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Abstract

In survey research, there are many situations when the primary variable of interest is
sensitive. The sensitivity of some queries can give rise to a refusal to answer or to false
answers given intentionally. Survey can be conducted in a variety of settings, in part dic-
tated by the mode of data collection, and these settings can differ in how much privacy
they offer the respondent. The estimates obtained from a direct survey on sensitive ques-
tions would be subject to high bias. A variety of techniques have been used to improve
reporting by increasing the privacy of the respondents.

The Randomized Response Technique (RRT), introduced by Warner in 1965, develops
a random relation between the individual’s response and the question. This technique
provides confidentiality to respondents and still allows the interviewers to estimate the
characteristic of interest at an aggregate level.

In this thesis we propose some estimators to improve the mean estimation of a sensi-
tive variable based on a RRT by making use of available non-sensitive auxiliary informa-
tion. In the first part of this thesis we present the ratio and the regression estimators as
well as some generalizations in order to study the gain in the estimation over the ordinary
RRT mean estimator. In chapters 4 and 5 we study the performance of some exponential
type estimators, also based on a RRT. The final part of the thesis illustrates an approach
to mean estimation in stratified sampling. This study confirms some previous results for
a different sample design. An extensive simulation study and an application to a real
dataset are done for all the study estimators to evaluate their performance. In the last
chapter we present a general discussion referring to the main results and conclusions
as well as showing an application to a real dataset which compares the performance of
study estimators.

Keywords: Auxiliary variable; Exponential estimator; Randomized response technique;
Ratio estimator; Regression estimator; Sensitive variable.
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Resumo

Em estudos de pesquisa por inquérito existem muitas situações em que a variável de
interesse é sensível. A sensibilidade de algumas questões pode dar origem a recusas na
resposta ou a falsas respostas dadas de forma intencional. Os inquéritos podem assumir
diversas configurações, em parte relacionadas com o método de recolha e com o grau
de privacidade que é oferecido aos respondentes. As estimativas obtidas por inquérito
direto em questões sensíveis estariam sujeitas a erros elevados. Muitas técnicas têm sido
utilizadas para melhorar as respostas através do aumento de privacidade dos inquiri-
dos. A Técnica de Resposta Aleatorizada, introduzida por Warner em 1965, desenvolve
uma relação aleatória entre as respostas individuais e a questão. Esta técnica providencia
confidencialidade aos respondentes e ainda permite aos entrevistadores estimar a carac-
terística de interesse num nível mais agregado.

Nesta tese propõem-se alguns estimadores para melhorar a estimação da média de
uma variável sensível baseada numa técnica de resposta aleatorizada com recurso a in-
formação auxiliar disponível não sensível. Na primeira parte da tese apresentam-se os
estimadores da razão e da regressão bem como algumas generalizações para estudar o
ganho na estimação face ao estimador ordinário da média. Nos capítulos 4 e 5 estuda-se
a performance de alguns estimadores do tipo exponencial, também baseados numa téc-
nica de resposta aleatorizada. A parte final da tese ilustra uma aproximação à estimação
da média com amostragem estratificada. Este estudo vem confirmar resultados anterio-
res com um novo desenho amostral. Um extenso estudo de simulação e uma aplicação
a dados reais são feitos para avaliar a performance de todos os estimadores. No último
capítulo apresenta-se uma discussão geral, bem como uma aplicação a dados reais onde
se compara a performance dos estimadores em estudo.

Palavras-chave: Estimador da razão; Estimador da regressão; Estimador exponencial;
Técnica de resposta aleatorizada; Variável auxiliar; Variável sensível.
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1
General Introduction

One of the major problems in survey research involving sensitive questions is the social
desirability response bias (Edwards, 1957). For various reasons individuals in a sample
survey may prefer not to confide to the interviewer the correct answers to certain ques-
tions. In such cases the individuals may elect not to reply at all or to reply with incorrect
answers. The resulting evasive answer bias is ordinarily difficult to assess. That bias
is potentially removable through allowing the interviewer to maintain privacy using a
randomization device (Warner, 1965).

Randomized response is a research method used in structured survey interview. It
was first proposed by Warner in 1965 and later modified by Greenberg et al. in 1969. This
technique allows respondents to respond to sensitive issues while maintaining confiden-
tiality. It provides confidentiality to respondents through a random relation between the
individual’s response and the question. It still allows the interviewers to estimate the
characteristic of interest at an aggregate level.

Gupta and Thornton (2002) showed that Randomized Response Technique (RRT) is
effective in circumventing the social desirability response bias, and is more friendly and
portable than other methods such as the method which uses a bogus pipeline (Jones and
Sigall, 1971).

RRT models may be classified as Full RRT model, Partial RRT model or Optional RRT
model depending on the level of scrambling. In the Full RRT model (Eichhorn and Hayre,
1983) all the respondents are asked to provide a scrambled response. When a predeter-
mined proportion of randomly selected respondents are asked to provide a true response
we have a Partial RRT model (Mangat and Singh, 1990). Gupta et al. (2002) proposed an
Optional RRT model where the respondents are allowed to report a true response or a

1



1. GENERAL INTRODUCTION

scrambled response depending on whether the respondents find the question sensitive
or not.

In RRT work, generally the focus is on the estimation of the mean of a sensitive vari-
able or the prevalence of a sensitive characteristic in the population. The mean can be
estimated by using one of many RRT but we propose some estimators which improve
the mean estimation considerably by using non-sensitive auxiliary information. In such
cases, one will be able to observe an auxiliary variable directly but will have to rely on
some RRT to collect information on the variable of interest, resulting from a sensitive is-
sue. Given that our main aim is to evaluate the performance of the mean estimator in
the presence of auxiliary information, we opt for using an additive Full RRT method to
scramble the sensitive variable.

The main goal of this thesis is to improve the parameter estimation of a sensitive
variable in the presence of auxiliary information. For that purpose we introduce some
estimators for the population mean based on the additive Full RRT technique. Expres-
sions are derived for the Bias and Mean Square Error (MSE) for all the proposed estima-
tors. Furthermore, an extensive simulation study and an application to a real dataset are
done for all the study estimators. All the applications are developed using the statistical
software R [1].

This thesis is based on five papers to be found in chapters 2–6. Each chapter presents,
at least, a new estimator and evaluates its performance comparing it to the other estima-
tors previously proposed. The contents of this thesis are as follows:

• In Chapter 2 we propose a ratio estimator for the mean of a sensitive variable using
information from a non-sensitive auxiliary variable. We generalize the proposed
estimator to the case of transformed ratio estimators. We show that there is hardly
any difference in the first order and second order approximations for MSE even for
small sample sizes. We also show that the proposed estimator does better than the
ordinary RRT mean estimator which does not use the auxiliary information (Sousa
et al., 2010).

• In Chapter 3 we introduce a regression estimator which performs better than the
ratio estimator even for modest correlation between the primary and the auxiliary
variables. We consider a generalized regression-cum-ratio estimator that has even
smaller MSE. It is shown that the proposed regression estimator performs better
than the ratio estimator and the ordinary RRT mean estimator that does not utilize
the auxiliary information (Gupta et al., 2012).

• In Chapter 4 we propose exponential type estimators using one and two auxiliary
variables to improve the efficiency of mean estimator based on a RRT. It is shown

2
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the proposed exponential type estimators are more efficient than the existing es-
timators described in Sousa et al. (2010) and Gupta et al. (2012)(Koyuncu et al.,
2013).

• In Chapter 5 we propose an improved exponential type estimator which is more
efficient than the Koyuncu et al. (2013) estimator, which in turn was shown to be
more efficient than the usual mean estimator, ratio estimator, regression estimator,
and the Gupta et al. (2012) estimator. It is shown that the improved difference-
cum-exponential estimator can produce further improvement relative to other esti-
mators previously proposed (Gupta et al., 2013).

• In Chapter 6 we extend the ratio and regression estimators to the stratified sampling
setting. Although both the ratio and regression estimators perform better than the
ordinary RRT mean estimator, the improvement is much larger with the regression
estimator. The results agree with the findings of Sousa et al. (2010) and Gupta et
al. (2012) in simple random sampling. We show that the advantage of using the
RRT in the presence of auxiliary information still holds in the context of stratified
sampling (Sousa et al., 2013).

• In Chapter 7 we present a general discussion referring to the main results and con-
clusions. We present a study with a real dataset and we show the numerical results
for the Bias and MSE, as well as graphic evidence which illustrates the performance
of the main study estimators.

In the last part of each chapter we attach the R routines developed for the simulation
studies and for the numerical examples.
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2
Ratio Estimation of the Mean of a

Sensitive Variable in the Presence of
Auxiliary Information

Abstract

We propose a ratio estimator for the mean of sensitive variable utilizing information from
a non-sensitive auxiliary variable. Expressions for the Bias and Mean Square Error (MSE)
of the proposed estimator (correct up to first and second order approximations) are de-
rived. We show that the proposed estimator does better than the ordinary Randomized
Response Technique (RRT) mean estimator that does not utilize the auxiliary informa-
tion. We also show that there is hardly any difference in the first order and second order
approximations for MSE even for small sample sizes. We also generalize the proposed
estimator to the case of transformed ratio estimators but these transformations do not
result in any significant reduction in MSE. An extensive simulation study is presented
to evaluate the performance of the proposed estimator. The procedure is also applied
to some financial data (purchase orders (sensitive variable) and gross turnover (non-
sensitive variable)) in 2009 for 5090 companies in Portugal from a survey on Information
and Communication Technologies (ICT) usage.

Published as: SOUSA, R., SHABBIR, J. REAL, P. C. & GUPTA, S. (2010). Ratio estimation of the mean
of a sensitive variable in the presence of auxiliary information. Journal of Statistical Theory and Practice, 4(3),
495-507.
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2.1. Introduction

2.1 Introduction

In survey research, there are many situations when the primary variable of interest (Y ) is
sensitive and direct observation on this variable may not be possible. However, we may
be able to directly observe a highly correlated auxiliary variable (X). For example, Y may
be the number of abortions a woman might have had in her life and X may be her age.
Similarly Y may be the total purchase orders in a year for a company and X may be the
total turn-over for that company in that year. In such cases, one will be able to observe X
directly but will have to rely on some Randomized Response Technique (RRT) to collect
information on Y . In such situations, mean of Y can be estimated by using one of many
randomized response techniques but this estimator can be improved considerably by
utilizing information from the auxiliary variable X . Many authors have presented ratio
estimators when both Y and X are directly observable. These include Kadilar and Cingi
(2006), Turgut and Cingi (2008), Singh and Vishwakarma (2008), Koyuncu and Kadilar
(2009) and Shabbir and Gupta (2010).

Also, many authors have estimated the mean of a sensitive variable when the primary
variable is sensitive and there is no auxiliary variable available. These include Eichhorn
and Hayre (1983), Gupta and Shabbir (2004), Gupta et al. (2002), Saha (2008) and Gupta
et al. (2010).

In this paper, we propose a ratio estimator where the RRT estimator of the mean of
Y is further improved by using information on an auxiliary variable X . Expressions for
the Bias and MSE for the proposed estimator are derived, correct up to both the first
order and second order approximations. It is shown that the two approximations are
very similar even for moderate sample size. We also observe that there is considerable
reduction in MSE when auxiliary information is used, particularly when the correlation
between the study variable and the auxiliary variable is high.

2.2 Terminology

Let Y be the study variable, a sensitive variable which cannot be observed directly. Let
X be a non-sensitive auxiliary variable which is strongly correlated with Y . Let S be
a scrambling variable independent of Y and X . The respondent is asked to report a
scrambled response for Y given by Z = Y +S but is asked to provide a true response for
X . Let a random sample of size n be drawn without replacement from a finite population
U = (U1, U2, ..., UN ). For the ith unit (i = 1, 2, ..., N), let yi and xi respectively be the
values of the study variable Y and auxiliary variable X . Moreover, let ȳ =

∑n
i=1 yi
n , x̄ =∑n

i=1 xi
n and z̄ =

∑n
i=1 zi
n be the sample means and Ȳ = E(Y ), X̄ = E(X) and Z̄ = E(Z)

be the population means for Y , X and Z, respectively. We assume that X̄ is known and
S̄ = E(S) = 0. Thus, E(Z) = E(Y ). Let us also define δz = z̄−Z̄

Z̄
and δx = x̄−X̄

X̄
, such that
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2.3. The Proposed Estimator

E(δi) = 0, i = z, x.

If information on X is ignored, then an unbiased estimator of µY is the ordinary sam-
ple mean (z̄) given by (2.1) below

µ̂Y = z̄. (2.1)

The mean square error (MSE) of µ̂Y is given by

MSE(µ̂Y ) =
1− f
n

(
S2
y + S2

s

)
, (2.2)

where
f = n/N , S2

y = 1
N−1

∑N
i=1(yi−Ȳ )2, S2

x = 1
N−1

∑N
i=1(xi−X̄)2 and S2

s = 1
N−1

∑N
i=1(si−S̄)2.

2.3 The Proposed Estimator

We propose the following ratio estimator for estimating the population mean of the study
variable Y using the auxiliary variable X :

µ̂R = z̄

(
X̄

x̄

)
= Z̄ (1 + δz) (1 + δx)−1 .

(2.3)

Using Taylor’s approximation and retaining terms of order up to 4, (2.3) can be rewrit-
ten as

µ̂R − Z̄ ∼= Z̄{δz − δx − δzδx + δ2
x − δ3

x + δ4
x + δzδ

2
x − δzδ3

x}. (2.4)

Under the assumption of bivariate normality (see Sukhatme and Sukhatme, 1984), we
have E(δ2

z) = 1−f
n C2

z , E(δ2
x) = 1−f

n C2
x, E(δxδz) = 1−f

n Czx, where Czx = ρzxCzCx and Cz

and Cx are the coefficients of variation of Z and X , respectively. Also we have:

E(δzδ
3
x) =

(
1−f
n

)2
3ρzxCzC

3
x, E(δ2

zδ
2
x) =

(
1−f
n

)2
(1 + 2ρ2

zx)C2
zC

2
x,

E(δ4
x) =

(
1−f
n

)2
3C4

x, E(δzδ
2
x) = E(δ2

zδx) = E(δ3
x) = 0,

and

C2
z = C2

y +
S2
s

Ȳ 2
, ρzx =

ρyx√
1 +

S2
s

S2
y

.

Recognizing that Z̄ = Ȳ in Equation (2.4), we can get expressions for the Bias of µ̂R,
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2. RATIO ESTIMATION OF THE MEAN OF A SENSITIVE VARIABLE IN THE PRESENCE OF AUXILIARY INFORMATION

2.3. The Proposed Estimator

correct up to second order of approximation, as given by

Bias(2)(µ̂R) ∼= Bias(1)(µ̂R) + 3

(
1− f
n

)2

Ȳ
[
C4
x − ρyxCyC3

x

]
, (2.5)

where
Bias(1)(µ̂R) =

(
1− f
n

)
Ȳ
[
C2
x − ρyxCyCx

]
(2.6)

is the Bias corresponding to first order of approximation.

Similarly from (2.4), MSE of µ̂R, correct up to second order of approximation, is given
by

MSE(2)(µ̂R) = E(µ̂R − Z̄)2 ∼= Z̄2E{δz − δx − δzδx + δ2
x − δ3

x + δ4
x + δzδ

2
x − δzδ3

x}2

or

MSE(2)(µ̂R) ∼= Z̄2E{δ2
z + δ2

x − 2δzδx + 3δ2
zδ

2
x + 3δ4

x − 6δzδ
3
x − 2δ2

zδx + 4δzδ
2
x − 2δ3

x}.

Since Z̄ = Ȳ , we have

MSE(2)(µ̂R) ∼= MSE(1)(µ̂R)

+3Ȳ 2
(

1−f
n

)2
C2
x

[
(1 + 2ρ2

yx)C2
y + 3C2

x − 6ρyxCyCx
]
,

(2.7)

where
MSE(1)(µ̂R) ∼=

(
1− f
n

)
Ȳ 2
(
C2
y + C2

x − 2ρyxCyCx
)

(2.8)

is the MSE corresponding to the first order approximation. The difference between the
two approximations for MSE is given by

3Ȳ 2

(
1− f
n

)2

C2
x

[
(1 + 2ρ2

yx)C2
y + 3C2

x − 6ρyxCyCx
]
,

and it converges to zero as n→ N . Our simulation results in Section 2.4 will also confirm
this pattern.

According to the first order of approximation, MSE(1)(µ̂R) < MSE(µ̂Y ) if(
ρyx −

1

2

Cx
Cy

)
> 0. (2.9)

If second order approximation is used, we can easily see thatMSE(2)(µ̂R) < MSE(µ̂Y )

if
2ρyx

Cx
Cx

+ 3

(
1− f
n

)[
6ρyxCxCy − 3C2

x − (1 + 2ρ2
yx)C2

y

]
> 1. (2.10)
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2.4. A Simulation Study

2.4 A Simulation Study

In this section, we conduct a simulation study with particular focus on the following two
issues:

a. How does the ratio estimator µ̂R compare with µ̂R the RRT mean estimator µ̂Y ;

b. How do the Bias and MSE for the ratio estimator, correct up to second order of
approximation, compare with the Bias and MSE expressions correct up to first order
of approximation.

We considered 3 bivariate normal populations with different covariance matrices to
represent the distribution of (Y,X). The scrambling variable S is taken to be a normal
distribution with mean equal to zero and standard deviation equal to 10% of the standard
deviation of X. The reported response is given by Z = Y + S.

All of the simulated populations have theoretical mean of [Y,X] as µ = [2, 2] and co-
variance matrices as given below.

Population 1

N = 1000

Σ =

[
9 1.9

1.9 4

]
, ρXY = 0.3167.

Population 2

N = 1000

Σ =

[
10 3

3 2

]
, ρXY = 0.6708.

Population 3

N = 1000

Σ =

[
6 3

3 2

]
, ρXY = 0.8660.

For each population we considered five sample sizes: n = 20, 50, 100, 200 and 300.

The Absolute Relative Bias (ARB) for the two estimators is given by |Bias(µ̂Y )/Ȳ |
and |Bias(µ̂R)/Ȳ |. We estimate the ARB using 5000 samples of size n selected from each
population. The empirical ARB values for both estimators are given in Table 2.1. As
expected, the ARB generally decreases as the sample size increases, with some exceptions
due to random fluctuations.
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2.4. A Simulation Study

The RRT mean estimator should generally perform better than the ratio estimator
because this is an unbiased estimator. Nevertheless, the ratio estimator produces fairly
good results.

Table 2.1: Empirical ARB for RRT mean estimator and ratio estimator (bold).

Population Empirical ARB

N ρXY n = 20 n = 50 n = 100 n = 200 n = 300

1000

0.3549 0.0021 0.0011 0.0010 0.0018 0.0016
0.0223 0.0071 0.0057 0.0006 0.0009

0.6965 0.0010 0.0021 0.0014 0.0014 0.0011
0.0193 0.0061 0.0015 0.0029 0.0021

0.8783 0.0012 0.0013 0.0008 0.0013 0.0011
0.0181 0.0063 0.0023 0.0026 0.0020

The theoretical ARB results for the ratio estimator, correct up to first and second de-
gree of approximation, are presented in Table 2.2.

One can see that second order approximation as compared to first order approxima-
tion does not result in major difference in ARB even for modest sample size of n = 20

and 50.

Table 2.2: Theoretical ARB for ratio estimator based on 1st and 2nd order (bold) approximation.

Population Theoretical ARB

N ρXY n = 20 n = 50 n = 100 n = 200 n = 300

1000

0.3549 0.0224 0.0087 0.0041 0.0018 0.0011
0.0258 0.0092 0.0042 0.0019 0.0011

0.6965 0.0155 0.0060 0.0029 0.0013 0.0007
0.0167 0.0062 0.0029 0.0013 0.0007

0.8783 0.0142 0.0055 0.0026 0.0012 0.0007
0.0153 0.0057 0.0026 0.0012 0.0007

Table 2.3 below gives empirical and theoretical MSE’s for the ratio estimator based on
both the first order and second order approximations. As we see from the table, there
is hardly a difference between the two approximations even for small samples. Hence
the Percent Relative Efficiency (PRE) is calculated based on first order of approximation
only. We use the following expression to find the PRE of ratio estimator as compared to
the RRT mean estimator:

PRE =
MSE(µ̂Y )

MSE(µ̂R)
× 100.

All the percent relative efficiencies are greater than 100 indicating that the ratio esti-
mator is better than the RRT mean estimator.
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There are small differences between MSE values based on first and second order ap-
proximation for smaller sample sizes (n=20 and 50) but the MSE values are very similar
when the sample size is larger. We can also note that the ratio estimator gets more and
more efficient as the coefficient of correlation between X and Y increases. We can further
note that for small correlation values, the ratio estimator may not be better than the RRT
mean estimator, particularly so if sample size is small.

Table 2.3: MSE correct up to 1st and 2nd order approximations and PRE for the ratio estimator relative to the
RRT mean estimator.

Population MSE Estimation MSE Condition PRE

N ρXY n Emprirical 1stOrder 2ndOrder 1stOrder1 2ndOrder2 1stOrder 2ndOrder

1000

0.3549

20 0.5782 0.4462 0.5249

0.0340

0.6947

104.86

89.15
50 0.1837 0.1730 0.1848 0.9464 98.15
100 0.0819 0.0820 0.0846 1.0304 101.57
200 0.0358 0.0364 0.0370 1.0723 103.37
500 0.0219 0.0219 0.0214 1.0863 103.398

0.6965

20 0.3434 0.3036 0.3327

0.4785

2.9075

171.63

156.65
50 0.1202 0.1177 0.1221 3.0887 165.49
100 0.0548 0.0558 0.0568 3.1492 168.67
200 0.0248 0.0248 0.0250 3.1794 170.30
500 0.0152 0.0145 0.0145 3.1894 170.85

0.8783

20 0.1178 0.1012 0.1139

0.5919

2.9424

309.31

274.89
50 0.0406 0.0392 0.0412 3.0185 294.99
100 0.0183 0.0186 0.0190 3.0439 302.36
200 0.0083 0.0083 0.0083 3.0565 306.18
500 0.0050 0.0048 0.0048 3.0608 307.48

1 MSE comparison condition based on 1st order approximation given in expression (2.9).
2 MSE comparison condition based on 2nd order approximation given in expression (2.10).

2.5 Numerical Example

We now compare the RRT mean estimator and the ratio estimator using a real data set.
The data come from a sample from the survey on Information and Communication Tech-
nologies (ICT) usage in enterprises in 2009 with seat in Portugal (Smilhily and Storm,
2010). This survey intends to promote the development of the national statistical sys-
tem in the information society and to contribute to a deeper knowledge about the usage
of ICT by enterprises. The target population covers all industries with one and more
persons employed in the sections of economic activity C (Manufacturing) to N (Admin-
istrative and support service activities) and S (Other service activities), from NACE1 Rev.
2 (Eurostat, 2008). The data are essentially collected using Electronic Data Interchange,
applying direct connection between information systems at the respondent and the Na-
tional Statistics Institute. For some enterprises the paper questionnaire is still used. The

1NACE is derived from the French title "Nomenclature générale des Activités économiques dans les
Communautés Européennes" (Statistical classification of economic activities in the European Communities).
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questions in the structural business surveys mainly deal with characteristics that can be
found in the organisations’ annual reports and financial statements, such as employment,
turnover and investment.

In our application the study variable Y is the purchase orders in 2009, collected by
the ICT survey in that year. This is typically a confidential variable for enterprises, only
known from business surveys. The auxiliary variable X is the turnover of each enter-
prise. This information can be easily obtained from enterprise records available in the
public domain, as administrative information. In 2009 the population survey contained
approximately 278000 enterprises and we know the value of X for all these enterprises.
The purchase orders information was collected in the ICT survey and we have the val-
ues of Y for 5090 enterprises (which answered this question in the ICT survey in 2009).
For this study, these 5090 enterprises are considered as our population. The scrambling
variable S is taken to be a normal random variable with mean equal to zero and standard
deviation equal to 10% of the satandard deviation of X , that is σS = 0.1σX . The reported
response is given by Z = Y + S (the purchase order value plus a random quantity).
The variables Y and X are strongly correlated so we can take advantage of this correla-
tion by using the ratio estimator. In the next tables we present the results for the RRT
mean estimator and for the ratio estimator for different sample sizes.

Population Characteristics:

N = 5090, ρXY = 0.9832

µX = 32.53, µY = 26.06, σX = 183.42, σY = 67.07 (in millions of Euros)

γX1 = 31.54, γY1 = 36.12, γX2 = 1481.08, γY2 = 1839.13

where γ1 and γ2 are the coefficients of skewness and kurtosis, respectively. We use the
following samples sizes in our simulation study: n = 100, 200, 300, 400, 500, 1000, 1500

and 2000.

The empirical ARB values for both estimators, based on 5000 iterations, are given in
Table 2.4. As expected, the bias decreases as the sample size increases, except for some
random fluctuation. We expect the RRT mean estimator to perform better than the ratio
estimator because this is an unbiased estimator, however, we don’t see major differences
between the two for larger samples.

Table 2.4: Empirical ARB for the RRT mean estimator and the ratio estimator (bold).

Population Empirical ARB

N ρXY n = 100 n = 200 n = 300 n = 400 n = 500 n = 1000 n = 1500 n = 2000

5090 0.9832 0.0219 0.0002 0.0096 0.0107 0.0163 0.0145 0.0106 0.0096
0.0284 0.0198 0.0171 0.0183 0.0166 0.0149 0.0127 0.0121
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2.6. Transformed Ratio Estimators

The theoretical ARB results for the ratio estimator, correct up to first degree of ap-
proximation, are presented in Table 2.5. We use only the first order approximations from
here on since the first and second order approximations are very similar, as we have seen
earlier.

Table 2.5: Theoretical ARB for the RRT mean estimator and the ratio estimator.

Population Theoretica ARB

N ρXY n = 100 n = 200 n = 300 n = 400 n = 500 n = 1000 n = 1500 n = 2000

5090 0.9832 0.0368 0.0180 0.0118 0.0086 0.0068 0.0030 0.0018 0.0011

Table 2.6 presents the results for the empirical MSE estimates, the theoretical esti-
mates, correct up to first degree of approximation and the PRE of ratio estimator relative
to the RRT mean estimator.

Table 2.6: MSE, corrected to 1st order approximation, and PRE for the ratio estimator related to the RRT
mean estimator.

Population MSE Estimation PRE
N ρXY n Empirical Theoretical

5090 0.9832

100 12.8924 15.2630

2286.36

200 6.4608 7.4786
300 4.4498 4.8838
400 3.5279 3.5864
500 2.7380 2.8079

1000 1.4117 1.2510
1500 0.8805 0.7321
2000 0.6033 0.4726

Clearly the ratio estimator performs better than the RRT mean estimator for the real
data also. The effect of sample size on the PRE calculation is neutralized when first order
approximation is used, as can be seen from Equations (2.2) and (2.8).

2.6 Transformed Ratio Estimators

Now consider the transformed ratio estimator:

µ̂TR = z̄

(
cX̄ + d

cx̄+ d

)
, (2.11)

where c and d are the unit-free parameters, which may be quantities such as the coef-
ficient of skewness and coefficient of kurtosis for X . Many researchers have used trans-
formed ratio estimators. These include Sisodia and Dwivedi (1981), Singh et al. (1973),
Kulkarni (1977), Upadhyaya and Singh (1999), Upadhyaya et al. (2000) and Chandra and
Singh (2005).
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2.6. Transformed Ratio Estimators

We can rewrite (2.11) using relative error terms in the form

µ̂TR = z̄ (1 + δz) (1 + ηδx)−1 , (2.12)

where η =
cX̄

cX̄ + d
.

Expanding (2.12), the Bias, correct up to first order of approximation, is given by

Bias(1)(µ̂TR) ∼=
(

1− f
n

)
Ȳ {η2C2

x − ηρyxCyCx}. (2.13)

By (2.6) and (2.13) Bias(1)(µ̂TR) < Bias(1)(µ̂R) if

(η − 1)

{
ρyx −

(η + 1)Cx
Cy

}
> 0. (2.14)

Similarly MSE of µ̂TR, to first order of approximation, is given by

MSE(1)(µ̂TR) ∼=
(

1− f
n

)
Ȳ 2
(
C2
y + η2C2

x − 2ηρyxCyCx
)
. (2.15)

By (2.8) and (2.15) MSE(1)(µ̂TR) < MSE(1)(µ̂R) if

(η − 1)

{
ρyx −

(η + 1)Cx
2Cy

}
> 0. (2.16)

Now we conduct a simulation study with particular focus on the comparison between
the ratio estimator µ̂R and the transformed ratio estimator µ̂TR. We considered the same
three bivariate normal populations as in the previous simulation study (Section 2.4).

The scrambling variable S is taken to be a normal random variable with mean equal
to zero and the standard deviation equal to 10% of the standard deviation of X . The
reported response is given by Z = Y + S. To compare these estimators, we present the
results for the RRT mean estimator (µ̂Y ), the ratio estimator (µ̂R) and for transformed
ratio estimator µ̂TRi(i = 1, 2, 3, 4) with four different combinations of parameters c and d:

1. µ̂TR1 = z̄

(
cX̄ + d

cx̄+ d

)
,

where c = 1 and d = coefficient of skewness;

2. µ̂TR2 = z̄

(
cX̄ + d

cx̄+ d

)
,

where c = 1 and d = coefficient of kurtosis;

3. µ̂TR3 = z̄

(
cX̄ + d

cx̄+ d

)
,

where c =coefficient of skewness and d = coefficient of kurtosis;

14
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4. µ̂TR4 = z̄

(
cX̄ + d

cx̄+ d

)
,

where c =coefficient of kurtosis and d = coefficient of skewness.

The empirical ARB values for these six estimators are given in Table 2.7.

Table 2.7: Empirical ARB for the RRT mean estimator, the ratio estimator and for the transformed ratio
estimators.

Population Empirical ARB

N ρXY n µ̂Y µ̂R µ̂TR1 µ̂TR2 µ̂TR3 µ̂TR4

1000

0.3209

20 0.0002 0.0337 0.0435 0.0006 0.0026 0.0366
50 0.0007 0.0118 0.0146 0.0002 0.0019 0.0126
100 0.0003 0.0052 0.0065 0.0000 0.0009 0.0056
150 0.0000 0.0032 0.0040 0.0001 0.0003 0.0035
200 0.0012 0.0025 0.0030 0.0008 0.0016 0.0027
300 0.0020 0.0041 0.0045 0.0023 0.0021 0.0043

0.6746

20 0.0011 0.0122 0.0113 0.0111 0.0018 0.0119
50 0.0004 0.0042 0.0038 0.0037 0.0015 0.0041
100 0.0001 0.0022 0.0021 0.0021 0.0005 0.0022
150 0.0005 0.0016 0.0015 0.0016 0.0002 0.0016
200 0.0010 0.0005 0.0005 0.0001 0.0013 0.0005
300 0.0015 0.0013 0.0014 0.0011 0.0016 0.0014

0.8684

20 0.0006 0.0120 0.0115 0.0108 0.0013 0.0119
50 0.0005 0.0041 0.0039 0.0036 0.0012 0.0040
100 0.0001 0.0018 0.0017 0.0017 0.0005 0.0018
150 0.0002 0.0010 0.0010 0.0012 0.0001 0.0010
200 0.0009 0.0004 0.0004 0.0001 0.0011 0.0004
300 0.0014 0.0010 0.0011 0.0010 0.0015 0.0010

The empirical ARB results in the Table 2.7 and the theoretical ARB results, to first de-
gree of approximation, in the Table 2.8 indicate that the transformed ratio estimators do
not produce major reductions in ARB as compared to the ratio estimator when sample
size is large. Some reduction is observed for small sample size when using transforma-
tions where the additive parameter (d) is the kurtosis.
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Table 2.8: Theoretical ARB to 1st order approximation for the RRT mean estimator, the ratio estimator and
for the transformed ratio estimators.

Population Theoretical ARB (1st Order)

N ρXY n µ̂R µ̂TR1 µ̂TR2 µ̂TR3 µ̂TR4

1000

0.3209

20 0.0248 0.0310 0.0017 0.0031 0.0267
50 0.0096 0.0120 0.0006 0.0012 0.0103
100 0.0046 0.0057 0.0003 0.0006 0.0049
150 0.0029 0.0036 0.0002 0.0004 0.0031
200 0.0020 0.0025 0.0001 0.0003 0.0022
300 0.0012 0.0015 0.0001 0.0001 0.0013

0.6746

20 0.0124 0.0116 0.0108 0.0031 0.0121
50 0.0048 0.0045 0.0042 0.0012 0.0047
100 0.0023 0.0021 0.0020 0.0006 0.0022
150 0.0014 0.0013 0.0012 0.0004 0.0014
200 0.0010 0.0009 0.0009 0.0003 0.0010
300 0.0006 0.0006 0.0005 0.0001 0.0006

0.8684

20 0.0123 0.0118 0.0108 0.0020 0.0121
50 0.0048 0.0046 0.0042 0.0008 0.0047
100 0.0023 0.0022 0.0020 0.0004 0.0022
150 0.0014 0.0014 0.0013 0.0002 0.0014
200 0.0010 0.0010 0.0009 0.0002 0.0010
300 0.0006 0.0006 0.0005 0.0001 0.0006

Table 2.9 presents the results for the empirical MSE estimates and for the theoretical
estimates, correct up to first order of approximation. Both results indicate that modest
gains can be achieved by using transformations where the additive parameter (d) is the
coefficient of skewness.
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Table 2.9: Empirical MSE and theoretical (bold) MSE to 1st order of approximation for the RRT mean esti-
mator, the ratio estimator and for the transformed ratio estimators.

Population MSE

N ρXY n µ̂R µ̂TR1 µ̂TR2 µ̂TR3 µ̂TR4

1000

0.3209

20 0.5799 0.6584 0.4097 0.4686 0.6010
0.4496 0.4672 0.3994 0.4663 0.4548

50 0.1881 0.2000 0.1546 0.1793 0.1915
0.1743 0.1811 0.1549 0.1808 0.1763

100 0.0872 0.0914 0.0750 0.0875 0.0884
0.0826 0.0858 0.0734 0.0857 0.0835

150 0.0546 0.0571 0.0475 0.0551 0.0554
0.0520 0.0540 0.0462 0.0539 0.0526

200 0.0395 0.0412 0.0343 0.0394 0.0400
0.0367 0.0381 0.0326 0.0381 0.0371

300 0.0223 0.0232 0.0196 0.0227 0.0225
0.0214 0.0222 0.0190 0.0222 0.0217

0.6746

20 0.3226 0.3197 0.3956 0.5167 0.3216
0.2939 0.2884 0.3885 0.5162 0.2961

50 0.1165 0.1148 0.1497 0.1979 0.1159
0.1140 0.1118 0.1507 0.2002 0.1132

100 0.0558 0.0548 0.0728 0.0967 0.0554
0.0540 0.0530 0.0714 0.0948 0.0536

150 0.0352 0.0346 0.0460 0.0608 0.0350
0.0340 0.0333 0.0449 0.0597 0.0338

200 0.0254 0.0250 0.0330 0.0434 0.0253
0.0240 0.0235 0.0317 0.0421 0.0238

300 0.0145 0.0142 0.0189 0.0250 0.0144
0.0140 0.0137 0.0185 0.0246 0.0139

0.8684

20 0.1117 0.1083 0.1973 0.3119 0.1106
0.0984 0.0947 0.1920 0.3113 0.0971

50 0.0396 0.0382 0.0743 0.1195 0.0391
0.0381 0.0367 0.0744 0.1207 0.0377

100 0.0188 0.0181 0.0361 0.0584 0.0186
0.0181 0.0174 0.0353 0.0572 0.0178

150 0.0118 0.0114 0.0228 0.0367 0.0117
0.0114 0.0110 0.0222 0.0360 0.0112

200 0.0086 0.0083 0.0164 0.0263 0.0085
0.0080 0.0077 0.0157 0.0254 0.0079

300 0.0049 0.0047 0.0094 0.0151 0.0048
0.0047 0.0045 0.0091 0.0148 0.0046

Table 2.10 gives the PRE of various transformed ratio estimators relative to the ratio
estimator based on first order approximation.

We can observe that the transformed ratio estimators that utilize the parameter d as
coefficient of skewness result in higher PRE as compared to the ratio estimator when the
correlation is larger. This was expected based on Condition (2.16) and Table 2.11 below.
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Table 2.10: PRE for the transformed ratio estimator related to the ratio estimator based on 1st order of
approximation.

Population PRE (1st Order)

N ρXY µ̂TR1 µ̂TR2 µ̂TR3 µ̂TR4

1000
0.3209 96.24 112.56 96.41 98.86
0.6746 101.93 75.65 56.94 100.64
0.8684 103.87 51.24 31.60 101.28

Note that the transformed ratio estimator performs better than the ratio estimator
when the condition in (2.16) is satisfied.

Table 2.11: Calculations for the expression in (2.16).

Population Condition (MSE - 1st Order)

N ρXY µ̂TR1 µ̂TR2 µ̂TR3 µ̂TR4

1000
0.3209 -0.0299 0.0855 -0.0285 -0.0088
0.6746 0.0127 -0.2160 -0.5074 0.0043
0.8684 0.0108 -0.2751 -0.6259 0.0037

2.7 Conclusions

We can observe from this study that the estimation of the mean of a sensitive variable
can be improved by using a non-sensitive auxiliary variable. The ratio estimators, in
spite of being biased, can have much better PRE as compared to the RRT mean estima-
tor. Our simulation study and the numerical example show that this improvement can
be quite substantial if the correlation between the study variable and the auxiliary vari-
able is high. We also note that there is hardly any difference in the Bias or MSE of the
proposed estimator when using first or second order approximation. It is further noticed
that the transformed ratio estimators produce very minimal gain over the ordinary ratio
estimator.
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Listing 2.1: R Code for Simulation Study of Proposed Estimator in Chapter 2
1

2 proj1 <- function(N,sigma,mu)

3 {

4 set.seed(100)

5 #Generation of a bivariate normal population

6 data_yx <- mvrnorm(N, mu, sigma)

7

8 #Study variable

9 Y <- data_yx[,1]

10 #Auxiliary variable, correlated with Y

11 X <- data_yx[,2]

12

13 #Coefficient of correlation between Y and X

14 Ro_YX <- cor(Y,X)

15

16 #Scrambling variable independent of Y and X, with mean=0

17 S <- rnorm(N,mean=0,sd=0.1*sd(X))

18 #Scrambled response

19 Z <- Y+S

20

21 #Coefficient of correlation between Z and X

22 Ro_ZX <- Ro_YX/sqrt(1+(var(S)/var(Y)))

23

24 #population

25 univ <- data.frame(cbind(Y=Y,S=S,Z=Z,X=X,NRAND=runif(N)))

26 univ <- univ[order(univ$NRAND),]

27

28 #Mean of Y

29 my <- mean(univ$Y)

30 mz <- mean(univ$Z)

31 mx <- mean(univ$X)

32 ms <- mean(univ$S)

33

34 #Sample dimension

35 dim_samp <- c(20,50,100,200,300)

36

37 res <- NULL

38 for (i in 1:length(dim_samp))

39 {

40 #sample dimension

41 n <- dim_samp[i]

42 #sample

43 samp <- univ[1:n,]

44 #sampling rate

45 f <- n/N

46
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47 #estimators

48 est1 <- mean(samp$Z)

49 est2 <- mean(samp$Z)*(mean(univ$X)/mean(samp$X))

50

51 #Ratio

52 R <- mean(univ$X)/mean(samp$X)

53

54 #Mean Square Error of 1st estimator

55 mse1 <- ((1-f)/n)*var(univ$Z)

56

57 #Coefficient of variation

58 c_x <- sd(univ$X)/mx

59 c_y <- sd(univ$Y)/my

60 c2_x <- c_x^2

61 c2_y <- c_y^2

62 c2_z <- c2_y+(var(univ$S)/(my^2))

63 c_z <- sqrt(c2_z)

64

65 #Bias of ratio estimator - 1st degree approximation

66 bias2i <- ((1-f)/n)*my*(c2_x-Ro_ZX*c_z*c_x)

67 #Bias of ratio estimator - 2nd degree approximation

68 bias2ii <- bias2i*(1+((1-f)/n)*3*c2_x)

69

70 #Mean Square Error of ratio estimator - 1st degree approximation

71 mse2i <- ((1-f)/n)*(my^2)*(c2_z+c2_x-2*Ro_ZX*c_z*c_x)

72 #Mean Square Error of ratio estimator - 2nd degree approximation

73 mse2ii <- mse2i+3*(my^2)*(((1-f)/n)^2)*c2_x*((1+2*(Ro_ZX^2))*c2_z

74 +3*c2_x-6*Ro_ZX*c_z*c_x)

75

76 aux_bias <- (c_x-Ro_ZX*c_z)

77

78 aux_mse1 <- (Ro_ZX-(1/2)*(c_x/c_z))

79 aux_mse2 <- 2*Ro_ZX*(c_z/c_x)-3*((1-f)/n)*((1+2*(Ro_ZX^2))*c2_z

80 +3*c2_x-6*Ro_ZX*c_z*c_x)

81

82 emp <- NULL

83

84 #Empirical results

85 #Simulation of 5000 replicas of estimates

86 ...

87

88 #Results

89 res <- rbind(res,c(N,n,Ro_YX,Ro_ZX,R,my,mz,ms,

90 med_est1,med_est2,bias2i,bias2ii,emp_mse1,mse1,

91 emp_mse2,mse2i,mse2ii,aux_bias,aux_mse1,aux_mse2))

92 }

93 colnames(res) <- c("N","n","RhoXY","RhoZX","R","mY","mZ","mS",

94 "Est1","Est2","BIAS2I","BIAS2II","EMP_MSE1","MSE1",

95 "EMP_MSE2","MSE2I","MSE2II","AUX_BIAS","AUX_MSE1","AUX_MSE2")

96 return(res)
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97 }

98

99 #Package for generation

100 require(MASS)

101 N<-1000

102 #Parameters

103 sigma1 <- matrix(c(9,1.9,1.9,4),2,2)

104 sigma2 <- matrix(c(10,3,3,2),2,2)

105 sigma3 <- matrix(c(6,3,3,2),2,2)

106 mu <- c(2,2)

107

108 res <- NULL

109 for (i in 1:length(N))

110 {

111 res <- rbind(res,proj1(N[i],sigma1,mu))

112 res <- rbind(res,proj1(N[i],sigma2,mu))

113 res <- rbind(res,proj1(N[i],sigma3,mu))

114 }

115 write.table(res,"chapter2_ss_results1.txt",sep="\t",dec=",",row.names=FALSE)
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Listing 2.2: R Code for Simulation Study of Transformed Ratio Estimators in Chapter 2
1

2 mykurtosis <- function(x)

3 {

4 m4 <- mean((x-mean(x))^4)

5 kurt <- m4/(sd(x)^4)

6 return(kurt)

7 }

8 myskewness <- function(x)

9 {

10 m3 <- mean((x-mean(x))^3)

11 skew <- m3/(sd(x)^3)

12 return(skew)

13 }

14 proj1_transf <- function(N,sigma,mu)

15 {

16

17 #Generation of a bivariate normal population

18 data_yx <- mvrnorm(N, mu, sigma)

19

20 #Study variable

21 Y <- data_yx[,1]

22 #Auxiliary variable, correlated with Y

23 X <- data_yx[,2]

24

25 #Coefficient of correlation between Y and X

26 Ro_YX <- cor(Y,X)

27

28 #Scrambling variable independent of Y and X, with mean=0

29 S <- rnorm(N,mean=0,sd=0.1*sd(X))

30 #Scrambled response

31 Z <- Y+S

32

33 #Coefficient of correlation between Z and X

34 Ro_ZX <- Ro_YX/sqrt(1+(var(S)/var(Y)))

35

36 #population

37 univ <- data.frame(cbind(Y=Y,S=S,Z=Z,X=X,NRAND=runif(N)))

38 univ <- univ[order(univ$NRAND),]

39

40 #Mean of Y

41 my <- mean(univ$Y)

42 mz <- mean(univ$Z)

43 mx <- mean(univ$X)

44

45 #Samples dimension

46 dim_samp <- c(20,50,100,150,200,300)

47
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48 res <- NULL

49 for (i in 1:length(dim_samp))

50 {

51 #sample dimension

52 n <- dim_samp[i]

53 #sample

54 samp <- univ[1:n,]

55 #sampling rate

56 f <- n/N

57

58 #Ratio

59 R <- mean(univ$X)/mean(samp$X)

60

61 #Ordinary meam

62 est1 <- mean(samp$Z)

63 #Ratio estimator

64 est2 <- mean(samp$Z)*(mean(univ$X)/mean(samp$X))

65

66 #Coefficient of variation

67 c_x <- sd(univ$X)/mx

68 c_y <- sd(univ$Y)/my

69 c2_x <- c_x^2

70 c2_y <- c_y^2

71 c2_z <- c2_y+(var(univ$S)/(my^2))

72 c_z <- sqrt(c2_z)

73

74 #Bias of ratio estimator - 1st degree approximation

75 bias2i <- ((1-f)/n)*my*(c2_x-Ro_ZX*c_z*c_x)

76 #Bias of ratio estimator - 2nd degree approximation

77 bias2ii <- bias2i*(1+((1-f)/n)*3*c2_x)

78

79 #Mean Square Error of 1st estimator (ordinal mean)

80 mse1 <- ((1-f)/n)*(var(univ$Y)+var(univ$S))

81

82 #Mean Square Error of ratio estimator - 1st degree approximation

83 mse2i <- ((1-f)/n)*(my^2)*(c2_z+c2_x-2*Ro_ZX*c_z*c_x)

84 #Mean Square Error of ratio estimator - 2nd degree approximation

85 mse2ii <- mse2i+3*(my^2)*(((1-f)/n)^2)*c2_x*((1+2*(Ro_ZX^2))*c2_z

86 +3*c2_x-6*Ro_ZX*c_z*c_x)

87

88 nu <- 1

89 aux_m <- c2_x-2*Ro_ZX*c_z*c_x

90

91 s <- myskewness(univ$X)

92 k <- mykurtosis(univ$X)

93

94 vc <- c(1,1,1,s,k)

95 vd <- c(s,k,Ro_YX,k,s)

96

97 #Initialize the variables est3, mse3i, ...
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98

99 for (i in 1:length(vc))

100 {

101 nu <- (vc[i]*mean(univ$X))/(vc[i]*mean(univ$X)+vd[i])

102 vnu <- c(vnu,nu)

103

104 aux_bias1 <- (nu-1)*(Ro_ZX-(nu+1)*c_x/c_z)

105 aux_mse1 <- (nu-1)*(Ro_ZX-(nu+1)*c_x/(2*c_z))

106

107 vb1 <- c(vb1,aux_bias1)

108 vm1 <- c(vm1,aux_mse1)

109

110 #Transformed ratio estimator

111 est3 <- c(est3,mean(samp$Z)*(vc[i]*mean(univ$X)+vd[i])

112 /(vc[i]*mean(samp$X)+vd[i]))

113

114 #Mean Square Error of transformed ratio estimator

115 #1st degree approximation

116 mse3i <- c(mse3i,((1-f)/n)*(my^2)*(c2_z+(nu^2)*c2_x-2*nu*Ro_ZX*c_z*c_x))

117

118 #Mean Square Error of transformed ratio estimator

119 #1st degree approximation

120 mse3ii <- c(mse3ii,mse3i[i]+3*(my^2)

121 *(((1-f)/n)^2)*c2_x*((nu^2)*(1+2*(Ro_ZX^2))

122 *c2_z+3*(nu^4)*c2_x-6*(nu^3)*Ro_ZX*c_z*c_x))

123

124 #Bias of transformated ratio estimator - 1st degree approximation

125 bias3i <- c(bias3i,((1-f)/n)*my*((nu^2)*c2_x-nu*Ro_ZX*c_z*c_x))

126 #Bias of transformated ratio estimator - 2nd degree approximation

127 bias3ii <- c(bias3ii,bias3i[i]

128 +(((1-f)/n)^2)*3*my*((nu^4)*(c2_x^2)-(nu^3)

129 *Ro_ZX*c_z*(c_x^3)))

130 }

131

132 #Empirical results

133 #Simulation of 5000 replicas of estimates

134 ...

135

136 #Results

137 res <- rbind(res,c(N,n,Ro_YX,Ro_ZX,R,my,med_est1,med_est2,

138 med_est3,

139 bias2i,bias2ii,

140 bias3i,

141 bias3ii,

142 emp_mse1,mse1,emp_mse2,mse2i,mse2ii,

143 emp_mse3,

144 mse3i,

145 mse3ii,

146 vnu,

147 vb1,
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148 vm1))

149 }

150 colnames(res) <- c("N","n","RhoXY","RhoZX","R","mY","Est1","Est2",

151 paste("Est3_",1:length(vc),sep=""),

152 "BIAS2I","BIAS2II",

153 paste("BIAS3I_",1:length(vc),sep=""),

154 paste("BIAS3II_",1:length(vc),sep=""),

155 "EMP_MSE1","MSE1","EMP_MSE2","MSE2I","MSE2II",

156 paste("EMP_MSE3_",1:length(vc),sep=""),

157 paste("MSE3I_",1:length(vc),sep=""),

158 paste("MSE3II_",1:length(vc),sep=""),

159 paste("NU_",1:length(vc),sep=""),

160 paste("AUX3_BIAS1_",1:length(vc),sep=""),

161 paste("AUX3_MSE1_",1:length(vc),sep=""))

162 return(res)

163 }

164 #Package for generation

165 require(MASS)

166 N <- 1000

167

168 #Parameters

169 sigma1 <- matrix(c(9,1.9,1.9,4),2,2)

170 sigma2 <- matrix(c(10,3,3,2),2,2)

171 sigma3 <- matrix(c(6,3,3,2),2,2)

172 mu <- c(2,2)

173

174 res <- NULL

175 for (i in 1:length(N))

176 {

177 res <- rbind(res,proj1_transf(N[i],sigma1,mu))

178 res <- rbind(res,proj1_transf(N[i],sigma2,mu))

179 res <- rbind(res,proj1_transf(N[i],sigma3,mu))

180 }

181 write.table(res,"chapter2_ss_results2.txt",sep="\t",dec=",",row.names=FALSE)
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Listing 2.3: R Code for Numerical Example of Proposed Estimator in Chapter 2
1

2 proj1_real <- function(Y,X,N)

3 {

4

5 #Coefficient of correlation between Y and X

6 Ro_YX <- cor(Y,X)

7

8 #Scrambling variable independent of Y and X, with mean=0

9 S <- rnorm(N,mean=0,sd=sd(X)*0.1)

10 #Scrambled response

11 Z <- Y+S

12

13 #Coefficient of correlation between Z and X

14 Ro_ZX <- Ro_YX/sqrt(1+(var(S)/var(Y)))

15

16 #population

17 univ <- data.frame(cbind(Y=Y,S=S,Z=Z,X=X,NRAND=runif(N)))

18 univ <- univ[order(univ$NRAND),]

19

20 #Mean of Y

21 my <- mean(univ$Y)

22 mz <- mean(univ$Z)

23 mx <- mean(univ$X)

24

25 #Samples dimension

26 dim_samp <- c(100,200,300,400,500,1000,1500,2000)

27

28 res <- NULL

29 for (i in 1:length(dim_samp))

30 {

31 #sample dimension

32 n <- dim_samp[i]

33 #sample

34 samp <- univ[1:n,]

35 #Sampling rate

36 f <- n/N

37

38 #estimators

39 est1 <- mean(samp$Z)

40 est2 <- mean(samp$Z)*(mean(univ$X)/mean(samp$X))

41

42 #Ratio

43 R <- mean(univ$X)/mean(samp$X)

44

45 #Mean Square Error of 1st estimator

46 mse1 <- ((1-f)/n)*(var(univ$Y)+var(univ$S))

47
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48 #Coefficient of variation

49 c_x <- sd(univ$X)/mx

50 c_y <- sd(univ$Y)/my

51 c2_x <- c_x^2

52 c2_y <- c_y^2

53 c2_z <- c2_y+(var(univ$S)/(my^2))

54 c_z <- sqrt(c2_z)

55

56 #Bias of ratio estimator - 1st degree approximation

57 bias2i <- ((1-f)/n)*my*(c2_x-Ro_ZX*c_z*c_x)

58 #Bias of ratio estimator - 2nd degree approximation

59 bias2ii <- bias2i*(1+((1-f)/n)*3*c2_x)

60

61 #Mean Square Error of ratio estimator - 1st degree approximation

62 mse2i <- ((1-f)/n)*(my^2)*(c2_z+c2_x-2*Ro_ZX*c_z*c_x)

63 #Mean Square Error of ratio estimator - 2nd degree approximation

64 mse2ii <- mse2i+3*(my^2)*(((1-f)/n)^2)*c2_x*((1+2*(Ro_ZX^2))*c2_z

65 +3*c2_x-6*Ro_ZX*c_z*c_x)

66

67 aux_bias <- (c_x-Ro_ZX*c_z)

68

69 aux_mse1 <- (Ro_ZX-(1/2)*(c_x/c_z))

70 aux_mse2 <- 2*Ro_ZX*(c_z/c_x)-3*((1-f)/n)*((1+2*(Ro_ZX^2))*c2_z

71 +3*c2_x-6*Ro_ZX*c_z*c_x)

72

73 #Empirical results

74 #Simulation of 5000 replicas of estimates

75 ...

76

77 #Results

78 res <- rbind(res,c(N,n,Ro_YX,Ro_ZX,R,my,med_est1,med_est2,

79 bias2i,bias2ii,emp_mse1,mse1,emp_mse2,mse2i,mse2ii,

80 aux_bias,aux_mse1,aux_mse2))

81 }

82 colnames(res) <- c("N","n","RhoXY","RhoZX","R","mY","Est1","Est2",

83 "BIAS2I","BIAS2II","EMP_MSE1","MSE1","EMP_MSE2",

84 "MSE2I","MSE2II","AUX_BIAS","AUX_MSE1","AUX_MSE2")

85 return(res)

86 }

87

88 #Package for generation

89 require(MASS)

90

91 #Import data

92 data_yx <- read.table("IUTICE09.dat",sep="\t",dec=",",header = T)

93 #Study variable (purchase, millions of euros)

94 Y <- data_yx[,3]

95 #Auxiliary variable, correlated with Y (turnover, millions of euros)

96 X <- data_yx[,2]

97
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98 #Data application

99 N <- dim(data_yx)[1]

100 res <- proj1_real(Y,X,N)

101

102 #Export data

103 write.table(res,"chapter2_ne_results",sep="\t",dec=",",row.names=FALSE)
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3
Estimation of the Mean of a Sensitive
Variable in the Presence of Auxiliary

Information

Abstract

Sousa et al. (2010) introduced a ratio estimator for the mean of a sensitive variable and
showed that this estimator performs better than the ordinary mean estimator based on
a Randomized Response Technique (RRT). In this paper, we introduce a regression esti-
mator that performs better than the ratio estimator even for modest correlation between
the primary and the auxiliary variables. The underlying assumption is that the primary
variable is sensitive in nature but a non-sensitive auxiliary variable exists that is posi-
tively correlated with the primary variable. Expressions for the Bias and Mean Square
Error (MSE) are derived based on the first order of approximation. It is shown that the
proposed regression estimator performs better than the ratio estimator and the ordinary
RRT mean estimator (that does not utilize the auxiliary information). We also consider
a generalized regression-cum-ratio estimator that has even smaller MSE. An extensive
simulation study is presented to evaluate the performances of the proposed estimators in
relation to other estimators in the study.

Published as: GUPTA, S., SHABBIR, J., SOUSA, R. & REAL, P.C. 2012. Estimation of the Mean of a
Sensitive Variable in the Presence of Auxiliary Information. Communications in Statistics - Theory and Methods,
41(13-14), 2394-2404.
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The procedure is also applied to some financial data: purchase orders (a sensitive
variable) and gross turnover (a non-sensitive variable) in 2009 for a population of 5336
companies in Portugal from a survey on Information and Communication Technologies
(ICT) usage.

3.1 Introduction

In survey research, direct reliable observation on the variable of interest (Y ) is sometimes
not possible because the variable may be sensitive in nature. In this paper we focus on
estimating the mean of a sensitive variable Y using an auxiliary variable (X) that can be
directly observed and that is correlated with the variable of the interest. For example, Y
may be the total number of abortions a woman of child bearing age might have had and
X may be her current age. Similarly, Y may be the total value of purchase orders in a
year for a company and X may be the total turnover for that company in that year. In
such situations, mean of Y can be estimated by using one of many randomized response
techniques if the auxiliary information is to be ignored.

Many authors have estimated the mean of a sensitive variable when the primary vari-
able is sensitive and there is no auxiliary variable available. These include Eichhorn and
Hayre (1983), Gupta and Shabbir (2004), Gupta et al. (2002, 2010), Wu et al. (2008), Saha
(2008) and Perri (2008). Also, many authors have presented ratio and regression estima-
tors when both Y and X are directly observable. These include Kadilar and Cingi (2005),
Kadilar et al. (2007), Shabbir and Gupta (2007, 2010) and Nangsue (2009).

In this paper, we propose a regression estimator where the RRT estimator of the mean
of Y is further improved by using an auxiliary variableX . We also consider a generalized
regression-cum-ratio estimator under the same conditions. Expressions for the Bias and
MSE for the proposed estimators are derived, correct up to first order of approximation.
We compare the performances of the proposed estimators with those of the ratio and the
ordinary RRT mean estimators. We observe that there is considerable reduction in MSE,
particularly when the correlation between the study variable and the auxiliary variable
is high.

3.2 Terminology

Let Y be the study variable, a sensitive variable which cannot be observed directly due to
respondent bias. Let X be a non-sensitive auxiliary variable which has a positive correla-
tion with Y . Let S be a scrambling variable independent of Y and X . The respondent is
asked to report a scrambled response for Y given by Z = Y + S but is asked to provide a
true response for X . Let a random sample of size n be drawn without replacement from
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a finite population U = (U1, U2, ..., UN ). For the ith unit (i = 1, 2, ..., N), let yi and xi, re-
spectively, be the values of the study variable Y and auxiliary variable X . Let ȳ=

∑n
i=1 yi
n ,

x̄=
∑n

i=1 xi
n and z̄ =

∑n
i=1 zi
n be the sample means and Ȳ =E(Y ), X̄=E(X), and Z̄=E(Z)

be the corresponding population means for Y , X and Z, respectively. We assume that X̄
is known and S̄=E(S) = 0. Thus, E(Z) =E(Y ) and C2

z =C2
y + S2

s

Ȳ 2 , where Cz and Cy are

the coefficients of variation of z and y, respectively. If e0 = z̄−Z̄
Z̄

, e1 = x̄−X̄
X̄

, e2 = s2x−S2
x

S2
x

,
and e3 = szx−Szx

Szx
, then we have E(ei)=0, i = 0, 1, 2, 3.

If information on X is ignored, then an unbiased estimator of µY is the ordinary sam-
ple mean (z̄) given by (3.1) below.

µ̂Y = z̄ (3.1)

The mean square error (MSE) of µ̂Y is given by

MSE(µ̂Y ) =
1− f
N

(
S2
y + S2

s

)
, (3.2)

where f = n/N , S2
y = 1

N−1

∑N
i=1(yi − Ȳ )2 and S2

s = 1
N−1

∑N
i=1(si − S̄)2.

3.3 The Ratio Estimator

Sousa et al. (2010) proposed a ratio estimator for the mean of sensitive variable (Y )

utilizing information from a non-sensitive auxiliary variable (X). This estimator is given
by

µ̂R = z̄

(
X̄

x̄

)
. (3.3)

Bias and MSE of µ̂R, correct up to first order of approximation, are given by

Bias(µ̂R) ∼=
(

1− f
n

)
Ȳ
(
C2
x − ρzxCzCx

)
(3.4)

and
MSE(µ̂R) ∼=

(
1− f
n

)
Ȳ 2
(
C2
z + C2

x − 2ρzxCzCx
)
. (3.5)

It can be observed that MSE(µ̂R) < MSE(µ̂Y ) if

ρyx >
1

2

Cx
Cy

√
1 +

S2
s

S2
y

. (3.6)
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3.4 Ordinary Regression Estimator

Assuming linear relationship between Y and X , we propose the following regression
estimator for the population mean of Y

µ̂Reg = z̄ + β̂zx
(
X̄ − x̄

)
, (3.7)

where β̂zx is the sample regression coefficient between Z and X and Z = Y + S is the
scrambled response on Y . Using Taylor’s approximation and retaining terms of order up
to 2, (3.7) can be rewritten as

µ̂Reg − Z̄ ∼= Z̄e0 − βzxX̄ [e1 + e1e3 − e1e2] . (3.8)

From Mukhopadhyay (1998, p. 123), we have:

E(e2
0)=

1− f
n

C2
z , E(e2

1)=
1− f
n

C2
x, E(e12)=

1− f
n

1

X̄

µ03

µ02
, E(e13)=

1− f
n

1

X̄

µ12

µ11
,

where µrs =
1

N − 1

∑N
i=1(zi − Z̄)r(xi − X̄)s and Cx, Cz are the coefficients of variation of

x and z, respectively.

Also we have: βzx =
Szx
S2
x

=
Syx
S2
x

= ρyx
Sy
Sx

= βyx, ρzx =
ρyx√
1 + S2

s
S2
y

,

where ρyx and ρzx are the coefficients of correlation between y and x, and between z and
x, respectively.

Recognizing that Z̄ = Ȳ in Equation (3.8), the Bias and MSE of µ̂Reg, to first order of
approximation, are given by

Bias(µ̂Reg) ∼= −βzx
(

1− f
n

){
µ12

µ11
− µ03

µ02

}
(3.9)

and

MSE(µ̂Reg) ∼=
(

1− f
n

)
Ȳ 2C2

z

(
1− ρ2

zx

)
=

(
1− f
n

)
S2
y

{(
1 +

S2
s

S2
y

)
− ρ2

yx

}
. (3.10)

It can be verified easily that

(i) MSE(µ̂Reg) < MSE(µ̂Y ) if

ρ2
yx > 0; (3.11)

(ii) MSE(µ̂Reg) < MSE(µ̂R) if

(Cx − Czρzx)2 > 0. (3.12)
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These conditions will always hold true indicating that up to first order of approxima-
tion, the regression estimator performs better than µ̂Y and µ̂R.

3.5 Generalized Regression-cum-ratio Estimator

Many authors have used regression-cum-ratio estimators that combine both the regres-
sion estimator and ratio estimator. These include Ray and Singh (1981), Perri (2004),
and Kadilar and Cingi (2004, 2006). We consider a similar hybrid estimator, as a gener-
alized regression-cum-ratio estimator with constant coefficients whose values are to be
determined later from optimality considerations. The main idea is to see if further gains
can be achieved by using a generalized regression-cum-ratio estimator, as compared to
regression estimator given by (3.7). This estimator is given by:

µ̂GRR =
[
k1z̄ + k2

(
X̄ − x̄

)](X̄
x̄

)
, (3.13)

where k1 and k2 are constants.

Solving (3.13) using Taylor’s approximation and retaining terms of order up to 2, we
have

µ̂GRR − Ȳ ∼= (k1 − 1)Ȳ + k1Ȳ (e0 − e1 − e0e1 + e2
1)− k2X̄(e1 − e2

1). (3.14)

From (3.14), the Bias and MSE of µ̂GRR to first order of approximation are given by

Bias(µ̂GRR) ∼= (k1 − 1)Ȳ + k1Ȳ
(

1−f
n

){
C2
x − ρzxCzCx

}
+ k2X̄

(
1−f
n

)
C2
x (3.15)

and

MSE(µ̂GRR) ∼= (k1 − 1)2Ȳ 2 + k2
1Ȳ

2
(

1−f
n

){
C2
z + 3C2

x − 4ρzxCzCx
}

+k2
2X̄

2
(

1−f
n

)
C2
x − 2k1Ȳ

2
(

1−f
n

){
C2
x − ρzxCzCx

}
−2k2Ȳ X̄

(
1−f
n

)
C2
x − 2k1k2Ȳ X̄

(
1−f
n

){
ρzxCzCx − 2C2

x

}
.

(3.16)

Differentiating (3.16) with respect to k1 and k2 we get the following optimum values:

k1(opt) =
1−

(
1−f
n

)
C2
x

1−
(

1−f
n

)
{C2

x − C2
z (1− ρ2

zx)}
(3.17)

and
k2(opt) =

Ȳ

X̄

{
1 + k1(opt)

(
ρzxCz
Cx

− 2

)}
. (3.18)

which minimize the MSE.
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Substituting the optimum values of k1 and k2 in (3.16), we get

MSE(µ̂GRR)min ∼=
Ȳ 2C2

z

(
1− ρ2

zx

) (1−f
n

){
1−

(
1−f
n

)
C2
x

}
C2
z (1− ρ2

zx)
(

1−f
n

)
+
{

1−
(

1−f
n

)
C2
x

} . (3.19)

It can be verified that:

(i) MSE(µ̂GRR)min < MSE(µ̂Y ) if(
1− f
n

){
S2
y + S2

s

}
> 0, (3.20)

which is always true.

(ii) MSE(µ̂GRR)min < MSE(µ̂R) if

(
Cx
Cz
− ρzx

)2

+

(
1−f
n

)
C2
z

(
1− ρ2

zx

)2(
1−f
n

)
C2
z (1− ρ2

zx) +
(

1−
(

1−f
n

)
C2

x

) > 0. (3.21)

(iii) MSE(µ̂GRR)min < MSE(µ̂Reg) if(
1− f
n

)
C2
z

(
1− ρ2

zx

)
> 0, (3.22)

which is always true.

From these conditions we can conclude that the generalized estimator in (3.13) with
optimal coefficients is always better than µ̂Y , and µ̂Reg. It is also better than the ratio and
regression estimators if

1−
(

1− f
n

)
C2
x > 0

or (
1− f
n

)
C2
x < 1. (3.23)

The last condition is very likely to hold true. So, with this generalized regression-
cum-ratio estimator, we may be able to achieve further gain in terms of MSE, as can be
observed from the simulation results in the next section.
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3.6 The Simulation Study

In this section, we present results of a simulation study with particular focus on the
performance for the regression estimator µ̂Reg and the proposed generalized regression-
cum-ratio estimator µ̂GRR as compared to the RRT mean estimator µ̂Y , and the ratio esti-
mator µ̂R.

We consider three finite sub-populations of size 1000 each from bivariate normal pop-
ulations with different covariance matrices to represent the distribution of (Y,X). The
scrambling variable S is taken to be a normal variate with mean equal to zero and stan-
dard deviation equal to 10% of the standard deviation of X . The reported response is
given by Z = Y + S.

All of the simulated populations have theoretical mean of [Y,X] as µ = [2, 2]. The
covariance matrices (Σ) are as given below.

Population 1

Σ =

[
9 1.9

1.9 4

]
, ρXY = 0.3209.

Population 2

Σ =

[
10 3

3 2

]
, ρXY = 0.6746.

Population 3

Σ =

[
6 3

3 2

]
, ρXY = 0.8684.

For each population, we consider five sample sizes: n = 50, 100, 200 and 300.

Table 3.1 below gives empirical and theoretical MSE’s for various estimators based
on the first order approximation. We estimate the empirical MSE using 5000 samples of
various sizes selected from each population. We use the following expression to find the
PRE of ratio, regression and generalized regression-cum-ratio estimators as compared to
the RRT mean estimator:

PRE =
MSE(µ̂Y )

MSE(µ̂α)
× 100,

where α = R,Reg,GRR.
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Table 3.1: MSE correct up to 1st order approximation and PRE for the ratio estimator (µ̂R), the regression
estimator (µ̂Reg) and the generalized regression-cum-ratio estimator (µ̂GRR) relative to the RRT mean esti-
mator.

Population MSE Estimation

N ρXY n Estimator Empirical Theoretical PRE Condition1

1000 0.3209

50
µ̂R 0.1885 0.1743 98.62

0.0186µ̂Reg 0.1557 0.1543 111.43
µ̂GRR 0.1571 0.1485 115.77

100
µ̂R 0.0877 0.0826 98.62

0.0088µ̂Reg 0.0733 0.0731 111.43
µ̂GRR 0.0736 0.0718 113.46

200
µ̂R 0.0382 0.0367 98.62

0.0039µ̂Reg 0.0331 0.0325 111.43
µ̂GRR 0.0331 0.0322 112.33

300
µ̂R 0.0222 0.0214 98.62

0.0023µ̂Reg 0.0194 0.0189 111.43
µ̂GRR 0.0194 0.0189 111.95

1000 0.6746

50
µ̂R 0.1181 0.1140 167.23

0.0094µ̂Reg 0.1041 0.1040 183.20
µ̂GRR 0.1035 0.1014 187.97

100
µ̂R 0.0548 0.0540 167.23

0.0044µ̂Reg 0.0505 0.0493 183.20
µ̂GRR 0.0502 0.0487 185.45

200
µ̂R 0.0246 0.0240 167.23

0.0020µ̂Reg 0.0224 0.0219 183.20
µ̂GRR 0.0224 0.0218 184.20

300
µ̂R 0.0143 0.0140 167.23

0.0012µ̂Reg 0.0131 0.0128 183.20
µ̂GRR 0.0131 0.0127 183.78

1000 0.8684

50
µ̂R 0.0399 0.0381 300.26

0.0094µ̂Reg 0.0283 0.0284 402.62
µ̂GRR 0.0288 0.0282 405.49

100
µ̂R 0.0186 0.0181 300.26

0.0045µ̂Reg 0.0141 0.0135 402.62
µ̂GRR 0.0141 0.0134 403.97

200
µ̂R 0.0083 0.0080 300.26

0.0020µ̂Reg 0.0061 0.0060 402.62
µ̂GRR 0.0061 0.0060 403.22

300
µ̂R 0.0048 0.0047 300.26

0.0012µ̂Reg 0.0036 0.0035 402.62
µ̂GRR 0.0036 0.0035 402.97

1 MSE comparison base on 1st order approximation given in expression 3.23.

For the regression and the generalized regression-cum-ratio estimators all the percent
relative efficiencies are greater than 100 indicating that all these estimators are better
than the RRT mean estimator. The same cannot be said about the ratio estimator because
it is better than RRT mean estimator only for larger correlation values between X and
Y . As expected, the generalized regression-cum-ratio estimator presents larger percent
relative efficiencies although the improvement over the ordinary regression estimator is
only modest.
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3.7 Numerical Example

We now compare the performances of different estimators using a real data set. We focus
on the ratio estimator, regression estimator and generalized regression-cum-ratio estima-
tor. The sample data come from a very large survey on Information and Communica-
tion Technologies (ICT) usage in enterprises in 2009 with seat in Portugal (Smilhily and
Storm, 2010). This survey intends to promote the development of the national statis-
tical system in the information society and to contribute to a deeper knowledge about
the usage of ICT by enterprises. The target population covers all industries with one and
more persons employed in the sections of economic activity C (Manufacturing) to N (Ad-
ministrative and support service activities) and S (Other service activities), from NACE1

Rev. 2 (Eurostat, 2008). The data are collected mainly using Electronic Data Interchange,
applying direct connection between information systems at the respondent and the Na-
tional Statistics Institute. For some enterprises the paper questionnaire is still used. The
questions in the structural business surveys mainly deal with characteristics that can be
found in the organisations’ annual reports and financial statements, such as employment,
turnover and investment.

In our application the study variable Y is the purchase orders in 2010, collected by
the ICT survey in that year. This is typically a confidential variable for enterprises, only
known from business surveys. The auxiliary variable X is the turnover of each enter-
prise. This information can be easily obtained from enterprise records available in the
public domain, as administrative information. In 2010, the population survey contained
approximately 278000 enterprises and we know the value of X for all these enterprises.
The purchase orders information was collected in the ICT survey and we have the values
of Y for 5336 enterprises (which answered this question in the ICT survey in 2010). For
this study, these 5336 enterprises are considered as our population so that its parame-
ters are known. The scrambling variable S is taken to be a normal random variable with
mean equal to zero and standard deviation equal to 10% of the standard deviation of X ,
that is σS = 0.1σX . The reported response is given by Z = Y + S (the purchase order
value plus a random quantity). The variables Y and X are strongly correlated so we can
take advantage of this correlation by using the ratio and regression estimators, as well as
a hybrid estimator that combines both. In Table 6.1 we present the results for the ratio es-
timator, the regression estimator and the generalized ratio-cum-regression estimator for
different sample sizes.

1NACE is derived from the French title "Nomenclature générale des Activités économiques dans les
Communautés Européennes" (Statistical classification of economic activities in the European Communities).

39



3. ESTIMATION OF THE MEAN OF A SENSITIVE VARIABLE IN THE PRESENCE OF AUXILIARY INFORMATION

3.7. Numerical Example

Population Characteristics:

N = 5336, ρXY = 0.9632

µX = 22.99, µY = 30.19, σX = 172.09, σY = 138.65 (in millions of Euros)

and βY X = 0.7763

We use the following samples sizes in our simulation study: n = 100, 300, 500, 1000 and
2000.

Table 3.2 below presents the results for the empirical MSE estimates, the theoretical
estimates, correct up to first degree of approximation, and the PRE of ratio, regression
and generalized regression-cum-ratio estimators relative to the RRT mean estimator. We
estimate the empirical MSE using 5000 samples of size n selected from the population.

Table 3.2: MSE correct up to 1st order approximation and PRE for the ratio estimator (µ̂R), the regression
estimator (µ̂Reg) and the generalized regression-cum-ratio estimator (µ̂GRR) relative to the RRT mean esti-
mator.

Population MSE Estimation

N ρXY n Estimator Empirical Theoretical PRE Condition1

5336 0.9636

100
µ̂R 11.5741 16.4778 1162.46

0.3189µ̂Reg 8.8601 16.4153 1166.88
µ̂GRR 11.6905 15.3461 1248.18

300
µ̂R 4.3423 5.2828 1162.46

0.1022µ̂Reg 3.9360 5.2628 1166.88
µ̂GRR 4.3858 5.0879 1206.99

500
µ̂R 2.6995 3.0438 1162.46

0.0589µ̂Reg 2.6596 3.0323 1166.88
µ̂GRR 2.7166 2.9460 1201.03

1000
µ̂R 1.4224 1.3645 1162.46

0.0264µ̂Reg 1.4265 1.3594 1166.88
µ̂GRR 1.4287 1.3253 1196.91

2000
µ̂R 0.5817 0.5249 1162.46

0.0102µ̂Reg 0.6100 0.5229 1166.88
µ̂GRR 0.5869 0.5106 1194.95

1 MSE comparison base on 1st order approximation given in expression 3.23.

According to the results in Table 3.2, all of the percent relative efficiencies are greater
than 100, so all the estimators perform better than the RRT mean estimator for the real
data also. The PRE of the generalized regression-cum-ratio estimator is better than the
other estimators, particularly when the sample size is small.
Note that the sample size does not play a role in the PRE calculation for the ratio and
regression estimators, as can be seen from Equations (3.2), (3.5) and (3.10).
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3.8 Conclusions

We can observe from this study that the estimation of the mean of a sensitive variable
can be improved by using a non-sensitive auxiliary variable. Although both the ratio
and regression estimators perform better than the ordinary RRT mean estimator, the im-
provement is much larger with the regression estimator. Our simulation study shows
that this improvement can be quite substantial for large sample sizes, particularly if the
correlation between the study variable and the auxiliary variable is high. Further gains,
although modest, can be achieved by using a generalized regression-cum-ratio estimator.
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Appendix B - R Routines

Listing 3.1: R Code for Simulation Study of Proposed Estimator in Chapter 3
1

2 proj2_2nd_estimator <- function(N,sigma,mu)

3 {

4

5 #Generation of a bivariate normal population

6 data_yx <- mvrnorm(N, mu, sigma)

7

8 #Study variable

9 Y <- data_yx[,1]

10 #Auxiliary variable, correlated with Y

11 X <- data_yx[,2]

12

13 #Coefficient of correlation between Y and X

14 Ro_YX <- cor(Y,X)

15

16 #Scrambling variable independent of Y and X, with mean=0

17 S <- rnorm(N,mean=0,sd=0.1*sd(X))

18 #Scrambled response

19 Z <- Y+S

20

21 #Coefficient of correlation between Z and X

22 Ro_ZX <- Ro_YX/sqrt(1+(var(S)/var(Y)))

23

24 #population

25 univ <- data.frame(cbind(Y=Y,S=S,Z=Z,X=X,NRAND=runif(N)))

26 univ <- univ[order(univ$NRAND),]

27

28 #Mean of Y

29 mz <- mean(univ$Z)

30 mx <- mean(univ$X)

31 my <- mean(univ$Y)

32

33 mu11 <- sum((univ$Z-mz)*(univ$X-mx))/(N-1)

34 mu12 <- sum((univ$Z-mz)*((univ$X-mx)^2))/(N-1)

35 mu02 <- sum((univ$X-mx)^2)/(N-1)

36 mu03 <- sum((univ$X-mx)^3)/(N-1)

37

38 beta_zx <- Ro_YX*(sd(univ$Y)/sd(univ$X))

39

40 #Samples dimension

41 dim_samp <- c(50,100,150,200,300)

42

43 #Initialize the variables...

44 for (i in 1:length(dim_samp))

45 {

46 #sample dimension
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47 n <- dim_samp[i]

48 #sample

49 samp <- univ[1:n,]

50 #Sampling rate

51 f <- n/N

52

53 #Ratio

54 R <- mean(univ$X)/mean(samp$X)

55

56 #Ordinary meam

57 est1 <- mean(samp$Z)

58 #Ratio estimator

59 est2 <- mean(samp$Z)*(mx/mean(samp$X))

60 #Regression estimator

61 est3 <- mean(samp$Z)+beta_zx*(mx-mean(samp$X))

62

63 #Coefficient of variation

64 c_x <- sd(univ$X)/mx

65 c_y <- sd(univ$Y)/my

66 c2_x <- c_x^2

67 c2_y <- c_y^2

68 c2_z <- c2_y+(var(univ$S)/(my^2))

69 c_z <- sqrt(c2_z)

70

71 k1 <- (1-((1-f)*c2_x/n))/(1-((1-f)/n)*(c2_x-c2_z*(1-(Ro_ZX^2))))

72 k2 <- (mz/mx)*(1+k1*((Ro_ZX*c_z/c_x)-2))

73 #Generalized regression-cum-ratio estimator

74 est5 <- (k1*mean(samp$Z)+k2*(mx-mean(samp$X)))*(mx/mean(samp$X))

75

76 #Mean Square Error of 1st estimator (ordinal mean)

77 mse1 <- ((1-f)/n)*(var(univ$Y)+var(univ$S))

78

79 #Bias of ratio estimator - 1st degree approximation

80 bias2i <- ((1-f)/n)*my*(c2_x-Ro_ZX*c_z*c_x)

81 #Mean Square Error of ratio estimator - 1st degree approximation

82 mse2i <- ((1-f)/n)*(my^2)*(c2_z+c2_x-2*Ro_ZX*c_z*c_x)

83

84 #Bias of regression estimator - 1st degree approximation

85 bias3i <- -beta_zx*((1-f)/n)*((mu12/mu11)-(mu03/mu02))

86 #Mean Square Error of regression estimator - 1st degree approximation

87 mse3i <- ((1-f)/n)*(my^2)*c2_z*(1-(Ro_ZX^2))

88

89 #Bias of genetalized regression-cum-ratio estimator

90 #1st degree approximation

91 bias5i <- (k1-1)*my+k1*my*((1-f)/n)*(c2_x-Ro_ZX*c_z*c_x)

92 +k2*mx*((1-f)/n)*c2_x

93 #Mean Square Error of generalized regression-cum-ratio estimator

94 #1st degree approximation

95 mse5i <- ((k1-1)^2)*(my^2)+(k1^2)*(my^2)*((1-f)/n)*(c2_z

96 +3*c2_x-4*Ro_ZX*c_z*c_x)+(k2^2)*(mx^2)*((1-f)/n)*c2_x
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97 -2*k1*(my^2)*((1-f)/n)*(c2_x-Ro_ZX*c_z*c_x)

98 -2*k2*my*mx*((1-f)/n)*c2_x

99 -2*k1*k2*my*mx*((1-f)/n)*(Ro_ZX*c_z*c_x-2*c2_x)

100

101 cond1 <- ((1-f)/n)*c2_x

102

103 #Empirical results

104 #Simulation of 5000 replicas of estimates

105 ...

106

107 #Results

108 res <- rbind(res,c(N,n,Ro_YX,Ro_ZX,R,

109 c_x,c_y,c_z,mx,my,mz,

110 med_est1,med_est2,med_est3,med_est5,

111 bias2i,bias3i,bias5i,

112 emp_mse1,mse1,emp_mse2,mse2i,

113 emp_mse3,mse3i,emp_mse5,mse5i,cond1))

114 }

115 colnames(res) <- c("N","n","RhoXY","RhoZX","R",

116 "Cx","Cy","Cz","mX","mY","mZ",

117 "Est1","Est2","Est3","Est5",

118 "BIAS2I","BIAS3I","BIAS5I",

119 "EMP_MSE1","MSE1","EMP_MSE2","MSE2I",

120 "EMP_MSE3","MSE3I","EMP_MSE5","MSE5I","COND1")

121 return(res)

122 }

123

124 #Package for generation

125 require(MASS)

126 N <- 1000

127

128 #Parameters

129 sigma1 <- matrix(c(9,1.9,1.9,4),2,2)

130 sigma2 <- matrix(c(10,3,3,2),2,2)

131 sigma3 <- matrix(c(6,3,3,2),2,2)

132 mu <- c(2,2)

133

134 res <- NULL

135 for (i in 1:length(N))

136 {

137 res <- rbind(res,proj2_2nd_estimator(N[i],sigma1,mu))

138 res <- rbind(res,proj2_2nd_estimator(N[i],sigma2,mu))

139 res <- rbind(res,proj2_2nd_estimator(N[i],sigma3,mu))

140 }

141 write.table(res,"chapter3_ss_results.txt",sep="\t",dec=",",row.names=FALSE)
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Listing 3.2: R Code for Numerical Example of Proposed Estimator in Chapter 3
1

2 proj2_2nd_estimator_real <- function(Y,X,N)

3 {

4 #Coefficient of correlation between Y and X

5 Ro_YX <- cor(Y,X)

6

7 #Scrambling variable independent of Y and X, with mean=0

8 S <- rnorm(N,mean=0,sd=sd(X)*0.1)

9 #Scrambled response

10 Z <- Y+S

11

12 #Coefficient of correlation between Z and X

13 Ro_ZX <- Ro_YX/sqrt(1+(var(S)/var(Y)))

14

15 #population

16 univ <- data.frame(cbind(Y=Y,S=S,Z=Z,X=X,NRAND=runif(N)))

17 univ <- univ[order(univ$NRAND),]

18

19 #Mean of Y

20 mz <- mean(univ$Z)

21 mx <- mean(univ$X)

22 my <- mean(univ$Y)

23 ms <- mean(univ$S)

24

25 mu11 <- sum((univ$Z-mz)*(univ$X-mx))/(N-1)

26 mu12 <- sum((univ$Z-mz)*((univ$X-mx)^2))/(N-1)

27 mu02 <- sum((univ$X-mx)^2)/(N-1)

28 mu03 <- sum((univ$X-mx)^3)/(N-1)

29

30 beta_zx <- Ro_YX*(sd(univ$Y)/sd(univ$X))

31

32 #Samples dimension

33 dim_samp <- c(100,300,500,1000,2000)

34

35 #Initialize variables...

36 for (i in 1:length(dim_samp))

37 {

38 #sample dimension

39 n <- dim_samp[i]

40 #sample

41 samp <- univ[1:n,]

42 #Sampling rate

43 f <- n/N

44

45 #Ratio

46 R <- mean(univ$X)/mean(samp$X)

47
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48 #Ordinary meam

49 est1 <- mean(samp$Z)

50 #Ratio estimator

51 est2 <- mean(samp$Z)*(mx/mean(samp$X))

52 #Regression estimator

53 est3 <- mean(samp$Z)+beta_zx*(mx-mean(samp$X))

54

55 #Coefficient of variation

56 c_x <- sd(univ$X)/mx

57 c_y <- sd(univ$Y)/my

58 c2_x <- c_x^2

59 c2_y <- c_y^2

60 c2_z <- c2_y+(var(univ$S)/(my^2))

61 c_z <- sqrt(c2_z)

62

63 k1 <- (1-((1-f)*c2_x/n))/(1-((1-f)/n)*(c2_x-c2_z*(1-(Ro_ZX^2))))

64 k2 <- (mz/mx)*(1+k1*((Ro_ZX*c_z/c_x)-2))

65 #Generalized regression-cum-ratio estimator

66 est5 <- (k1*mean(samp$Z)+k2*(mx-mean(samp$X)))*(mx/mean(samp$X))

67

68 #Mean Square Error of 1st estimator (ordinal mean)

69 mse1 <- ((1-f)/n)*(var(univ$Y)+var(univ$S))

70

71 #Bias of ratio estimator - 1st degree approximation

72 bias2i <- ((1-f)/n)*my*(c2_x-Ro_ZX*c_z*c_x)

73 #Mean Square Error of ratio estimator - 1st degree approximation

74 mse2i <- ((1-f)/n)*(my^2)*(c2_z+c2_x-2*Ro_ZX*c_z*c_x)

75

76 #Bias of regression estimator - 1st degree approximation

77 bias3i <- -beta_zx*((1-f)/n)*((mu12/mu11)-(mu03/mu02))

78 #Mean Square Error of regression estimator - 1st degree approximation

79 mse3i <- ((1-f)/n)*(my^2)*c2_z*(1-(Ro_ZX^2))

80

81 #Bias of genetalized regression-cum-ratio estimator

82 #1st degree approximation

83 bias5i <- (k1-1)*my+k1*my*((1-f)/n)*(c2_x-Ro_ZX*c_z*c_x)

84 +k2*mx*((1-f)/n)*c2_x

85 #Mean Square Error of generalized regression-cum-ratio estimator

86 #1st degree approximation

87 mse5i <- ((k1-1)^2)*(my^2)+(k1^2)*(my^2)*((1-f)/n)

88 *(c2_z+3*c2_x-4*Ro_ZX*c_z*c_x)+(k2^2)*(mx^2)*((1-f)/n)

89 *c2_x-2*k1*(my^2)*((1-f)/n)*(c2_x-Ro_ZX*c_z*c_x)

90 -2*k2*my*mx*((1-f)/n)*c2_x-2*k1*k2*my*mx*((1-f)/n)*(Ro_ZX*c_z*c_x-2*c2_x)

91

92 cond1 <- ((1-f)/n)*c2_x

93

94 #Empirical results

95 #Simulation of 5000 replicas of estimates

96 ...

97
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98 #Results

99 res <- rbind(res,c(N,n,Ro_YX,Ro_ZX,R,

100 c_x,c_y,c_z,mx,my,mz,ms,

101 med_est1,med_est2,med_est3,med_est5,

102 bias2i,bias3i,bias5i,

103 emp_mse1,mse1,emp_mse2,mse2i,

104 emp_mse3,mse3i,emp_mse5,mse5i,cond1))

105 }

106 colnames(res) <- c("N","n","RhoXY","RhoZX","R",

107 "Cx","Cy","Cz","mX","mY","mZ","ms",

108 "Est1","Est2","Est3","Est5",

109 "BIAS2I","BIAS3I","BIAS5I",

110 "EMP_MSE1","MSE1","EMP_MSE2","MSE2I",

111 "EMP_MSE3","MSE3I","EMP_MSE5","MSE5I","COND1")

112 return(res)

113 }

114

115 #Package for generation

116 require(MASS)

117

118 #Import data

119 data_yx <- read.table("IUTICE10.txt",sep="\t",dec=",",header = T)

120 #Study variable (purchase, millions of euros)

121 Y <- data_yx[,3]

122 #Auxiliary variable, correlated with Y (turnover, millions of euros)

123 X <- data_yx[,2]

124

125 #Data application

126 N <- dim(data_yx)[1]

127 res <- proj2_2nd_estimator_real(Y,X,N)

128

129 #Export data

130 write.table(res_exp,"chapter3_ne_results.txt",sep="\t",dec=",",row.names=FALSE)
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4
Exponential Type Estimators of the
Mean of a Sensitive Variable in the

Presence of Non Sensitive Auxiliary
Information

Abstract

Sousa et al. (2010) and Gupta et al. (2012) suggested ratio and regression type estimators
of the mean of a sensitive variable using non-sensitive auxiliary variable. This paper
proposes exponential type estimators using one and two auxiliary variables to improve
the efficiency of mean estimator based on a Randomized Response Technique (RRT). The
expressions for the Mean Square Errors (MSE’s) and bias, up to fisrt order approximation,
have been obtained. It is shown that the proposed exponential type estimators are more
efficient than the existing estimators. The gain in efficiency over the existing estimators
has also been shown with a simulation study and by using real data.

Accepted as: KOYUNCU, N., GUPTA, S., SOUSA, R. 2013. Exponential type estimators of the mean
of a sensitive variable in the presence of non-sensitive auxiliary information. Communications in Statistics -
Simulation and Computation.
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4.1 Introduction

Randomized Response Technique (RRT) is used to estimate the proportion of people in a
community bearing a stigmatizing characteristic like habitual tax evasion, reckless driv-
ing, indiscriminate gambling, abortion etc. In such situations we cannot expect to get a
truthful direct response to a sensitive question. Eichhorn and Hayre (1983), Gupta and
Shabbir (2004), Gupta et al. (2002, 2010), Wu et al. (2008), Perri (2008), and many oth-
ers have estimated the mean of a sensitive variable when the study variable is sensitive
and there is no auxiliary variable. Sousa et al. (2010) and Gupta et al. (2012) suggested
mean estimators based on RRT models using an auxiliary variable that can be directly ob-
served. In sampling literature, Bahl and Tuteja (1991), Shabbir and Gupta (2007), Grover
(2010) and Koyuncu (2012) have studied exponential type estimators to get more efficient
estimates. In this study we have proposed exponential type estimators of the mean of a
sensitive variable using non-sensitive auxiliary information. We have discussed the cases
when one or two non-sensitive auxiliary variables are available.

4.2 Terminology

Let Y be the study variable, a sensitive variable which cannot be observed directly. Let
X1 and X2 be non-sensitive auxiliary variables which have a positive correlation with Y .
Let S, be a scrambling variable, independent of Y , X1 and X2. The respondent is asked
to report a scrambled response for Y given by Z = Y + S but is asked to provide a true
response for X1 and X2. Let a random sample of size n be drawn without replacement
from a finite population U = (U1, U2, ..., UN ). For the ith unit (i = 1, 2, ..., N), let yi, x1i

and x2i respectively be the values of the study variable Y and auxiliary variables X1 and
X2. Let ȳ =

∑n
i=1 yi
n , x̄1 =

∑n
i=1 x1i
n , x̄2 =

∑n
i=1 x2i
n and z̄ =

∑n
i=1 zi
n be the sample means

and Ȳ = E(Y ), X̄1 = E(X1), X̄2 = E(X2) and Z̄ = E(Z) be the population means for
Y , X1, X2 and Z respectively. We assume that X̄1, X̄2 are known and S̄ = E(S) = 0.
Thus E(Z) =E(Y ) and C2

z = C2
y +

(
S2
s/Ȳ

2
)
, where Cz and Cy are the coefficients of the

variation of z and y respectively.

To obtain the bias and MSE expressions, let us define

e0 =
z̄ − Z̄
Z̄

, e1 =
x̄1 − X̄1

X̄1
, e2 =

x̄2 − X̄2

X̄2
, e3 =

s2
x1 − S2

x1

S2
x1

and e4 =
s2
zx1 − S2

zx1

S2
zx1

.

Using these notations,

E(ei) = 0, i = 0, 1, 2, 3, 4.

E(e2
0) = λC2

z , E(e2
1) = λC2

x1, E(e2
2) = λC2

x2, E(e0e1) = λCzx1,
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E(e0e2) = λCzx2, E(e1e2) = λCx1x2, E(e1e3) = λ
1

X̄1

µ03

µ02
,

E(e1e4) = λ
1

X̄1

µ12

µ11
,

where λ =
1− f
n

and µrs =
1

N − 1

∑N
i=1(zi − Z̄)r(x1i − X̄1)s.

4.3 Estimators Review

We describe below some existing mean estimators and their bias and MSE formulas.

(i) Ordinary sample mean (z̄) of scrambled responses:

µ̂Y = z̄. (4.1)

MSE(µ̂y) = λ
(
S2
y + S2

s

)
, (4.2)

where
S2
y = 1

N−1

∑N
i=1(yi − Ȳ )2, S2

x1 = 1
N−1

∑N
i=1(x1i − X̄1)2, S2

s = 1
N−1

∑N
i=1(si − S̄)2.

(ii) Sousa et al. (2010) ratio type estimator:

µ̂R = z̄
X̄1

x̄1
. (4.3)

Bias(µ̂R) ∼= Ȳ λ
(
C2
x1 − Cx1z

)
, (4.4)

where C2
z =

(
C2
y +

S2
s

Ȳ 2

)
, ρzx1 =

ρyx1√
1 +

S2
s

S2
y

, Z̄= Ȳ .

MSE(µ̂R) ∼= λȲ 2
(
C2
z + C2

x1 − 2Cx1z

)
. (4.5)

(iii) Gupta et al. (2012) regression estimator:

µ̂Reg = z̄ + β̂zx1

(
X̄1 − x̄1

)
, (4.6)

where β̂zx1 =
Szx1

S2
x1

=
Syx1

S2
x1

, is the sample regression coefficient between Z and X1.

Bias(µ̂Reg) ∼= −βzx1λ

(
µ12

µ11
− µ03

µ02

)
, (4.7)
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where βzx1 =
Szx1

S2
x1

=
Syx1

S2
x1

= ρyx1
Sy
Sx1

= βyx1 is the population regression coeffi-

cient between Z and X1.

Recognizing Z̄= Ȳ

MSE(µ̂Reg) ∼= λȲ 2C2
z

[
1− S2

zx1

S2
x1S

2
z

]
= λȲ 2C2

z

[
1− ρ2

zx1

]
or

MSE(µ̂Reg) ∼= λS2
y

[(
1 +

S2
s

S2
y

)
− ρ2

yx1

]
. (4.8)

(iv) Gupta et al. (2012) generalized regression-cum-ratio estimator:

µ̂GRR =
[
k1z̄ + k2

(
X̄ − x̄

)](X̄
x̄

)
, (4.9)

where k1 and k2 are constants.

Bias(µ̂GRR) ∼= (k1 − 1)Ȳ + k1Ȳ λ
{
C2
x − ρzxCzCx

}
+ k2X̄λC

2
x. (4.10)

MSE(µ̂GRR) ∼= (k1 − 1)2Ȳ 2 + k2
1Ȳ

2λ
{
C2
z + 3C2

x − 4ρzxCzCx
}

+k2
2X̄

2λC2
x − 2k1Ȳ

2λ
{
C2
x − ρzxCzCx

}
−2k2Ȳ X̄λC

2
x − 2k1k2Ȳ X̄λ

{
ρzxCzCx − 2C2

x

}
.

(4.11)

From Equation (4.11), the optimum values of k1 and k2 are given by

k1(opt) =
1− λC2

x

1− λ {C2
x − C2

z (1− ρ2
zx)}

(4.12)

and
k2(opt) =

Ȳ

X̄

{
1 + k1(opt)

(
ρzxCz
Cx

− 2

)}
, (4.13)

the minimum MSE of µ̂GRR can be written as follows:

MSE(µ̂GRR)min ∼=
Ȳ 2C2

z

(
1− ρ2

zx

)
λ
{

1− λC2
x

}
C2
z (1− ρ2

zx)λ+ {1− λC2
x}

. (4.14)

4.4 Proposed Exponential Type Estimators

Our first proposed estimator, which we call "generalized regression-cum-exponential es-
timator" follows Grover (2010) and Shabbir and Gupta (2007), and is given by

µ̂exp1 =
[
w1z̄ + w2

(
X̄1 − x̄1

)]
exp

(
X̄1 − x̄1

X̄1 + x̄1

)
, (4.15)
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where w1 and w2 are suitable weights. Expressing (4.15) in terms of e’s (defined earlier)
and retaining terms of e’s up to second-order we have

µ̂exp1−Z̄ ∼=
[
w1Z̄ + w1Z̄e0 − w2X̄1e1 −

1

2
w1Z̄e1 −

1

2
w1Z̄e0e1 +

1

2
w2X̄1e

2
1 +

3

8
w1Z̄e

2
1 − Z̄

]
.

(4.16)

The Bias and MSE of µ̂exp1, to the first order of approximation, are given by

Bias (µ̂exp1) ∼= (w1 − 1) Ȳ + λ

{
1

2
w1Ȳ

(
3

4
C2
x1 − Czx1

)
+

1

2
w2X̄1C

2
x1

}
(4.17)

and
MSE (µ̂exp1) ∼= {Ȳ 2 + w2

1Ȳ
2
(
1 + λ

(
C2
z + C2

x1 − 2Czx1

))
+w2

2X̄
2λC2

x1 + w1Ȳ
2

(
λ

(
Czx1 −

3

4
C2
x1

)
− 2

)
−w2Ȳ X̄λC

2
x1 + 2w1w2Ȳ X̄λ

(
C2
x1 − Czx1

)
},

(4.18)

and optimum values of w1 and w2 respectively are found as

w∗
1 =

1− 1

8
λC2

x1

1 + λC2
z

(
1− ρ2

zx1

) (4.19)

and

w∗
2 =

Ȳ

2X̄1

C2
x1 − 2C2

x1 + 2Czx1 + λC2
x1

(
C2
z

(
1− ρ2

zx1

)
+

1

4

(
C2
x1 − Czx1

))
C2
x1

[
1 + λC2

z

(
1− ρ2

zx1

)] . (4.20)

Substituting these optimum values in (4.18), the minimum MSE of µ̂exp1 can be writ-
ten as follows:

MSEmin (µ̂exp1) ∼= Ȳ 2

1−
λ2C2

x1

(
1

16
C2
x1 + C2

z

(
1− ρ2

zx1

))
+ 4

4 +
[
1 + λC2

z

(
1− ρ2

zx1

)]
 (4.21)

or

MSEmin (µ̂exp1) ∼=

 MSE (µ̂Reg)[
1 +

MSE (µ̂Reg)

Ȳ 2

] − λC2
x1

(
MSE (µ̂Reg) + λ

1

16
C2
x1Ȳ

2

)
4

[
1 +

MSE (µ̂Reg)

Ȳ 2

]
 . (4.22)

Note that the optimum choice of the constants w1 and w2 involve unknown param-
eters. These quantities can be guessed through a pilot sample survey or through expe-
rience gathered in due course of time, as mentioned Upadhyaya and Singh (2006), and
Koyuncu and Kadilar (2009).
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The estimator defined in (4.15) can be generalized to the case of multiple auxiliary
variables. We consider below the case of two auxiliary non-sensitive variables. This
estimator is given by

µ̂exp2 =
[
d1z̄ + d2

(
X̄1 − x̄1

)
+ d3

(
X̄2 − x̄2

)]
exp

((
X̄1 − x̄1

)
+
(
X̄2 − x̄2

)(
X̄1 + x̄1

)
+
(
X̄2 + x̄2

)) . (4.23)

Expressing (4.23) in terms of e’s and retaining up to second-order terms in e’s we have

µ̂exp2 ∼=
{
d1Z̄ (1 + e0)− d2X̄1e1 − d3X̄2e2

}
1− X̄1

2
(
X̄1 + X̄2

)e1 −
X̄2

2
(
X̄1 + X̄2

)e2 +
3X̄2

1

8
(
X̄1 + X̄2

)2 e2
1

+
6X̄1X̄2

8
(
X̄1 + X̄2

)2 e1e1 +
3X̄2

2

8
(
X̄1 + X̄2

)2 e2
2

 .
(4.24)

The Bias and MSE of µ̂exp2, to the first order of approximation, are given by

Bias (µ̂exp2) ∼= (d1 − 1) Z̄

+
d1λZ̄

2
(
X̄1 + X̄2

)
 −X̄1Czx1 − X̄2Czx2 +

3X̄2
1

4
(
X̄1 + X̄2

)C2
x1

+
3X̄2

2

4
(
X̄1 + X̄2

)C2
x2 +

3X̄1X̄2

2
(
X̄1 + X̄2

)Cx1x2


+

d2λX̄1

2
(
X̄1 + X̄2

) (X̄1C
2
x1 + X̄2Cx1x2

)
+

d3λX̄2

2
(
X̄1 + X̄2

)λ (X̄1Cx1x2 + X̄2C
2
x2

)
(4.25)

and

MSE (µ̂exp2) ∼= Z̄2 + d1A− d2B − d3C + d2
1D + d2

2X̄
2
1λC

2
x1 + d2

3X̄
2
2λC

2
x2

+2d1d2F + 2d1d3G+ 2d2d3X̄1X̄2λCx1x2,
(4.26)

where

A = Z̄2

−2 + λ


X̄1Czx1(
X̄1 + X̄2

) +
X̄2Czx2(
X̄1 + X̄2

) − 3X̄2
1C

2
x1

4
(
X̄1 + X̄2

)2 − 6X̄1X̄2Cx1x2

4
(
X̄1 + X̄2

)2
− 3X̄2

2C
2
x2

4
(
X̄1 + X̄2

)2

 ,

B = λ
Z̄(

X̄1 + X̄2

) (X̄2
1C

2
x1 + X̄1X̄2Cx1x2

)
,

C = λ
Z̄(

X̄1 + X̄2

) (X̄2
2C

2
x2 + X̄1X̄2Cx1x2

)
,

D = Z̄2 + λ


Z̄2C2

z +
X̄2

1 Z̄
2C2

x1(
X̄1 + X̄2

)2 +
X̄2

2 Z̄
2C2

x2(
X̄1 + X̄2

)2 − 2
X̄1Z̄

2Czx1(
X̄1 + X̄2

) − 2
X̄2Z̄

2Czx2(
X̄1 + X̄2

)
+

2X̄1X̄2Z̄
2Cx1x2(

X̄1 + X̄2

)2
 ,
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F = λ

(
Z̄X̄2

1(
X̄1 + X̄2

)C2
x1 +

Z̄X̄1X̄2(
X̄1 + X̄2

)Cx1x2 − Z̄X̄1Czx1

)
,

G = λ

(
Z̄X̄2

2(
X̄1 + X̄2

)C2
x2 +

Z̄X̄1X̄2(
X̄1 + X̄2

)Cx1x2 − Z̄X̄2Czx2

)
,

and optimum values of d1, d2 and d3 are respectively found as

d∗1 =
1

2D

 A (DλSx1x2 − FG)2 + (BDG+ CDF + 2AFG) (DλSx1x2 − FG)

−G (CD +AG)
(
DλS2

x1 − F 2
)
− F (AF +BD)

(
DλS2

x2 −G2
)

−A
(
DλS2

x1 − F 2
) (
DλS2

x2 −G2
)


(
DλS2

x1 − F 2
) (
DλS2

x2 −G2
)
− (DλSx1x2 − FG)2 , (4.27)

d∗2 =
1

2

(AF +BD)
(
DλS2

x2 −G2
)
− (AG+ CD) (DλSx1x2 − FG)(

DλS2
x1 − F 2

) (
DλS2

x2 −G2
)
− (DλSx1x2 − FG)2 , (4.28)

and

d∗3 =
1

2

(AG+ CD)
(
DλS2

x1 − F 2
)
− (AF +BD) (DλSx1x2 − FG)(

DλS2
x1 − F 2

) (
DλS2

x2 −G2
)
− (DλSx1x2 − FG)2 . (4.29)

Substituting these optimum values in (4.26), the minimum MSE of µ̂exp2 can be writ-
ten as follows:

MSE (µ̂exp2)min = Z̄2 − A2

4D

− 1

4D

 (AG+ CD)2 (DλS2
x1 − F 2

)
+ (AF +BD)2 (DλS2

x2 −G2
)

−2 (AG+ CD) (AF +BD) (DλSx1x2 − FG)


(
DλS2

x1 − F 2
) (
DλS2

x2 −G2
)
− (DλSx1x2 − FG)2 .

(4.30)

4.5 Comparison with Gupta et al. (2012) Estimators

First, we compare the proposed "generalized regression-cum-exponential estimator" with
the Gupta et al. (2012) regression estimator. Note that

MSE (µ̂exp1) < MSE (µ̂Reg) if

MSE (µ̂Reg)−
MSE (µ̂Reg)[

1 +
MSE (µ̂Reg)

Ȳ 2

] +

λC2
x

(
MSE (µ̂Reg) + λ

1

16
C2
xZ̄

2

)
4

[
1 +

MSE (µ̂Reg)

Ȳ 2

] > 0
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or
(MSE (µ̂Reg))

2

Ȳ 2[
1 +

MSE (µ̂Reg)

Ȳ 2

] +

λC2
x

(
MSE (µ̂Reg) + λ

1

16
C2
xZ̄

2

)
4

[
1 +

MSE (µ̂Reg)

Ȳ 2

] > 0. (4.31)

From (4.31), we can see easily that proposed "generalized regression-cum-exponential
estimator" is always more efficient than regression estimator of Gupta et al. (2012).

Secondly, we compare the proposed "generalized regression-cum-exponential estima-
tor" with Gupta et al. (2012) generalized regression-cum-ratio estimator

MSE (µ̂exp1)min < MSE (µ̂GRR)min if

λ2C2
x

(
1

16
C2
x + C2

z

(
1− ρ2

zx

))
+ 4

4 [1 + λC2
z (1− ρ2

zx)]
+

C2
z

(
1− ρ2

zx

)
λ
{

1− λC2
x

}
C2
z (1− ρ2

zx)λ+ {1− λC2
x}

> 1. (4.32)

When the condition (4.32) is satisfied, we can infer that the suggested estimator is
more efficient than Gupta et al. (2012) generalized regression-cum-ratio estimator.

4.6 Simulation Study

In this section, we investigate the efficiency of proposed exponential estimators to exist-
ing estimators. The simulation study is carried out to compare the Bias and MSE of the
estimators both empirically and theoretically. In the simulation study, we consider two
finite populations of size N = 1000 generated from a multivariate normal distribution
with the same theoretical mean of [Y,X1, X2] as µ = [5, 5, 5] and different covariance ma-
trices as given below.

Population 1

σ2 =

 10 3 2.9

3 2 1.1

2.9 1.1 2

 , ρX1Y = 0.6817, ρX2Y = 0.6705.

Population 2

σ2 =

 6 3 2.9

3 2 1.1

2.9 1.1 2

 , ρX1Y = 0.8706, ρX2Y = 0.8706.

The scrambling variable S is taken to be a normal variable with mean equal to zero
and standard deviation equal to 10% of the standard deviation of X1. The reported re-
sponse is given by Z = Y + S. For each population we considered four sample sizes:
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n = 50, 100, 200 and 300. The percent relative efficiency (PRE) is calculated from follow-
ing equations

PRE =
MSE (µ̂Y )

MSE (µ̂i)
× 100,

where i = R,Reg,GRR, exp1, exp2.

The empirical MSE, theoretical MSE and Percent Relative Efficiency (PRE) values for
all estimators are given in Table 4.1 and Table 4.2.

Table 4.1: Empirical MSE, theoretical MSE correct up to 1st order approximation and PRE of all estimators.

Population MSE Estimation

N
ρX1Y n Estimator Empirical Theoretical PRE
ρX2Y

1000 0.6817
0.6705

50

µ̂Y 0.1193 0.1953 100.00
µ̂R 0.1193 0.1145 170.64
µ̂Reg 0.1083 0.1047 186.50
µ̂GRR 0.1094 0.1043 187.26
µ̂exp1 0.1089 0.1042 187.34
µ̂exp2 0.0857 0.0827 236.13

100

µ̂Y 0.0900 0.0925 100.00
µ̂R 0.0544 0.0542 170.64
µ̂Reg 0.0499 0.0496 186.50
µ̂GRR 0.0503 0.0495 186.86
µ̂exp1 0.0501 0.0495 186.90
µ̂exp2 0.0390 0.0393 235.69

200

µ̂Y 0.0404 0.0411 100.00
µ̂R 0.0240 0.0241 170.64
µ̂Reg 0.0220 0.0220 186.50
µ̂GRR 0.0221 0.0220 186.66
µ̂exp1 0.0220 0.0220 186.67
µ̂exp2 0.0172 0.0175 235.47

300

µ̂Y 0.0236 0.0240 100.00
µ̂R 0.0141 0.0141 170.64
µ̂Reg 0.0129 0.0129 186.50
µ̂GRR 0.0130 0.0129 186.59
µ̂exp1 0.0130 0.0129 186.60
µ̂exp2 0.0103 0.0102 235.40

From Table 4.1 and Table 4.2 we can confirm that suggested generalized regression-
cum-exponential estimator is always more efficient than Gupta et al. (2012) regression
estimator. Generalized regression-cum-exponential estimator is the most efficient estima-
tor for using one auxiliary variable. Suggested exponential estimator with two auxiliary
variables performs better than the estimator with one auxiliary variable, as expected.
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Table 4.2: Table 4.1 Continued.

Population MSE Estimation

N
ρX1Y n Estimator Empirical Theoretical PRE
ρX2Y

1000 0.8706
0.8428

50

µ̂Y 0.1198 0.1181 100.00
µ̂R 0.0400 0.0395 299.42
µ̂Reg 0.0287 0.0289 409.40
µ̂GRR 0.0291 0.0288 409.86
µ̂exp1 0.0289 0.0288 410.03
µ̂exp2 0.0078 0.0073 1626.30

100

µ̂Y 0.0547 0.0560 100.00
µ̂R 0.0188 0.0187 299.42
µ̂Reg 0.0138 0.0137 409.40
µ̂GRR 0.0140 0.0137 409.62
µ̂exp1 0.0139 0.0137 409.70
µ̂exp2 0.0037 0.0034 1625.73

200

µ̂Y 0.0246 0.0249 100.00
µ̂R 0.0086 0.0083 299.42
µ̂Reg 0.0063 0.0061 409.40
µ̂GRR 0.0063 0.0061 409.49
µ̂exp1 0.0063 0.0061 409.53
µ̂exp2 0.0017 0.0015 1625.44

300

µ̂Y 0.0143 0.0145 100.00
µ̂R 0.0049 0.0048 299.42
µ̂Reg 0.0037 0.0035 409.40
µ̂GRR 0.0037 0.0035 409.45
µ̂exp1 0.0037 0.0035 409.47
µ̂exp2 0.0011 0.0009 1625.35

4.7 Numerical Example

We consider the real population used in Sousa et al (2010) and in Gupta et al. (2012).
It is based on the survey on Information and Communication Technologies (ICT) usage
in enterprises in 2009 with seat in Portugal (Smilhily and Storm, 2010). This survey in-
tends to promote the development of the national statistical system in the information
society and to contribute to a deeper knowledge about the usage of ICT by enterprises.
The target population covers all industries with one and more persons employed in the
sections of economic activity C (Manufacturing) to N (Administrative and support ser-
vice activities) and S (Other service activities), from NACE1 Rev. 2 (Eurostat, 2008). The
data are essentially collected using Electronic Data Interchange, applying direct connec-
tion between information systems at the respondent and the National Statistics Institute.
For some enterprises the paper questionnaire is still used. The questions in the structural
business surveys mainly deal with characteristics that can be found in the organisations’
annual reports and financial statements, such as employment, turnover and investment.

1NACE is derived from the French title "Nomenclature générale des Activités économiques dans les
Communautés Européennes" (Statistical classification of economic activities in the European Communities).
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In our application the study variable Y is the purchase orders in 2010, collected by
the ICT survey in that year. This is typically a confidential variable for enterprises, only
known from business surveys. The auxiliary variable X is the turnover of each enter-
prise. This information can be easily obtained from enterprise records available in the
public domain, as administrative information. In 2010 the population survey contained
approximately 278000 enterprises and we know the value of X for all these enterprises.
The purchase orders information was collected in the ICT survey and we have the val-
ues of Y for 5336 enterprises (which answered this question in the ICT survey in 2010).
For this study, these 5336 enterprises are considered as our population. The scrambling
variable S is taken to be a normal random variable with mean equal to zero and standard
deviation equal to 10% of the standard deviation of X , that is σS = 0.1σX . The reported
response is given by Z = Y + S (the purchase order value plus a random quantity). The
variables Y and X are strongly correlated so we can take advantage of this correlation by
using the ratio and regression estimators.

Population Characteristics:

N = 5336, ρXY = 0.9632

µX = 22.99, µY = 30.19, σX = 172.09, σY = 138.65 (in millions of Euros)

and βY X = 0.7763

We use the following samples sizes in our simulation study: n = 100, 500, 1000 and 2000.

The empirical, theoretical MSE and Percent Relative Efficiency (PRE) values for all es-
timators are given in Table 4.3.
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Table 4.3: MSE and PRE for the ratio estimator (µ̂R), the regression estimator (µ̂Reg), the generalized
regression-cum-ratio estimator (µ̂GRR) and the exponential estimator (µ̂exp1) relative to the RRT mean esti-
mator.

Population MSE Estimation

N ρXY n Estimator Empirical Theoretical PRE

5336 0.9636

100

µ̂Y 196.8002 191.5088 100.00
µ̂R 11.3683 16.4393 1164.94
µ̂Reg 16.7963 16.3768 1169.39
µ̂GRR 11.3909 15.6644 1222.58
µ̂exp1 12.3339 13.1849 1452.49

500

µ̂Y 34.6507 35.3757 100.00
µ̂R 2.7259 3.0367 1164.94
µ̂Reg 3.0170 3.0252 1169.39
µ̂GRR 2.7509 3.0069 1176.50
µ̂exp1 2.8631 2.9173 1212.61

1000

µ̂Y 15.7543 15.8591 100.00
µ̂R 1.3092 1.3614 1164.94
µ̂Reg 1.3592 1.3562 1169.39
µ̂GRR 1.3175 1.3526 1172.47
µ̂exp1 1.3381 1.3345 1188.38

2000

µ̂Y 6.2451 6.1008 100.00
µ̂R 0.5691 0.5237 1164.94
µ̂Reg 0.5573 0.5217 1169.39
µ̂GRR 0.5718 0.5212 1170.55
µ̂exp1 0.5673 0.5185 1176.62

From Table 4.3 we can say that generalized regression-cum-exponential estimator has
the largest PRE.

4.8 Conclusions

This paper proposed type estimators using non-sensitive one or two auxiliary variables
to improve the efficiency of RRT estimators of mean. The expression for Bias and MSE are
derived. We found that the proposed exponential type estimators are more efficient than
the existing estimators in literature. These results are also supported with a simulation
study and using a real data.
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Appendix C - R Routines

Listing 4.1: R Code for Simulation Study of Proposed Estimator in Chapter 4
1

2 proj_exponential <- function(N,sigma,mu)

3 {

4

5 #Generation of a bivariate normal population

6 data_yx <- mvrnorm(N, mu, sigma)

7

8 #Study variable

9 Y <- data_yx[,1]

10 #Auxiliary variable, correlated with Y

11 X <- data_yx[,2]

12

13 #Coefficient of correlation between Y and X

14 Ro_YX <- cor(Y,X)

15

16 #Scrambling variable independent of Y and X, with mean=0

17 S <- rnorm(N,mean=0,sd=0.1*sd(X))

18

19 #Scrambled response

20 Z <- Y+S

21

22 #Coefficient of correlation between Z and X

23 Ro_ZX <- Ro_YX/sqrt(1+(var(S)/var(Y)))

24

25 #population

26 univ <- data.frame(cbind(Y=Y,S=S,Z=Z,X=X,NRAND=runif(N)))

27 univ <- univ[order(univ$NRAND),]

28

29 #Mean of Y

30 mz <- mean(univ$Z)

31 mx <- mean(univ$X)

32 my <- mean(univ$Y)

33

34 mu11 <- sum((univ$Z-mz)*(univ$X-mx))/(N-1)

35 mu12 <- sum((univ$Z-mz)*((univ$X-mx)^2))/(N-1)

36 mu02 <- sum((univ$X-mx)^2)/(N-1)

37 mu03 <- sum((univ$X-mx)^3)/(N-1)

38

39 beta_zx <- Ro_YX*(sd(univ$Y)/sd(univ$X))

40

41 #Samples dimension

42 dim_samp <- c(50,100,200,300)

43

44 #Initialize the variables...

45

46 for (i in 1:length(dim_samp))
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47 {

48 #sample dimension

49 n <- dim_samp[i]

50 #sample

51 samp <- univ[1:n,]

52 #Sampling rate

53 f <- n/N

54

55 #Ratio

56 R <- mean(univ$X)/mean(samp$X)

57

58 #Ordinary meam

59 est1 <- mean(samp$Z)

60 #Ratio estimator

61 est2 <- mean(samp$Z)*(mx/mean(samp$X))

62 #Regression estimator

63 est3 <- mean(samp$Z)+beta_zx*(mx-mean(samp$X))

64 #Regression-cum-ratio estimator

65 est4 <- (mean(samp$Z)+beta_zx*(mx-mean(samp$X)))*(mx/mean(samp$X))

66

67 #Coefficient of variation

68 c_x <- sd(univ$X)/mx

69 c_y <- sd(univ$Y)/my

70 c2_x <- c_x^2

71 c2_y <- c_y^2

72 c2_z <- c2_y+(var(univ$S)/(my^2))

73 c_z <- sqrt(c2_z)

74

75 A <- (1+((1-f)/n)*(c2_z+c2_x-2*Ro_ZX*c_z*c_x))

76 B <- (((1-f)/n)*(Ro_ZX*c_z*c_x-0.75*c2_x)-2)

77 w1 <- (c2_x/2)*(-B-((1-f)/n)*(c2_x-Ro_ZX*c_z*c_x))

78 /(A*c2_x-((1-f)/n)*((c2_x-Ro_ZX*c_z*c_x)^2))

79 w2 <- (my*c2_x-2*w1*my*(c2_x-Ro_ZX*c_z*c_x))/(2*mx*c2_x)

80

81 #Auxiliar coefficients

82 k1 <- (1-((1-f)*c2_x/n))/(1-((1-f)/n)*(c2_x-c2_z*(1-(Ro_ZX^2))))

83 k2 <- (my/mx)*(1+k1*((Ro_ZX*c_z/c_x)-2))

84

85 #Generalized Regression-cum-ratio Estimator

86 est5 <- (k1*mean(samp$Z)+k2*(mx-mean(samp$X)))*(mx/mean(samp$X))

87

88 #Exponential Type Estimator

89 est6 <- (mean(samp$Z)+beta_zx*(mx-mean(samp$X)))

90 *exp((mx-mean(samp$X))/(mx+mean(samp$X)))

91 #Generalized Exponential Type Estimator

92 est7 <- (w1*mean(samp$Z)+w2*(mx-mean(samp$X)))

93 *exp((mx-mean(samp$X))/(mx+mean(samp$X)))

94

95 #Mean Square Error of 1st estimator (ordinal mean)

96 mse1 <- ((1-f)/n)*(var(univ$Y)+var(univ$S))
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97

98 #Bias of ratio estimator - 1st degree approximation

99 bias2i <- ((1-f)/n)*my*(c2_x-Ro_ZX*c_z*c_x)

100 #Mean Square Error of ratio estimator - 1st degree approximation

101 mse2i <- ((1-f)/n)*(my^2)*(c2_z+c2_x-2*Ro_ZX*c_z*c_x)

102

103 #Bias of regression estimator - 1st degree approximation

104 bias3i <- -beta_zx*((1-f)/n)*((mu12/mu11)-(mu03/mu02))

105 #Mean Square Error of regression estimator - 1st degree approximation

106 mse3i <- ((1-f)/n)*(my^2)*c2_z*(1-(Ro_ZX^2))

107

108 #Bias of regression-cum-ratio estimator - 1st degree approximation

109 bias4i <- ((1-f)/n)*(my*c2_x-beta_zx*((mu12/mu11)-(mu03/mu02)))

110 #Mean Square Error of regression-cum-ratio estimator

111 #1st degree approximation

112 mse4i <- ((1-f)/n)*(my^2)*(c2_z*(1-(Ro_ZX^2))+c2_x)

113

114 #Bias of genetalized regression-cum-ratio estimator

115 #1st degree approximation

116 bias5i <- (k1-1)*my+k1*my*((1-f)/n)*(c2_x-Ro_ZX*c_z*c_x)

117 +k2*mx*((1-f)/n)*c2_x

118 #Mean Square Error of generalized regression-cum-ratio estimator

119 #1st degree approximation

120 mse5i <- ((k1-1)^2)*(my^2)+(k1^2)*(my^2)*((1-f)/n)

121 *(c2_z+3*c2_x-4*Ro_ZX*c_z*c_x)+(k2^2)*(mx^2)*((1-f)/n)

122 *c2_x-2*k1*(my^2)*((1-f)/n)*(c2_x-Ro_ZX*c_z*c_x)

123 -2*k2*my*mx*((1-f)/n)*c2_x-2*k1*k2*my*mx*((1-f)/n)

124 *(Ro_ZX*c_z*c_x-2*c2_x)

125

126 #Bias of exponential type estimator - 1st degree approximation

127 bias6i <- ((1-f)/n)*(beta_zx*((mu03/mu02)-(mu12/mu11))+(3/8)*my*c2_x)

128 #Mean Square Error of exponential type estimator - 1st degree approximation

129 mse6i <- ((1-f)/n)*(my^2)*(c2_z*(1-(Ro_ZX^2))+0.25*c2_x)

130

131 #Bias of generalized exponential type estimator

132 #1st degree approximation

133 bias7i <- (w1-1)*my+((1-f)/n)

134 *(0.5*w1*my*(0.75*c2_x-Ro_ZX*c_z*c_x)+0.5*w2*mx*c2_x)

135 #Mean Square Error of generalized exponential type estimator

136 #1st degree approximation

137 mse7i <- (mse3i/(1+(mse3i/(my^2))))-((((1-f)/n)* c2_x*(mse3i

138 +((1-f)/n)*(1/16)*c2_x*(my^2)))/(4*(1+mse3i/(my^2))))

139

140 #Empirical results

141 #Simulation of 5000 replicas of estimates

142 ...

143

144 #Results

145 res <- rbind(res,c(N,n,Ro_YX,Ro_ZX,R,

146 c_x,c_y,c_z,k1,k2,w1,w2,
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147 mx,my,mz,

148 med_est1,med_est2,med_est3,med_est4,

149 med_est5,med_est6,med_est7,

150 bias2i,bias3i,bias4i,bias5i,

151 bias6i,bias7i,

152 emp_mse1,mse1,emp_mse2,mse2i,

153 emp_mse3,mse3i,emp_mse4,mse4i,

154 emp_mse5,mse5i,emp_mse6,mse6i,

155 emp_mse7,mse7i))

156 }

157 colnames(res) <- c("N","n","RhoXY","RhoZX","R",

158 "Cx","Cy","Cz","k1","k2","w1","w2",

159 "mX","mY","mZ",

160 "Est1","Est2","Est3","Est4",

161 "Est5","Est6","Est7",

162 "BIAS2I","BIAS3I","BIAS4I","BIAS5I",

163 "BIAS6I","BIAS7I",

164 "EMP_MSE1","MSE1","EMP_MSE2","MSE2I",

165 "EMP_MSE3","MSE3I","EMP_MSE4","MSE4I",

166 "EMP_MSE5","MSE5I","EMP_MSE6","MSE6I",

167 "EMP_MSE7","MSE7I")

168 return(res)

169 }

170

171 #Package for generation

172 require(MASS)

173 N <- 1000

174

175 #Parameters

176 sigma1 <- matrix(c(9,1.9,1.9,4),2,2)

177 sigma2 <- matrix(c(10,3,3,2),2,2)

178 sigma3 <- matrix(c(6,3,3,2),2,2)

179 mu <- c(2,2)

180

181 res <- NULL

182 for (i in 1:length(N))

183 {

184 res <- rbind(res,proj_exponential(N[i],sigma1,mu))

185 res <- rbind(res,proj_exponential(N[i],sigma2,mu))

186 res <- rbind(res,proj_exponential(N[i],sigma3,mu))

187 }

188 write.table(res,"chapter4_ss_results.txt",sep="\t",dec=",",row.names=FALSE)
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Listing 4.2: R Code for Numerical Example of Proposed Estimator in Chapter 4
1

2 proj_exponential_real <- function(Y,X,N)

3 {

4 #Coefficient of correlation between Y and X

5 Ro_YX <- cor(Y,X)

6

7 #Scrambling variable independent of Y and X, with mean=0

8 S <- rnorm(N,mean=0,sd=sd(X)*0.1)

9 #Scrambled response

10 Z <- Y+S

11

12 #Coefficient of correlation between Z and X

13 Ro_ZX <- Ro_YX/sqrt(1+(var(S)/var(Y)))

14

15 #population

16 univ <- data.frame(cbind(Y=Y,S=S,Z=Z,X=X,NRAND=runif(N)))

17 univ <- univ[order(univ$NRAND),]

18

19 #Mean of Y

20 mz <- mean(univ$Z)

21 mx <- mean(univ$X)

22 my <- mean(univ$Y)

23 ms <- mean(univ$S)

24

25 mu11 <- sum((univ$Z-mz)*(univ$X-mx))/(N-1)

26 mu12 <- sum((univ$Z-mz)*((univ$X-mx)^2))/(N-1)

27 mu02 <- sum((univ$X-mx)^2)/(N-1)

28 mu03 <- sum((univ$X-mx)^3)/(N-1)

29

30 beta_zx <- Ro_YX*(sd(univ$Y)/sd(univ$X))

31

32 #Samples dimension

33 dim_samp <- c(100,500,1000,2000)

34

35 #Initialize the variables...

36

37 for (i in 1:length(dim_samp))

38 {

39 #sample dimension

40 n <- dim_samp[i]

41 #sample

42 samp <- univ[1:n,]

43 #Sampling rate

44 f <- n/N

45

46 #Ratio

47 R <- mean(univ$X)/mean(samp$X)
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48

49 #Ordinary meam

50 est1 <- mean(samp$Z)

51 #Ratio estimator

52 est2 <- mean(samp$Z)*(mx/mean(samp$X))

53 #Regression estimator

54 est3 <- mean(samp$Z)+beta_zx*(mx-mean(samp$X))

55 #Regression-cum-ratio estimator

56 est4 <- (mean(samp$Z)+beta_zx*(mx-mean(samp$X)))*(mx/mean(samp$X))

57

58

59 #Coefficient of variation

60 c_x <- sd(univ$X)/mx

61 c_y <- sd(univ$Y)/my

62 c2_x <- c_x^2

63 c2_y <- c_y^2

64 c2_z <- c2_y+(var(univ$S)/(my^2))

65 c_z <- sqrt(c2_z)

66

67 A <- (1+((1-f)/n)*(c2_z+c2_x-2*Ro_ZX*c_z*c_x))

68 B <- (((1-f)/n)*(Ro_ZX*c_z*c_x-0.75*c2_x)-2)

69 w1 <- (c2_x/2)*(-B-((1-f)/n)*(c2_x-Ro_ZX*c_z*c_x))

70 /(A*c2_x-((1-f)/n)*((c2_x-Ro_ZX*c_z*c_x)^2))

71 w2 <- (my*c2_x-2*w1*my*(c2_x-Ro_ZX*c_z*c_x))/(2*mx*c2_x)

72

73 #Auxiliar coefficients

74 k1 <- (1-((1-f)*c2_x/n))/(1-((1-f)/n)*(c2_x-c2_z*(1-(Ro_ZX^2))))

75 k2 <- (my/mx)*(1+k1*((Ro_ZX*c_z/c_x)-2))

76

77 #Generalized Regression-cum-ratio Estimator

78 est5 <- (k1*mean(samp$Z)+k2*(mx-mean(samp$X)))*(mx/mean(samp$X))

79

80 #Exponential Type Estimator

81 est6 <- (mean(samp$Z)+beta_zx*(mx-mean(samp$X)))

82 *exp((mx-mean(samp$X))/(mx+mean(samp$X)))

83 #Generalized Exponential Type Estimator

84 est7 <- (w1*mean(samp$Z)+w2*(mx-mean(samp$X)))

85 *exp((mx-mean(samp$X))/(mx+mean(samp$X)))

86

87 #Mean Square Error of 1st estimator (ordinal mean)

88 mse1 <- ((1-f)/n)*(var(univ$Y)+var(univ$S))

89

90 #Bias of ratio estimator - 1st degree approximation

91 bias2i <- ((1-f)/n)*my*(c2_x-Ro_ZX*c_z*c_x)

92 #Mean Square Error of ratio estimator - 1st degree approximation

93 mse2i <- ((1-f)/n)*(my^2)*(c2_z+c2_x-2*Ro_ZX*c_z*c_x)

94

95 #Bias of regression estimator - 1st degree approximation

96 bias3i <- -beta_zx*((1-f)/n)*((mu12/mu11)-(mu03/mu02))

97 #Mean Square Error of regression estimator - 1st degree approximation
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98 #mse3i <- ((1-f)/n)*var(univ$Y)*((1+(var(univ$S)/var(univ$Y)))-(Ro_YX^2))

99 mse3i <- ((1-f)/n)*(my^2)*c2_z*(1-(Ro_ZX^2))

100

101 #Bias of regression-cum-ratio estimator - 1st degree approximation

102 bias4i <- ((1-f)/n)*(my*c2_x-beta_zx*((mu12/mu11)-(mu03/mu02)))

103 #Mean Square Error of regression-cum-ratio estimator

104 #1st degree approximation

105 mse4i <- ((1-f)/n)*(my^2)*(c2_z*(1-(Ro_ZX^2))+c2_x)

106

107 #Bias of genetalized regression-cum-ratio estimator

108 #1st degree approximation

109 bias5i <- (k1-1)*my+k1*my*((1-f)/n)*(c2_x-Ro_ZX*c_z*c_x)

110 +k2*mx*((1-f)/n)*c2_x

111 #Mean Square Error of generalized regression-cum-ratio estimator

112 #1st degree approximation

113 mse5i <- ((k1-1)^2)*(my^2)+(k1^2)*(my^2)*((1-f)/n)

114 *(c2_z+3*c2_x-4*Ro_ZX*c_z*c_x)+(k2^2)*(mx^2)

115 *((1-f)/n)*c2_x-2*k1*(my^2)*((1-f)/n)

116 *(c2_x-Ro_ZX*c_z*c_x)-2*k2*my*mx*((1-f)/n)

117 *c2_x-2*k1*k2*my*mx*((1-f)/n)*(Ro_ZX*c_z*c_x-2*c2_x)

118

119 #Bias of exponential type estimator - 1st degree approximation

120 bias6i <- ((1-f)/n)*(beta_zx*((mu03/mu02)-(mu12/mu11))+(3/8)*my*c2_x)

121 #Mean Square Error of exponential type estimator - 1st degree approximation

122 mse6i <- ((1-f)/n)*(my^2)*(c2_z*(1-(Ro_ZX^2))+0.25*c2_x)

123

124 #Bias of generalized exponential type estimator

125 #1st degree approximation

126 bias7i <- (w1-1)*my+((1-f)/n)*(0.5*w1*my*(0.75*c2_x-Ro_ZX*c_z*c_x)

127 +0.5*w2*mx*c2_x)

128 #Mean Square Error of generalized exponential type estimator

129 #1st degree approximation

130 mse7i <- (mse5i/(1+(mse5i/(my^2))))

131 -((((1-f)/n)*c2_x*(mse5i+((1-f)/n)*(1/16)

132 *c2_x*(my^2)))/(4*(1+mse5i/(my^2))))

133

134 #Empirical results

135 #Simulation of 5000 replicas of estimates

136 ...

137

138 #Results

139 res <- rbind(res,c(N,n,Ro_YX,Ro_ZX,R,

140 c_x,c_y,c_z,k1,k2,w1,w2,

141 mx,my,mz,

142 med_est1,med_est2,med_est3,med_est4,

143 med_est5,med_est6,med_est7,

144 bias2i,bias3i,bias4i,bias5i,

145 bias6i,bias7i,

146 emp_mse1,mse1,emp_mse2,mse2i,

147 emp_mse3,mse3i,emp_mse4,mse4i,
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148 emp_mse5,mse5i,emp_mse6,mse6i,

149 emp_mse7,mse7i))

150 }

151 colnames(res) <- c("N","n","RhoXY","RhoZX","R",

152 "Cx","Cy","Cz","k1","k2","w1","w2",

153 "mX","mY","mZ",

154 "Est1","Est2","Est3","Est4",

155 "Est5","Est6","Est7",

156 "BIAS2I","BIAS3I","BIAS4I","BIAS5I",

157 "BIAS6I","BIAS7I",

158 "EMP_MSE1","MSE1","EMP_MSE2","MSE2I",

159 "EMP_MSE3","MSE3I","EMP_MSE4","MSE4I",

160 "EMP_MSE5","MSE5I","EMP_MSE6","MSE6I",

161 "EMP_MSE7","MSE7I")

162 return(res)

163 }

164

165 #Package for generation

166 require(MASS)

167

168 #Import data

169 data_yx <- read.table("IUTICE10.txt",sep="\t",dec=",",header = T)

170 #Study variable (purchase, millions of euros)

171 Y <- data_yx[,3]

172 #Auxiliary variable, correlated with Y (turnover, millions of euros)

173 X <- data_yx[,2]

174

175 #Data application

176 N <- dim(data_yx)[1]

177 res <- proj_exponential_real(Y,X,N)

178

179 #Export data

180 write.table(res,"chapter4_ne_results.txt",sep="\t",dec=",",row.names=FALSE)
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5
Improved Exponential Type

Estimators of the Mean of a Sensitive
Variable in the Presence of

Non-Sensitive Auxiliary Information

Abstract

Recently Koyuncu et al. (2013) proposed an exponential type estimator to improve the
efficiency of mean estimator based on Randomized Response Technique (RRT). In this
paper, we propose an improved exponential type estimator which is more efficient than
the Koyuncu et al. (2013) estimator, which in turn was shown to be more efficient than the
usual mean estimator, ratio estimator, regression estimator, and the Gupta et al. (2012)
estimator. Under simple random sampling without replacement (SRSWOR) scheme, Bias
and Mean Square Error (MSE) expressions for the proposed estimator are obtained up to
first order of approximation and comparisons are made with the Koyuncu et al. (2013) es-
timator. A simulation study is used to observe the performances of these two estimators.
Theoretical findings are also supported by a numerical example with real data.

Submitted as: GUPTA, S., SHABBIR, J., SOUSA, R. & REAL, P. C. 2013. Improved exponential type
estimators of the mean of a sensitive variable in the presence of non-sensitive auxiliary information.
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5.1 Introduction

This study proposes an improved exponential type estimator for estimating the popula-
tion mean of a sensitive variable when information about a non-sensitive auxiliary vari-
able is available. A common problem in conducting a statistical sample survey is that of
response bias in the face of sensitive questions. Warner (1965) introduced the Random-
ized Response Technique (RRT) in order to solve this problem. Our main purpose in this
study is to improve the mean estimation of a sensitive variable based on a RRT when
some non-sensitive auxiliary information is available.

Many authors such as Kadilar and Cingi (2004), Kadilar et al. (2007), Shabbir and
Gupta (2007, 2010) and Nangsue (2009) have presented ratio and regression estimators
when both the study variable and the auxiliary variable are directly observable.

In this study we propose an exponential type estimator for the mean of a sensi-
tive variable using known information on a correlated but non-sensitive auxiliary vari-
able. The proposed estimator performs better than the recently introduced estimator by
Koyuncu et al. (2013) which was shown to outperform many existing estimators of this
type.

5.2 Terminology

Consider a finite population with N units U = (U1, U2, ..., UN ) from which a sample
of size n is drawn using simple random sampling without replacement (SRSWOR). Let
Y be the study variable, a sensitive variable which cannot be observed directly due to
respondent bias. Let X be the non-sensitive auxiliary variable which is correlated with
Y . Let S be a scrambling variable independent of Y and X . The respondent is asked to
report a scrambled response for Y given by Z = Y + S but is asked to provide a true
response for X . Let (ȳ, x̄) be the sample means corresponding to

(
Ȳ , X̄

)
, the population

means of Y and X , respectively. Consider Z̄ to be the population mean of the scrambled
variable Z.

Let S2
x and s2

x respectively be the population variance and the sample variance of X .
On the other hand, S2

zx and s2
zx are the population covariance and the sample covariance

between Z and X , respectively.

To obtain the Bias and MSE expressions, let us define e0 = z̄−Z̄
Z̄

, e1 = x̄−X̄
X̄

, e2 = s2x−S2
x

s2x

and e3 = szx−Szx
szx

such that E(ei) = 0, i = 0, 1, 2, 3. To first degree of approximations, we
have:

E(e2
0) = λC2

z = v20, E(e2
1) = λC2

x = v02, E(e0e1) = λCzx = λρzxCzCx = v11,
E(e1e2) = λ

µ03

X̄µ02
, E(e1e3) = λ

µ12

X̄µ11
,
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where λ =
1− f
n

, f = n/N , Czx = ρzxCzCx and µrs =
1

N − 1

∑N
i=1(zi − Z̄)r(xi − X̄)s.

5.3 Difference-cum-exponential Estimator (Koyuncu et al., 2013)

Recently Koyuncu et al. (2013) have suggested a combination of the difference estimator
and the exponential estimator with some gain in the efficiency. This estimator is given by

µ̂DE =
[
w1z̄ + w2

(
X̄ − x̄

)]
exp

(
X̄ − x̄
X̄ + x̄

)
, (5.1)

where w1 and w2 are constants.

The Bias and MSE of µ̂DE , up to first degree of approximation, at optimum values

w1(opt) =
1−

(
λC2

x/8
)

1 + λC2
z (1− ρ2

zx)
and w2(opt) =

Ȳ

X̄

{
1

2
− w1(opt)

(
1− ρzxCz

Cx

)}
are given by

Bias(µ̂DE) ∼= (w1(opt) − 1)Ȳ + w1(opt)Ȳ λ

{
3

8
C2
x −

1

2
ρzxCzCx

}
+ w2(opt)X̄λCx

2, (5.2)

and

MSE(µ̂DE)opt ∼= Ȳ 2


(

1− 1

4
λC2

x

)
−

(
1− 1

8
λC2

x

)2

1 + λC2
z (1− ρ2

zx)


or

MSE(µ̂DE)opt ∼= Ȳ 2

{(
1− 1

4
v02

)
− v02 (8− v02)2

64
(
v02 + v20v02 − v2

11

)} . (5.3)

It is shown in Koyuncu et al. (2013) that this estimator is better than all the other
similar estimators such as Sousa et al. (2010) and Gupta et al. (2012).

5.4 Proposed estimator

The combined product estimators have shown advantages in efficiency spite of being
more biased than the traditional ratio or regression estimators (Koyuncu et al., 2013).
Motivated by this fact, we propose a change in the difference-cum-exponential estimator
in (5.1) so that when the sample mean (x̄) of the auxiliary variable X is close to population
mean (X̄), the expected value of the proposed estimator is closer to the variable of inter-
est Y. So, our proposed estimator is an improved exponential estimator as an modified
version of the difference-cum-exponential estimator in (5.1) and is given by the following
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expression

µ̂IE = [d1z̄ + d2] exp

(
X̄ − x̄
X̄ + x̄

)
, (5.4)

where d1 and d2 are constants.

Using Taylor’s approximation and retaining terms of order up to 2, (5.4) can be rewrit-
ten as

µ̂IE − Z̄ ∼=
[
(d1 − 1)Z̄ + d1Z̄e0 + d2

]{
1− 1

2
e1 +

3

8
e2

1

}
. (5.5)

Recognizing that Z̄ = Ȳ , the optimum Bias and MSE of µ̂IE , to first degree of approx-
imation, are given by

Bias(µ̂IE) ∼= (d1 − 1)Ȳ + d1Ȳ

(
3

8
v02 −

1

2
v11

)
+ d2

(
1 +

3

8
v02

)
, (5.6)

and
MSE(µ̂IE) ∼= d2

1Ȳ
2A+ d2

2B − 2d1Ȳ
2C − 2d2Ȳ D + 2d1d2Ȳ E + Ȳ 2, (5.7)

where A = 1 + v20 + v02 − 2v11, B = 1 + v02, C = 1 +
3

8
v02 −

1

2
v11, D = 1 +

3

8
v02,

E = 1 + v02 − v11.

Using (5.7), the optimum values are

d1(opt) =
BC −DE
AB − E2

,

and

d2(opt) =
Ȳ (AD − CE)

AB − E2
.

Considering the MSE at optimum values we get

MSE(µ̂IE)opt ∼= Ȳ 2

[
1− BC2 +AD2 − 2CDE

AB − E2

]
or

MSE(µ̂IE)opt ∼= Ȳ 2

1−
v20 +

3

4
v20v02

(
1− ρ2

zx

)(
1 +

3

16
v02

)
+

1

64
v02v

2
11

v20 + v02v20 (1− ρ2
zx)

 , (5.8)

where ρzx =
v11√

v20
√
v02

.

Comparing the MSE of this estimator to the MSE of difference-cum-exponential esti-
mator given in (5.3), we note that the proposed estimator will be more efficient if

MSE(µ̂IE)opt < MSE(µ̂DE)opt.
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This will be so if

64v20 − 48v2
11 − 8v02v

2
11 + 48v20v02 + 9v20v

2
02

64
(
v20 + v02v20 − v2

11

) − v02 (8− v02)2

64
(
v02 + v02v20 − v2

11

) − 1

4
v02 > 0

or if[
64v2

20v02 + 32v2
20v

2
02 + 8v20v

3
02 − 7v2

20v
3
02 − v20v

4
02 + 15v2

02v20v
2
11 − 80v20v02v

2
11

−16v20v
2
02 − 64v20v

2
11 − 8v2

02v
2
11 − 8v02v

4
11 + v3

02v
2
11 + 48v4

11 + 16v02v
2
11

]
M

> 0,

where M = 64
[{
v20 + v20v02

(
1− ρ2

zx

)} {
v02 + v20v02

(
1− ρ2

zx

)}]
,

or if

v20v02

(
1− ρ2

zx

) [
8
(
8v20 + v02v

2
11 − 6v2

11

)
− v02 (4− v02)2 + v20v02 (32− 7v02)

]
64 [{v20 + v20v02 (1− ρ2

zx)} {v02 + v20v02 (1− ρ2
zx)}]

> 0.

(5.9)

The above condition is likely to be true if numerator is positive.

5.5 Simulation Study

In this section, we conduct a simulation study with particular focus on comparing the
performance of the proposed combined estimator µ̂P to the estimator µ̂DE suggested
by Koyuncu et al. (2013), using the Bias and MSE results, correct up to first order of
approximation.

We consider 2 different bivariate normal distributions for (Y,X). The scrambling vari-
able S is taken to be a normal variable with mean equal to zero and standard deviation
equal to 10% of the standard deviation ofX . The reported response is given byZ = Y +S.
The summary statistics about the bivariate normal populations are given below.

Population Statistics:

I N = 1000, µY = 2, σY =
√

10, µX = 2, σX =
√

2, σXY = 3 and ρXY = 0.6708

II N = 1000, µY = 2, σY =
√

6, µX = 2, σX =
√

2, σXY = 3 and ρXY = 0.8660

We take samples of size n = 50, 100, 200 and 300 from each population to compare the
results. We estimate the empirical Bias and MSE using 5000 samples of various sizes from
the study populations. The absolute relative bias (ARB) is given by∣∣∣∣Bias(µα)

Ȳ

∣∣∣∣ ,
where α = DE and IE.
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The empirical and the theoretical results for the two estimators under study are pre-
sented in Table 5.1 and Table 5.2, respectively. From these tables we can observe that the
proposed estimator shows reduced Bias when compared to other estimator.

Table 5.1: Empirical ARB for the difference-cum-exponential estimator (µ̂DE) and for the improved expo-
nential estimator (µ̂IE).

Population Empirical ARB

N ρXY Estimator n = 50 n = 100 n = 200 n = 300

1000
0.6867 µ̂DE 0.0267 0.0122 0.0042 0.0012

µ̂IE 0.0009 0.0007 0.0000 0.0003

0.8713 µ̂DE 0.0064 0.0027 0.0001 0.0009
µ̂IE 0.0001 0.0001 0.0002 0.0004

Table 5.2: Theoretical ARB for the difference-cum-exponential estimator (µ̂DE) and for the improved expo-
nential estimator (µ̂IE).

Population Theoretical ARB

N ρXY Estimator n = 50 n = 100 n = 200 n = 300

1000
0.6867 µ̂DE 0.0214 0.0103 0.0046 0.0027

µ̂IE 0.0013 0.0006 0.0003 0.0002

0.8713 µ̂DE 0.0023 0.0011 0.0005 0.0003
µ̂IE 0.0006 0.0003 0.0001 0.0001

As expected, the absolute relative bias generally decreases as the sample size in-
creases, however this effect becomes less pronounced when the correlation between X

and Y is higher. Although the proposed estimator is not unbiased, the bias results show
a very good performance for this estimator.

Table 5.3 above gives the empirical and theoretical MSE’s for the two competing esti-
mators.

The MSE values for the proposed estimator are all less than the MSE values for the
Koyuncu et al. (2013) estimator. The estimators under study get more and more efficient
as ρXY increases. These results were expected from the condition in (5.9).
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Table 5.3: Empirical and theoretical MSE for the difference-cum-exponential estimator (µ̂DE) and for the
improved exponential estimator (µ̂IE).

Population MSE Estimation

N ρXY n Estimator Empirical Theoretical MSE Condition1

1000

0.6867

50 µ̂DE 0.1025 0.1007 0.0253
µ̂IE 0.0052 0.0050

100 µ̂DE 0.0483 0.0484 0.0122
µ̂IE 0.0024 0.0024

200 µ̂DE 0.0217 0.0217 0.0055
µ̂IE 0.0011 0.0011

300 µ̂DE 0.0127 0.0127 0.0032
µ̂IE 0.0006 0.0006

0.8713

50 µ̂DE 0.0285 0.0283 0.0068
µ̂IE 0.0024 0.0024

100 µ̂DE 0.0132 0.0135 0.0032
µ̂IE 0.0011 0.0011

200 µ̂DE 0.0060 0.0060 0.0014
µ̂IE 0.0005 0.0005

300 µ̂DE 0.0035 0.0035 0.0008
µ̂IE 0.0003 0.0003

1 MSE comparison based on expression (5.9).

5.6 Numerical Example

In this section, we use real data concerning enterprises for the Monthly Economic Survey
(MES) in Portugal. The survey is conducted to provide an accurate picture of business
trends of enterprises. It provides short-term indicators on a monthly basis compiled for
four sectors: industry, retail trade, construction and service sector. The survey results
are broken down by branches according to the NACE1 Rev. 2 (Eurostat, 2008). In this
survey the main questions refer to an assessment of recent trends in production, of the
current levels of order books and stocks, as well as expectations about production, selling
prices and employment. We consider as population the enterprises collected in the 2010
sample which provided results for the industry sector, taking the monthly salaries as
study variable and number of employees as auxiliary variable in each enterprise.

Let Y be the monthly salaries amount in 2010 collected by the MES in that year. This
is typically a confidential variable for enterprises, only known from business surveys.
The auxiliary variable X is the number of employees available from business data reg-
isters. The variables Y and X are strongly correlated so we can take advantage of this
correlation by using the estimators under study. The MES provided 26980 monthly salary
values in 2010, collected for about 2316 enterprises which answered this survey in that

1NACE is derived from the French title "Nomenclature générale des Activités économiques dans les
Communautés Européennes" (Statistical classification of economic activities in the European Communities).

77



5. IMPROVED EXPONENTIAL TYPE ESTIMATORS OF THE MEAN OF A SENSITIVE VARIABLE IN THE PRESENCE OF

NON-SENSITIVE AUXILIARY INFORMATION 5.6. Numerical Example

same year. We take these 26980 values as our population. For the RRT part, let S be a
normal random variable with mean equal to zero and standard deviation equal to 10%

of the standard deviation of X . The reported response is given by Z = Y + S (the salary
amount plus a random quantity). The summary statistics about the populations are given
below.

Population Characteristics:

N = 26980, ρXY = 0.8599

µX = 113.91, µY = 167.18 (in thousands of Euros)

σX = 215.8, σY = 501.4 and σXY = 93043

We use the following samples sizes in our simulation study: n = 1000, 2500, 5000 and
10000.

In Tables 5.4 and 5.5 below we present the empirical and the theoretical ARB results,
respectively, for the difference-cum-exponential estimator (µ̂DE) and for the proposed
estimator (µ̂IE).

Table 5.4: Empirical ARB for the difference-cum-exponential estimator (µ̂DE) and for the improved expo-
nential estimator (µ̂IE).

Population Empirical ARB

N ρXY Estimator n = 1000 n = 2500 n = 5000 n = 10000

26980 0.8599 µ̂DE 0.0025 0.0022 0.0016 0.0012
µ̂IE 0.0003 0.0004 0.0004 0.0003

Table 5.5: Theoretical ARB for the difference-cum-exponential estimator (µ̂DE) and for the improved expo-
nential estimator (µ̂IE).

Population Theoretical ARB

N ρXY Estimator n = 1000 n = 2500 n = 5000 n = 10000

26980 0.8599 µ̂DE 0.0008 0.0003 0.0001 0.0001
µ̂IE 0.0002 0.0001 0.0000 0.0000

The ARB results show the good performance for the improved difference-cum-exponential
estimator.

The theoretical MSE values for both estimators have been obtained using (5.3) and
(5.8). These values are given in Table 5.6.
According to the MSE results in Table 5.6, the proposed estimator is considerably better
than the difference-cum-exponential estimator (µ̂DE). These results are in line with the
theoretical findings and the simulation results.
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Table 5.6: Empirical and theoretical MSE for the difference-cum-exponential estimator (µ̂DE) and for the
improved exponential estimator (µ̂IE).

Population MSE Estimation

N ρXY n Estimator Empirical Theoretical MSE Condition2

26980 0.8599

1000 µ̂DE 62.58 63.34 0.0205
µ̂IE 6.28 6.3

2500 µ̂DE 24.50 23.92 0.0083
µ̂IE 2.40 2.38

5000 µ̂DE 10.88 10.75 0.0041
µ̂IE 1.09 1.07

10000 µ̂DE 4.19 4.15 0.0020
µ̂IE 0.41 0.41

2 MSE comparison based on expression (5.9).

5.7 Conclusions

We can conclude from this study that the estimation of the mean of a sensitive variable
can be improved by using a correlated non-sensitive auxiliary variable. Our simulation
study and the numerical example show that improved difference-cum-exponential esti-
mator can produce further improvement.

In this paper we show that the proposed estimator is more efficient than the difference-
cum-exponential estimator recently proposed by Koyuncu et al. (2013), which in turn was
better than most of the existing estimators of finite population mean.
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Appendix D - R Routines

Listing 5.1: R Code for Simulation Study of Proposed Estimator in Chapter 5
1

2 proj_improved_exp <- function(N,sigma,mu)

3 {

4

5 #Generation of a bivariate normal population

6 data_yx <- mvrnorm(N, mu, sigma)

7

8 #Study variable

9 Y <- data_yx[,1]

10 #Auxiliary variable, correlated with Y

11 X <- data_yx[,2]

12

13 #Coefficient of correlation between Y and X

14 Ro_YX <- cor(Y,X)

15

16 #Scrambling variable independent of Y and X, with mean=0

17 S <- rnorm(N,mean=0,sd=0.1*sd(X))

18 #Scrambled response

19 Z <- Y+S

20

21 #Coefficient of correlation between Z and X

22 Ro_ZX <- Ro_YX/sqrt(1+(var(S)/var(Y)))

23

24 #population

25 univ <- data.frame(cbind(Y=Y,S=S,Z=Z,X=X,NRAND=runif(N)))

26 univ <- univ[order(univ$NRAND),]

27

28 #Mean of Y

29 mz <- mean(univ$Z)

30 mx <- mean(univ$X)

31 my <- mean(univ$Y)

32

33 mu11 <- sum((univ$Z-mz)*(univ$X-mx))/(N-1)

34 mu12 <- sum((univ$Z-mz)*((univ$X-mx)^2))/(N-1)

35 mu02 <- sum((univ$X-mx)^2)/(N-1)

36 mu03 <- sum((univ$X-mx)^3)/(N-1)

37

38 beta_zx <- Ro_YX*(sd(univ$Y)/sd(univ$X))

39

40 #Samples dimension

41 dim_samp <- c(50,100,200,300)

42

43 #Initialize the variables...

44

45 for (i in 1:length(dim_samp))

46 {
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47 #sample dimension

48 n <- dim_samp[i]

49 #sample

50 samp <- univ[1:n,]

51 #Sampling rate

52 f <- n/N

53

54 #Coefficient of variation

55 c_x <- sd(univ$X)/mx

56 c_y <- sd(univ$Y)/my

57 c2_x <- c_x^2

58 c2_y <- c_y^2

59 c2_z <- c2_y+(var(univ$S)/(my^2))

60 c_z <- sqrt(c2_z)

61

62 l <- (1-f)/n

63

64 #Difference-cum-exponential type Estimator

65 w1 <- (1-(l*c2_x/8))/(1+l*c2_z*(1-(Ro_ZX^2)))

66 w2 <- (my/mx)*(0.5-w1*(1-(Ro_ZX*c_z/c_x)))

67 est5 <- (w1*mean(samp$Z)+w2*(mx-mean(samp$X)))

68 *exp((mx-mean(samp$X))/(mx+mean(samp$X)))

69

70 #2nd Improved Exponential Estimator

71 A <- 1+l*c2_z+l*c2_x-2*l*Ro_ZX*c_z*c_x

72 B <- 1+l*c2_x

73 C <- 1+(3/8)*l*c2_x-0.5*l*Ro_ZX*c_z*c_x

74 D <- 1+(3/8)*l*c2_x

75 E <- 1+l*c2_x-l*Ro_ZX*c_z*c_x

76 z1 <- (B*C-D*E)/(A*B-(E^2))

77 z2 <- my*(A*D-C*E)/(A*B-(E^2))

78 est6 <- (z1*mean(samp$Z)+z2)*exp((mx-mean(samp$X))/(mx+mean(samp$X)))

79

80 #Bias of Difference-cum-exponential estimator - 1st degree approximation

81 bias5i <- (w1-1)*my+w1*my*l*((3/8)*c2_x-0.5*Ro_ZX*c_z*c_x)

82 +w2*mx*l*c2_x

83 mse5i <- (my^2)*((1-0.25*l*c2_x)-(((1-(1/8)*l*c2_x)^2)

84 /(1+l*c2_z*(1-(Ro_ZX^2)))))

85

86 #Bias of Improved Exponential - 1st degree approximation

87 bias6i <- (z1-1)*my+z1*my*((3/8)*l*c2_x

88 -0.5*l*Ro_ZX*c_z*c_x)+z2*(1+(3/8)*l*c2_x)

89 #Mean Square Error of improved exponential estimator 2

90 #1st degree approximation

91 mse6i <- (my^2)*(1-((B*(C^2)+A*(D^2)-2*C*D*E)/(A*B-(E^2))))

92

93 #Condition to compare Est6(P) with Est8(DE)

94 cond <- (v20*v02*(1-(Ro_ZX^2))*(8*(8*v20+v02*(v11^2)

95 -6*(v11^2))-v02*((4-v02)^2)+v20*v02*(32-7*v02)))

96 /(64*(v20+v20*v02*(1-(Ro_ZX^2)))*(v02+v20*v02*(1-(Ro_ZX^2))))
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97

98 #Empirical results

99 #Simulation of 5000 replicas of estimates

100 ...

101

102 #Results

103 res <- rbind(res,c(N,n,Ro_YX,Ro_ZX,

104 c_x,c_y,c_z,k1,k2,w1,w2,

105 z1,z2,mx,my,mz,

106 med_est1,med_est2,med_est3,med_est4,

107 med_est5,med_est6,med_est7,

108 bias2i,bias3i,bias4i,bias5i,

109 bias6i,bias6i,

110 emp_mse1,mse1,emp_mse2,mse2i,

111 emp_mse3,mse3i,emp_mse4,mse4i,

112 emp_mse5,mse5i,emp_mse6,mse6i,

113 emp_mse7,mse6i,

114 cond))

115 }

116 colnames(res) <- c("N","n","RhoXY","RhoZX",

117 "Cx","Cy","Cz","k1","k2","w1","w2",

118 "z1","z2","mX","mY","mZ",

119 "Est1","Est2","Est3","Est4",

120 "Est5","Est6","Est7",

121 "BIAS2I","BIAS3I","BIAS4I","BIAS5I",

122 "BIAS6I","BIAS7I",

123 "EMP_MSE1","MSE1","EMP_MSE2","MSE2I",

124 "EMP_MSE3","MSE3I","EMP_MSE4","MSE4I",

125 "EMP_MSE5","MSE5I","EMP_MSE6","MSE6I",

126 "EMP_MSE7","MSE7I",

127 "COND")

128 return(res)

129 }

130

131 #Package for generation

132 require(MASS)

133

134 N <- 1000

135

136 #Parameters

137 sigma1 <- matrix(c(9,1.9,1.9,4),2,2)

138 sigma2 <- matrix(c(10,3,3,2),2,2)

139 sigma3 <- matrix(c(6,3,3,2),2,2)

140

141 mu <- c(2,2)

142

143 res <- NULL

144 for (i in 1:length(N))

145 {

146 res <- rbind(res,proj_improved_exp(N[i],sigma1,mu))
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147 res <- rbind(res,proj_improved_exp(N[i],sigma2,mu))

148 res <- rbind(res,proj_improved_exp(N[i],sigma3,mu))

149 }

150 write.table(res,"chapter5_ss_results.txt",sep="\t",dec=",",row.names=FALSE)
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Listing 5.2: R Code for Numerical Example of Proposed Estimator in Chapter 5
1

2 proj_improved_exp_real <- function(Y,X,N)

3 {

4

5 #Coefficient of correlation between Y and X

6 Ro_YX <- cor(Y,X)

7

8 #Scrambling variable independent of Y and X, with mean=0

9 S <- rnorm(N,mean=0,sd=0.1*sd(X))

10 #Scrambled response

11 Z <- Y+S

12

13 #Coefficient of correlation between Z and X

14 Ro_ZX <- Ro_YX/sqrt(1+(var(S)/var(Y)))

15

16 #population

17 univ <- data.frame(cbind(Y=Y,S=S,Z=Z,X=X,NRAND=runif(N)))

18 univ <- univ[order(univ$NRAND),]

19

20 #Mean of Y

21 mz <- mean(univ$Z)

22 mx <- mean(univ$X)

23 my <- mean(univ$Y)

24

25 mu11 <- sum((univ$Z-mz)*(univ$X-mx))/(N-1)

26 mu12 <- sum((univ$Z-mz)*((univ$X-mx)^2))/(N-1)

27 mu02 <- sum((univ$X-mx)^2)/(N-1)

28 mu03 <- sum((univ$X-mx)^3)/(N-1)

29

30 beta_zx <- Ro_YX*(sd(univ$Y)/sd(univ$X))

31

32 #Samples dimension

33 dim_samp <- c(1000,2500,5000,10000)

34

35 #Initialize the variables...

36

37 for (i in 1:length(dim_samp))

38 {

39 #sample dimension

40 n <- dim_samp[i]

41 #sample

42 samp <- univ[1:n,]

43 #Sampling rate

44 f <- n/N

45

46 #Coefficient of variation

47 c_x <- sd(univ$X)/mx
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48 c_y <- sd(univ$Y)/my

49 c2_x <- c_x^2

50 c2_y <- c_y^2

51 c2_z <- c2_y+(var(univ$S)/(my^2))

52 c_z <- sqrt(c2_z)

53

54 l <- (1-f)/n

55

56 #Difference-cum-exponential type Estimator

57 w1 <- (1-(l*c2_x/8))/(1+l*c2_z*(1-(Ro_ZX^2)))

58 w2 <- (my/mx)*(0.5-w1*(1-(Ro_ZX*c_z/c_x)))

59 est7 <- (w1*mean(samp$Z)+w2*(mx-mean(samp$X)))

60 *exp((mx-mean(samp$X))/(mx+mean(samp$X)))

61

62 #2nd Improved Exponential Estimator

63 A <- 1+l*c2_z+l*c2_x-2*l*Ro_ZX*c_z*c_x

64 B <- 1+l*c2_x

65 C <- 1+(3/8)*l*c2_x-0.5*l*Ro_ZX*c_z*c_x

66 D <- 1+(3/8)*l*c2_x

67 E <- 1+l*c2_x-l*Ro_ZX*c_z*c_x

68 z1 <- (B*C-D*E)/(A*B-(E^2))

69 z2 <- my*(A*D-C*E)/(A*B-(E^2))

70 est8 <- (z1*mean(samp$Z)+z2)*exp((mx-mean(samp$X))/(mx+mean(samp$X)))

71

72 #Bias of generalized exponential type estimator

73 #1st degree approximation

74 bias7i <- (w1-1)*my+w1*my*l*((3/8)*c2_x-0.5*Ro_ZX*c_z*c_x)

75 +w2*mx*l*c2_x

76 mse7i <- (my^2)*((1-0.25*l*c2_x)-(((1-(1/8)*l*c2_x)^2)

77 /(1+l*c2_z*(1-(Ro_ZX^2)))))

78

79 #Bias of improved exponential estimator 2 - 1st degree approximation

80 bias8i <- (z1-1)*my+z1*my*((3/8)*l*c2_x-0.5*l*Ro_ZX*c_z*c_x)

81 +z2*(1+(3/8)*l*c2_x)

82 #Mean Square Error of improved exponential estimator 2

83 #1st degree approximation

84 mse8i <- (my^2)*(1-((B*(C^2)+A*(D^2)-2*C*D*E)/(A*B-(E^2))))

85

86 #Condition to compare Est8(P) with Est8(DE)

87 cond <- ((B*(C^2)+A*(D^2)-2*C*D*E)/(A*B-(E^2)))

88 -(((1-(1/8)*l*c2_x)^2)/(1+l*c2_z*(1-(Ro_ZX^2))))-0.25*l*c2_x

89

90 #Empirical results

91 #Simulation of 5000 replicas of estimates

92 ...

93

94 #Results

95 res <- rbind(res,c(N,n,Ro_YX,Ro_ZX,

96 c_x,c_y,c_z,k1,k2,w1,w2,

97 z1,z2,mx,my,mz,
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98 med_est7,med_est8,

99 bias7i,bias8i,

100 emp_mse7,mse7i,

101 emp_mse8,mse8i,

102 cond))

103 }

104 colnames(res) <- c("N","n","RhoXY","RhoZX",

105 "Cx","Cy","Cz","k1","k2","w1","w2",

106 "z1","z2","mX","mY","mZ",

107 "Est7","Est8",

108 "BIAS7I","BIAS8I",

109 "EMP_MSE7","MSE7I",

110 "EMP_MSE8","MSE8I",

111 "COND")

112 return(res)

113 }

114

115 #Package for generation

116 require(MASS)

117

118 #Import data

119 data_yx <- read.table("IVNEI2010.txt",sep="\t",dec=",",header = T)

120 #Study variable (purchase, millions of euros)

121 #data_yx <- data_yx[data_yx$MES>=10,]

122 Y <- data_yx[,5]/1000

123 #Auxiliary variable, correlated with Y (turnover, millions of euros)

124 X <- data_yx[,4]

125

126 #Data application

127 N <- dim(data_yx)[1]

128 res <- proj_improved_exp_real(Y,X,N)

129

130 #Export data

131 write.table(res,"chapter5_ne_results.txt",sep="\t",dec=",",row.names=FALSE)
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6
Improved Mean Estimation of a

Sensitive Variable Using Auxiliary
Information in Stratified Sampling

Abstract

Sousa et al. (2010) and Gupta et al. (2012) have recently introduced ratio estimator and re-
gression estimators for the mean of a sensitive variable which perform better than the or-
dinary mean estimator based on a Randomized Response Technique (RRT). In the present
study we extend these estimators to the stratified sampling setting.

The performance of the proposed estimators is compared to the exiting estimators
both theoretically and through a simulation study. We also apply the proposed estimators
to some real data.

Submitted as: SOUSA, R., GUPTA, S., SHABBIR, J. & REAL, P. C. 2013. Improved Mean Estimation of
a Sensitive Variable Using Auxiliary Information in Stratified Sampling. Journal of Statistics and Management
Systems.
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SAMPLING 6.1. Introduction

6.1 Introduction

The main goal of this paper is to extend the results of Sousa et al. (2010) and Gupta et al.
(2012) to the case of stratified sampling. It is assumed that the study variable is sensitive
and the auxiliary variable is non-sensitive.

Many authors have presented ratio and regression estimators when both the study
variable Y and the auxiliary variable X are directly observable. These include Kadilar
and Cingi (2005), Kadilar et al. (2007), Shabbir and Gupta (2007, 2010) and Nangsue
(2009). Gupta and Shabbir (2008) have suggested a general class of ratio estimators when
the population parameters of the auxiliary variable are known. These estimators have
also been extended by Kadilar and Cingi (2003) to stratified random sampling. In an
attempt to improve the estimators, Kadilar and Cingi (2005), Shabbir and Gupta (2005,
2006) and Singh and Vishwakarma (2008) have suggested new ratio estimators in strat-
ified random sampling. Koyuncu and Kadilar (2008, 2009) have proposed a family of
combined-type estimators in stratified random sampling based on the family of estima-
tors proposed by Khoshnevisan et al. (2007). Recently Koyuncu and Kadilar (2010) have
suggested a family of estimators in stratified random sampling following Kadilar and
Cingi (2003).

Some studies on estimation of the mean have been submitted with different sampling
schemes, such as Sahoo et al. (2009) and Singh and Kumar (2011) in a two-stage sampling
scheme and recently by Singh and Solanki (2012) in a systematic sampling design.

This paper suggests a combined ratio estimator and a combined regression estimator
of population mean of a sensitive variable using non-sensitive auxiliary information, us-
ing Randomized Response Technique (RRT) methodology (Gupta et al., 2002 and 2010;
Warner, 1965) in stratified sampling. The Bias and the Mean Square Error (MSE) of the
suggested estimators are derived. Both theoretical and empirical findings support the
reliability of the present study.

6.2 Terminology

We denote the finite population by U = {U1, U2, ..., UN}. Consider a stratified random
sample s (Cochran, 1977), selected from U with sampling rate f = n

N . The study popula-
tion is divided into L strata with strata sizes Nh, such that

∑L
h=1Nh = N(h = 1, ..., L).

Let Y be the sensitive study variable which cannot be observed directly. Let X be a
non-sensitive auxiliary variable which is strongly correlated with Y . Let S be a scram-
bling random variable independent of Y and X . The particular values of S are unknown
to the interviewer but its distribution is known. The respondent is asked to report an
additively scrambled response for Y given by Z = Y +S and also asked to provide a true
response for X .
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Consider a stratified random sample of size n be drawn from U such that the sample
size in the hth stratum is nh and

∑L
h=1 nh = n. Let yhi and xhi respectively be the values

of the study variable Y and the auxiliary variable X in the hth stratum, with i = 1, ..., nh.

Let ȳst =
∑L

h=1Whȳh, x̄st =
∑L

h=1Whx̄h and z̄st =
∑L

h=1Whz̄h be the stratified

sample means, where ȳh =
1

nh

∑nh
i=1 yhi, x̄h =

1

nh

∑nh
i=1 xhi and z̄h =

1

nh

∑nh
i=1 zhi are

the stratum sample means corresponding to population stratum means Ȳh = E (Yh),

X̄h = E (Xh) and Z̄h = E (Zh) and Wh =
Nh

N
are the known stratum weights.

To estimate Ȳ =
∑Nh

i=1WhȲh we assume that X̄ =
∑Nh

i=1WhX̄h is known. Let Z̄ =∑Nh
i=1WhZ̄h be the population mean for the scrambled variable Z.

To discuss the properties of different estimators, we define the following error terms.

Let e0st =
z̄st − Z̄
Z̄

and e1st =
x̄st − X̄
X̄

, e2st =
s2
xst − S2

xst

S2
xst

and e3st =
s2
zxst − S2

zxst

S2
zxst

such

that E (eist) = 0, i = 0, 1, 2, 3.

6.3 Estimators Review

Below we list some existing mean estimators for simple random sampling.

(i) Ordinary sample mean:
µ̂y = z̄. (6.1)

MSE(µ̂y) =
1− f
n

(
S2
y + S2

s

)
, (6.2)

where S2
y = 1

N−1

∑N
i=1(yi − Ȳ )2 and S2

s = 1
N−1

∑N
i=1(si − S̄)2.

(ii) Sousa et al. (2010) ratio estimator:

µ̂R = z̄
X̄

x̄
. (6.3)

The Bias and MSE of µ̂R to first degree of approximation are given by

Bias(µ̂R) ∼=
1− f
n

Ȳ
(
C2
x − ρzxCzCx

)
(6.4)

and
MSE(µ̂R) ∼=

1− f
n

Ȳ 2
(
C2
z + C2

x − 2ρzxCzCx
)
, (6.5)

where C2
z = C2

y +
S2
s

Ȳ 2
, ρzx =

ρyx√
1 +

S2
s

S2
y

and Cz , Cy and Cx are the coefficients of

variation of Z, Y and X , respectively.
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(iii) Gupta et al. (2012) regression estimator:

µ̂Reg = z̄ + β̂zx
(
X̄ − x̄

)
, (6.6)

where β̂zx =
Szx
S2
x

=
Syx
S2
x

is the sample regression coefficient between Z and X ,

Syx = 1
n−1

∑n
i=1(yi − ȳ)(xi − x̄) and S2

x = 1
n−1

∑n
i=1(xi − x̄)2.

The Bias and MSE of µ̂Reg to first degree of approximation, are given by

Bias(µ̂Reg) ∼= −βzx
(

1− f
n

){
µ12

µ11
− µ03

µ02

}
(6.7)

and
MSE(µ̂Reg) ∼=

(
1− f
n

)
Ȳ 2C2

z

(
1− ρ2

zx

)
, (6.8)

where µrs = 1
N−1

∑N
i=1(zi − Z̄)r(xi − X̄)s.

For a stratified random sample the usual combined sample mean, ignoring the auxil-
iary information, is given by

µ̂Y st = z̄st, (6.9)

which is an unbiased estimator of population mean Ȳ .

The MSE of µ̂Y st is given by

MSE(µ̂Y st) =

L∑
h=1

W 2
hγh

{
S2
yh + S2

sh

}
, (6.10)

where γh =

(
1

nh
− 1

Nh

)
, S2

yh = 1
Nh−1

∑Nh
i=1(yhi − Ȳh)2 and S2

sh = 1
Nh−1

∑Nh
i=1(shi − S̄h)2.

The remainder of the paper is as follows. In Section 6.4, we introduce a combined ratio
estimator and compare it to the ordinary mean estimator and to the ratio estimator (Sousa
et al., 2010), considering the MSE as an accuracy indicator. In Section 6.5, we propose a
combined regression estimator and compare it with other estimators as well as with the
regression estimator proposed by Gupta et al. (2012). We present an empirical study in
Section 6.6 and a numerical example in Section 6.7 to support the proposed methodology.
Section 6.8 provides some concluding remarks.

6.4 Proposed combined ratio estimator

We propose the following combined ratio estimator

µ̂Rst = z̄st

(
X̄

x̄st

)
. (6.11)
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Using Taylor’s approximation and retaining terms of order up to 2, (6.11) can be rewritten
as

µ̂Rst − Z̄ ∼= Z̄
{
e0st − e1st + e2

1st − e0ste1st

}
. (6.12)

Under the assumption of bivariate normality (see Sukhatme and Sukhatme, 1984), we
have:
E(e2

0st)=
∑L

h=1W
2
hγhC

2
zh, E(e2

1st)=
∑L

h=1W
2
hγhC

2
xh, E(e0ste1st)=

∑L
h=1W

2
hγhCzxh,

where Czxh = ρzxhCzhCxh, C2
zh = C2

yh +

(
S2
sh

Ȳ 2

)
and ρzxh =

ρyxh√√√√1 +

(
S2
sh

S2
yh

) .

Using Z̄ = Ȳ in (6.12), the Bias of µ̂Rst to first degree of approximation is given by

Bias(µ̂Rst) ∼= Ȳ

L∑
h=1

W 2
hγh

(
C2
xh − Czxh

)
. (6.13)

Using (6.12), the MSE of µ̂Rst, correct up to first order of approximation, is given by

MSE(µ̂Rst) = E
{
µ̂Rst − Ȳ

}2 ∼= Ȳ 2E
{
e0st − e1st + e2

1st − e0ste1st

}2
.

So, if an independent simple random sample is drawn in each stratum, we have

MSE(µ̂Rst) ∼= Ȳ 2
L∑
h=1

W 2
hγh

{
C2
zh + C2

xh − 2Czxh
}
. (6.14)

It can be observed that MSE (µ̂Rst) < MSE (µ̂Y st) if

L∑
h=1

W 2
hγhCzxh −

1

2

L∑
h=1

γhC
2
xh > 0. (6.15)

On the other hand, comparing this estimator with different sampling methodsMSE (µ̂Rst) <

MSE (µ̂R) if

L∑
h=1

W 2
hγh

{
C2
zh + C2

xh − 2ρzxhCzhCxh
}
<

1− f
n

{
C2
z + C2

x − 2ρzxCzCx
}
, (6.16)

a condition that can be ensured by a suitable stratification.
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6.5 Proposed combined regression estimator

Assuming linear relationship between Y and X , we propose the following combined
regression estimator for the population mean of Y

µ̂Regst = z̄st + β̂c
(
X̄ − x̄st

)
, (6.17)

where β̂c =

∑L
h=1W

2
hγhszxh∑L

h=1W
2
hγhs

2
xh

is the sample regression coefficient between Z and X and

Z = Y + S is the scrambled response on Y .

Using Taylor’s approximation and retaining terms of order up to 2, (6.17) can be
rewritten as

µ̂Regst − Z̄ ∼= Z̄eost − βcX̄ [e1st + e1ste3st − e1ste2st] , (6.18)

where βc =

∑L
h=1W

2
hγhszxh∑L

h=1W
2
hγhs

2
xh

is the population regression coefficient between Z on X .

From Mukhopadhyay (1998, p. 123) and considering a random sample selected from
each population stratum we can deduce:

E(e1ste2st)=
1

X̄

∑L
h=1W

2
hγh

µ03h

µ02h
and E(e1ste3st)=

1

X̄

∑L
h=1W

2
hγh

µ12h

µ11h
,

where µrsh =
1

Nh − 1

∑Nh
i=1(zhi − Z̄h)r(xhi − X̄h)s.

Recognizing that Z̄ = Ȳ in Equation (6.18), the Bias and MSE of µ̂Regst, are given by

Bias(µ̂Regst) ∼= −
L∑
h=1

W 2
hγhβc

{
µ12h

µ11h
− µ03h

µ02h

}
(6.19)

and

MSE(µ̂Regst) ∼= Ȳ 2
L∑
h=1

W 2
hγhC

2
zh

(
1− ρ2

c

)
, (6.20)

where ρc =

∑L
h=1W

2
hγhSzxh√∑L

h=1W
2
hγhC

2
zh

√∑L
h=1W

2
hγhC

2
xh

.

It can be verified easily that

(i) MSE(µ̂Regst) < MSE(µ̂Y st) if

L∑
h=1

W 2
hγhC

2
zhρ

2
c > 0. (6.21)
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(ii) MSE(µ̂Regst) < MSE(µ̂Rst) if


√√√√ L∑

h=1

W 2
hγhC

2
xh −

∑L
h=1W

2
hγhCzxh√∑L

h=1W
2
hγhC

2
xh

2

> 0. (6.22)

These two conditions will always hold true indicating that, up to first order of approxi-
mation, the regression estimator performs better than ordinary mean and ratio estimators
in stratified random sampling also, as they did in the case of simple random sampling.

On the other hand, we can say that

(iii) MSE(µ̂Regst) < MSE(µ̂Reg) if

L∑
h=1

W 2
hγhC

2
zh

(
1− ρ2

c

)
<

1− f
n

C2
z

(
1− ρ2

zx

)
, (6.23)

a condition that can be ensured by a suitable stratification.

6.6 A Simulation Study

In this section, we present a simulation study with particular focus on comparing the
performance of the proposed combined estimators µ̂Rst and µ̂Regst to the RRT mean es-
timator µ̂Y st and to the corresponding estimators in simple random sampling (Sousa et
al., 2010; Gupta et al., 2012). For this purpose we rely on Bias and MSE, correct up to first
order of approximation.

We considered three bivariate normal populations with different covariance matrices
to represent the distribution of (Y,X). The scrambling variable S is taken to be a normal
distribution with mean equal to zero and standard deviation equal to 10% of the standard
deviation of X . The reported scrambled response on Y is given by Z = Y + S.

All of the simulated populations have theoretical mean of [Y,X] as µ = [5, 5] and co-
variance matrices as given below.

Population 1

N = 1000

Σ =

[
9 3.2

3.2 4

]
, ρXY = 0.5333.
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Population 2

N = 1000

Σ =

[
6 3.3

3.3 3

]
, ρXY = 0.7778.

Population 3

N = 1000

Σ =

[
5 3

3 2

]
, ρXY = 0.9487.

For each population we considered five sample sizes: n = 30, 60, 150 and 300.

The population is divided in two strata according to a certain criteria set for the aux-
iliary variable. The sample size from each stratum is based on the Neyman allocation.
We compare the results of stratified random sampling with the corresponding results of
simple random sampling.

Table 6.1 below gives the empirical and theoretical MSE’s for the proposed combined
estimators based on first order approximation. We use the following expression to find
the Percent Relative Efficiency (PRE) of study estimators as compared to the ordinary
sample mean:

PRE =
MSE(µ̂Y st)

MSE(µ̂α)
× 100,

where α = Rst, Regst. This measure is calculated using first degree of approximation for
MSE per unit estimator. We estimate the empirical MSE using 5000 samples of size n and
considering the average of all the observed values.
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Table 6.1: Empirical and Theoretical MSE, for the RRT mean estimator, ratio estimator (underlined) and
regression estimator (bold); and corresponding PRE relative to the RRT mean estimator.

Population MSE Estimation

N Nh ρXY ρXY h n Empirical MSE Theoretical MSE PRE

1000 N1 = 550
N2 = 450

0.5395
ρXY 1 = 0.5397
ρXY 2 = 0.5410

30
0.3039 0.2897 100.00
0.2227 0.2104 137.70
0.2395 0.2077 139.51

60
0.1403 0.1404 100.00
0.1024 0.1019 137.77
0.1339 0.0993 141.34

150
0.0533 0.0508 100.00
0.0380 0.0369 137.72
0.0488 0.0359 141.31

300
0.0208 0.0209 100.00
0.0156 0.0152 137.73
0.0187 0.0148 141.00

0.7827
ρXY 1 = 0.7888
ρXY 2 = 0.7868

30
0.2028 0.1932 100.00
0.0803 0.0763 253.17
0.0791 0.0792 244.04

60
0.0937 0.0936 100.00
0.0371 0.0370 253.29
0.0430 0.0367 255.33

150
0.0355 0.0339 100.00
0.0137 0.0134 253.21
0.0150 0.0131 258.38

300
0.0139 0.0139 100.00
0.0057 0.0055 253.21
0.0061 0.0054 256.64

0.9501
ρXY 1 = 0.9522
ρXY 2 = 0.9478

30
0.1688 0.1608 100.00
0.0346 0.0323 497.12
0.0168 0.0179 899.95

60
0.0783 0.0779 100.00
0.0157 0.0157 496.80
0.0084 0.0079 979.71

150
0.0296 0.0282 100.00
0.0059 0.0057 496.88
0.0030 0.0028 1002.03

300
0.0115 0.0116 100.00
0.0024 0.0023 496.98
0.0012 0.0012 993.07

According to the results in Table 6.1, all the percent relative efficiencies are greater
than 100, indicating that the proposed combined estimators perform better than the or-
dinary mean estimator. The use of auxiliary information provides a gain for a stratified
random sample. Therefore, the proposed estimators increases the accuracy since there is
a significant correlation between X and Y .
These results for the stratified estimators agree with the Sousa et al. (2010) and Gupta
et al. (2012) findings for a simple random sampling. Clearly the gain with regression
estimator is substantial when correlation between the primary and auxiliary variables is
high.
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6.7 Numerical Example

We now compare the performances of the proposed combined estimators using a real
data set. The data come from a sample from the survey on Information and Communica-
tion Technologies (ICT) usage in enterprises in 2010 with seat in Portugal (Smilhily and
Storm, 2010). This survey intends to promote the development of the national statistical
system in the information society and to contribute to a deeper knowledge about the us-
age of ICT by enterprises. The target population covers all industries with one and more
persons employed in the sections of economic activity C (Manufacturing) to N (Admin-
istrative and support service activities) and S (Other service activities), from NACE1 Rev.
2 (Eurostat, 2008).

The ICT survey has an extensive plan of indicators, so the use of auxiliary information
on the sampling stage is essential to get a stratified random sample as a proper represen-
tation for the population. The enterprises commercialization is directly related to their
turnover, so this auxiliary variable is usually used for stratification. In our example we
consider three strata: the first one is enterprises with less than 10 million (in euros) of
turnover, the second between 10 and less than 30 million of turnover, and the third with
30 million or more of turnover.

In our application the variable of interest Y is the purchase orders in 2010, collected
by the ICT survey in that year. This is typically a confidential variable for enterprises,
only known from business surveys. On the other hand, the auxiliary variable X is the
turnover of each enterprise which is known for all the population and annually available
with the statistical institutes as administrative information.

The purchase orders information was collected in the ICT survey and is known for
a sample of 1698 small and medium enterprises (at least 10 and no more than 100 em-
ployees) in 2010. For this study, these 1698 enterprises are considered as our population.
The scrambling variable S is taken to be a normal random variable with mean equal to
zero. Given the high magnitude of the auxiliary variableX , we consider a standard devi-
ation of S equal to 1% of the standard deviation of X , that is σS = 0.01σX . The reported
scrambled response is given by Z = Y + S (the purchase order value plus a random
quantity). The variables Y and X are strongly correlated so we can take advantage of
this correlation by using the combined ratio and regression estimators.

The variables X and Y are expressed in millions of Euros. We test our stratified sam-
ple estimators with random sample of sizes n = 100, 250 and 500. The sample size of
each stratum is allocated proportionally to the dimension of strata population.

1NACE is derived from the French title "Nomenclature générale des Activités économiques dans les
Communautés Européennes" (Statistical classification of economic activities in the European Communities).
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Population Characteristics:

Stratum Nh ρXY h µY h σY h µXh σXh Population
1 979 0.7802 2.15 2.46 3.12 2.68 N = 1698, ρXY = 0.9368,

2 362 0.7952 16.67 6.86 20.31 6.02 βY X = 0.8284, µY = 14.44,

3 357 0.8408 45.88 30.21 56.33 30.18 σY = 22.39, µX = 17.97, σX = 25.31

Table 6.2 below presents the results for the empirical MSE estimates, the theoretical
estimates, correct up to first degree of approximation, and the PRE of combined ratio
and regression estimators relative to the ordinary sample mean in the stratified sample.
For both sampling designs, we estimate the empirical MSE using 5000 samples of size n
selected from the population.

We also show the Design Effect (Deff ) comparing the efficiency of study estimators
in stratified sample (Str) relative to the ordinary sample mean in simple random sample
(SRS):

Deff =
MSE (µ̂Y )

MSE (µ̂α)
× 100,

where α = Yst, Rst, Regst.

Table 6.2: Empirical, theoretical MSE, PRE for the ratio estimator (underlined) and for the regression estima-
tor (bold) relative to the RRT mean estimator and PRE for the simple random sample (SRS) relative to the
stratified sample (Str).

Population SRS Str

N Nh ρXY n
Empirical

MSE
Theoretical

MSE
Empirical

MSE
Theoretical

MSE PRE1 Deff 2

1698
N1 = 979
N2 = 362
N3 = 357

0.9368

100
5.6291 5.6291 1.9699 1.9373 100.00 290.56
0.8027 0.8027 0.5535 0.6577 294.56 855.88
0.6894 0.6894 0.6290 0.5303 365.35 1061.57

250
2.0110 2.0403 0.6994 0.6948 100.00 293.66
0.2882 0.2909 0.2110 0.2397 289.91 851.35
0.2493 0.2499 0.2265 0.1863 373.00 1095.35

500
0.8502 0.8440 0.2917 0.2903 100.00 290.71
0.1186 0.1204 0.0855 0.0992 292.66 850.81
0.1022 0.1034 0.0882 0.0785 369.91 1075.37

1 MSE comparison of study estimators relative to the ordinary sample mean in Str.
2 MSE comparison of study estimators in Str relative to the ordinary sample mean in SRS.

According to the results in Table 6.2, all of the percent relative efficiencies are greater
than 100, so the proposed estimators perform better than the ordinary RRT mean esti-
mator which does not use auxiliary information. Moreover, there is clear reduction of
MSE if we compare the results based on stratification to those based on simple random
sampling. The Deff shows an increase in efficiency by using the stratified sample.

Taking into account the large correlation between the variable of interest Y and the
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auxiliary variable X , the proposed estimators have similar gain regardless of the sample
size. However, the gain is more evident in a simple random sample because the stratifi-
cation already significantly reduces the MSE values.

6.8 Conclusions

In the survey research context, using auxiliary information can be essential to improve
the accuracy of estimates, mainly when we have to deal with sensitive variables. We can
observe from this study that the estimation of the mean of a sensitive variable can be
improved by using a non-sensitive auxiliary variable.

The ratio and the regression estimators perform better than the RRT mean estimator
in both simple random sampling and stratified sampling also. Although both the ra-
tio and regression estimators perform better than the ordinary RRT mean estimator, the
improvement is much larger with the regression estimator.

Regarding the efficiency, the results indicate that the proposed estimators become
more and more efficient as the coefficient of correlation increases. When the study and
the auxiliary variables are strongly correlated the proposed estimators, particularly the
combined regression estimator performs much better, regardless the sample size.
These results agree with the findings of Sousa et al. (2010) and Gupta et al. (2012) in
simple random sampling.

All of the study estimators show better performance than the ordinary RRT sample
mean. Nevertheless, the gain in accuracy is stronger in the simple random sampling
because the stratification already reduces the MSE value for the RRT mean estimator.

The main conclusion of this study is that the advantage of using the RRT in the pres-
ence of auxiliary information still holds in the context of stratified sampling.
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Appendix E - R Routines

Listing 6.1: R Code for Simulation Study of Proposed Estimator in Chapter 6
1

2 proj3_ratio_st_NeymanAlloc <- function(N,sigma,mu,L)

3 {

4

5 #Generation of a bivariate normal population

6 data_yx <- mvrnorm(10000, mu, sigma)

7 data_yx <- data.frame(data_yx)

8 colnames(data_yx) <- c("Y","X")

9

10 indices1 <- round(runif(550,0,10000))

11 data_yx1 <- data_yx[indices1,]

12 data_yx1$ST <- 1

13 indices2 <- round(runif(450,0,10000))

14 data_yx2 <- data_yx[indices2,]

15 data_yx2$ST <- 2

16

17 data_yx <- rbind(data_yx1,data_yx2)

18

19 #Study variable

20 Y <- data_yx[,1]

21 #Auxiliary variable, correlated with Y

22 X <- data_yx[,2]

23 #Stratum

24 ST <- data_yx[,3]

25

26 #Scrambling variable independent of Y and X, with mean=0

27 S <- rnorm(N,mean=0,sd=0.1*sd(X))

28 #Scrambled response

29 Z <- Y+S

30

31 #Population

32 univ <- data.frame(cbind(Y=Y,S=S,Z=Z,X=X,

33 ST=ST,NRAND=runif(N)))

34 univ <- univ[order(univ$ST,univ$NRAND),]

35

36 #Coefficients of correlation

37 Ro_YX <- cor(Y,X)

38 Ro_ZX <- Ro_YX/sqrt(1+(var(S)/var(Y)))

39 Ro_YXh <- by(cbind(univ$Y,univ$X),

40 univ$ST,function(x) {cor(x[,1],x[,2])})

41 Ro_ZXh <- Ro_YXh/sqrt(1+(by(univ$S,

42 univ$ST,var)/by(univ$Y,univ$ST,var)))

43

44 #Population means

45 Mz <- mean(univ$Z)

46 Mx <- mean(univ$X)
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47 My <- mean(univ$Y)

48

49 #Information

50 SY <- sd(univ$Y)

51 SYh <- by(univ$Y,univ$ST,sd)

52 SZ <- sd(univ$Z)

53 SZh <- by(univ$Z,univ$ST,sd)

54 SX <- sd(univ$X)

55 SXh <- by(univ$X,univ$ST,sd)

56

57 #Samples dimension

58 dim_samp <- c(30,60,150,300)

59

60 #Information for the population

61 Nh <- by(univ$Z,univ$ST,length)

62 wh <- Nh/N

63

64 res <- NULL

65 for (i in 1:length(dim_samp))

66 {

67

68 #sample dimension

69 n <- dim_samp[i]

70

71 #sample with Neyman Allocation

72 n_total <- 0

73 samp <- NULL

74 for (l in 1:L)

75 {

76 n_aux <- round(n*((length(univ$Z[univ$ST==l])

77 *sd(univ$Y[univ$ST==l]))/sum(Nh*by(univ$Y,univ$ST,sd))))

78 if (l==L) {n_aux<-n-n_total}

79 n_total <- n_total+n_aux

80 samp <- rbind(samp,univ[univ$ST==l,][1:n_aux,])

81 }

82

83 #Sampling rate for each stratum

84 nh <- by(samp$Z,samp$ST,length)

85 fh <- nh/Nh

86 gh <- (1-fh)/nh

87 f <- n/N

88

89 #Sampling mean for each stratum

90 mzh <- by(samp$Z,samp$ST,mean)

91 myh <- by(samp$Y,samp$ST,mean)

92 mxh <- by(samp$X,samp$ST,mean)

93 msh <- by(samp$S,samp$ST,mean)

94

95 #Population mean for each stratum

96 Mzh <- by(univ$Z,univ$ST,mean)
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97 Myh <- by(univ$Y,univ$ST,mean)

98 Mxh <- by(univ$X,univ$ST,mean)

99 Msh <- by(univ$S,univ$ST,mean)

100

101 #Sampling mean for each stratum

102 szh <- by(samp$Z,samp$ST,sd)

103 sxh <- by(samp$X,samp$ST,sd)

104

105 mu11 <- cbind(sum((univ$Z[univ$ST==1]-Mzh[1])

106 *(univ$X[univ$ST==1]-Mxh[1]))/(Nh[1]-1),

107 sum((univ$Z[univ$ST==2]-Mzh[2])

108 *(univ$X[univ$ST==2]-Mxh[2]))/(Nh[2]-1))

109 mu12 <- cbind(sum((univ$Z[univ$ST==1]-Mzh[1])

110 *((univ$X[univ$ST==1]-Mxh[1])^2))/(Nh[1]-1),

111 sum((univ$Z[univ$ST==2]-Mzh[2])

112 *((univ$X[univ$ST==2]-Mxh[2])^2))/(Nh[2]-1))

113 mu02 <- cbind(sum((univ$X[univ$ST==1]-Mxh[1])^2)/(Nh[1]-1),

114 sum((univ$X[univ$ST==2]-Mxh[2])^2)/(Nh[2]-1))

115 mu03 <- cbind(sum((univ$X[univ$ST==1]-Mxh[1])^3)/(Nh[1]-1),

116 sum((univ$X[univ$ST==2]-Mxh[2])^3)/(Nh[2]-1))

117

118 #Ratio

119 R <- mean(univ$X)/mean(samp$X)

120

121 #Ordinary meam

122 est1 <- sum(wh*mzh)

123 #Ratio estimator

124 est2 <- sum(wh*mzh)*(Mx/sum(wh*mxh))

125 #Regression estimator

126 betac <- sum((wh^2)*gh*Ro_ZXh*szh*sxh)/sum((wh^2)*gh*Ro_ZXh*(sxh^2))

127 est3 <- sum(wh*mzh)+betac*(Mx-sum(wh*mxh))

128

129 #Coefficient of variation

130 c_xh <- by(univ$X,univ$ST,sd)/Mxh

131 c_yh <- by(univ$Y,univ$ST,sd)/Myh

132 c2_xh <- c_xh^2

133 c2_yh <- c_yh^2

134 c_zh <- by(univ$Z,univ$ST,sd)/Mzh

135 c2_zh <- c_zh^2

136

137 #Bias of ratio estimator - 1st degree approximation

138 bias2i <- My*sum((wh^2)*gh*(c2_xh-Ro_ZXh*c_zh*c_xh))

139 #Bias of regression estimator - 1st degree approximation

140 bias3i <- -sum(c((wh^2)*gh*betac)*((mu12/mu11)-(mu03/mu02)))

141

142 #Mean Square Error of 1st estimator (ordinal mean)

143 mse1 <- sum((wh^2)*(gh*(by(univ$Y,univ$ST,var)

144 +by(univ$S,univ$ST,var))))

145 #Mean Square Error of ratio estimator

146 #1st degree approximation
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147 mse2i <- (My^2)*sum((wh^2)*gh*(c2_zh+c2_xh-2*Ro_ZXh*c_zh*c_xh))

148 #Mean Square Error of regression estimator

149 #1st degree approximation

150 rhoc <- sum((wh^2)*gh*Ro_ZXh*szh*sxh)

151 /(sqrt(sum((wh^2)*gh*(szh^2)))*sqrt(sum((wh^2)*gh*(sxh^2))))

152 mse3i <- (My^2)*sum((wh^2)*gh*c2_zh*(1-(rhoc^2)))

153

154 #Empirical results

155 #Simulation of 5000 replicas of estimates

156 ...

157

158 #Results

159 res <- rbind(res,cbind(Nh,N,nh,n,

160 Ro_YXh,Ro_ZXh,

161 SY,SYh,SX,SXh,

162 Mxh,Mx,Myh,My,Mzh,Mz,

163 med_est1,med_est2,med_est3,

164 bias2i,bias3i,

165 emp_mse1,mse1,

166 emp_mse2,mse2i,

167 emp_mse3,mse3i))

168 }

169 colnames(res) <- c("Nh","N","nh","n",

170 "RhoXYh","RhoZXh",

171 "SY","SYh","SX","SXh",

172 "MXh","MX","MYh","MY","MZh","MZ",

173 "Est1","Est2","Est3",

174 "BIAS2I","BIAS3I",

175 "EMP_MSE1","MSE1",

176 "EMP_MSE2","MSE2I",

177 "EMP_MSE3","MSE3I")

178 return(res)

179 }

180

181 #Package for generation

182 require(MASS)

183

184 #Parameters

185 #Population dimension

186 N <- 1000

187 #Variance-Covariance matrix

188 sigma1 <- matrix(c(9,3.2,3.2,4),2,2)

189 sigma2 <- matrix(c(6,3.3,3.3,3),2,2)

190 sigma3 <- matrix(c(5,3,3,2),2,2)

191 #Mean vector

192 mu <- c(5,5)

193 #Number of strata

194 L <- 2

195

196 res <- NULL
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197 for (i in 1:length(N))

198 {

199 res <- rbind(res,proj3_ratio_st_NeymanAlloc(N[i],sigma1,mu,L))

200 res <- rbind(res,proj3_ratio_st_NeymanAlloc(N[i],sigma2,mu,L))

201 res <- rbind(res,proj3_ratio_st_NeymanAlloc(N[i],sigma3,mu,L))

202 }

203

204 write.table(res,"chapter6_ss_results.txt",sep="\t",dec=",",row.names=FALSE)
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Listing 6.2: R Code for Numerical Example of Proposed Estimator in Chapter 6
1

2 proj3_ratio_st_real <- function(Y,X,N)

3 {

4

5 L <- 3

6 data_yx <- data.frame(cbind(Y,X))

7 colnames(data_yx) <- c("Y","X")

8

9 #Strata

10 data_yx$ST <- 0

11 data_yx$ST <- ifelse(data_yx$X<10,1,

12 ifelse(data_yx$X>=10 & data_yx$X<30,2,

13 ifelse(data_yx$X>=30,3,0)))

14

15 data_yx <- data_yx[order(data_yx$ST),]

16 Y <- data_yx$Y

17 X <- data_yx$X

18 ST <- data_yx$ST

19

20 S<-NULL

21 #Scrambling variable independent of Y and X, with mean=0

22 for (s in 1:L)

23 {

24 S <- c(S,rnorm(sum(ST==s),mean=0,sd=0.01*sd(X[ST==s])))

25 }

26 #Scrambled response

27 Z <- Y+S

28

29 #Population

30 univ <- data.frame(cbind(Y=Y,S=S,Z=Z,X=X,ST=ST,NRAND=runif(N)))

31 univ <- univ[order(univ$ST,univ$NRAND),]

32

33 #Coefficients of correlation

34 Ro_YX <- cor(Y,X)

35 Ro_ZX <- Ro_YX/sqrt(1+(var(S)/var(Y)))

36 Ro_YXh <- by(cbind(univ$Y,univ$X),univ$ST,

37 function(x) {cor(x[,1],x[,2])})

38 Ro_ZXh <- Ro_YXh/sqrt(1+(by(univ$S,univ$ST,var)

39 /by(univ$Y,univ$ST,var)))

40

41 #Population means

42 Mz <- mean(univ$Z)

43 Mx <- mean(univ$X)

44 My <- mean(univ$Y)

45

46 #Information

47 SY <- sd(univ$Y)
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48 SYh <- by(univ$Y,univ$ST,sd)

49 SZ <- sd(univ$Z)

50 SZh <- by(univ$Z,univ$ST,sd)

51 SX <- sd(univ$X)

52 SXh <- by(univ$X,univ$ST,sd)

53

54 #Samples dimension

55 dim_samp <- c(100,250,500)

56

57 #Information for the population

58 Nh <- by(univ$Z,univ$ST,length)

59 wh <- Nh/N

60 nL <- Nh[L]

61

62 res <- NULL

63 for (i in 1:length(dim_samp))

64 {

65 #sample dimension

66 n <- dim_samp[i]

67

68 #sample with Neyman Allocation

69 n_total <- 0

70 samp <- NULL

71 for (l in 1:L)

72 {

73 n_aux <- round(n*(Nh[l]/N))

74 n_total <- n_total+n_aux

75 samp <- rbind(samp,univ[univ$ST==l,][1:n_aux,])

76 }

77

78 #Sampling rate for each stratum

79 nh <- by(samp$Z,samp$ST,length)

80 fh <- nh/Nh

81 gh <- (1-fh)/nh

82 f <- n/N

83

84 #Sampling mean for each stratum

85 mzh <- by(samp$Z,samp$ST,mean)

86 myh <- by(samp$Y,samp$ST,mean)

87 mxh <- by(samp$X,samp$ST,mean)

88 msh <- by(samp$S,samp$ST,mean)

89

90 #Population mean for each stratum

91 Mzh <- by(univ$Z,univ$ST,mean)

92 Myh <- by(univ$Y,univ$ST,mean)

93 Mxh <- by(univ$X,univ$ST,mean)

94 Msh <- by(univ$S,univ$ST,mean)

95

96 #Sampling mean for each stratum

97 szh <- by(samp$Z,samp$ST,sd)

109



6. IMPROVED MEAN ESTIMATION OF A SENSITIVE VARIABLE USING AUXILIARY INFORMATION IN STRATIFIED

SAMPLING Appendix E - R Routines

98 sxh <- by(samp$X,samp$ST,sd)

99

100 mu11 <- cbind(sum((univ$Z[univ$ST==1]-Mzh[1])*(univ$X[univ$ST==1]

101 -Mxh[1]))/(Nh[1]-1),sum((univ$Z[univ$ST==2]-Mzh[2])

102 *(univ$X[univ$ST==2]-Mxh[2]))/(Nh[2]-1),

103 sum((univ$Z[univ$ST==3]-Mzh[3])*(univ$X[univ$ST==3]

104 -Mxh[3]))/(Nh[3]-1))

105 mu12 <- cbind(sum((univ$Z[univ$ST==1]-Mzh[1])*((univ$X[univ$ST==1]

106 -Mxh[1])^2))/(Nh[1]-1),sum((univ$Z[univ$ST==2]-Mzh[2])

107 *((univ$X[univ$ST==2]-Mxh[2])^2))/(Nh[2]-1),

108 sum((univ$Z[univ$ST==3]-Mzh[3])*((univ$X[univ$ST==3]

109 -Mxh[3])^2))/(Nh[3]-1))

110 mu02 <- cbind(sum((univ$X[univ$ST==1]-Mxh[1])^2)/(Nh[1]-1),

111 sum((univ$X[univ$ST==2]-Mxh[2])^2)/(Nh[2]-1),

112 sum((univ$X[univ$ST==3]-Mxh[3])^2)/(Nh[3]-1))

113 mu03 <- cbind(sum((univ$X[univ$ST==1]-Mxh[1])^3)/(Nh[1]-1),

114 sum((univ$X[univ$ST==2]-Mxh[2])^3)/(Nh[2]-1),

115 sum((univ$X[univ$ST==3]-Mxh[3])^3)/(Nh[3]-1))

116

117 #Ratio

118 R <- mean(univ$X)/mean(samp$X)

119

120 #Ordinary meam

121 est1 <- sum(wh*mzh)

122 #Ratio estimator

123 est2 <- sum(wh*mzh)*(Mx/sum(wh*mxh))

124 #Regression estimator

125 betac <- sum((wh^2)*gh*Ro_ZXh*szh*sxh)/sum((wh^2)*gh*Ro_ZXh*(sxh^2))

126 est3 <- sum(wh*mzh)+betac*(Mx-sum(wh*mxh))

127

128 #Coefficient of variation

129 c_xh <- by(univ$X,univ$ST,sd)/Mxh

130 c_yh <- by(univ$Y,univ$ST,sd)/Myh

131 c2_xh <- c_xh^2

132 c2_yh <- c_yh^2

133 c_zh <- by(univ$Z,univ$ST,sd)/Mzh

134 c2_zh <- c_zh^2

135

136 #Bias of ratio estimator - 1st degree approximation

137 bias2i <- My*sum((wh^2)*gh*(c2_xh-Ro_ZXh*c_zh*c_xh))

138 #Bias of regression estimator - 1st degree approximation

139 bias3i <- -sum(c((wh^2)*gh*betac)*((mu12/mu11)-(mu03/mu02)))

140

141 #Mean Square Error of 1st estimator (ordinal mean)

142 mse1 <- sum((wh^2)*(gh*(by(univ$Y,univ$ST,var)+by(univ$S,univ$ST,var))))

143 #Mean Square Error of ratio estimator - 1st degree approximation

144 mse2i <- (My^2)*sum((wh^2)*gh*(c2_zh+c2_xh-2*Ro_ZXh*c_zh*c_xh))

145 #Mean Square Error of regression estimator - 1st degree approximation

146 rhoc <- sum((wh^2)*gh*Ro_ZXh*szh*sxh)

147 /(sqrt(sum((wh^2)*gh*(szh^2)))*sqrt(sum((wh^2)*gh*(sxh^2))))
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148 mse3i <- (My^2)*sum((wh^2)*gh*c2_zh*(1-(rhoc^2)))

149

150 #Empirical results

151 #Simulation of 5000 replicas of estimates

152 ...

153

154 #Results

155 res <- rbind(res,cbind(Nh,N,nh,n,

156 Ro_YXh,Ro_ZXh,

157 SY,SYh,SX,SXh,

158 Mxh,Mx,Myh,My,Mzh,Mz,

159 med_est1,med_est2,med_est3,

160 bias2i,bias3i,

161 emp_mse1,mse1,

162 emp_mse2,mse2i,

163 emp_mse3,mse3i))

164 }

165 colnames(res) <- c("Nh","N","nh","n",

166 "RhoXYh","RhoZXh",

167 "SY","SYh","SX","SXh",

168 "MXh","MX","MYh","MY","MZh","MZ",

169 "Est1","Est2","Est3",

170 "BIAS2I","BIAS3I",

171 "EMP_MSE1","MSE1",

172 "EMP_MSE2","MSE2I",

173 "EMP_MSE3","MSE3I")

174 return(res)

175 }

176

177 #Package for generation

178 require(MASS)

179

180 #Import data

181 data_yx <- read.table("IUTICE10_BA.txt",sep="\t",dec=",",header = T)

182 data_yx <- data_yx[data_yx$NPS>=10 & data_yx$NPS<150,]

183 data_yx <- data_yx[data_yx$turn<=200,]

184 #Study variable (purchase, millions of euros)

185 Y <- data_yx$purch

186 #Auxiliary variable, correlated with Y (turnover, millions of euros)

187 X <- data_yx$turn

188 #Data application

189 N <- dim(data_yx)[1]

190

191 res <- proj3_ratio_st_real(Y,X,N)

192 #Export data

193 write.table(res,"chapter6_ne_results.txt",sep="\t",dec=",",row.names=FALSE)
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7
General Discussion

7.1 Summary

Our thesis work is based on the improvement of the mean estimation of sensitive vari-
ables (Edwards, 1957; Groves et al., 2004). In the sampling literature (Cochran, 1997;
Mukhopadhyay, 1998; Särdnal et al., 1997; Sukhatme and Sukhatme, 1984), researchers
have proposed several estimators which use auxiliary information in order to improve
their performance. Over the chapters of this thesis we have proposed different estima-
tors which combine the Randomized Response Technique (RRT) method (Eichhorn, 1983;
Warner, 1965) with the use of auxiliary information.

In section 7.2 we present a numerical example that aims to make a comparison of
the performance of the main proposed estimators. For that purpose we conduct a study
with a real dataset and we show the numerical results for the Bias and Mean Square Error
(MSE), as well as graphic evidence which illustrates the performance of each estimator
in terms of estimation precision.

7.2 Comparison of the main study estimators

In this section we conduct a study with a real dataset with particular focus on comparing
the performance of the main estimators proposed in this thesis, using the Bias and the
MSE results as the criteria.

Consider a real dataset concerning enterprises for the Monthly Economic Survey
(MES) in Portugal. The survey is conducted to provide an accurate picture of business
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trends of enterprises. It provides short-term indicators on a monthly basis compiled for
four sectors: industry, retail trade, construction and service sector.

Generally, the enterprises do not want to report the value of their orders. This is typ-
ically a confidential variable for enterprises, only known from business surveys. Nev-
ertheless, every year the entity responsible for MES, the Statistics Portugal [1], provides
administrative information with the value of the orders for the previous year. Thus, in
our numerical example, we consider the value of orders in 2009 as a sensitive variable
and the value of orders in 2008 as an auxiliary variable.

Let Y be the annual orders amount in 2009 collected by the MES in that year. The
auxiliary variable X is the annual orders amount in 2008, available from business data
registers. The variables Y and X are strongly correlated so we can take advantage of
this correlation by using an auxiliary variable. We take the 608 business survey respon-
dents common between 2008 and 2009 as our population. For the RRT part, let S be a
normal random variable with mean equal to zero and standard deviation equal to 10%

of the standard deviation of X . The reported response is given by Z = Y + S (the orders
amount in 2008 plus a random quantity). The summary statistics about the populations
are given below.

Population Characteristics:

N = 608, ρXY = 0.9447

µX = 21357.69, µY = 17828.2 (in thousands of Euros)

σX = 65874.83, σY = 57489.53 and σXY = 3577597688

We use the following samples sizes in our simulation study: n = 50, 100, 200 and 300.

In this study we compare the results for the ordinary RRT sample mean (µ̂Y ) to the
main estimators proposed in this study: the ratio estimator (µ̂R) (Sousa et al., 2010), the
regression estimator (µ̂Reg) (Gupta et al., 2012), the generalized regression-cum-ratio esti-
mator (µ̂GRR) (Gupta et al., 2012), the generalized regression-cum-exponential estimator
(µ̂exp1) (Koyuncu et al., 2013) and the improved exponential estimator (µ̂IE) (Gupta et
al., 2013).

In Table 7.1 below we present the the theoretical ARB results for all the estimators in
comparison.
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Table 7.1: Theoretical ARB for the estimators in comparison.

Population Theoretical ARB

N ρXY Estimator n = 50 n = 100 n = 200 n = 300

608 0.9447

(µ̂R) 0.0022 0.0010 0.0004 0.0002
(µ̂Reg) 0.0080 0.0036 0.0015 0.0007
(µ̂GRR) 0.0225 0.0104 0.0042 0.0021
(µ̂exp1) 0.0215 0.0093 0.0036 0.0018
(µ̂IE) 0.0042 0.0022 0.0009 0.0005

The ARB results show that it is not always the case that estimators with better perfor-
mance in terms of accuracy are the best performing in terms of Bias as well. However, the
improved exponential estimator (µ̂IE) manages to combine great precision results with
reduction in Bias compared to other estimators which use auxiliary information, such as
the ratio estimator (µ̂R), the regression estimator (µ̂Reg) and the study generalized expo-
nential estimators (µ̂exp1 and µ̂IE).

From our 5000 samples, selected for each sample size and for each estimator, we take
the empirical Bias and we draw a graph, presented in Figure 7.1, which shows the Bias
distribution for all the generated estimates.

Figure 7.1: Distribution of empirical Bias
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According to the graph in Figure 7.1 all the estimators have Bias about zero but it is
the improved exponential estimator which shows less dispersion, with results closer to
zero. Despite being unbiased, the RRT mean estimator’s greater empirical Bias relative
to the estimators which use auxiliary information, also based on RRT, is obvious in this
graph indicating that just a RRT version of the mean estimator might not be enough.

Table 7.2 below gives empirical and theoretical MSE’s based on the first order of ap-
proximation for all the estimators considered here. We estimate the empirical MSE using
5000 samples of various sizes selected from the study population. We use the following
expression to find the Percent Relative Efficiency (PRE) of ratio, regression, generalized
regression-cum-ratio, generalized regression-cum-exponential and improved exponen-
tial estimators as compared to the RRT mean estimator:

PRE =
MSE(µ̂Y )

MSE(µ̂α)
× 100,

where α = R,Reg,GRR, exp1, IE.

Table 7.2: Empirical MSE, theoretical MSE correct up to 1st order approximation and PRE for all the estima-
tors in comparison relative to the RRT mean estimator.

Population MSE Estimation

N ρXY n Estimator Empirical Theoretical PRE

608 0.9447

50

µ̂Y 63985642.27 61487318.16 100.00
µ̂R 7098375.83 7357491.69 835.71
µ̂Reg 7520669.52 7349015.26 836.67
µ̂GRR 6682678.20 7148757.06 860.11
µ̂exp1 6308486.16 6721357.39 914.81
µ̂IE 1633458.04 1334326.31 4608.12

100

µ̂Y 27999936.04 27988850.92 100.00
µ̂R 3593960.07 3349109.12 835.71
µ̂Reg 3531015.22 3345250.67 836.67
µ̂GRR 3431317.25 3307434.75 846.24
µ̂exp1 3252540.69 3213576.01 870.96
µ̂IE 794022.08 686993.08 4074.11

200

µ̂Y 11444042.86 11239617.30 100.00
µ̂R 1475109.02 1344917.84 835.71
µ̂Reg 1412070.68 1343368.38 836.67
µ̂GRR 1416483.71 1337528.93 840.33
µ̂exp1 1370565.25 1322001.04 850.20
µ̂IE 0333343.39 292135.71 3847.40

300

µ̂Y 5728956.33 5656539.42 100.00
µ̂R 791784.85 676854.07 835.71
µ̂Reg 752752.90 676074.28 836.67
µ̂GRR 765577.73 674615.91 838.48
µ̂exp1 740274.33 670651.05 843.44
µ̂IE 175396.47 149770.32 3776.81

According to the MSE results in Table 7.2 the component regression shows perfor-
mance gains. As expected and shown in Chapter 5 the best performance comes from
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improved exponential estimator because of its large reduction in MSE.

From our 5000 samples, selected for each sample size and for each estimator, we take
the empirical MSE and we draw a graph, presented in Figure 7.2, which shows the pre-
cision distribution for all the generated estimates.

According to the graph in Figure 7.2 the use of auxiliary information significantly re-
duces the magnitude of MSE, particularly in the improved exponential estimator which
presents results closer to zero.

Figure 7.2: Distribution of empirical MSE

7.3 Final Remarks

The aim of this project was to develop new methodologies that can potentially improve
the mean estimation in the presence of auxiliary information. These new methodolo-
gies were proposed in Chapters 2 to 6 and were compared with each other and with the
ordinary RRT mean estimator which does not uses the auxiliary information. For that
purpose we studied theoretically the proposed estimators, deriving the expressions for
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the Bias and Mean Square Error (MSE) correct up to first or second order approxima-
tions. Also, R routines [2] were developed for an extensive study by using real data and
simulated data for all the estimators under study.

One of the main conclusions was the use of auxiliary information significantly re-
duces the magnitude of MSE, providing a gain for the parameter estimation based on
RRT, just as in the context of direct estimation of non-sensitive parameters.

We concluded from this study that the estimation of the mean of a sensitive variable
can be improved further by using a correlated non-sensitive auxiliary variable.

When there is a high correlation between the study variable and the auxiliary variable
the regression estimator performs better than ratio estimator.

We also found some exponential type estimators more efficient than the ratio and
regression type estimators.

We showed that the advantage of using the RRT in the presence of auxiliary informa-
tion still holds with other sampling designs, such as the stratified sampling (Sousa et al.,
2013).

Even though during the thesis project we have tested many new estimators and com-
pared them to existing estimators in literature, we only present those who showed an
effective improvement relative to the existing estimators or to the estimators previously
proposed for us.

We are aware that in this area there is still much more to explore and part of our
future work plans consists of studying other combinations of estimators, as well as the
application to different sampling designs and with different techniques which provides
confidence to the respondents when they have to answer to sensitive questions. Also, we
would like to plan and implement a survey to a group of respondents who struggle with
sensitive questions in order to evaluate the performance of proposed estimators with a
real application of a RRT.

Even with the natural constraints we face in this kind of research, this study was
a great challenge, both in the theoretical context as well as in the practical context of
parameter estimation in the presence of auxiliary information.
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Appendix F - R Routines

Listing 7.1: R Code for Numerical Example of Proposed Estimator in Chapter 7
1

2 comparison_chap7 <- function(Y,X,N)

3 {

4 #Coefficient of correlation between Y and X

5 Ro_YX <- cor(Y,X)

6

7 #Scrambling variable independent of Y and X, with mean=0

8 S <- rnorm(N,mean=0,sd=0.1*sd(X))

9 #Scrambled response

10 Z <- Y+S

11

12 #Coefficient of correlation between Z and X

13 Ro_ZX <- Ro_YX/sqrt(1+(var(S)/var(Y)))

14

15 #population

16 univ <- data.frame(cbind(Y=Y,S=S,Z=Z,X=X,NRAND=runif(N)))

17 univ <- univ[order(univ$NRAND),]

18

19 #Mean of Y

20 mz <- mean(univ$Z)

21 mx <- mean(univ$X)

22 my <- mean(univ$Y)

23

24 mu11 <- sum((univ$Z-mz)*(univ$X-mx))/(N-1)

25 mu12 <- sum((univ$Z-mz)*((univ$X-mx)^2))/(N-1)

26 mu02 <- sum((univ$X-mx)^2)/(N-1)

27 mu03 <- sum((univ$X-mx)^3)/(N-1)

28

29 beta_zx <- Ro_YX*(sd(univ$Y)/sd(univ$X))

30

31 #Samples dimension

32 dim_samp <- c(50,100,200,300)

33

34 #Initialize the variables...

35

36 for (i in 1:length(dim_samp))

37 {

38 #sample dimension

39 n <- dim_samp[i]

40 #sample

41 samp <- univ[1:n,]

42 #Sampling rate

43 f <- n/N

44

45 #Ordinary meam

46 est1 <- mean(samp$Z)

120



7. GENERAL DISCUSSION Appendix F - R Routines

47 #Ratio estimator

48 est2 <- mean(samp$Z)*(mx/mean(samp$X))

49 #Regression estimator

50 est3 <- mean(samp$Z)+beta_zx*(mx-mean(samp$X))

51

52 #Coefficient of variation

53 c_x <- sd(univ$X)/mx

54 c_y <- sd(univ$Y)/my

55 c2_x <- c_x^2

56 c2_y <- c_y^2

57 c2_z <- c2_y+(var(univ$S)/(my^2))

58 c_z <- sqrt(c2_z)

59

60 l <- (1-f)/n

61

62 #Generalized Regression-cum-ratio Estimator

63 k1 <- (1-((1-f)*c2_x/n))/(1-((1-f)/n)*(c2_x-c2_z*(1-(Ro_ZX^2))))

64 k2 <- (my/mx)*(1+k1*((Ro_ZX*c_z/c_x)-2))

65 est5 <- (k1*mean(samp$Z)+k2*(mx-mean(samp$X)))

66 *(mx/mean(samp$X))

67

68 #Generalized regression-cum-exponential type Estimator

69 w1 <- (1-(l*c2_x/8))/(1+l*c2_z*(1-(Ro_ZX^2)))

70 w2 <- (my/mx)*(0.5-w1*(1-(Ro_ZX*c_z/c_x)))

71 est7 <- (w1*mean(samp$Z)+w2*(mx-mean(samp$X)))

72 *exp((mx-mean(samp$X))/(mx+mean(samp$X)))

73

74 #2nd Improved Exponential Estimator

75 A <- 1+l*c2_z+l*c2_x-2*l*Ro_ZX*c_z*c_x

76 B <- 1+l*c2_x

77 C <- 1+(3/8)*l*c2_x-0.5*l*Ro_ZX*c_z*c_x

78 D <- 1+(3/8)*l*c2_x

79 E <- 1+l*c2_x-l*Ro_ZX*c_z*c_x

80 z1 <- (B*C-D*E)/(A*B-(E^2))

81 z2 <- my*(A*D-C*E)/(A*B-(E^2))

82 est8 <- (z1*mean(samp$Z)+z2)

83 *exp((mx-mean(samp$X))/(mx+mean(samp$X)))

84

85 #Mean Square Error of 1st estimator (ordinal mean)

86 mse1 <- ((1-f)/n)*(var(univ$Y)+var(univ$S))

87

88 #Bias of ratio estimator - 1st degree approximation

89 bias2i <- ((1-f)/n)*my*(c2_x-Ro_ZX*c_z*c_x)

90 #Mean Square Error of ratio estimator - 1st degree approximation

91 mse2i <- ((1-f)/n)*(my^2)*(c2_z+c2_x-2*Ro_ZX*c_z*c_x)

92

93 #Bias of regression estimator - 1st degree approximation

94 bias3i <- -beta_zx*((1-f)/n)*((mu12/mu11)-(mu03/mu02))

95 #Mean Square Error of regression estimator

96 #1st degree approximation

121



7. GENERAL DISCUSSION Appendix F - R Routines

97 mse3i <- ((1-f)/n)*(my^2)*c2_z*(1-(Ro_ZX^2))

98

99 #Bias of generalized regression-cum-ratio estimator

100 #1st degree approximation

101 bias5i <- (k1-1)*my+k1*my*((1-f)/n)*(c2_x-Ro_ZX*c_z*c_x)

102 +k2*mx*((1-f)/n)*c2_x

103 #Mean Square Error of generalized regression-cum-ratio estimator

104 #1st degree approximation

105 mse5i <- ((k1-1)^2)*(my^2)+(k1^2)*(my^2)

106 *((1-f)/n)*(c2_z+3*c2_x-4*Ro_ZX*c_z*c_x)

107 +(k2^2)*(mx^2)*((1-f)/n)*c2_x-2*k1*(my^2)

108 *((1-f)/n)*(c2_x-Ro_ZX*c_z*c_x)

109 -2*k2*my*mx*((1-f)/n)*c2_x-2*k1*k2*my*mx

110 *((1-f)/n)*(Ro_ZX*c_z*c_x-2*c2_x)

111

112 #Bias of generalized exponential type estimator

113 #1st degree approximation

114 bias7i <- (w1-1)*my+w1*my*l*((3/8)*c2_x-0.5*Ro_ZX*c_z*c_x)

115 +w2*mx*l*c2_x

116 mse7i <- (my^2)*((1-0.25*l*c2_x)-(((1-(1/8)*l*c2_x)^2)

117 /(1+l*c2_z*(1-(Ro_ZX^2)))))

118

119 #Bias of improved exponential estimator 2

120 #1st degree approximation

121 bias8i <- (z1-1)*my+z1*my*((3/8)*l*c2_x-0.5*l*Ro_ZX*c_z*c_x)

122 +z2*(1+(3/8)*l*c2_x)

123 #Mean Square Error of improved exponential estimator 2

124 #1st degree approximation

125 mse8i <- (my^2)*(1-((B*(C^2)+A*(D^2)-2*C*D*E)/(A*B-(E^2))))

126

127 #Empirical results

128 #Simulation of 5000 replicas of estimates

129 ...

130

131 #Graphics

132 #*************************************
133 emp_bias <- emp-my

134 emp_arb <- abs(emp_bias)/my

135 emp_mse <- apply(emp,2,var)+(emp_bias^2)

136 emp_res <- rbind(emp_res,rbind(cbind(N,n,Ro_YX,1,

137 emp_bias[,1],emp_arb[,1],emp_mse[,1]),

138 cbind(N,n,Ro_YX,2,emp_bias[,2],emp_arb[,2],emp_mse[,2]),

139 cbind(N,n,Ro_YX,3,emp_bias[,3],emp_arb[,3],emp_mse[,3]),

140 cbind(N,n,Ro_YX,5,emp_bias[,5],emp_arb[,5],emp_mse[,5]),

141 cbind(N,n,Ro_YX,7,emp_bias[,7],emp_arb[,7],emp_mse[,7]),

142 cbind(N,n,Ro_YX,8,emp_bias[,8],emp_arb[,8],emp_mse[,8])))

143 colnames(emp_res) <- c("N","n","RhoXY","EST",

144 "EMP_BIAS","EMP_ARB","EMP_MSE")

145 #*************************************
146

122



7. GENERAL DISCUSSION Appendix F - R Routines

147 #Results

148 res <- rbind(res,c(N,n,Ro_YX,Ro_ZX,

149 c_x,c_y,c_z,k1,k2,w1,w2,

150 z1,z2,mx,my,mz,

151 med_est1,med_est2,med_est3,

152 med_est5,med_est7,med_est8,

153 bias2i,bias3i,bias5i,

154 bias7i,bias8i,

155 emp_mse1,mse1,emp_mse2,mse2i,

156 emp_mse3,mse3i,emp_mse5,mse5i,

157 emp_mse7,mse7i,emp_mse8,mse8i))

158 }

159 colnames(res) <- c("N","n","RhoXY","RhoZX",

160 "Cx","Cy","Cz","k1","k2","w1","w2",

161 "z1","z2","mX","mY","mZ",

162 "Est1","Est2","Est3",

163 "Est5","Est7","Est8",

164 "BIAS2I","BIAS3I","BIAS5I",

165 "BIAS7I","BIAS8I",

166 "EMP_MSE1","MSE1","EMP_MSE2","MSE2I",

167 "EMP_MSE3","MSE3I","EMP_MSE5","MSE5I",

168 "EMP_MSE7","MSE7I","EMP_MSE8","MSE8I")

169 return(list(res=res,emp_res=emp_res))

170 }

171

172 #Package for generation

173 require(MASS)

174 #Import data

175 data_yx <- read.table("ENC0809.txt",sep="\t",dec=",",header = T)

176 #Study variable (orders in 2009, thousands of euros)

177 Y <- data_yx[,3]

178 #Auxiliary variable (orders in 2009, thousands of euros)

179 X <- data_yx[,2]

180

181 #Data application

182 N <- dim(data_yx)[1]

183 res <- comparison_chap7(Y,X,N)

184

185 res_exp<-res[[1]]

186 #Export data

187 write.table(res_exp,"chapter7_ne_results.txt",sep="\t",dec=",",row.names=FALSE)
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