇒"
Let b ∈ WFMu

P (P ). By corollary 5.9 and proposition 5.11, there is a pair of co-atoms

b, bo ∈ WFMu(P t−o) and a pair of co-rules with nonempty bodies, r, ro ∈ P̂ t−o, where

Head(r) = b, Head(ro) = bo. By proposition 5.12 there is a pair of co-rules r1, r
o
1 ∈ P̂ t−o

with nonempty bodies, where, say Head(r1) = d,Head(ro1) = do, d ∈ WFMu
P (P ) and r

depends on one of the rules r1, r
o
1, while its co-rule ro depends on the other one. Doing

with atoms d, do the same reasoning that we have done with b, bo, we �nd another pair of
co-rules r2, r

o
2, that r1, r

o
1 depend on, and whose heads refer to a literal that is unde�ned in

the WFMP (P ). Keeping this reasoning going on, we end up with two descending chains
de�ned by the set of rules {r1, r

o
1, r2, r

o
2, r3, r

o
3, · · · }, which cannot be in�nitely descendent,

by proposition 5.6. Thus, two certain co-rules of the descending chains must be equal to
another pair of co-rules located above in the chain in order to prevent its in�nite descent.
This means that we have a double loop in P̂ t−o.
"⇐"
If there is a double loop in P̂ t−o, then there is at least a pair of co-rules r, ro whose bodies
are not empty in P̂ t−o, where Head(r), Head(ro) /∈WFM+

P (P ), otherwise the rules would
not take part in a loop. Thus Head(r), Head(ro) ∈WFMu(P t−o) which, by theorem 5.5,
means that Head(r) ∈WFMu

P (P ).

Corollary 5.14. (of proposition 5.13) Let P be a normal logic program and P̂ t−o its t−o
remainder. Then to every unde�ned literal in WFMP (P ), say b, there is a pair of co-rules,

r, ro in P̂ t−o, Head(r) = b, that belong to a double loop or depend on a double loop, the
dependency meaning that r, ro are part of descending chains that involve rules of a double
loop.

Proof. Immediate after the proof of proposition 5.13.

5.2.4 Logic Slack via the t− o Transformation

A truth-functional model theory for the WFSXP is provided by the 9-valued logic Nine
[DP98]. Table 5.1 (subsection 5.4.3) represents all the possible 4-tuple valuations of a literal
(lo, l,¬lo,¬l) with respect to theWFM(P t−o). The t−o transformation creates a language
whose theories may acquire meaning through a 20-valued logic, that we call Twenty, each
of these values corresponding to one of the 20 entries of table 5.1. Meanwhile, these 20
entries of the table correspond to only 9 values of logic Nine. For this reason we say that
the t− o transformation introduces a logic slack in Nine with respect to logic Twenty. As
we show in the example below, this means the "54 � reading" of P̂ t−o keeps invariant if
some rules of P t−o are erased or some facts are asserted.

Example 5.2. WFMP computation Let P be the program

a← b

b← not c

c← not a

¬a←
p← not p
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whose t− o transformed is P t−o:

a← b ao ← bo, not ¬a
b← not co bo ← not c, not ¬b
c← not ao co ← not a, not ¬b
¬a← ¬ao ← not a

p← not po po ← not p, not ¬p

The WFMP (P ), computed using the alternating �xpoint procedure stated in theorem 5.3,
is

WFMP (P ) = 〈{¬a, c}+, {p}u, {a, b,¬b,¬c,¬p}−〉,

while the WFM(P t−o) is

WFM(P t−o) = 〈{¬a, c}+, {p, po, a,¬ao, b, co}u, {ao, bo,¬b,¬b0,¬c,¬c0,¬p,¬p0}−〉.

To see this is the case, with respect to the WFM(P t−o), notice that the remainder P̂ t−o

is (the eliminated literals and rules are striped out),

a ← b ao ← bo, not ¬a
b← not co bo ← not c, not ¬b
c← not ao co← not a, not ¬b
¬a← ¬ao ← not a

p← not po po ← not p, not ¬p

Now consider the rules in bold in program P̂ t−o. The heads of these rules involve atoms
that, neglecting the superscripts, are de�ned atoms in the WFMp(P ) model: (a = −),

(b = −) and (c = +). If we delete from P̂ t−o the rules {a← b, b← not co} and assert the
fact {co ←}, denoting the resulting program by P ∗, then we have

WFMP (P ) = 54 P̂ t−o = 54 P̂ ∗,

as long as the interpretation 4P̂ ∗ is taken with respect to the language of P t−o. That
is, the WFSXP semantics is invariant under these syntactic changes. Notice that if we
envisage the semantic changes from the interpretation 4P̂ t−o to the interpretation 4P̂ ∗,
under the logic Twenty, we verify that (see table 5.1):

• The Twenty valuation of a corresponds to the logic value 11 in 4P̂ t−o, i.e. (ao =

−, a = u, ¬ao = u, ¬a = +), and to the logic value 6 in 4P̂ ∗, i.e. (ao = −, a =
−, ¬ao = +, ¬a = +); the Nine valuation of a is f in both cases;

• The Twenty valuation of b corresponds to the logic value 7 in 4P̂ t−o, i.e. (bo =

−, b = u, ¬bo = −, ¬b = −), and to the logic value 1 in 4P̂ ∗, i.e. (bo = −, b =
−, ¬bo = −, ¬b = −); the Nine valuation of a is IV in both cases;

• The Twenty valuation of c corresponds to the logic value 18 in 4P̂ t−o, i.e. (co =

u, c = +, ¬co = −, ¬c = −), and to the logic value 20 in 4P̂ ∗, i.e. (co = +, c =
+, ¬co = −, ¬c = −); the Nine valuation of a is t in both cases;
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• The Twenty valuation of p corresponds to the logic value 12 in both 4P̂ t−o and
4P̂ ∗, i.e. (po = u, p = u, ¬po = −, ¬p = −); the Nine valuation of p is dt.

5.3 Balanced Layered Remainder

The balanced layered remainder of an extended normal logic program P , denoted by bP t−o,
is a normal logic program obtained by applying the reduction system 7→bLWFS (see subsec-
tion 5.3.2) to the t− o transformed P t−o of P . The system 7→bLWFS results from 7→WFS

by exchanging the operator of negative reduction 7→N , by the operator of balanced layered
negative reduction, 7→bLN (see def. 5.6). The role of the balanced layered remainder in the
computation of MHP models, is the same as the role of the layered remainder in the com-
putation ofMH models: it is used to compute the assumable hypotheses set of a program,
in view of using loops as choice devices. The de�nition of balanced layered negative reduc-
tion given in this section, is adequate to eliminate the 4-tuple (lo, l,¬lo,¬l) valuations that
produce unde�ned literals in WFSXP models (see table 5.1, subsection 5.4.3), which are
the valuations 3, 9, 12, 13, 14 of Twenty. The remaining Twenty valuations correspond to
logic Six, which constitutes a truth-functional model theory to the MHP semantics (see
subsection 5.4.3).

5.3.1 Balanced Layered Negative Reduction

We could consider to obtain the MHP models in exactly the same manner as the one used

to obtain the MH models, i.e. taking the layered remainder
o

P t−o of P t−o, gathering as
hypotheses the atoms there appearing default negated and that are not facts, and proceed
to compute the minimal hypotheses models, which would then be "5�read" as MHP

models. This path, alluring as it may be, is by no means satisfactory. To see this is the
case, consider the following variant on the vacation problem [PP11], represented by the
extended normal logic program P

b← h

h← not p

p← not b

b←
¬h←

whose t− o transform is P t−o

b← h bo ← ho, not ¬b
h← not po ho ← not p, not ¬h
p← not bo po ← not b, not ¬p
b← bo ← not ¬b
¬h← ¬ho ← not h.
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Now the layered remainder
o

P t−o of this program is

b← h bo← ho, not ¬b
h← not po ho← not p, not ¬h
p← not bo po ← not b, not ¬p
b← bo ← not ¬b
¬h← ¬ho ← not h.

The semantics corresponding to a "54-reading" of this program would not be correctly

posed, since we have p ∈ (4
o

P t−o)− and po ∈ (4
o

P t−o)u, which is not in accordance with
corollary 5.8. The problem with this situation is that it dismisses our intentions of using a
proper subset of all the WFSXp possible literal valuations as the set of all possible MHP

literal valuations.

Thus an adaptation of the layered negative reduction must be enforced. For this purpose

two options seem reasonable (refer to the program
o

P t−o in the example above):

(a) If the body of a rule r (resp. ro) contains a default literal, say not bo (resp. not b),
where bo (resp. b) is a fact of the program, then eliminate the rule by negative reduction
if rule r (resp. ro) is not in loop through the atom bo (resp. b) or its co-rule, ro (resp.
r), is not in loop through the atom b (resp. bo). With this restriction the remainder
P(a) becomes:

h←
b← bo ←
¬h←

Notice that when rule r is deleted so is rule ro. Hence corollary 5.8 is respected.

(b) If the body of a rule r (resp. ro) contains a default literal, say not bo (resp. not b),
where bo (resp. b) is a fact of the program, then the negative reduction does not take
place if the rule r (resp. ro) is involved in a loop via the atom bo (resp. b) or its co-rule,
ro (resp. r) , is involved in a loop via the atom b (resp. bo) . With this restriction the
remainder P(b) becomes:

b← h

h← not po

p← not bo po ← not b

b← bo ←
¬h← ¬ho ← not h

and the statement of corollary 5.8 is again respected. Our approach will be the one
stated in item (b) above. The approach (a) does not consider the abductive hypotheses
that are suggested by the unde�ned literals in 4P t−o, and we get the single interpre-
tation 5 4 P(a) = 〈{b,¬h, h}+, {}u, {¬b, h,¬h, p,¬p}−〉, which is inconsistent. On the
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other hand, by considering the option (b) we also get the interpretation, 5 4 P(a) =
〈{b,¬h, p}+, {}u, {¬b, h,¬p}−〉, by abducting p (see section 5.4.1), which is consistent. We
name balanced layered negative reduction (see de�nition 5.6) this t−o version of the layered
negative reduction. We also call balanced layered remainder of P to the program P(b) (see
de�nition 5.8). Let us de�ne the balanced negative reduction.

De�nition 5.6. Balanced3 layered negative reduction. Let P1 and P2 be two ground
normal logic programs, whose Herbrand bases may contain "o" superscript and non su-
perscript atoms. We say that P2 results from P1 by a balanced layered negative reduction
operation, P1 7→bLN P2, i� one of the next two cases occur:

1. There is a fact bo in P1 and a rule r in P1 whose body contains the literal not bo,
where neither r is involved in a loop through the literal not bo, nor is its co-rule ro

involved in a loop through the literal not b, and P2 = P1 \ {r};

2. There is a fact b in P1 and a rule ro in P1 whose body contains the literal not b,
where neither ro is involved in a loop through the literal not b, nor is its co-rule r
involved in a loop through the literal not bo, and P2 = P1 \ {ro}.4

5.3.2 The 7→bLWFS Reduction System

De�nition 5.7. Balanced layered reduction system. The balanced layered reduction
system is the system 7→bLWFS :=7→P ∪ 7→bLN ∪ 7→S ∪ 7→F ∪ 7→L.

Theorem 5.15. Termination and con�uence. The system 7→bLWFS , when applied to
�nite ground programs, is both terminating and con�uent.

To prove this theorem the below de�ned lemmas 5.16 and 5.17 are needed.

Lemma 5.16. Let Q be a �nite ground normal logic program. Let P, S denote respec-
tively, the transformations of positive reduction and success. Then the reduction system
X := {P, S} is terminating and con�uent when applied on Q.5

Proof. See appendix C.2.

Lemma 5.17. Let Q be a �nite ground normal logic program. Let also P, S,E denote
respectively, the operations of positive reduction, success and erasure, where erasure is any
transformation that erases a set of rules, and whose preconditions for application are the
presence of a certain set of facts or the absence of a certain set of rules, in the program
on which it is applied. The rewriting system X∗ := {P, S,E} is terminating and con�uent
when applied on Q.

Proof. See appendix C.2.

3The expression "balanced" refers to the consideration of pairs of co-rules in this de�nition.
4This operation is weaker than layered negative reduction, meaning that where the former is applicable

so is the latter.
5The validity of this lemma is an immediate consequence of the termination and con�uency of the

system 7→WFS [BDFZ01]. The proof of the lemma is included here for purposes of completeness of the
subjects exposed.

52



5.3. Balanced Layered Remainder

Proof. (of theorem 5.15) Let Q be a �nite ground normal logic program. Termination
is immediate, due to the �nite number of rules and literals of Q and to the fact that all the
�ve operators of the system 7→bLWFS reduce the program (i.e., eliminate rules or literals).
The con�uence comes after lemma 5.17: the system 7→bLWFS can be envisaged as a set of
{P, S,E} operators, where E can refer to any of the operators 7→bLN , 7→F , 7→L.

In the following de�nition we present the balanced layered remainder of an extended normal
logic program.

De�nition 5.8. Balanced layered remainder. Let P be a �nite ground extended
normal logic program and P t−o its t− o transformed. We call balanced layered remainder
of P to the program bP t−o such that P t−o 7→∗bLWFS bP

t−o .6

The next proposition ensures that the possible valuations of 4-tuples (lo, l,¬lo,¬l) in the
model 4bP t−o, belong to the set of 20 possible valuations represented in table 5.1, col-
umn Twenty, subsection 5.4.3. This con�rms that the balanced layered remainder of
an extended normal logic program is correctly de�ned, so that the set of possible MHP

valuations of 4-tuples is a proper subset of the 20 possible valuations set of Twenty.

Proposition 5.18. Let P be an extended normal logic program andM = 4bP t−o. Then
the valuation with respect to M of any pair of co-atoms, say b, bo, of the language of P t−o,
agrees with the statement of corollary 5.8.

Proof. The result stated in corollary 5.8 is valid for the well-founded model of the t − o
transformed P t−o of an extended normal logic program P . The WFM of a normal logic
program can be computed by resorting to the remainder of the program, through the
reduction system 7→WFS :=7→P ∪ 7→N ∪ 7→S ∪ 7→F ∪ 7→L. As the balanced layered
remainder of P is computed via the system 7→bLWFS :=7→P ∪ 7→bLN ∪ 7→S ∪ 7→F ∪ 7→L,
we just need to prove that the transformation bLN does not originate any violation of the
possible valuations of co-atoms stated in corollary 5.8. That no such violation may occur
stems from the very de�nition of bLN .

In [Pin11] the author de�nes a "layered" version of the WFS, the layered well-founded
semantics, LWFS: given a normal logic program P and the corresponding layered re-

mainder,
o
P , the layered weel-founded model of P is LWFM(P ) = 4

o
P , where the model

4
o
P is computed with respect to the language of P . In the same vein we de�ne the balanced

paraconsistent well-founded semantics, bWFSXp.

De�nition 5.9. Balanced paraconsistent well-founded semantics. The balanced
paraconsistent well-founded semantics bWFSXP of an extended normal logic program P ,
is de�ned by the model bWFMP (P ) = 54 bP t−o.

LWFM(P ) is generally a more skeptical model thanWFM(P ), with respect to knowl-
edge ordering. Also bWFMP (P ) is generally a more skeptical model thanWFMP (P ), with
respect to knowledge ordering. This is stated in the next theorem.

Theorem 5.19. Let Q be an extended normal logic program. Then

(bWFM+
P (Q) ∪ not bWFM−P (Q)) ≤k (WFM+

P (Q) ∪ not WFM−P (Q)). (5.3)

Proof. See appendix C.2.
6 7→∗bLWFS means the non deterministic performing of operations of the system 7→bLWFS until the

resulting program becomes invariant.
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5.4 The MHp Semantics

The computation of theMHP semantics of an extended normal logic program P resembles
the computation of the MH semantics of a normal logic program P (see subsection 3.3.2):
(i) Compute the t−o transformed P t−o of P (cf. de�nition 5.3); (ii) Compute the balanced
layered remainder bP t−o of P and use it to get the assumable hypotheses set Hyps(P ) of
P (see de�nition 5.10); (iii) Non deterministically chose subsets H ⊆ Hyps(P ) such that
WFMu

P (P ∪H) = ∅; (iv) Minimize the corresponding interpretationsWFMP (P ∪H) with
respect to nonempty hypotheses sets H and get theMHP models; also, ifWFMu

P (P ) = ∅,
then WFMP (P ) is a MHP model (cf. de�nition 5.11).

5.4.1 MHP Models

The abduction of an objective literal corresponds to the statement of its positivity. In the
case of the remainder of a t − o transformed program, an abduction means the assertion
in the remainder of a set of co-rules, say {b ←, bo ← not ¬b}. The assertion of non
superscript facts alone, b ←, may produce an inconsistency in the resulting models, if
the corresponding superscript atom has no longer a rule in the program; the assertion of
superscript head rules alone, bo ← ¬b, may produce incorrect programs � see example in
subsection 5.3.1. We follow here the de�nition of assumable hypotheses set for the MH
semantics (see de�nition 3.16), taking also into account the above referred issues.

De�nition 5.10. Assumable hypotheses set of a program. Let P be a �nite ground
extended normal logic program and bP t−o its balanced layered remainder. We say that
Hyps(P ) ⊆ HP is the assumable hypotheses set of P i� for all h ∈ Hyps(P ) it is the case
that the default literal not ho appears in program bP t−o, and h is not a fact in bP t−o, i.e.
h ∈ (4bP t−o)u.7

Example 5.3. The balanced layered remainder bP t−o of program P in subsection 5.3.1
is (the eliminated literals and rules are striped out)

b← h bo← ho, not ¬b
h← not po ho← not p, not ¬h
p← not bo po ← not b, not ¬p
b← bo ← not ¬b
¬h← ¬ho ← not h.

The set of assumable hypotheses of P is Hyps(P ) = {p}, because p is the only objective
literal of the language of P such that p ∈ (54bP t−o)u, and not po appears in the program
bP t−o.

De�nition 5.11. Paraconsistent minimal hypotheses semantics, MHP. Let P
be a �nite ground extended normal logic program, bP t−o its balanced layered remainder
and Hyps(P ) the set of assumable hypotheses of P . Then the paraconsistent minimal
hypotheses semantics of P , denoted MHp(P ), is de�ned by the paraconsistent minimal
hypotheses models M of P , which are computed as follows:

7This is equivalent to say that h ∈ (54 bP t−o)u. Notice that the purpose of computing bP t−o is to
�nd the set of assumable hypotheses of P .
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1. M = WFMP (P ∪H) = 5WFM(P t−o ∪H ∪ {ho ← not ¬h : h ∈ H}),
for all H ⊆ Hyps(P ), H 6= ∅, H is inclusion-minimal and WFMu

P (P ∪H) = ∅;

2. M = WFMP (P ) = 5WFM(P t−o), where WFMu
P (P ) = ∅.

The following de�nition and proposition show thatMHP is a total paraconsistent models
semantics.

De�nition 5.12. Total/Partial Paraconsistent Model. (adapted from [SZ91]) Let
SEM be a paraconsistent semantics for extended normal logic programs and M a SEM
model of an extended normal logic program P . We say that M is a total paraconsistent
model i� for every objective literal L of the language of P , either L ∈ M or not L ∈ M .
We say that M is a partial paraconsistent model i� there is an objective literal L of the
language of P , such that L /∈M and not L /∈M .

Proposition 5.20. The MHp semantics is a total paraconsistent models semantics,
meaning that for any extended normal logic program P all theMHP models of P are total
paraconsistent models.

Example 5.4. The MHp models of the program P in the example of subsection 5.3.1,
whose assumable hypotheses set is Hyps(P ) = {p}, are M1 and M2:

H = ∅ M1 = WFMP (P )

= 5WFM(P t−o)

= 5〈{b, bo, h,¬h}+, {}u, {¬b,¬bo, ho,¬ho, p, po,¬p,¬po}−〉
= 〈{b, h,¬h}+, {}u, {¬b, h,¬h, p,¬p}−〉

H = {p} M2 = WFMP (P ∪ {p})
= 5WFM(P t−o ∪ {p←, po ← not ¬p})
= 5〈{b, bo,¬h,¬ho, p, po, }+, {}u, {¬b,¬bo, h, ho,¬p,¬po}−〉
= 〈{b, p,¬h}+, {}u, {¬b, h,¬p}−〉

M1 is an inconsistent model whilst M2 is consistent.

Example 5.5. MHP semantics computation. Let P be the program

k ← not y, not b

y ← k

y ← d

d← not y, b

a← b

b← not c

c← not a

¬a←
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the t− o transform P t−o of it being,

k ← not yo, not bo ko ← not y, not b, not ¬k
y ← k yo ← ko, not ¬y
y ← d yo ← do, not ¬y
d← not yo, b do ← not y, bo, not ¬d
a← b ao ← bo, not ¬a
b← not co bo ← not c, not ¬b
c← not ao co ← not a, not ¬c
¬a← ¬ao ← not a.

The balanced layered remainder bP t−o is,

k ← not yo, not bo ko ← not y, not b, not ¬k
y ← k yo ← ko, not ¬y
y ← d yo← do, not ¬y
d← not yo, b do← not y, bo, not ¬c
a← b ao← bo, not ¬a
b← not co bo← not c, not ¬b
c← not ao co ← not a, not ¬c
¬a← ¬ao ← not a.

The assumable hypotheses set of P is {y}. Let us then compute the MHP models of P :

H = ∅ WFMu
P (P ) = {k, y}; there is no MHP model for H = ∅.

H = {y} M = WFMP (P ∪ {y})
= 5WFM(P t−o ∪ {y ←, yo ← not ¬y})
= 5〈{¬a, c, y, yo}+, {a,¬ao, b, co}u,
{ao, bo,¬b,¬bo,¬c,¬co, d, do,¬d,¬do, k, ko,¬k,¬ko,¬y,¬yo}−〉

= 〈{¬a, c, y}+, {}u, {a, b,¬b,¬c, d,¬d, k,¬k,¬y}−〉

M is the only MHP model of P . The model is default consistent, but b, d, k valuations
state a contradictory belief.

5.4.2 MHP Collapses into MH for Normal Logic Programs

The following theorem says that if P is a normal logic program thenMHp(P ) andMH(P )
are the same if we discard from each model Mp ∈ MHP (P ) the default literals involving
explicitly negated literals.

Theorem 5.21. MHp and MH coincide for normal logic programs. Let P be a
normal logic program and P t−o the t−o transform of P . LetMH(P ) be the set of minimal
hypotheses models of P andMHP (P ) the set of paraconsistent minimal hypotheses models
of P . Then M ∈ MH(P ) i� there is a model Mp ∈ MHP (P ), such that M+ = M+

p and
M− = (M−p ∩Hp), where Hp is the Herbrand base of P .

Proof. See appendix C.3.
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5.4.3 The Logic Six

In [DP98] the authors present a logic, there dubbedNine, which provides a truth-functional
model theory for the WFSXp semantics, based on Ginsberg's bilattices concept [Gin88].
Here we adopt the ideas that founded the de�nition of Nine, to de�ne a truth-functional
logic called Six, which in turn constitutes a truth-functional model theory to the MHp
semantics.

The truth-space of Nine comprises nine logic values, here presented together with their
meanings: "t" and "f" are the classical values for truth and falsity; "I", is the contradictory
truth value; "II", is understood as truth with contradictory belief; "III", is understood
as falsity with contradictory belief; "IV", is understood as contradictory belief; "⊥", is
understood as unde�nedness; "df", is understood as default falsity; "dt", is understood
as default truth. Contrary to Nine, the truth-space of the logic Six does not correspond
to a bilattice. It comprises six logic values {t, f, I, II, III, IV }, which constitute a sub-
set of the truth-space of Nine. Table 5.1 represents all possible 4-tuple valuations of a
literal (lo, l,¬lo,¬l) with the corresponding Twenty, Nine and Six logic values. Notice
that Twenty is the natural logic associated with the well-founded model of the t− o trans-
formed of an extended normal logic program, since there are 20 possible 4-tuple literal
valuations as a consequence of corollary 5.8 and the coherence principle. The blank spaces
in the column Six concern valuations of (lo, l,¬lo,¬l) that do not occur in a interpretation
4WFM(P t−o ∪ H ∪ Ho), where 5 4 WFM(P t−o ∪ H ∪ Ho) is a MHP model of the
extended normal logic program P (Ho stands here for {ho ← not ¬h : h ∈ H}, where H is
a set of hypotheses).

The relation expressed in the column Six of table 5.1, is asserted by the following trans-
formation.

De�nition 5.13. τ transformation. (adapted from [DP98]) Let J be a set of literals,
default or objective, and LJ the set of objective literals of the language of J . The Six
interpretation τ(J), with underlying language LJ , is the interpretation

∀b∈LJ τ(b) = ϕ,

where ϕ ∈ {f, t, I, II, III, IV } is computed using theorem 5.5 and the correspondence
de�ned in column Six of table 5.1 (when taking J as an interpretation, in order to use
theorem 5.5, for each literal b ∈ LJ , any of the literals b, not b,¬b, not ¬b not pertaining
to J is considered unde�ned).

The following theorem establishes each MHp model of an extended normal logic pro-
gram P as a Six model of the theory P6 that is obtained straight away from P .

Theorem 5.22. Six models of MHP. (adapted from [Dam96]) Let P be an extended
normal logic program and M a MHP model of P with hypotheses H. Then τ(M) is a Six
model of P6, i.e., τ(M) |=6 P6. The theory P6 is obtained from P by replacing in P all
program rules l0 ← l1, · · · , lm, not lm+1, · · ·not ln by the L6 formula l0 ← l1 ∧ · · · ∧ lm ∧
not lm+1 ∧ · · · ∧ not ln.8

8For the de�nitions of the truth-tables of the operators "←", "not", "¬" and "∧", see [DP98].
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Table 5.1: Twenty −Nine− Six valuations correspondence.
lo l ¬l0 ¬l Twenty Nine Six
− − − − 1 IV IV
− − − u 2 IV IV
− − u u 3 df
− − − + 4 III III
− − u + 5 f f
− − + + 6 f f
− u − − 7 IV IV
− u − u 8 IV IV
− u u u 9 df
− u − + 10 III III
− u u + 11 f f
u u − − 12 dt
u u − u 13 dt
u u u u 14 ⊥
− + − − 15 II II
− + − u 16 II II
− + − + 17 I I
u + − − 18 t t
u + − u 19 t t
+ + − − 20 t t

5.4.4 Properties of the MHP

The MHP semantics, being an extension of MH to extended normal logic programs, has
the following characterization with respect to existence, relevance and cumulativity.

• It is existential, by theorem 5.23 below.

• It is global to local relevant due to be existential (propositions 4.13, 4.14 are valid
also for extended normal logic programs); it is not local to global relevant, since it
coincides with MH for normal logic programs. Thus it is not relevant. Meanwhile,
MHP is simple relevant, like MH.

• Due to be coincident with MH for normal logic programs, it is neither cautious
monotonic nor cut.

Theorem 5.23. Let P be an extended normal logic program and Hyps(P ) the set of
assumable hypotheses (possibly empty) of P . Then there is at least a subset H ⊆ Hyps(P )
such that

WFMu
P (P ∪H) = ∅,

which by de�nition 5.11 means that P has at least one MHp model.

Proof. The set of assumable hypotheses H of an extended normal logic program P , ob-
tained from the program bP t−o, contains the set of assumable hypotheses H ′ obtained from
the program P̂ t−o. There is thus a subset H∗ ⊆ H such that WFMu

P (P ∪H∗) = ∅. Were
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this not the case, the program P̂ ∪H∗ would contain double loops, by proposition 5.13,
and the double loops that are not discarded by the loop elimination operation, during the
computation of the remainder, must contain some default superscripted literal, say not bo,
being b not a fact of the remainder. Hence b would be an assumable hypothesis, meaning
that the set H∗ above were not as big as it could be.

5.4.5 Complexity

9The theorem below shows that a brave reasoning task with MHP semantics, i.e., �nding
an MHP model satisfying some particular set of literals (a query), is in ΣP

2 .

Theorem 5.24. Brave reasoning with MHP semantics is a ΣP
2 -complete task.

Proof. See appendix C.3.

The theorem below shows that a cautious reasoning task with MHP semantics, i.e.
guaranteeing that every MHP model satis�es some particular set of literals (a query), is a
ΠP

2 -complete task.

Theorem 5.25. Cautious reasoning with MHP semantics is a ΠP
2 -complete task.

Proof. Cautious reasoning is the complement of brave reasoning, and since the latter is
in ΣP

2 the former must necessarily be ΠP
2 -complete.

5.5 Querying an Extended Database

The MHP semantics may be used to perform reasoning in the following ways, among
others (let Q be a query � a conjunction of literals � and P an extended normal logic
program in the role of a database).

• Skeptical consistent reasoning: Query Q succeeds i� it succeeds for all consistent
MHP models of P ;

• Brave consistent reasoning: Query Q succeeds i� it succeeds for at least one
consistent MHP model of P ;

• Skeptical paraconsistent reasoning: QueryQ succeeds i� it succeeds for allMHP

models of P , such that none of the objective literals that appear in Q has support
on contradiction in any of these models;

• Brave paraconsistent reasoning: Query Q succeeds i� it succeeds for at least
one MHP model of P , such that none of the objective literals that appear in Q has
support on contradiction in this model;

• Skeptical liberal reasoning: Query Q succeeds i� it succeeds for all MHP models
of P ;

• Brave liberal reasoning: Query Q succeeds i� it succeeds for at least one MHP

model of P .

All the answers above, may come together with additional comments that make clear the
Six valuation of the conjunction that represents the query.

9This subsection follows closely subsection 4.6 of [PP11].

59



Chapter 5. A Paraconsistent Extension of the MH Semantics

60



Chapter 6

Dealing with Inconsistency with the

MHp Semantics

We present two procedures to extract information from an inconsistent theory, one of them
for theory revision and the other for computing the safe literals in the extended kernel of
the theory, with respect to the MHP semantics.

The MHP semantics has the ability to detect support on contradiction, by generating
models that contain L and not L for every supported on contradiction objective literal
L. That is, MHP behaves as if attached to each extended normal logic program P , there
were an integrity constraint ⊥ ← L, not L for each objective literal L of the language
of P , the violation of which is �agged in the models. In this chapter we want, in a cer-
tain way, to extended this detection capability to broader integrity constraint theories.
To this purpose, we present two types of actions to perform over inconsistent constrained
theories, that may be used separately or in a complementary way. Given an inconsistent
constrained theory Pic = P ∪ Tic, where P is an extended normal logic program and Tic is
an integrity constraint theory, (1) we may revise the program in a declarative debugging
fashion [PDA93b], as if it were a malfunctioning device, which is done by eliminating some
rules and asserting some facts; (2) we may want to �gure out the information that is safe
in the extended semantic kernel of Pic, kerxMHP (P ) =

⋂
M∈MHP (P )

M , i.e., the subset of

literals of kerxMHP (P ) that are not supported on inconsistency. Both options can be used
to perform various types of skeptical and brave query answering.

Through out this chapter, we consider only �nite ground constrained theories, meaning
that the rules in the theories are ground and in �nite number, and each rule, taken as the
sequence of symbols that forms it, has a �nite length.
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The remaining of this chapter goes as follows. In section 6.1, some concepts on the issue
of declarative debugging are set forth. An algorithm that revises inconsistent constrained
theories, whose outcome is a set of revised theories for each inconsistent constrained theory
it takes as input, is de�ned. In section 6.2 we address the problem of inconsistency prop-
agation detection. An algorithm that computes the subset of safe literals in the extended
kernel of an inconsistent constrained theory is de�ned. In section 6.3 we present some ways
to answering a query posed to a constrained database, using the revision and inconsistency
propagation detection tools here developed. Section 6.4 is for �nal remarks.

6.1 Revision through Declarative Debugging

A revision of a theory is at stake when all theMHpmodels of an extended normal logic pro-
gram P are inconsistent with respect to a certain integrity constraint theory Tic, meaning
that each model activates at least one integrity constraint of Tic (see de�nition 6.2 below,
for active integrity constraint). The path we take here for revising a theory Pic = P ∪ Tic,
consists of deleting some rules of P whose heads are involved in the bodies of active in-
tegrity constraints (in a way to be de�ned in the sequel), or asserting facts to revise the
CWA valuation of certain literals without a rule (we do not consider asserting facts for any
other reason, although this option might be considered and integrated into our revision
procedure).1

6.1.1 Declarative Debugging

Some terminology is presented below.

De�nition 6.1. Integrity constraint theory. Given an extended normal logic program
P , an integrity constraint theory in the language of P , is a set of nonempty body rules of
the type ⊥ ← A,not B, where ⊥ is a symbol that does not belong to the language of P ,
A is a conjunction of objective literals and not B is a conjunction of default literals, both
conjunctions involving only objective literals of the language of P .

Through out this text, every integrity constraint theory is de�ned using the language of
a certain extended normal logic program P , which it goes along with. Also, every integrity
constraint theory that goes along with an extended normal logic program, contains implic-
itly the rules ⊥ ← L, not L and ⊥ ← L,¬L for every objective literal L of the language
of P (for simplicity, these constraints are not represented in the programs throughout this
chapter).

De�nition 6.2. Active integrity constraint. Let P be an extended normal logic pro-
gram, Tic an integrity constraint theory in the language of P , and M a model of P under
a semantics SEM . An integrity constraint of Tic is said active under M i� its body is
satis�ed by M .

1Deleting only the rules whose heads are involved in the bodies of active constraints, in order to deacti-
vate them, has the intention of accepting the maximal number of rules of a program while trying to solve
inconsistencies. In a certain way, this option bears a relation with the philosophic principle of charity, if
we envisage a constrained theory as expressing the convictions of an agent.
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De�nition 6.3. Model of a constrained theory. Let Pic be a constrained theory and
SEM a semantics for extended normal logic programs. A model of the theory Pic = P ∪Tic
is any SEM model M of P , such that no integrity constraint of Tic is active under M , or
M together with the symbol ⊥ in case some integrity constraint of Tic is active under M .

De�nition 6.4. Consistent constrained theory. We say that a constrained theory
Pic = P ∪ Tic is consistent with respect to a semantics SEM , if at least one SEM model
of the theory Pic does not contain the symbol ⊥. In case each SEM model of P contains
the symbol ⊥, the theory is said inconsistent with respect to SEM .

The purpose of revising a theory Pic = P ∪Tic, is to syntactically alter it in order to obtain
a set of revised theories, each having at least one model that activates a minimal set of
constraints, with respect to the sets of constraints activated by the models of all the revised
theories. In order to revise a theory Pic, the below de�ned ρ-transformation is previously
performed on the theory.

De�nition 6.5. ρ-transformation. (adapted from [PDA93b]) Let Pic = P ∪ Tic be a
constrained theory. The ρ-transformed of Pic, denoted by ρ(Pic), is obtained by performing
the following modi�cations on Pic:

1. Add a default literal not del(Head(r)) to the body of each rule r ∈ P , where the
atom del(Head(r)) does not belong to the language of P ;

2. For each objective literal that appears in P (or that appears in the body of an
integrity constraint) and that has no rule in P , say L, include in the transformed
program ρ(Pic) the rule L← show(L), not del(L), where the atoms show(L), del(L)
do not belong to the language of P .

When computing theMHP models of ρ(Pic), each literal not del(L1) and not show(L2)
is considered positive by CWA, and any of these assumptions may be revised to avoid
inconsistency, in the style of [PDA93a]. Such a revision corresponds, for model computation
purposes, to delete every rule whose head is L1 from the theory P , or to assert the fact
L2 into the theory P (see the algorithm in subsection 6.1.2). We do not consider here
the possibility of using more speci�c arguments with the predicative functions del() and
show(), although this possibility could be envisaged.

De�nition 6.6. Universe of revisables. Let ρ(Pic) be the ρ-transformed of a con-
strained theory Pic. The set of all the atoms involving the predicates del(), show() in
ρ(Pic), is here referred by universe of revisables of the theory Pic, and is denoted by
Rev(Pic).2

For revision purposes, we may throw into the program ρ(Pic) any subset of Rev(Pic),
depending on the rules we consider to delete, and on the objective literals without a rule
of which we may want to disallow the CWA during a revision procedure.

We next de�ne set of revisables and revised program.

2It is implicit that each revision of the theory ρ(Pic) corresponds to a revision of the theory Pic. We
call "revisables" both to the atoms del(L1), show(L2) and to their arguments L1, L2.
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De�nition 6.7. Set of revisables. (adapted from [PDA93a]) A set of revisables of a
constrained theory Pic, is any subset R of the universe of revisables Rev(Pic), considered
for a revision of P .

By conveniently choosing the subset R, the programmer may select the rules candidate
to deletion and the objective literals without a rule for which the CWA may not hold.

De�nition 6.8. Revised theory. (adapted from [PDA93a]) Given a constrained theory
Pic = P ∪Tic and a set R of revisables of Pic, the revised theory 3 with respect to R, is the
theory that results from the transformation ρ(Pic) ∪R 7→∗G P ∗, where 7→G is the gracious
reduction system (see de�nition 4.3), after eliminating from P ∗ all facts in R.4

To revise a theory Pic under theMHP semantics, theMHP models of the transformed
theory ρ(Pic) must be computed. We thus need to obtain the balanced layered remainder
of this theory. We �rst de�ne the t− o transformed of a constrained theory Pic.

De�nition 6.9. Let Pic be a constrained theory. The t − o transformed of Pic is the
program P t−oic = P t−o ∪ T t−oic , where T t−oic is obtained by rewriting each Tic rule

⊥ ← a1, · · · , am, not b1, · · · , not bn, (6.1)

as

⊥ ← a1, · · · , am, not bo1, · · · , not bon, (6.2)

the ai, bj being objective literals of the language of P .

We next de�ne the ρ-transformation of a theory P t−oic (an adaptation of de�nition 6.5).

De�nition 6.10. Let Pic = P ∪ Tic be a constrained theory. The ρ -transformed of P t−oic ,
denoted by ρ(P t−oic ), is obtained by performing the following modi�cations on P t−oic :

1. Add the default literal not del(Head(r)) to the bodies of each pair of co-rules r, ro

of P t−o, where the atom del(Head(r)) does not belong to the language of P ;

2. For each objective literal that appears in P (or in the body of an integrity constraint)
and that has no rule in P , say L, include in the transformed program ρ(P t−oic ) the
pair of co-rules L ← show(L), not del(L) and Lo ← show(L), not del(L), not ¬L,
where the atoms show(L), del(L) do not belong to the language of P .

For ease of exposition, we henceforth use the following abbreviations: Defaults(E),
is the set of all objective literals that appear default negated in the ground structure E;
ObLiterals(E), is the set of all objective literals that appear in the ground structure E.
In both cases, E can be a set of rules, a set of literals or a conjunction of literals.

Example 6.1.

ObLiterals({not¬a, b, not c}) = {¬a, b, c}
Defaults({not¬a, b, not c}) = {¬a, c}

3Some times we may say revised program instead of revised theory.
4Notice that the resulting program involves only literals of the language of P .
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The coherence principle imposes new dependencies among rules, which lead to an adap-
tation of the notion of complete rule graph (see de�nition 2.1) to the case of extended
normal logic programs.

De�nition 6.11. Complete rule graph. Let P be an extended normal logic program.
The complete rule graph of P , denoted by CRG(P ), is the directed graph whose vertices
are the rules of P . Two vertices representing rules r1 and r2 de�ne an arc from r1 to r2 i�
Head(r1) ∈ ObLiterals(Body(r2)), or Head(r1) = ¬Head(r2).

With interest to the rest of this chapter is the notion of subprogram relevant to an
objective literal , de�ned below. This concept is a transcription of the notion of subprogram
relevant to an atom (see de�nition 2.5), and uses the notions of rule depending on a rule
and objective literal depending on a rule, which are analogous to related notions already
de�ned for normal logic programs (see de�nitions 2.2 and 2.4).

De�nition 6.12. Subprogram relevant to an objective literal. Let P be an ex-
tended normal logic program. We say that a rule r ∈ P is relevant to an objective literal
L ∈ HP i� L depends on r. The set of all rules of P relevant to L is represented by
RelP (L), and is named subprogram relevant to L.

Finally, we need also a broader notion of semantic kernel than the one in de�nition
4.10.

De�nition 6.13. Extended semantic kernel. Let P be an extended normal logic
program and SEM a total models semantics for extended normal logic programs. We
de�ne the extended semantic kernel of P with respect to SEM (or simply extended kernel
of P with respect to SEM), denoted by kerxSEM (P ), as the set

kerxSEM (P ) =
⋂

M∈SEM(P )

M, (6.3)

where SEM(P ) 6= ∅ and M = M+ ∪ not M−.

6.1.2 Revising an Inconsistent Theory

We present now an algorithm to compute the set of revised theories associated with an
inconsistent constrained theory Pic, with respect to theMHp semantics. We call it revision
algorithm. Let us take a look to an informal description of the algorithm, after which a
formal de�nition will be presented.

• For each model M of an inconsistent theory Pic, consider the associated set of active
constraints IM ;

• Form the set of revisables, which contains an atom del(L) (resp. del(¬L)) for each
objective literal L (resp. not L) that appears in the body of active constraints in
IM and that has a rule in P , plus the set of all atoms show() in the subprograms
relevant to the active constraints;
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• Throw each subset of this set of revisables into the theory ρ(Pic) and compute the
models of the resulting programs. If none of this models activates new constraints,
the process is terminated in what concerns model M ; otherwise repeat the process
with the models involving new active constraints (in a way to be clari�ed in the
formal description of the algorithm);

• By iteratively repeating the previous steps a termination point is reached. By then,
consider the set of all models in the leaves of the implicit model searching tree gen-
erated by the process, choose the ones that activate smaller sets of constraints and,
among these, choose in a Pareto fashion the ones that contain smaller sets of revis-
ables;

• For each model resulting from the previous item, throw into the theory ρ(Pic) the
set of associated revisables, compute the resulting program, applying the reduction
system 7→G, and take the subset of rules containing only literals from the language
of Pic. Those are the revised theories that the algorithm retrieves.

Revision algorithm

Let Pic = P∪Tic be an inconsistent constrained theory with respect to theMHP semantics,
where P is a �nite ground extended normal logic program and Tic is a �nite ground integrity
constraint theory in the language of P . Let P0 = ρ(Pic).
Let also

Sshow = {show(b) : show(b) ∈ ObLiterals(P0)}, (6.4)

that is, Sshow contains all atoms show() that appear in P0. For an easier reading, we present
the �rst two iteration steps of the algorithm, iteration 1 and iteration 2, after which the
general iteration step, iteration n, and the �nal step, last step, will be expounded.

Iteration 1

Compute the �nite set of MHP models of program P0:5

M1 = {M(1),M(2), · · · ,M(n)}. (6.5)

Suppose that all models are inconsistent. Associated with each model M(i) is the tuple

〈M(i), IC
(i)〉, (6.6)

where IC(i) is the set of Tic integrity constraints that are active with respect to M(i). For
the sake of harmonizing this procedural step with the remaining ones, letM1

∗ =M1 and
IC(i) = IC(i).

Iteration 2

5Notice that no literals involving del() or show() are in the assumable hypotheses set of P0, because such
literals are eliminate from the layered remainder by positive reduction (see de�nition of positive reduction
in appendix A).
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Consider the following subsets of objective literals involved in the bodies of the constrains
in IC(i):

All_IC = ObLiterals
(
Bodies(IC(i))

)
, (6.7)

is the set of all objective literals involved in the bodies of IC(i) constraints,

Def_IC = Defaults(Bodies(IC(i))), (6.8)

is the set of all objective literals that appear default negated in Bodies(IC(i)), and

Pos_IC = All_IC \Def_IC, (6.9)

is the set of all objective literals that appear not default negated in Bodies(IC(i)).
6

Let also

S−(i) = {del(¬L) : L ∈ Def_IC,¬L ∈ Heads(P0)}, (6.10)

S+
(i) = {del(L) : L ∈ Pos_IC ∩Heads(P0)}, (6.11)

and let

Sshow(i) = ObLiterals

 ⋃
b ∈All_IC

RelP0(b)

⋂Sshow (6.12)

be the set of all the show() literals that appear in the union of the subprograms,⋃
b ∈All_IC

RelP0(b), relevant to each objective literal in All_IC.

Do the following.

1. For every model M(i) ∈M1, form the revisables set associated with M(i)
7

R(i) = S+
(i) ∪ S

−
(i) ∪ S

show
(i) . (6.13)

2. Form the �nite set of programs

P1 = {· · · , P(i), · · · }, (6.14)

obtained by considering, for all models M(i) ∈M1, the programs

P(i) = P0 � R(i) (6.15)

where the operator � is de�ned as follows: for every b ∈ R(i), add to P0 the set of
rules {b← pos(b), pos(b)← not neg(b), neg(b)← not pos(b)}, where pos(b), neg(b)
do not belong to the language of ρ(Pic).8 The models containing the same set of R(i)

elements, represent the MHP semantics of a certain revised program of P0 (which
may be revised itself in the sequel).

6In the above designations All_IC,Def_IC, Pos_IC we have omitted the subindex (i) for simplicty.
7The reason for the second member of equality (6.13) is as follows: in order to deactivate a constraint,

say ⊥ ← a, not b, we may need to assert del(a) (resp. del(¬b)) to erase each rule r with Head(r) = a (resp.
Head(r) = ¬b); that is why S+

(i) and S
−
(i) are there; we may also want to change the negative default CWA

valuation of some literals with no rule in P ; that is why Sshow(i) is there.
8This set of rules acts as a switch, either for adding b to a certain model of P(i), or else for making b

false in a certain model of P(i).
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3. Compute the MHP models M(i,j) of each program P(i) ∈ P1, and consider the set of
all such models, for all programs P(i) ∈ P1:

M2 = {· · · ,M(i,1),M(i,2), · · · ,M(i,ni), · · · }, (6.16)

where each model, say M(i,j), is associated with the tuple

〈M(i,j), IC
(i,j)〉, (6.17)

being IC(i,j) the set of integrity constraints that are active with respect to M(i,j).

Let

M2
∗ = {M(i,j) ∈M2 : IC(i,j) \ IC(i) 6= ∅}, (6.18)

that is, M2
∗ contains all the models M(i,j) in M2 that activate at least one integrity

constraint that is not in the set IC(i). IfM2
∗ = ∅, then the iterative part of the algorithm

is over, and the execution continues in the last step. IfM2
∗ 6= ∅, then new active constraints

are now involved in the revision process, and the execution continues in the step iteration
3, which is a particular case of the general iteration step, iteration n, presented below.

Iteration n

Consider the �nite nonempty set of models

Mn−1
∗ = {· · · ,M(s1,s2,··· ,sn−1), · · · }, (6.19)

computed at the (n − 1)th iteration step, n − 1 ≥ 1, where sj ∈ N and each model, say
M(s1,s2,··· ,sn−1), is associated with the tuple

〈M(s1,s2,··· ,sn−1), IC
(s1,s2,··· ,sn−1)〉, (6.20)

being IC(s1,s2,··· ,sn−1) \ IC(s1,s2,··· ,sn−2) 6= ∅, and IC(s1,s2,··· ,sn−2) = ∅ if n − 2 = 0, where
IC(s1,s2,··· ,sn−1) is the set of integrity constraints that are active with respect toM(s1,s2,··· ,sn−1).
Let

IC(s1,s2,··· ,sn−1) = IC(s1,s2,··· ,sn−1) ∪ IC(s1,s2,··· ,sn−2),

that is, IC(s1,s2,··· ,sn−1) contains all the constraints activated in the �rst n − 1 steps of
computation. Analogously to what was donne in iteration step 2, consider the following
sets of objective literals:9

All_IC = ObLiterals
(
Bodies(IC(s1,s2,··· ,sn−1))

)
(6.21)

Def_IC = Defaults(Bodies(IC(s1,s2,··· ,sn−1))) (6.22)

Pos_IC = All_IC \Def_IC. (6.23)

9In the designations All_IC,Def_IC, Pos_IC we have omitted the subindex tuple (s1, s2, · · · , sn−1)
for simplicty.
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Let also

S−(s1,s2,··· ,sn−1) = {del(¬L) : L ∈ Def_IC,¬L ∈ Heads(P0)}, (6.24)

S+
(s1,s2,··· ,sn−1) = {del(L) : L ∈ Pos_IC ∩Heads(P0)}, (6.25)

and let

Sshow(s1,s2,··· ,sn−1) = ObLiterals

 ⋃
b ∈All_IC

RelP0(b)

⋂Sshow (6.26)

be the set of all show() literals that appear in the union of the subprograms,
∪

b ∈All_IC
RelP0(b), relevant to each objective literal in All_IC.

Do the following.

1. For every model M(s1,s2,··· ,sn−1) ∈ Mn−1
∗ , form the set of revisables associated with

the model,

R(s1,s2,··· ,sn−1) = S+
(s1,s2,··· ,sn−1) ∪ S

−
(s1,s2,··· ,sn−1) ∪ S

show
(s1,s2,··· ,sn−1). (6.27)

2. Form the �nite set of programs

Pn−1 = {· · · , P(s1,s2,··· ,sn−1), · · · }, (6.28)

obtained by considering, for each model M(s1,s2,··· ,sn−1) ∈ Mn−1
∗ and corresponding

revisables set, R(s1,s2,··· ,sn−1), the program

P(s1,s2,··· ,sn−1) = P0 � R(s1,s2,··· ,sn−1) (6.29)

where the meaning of the operator � is analogous to what was stated in iteration step
2.

3. Compute the MHP models M(s1,s2,··· ,sn) of each program P(s1,s2,··· ,sn−1) ∈ Pn−1, and
consider the class of all such models, for all programs P(α1,α2,··· ,αn−1) ∈ Pn−1:

Mn = {· · · ,M(s1,s2,··· ,sn), · · · }, (6.30)

where each model, say M(α1,α2,··· ,αn), is associated with the tuple

〈M(α1,α2,··· ,αn), IC
(α1,α2,··· ,αn)〉, (6.31)

being IC(α1,α2,··· ,αn) the set of integrity constraints that are active with respect to
M(α1,α2,··· ,αn).

Let

Mn
∗ = {M(α1,··· ,αn) ∈Mn : IC(α1,··· ,αn) \ IC(α1,··· ,αn−1) 6= ∅}, (6.32)

that is,Mn
∗ contains all the models M(α1,··· ,αn) inMn that activate at least one integrity

constraint that is not in the set IC(α1,··· ,αn−1). If Mn
∗ = ∅, then the iterative part of the

algorithm is over, and the execution continues in the last step. IfMn
∗ 6= ∅, then new active

constraints are now involved in the revision process, and the execution continues in the
iteration step n+ 1, which is a particular case of the iteration step n here presented.

69



Chapter 6. Dealing with Inconsistency with the MHp Semantics

Last step

Consider the set of models Λ =
⋃k
i=1(Mi \Mi

∗), where k is the number of iteration steps
previously performed. Associated with each model M(Φ) ∈ Λ is the tuple 〈M(Φ), IC

(Φ)〉 as
stated before. It is conceivable a number of preference criteria on the tuples 〈M(Φ), IC

(Φ)〉
and on the programs used to compute them, to select the set of revised programs intended
for the theory Pic. As an example of such a preferential heuristics, we are using the following
one in this chapter:

1. Consider the models M(Φ) ∈ Λ with minimal associated IC(Φ) sets. For a set of
models with equal associated IC sets, choose the models containing minimal subsets
of literals involving the revisables show(), del(). That is, we prefer models with the
smallest associated IC sets and, among these, we take those that contain minimal
sets of revisables. LetMR be the resulting set of models;

2. For each model M ∈ MR, take the program P0 and perform the transformation
P0 ∪ RM 7→∗G PM , where RM is the set of revisables show(), del() contained in M ,
and 7→G is the gracious reduction system, and then eliminate all the facts in RM
from program PM . The set of all programs PN obtained for all models N ∈ MR

after deleting the facts RN from PN , is the set of revised programs generated by this
algorithm.

The algorithm just described terminates, as stated by the next proposition.

Proposition 6.1. The revision algorithm terminates for every �nite ground constrained
theory Pic = P ∪ Tic.

Proof. For the algorithm to terminate, an iterative step n must be reached such that
Dn∗ = ∅. This means that for every model M(α1,··· ,αn) ∈ Dn, it must be IC(α1,··· ,αn) \
IC(α1,··· ,αn−1) = ∅. That this is always the case, stems from the fact that all sequences

IC(α1), IC(α1,α2), · · · , IC(α1,α2,··· ,αk), · · · , (6.33)

are monotonically increasing with respect to set inclusion, and the constrained theory is
�nite.

Let us see a couple of examples of application of the revision algorithm.

Example 6.2. Let us revise the inconsistent theory Pic,

⊥ ← not ¬b
b←

where ρ(Pic) and ρ(P t−oic ) are below, respectively in the left and in the center and right
columns.

ρ(Pic) ρ(P t−o
ic )

⊥ ← not ¬b ⊥ ← not ¬bo

b← not del(b) b← not del(b) bo ← not del(b), not ¬b
¬b← show(¬b), not del(¬b) ¬b← show(¬b), not del(¬b) ¬bo ← show(¬b), not del(¬b), not b

We have P0 = ρ(Pic) and Sshow = {show(¬b)}.
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Iteration 1

The program ρ(Pic) has a single MHP model M(1), with empty hypotheses set H(1) (in
the "5-reading" below, no information on the "o" superscript versions of ⊥, show(), del()
is considered).

M(1) = 5{b, bo, not ¬b, not ¬bo, not show(¬b), not del(b), not del(¬b),⊥}
= {b, not ¬b, not show(¬b), not del(b), not del(¬b),⊥} H(1) = ∅

IC(1) = IC(1) = {⊥ ← not ¬b}
D1 = D1

∗ = {M(1)}.

Notice that M(1) is computed as follows: compute the balanced layered remainder of
ρ(P t−oic ); consider the hypotheses set H(1) = ∅; compute the well-founded model of the
balanced layered remainder and "5-read" the model M(1), attending to the above referred
restrictions. As ⊥ ∈ M(1), the theory is inconsistent. A second iteration step must take
place.

Iteration 2

S−(1) = {del(b)}, S+
(1) = ∅, Sshow(1) = {show(¬b)}

R(1) = {del(b), show(¬b)}.

The program P t−o(1) = ρ(P t−oic ) � R(1) is

⊥ ← not ¬bo

b← not del(b) bo ← not del(b), not ¬b
¬b← show(¬b), not del(¬b) ¬bo ← show(¬b), not del(¬b), not b

del(b)← y

show(¬b)← x

y ← not y∗
y∗ ← not y

x← not x∗
x∗ ← not x

where x, x∗, y, y∗ stand respectively for pos(show(¬b)), neg(show(¬b)), pos(del(b)),
neg(del(b)). Notice that the even loops involving x, x∗, y, y∗ act as switches. The MHP

models of P t−o(1) are (we discard in the models literals involving x, x∗, y, y∗; the sets R(i,j)
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contain the true literals involving revisables, in each model):10

M(1,1) = 5{not b, not bo,¬b,¬bo, del(b), show(¬b)} = {not b,¬b}
H(1,1) = {x, y}, R(1,1) = {del(b), show(¬b)}

IC(1,1) = ∅ IC(1,1) \ IC(1) = ∅
M(1,2) = 5{b, not bo,¬b, not ¬bo, not del(b), show(¬b),⊥} = {b, not b,¬b, not ¬b,⊥}
H(1,2) = {x, y∗}, R(1,2) = {not del(b), show(¬b)}

IC(1,2) = {⊥ ← not ¬b,⊥ ← b, not b,⊥ ← ¬b, not ¬b}
IC(1,2) \ IC(1) = {⊥ ← b, not b,⊥ ← ¬b, not ¬b}

M(1,3) = 5{b, bo, not ¬b, not ¬bo, not del(b), not show(¬b),⊥} = {b, not ¬b,⊥}
H(1,3) = {x∗, y∗}, R(1,3) = {not del(b), not show(¬b)}

IC(1,3) = {⊥ ← not ¬b} IC(1,3) \ IC(1) = ∅
M(1,4) = 5{not b, not bo, not ¬b, not ¬bo, del(b), not show(¬b),⊥} = {not b, not ¬b,⊥}
H(1,4) = {x∗, y}, R(1,4) = {del(b), not show(¬b)}

IC(1,4) = {⊥ ← not ¬b} IC(1,4) \ IC(1) = ∅
D2 = {M(1,1),M(1,2),M(1,3),M(1,4)} D2

∗ = {M(1,2)}

As D2
∗ 6= ∅, a third iteration step must take place.

Iteration 3

S−(1,2) = S+
(1,2) = {del(b), del(¬b)}, Sshow(1,2) = {show(¬b)}

R(1,2) = {del(b), del(¬b), show(¬b)}.

The t− o version of program P(1,2) = ρ(P0)�R(1,2) is (where (· · · ) stands for the switching
rules for choosing among R(1,2) subsets):

⊥ ← not ¬bo

b← not del(b) bo ← not del(b), not ¬b
¬b← show(¬b), not del(¬b) ¬bo ← show(¬b), not del(¬b), not b

del(b)← x

del(¬b)← y

show(¬b)← z

(· · · )

where x, y, z are abbreviations for respectively pos(del(b)), pos(del(¬b)), pos(show(¬b)).
Now adding to the program the revisable del(¬b) is of no help for deactivating the constraint
⊥ ← not ¬b. The consistent models obtained inM3 have equal or bigger sets of revisables
than the models of M2. Hence they are not considered for computing revised theories.
As for no model M(1,2,γ) ∈ M3 would we have IC(1,2,γ) \ IC(1,2) 6= ∅, it is the case that
D3
∗ = ∅. This terminates the iterative steps and thus the last step must be performed.

10Consider in the models M(i,j) only the literals of the language of P , plus eventually the symbol ⊥.
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Last step

We have

D1 \ D1
∗ = ∅

D2 \ D2
∗ = {M(1,1),M(1,3),M(1,4)}

and D3 \ D3
∗ may be neglected. Hence

D = {M(1,1),M(1,3),M(1,4)}.

As M(1,1) is the model with a smaller associated IC set, IC(1,1) = ∅, the set of re-
vised programs is obtained as follows: take program P(0), add to it the revisables set
{del(b), show(¬b)}, apply the 7→G reduction system, and discard the facts involving objec-
tive literals that do not belong to the language of P and the sets of switching rules. We
get the single revised theory

⊥ ← not ¬b
¬b←

Example 6.3. Consider the constrained theory Pic. Let us see that the theory is incon-
sistent, and apply on it the revision algorithm.

⊥ ← not a

a← b

b← not a, not x

x←

Iteration 1

The "5-reading" below has the restrictions stated in example 6.2 (we omit the transformed
ρ(P t−oic )).

M(1) = 5{not a, not ao, not ¬a, not ¬ao, not b, not bo, not ¬b, not ¬bo, x, xo, not ¬x,
not ¬xo, not del(a), not show(¬a), not show(¬b), not show(¬x),⊥} =

= {not a, not ¬a, not b, not¬b, x, not ¬x, not show(¬a), not show(¬b),
not show(¬x),⊥} H(1) = ∅

IC(1) = IC(1) = {⊥ ← not a}
D1 = D1

∗ = {M(1)}.

As ⊥ ∈M(1) the theory is inconsistent, and thus a second iteration step must take place.

Iteration 2

S−(1) = ∅, S+
(1) = ∅, Sshow(1) = ∅

R(1) = ∅

We have then P(1) = P0 � R(1) = P0. Hence theory Pic coincides with its only revision.
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6.2 Inconsistency Propagation Detection

Let Pic = P ∪ Tic be an inconsistent constrained theory with respect to a total models se-
mantics SEM . Let kerxSEM (P ) =

⋂
M∈SEM(P )

M , and L ∈ kerxSEM (P ), where L is either

an objective or a default literal. A question arises: how can we trust L, when considering
the semantics of Pic? That is, having the theory inconsistent nontrivial models, is the
valuation of L a cause of inconsistency, a consequence of inconsistency, or is the de�nition
of L in turn independent from the valuations of the literals that "instigate" inconsistency?

In this section we put forward a procedure that classi�es as suspicious all the kerxSEM (P )
objective literals involved in the bodies of integrity constraints active under some SEM(P )
model, or objective literals that depend on these in a way to be clari�ed in the sequel.
The valuations of kerxSEM (P ) suspicious literals are not to be trusted. The literals in
kerxSEM (P ) that are not suspicious, are said to be safe.11

6.2.1 Motivation

We use an example to clarify our intentions.

Example 6.4. Consider the theory Pic = P ∪ Tic

⊥ ← a, b

v ← a

u← not c

a← c

b← c

c←

that admits the single MHP model M = {a, b, c, not u, v,⊥} with hypotheses set HM = ∅,
and hence kerxMHP (P ) = {a, b, c, not u, v}. We do not want to trust the valuations of a, b
since both atoms appear in the body of the integrity constraint ⊥ ← a, b that is active
underM . If the valuation of a is not to be trusted, so is the valuation of v since it depends
on the valuation of a. Thus our procedure will identify the literals {a, b, v} as suspicious
and the literals {c, not u} as safe.

6.2.2 Semantic Support on Inconsistency

To formalize a process for detecting suspicious and safe literals in the extended kernel of
a program, under semantics MHP , we set forth the notions of syntactic expansion of a set
of literals and semantic support on inconsistency of a literal.

De�nition 6.14. Syntactic expansion of a set of literals. Let P be an extended
normal logic program, S a set of objective literals of the language of P and SEM a

11The designations "suspicious" and "safe" are here adopted after the paper [Sak92], although the author
uses these terms to characterize only the semantic dependence on contradiction with respect to explicit
negation.
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semantics of total models for extended normal logic programs. We call syntactic expansion
of S in P with respect to SEM , denoted by EXPSEM (S, P ), the set of programs obtained
as follows:

1. If S = ∅, then EXPSEM (S, P ) = P .

2. If S 6= ∅, then for every element s ∈ S non deterministically replace in P the set of
rules de�ning s either by the fact s ←, or else by the empty set; if S has k distinct
elements, then EXPSEM (S, P ) is the set of the 2k resulting programs.

We say that each objective literal s ∈ S is expanded (in EXPSEM (S, P )).

We next de�ne semantic support on inconsistency of a literal. The de�nition is a brief
description of an algorithm that constructs the set of all safe literals of the extended kernel
of a program. A detailed description of this algorithm is given in subsection 6.2.3.

De�nition 6.15. Semantic support on inconsistency12. Let Pic = P ∪ Tic be an in-
consistent constrained theory under a total models semantics SEM . Let L ∈ kerxSEM (P )
be a literal of the language of P . Let every SEM model M(i) of Pic be associated with
a tuple 〈M(i), IC(i)〉, where IC(i) is the subset of Tic integrity constraints that are active
under M(i). Let S(i) be the collection of all objective literals involved in the bodies of the
integrity constraints in IC(i). Consider the set D of all models computed as follows.

1. For every SEM model tuple 〈M(i), IC(i)〉, obtain the syntactic expansion of S(i),
EXPSEM (S(i), P ). Let {P (α) : α ∈ {1, 2, · · · , s}, s ∈ N}, be the set of all resulting
programs.

2. Repeat step 1 for every SEM model tuple 〈M(α,j), IC(α,j)〉 associated with each
model M(α,j), for all programs P (α) resulting from the previous step, as long as
the set S(α,j) of all objective literals involved in the bodies of active constraints
under M(α,j) contains objective literals that were not yet expanded; expand only the
subset of S(α,j) containing those literals, for each S(α,j). Keep the process going on
iteratively, until there results no model tuple 〈M(Φ), IC(Φ)〉 such that S(Φ) contains
not yet expanded objective literals.

Let D be the subset of models computed in this process, such that M(β) ∈ D i� S(β)

does not contain not yet expanded literals. We say that L ∈ kerxSEM (P ) has semantic
support on inconsistency i� L /∈

⋂
M∈D

M ; in that case, we say that L is a suspicious literal

of kerxSEM (P ) with respect to the constraint theory Tic. Otherwise, if L ∈
⋂

M∈D
M , we

say that L is a safe literal of kerxSEM (P ) with respect to the constraint theory Tic.

We will see in proposition 6.2 that this de�nition corresponds to a terminating process.
The rationale of the de�nition is as follows. If SM is the set of objective literals appearing
in the bodies of the active integrity constraints under model M , then consider the expan-
sion of SM to detect the literals of kerxSEM (P ) whose semantics change in some of the
resulting programs, thus revealing their semantic dependence on SM . If any new integrity

12This de�nition is an extension of the de�nition of literal depending on contradiction in [DP97], where
the authors refer to a semantic dependence on contradiction with respect to explicit negation.
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constraint is activated under some meanwhile computed model, then the objective literals
involved in its body must also be expanded in order to spot literals of the extended kernel
that depend on them.

Taking into consideration all the possible valuations of the atoms of a set SM associated
to a certain SEM model M , as a form of assessing the semantic dependence of the literals
in kerxSEM (P ) with respect to SM , may be envisaged as embodying a skeptical interpre-
tation of semantic dependence.

Using the notion of semantic support on inconsistency, we may now give an answer to the
question formulated in the introduction of section 6.2: how can we trust the literals in
kerxSEM (P ), when considering a constrained theory Pic? The answer we propose is: we
do not trust the literals in kerxSEM (P ) that are suspicious literals; the only literals to be
trusted are the safe literals of kerxSEM (P ).

6.2.3 Computing the Safe Literals in the Extended Semantic Kernel

We present now a more detailed version of the algorithm for computing the set of safe
literals of kerxSEM (P ) outlined in de�nition 6.15, adapted to the MHP semantics. We
call it the safeness algorithm.

Safeness algorithm

Let Pic = P ∪ Tic be an inconsistent constrained theory, where P and Tic are �nite and
ground. For an easier reading, we present the �rst two iteration steps of the algorithm,
iteration 1 and iteration 2, after which the general iteration step, iteration n, and the last
step will be expounded.

Iteration 1

Let

D1 = {M(1),M(2), · · · ,M(n)}, (6.34)

be the set ofMHP models of Pic (all models are inconsistent). Associated with each model
M(i) is the tuple

〈M(i), IC(i)〉, (6.35)

where IC(i) is the set of Tic integrity constraints that are active with respect to M(i).
Let

S(i) = ObLiterals(Bodies(IC(i))). (6.36)

For the sake of harmonizing this procedural step with the remaining ones, let D1
∗ = D1

and S(i) = S(i).

Iteration 2
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For each modelM(i) ∈ D1
∗, do the following transformation on Pic: for each objective literal

L ∈ S(i) (1) erase all the rules with head equal to L, and (2) add to the program the set
of rules {L← pos(L) , pos(L)← not neg(L) , neg(L)← not pos(L)}, where pos(L) and
neg(L) are atoms that do not belong to the language of P .13 Let P(i) be the resulting
program (one such program per model).
Compute the MHP models of P(i) for all i ∈ {1, 2, · · · , n}.14 Let them be

D2 = {· · · ,M(i,1),M(i,2), · · · ,M(i,ni), · · · }. (6.37)

Associated with each model M(i,j) is the tuple

〈M(i,j), IC(i,j)〉, (6.38)

where IC(i,j) is the set of Tic integrity constraints that are active with respect to M(i,j).
Associated with each model M(i,j) is also the set

S(i,j) = S(i,j) \ S(i), (6.39)

where S(i,j) = ObLiterals(Bodies(IC(i,j)))
15.

Let D2
∗ ⊆ D2 be such that M(i,j) ∈ D2

∗ i� S(i,j) 6= ∅. If D2
∗ = ∅, then there are no more

objective literals to expand in any model in D2, which �nishes the iterative part of the
algorithm � go to last step. If D2

∗ 6= ∅, then new active constraints involving not yet
expanded objective literals are now in the process, and the algorithm execution continues
in iteration step 3, which is a particular case of the iteration step n de�ned below.

Iteration n

The general step of the algorithm is as follows.
Let Dn−1 be the set of models computed in the (n− 1)th iteration step of the process,
n− 1 ≥ 1. Let Dn−1

∗ ⊆ Dn−1 be such that for each M(si0,s
i
1,··· ,sin−2) ∈ Dn−1,

M(si0,s
i
1,··· ,sin−2) ∈ D

n−1
∗ i� S(si0,s

i
2,··· ,sin−2) 6= ∅, (6.40)

where i ∈ N, sij ∈ N, and

S(si0,s
i
1,··· ,sin−2) =

{
S(si0), n− 1 = 1,

S(si0,s
i
1,··· ,sin−2) \

⋃m=n−3
m=0 S(si0,s

i
1,··· ,sim), n− 1 > 1.

(6.41)

being S(si0,s
i
1,··· ,sin−2) the set of atoms that appear in the bodies of the active Tic integrity

constraints under the model M(si0,s
i
2,··· ,sin−2), and

⋃m=n−3
m=0 S(si0,s

i
1,··· ,sim) the set of all al-

ready expanded objective literals in the path of the algorithm execution that took to
M(si0,s

i
2,··· ,sin−2).

13This set of rules works as a switch, that allows the inclusion of either L or not L in each MHP model
of the resulting program. This permits to simulate the syntactic expansion of L in Pic with respect to
MHP .

14The hypotheses of each model may contain both objective literals of the language of P , and literals of
the types neg(L), pos(L).

15Notice that S(i,j) represents the objective literals in the bodies of constraints active under M(i,j), that
were not yet expanded.
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1. For each model M(si0,s
i
2,··· ,sin−2) ∈ Dn−1

∗ do the following. Let P(si0,s
i
1,··· ,sin−3) be the

program that hasM(si0,s
i
2,··· ,sin−2) as aMHP model (if n−1 = 1 then P(si0,s

i
2,··· ,sin−3) =

Pic). Form the program P(si0,s
i
1,··· ,sin−3)∪X(si0,s

i
2,··· ,sin−2), whereX(si0,s

i
2,··· ,sin−2) is the set

of atoms formed with the predicate names neg(), pos(), that appear inM(si0,s
i
1,··· ,sin−2),

and transform it in the following way:16for each objective literal L in S(si0,s
i
1,··· ,sin−2),

erase all rules with head equal to L, and add to the program the set of rules {L ←
pos(L) , pos(L) ← not neg(L) , neg(L) ← not pos(L)}, where pos(L) and neg(L)
are atoms that do not belong to the languages of the programs Pic, P(si0), P(si0,s

i
1), · · · ,

P(si0,s
i
1,··· ,sin−3); for each positive literal neg(L) (resp. pos(L)) in X(si0,s

i
2,··· ,sin−2), erase

all the switching rules involving neg(L) (resp. pos(L)), and erase the rule L← pos(L)
(resp. replace the rule L ← pos(L) by the fact L ←). Let P(si0,s

i
1,··· ,sin−2) be the

resulting program.

2. Compute all the MHP models of all programs P
(αj0,α

j
1,··· ,α

j
n−2)

that result from the

previous item. Let the set of this models be

Dn = {· · · ,M
(αj0,α

j
1,··· ,α

j
n−1)

, · · · }. (6.42)

Associated with each model M
(αj0,α

j
1,··· ,α

j
n−1)

is the tuple

〈M
(αj0,α

j
1,··· ,α

j
n−1)

, IC
(αj0,α

j
1,··· ,α

j
n−1)
〉, (6.43)

where IC
(αj0,α

j
1,··· ,α

j
n−1)

is the set of integrity constraints that are active with respect

to M
(αj0,α

j
1,··· ,α

j
n−1)

.

Associated with each model M
(αj0,α

j
1,··· ,α

j
n−1)

is also the set

S
(αj0,α

j
1,··· ,α

j
n−1)

, (6.44)

computed as shown in formula (6.41).
Let Dn∗ ⊆ Dn be such that M

(αj0,α
j
1,··· ,α

j
n−1)

∈ Dn∗ i� S
(αj0,α

j
1,··· ,α

j
n−1)

6= ∅. If Dn∗ = ∅,
then there are no more objective literals to expand in any model in Dn, which �nishes
the iterative part of the algorithm � go to last step. If Dn∗ 6= ∅, then new active
constraints involving not yet expanded objective literals are now in the process, and
the algorithm execution continues in iteration step n + 1, which is a particular case
of the iteration step n here de�ned.

Last step

Consider that k is the number of iteration steps previously performed. Then the class

D =

k⋃
i=1

(Di \ Di∗), (6.45)

16The already expanded literals are the arguments of the predicative functions neg(), pos() pertaining
to X(si0,s

i
2,··· ,s

i
n−2)

.
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contains all the models computed in the process, such that Mφ ∈ D i� Sφ = ∅. Thus for
every model Mφ ∈ D all the atoms involved in the bodies of active integrity constraints
under Mφ, are already expanded. If a literal L ∈ kerxMHp(P ) is such that L /∈

⋂
M∈D

M ,

then L is a suspicious literal of kerxMHp(P ). On the other side, if a literal L ∈ kerxMHp(P )
is such that L ∈

⋂
M∈D

M , then L is a safe literal of kerxMHp(P ).

Proposition 6.2. The safeness algorithm terminates for every inconsistent �nite ground
theory Pic = P ∪ Tic.

Proof. For the algorithm to terminate, an iterative step k must exist, such that Dk∗ = ∅.
This only occurs if for all models M(α1,··· ,αk) ∈ Dk we have S(α1,··· ,αk) = ∅. As all the set
sequences

S(α1), S(α1) ∪ S(α1,α2), · · · ,
m=k⋃
m=1

S(α1,α2,··· ,αm), · · · , (6.46)

are monotonically increasing with respect to set inclusion, and the constrained theory is
�nite, the existence of such a step k is guaranteed.

Example 6.5. Let us compute the set of safe literals in the extended kernel of the theory
in example 6.4, with respect to the MHP semantics.

Iteration 1

The theory has a single MHP model, M(1), with empty hypotheses set H(1).

M(1) = {a, b, c, not u, v,⊥}
H(1) = ∅
IC(1) = {⊥ ← a, b}

S(1) = {a, b} = S(1)

kerMHP (P ) = {a, b, c, not u, v}
D1 = D1

∗ = {M(1)}.

Iteration 2

Form the program P(1), whose models (considering the restriction of each model to he lan-
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guage of Pic) coincide with the union of the sets of models of each program in EXPMHP (S(1), Pic).

P(1)

⊥ ← a, b

v ← a

u← not c

c←
a← pos(a)

b← pos(b)

pos(a)← not neg(a)

neg(a)← not pos(a)

pos(b)← not neg(b)

neg(b)← not pos(b)

The MHP models M(i,j) of P(1), together with its hypotheses sets H(i,j) and also the sets
S(i,j) of not yet expanded objective literals, are as follows (we omit the computation of P t−o(1) ;
we also omit the default negations involving explicitly negated literals of the language of
P .).

M(1,1) = {a, b, c, not u, v, not neg(a), not neg(b), pos(a), pos(b),⊥}
H(1,1) = {pos(a), pos(b)}

S(1,1) = {a, b} S(1,1) = S(1,1) \ S(1) = {a, b} \ {a, b} = ∅
M(1,2) = {a, not b, c, not u, v, not neg(a), neg(b), pos(a), not pos(b)}
H(1,2) = {pos(a), neg(b)}

S(1,2) = ∅ S(1,2) = S(1,2) \ S(1) = ∅
M(1,3) = {not a, b, c, not u, not v, neg(a), not neg(b), not pos(a), pos(b)}
H(3) = {neg(a), pos(b)}

S(1,3) = ∅ S(1,3) = S(1,3) \ S(1) = ∅
M(1,4) = {not a, not b, c, not u, not v, neg(a), neg(b), not pos(a), not pos(b)}
H(1,4) = {neg(a), neg(b)}

S(1,4) = ∅ S(1,4) = S(1,4) \ S(1) = ∅
D2 = {M(1,1),M(1,2),M(1,3),M(1,4)} D2

∗ = ∅

As all S(i,j) are empty sets, we have D2
∗ = ∅ and the iterative part of the process is thus

�nished. The process continues in the last step.

Last step

Since

D1 \ D1
∗ = ∅

D2 \ D2
∗ = {M(1,1),M(1,2),M(1,3),M(1,4)}
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we have

D = {M(1,1),M(1,2),M(1,3),M(1,4)}.

Considering only the literals of the language of P , we obtain

⋂
M∈D

M = {c, not u}.

Hence {c, not u} are the safe literals of kerxMHP (P ), all the other literals being suspicious.
This result agrees with our intentions expressed in example 6.4.

Example 6.6. Let us compute the set of safe literals in the extended kernel of the following
theory Pic = P ∪ Tic, with respect to the MHP semantics.

⊥ ← not a

⊥ ← b

¬a← not b

b← not ¬a
u← not ¬a, not b

Iteration 1

Pic has two MHP models.

M(1) = {not a,¬a, not b, not ¬b, not u, not ¬u,⊥}
H(1) = {¬a}

S(1) = {a} S(1) = S(1) = {a}
M(2) = {not a, not ¬a, b, not ¬b, not u, not ¬u,⊥}
H(2) = {b}

S(2) = {a, b} S(2) = S(2) = {a, b} =

kerMHP (P ) = {not a, not ¬b, not u, not ¬u}
D1 = D1

∗ = {M(1),M(2)}.

Iteration 2
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The programs P(1), P(2) corresponding to models M(1),M(2) are

P(1) P(2)

⊥ ← not a ⊥ ← not a

⊥ ← b ⊥ ← b

¬a← not b ¬a← not b

b← not ¬a u← not ¬a, not b
u← not ¬a, not b b← pos(b)

a← pos(a) pos(b)← not neg(b)

pos(a)← not neg(a) neg(b)← not pos(b)

neg(a)← not pos(a) a← pos(a)

pos(a)← not neg(a)

neg(a)← not pos(a).

We compute the MHP models M(i,j) of each of the programs P(i), and the corresponding
sets S(i,j) and X(i,j) (these last sets, which contain the switching atoms pos(L), neg(L)
pertaining to the model, are only indicated when S(i,j) 6= ∅; they are boldfaced for an
easier identi�cation). We omit the computation of P t−o(1) and P t−o(2) .

M(1,1) = {a, not ¬a, b, not ¬b, not u, not ¬u, not neg(a), pos(a),⊥}
H(1,1) = {pos(a)} X(1,1) = {pos(a)}
S(1,1) = {b} S(1,1) = S(1,1) \ S(1) = {b}
M(1,2) = {not a,¬a, not b, not ¬b, not u, not ¬u, neg(a), not pos(a),⊥}
H(1,2) = {¬a, neg(a)}

S(1,2) = {a} S(1,2) = S(1,2) \ S(1) = ∅
M(1,3) = {not a, not ¬a, b, not ¬b, not u, not ¬u, neg(a), not pos(a),⊥}
H(1,3) = {b, neg(a)} X(1,1) = {neg(a)}
S(1,3) = {a, b} S(1,3) = S(1,3) \ S(1) = {b}
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M(2,1) = {a, not ¬a, b, not ¬b, not u, not ¬u, not neg(a), not neg(b), pos(a), pos(b),⊥}
H(2,1) = {pos(a), pos(b)}

S(2,1) = {b} S(2,1) = S(2,1) \ S(2) = ∅
M(2,2) = {not a, not ¬a, b, not ¬b, not u, not ¬u, neg(a), not neg(b), not pos(a), pos(b),⊥}
H(2,2) = {neg(a), pos(b)}

S(2,2) = {a, b} S(2,2) = S(2,2) \ S(2) = ∅
M(2,3) = {a, not a,¬a, not ¬a, not b, not ¬b, u, not u, not ¬u, not neg(a), neg(b), pos(a),

not pos(b),⊥}
H(2,3) = {pos(a), neg(b)} X(2,3) = {pos(a), neg(b)}
S(2,3) = {a,¬a, u} S(2,3) = S(2,3) \ S(2) = {¬a, u}
M(2,4) = {not a,¬a, not b, not ¬b, not u, not ¬u, neg(a), neg(b), not pos(a), not pos(b),⊥}
H(2,4) = {neg(a), neg(b)}

S(2,4) = {a} S(2,4) = S(2,4) \ S(2) = ∅

Take the class D2 of models computed above is

D2 = {M(1,1),M(1,2),M(1,3),M(2,1),M(2,2),M(2,3),M(2,4)},

while the class D2
∗ ⊆ D2 of models corresponding to nonempty S(i,j) is

D2
∗ = {M(1,1),M(1,3),M(2,3)}.

As D2
∗ 6= ∅ a third iterative step takes place.

Iteration 3

Compute the programs P(i,j) corresponding to models M(i,j) ∈ D2
∗, by adding to P(i) the

sets X(i,j), and expanding the literals in S(i,j).

P(1,1) P(1,3) P(2,3)

⊥ ← not a ⊥ ← not a ⊥ ← not a

⊥ ← b ⊥ ← b ⊥ ← b

¬a← not b ¬a← not b a←
u← not ¬a, not b u← not ¬a, not b neg(b)←
a← neg(a)← pos(a)←

pos(a)← b← pos(b) ¬a← pos(¬a)

b← pos(b) pos(b)← not neg(b) pos(¬a)← not neg(¬a)

pos(b)← not neg(b) neg(b)← not pos(b) neg(¬a)← not pos(¬a)

neg(b)← not pos(b) u← pos(u)

pos(u)← not neg(u)

neg(u)← not pos(u)
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We compute theMHP modelsM(i,j,k) of each of the programs P(i,j), and the corresponding
sets S(i,j,k) and X(i,j,k).

M(1,1,1) = {a, not ¬a, b, not ¬b, not u, not ¬u, not neg(a), not neg(b), pos(a), pos(b),⊥}
H(1,1,1) = {pos(b)}

S(1,1,1) = {b} S(1,1,1) = S(1,1,1) \ (S(1,1) ∪ S(1)) = ∅
M(1,1,2) = {a, not a,¬a, not ¬a, not b, not ¬b, u, not u, not ¬u, not neg(a), neg(b), pos(a),

not pos(b),⊥}
H(1,1,2) = {neg(b)} X(1,1,2) = {neg(b), pos(a)}
S(1,1,2) = {a,¬a, u} S(1,1,2) = S(1,1,2) \ (S(1,1) ∪ S(1)) = {¬a, u}

Notice that in spite of being ⊥ ← a, not a active with respect to M(1,1,2), the literal a is
not in S(1,1,2), since it was already expanded.

M(1,3,1) = {not a, not ¬a, b, not ¬b, not u, not ¬u, not neg(b), neg(a), not pos(a), pos(b),⊥}
H(1,3,1) = {pos(b)}

S(1,3,1) = {a, b} S(1,3,1) = S(1,3,1) \ (S(1,3) ∪ S(1)) = ∅
M(1,3,2) = {not a,¬a, not b, not ¬b, not u, not ¬u, neg(a), neg(b), not pos(a), not pos(b),⊥}
H(1,3,2) = {neg(b)}

S(1,3,2) = {a} S(1,3,2) = S(1,3,2) \ (S(1,3) ∪ S(1)) = ∅

M(2,3,1) = {a, not a,¬a, not ¬a, not b, not ¬b, u, not ¬u, not neg(a), not neg(¬a), neg(b),

not neg(u), pos(a), pos(¬a), not pos(b), pos(u),⊥}
H(2,3,1) = {pos(¬a), pos(u)}

S(2,3,1) = {a,¬a} S(2,3,2) = S(2,3,2) \ (S(2,3) ∪ S(2)) = ∅
M(2,3,2) = {a, not ¬a, not b, not ¬b, u, not ¬u, not neg(a), neg(¬a), neg(b), not neg(u),

pos(a), not pos(¬a), not pos(b), pos(u)}
H(2,3,2) = {neg(¬a), pos(u)}

S(2,3,2) = ∅ = S(2,3,2) = ∅
M(2,3,3) = {a, not a,¬a, not ¬a, not b, not ¬b, not u, not ¬u, not neg(a), not neg(¬a),

neg(b), neg(u), pos(a), pos(¬a), not pos(b), not pos(u),⊥}
H(2,3,3) = {pos(¬a), neg(u)}

S(2,3,3) = {a,¬a} S(2,3,3) = S(2,3,3) \ (S(2,3) ∪ S(2)) = ∅
M(2,3,4) = {a, not ¬a, not b, not ¬b, not u, not u, not ¬u, neg(a), not neg(¬a), neg(b),

neg(u), pos(a), not pos(¬a), not pos(b), not pos(u),⊥}
H(2,3,4) = {neg(¬a), neg(u)}

S(2,3,4) = ∅ S(2,3,4) = ∅
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The class D3 of models computed in iteration step 3 is,

D3 = {M(1,1,1),M(1,1,2),M(1,3,1),M(1,3,2),M(2,3,1),M(2,32),M(2,3,3),M(2,3,4)},

while the class D3
∗ ⊆ D3 is

D3
∗ = {M(1,1,2)}.

As D3
∗ 6= ∅ a fourth iterative step takes place.

Iteration 4

Programs to consider for iteration 4 are P(1,1,2). As S(1,1,2) = {¬a, u} and X(1,1,2) =
{neg(b), pos(a)}, P(1,1,2) is the same as P(2,3). Notice that S(1)∪S(1,1)∪S(1,1,2) = {a,¬a, b, u}
and hence, not only no new models appear in the iteration step 4, as also D4

∗ = ∅. Thus
the iterative part of the algorithm is �nished. The process continues at the last step.

Last step

We have

D1 \ D1
∗ = ∅

D2 \ D2
∗ = {M(1,2),M(2,1),M(2,2),M(2,4)}

D3 \ D3
∗ = {M(1,1,1),M(1,3,1),M(1,3,2),M(2,3,1),M(2,3,2),M(2,3,3),M(2,3,4)},

D4 \ D4
∗ being not important, and thus

D = {M(1,2),M(2,1),M(2,2),M(2,4),M(1,1,1),M(1,3,1),M(1,3,2),M(2,3,1),M(2,3,2),M(2,3,3),

M(2,3,4)}

Considering only the literals of the language of P , we obtain⋂
M∈D

M = {not ¬b, not ¬u},

and hence those are the safe literals of kerxMHP (Pic). All the other literals are suspicious.

6.3 Query Answering with Revision and Inconsistency Prop-

agation Detection

Let Pic = P ∪ Tic be a �nite ground inconsistent theory that represents a database. With
the revision and inconsistency propagation detection tools presented in this chapter, several
ways to answer queries to the database are now at our disposal, besides the ones already
presented in section 5.5. In this section, we use the simple relevance property of MHP for
query answering in a brave reasoning fashion.

Let then Q be a conjunction of objective and/or default literals that represents a query to
the database Pic. Consider the subset PQ of Pic computed as follows.
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1. Let PQ,0 = RelP (Q) where RelP (Q) is the union of the subprograms of P that are
relevant to each objective literal involved in Q.

2. Join to PQ,0 all the integrity constraints of Tic that depend on objective literals of
PQ,0 language. Let PQ,0,⊥ be the resulting program.

3. Join to PQ,0,⊥ all the subprograms of P that are relevant to each objective literal
involved in PQ,0,⊥. Let PQ,1 be the resulting program.

4. Join to PQ,1 all the integrity constraints of Tic that depend on objective literals of
PQ,1 language. Let PQ,1,⊥ be the resulting program.

5. Repeat this procedure until an order n ∈ N is reached, such that PQ,n−1,⊥ = PQ,n,⊥.
Let PQ = PQ,n,⊥ be the resulting program.

Notice that this procedure terminates, since Tic is �nite and the sequence PQ,0,⊥, PQ,1,⊥, · · · ,
PQ,k,⊥, · · · is monotonically increasing with respect to set inclusion.

The theory PQ may be used to answer the query Q in a number of ways, among which
are the following.

Brave Reasoning Fashion

1. (Considering only revision) If Q is satis�ed by at least one model of a revised program
of PQ, then the answer should be "yes". If Q is not satis�ed by at least one model
of some revised program, then the answer should be "no".

2. (Considering only suspicion detection) If Q is satis�ed by at least one model of PQ
and no objective literal involved in Q is suspicious with respect to that model, then
the answer should be "yes". If some literals involved in Q are suspicious, then the
answer should be "yes". If Q is satis�ed by no model of PQ, then the answer should
be "no".

All the answers above, may come together with additional comments that make clear the
Six valuation of the conjunction that represents the query.

Other strategies for query answering may be envisaged by mixing revision and suspicion
detection, e.g., adding suspicion information to the models of revised programs. The types
of query answering presented in section 5.5, may also be improved with the procedures for
revision and inconsistency propagation detection provided in this chapter.

6.4 Final Remarks

The revising and inconsistency propagation detection procedures, may be envisaged has
having, in a certain way, overlapping goals. That is, given an inconsistent constrained
theory Pic = P ∪ Tic, we could take as safe literals in kerxMHP (P ) all of these literals
that also belong to the intersection of the extended kernels of all obtained revised theories.
We could also try to get revised theories from the expansions whose semantics contain the
smallest sets of active integrity constraints. Notwithstanding it is worth to point out that
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the inconsistency propagation detection process we present in this chapter has a "more
skeptical" character than the revision process, would the latter be used for inconsistency
propagation detection as referred above. The following example clari�es this issue.

Example 6.7. Consider the following constrained theory Pic = P ∪ Tic.

⊥ ← a, b

c← a

a← b

b←

Pic has a single MHP model, {a, b, c, not ¬a, not ¬b, not ¬c,⊥}, and hence kerxMHP =
{a, b, c, not ¬a, not ¬b, not ¬c}. Using the inconsistency propagation detection algorithm,
it is immediate to conclude that the subset of suspicious literals in the kernel is kerxMHP =
{a, b, c}, meaning that c is a suspicious literal. Meanwhile, all the revised theories have
not c in their kernels, since the revision process produces models that do not activate the
constraint ⊥ ← a, b, by deleting one of the rules {a ← b, b ←}, which falsi�es c. That is,
c is not suspicious if we consider the information in the revised theories' kernels.
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Chapter 7

Conclusions and Future Work

Proposals

We sum up the results obtained in this work, together with some criticism, and point out
paths to future work.

The main goal of this work was to implement a semantics for extended normal logic
programs, that could be existential whilst amenable for inconsistency revision through ab-
duction of revisables. The MHP semantics de�ned in chapter 5 ful�lls this intentions. It
is an existential total models paraconsistent semantics that treats loops as choice devices,
which permits to solve problems that are, apparently, not in the reach of answer sets se-
mantics. In this respect, it is an open issue whether there is a transformation from normal
logic programs into normal logic programs, such that the MH models of the initial pro-
gram can be obtained through the answer sets of the transformed program. The author
of this work ventures that it is not possible to obtain such a transformation. Meanwhile
the MHP models computation, via the balanced layered remainder, motivates the search
for a reduction system for extended normal logic programs, that could permit the MHP

semantics computation using the resulting remainder, eliminating thus the need for the
t − o transformation. Such a system would have a theoretical interest, despite of being
not clear whether any computational advantage could stem from this "yet to be found"
alternative process.

As companions of the paraconsistent MHP semantics, a process for program revision and
a process for inconsistency propagation detection are presented in chapter 6. The program
revision is ful�lled by resorting to declarative debugging, eliminating rules of the program
or modifying the CWA valuations of certain literals without a rule. This approach may
be envisaged as a revision by reductio ad absurdum. The revision procedure accepts as
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much as possible the initial theory, meaning that only those rules whose heads are involved
in the bodies of active constraints are considered for deletion. This bears a relation with
the philosophic principle of charity, if we envisage a constrained theory as expressing the
convictions of an agent. It is worth to say that other strategies for rule deletion may be
considered. The programmer may re�ne the tags used as arguments of the predicative
functions del(), in order to delete speci�c rules, instead of deleting all the rules with a
certain head. He/she can also choose to throw into the program revisables that lead to the
deletion of other rules, not only the ones whose heads appear in active constraints. The
programmer may de�ne sets of revisables, ordered in accordance to certain preferential
criteria, and choose the revised programs in accordance. And so on. Revision processes
tend to be highly dependent on the idiosyncrasies of the programmer, or on the particu-
larities of the contexts in which they are used. Our revision proposal intentions are not,
for sure, to present a revision process that works well in all contexts, but rather to exem-
plify how the MHP is open to revision purposes. The inconsistency propagation detection
process outlined in this work, considers detection of inconsistencies "upwards" in the pro-
gram layering, meaning that only literals de�ned in the same layer, or in layers above
those of literals appearing in the bodies of active constraints, are considered for expansion.
Something analogous also happens with the revision process, where the rules considered
for deletion are in the same layers of rules that de�ne the literals involved in the bodies
of active constraints. This "not downwards" character makes both processes in a certain
way incomplete. As an example of this limitation, let us face revision and inconsistency
propagation detection of the theory Pic = P ∪ Tic

⊥ ← a

a← b

b←

whose single MHP model is M = {a, b,⊥}. The only resulting revised theory is

⊥ ← a

b←

and the only safe literal in kerxMHP (P ) is b. Now, a "downwards" analysis could consider
rule b ← as a candidate for deletion in a revision process, and atom b as a candidate for
expansion in an inconsistency propagation detection process. While these options seem
arguably reasonable, we do not consider them in our work. A systematization of this
"downwards" type of approach may be far from trivial, due to the necessity of handling
loops. Even if in the program above it seems an easy job to include the "downwards"
option into our procedures, that is because the program is a very simple strati�ed one.
Finding a reasonable way, in the computational point of view, to make our procedures act
"downwards", is a future work proposal. Another path for future work might be the design
of a paraconsistent semantics,MH∗P , that extends to broader constraint theories theMHP

capability to detect support on inconsistency. Also a valuable path of investigation, in our
opinion, is the use of MHP and of the procedures proposed in chapter 6 to implement
systems for dealing with updating and evolving programs, by adapting those tools to the
approaches outlined in [ALP+98] and [ABLP02], thus extending the work there presented.
The revision of sequences obtained as a result of updates, may allow choices or preferences
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on revisions (e.g., the revisions could address the entire sequence, the initial state or the
�nal state). Other combinations could also be regarded. Considering several revision so-
lutions, eventually complemented with inconsistency propagation detection, may also be a
means of prospecting future scenarios.

Some suggestions for future work already mentioned, are summarized below:

1. Find whether there is a transformation from normal logic programs to normal logic
programs, such that the MH models of the initial program can be obtained through
the answer sets of the transformed program.1

2. Find whether there is a reduction system for extended normal logic programs, that
allows the computation of MHP models using a remainder obtained through the
performance of that system, eliminating thus the need for the t− o transformation.

3. Endow the revision and inconsistency propagation detection algorithms with "down-
wards" performing capabilities, in some way to be de�ned.

4. Endow the MHP semantics with inconsistency propagation detection with respect
to broad constraint theories, thus eliminating the need for the safeness algorithm
presented in chapter 6.

5. Use the MHP semantics and the procedures developed in chapter 6 to handle up-
dating tasks and to deal with evolving logic theories.

In chapter 4 a number of results concerning the characterization of 2-valued conservative
extensions of the stable model semantics were presented. These results allow a precise
characterization of the MH and the MHP semantics on the properties of relevance and
cumulativity. Some relations among strong and weak properties, concerning semantics from
the ASMh and ASMm families, were settled. We have shown that the de�nition of these
families reveals an universe of semantics, for which the cumulativity de�nition expresses a
relation among sets of models instead of a relation among sets of atoms. As a consequence
of this result, the study of cumulativity inside ASMh and ASMm becomes an easier job.
The structural properties of defectivity and excessiveness may turn this work even easier:
the detection of cumulativity failure is faced not as a relation among sets of models, but as
the relation between models and the structure (layering) of logic programs, de�ned by the
decomposition of models over the programs structures. This approach allows to relate the
failure of existence to the failure of cautious monotony for semantics of the above families,
i.e., if a semantics is not existential, then it cannot be cautious monotonic. In the case
of the SM semantics, which pertains to both families, this result is, to the best of our
knowledge, new. This type of results show the potential of a structural approach, so to
say, to the study of semantics formal properties. It seems thus reasonable to try to extend
this approach to embrace other than 2-valued models semantics, and other than relevance
and cumulativity weak and strong properties. Some suggestions for future work on this
subject follow.

1This open problem is already mentioned in [Pin11]. A solution for it would also have implications in
the MHP semantics computation.
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6. Find sets of structural properties whose veri�cation is equivalent to the veri�cation
of cautious monotony or cut. The existence of such sets would turn into an easier
job, both obtaining cumulative semantics and to detect the failure of cumulativity.
This might demand a sharper de�nition of layering.

7. Find a structural characterization for other than relevance and cumulativity weak
and strong properties.

8. Extend the type of approach undertaken in chapter 4 to other than 2-valued models
semantics.

9. Extend the type of approach undertaken in chapter 4 to non-noetherian logic pro-
grams; this might need a looser de�nition of layering, by dropping the well-ordering
demand on the set of labels (see de�nition 2.11).

10. Complete table 4.1, either by �nding adequate semantics, or by show they do not
exist.

11. Find a ASMh cumulative semantics.

12. Find whether there is a ASMh or ASMm cumulative semantics, that is not de�ned
by means of an iterative procedure like the one used to de�ne Cyan (see appendix
B.3), that is, a semantics where each model is computed a deterministic number of
times.

The 12 proposals for future work here presented, may eventually be interesting enough,
some of them even defying, for anyone interested in these subjects.
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De�nitions in subsection 3.2.3

De�nition A.1. Positive reduction (adapted from [BDFZ01]) Let P1 and P2 be two
ground normal logic programs. Program P2 results from P1 by positive reduction, P1 7→P P2

i� there is a rule r ∈ P1 and a default literal not b ∈ Body(r) such that b /∈ Heads(P1),
and P2 = (P1 \ {r}) ∪ {Head(r)← (Body(r) \ {not b})}.

De�nition A.2. Negative reduction. (adapted from [BDFZ01]) Let P1 and P2 be
two ground normal logic programs. Program P2 results from P1 by negative reduction,
P1 7→N P2 i� there is a rule r ∈ P1 and a default literal not b ∈ Body(r) such that
b ∈ Facts(P1), and P2 = P1 \ {r}.

De�nition A.3. Success. (adapted from [BDFZ01]) Let P1 and P2 be two ground normal
logic programs. Program P2 results from P1 by success, P1 7→S P2, i� there is a rule r ∈ P1

and a fact b ∈ Facts(P1) such that b ∈ Body(r), and P2 = (P1 \ {r}) ∪ {Head(r) ←
(Body(r) \ {b})}.

De�nition A.4. Failure. (adapted from [BDFZ01]) Let P1 and P2 be two ground normal
logic programs. Program P2 results from P1 by failure, P1 7→F P2, i� there is a rule r ∈ P1

and a positive literal b ∈ Body(r) such that b /∈ Heads(P1), and P2 = P1 \ {r}.

De�nition A.5. Loop Detection. (adapted from [BDFZ01]) Let P1 and P2 be two
ground normal logic programs. Program P2 results from P1 by loop detection, P1 7→L P2,
i� there is a set A of ground atoms such that:

1. For each rule r ∈ P1, if Head(r) ∈ A, then Body(r) ∩ A 6= ∅;

2. P2 := {r ∈ P1|Body(r) ∩ A = ∅}.
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Refers to Chapter 4

B.1 Refers to Section 4.3

Proofs for the ASMh and ASMm Families of Semantics

Proof. (of proposition 4.4)
"⇒"
If SEM is not cautious monotonic, then there is a program P , a set S ⊆ kerSEM (P ) and
an atom u ∈ kerSEM (P ) such that u /∈ kerSEM (P ∪ S), by de�nition 4.12. This imme-
diately implies the existence of a model M ∈ SEM(P ∪ S) such that u /∈ M , and hence
M /∈ SEM(P ).
"⇐"
We �rst prove this condition for semantics SEM of the ASMh family.
Let P be a �nite ground normal logic program and S ⊆ kerSEM (P ). Consider an interpre-
tationM ∈ SEM(P∪S),M /∈ SEM(P ). LetM = {a1, a2, · · · , am, not b1, not b2, · · · , not bn},
where the Herbrand base of P is {a1, a2, · · · , am, b1, b2, · · · , bn}. We use program P to build
a new program P ′ whose language contains the atom u, that does not belong to the language
of P , and show that u ∈ kerSEM (P ′) and u /∈ kerSEM (P ′ ∪ S), where S ⊆ kerSEM (P ′),
thus revealing that SEM fails cautious monotony. Let P ′ be the program

P

cj ← bj

dj ← not cj

v ← a1, · · · , am, d1, · · · , dn
u← not v

where P (let P = P ′ ≤T ) is an abbreviation for the set of rules of the program P ; (cj ← bj)
and (dj ← not cj) are schemes of rules, representing individual rules for each 1 ≤ j ≤ n;
rule (v ← a1, · · · , am, d1, · · · , dn) has the body formed by the conjunction of all ai and
dj , 1 ≤ i ≤ m, 1 ≤ j ≤ n; the atoms v, u, cj and dj do not belong to the language
of P . Now the set of all atoms involved in a�xes of the models of P ′ is de�ned by the
rules of P ′ ≤T , due to the de�nition of ASMh � notice that no cj may belong to the a�x
of a SEM model of P ′, since such an a�x would not be minimal. Thus the T -segment
decomposition of any SEM model of P ′,M≤T = M+

≤T ∪not M
+
≤T is such that (M+

≤T ,M
−
≤T )
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is a SEM model of P , which means that u ∈ kerSEM (P ′), because all models of P ′ falsify
Body(v ← a1, · · · am, d1, · · · dn). Let now S ⊆ kerSEM (P ). Then S ⊆ kerSEM (P ′) and
SEM(P ′ ∪ S) contains the model

M ′ = M ∪ {not c1, · · · , not cn, d1, · · · , dn, v, not u}

and thus u /∈ kerSEM (P ′ ∪S), meaning that SEM is not cautious monotonic. To see that
this result is also valid for the ASMm family, we just need to repeat the above reasoning
considering instead program P ′

P

u←M+
k

where u ← M+
k represents a scheme of rules, one per model Mk ∈ SEM(P ) � let P

have t SEM models, 1 ≤ k ≤ t, M+
k being the conjunction of all positive literals in Mk.

Clearly u ∈ kerSEM (P ′) and u /∈ kerSEM (P ′ ∪ S), since the model M ′ ∈ SEM(P ′ ∪ S),
M ′ = M ∪ {not u} falsi�es the body of any rule generated by the scheme u←M+

k .
1

Proof. (of proposition 4.6)
"⇒"
If SEM is not cut, then there is a program P , a set S ⊆ kerSEM (P ) and an atom
u ∈ kerSEM (P ∪S), such that u /∈ kerSEM (P ), by de�nition 4.13. This immediatly implies
the existence of a model M ∈ SEM(P ) such that u /∈M , and hence M /∈ SEM(P ∪ S).
"⇐"
We �rst prove this condition for semantics SEM of the ASMh family.
Let P be a normal logic program, S ⊆ kerSEM (P ). Let SEM(P∪S) = {M1,M2, · · · ,Mk},
where k ∈ N and

M i = {ai1, ai2, · · · , aimi , not b
i
1, not b

i
2, · · · , not bini},

the Herbrand base of P being, say {a1
1, a

1
2, · · · , a1

m1
, b11, b

1
2, · · · , b1n1

}. Let alsoM ∈ SEM(P ),
M /∈ SEM(P ∪S). We use program P to build a new program P ′ whose language contains
the atom u, that does not belong to the language of P , and show that u /∈ kerSEM (P ′)
and u ∈ kerSEM (P ′∪S) where S ⊆ kerSEM (P ′), thus revealing that SEM is not cut. Let
P ′ be the program

P

cij ← bij

dij ← not cij

u← ai1, · · · , aimi , d
i
1, · · · , dini

where P (let P = P ′ ≤T ) is an abbreviation for the set of rules of the program P ; (cij ← bij)

and (dij ← not cij) are schemes of rules representing individual rules for each pair of natural
numbers (i, j), 1 ≤ i ≤ k and 1 ≤ j ≤ ni; (u ← ai1, · · · , aimi , d

i
1, · · · , dini) is a scheme of

rules representing a rule for each 1 ≤ i ≤ k; the atoms cij , d
i
j , u, do not belong to the

1Notice that if S ⊆ kerSEM (P ), then no minimal model N of P ∪ S may be such that M+
k ( N+, for

some k, otherwise N would not be a minimal model of P ∪ S.
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language of P . Now the set of all atoms involved in a�xes of models of P ′ is de�ned
by the rules of P ′ ≤T , due to the de�nition of ASMh � notice that no cj may pertain to
the a�x of a SEM model of P ′, since such an a�x would not be minimal. Thus the
T -segment decomposition of any SEM model of P ′, M≤T = M+

≤T ∪ not M
+
≤T , is such

that (M+
≤T ,M

−
≤T ) is a SEM model of P , which means that u /∈ kerSEM (P ′) since the

unique model of program M+ ∪{cij ← bij , d
i
j ← not cij , u← ai1, · · · , aimi , d

i
1, · · · , dini} does

not satisfy Body(u ← ai1, · · · , aimi , d
i
1, · · · , dini). As kerSEM (P ) ⊆ kerSEM (P ′), we have

S ⊆ kerSEM (P ′). Each model in SEM(P ′∪S) contains the atom u since, by design of P ′,
M i+ ∪ {cij ← bij , d

i
j ← not cij , u← ai1, · · · , aimi , d

i
1, · · · , dini} has a single model containing

u, for any 1 ≤ i ≤ k. Thus u ∈ kerSEM (P ′ ∪ S), meaning that SEM is not cut. To see
that this result is also valid for semantics of the ASMm family, we just need to repeat the
above reasoning considering instead the program P ′

P

u←M i+

where u←M i+ represents a scheme of rules, one per modelM i ∈ SEM(P ∪S), 1 ≤ i ≤ k,
M i+ being the conjunction of all positive literals inM i. Clearly u ∈ kerSEM (P ′∪S). Also
u /∈ kerSEM (P ′), since model M ′ = M ∪ {not u}, M ∈ SEM(P ), M /∈ SEM(P ∪ S)
falsi�es the body of any rule generated by the scheme u←M i+.2

Proof. (of proposition 4.8)
Let P a normal logic program such that SEM(P ) 6= ∅, S ⊆ kerSEM (P ) and SEM(P ∪
S) = ∅. We use program P to build a new program Q whose language contains the
atom u, that does not belong to the language of P , and show that u /∈ kerSEM (Q) and
u ∈ kerSEM (Q ∪ S) where S ⊆ kerSEM (Q), thus revealing that SEM is not cut. Let Q
be the program

a← not b

b← not a

P

Heads(P )← a

u← a,Heads(P )

where P is an abbreviation for the set of rules of the program P ; the scheme of rules
(Heads(P ) ← a) represents a rule r per atom of Heads(P ), Head(r) ∈ Heads(P ); (u ←
a,Heads(P )) is a rule whose body contains the conjunction of a and all atoms inHeads(P );
the atoms a, b, u do not belong to the language of P . Now Q has the SEM models
M+ = {a, u} ∪ Heads(P ) and N+

Q = N+
∗ ∪ {b}, for each SEM model N∗ of P . Clearly

u /∈ kerSEM (Q) and S ⊆ kerSEM (Q). The program Q ∪ S has the single model M+ =
{a, u}∪Heads(P ), since model {not a, b} ∈ SEM(Q≤1) supports no SEM model of Q∪S
� otherwise it would be SEM(P ∪ S) 6= ∅. As a consequence, u ∈ kerSEM (Q ∪ S), which
shows that SEM is not cut.

2Notice that it cannot be the case that M i+ (M+, for some i, otherwise M+ would not be a minimal
model of P .
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B.2 Refers to Section 4.4

Proof. (of proposition 4.10)
"⇒"
Consequence of de�nition 4.18.
"⇐"
Let SEM be a ASMh or ASMm nonexistential semantics, i.e., there exists a normal logic
program P such that SEM(P ) = ∅. We build the following program P ′ that reveals SEM
is a defective semantics.

a← not b

b← not a

P ← not a

P ← not a is an abbreviation for a set of rules obtained by adding the literal not a to
the body of each rule of P ; the atoms a, b do not belong to the language of P . Now
M = {not a, b} is a SEM model of the segment P ′ ≤1 because it is a stable model of the
segment. Also SEM(P ′ >1/{b}) = ∅, since the set of rules P ← not a is not solved by
SEM . Thus, model M 1-segment supports no model of P ′, meaning SEM is defective.
This reasoning is valid for any semantics of ASMh or ASMm families.

Proof. (of proposition 4.11)
Let SEM be a ASMh or ASMm non existential semantics, it holding SEM(P ) = ∅ for
some normal logic program P . We build the following program P ′ that reveals SEM is a
non cautious monotonic semantics.

a← not b

b← not a

Heads(P )← b

P ← a

P ← a is an abbreviation for a set of rules obtained by adding the literal a to the body
of each rule of P ; the atoms a, b do not belong to the language of P ; the scheme of rules
(Heads(P ) ← b) represents a rule r per atom of Heads(P ), Head(r) ∈ Heads(P ). Now
M∗ = {not a, b} is a SEM model of the segment P ′ ≤1 because it is a stable model of
the segment. It is also the case that SEM(P ′ >1/{b}) = {not a, b} ∪ Heads(P ), and
hence {not a, b} ∪ Heads(P ) is the only SEM model of P ′ � it is a stable model. We
then have Heads(P ) ⊆ kerSEM (P ′). It is now clear that the 2-valued interpretation
M = {a, not b} ∪Heads(P ) is a SEM model of P ′ ∪Heads(P ) and is not a SEM model
of P ′, which according to proposition 4.4 reveals SEM is not cautious monotonic.

Proof. (of proposition 4.13)
The proof is immediate by resorting to the statement of proposition 4.10 and to program
P ′ in the proof of proposition 4.11: SEM is non-existential and b ∈ kerSEM (P ′) while
b /∈ kerSEM (RelP ′(b)), hence revealing the failure of the global to local relevance property.
Notice that RelP ′(b) = {a← not b, b← not a}.
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Proof. (of proposition 4.14)
Let SEM be a semantics of the ASMh or ASMm families that is not global to local
relevant, i.e. there is a normal logic program P and an atom v of the language of P such
that v ∈ kerSEM (P ) and v /∈ kerSEM (RelP (v)), where RelP (v) is the subprogram of P
that is relevant to v. Let T be the smallest layer of P such that RelP (v) ⊆ P≤T . We are
going to build a program P ∗ where P ∗≤T is a segment of P ∗ that corresponds essentially
to RelP ∗(v) plus a set of de�nite rules, in the following way: for each layer J ≤ T of P ,
for each rule r in layer J such that r /∈ RelP (v), replace r by the set of rules

{Head(r)← Body(r), aJ1 ,

aJ1 ← aJ2 ,

aJ2 ← aJ3 ,

· · · ,
aJnJ−1 ← aJnJ ,

aJnJ ←}

where the aJi do not belong to the language of P and the number of rules whose heads
are in the set {aJ1 , aJ2 , aJ3 , · · · , aJnJ−1, a

J
nJ
} is the adequate to put the rule (Head(r) ←

Body(r), aJ1 ) in the layer T + 1 of program P ∗. Thus the layer T of P ∗ contains RelP (v)
and rules of the types aJnJ ← and aJi ← aJi+1. Let J be the �nite set of all the integers J
for which the set {aJ1 , aJ2 , aJ3 , · · · , aJnJ−1, a

J
nJ
} is not empty. It is thus the case that

M ∈ SEM(P )⇔ (M
⋃
∪
J∈J
{aJ1 , aJ2 , aJ3 , · · · , aJnJ−1, a

J
nJ
}) ∈ SEM(P ∗)

and thus v ∈ kerSEM (P ∗) 3. It is also the case that (1) Heads(P ∗>T )∩Atoms(P ∗ ≤T ) = ∅,
because RelP (v) ⊆ P≤T (this means that T is a segment of P ∗), and (2) there is a model
N∗ ∈ SEM(P ∗≤T ) for which v /∈ N∗, otherwise it would be v ∈ kerSEM (RelP (v)). Hence
we conclude that the model N∗ T -segment supports no model of P ∗, which means that
SEM is defective, as per de�nition 4.18.

Proof. (of theorem 4.15)
Going left to right, the �rst equivalence is due to proposition 4.10 and the second equiva-
lence is due to propositions 4.13 and 4.14. The logical implication is justi�ed by proposi-
tions 4.10 and 4.11.

Proof. (of proposition 4.16)
Let N be a stable model of a normal logic program P . Suppose that N is excessive
with respect to layer T of P . Then N+

≤T = M+ for some model M of P≤T and N /∈
SM(P>T /M+). But this cannot be the case, since ΓP (N) = N , where Γ is the Gelfond
Lifschitz operator [GL88], and the performance of this operator is equivalent to the division
of P>T by N+, being the operation con�uent no matter the order in which the atoms of
N+ are considered. Thus N is not excessive. Suppose now that N is an irregular model
of P , with respect to layer T . This means there is no stable model M of P≤T such that
N+
≤T = M+, which reveals that some atoms in N+

≤T are not classically supported by N .
Hence N is not a stable model, a contradiction, and thus N cannot be irregular.

3Notice that by means of layered success operations, we may have P ∗ = P ∪{aJi ←: J ∈ J , 1 ≤ i ≤ nJ},
and these operations do not change the semantics SEM(P ∗), since SEM is supposedly fair
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Proof. (of proposition 4.17)
Let SEM be a ASMh or ASMm excessive semantics with respect to layer T of a normal
logic program P . Let M ∈ SEM(P≤T ) and N ∈ SEM(P ) be the models referred in
de�nition 4.19, and W ∈ SEM(P ) be a model T -segment supported by M . We build a
program Q that has a model N∗ /∈ SEM(Q ∪ S), S ⊆ kerSEM (Q), which according to
proposition 4.6 reveals that SEM is not cut. Let SEM(P≤T ) = {M1,M2, · · · ,Mt}. Let
Q be the program

P≤T

u←M+
k

P>T∗

where

• P≤T is an abbreviation for the set of rules of segment P≤T ;

• u ← M+
k , 1 ≤ k ≤ t, is a scheme of rules representing one rule per SEM model of

P≤T , each body being the conjunction of the positive literals of the corresponding
model; atom u does not belong to the language of P ;

• P>T∗ is a set of rules obtained from P>T in the following way: replace each literal L
involving an atom of the set Atoms(P>T )∩Atoms(P≤T ) either by u, in caseM |= L,
or else by not u, in case M 2 L.

Now the following are true assertions:

1. Model M must T -segment support a SEM model W∗ of program Q, where W+
∗ =

W+ ∪ {u}. Thus SEM(Q) 6= ∅;

2. u ∈ kerSEM (Q), since any model of P≤T satis�es the body of the rule u←M+
k ;

3. For each model Mk ∈ SEM(P≤T ), the valuations of the literals involving the atom
u in P>T∗ , via the scheme u←M+

k , are the same, in the corresponding replacement
positions, as the valuations with respect to the model M ∈ SEM(P≤T ), of the
literals of P>T involving Atoms(P≤T ) ∩Atoms(P>T );

4. Thus there is a model N∗ ∈ SEM(Q) of program Q such that N+
∗ ≤T = N+

≤T = M+,

u ∈ N+
∗ , and for each atom b of the language of P>T it is the case that b ∈ N+, i�

b ∈ N+
∗ ;

5. N∗ does not belong to SEM(Q∪{u}), since N does not belong to SEM(P>T /M+),
and the division P>T /M+ eliminates from P>T the same literals and rules that the
division P>T∗ /{u} eliminates from P>T∗ .

Due to items 4, 5 and to proposition 4.6, it is clear that SEM is not cut.

Proof. (of proposition 4.18)
"⇒"
Let SEM be a semantics of the ASMm or ASMh families, P a normal logic program, T a
segment of P , and N a SEM model of P such that for no model M ∈ SEM(P≤T ) do we
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have N+
≤T = M+, that is N is an irregular model with respect to segment T of program

P . Let SEM(P≤T ) = {M1,M2, · · · ,Mk}, where Mi = {ai1, · · · aimi , not b
i
1, · · ·not bini},

for each 1 ≤ i ≤ k, the Herbrand base of P≤T being, say {a1
1, a

1
2, · · · , a1

m1
, b11, b

1
2, · · · , b1n1

}.
We build a program Q whose language contains the atom v that does not belong to the
language of P , such that v ∈ kerSEM (RelQ(v)) and v /∈ kerSEM (Q), which reveals that
SEM is not local to global relevant. Let Q be the program

P

cij ← bij

dij ← not cij

v ← ai1, · · · , aimi , d
i
1, · · · , dini

where

• P is an abbreviation for the set of rules of program P ;

• (cij ← bij) and (dij ← not cij) are schemes of rules representing individual rules for
each pair of natural numbers (i, j), 1 ≤ i ≤ k and 1 ≤ j ≤ ni;

• (v ← ai1, · · · aimi , d
i
1, · · · dini) is a scheme of rules representing a rule for each 1 ≤ i ≤ k,

that is a rule for each model in SEM(P≤T );

• The atoms v, cij , d
i
j do not belong to the language of P .

Since the unique model of program N+ ∪ {cij ← bij , d
i
j ← not cij , v ← ai1, · · · , aimi , d

i
1, · · · ,

dini} does not satisfy Body(v ← ai1, · · · , aimi , d
i
1, · · · , dini), we have v /∈ kerSEM (Q). On the

other hand, all models in SEM(P≤T ) satisfy Body(v ← ai1, · · · , aimi , d
i
1, · · · , dini), by design

of program Q � notice that no atom of the type cij may be in the hypotheses set of a SEM
model of RelQ(v), since such a set would not be minimal 4. Hence v ∈ SEM(RelQ(v)) and
SEM is not local to global relevant. To see that this result is valid also for semantics of
the ASMm family, we just need to repeat the above reasoning, taking instead the program
Q = {P, v ← ai1, · · · , aimi}, the abbreviation and the scheme of rules having the meanings
stated above.
"⇐"
Suppose now that SEM is a not local to global relevant semantics of the ASMh or ASMm

families. Then there is a normal logic program P and an atom v of the language of P , such
that v ∈ kerSEM (RelP (v)) and v /∈ kerSEM (P ). There is thus a model M ∈ SEM(P )
such that v /∈ M . Let T be the highest layer of P containing a rule of RelP (v). Using
a program transformation like the one used in the proof of proposition 4.14, we obtain a
program P ∗ with a SEM model M∗, such that for no model N∗ ∈ SEM(P ∗ ≤T ) do we
have M+

∗ ≤T = N+
∗ , which means that SEM is irregular by de�nition 4.20.

B.3 Characterization of Some ASMh and ASMm Semantics

with Respect to Existence, Relevance and Cumulativity

MH,MHLS,MHLoop

Existence: yes, since every normal logic program has a minimal model, and thus a minimal
4Notice that RelQ(v) = P≤T ∪ {cij ← bij , d

i
j ← not cij , v ← ai1, · · · , aimi

, di1, · · · , dini
}.
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hypotheses model;
Global to local relevance: yes, due to existence and propositions 4.10, 4.13 and 4.14;
Local to global relevance: no, due to proposition 4.18 and example 4.7;
Cautious monotony: no, due to counter-example in example 4.4;
Cut: no, due to counter-example in example 4.4.

MHSustainable

Existence: no; the following program P has no MHSustainable models

a← not a, not b, not v

b← not b, not a, not u

u← not u, not v, not a

v ← not v, not u, not b

To see this is the case, notice that the minimal hypotheses models are {a, b}, {a, u}, {a, v},
{b, u}, {b, v}, {u, v}, each model being equal to the respective hypotheses set. Now for any
of these models, condition

∀h∈H [(H \ {h}) 6= ∅ ⇒ h ∈WFMu(P ∪ (H \ {h}))],

fails, revealing the non existence of models of this program;
Global to local relevance: no, due to failure of existence and propositions 4.10, 4.13 and
4.14;
Local to global relevance: no, since MHSustainable is irregular, as show by the following
program, P

d← not a, not e

a← d

e← d

−−−−−1

u← not d

whoseMHSustainable model {d, a, e} is irregular, since its 1-segment decomposition positive
part, {d, a, e}, does not correspond to any model of P≤1;
Cautious monotony: no, due to counter-example in example 4.4;
Cut: no, due to counter-example in example 4.4.

MHSustainable
min

Existence: no, due to failure of existence for MHSustainable;
Global to local relevance: no, due to failure of existence and propositions 4.10, 4.13 and
4.14;
Local to global relevance: no, due to being irregular (it admits the same irregular model of
the program used in the case of MHSustainable);
Cautious monotony: no, due to failure of existence and proposition 4.11;
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Cut: no, due to the following counter-example P :

w ← not a

w ← not b

a← not b

b← not a, not u

u← w

whereMHSustainable
min (P ) = {{a, u, w}, {b, u, w}} andMHSustainable

min (P∪{w}) = {{a, u, w}},
which reveals MHSustainable

min as not cut due to corollary 4.7.

MHRegular

Existence: yes, since any normal logic program has a minimal hypotheses regular model.
The argument is as follows. If P has a single layer, then all models of P are regular.
If not, then proceed with the following iterative computation: compute a minimal hy-
potheses model of segment 1 of P , let it be M1; compute a minimal hypotheses model of
segment 1 of P/M+

1 ; let it be M2; repeat this procedure until a step k is reached for which
WFMu(P/M+

k ) = ∅. The T -segment decompositionM+
k ≤T with respect to any segment T

of P , corresponds to a minimal hypotheses model of P≤T , and thus M = WFM(P/M+
k )

is regular;
Global to local relevance: yes, due to existence and propositions 4.10, 4.13 and 4.14;
Local to global relevance: yes, due to MHRegular being regular, by design, and to proposi-
tion 4.18;
Cautious monotony: no, due to counter-example in example 4.4;
Cut: no, due to excessiveness revealed by example 4.8 and proposition 4.17.

Navy
Existence: yes, since any normal logic program has a minimal model;
Global to local relevance: yes, due to existence and propositions 4.10, 4.13 and 4.14;
Local to global relevance: no, due to irregularity, revealed by example 4.7, and to proposi-
tion 4.18;
Cautious monotony: yes, see proof below;
Cut: no, due to excessiveness revealed by example 4.6 and proposition 4.17.

Proof that Navy is cautious monotonic.
Let S ⊆ kerNavy(P ). If M ∈ Navy(P ∪ S) then M ∈ Navy(P ), otherwise there would be
no minimal model of P containing S. According to corollary 4.5 this means that Navy is
cautious monotonic.

Blue
Existence: yes, since any normal logic program has a minimal model;
Global to local relevance: yes, due to existence and propositions 4.10, 4.13 and 4.14;
Local to global relevance: no, due to irregularity, revealed by example 4.7, and to proposi-
tion 4.18;
Cautious monotony: yes, see proof below;
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Cut: yes, see proof below.

Proof that Blue is cumulative.
kernelBlue(P ) is computed by means of the following iterative procedure:

S1 = kernelNavy(P )

S2 = kernelNavy(P ∪ S1)

· · ·
Sn = kernelNavy(P ∪ Sn−1)

until a �xpoint Sn = Sn+1 is attained. This �xpoint exists, on basis of the following
argument:

1. S1 ⊂ S2 ⊂ · · · ⊂ Sn.

2. P is a �nite ground normal logic program, with a �nite Herbrand base. Thus the
sequence (Si) must be �nite.

Now we are going to show that for any S ⊆ kernelBlue(P ) we have Blue(P ) = Blue(P∪S),
which together with theorem 4.9 reveals that Blue is a cumulative semantics.

1. Let then S ⊆ kernelBlue(P ) = Sn. There must be a k ∈ N0, k < n, such that
Sk ⊆ S ⊆ Sk+1, where S0 = ∅.

2. We have Navy(P ∪ Sk+1) ⊆ Navy(P ∪ S) ⊆ Navy(P ∪ Sk).

3. Let S′1 = kernelNavy(P ∪ S). We have Sk+1 ⊆ S′1 ⊆ Sk+2, where Sk+2 = Sn if
k + 2 ≥ n, and hence Navy(P ∪ Sk+2) ⊆ Navy(P ∪ S′1) ⊆ Navy(P ∪ Sk+1). Let
S′2 = kernelNavy(P ∪ S′1).

4. From the above steps we see that the sequence S′1, S
′
2, · · · , is monotonically increasing

(with respect to set inclusion) and �nite, meaning that an index r exists such that
S′r = S′n, and hence Blue(P ) = Blue(P ∪ S).

Cyan
Existence: yes, since any normal logic program has a minimal regular model � proof is
analougous to the one given to show existence stands to MHRegular;
Global to local relevance: yes, due to existence and propositions 4.10, 4.13 and 4.14;
Local to global relevance: yes, due to regularity, by design, and to proposition 4.18;
Cautious monotony: yes, see proof below;
Cut: yes, see proof below.

Proof that Cyan is cumulative.
kernelCyan(P ) is computed by means of the following iterative procedure:

S′′1 = kernelNavy+Regular(P ) where M ∈ (Navy +Regular)(P )

⇔M is Regular and M ∈ Navy(P )

S′′2 = kernelNavy+Regular(P ∪ S′′1 )

· · ·
S′′t = kernelNavy+Regular(P ∪ S′′t−1)
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until a �xpoint S′′t = S′′t+1 is attained. This �xpoint exists, on basis of an argument analo-
gous to the one given for Blue semantics. The rest of the proof mimics the proof undertaken
above for the Blue semantics. We are going to show that for any S ⊆ kernelCyan(P ) we
have Cyan(P ) = Cyan(P ∪ S), which by theorem 4.9 reveals that Cyan is a cumulative
semantics.

1. Let then S ⊆ kernelCyan(P ) = S′′t . There must be a k ∈ N0, k < t, such that
S′′k ⊆ S ⊆ S′′k+1, where S

′′
0 = ∅.

2. We have (Navy + Regular)(P ∪ S′′k+1) ⊆ (Navy + Regular)(P ∪ S) ⊆ (Navy +
Regular)(P ∪ S′′k ).

3. Let S′1 = kernelNavy+Regular(P ∪ S). We have S′′k+1 ⊆ S′1 ⊆ S′′k+2, where S
′′
k+2 = S′′t

if k+ 2 ≥ t, and hence (Navy+Regular)(P ∪S′′k+2) ⊆ (Navy+Regular)(P ∪S′1) ⊆
(Navy +Regular)(P ∪ S′′k+1). Let S′2 = kernel(Navy+Regular)(P ∪ S′1).

4. From the above steps we see that the sequence S′′1 , S
′′
2 , · · · , is monotonically increas-

ing (with respect to set inclusion) and �nite, meaning that an index r exists such
that S′′r = S′′t , and hence Cyan(P ) = Cyan(P ∪ S).

SM
Existence: no, due to example 4.5 and proposition 4.10;
Global to local relevance: no, due to existence failure and propositions 4.10, 4.13 and 4.14;
Local to global relevance: yes, due to propositions 4.16 and 4.18;
Cautious monotony: no, due to existence failure and proposition 4.11;
Cut: yes, see [Dix95b].

Green
Existence: yes, since any normal logic program has a minimal model;
Global to local relevance: yes, due to existence and propositions 4.10, 4.13 and 4.14;
Local to global relevance: no, due to irregularity, revealed by example 4.7, and to proposition
4.18;
Cautious monotony: no, because this semantics mimics SM in example 4.2;
Cut: no, due to example 4.6 and proposition 4.17.
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C.1 Refers to Section 5.2

Proof. (of proposition 5.7) We prove by mathematical induction on n, that if b /∈ ΓnP t−o(∅),
then also bo /∈ ΓnP t−o(∅).
Base Step
We show that the result is true for n = 1. For every rule r ∈ P t−o, say (r = b← A,not Bo),
there is a co-rule ro ∈ P t−o, ro = (bo ← Ao, not B, not ¬b). The Gelfond-Lifschitz
transformation of P t−o modulo ∅, P t−o∅ , is thus formed by pairs of co-rules, which are equal
rules if we ignore the superscript "o". Thus if b /∈ Γ1

P t−o(∅) then also bo /∈ Γ1
P t−o(∅).

Induction Step
Suppose (5.2) is correct for some n = k ≥ 1. Let us show it is also correct for n = k + 1.

1. Assume that there is an atom c ∈ ΓkP t−o(∅) whilst c /∈ Γk+1
P t−o(∅).

2. Then some rule in the subprogram relevant to atom c must have been eliminated by
the division P t−o

Γk
Pt−o

(∅) , whilst that rule were not eliminated by the division P t−o

Γk−1

Pt−o
(∅)

,

otherwise we should have c ∈ Γk+1
P t−o(∅). The eliminated rule must be a non superscript

head one, since in de�nite programs P t−o

Γi
Pt−o

(∅) , i ∈ N, the subprogram relevant for a

non superscript head rule contains only non superscript head rules.

3. Let k ← X,not Y o be one of such eliminated rules, where X (resp. Y 0) represents a
conjunction of non superscript (resp. superscript) atoms.

4. This means there is an atom yo ∈ Atoms(Y o) such that yo ∈ ΓkP t−o(∅).

5. Now due to the inductive hypothesis, we also have y ∈ ΓkP t−o(∅). Thus the co-rule

ko ← Xo, not Y is also eliminated by the division P t−o

Γk
Pt−o

(∅) .

6. Hence for every rule r of P t−o eliminated by the division P t−o

Γk
Pt−o

(∅) , the co-rule r
o is

also eliminated. Thus if c /∈ Γk+1
P t−o(∅) then also co /∈ Γk+1

P t−o(∅). This �nishes the proof.
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C.2 Refers to section 5.3

Proof. (of lemma 5.16) The system applied on Q terminates, because Q has a �nite set of
literals and the operations P, S eliminate literals. Let us then show its con�uence. Consider
two di�erent sequences of X operations on Q, seq1 and seq2, of the form

seqα = 〈(rα1 , opα1 ), (rα2 , op
α
2 ), · · · , (rαj , opαj ), · · · , (rαnα , op

α
nα)〉, α ∈ {1, 2} (C.1)

where opαj ∈ {P, S}, j = 1, · · · , nα, and each rαj represents the rule of Qαj used to perform
operation opαj , where Q

α
j is the program resulting from the application of the jth operation

in seqα on the program Qαj−1, j ≥ 1, being Qα0 = Q. Suppose the resulting programs Qαnα ,
α ∈ {1, 2}, are invariant to any further application of operations of the reduction system
X. We have to show that Q1

n1
= Q2

n2
. We prove the lemma by induction on the number t

of new facts produced by sequence seq1. Recall that the operations P, S do not eliminate
rules.
Base step If t = 0, that is, no new facts are produced in the n1 steps of seq1, then operation
S uses only the set of facts of the original program. As no rules are deleted by operations
P, S, the operation P uses only the atoms without a rule of the original program Q. Hence,
any literal erased by a P or a S operation at some of the n1 steps of seq1, must also be
erased by a P or a S operation at a certain step of seq2, in order to obtain a program
Q2
n2

invariant under any further P or S operation. As the roles of seq1 and seq2 may be
interchanged in this reasoning, we have Q1

n1
= Q2

n2
.

Induction step Suppose now that this equality is true for t = m. We are going to show
that it is also true for t = m + 1. Let k be the step of seq1 at which the (m + 1)th new
fact is generated. By the inductive hypothesis, there is some step i of seq2 such that all
the �rst m new facts were generated in previous ≤ i steps. Now the set of facts F 1

k−1 and
the set of atoms without a rule A1

k−1 in Q1
k−1, are also facts and atoms without a rule in

the program Q2
i , and they constitute the preconditions for performing all the operations

{P, S} that occur in seq1 before the (m + 1)th fact is generated. Thus the (m + 1)th fact
must also be generated at some step > i of seq2, for the sake of invariance of the program
Q2
n2
under the system X. This �nishes the proof.

Proof. (of lemma 5.17) The rewriting system applied on Q terminates, because Q has a
�nite set of literals and rules, and the operations P, S, E eliminate literals and rules. Let us
then show its con�uence. Consider two di�erent sequences seq1 and seq2 of X∗ operations,
of the form

seqα = 〈(rα1 , opα1 ), (rα2 , op
α
2 ), · · · , (rαj , opαj ), · · · , (rαnα , op

α
nα)〉, α ∈ {1, 2} (C.2)

where opαj ∈ {P, S,E}, j = 1, · · · , nα, and each rαj represents the set of rules of program
Qαj−1 used to perform operation opαj , Q

α
j being the resulting program, Qα0 = Q. Suppose the

resulting programs Qαnα , α ∈ {1, 2}, are invariant to any further application of operations
of the reduction system X∗. We have to show that Q1

n1
= Q2

n2
. We prove the lemma by

induction on the number k of E operations that appear in seq1. It is a consequence of the
proof of lemma 5.16, that k = 0 in sequence seq1 i� k = 0 in sequence seq2 � in this case
the resulting programs are equal. Let us then consider k 6= 0.
Base Step
Suppose that k = 1, that is, only one operation of the type E is performed in seq1. Let us
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suppose that the E operation is performed at step j of the sequence. Then all operations
performed at steps (< j) belong to the set {P, S}. Now none of these two operations
performs rule deletion, and all the literals erased and new facts produced in the �rst (j−1)
steps of seq1 must also be erased and produced after some step in seq2, by the following
reasoning:

• Let F , A, be respectively the set of facts and the set of atoms without a rule in the
initial program Q.

• Let R be the set of nonempty body rules of Q that become facts after the �rst j − 1
steps of seq1. Then the Gelfond-Lifschitz division R∪F

∅ is a de�nite program, its only
model satisfying the bodies of all the rules of R, and containing the facts in Q1

j−1.
Thus no rule of R can be deleted at any step of seq2, and hence the facts of Q1

j−1

must also pertain to Q2
n2
.

Summing it all up, the preconditions for performing an operation E at step j of seq1, i.e.
the assertion of a certain number of facts and atoms without rule, are also veri�ed at some
step of seq2. Hence it is not possible to avoid the same operation E to be performed in seq2,
erasing thus the same set of rules (in case they were not eliminated by an alternative E
operation), in order to get an invariant program Q2

n2
with respect to the reduction system

X∗.
Induction Step
If Q1

n1
= Q2

n2
for k = m, then we also have Q1

n1
= Q2

n2
for k = m + 1, by the following

reasoning.

• Let j be the step of seq1 at which the (m+1)th E operation takes place, j− t ≥ 1 the
step of seq1 at which the mth E operation takes place, and F 1

j−t, A
1
j−t be respectively

the facts and the atoms without a rule in Q1
j−t.

• By inductive hypothesis, there is a step (j′−t′) ≥ 1 in seq2 where themth E operation
takes place. Notice that the sequences (Fα1 , F

α
2 , · · · ) and (Aα1 , A

α
2 , · · · ), α = 1, 2, are

monotonically increasing with respect to set inclusion.

• Now from steps (j− t) to (j− 1) in seq1, the operations performed are P or S. By a
reasoning analogous to the one used in the base step, all the new facts generated in
these steps must also be generated after the step j′−t′ in seq2. Thus the preconditions
for performing the (m + 1)th operation at step j of sequence seq1 are also veri�ed
after some step, say j′, of seq2, which means that the rules eliminated after step j in
seq1 are also eliminated after step j′ of seq2.

Thus the same reductions that occur in Q to produce Q1
n1

also occur in Q while computing
Q2
n2
. As the roles of seq1 and seq2 may be interchanged in the above reasoning, we conclude

that Q1
n1

= Q2
n2
. This �nishes the proof.

Proof. (of theorem 5.19) Let Q be an extended normal logic program and Qt−o its t − o
transformed. Let seq1 and seq2 be two sequences of transformations of the type, seqα =
〈opα1 , opα2 , · · · , opαj , · · · ,
opαnα〉, 1 ≤ α ≤ 2, that correspond to the application respectively of the reduction system
7→bLWFS , (α = 1), and of the reduction system 7→WFS , (α = 2), on the program Qt−o,
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where the opαj are operations of the corresponding reduction systems. Let Qαj be the
program obtained after the application of the transformation opαj on the program Qαj−1,
where Qα0 = Qt−o. Let also Fαj , A

α
j be respectively the set of facts and the set of atoms

with no rule in the program Qαj . We shall prove the following relations:

F 1
n1
⊆ F 2

n2
(C.3)

A1
n1
⊆ A2

n2
(C.4)

which, taken together, are equivalent to the relation (5.3). The proof will be by mathe-
matical induction on the number k of bLN operations that occur in the sequence seq1.
Base Step If k = 0, then no bLN operations occur in the sequence seq1, meaning that
all the operations involved belong to the set {P, S, F, L}. By the con�uence of both the
systems {P, S, F, L} and 7→WFS , seq2 can be modi�ed so that its �rst n1 operations are
exactly the operations of seq1, in the same order. After these operations in seq1 and seq2

we have:

F 1
n1

= F 2
n1

(C.5)

A1
n1

= A2
n1
. (C.6)

Now we have Q1
n1

= Q2
n1

= bQt−o and seq1 is over. If any further operation may occur
in seq2, then it must be a negative reduction operation that corresponds to no balanced
layered negative reduction operation in seq1. Being this the case, bQt−o must contain a
fact and a rule whose body contains the default negation of this fact, and the operation
takes place in seq2 at step n1 + 1. This makes the following relations true:

F 1
n1

= F 2
n1+1 (C.7)

A1
n1
⊆ A2

n1+1, (C.8)

which may produce the preconditions for the application of the transformations P or F or
L on Q2

n1+1, that may lead to S and N operations, etc. As is easily seen, the sequences
(Fα1 , F

α
2 , · · · ) and (Aα1 , A

α
2 , · · · ) are monotonically increasing with respect to set inclusion,

and thus:

F 1
n1
⊆ F 2

ns (C.9)

A1
n1
⊆ A2

ns , (C.10)

where ns indexes the last step of seq2. The relations C.3 and C.4 are thus valid for the
case k = 0.
Induction Step We now show that if relations C.3 and C.4 are true for k = m then they are
also true for k = m+ 1. Suppose then that the relations are valid for k = m. Let i (resp.
i − t) be the index of the step in seq1 at which the (m + 1)th (resp. mth) bLN operation
takes place. By the con�uence of the system 7→WFS , we can make seq1 and seq2 equal in
the �rst i− t steps (this may correspond to postpone some negative reduction operations

in the Q̂t−o computation in seq2) and then

F 1
i−t = F 2

i−t (C.11)

A1
i−t = A2

i−t (C.12)

Q1
i−t = Q2

i−t. (C.13)
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Now all the operations performed on program Q1
i−1 from steps i − t to i − 1 in sequence

seq1, belong to the set {P, S, F, L}, and can also be performed on Q2
i−1, in seq2. Thus we

can write

F 1
i−1 = F 2

i−1 (C.14)

A1
i−1 = A2

i−1 (C.15)

Q1
i−1 = Q2

i−1. (C.16)

and the preconditions for the application of the (m + 1)th bLN operation are veri�ed by
both Q1

i−1 and Q2
i−1. Hence,

F 1
i = F 2

i (C.17)

A1
i = A2

i (C.18)

Q1
i = Q2

i . (C.19)

The validity of relations C.3 and C.4 for the case k = m + 1 is immediate by continuing
this reasoning in a manner analogous to the one used in the base step.

C.3 Refers to section 5.4

Proof. (of theorem 5.21) Let P be a normal logic program. We start by proving the
equalities

bP t−o =
o

P t−o (C.20)
o
P
t−o

=
o

P t−o, (C.21)

where (C.20) means that the balanced layered remainder bP t−o is equal to the layered

remainder
o

P t−o of P t−o, and (C.21) means that the t− o transformed
o
P
t−o

of P̊ , is equal

to the layered remainder
o

P t−o of P t−o.

1. (proof of C.20)

(a) Let P t−o¬ be the program that results from applying to P t−o the operations
of positive reduction necessary to eliminate all default negations of explicitly
negated literals, say not ¬b (notice that no explicitly negated literal has a rule
in P t−o). Due to the con�uence of the system 7→bLWFS (resp. 7→LWFS), any

sequence of operations for computing bP t−o (resp.
o

P t−o) may take all these
positive reduction operations as the �rst set of operations performed. Thus the

computation of bP t−o (resp.
o

P t−o) may be performed in a manner such that the
program P t−o¬ appears at a certain step of the computation. Each of the sets
(4P t−o¬ )+, (4P t−o¬ )u, (4P t−o¬ )−, contains only pairs of co-atoms, by de�nition
5.3 (of t− o transformation).
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(b) Let op be the �rst operation performed on P t−o¬ in the sequel of the computation

of
o

P t−o. Then op either deletes (i) pairs of co-atoms (success), or (ii) pairs of
co-atoms default negations (positive reduction), or (iii) sets of co-rules (loop
detection, failure, layered negative reduction), by point (1a) above (obs. rules in
P t−o¬ appear as pairs of co-rules). The same happens if op is the �rst operation
performed in the sequel of the computation of bP t−o. Notice that balanced
negative reduction and layered negative reduction are equivalent in this context,
since a rule r is involved in a loop through say the literal not co i� its co-rule ro

is involved in a loop through the literal not c, as per observation and point (1a)
above. Thus, the program P t−o1 resulting after this �rst operation is the same
in both cases.

(c) Point (1b) above constitutes the base step of an inductive proof of equality
(C.20), where the induction is on the number of operations "op" performed,
whose inductive step proceeds in an analogous vein, showing that if P t−oi is the
program resulting after the ith reduction operation, then (4P t−oi )+, (4P t−oi )u,
(4P t−oi )− contain only pairs of co-atoms, which in turn shows that the systems
7→bLWFS and 7→LWFS produce the same resulting program when applied on the
t− o transformed of a normal logic program P .

2. (proof of C.21)

(a) Let P t−o¬ be the program obtained in point (1a) above. The following equalities
prevail, by de�nition 5.3:

b ∈ (4P )+ i� b, bo ∈ (4P t−o¬ )+ (C.22)

b ∈ (4P )− i� b, bo ∈ (4P t−o¬ )− (C.23)

b ∈ (4P )u i� b, bo ∈ (4P t−o¬ )u. (C.24)

Thus for each operation of the system 7→LWFS performed on P (or on the
program that results after performing on P a set of operations of this system),
that creates a new fact c, eliminates a literal not c, or eliminates a set of rules R,
there is a corresponding set of operations of the system 7→bLWFS performed on
P t−o¬ (or on the program that results after performing on P t−o¬ a set of operations
of this system), that respectively creates the new facts c, co, eliminates the pair
of literals not c, not co, or eliminates the set of rules Rt−o, where r ∈ R i�
s, so ∈ Rt−o, s, so resulting from r by t− o transformation.

(b) The previous point, together with de�nition 5.3, shows the validity of equality
(C.21).

Now from the equalities (C.20) and (C.21) we have

bP t−o =
o
P
t−o

. (C.25)

This means that the interpretations4bP t−o and4
o
P
t−o

are equal, and have thus the same
set of pairs of unde�ned co-atoms. Hence the set of MHP assumable hypotheses of P is
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also the set of MH assumable hypotheses of P . If Hyps(P ) is the set of MHP hypotheses
of P and H ⊆ Hyps(P ), then we have,

WFMP (P ∪H) = 5WFM(P t−o ∪H ∪ {ho ← not ¬h : h ∈ H})
= 5WFM(bP t−o ∪H ∪ {ho ← not ¬h : h ∈ H})

= 5WFM(
o
P
t−o
∪H ∪ {ho ← not ¬h : h ∈ H})

= WFMP (
o
P ∪H),

and hence

WFMP (P ∪H) = WFMP (
o
P ∪H).

Now this equality and theorem 5.4 immediately show that if P is a normal logic program,
then the MH and MHP models coincide, if we ignore the default negations of explicitly
negated literals in the MHP models, introduced by the language of the t− o transformed,
because by doing so the models WFMP (P ∪H) and WFM(P ∪H) are the same.

Proof. (of theorem 5.24) Let us show that �nding a MHP model of an extended normal
logic program P is a ΣP

2 -complete task. Computing P t−o is ful�lled in linear time. The bal-
anced layered remainder bP t−o is computed in polynomial time, by the following reasoning:
the calculus of the remainder of a normal logic program is known to be of polynomial time
complexity [BDFZ01]; the di�erence between 7→WFS and 7→bLWFS lies on the operator
7→N of the former being replaced by the operator 7→bLN of the latter; to perform 7→bLN

the rule layering must be computed; the rule layering can be calculated in polynomial time
since it is equivalent to identifying the strongly connected components [Tar72] in a graph,
SCCs, in this case in the complete rule graph of P t−o; when verifying the preconditions to
perform a negative reduction operation (existence of a fact, say b, and a rule with not b in
the body), it is linear time to check if a rule is in loop (check if it belongs to a SCC ) and if
it is in loop through literal not b (check if b belongs to the heads of the SCC ) � the same
for checking if the co-rule is in loop through not bo; therefore, balanced layered negative
reduction adds only polynomial time complexity operations over negative reduction. Once
bP t−o is computed, non deterministically guess a set H of hypotheses � the assumable
hypotheses set is the set of all superscript atoms involved in default negations in bP t−o,
whose co-atoms are not facts. Check if WFMu

P (P ∪ H) = ∅ � this is polynomial time.
Checking that H is empty or non-empty minimal, requires another non deterministic guess
of a strict subset H ′ of H and then a polynomial check if WFMu

P (P ∪H ′) = ∅.
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gram, 30

knowledge ordering, 17
L

layered negative reduction, 20
least model semantics, 18
logic slack, 48
loop, 11

M

MHP , (paraconsistent) minimal hypothe-
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