

Tiago José Ministro Costa Santos

Licenciado em Ciências da Engenharia Electrotécnica e de
Computadores

Negotiation environment to support
enterprise interoperability sustainability

Dissertation to obtain the Master degree in Electrical
Engineering and Computer Science

Orientador: Ricardo Luís Rosa Jardim Gonçalves

Professor Auxiliar, Departamento de Engenharia Electrotécnica

Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa

Co-orientador: Carlos Eduardo Dias Coutinho, Investigador, FCT-UNL

 Júri:

Presidente: Doutor João Francisco Alves Martins
Vogais: Doutor Ricardo Luís Rosa Jardim Gonçalves
 Doutor João Pedro Mendonça de Assunção da Silva
 Doutor Carlos Eduardo Dias Coutinho

Março 2013

II

III

Copyright

Negotiation environment to support enterprise interoperability sustainability© Tiago José
Ministro Costa Santos

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo
e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares
impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou
que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua
cópia e distribuição com objectivos educacionais ou de investigação, não comerciais, desde
que seja dado crédito ao autor e editor.

IV

V

To my family,
girlfriend and friends.

VI

VII

ACKNOWLEDGMENTS

I would like to demonstrate my acknowledgement to all people that demonstrated their

support during my entire course and in particular, the realization of this dissertation.

First of all, I want to thank my family, principally my parents that gave all their efforts and

never gave up on me during my entire path in order to obtain the Master’s degree. All these

years have been accompanied by a great support from them. To my brother that helped me to

overcome some obstacle during these years.

To Rita, my girlfriend, that has been there every time that I needed, in good and bad

times. Her support during these years, but mainly in this dissertation, was the most important

source of motivation and for that I would like to thank her so much.

To my advisor Dr. Ricardo Gonçalves that gave me the opportunity to work with him and

for all the support that he gave me towards the successful completion of this work.

To Dr. Carlos Coutinho that helped me with some important points in this dissertation and

for the precious help in the scientific validation of the dissertation.

To all my friends and colleagues, which were always present during my entire path, which

in one way or another gave their support, where some of them helped me a lot during the

course.

Finally, I wish acknowledge the support of the European Commission through the funding

of the FP7 ENSEMBLE, UNITE, MSEE and IMAGINE projects.

VIII

IX

ABSTRACT

Specialized and diversified global markets are facing a competitiveness that keeps

pushing enterprises to abandon their traditional product centrism, where basically it is enough to

concentrate their efforts in very narrow specialization fields and change their methods of work

relying on networks of other providers that are able to fulfill their needs towards the

development of complete solutions. These new methods of work, regarding the rapid change in

markets and business organizations, requires new interoperability demands and complexity

levels, from connection and syntax-oriented exchanges to semantic and model-oriented

knowledge, which becomes very difficult for enterprises to cope with the pace of change. This

dissertation proposes the implementation of a framework, based on agents and rules, to

achieve solid and stable integration of solutions, via the use of a strong and formal negotiation

mechanism, which will be the basis for increasing the enterprise interoperability in the supply

chain for the development of solutions.

KEYWORDS

The keywords for this dissertation are: Interoperability, Sustainable Interoperability,

Negotiation, Multi-Agent System and Rules Engine.

X

XI

RESUMO

Os mercados globais especializados e diversificados enfrentam uma competitividade que

obriga as empresas a abandonar os seus tradicionais métodos centrados no produto, onde

basicamente é suficiente concentrar os esforços em áreas de especialização muito precisas,

para métodos de trabalho que dependem de redes compostas por outros provedores que são

capazes de satisfazer as suas necessidades para o desenvolvimento de soluções completas.

Estes novos métodos de trabalho, em relação à rápida mudança nos mercados e nas

organizações empresariais, requerem novas exigências de interoperabilidade e de níveis de

complexidade que vão desde mudanças nos serviços orientados à ligação e à sintaxe até aos

serviços de conhecimento orientados a modelos, o que para as empresas se torna muito difícil

de acompanhar devido ao ritmo das mudanças. Esta dissertação propõe a implementação de

uma estrutura baseada em agentes e regras com o intuito de atingir a sólida e estável

integração de soluções, através da utilização de um forte e formal mecanismo de negociação,

que será a base para o aumento da interoperabilidade entre empresas no desenvolvimento de

novas soluções.

PALAVRAS-CHAVE

As palavras-chave para esta dissertação são: Interoperabilidade, Sustentabilidade da

Interoperabilidade, Negociação, Sistema de Multi Agentes e Motor de Regras.

XII

XIII

TABLE OF ACRONYMS

ATHENA
Advanced Technologies for interoperability of Heterogeneous Enterprise
Networks

ACC Agent Communication Channel

ACL Agent Communication Language

API Application Program Interface

BC Backward-Chaining

C⁴IF
Connection, Communication, Consolidation, Collaboration Interoperability
Framework

CAS Complex Adaptive Systems

CIM Computation Independent Model

CORBA Common Object Request Broker Architecture

CS Coordination Services

CWM Common Warehouse Meta Model

DF Directory Facilitator

DSMLs Domain-Specific Modeling Languages

EIF European Interoperability Framework

EPS European Public Services

ESA-CDF European Space Agency’s Concurrent Design Facility

ESB Enterprise Service Bus

ETSI European Telecommunication Standards Institute

EU Europe Union

FC Forward-Chaining

FIPA Foundation for Intelligent Physical Agents

GUI Graphical User Interface

IaaS Infrastructure as a service

ICL Interagent Communication Language

ICT Information and Communication Technology

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IS Information Systems

J2EE Java 2 Platform, Enterprise Edition

J2ME Java 2 Platform, Micro Edition

XIV

J2SE Java 2 Platform, Standard Edition

JADE Java Agent Development Framework

LISI Levels of Information System Interoperability

MAS Multi-Agent System

MAS Agent Management System

MDA Model-Driven Architecture

MDD Model-Driven Development

MDE Model-Driven Engineering

MDI Model-Driven Interoperability

MOF Meta Object Facility

NEGOSEIO
NEGOtiations for achieving and maintaining a Sustainable Enterprise
Interoperability

OAA Open Agent Architecture

OMG Object Management Group

PIM Platform Independent Model

PSM Platform Specific Model

QoS Quality of Service

SaaS Software as a Service

SEI Sustainable Enterprise Interoperability

SMEs Subject Matter Experts

SOA Service Oriented Architecture

SQuaRE Software product Quality Requirements and Evaluation

SUT System Under Test

SWOT Strengths, Weaknesses, Opportunities, and Threats

TTCN-2 Tree and Tabular Combined Notation

TTCN-3 Test and Test Control Notation

UML Unified Modeling Language

VO Virtual Organization

XMI XML Metadata Interchange

XML eXtensible Markup Language

XV

TABLE OF CONTENTS

Acknowledgments .. VII

Abstract .. IX

Resumo .. XI

Table of Acronyms .. XIII

Table of Contents ... XV

Table of Figures .. XIX

List of Tables .. XXI

1. Introduction .. 1

1.1. Research Framework and Motivation ... 2

1.2. Research Method .. 2

1.3. Research Problem and Questions .. 4

1.4. Hypothesis ... 4

1.5. Dissertation Outline ... 5

2. Enterprise Systems Interoperability .. 7

2.1. The Interoperability Problem .. 7

2.2. Networked Organizations ... 8

2.3. Interoperability Concept ... 9

2.4. Interoperability Typologies ... 10

2.4.1. ATHENA Interoperability Framework .. 10

2.4.2. Connection, Communication, Consolidation, Collaboration Interoperability

Framework (C
4
IF) ... 11

2.4.3. European Interoperability Framework ... 12

2.4.4. Interoperability Classification Framework .. 14

2.4.5. Interoperability Practices Pyramid .. 15

2.4.6. Levels of Information System Interoperability (LISI) .. 16

2.4.7. Outlook in the Interoperability Typologies ... 17

2.5. Model-Driven Interoperability ... 18

2.5.1. Model-Driven Engineering .. 18

2.5.2. Model-Driven Architecture .. 19

XVI

3. Enterprise Interoperability Sustainability ... 21

3.1. Sustainable Interoperability .. 21

3.1.1. Harmonization Breaking ... 21

3.1.2. Collaboration Networks and Complex Adaptive Systems 22

3.1.3. Heuristic Framework for Network Stability Maintenance 22

3.2. NEGOSEIO – A collaborative framework for SEI .. 24

3.2.1. The NEGOSEIO methodology .. 24

3.2.2. The NEGOSEIO architecture.. 26

3.2.3. Negotiation... 27

4. Multi-Agent System and Rules Engine to support Negotiation on SEI 29

4.1. MAS overview .. 29

4.1.1. MAS as a technology for a negotiation SEI environment 30

4.1.2. Choice of a MAS technology .. 30

4.2. Rules Engine overview .. 34

4.2.1. Rules Engine as a technology for a negotiation SEI environment 36

4.2.2. Choice of a Rules Engine technology ... 36

4.3. Negotiation on SEI Framework and Architecture .. 38

4.4. System Controller .. 42

4.4.1. Application Overview .. 42

4.4.2. Application Specifications ... 43

4.4.3. Application Workflow .. 45

4.4.4. Learning Methodology .. 47

4.5. Trigger Agent ... 48

4.5.1. Application Overview .. 48

4.5.2. Application Specifications ... 49

4.5.3. Application Workflow .. 50

4.6. Usability Cases .. 52

5. Proof-of-concept Implementation .. 55

5.1. Application Scenarios .. 55

5.1.1. First Scenario – Block negotiation method .. 56

5.1.2. Second Scenario – Split negotiation method... 57

XVII

5.2. Implementation Steps .. 58

5.2.1. Step 0 – Environment setup ... 59

5.2.2. Step 1 – Negotiation ... 59

5.2.3. Step 3 - Knowledge .. 62

6. Testing and Hypothesis Validation .. 65

6.1. Testing Methodologies ... 65

6.1.1. iSurf Functional and Non-Functional Evaluation Methodology 66

6.1.2. Tree and Tabular Combined Notation – Test Notation Standard 68

6.1.3. Adopted Test Methodology ... 70

6.2. Requirements and Functionalities .. 70

6.3. Testing .. 72

6.3.1. Step 0 – Environment setup ... 72

6.3.2. Step 1 – Negotiation ... 76

6.3.3. Step 3 – Knowledge ... 80

6.3.4. Performance comparison ... 82

6.4. Hypothesis Validation .. 87

6.5. Scientific Validation .. 87

7. Final Considerations and Future Work .. 89

7.1. Future Work ... 89

8. References .. 91

XVIII

XIX

TABLE OF FIGURES

Figure 1-1 - Classical Research Method phases (based on (Camarinha-Matos 2010)) 3

Figure 2-1 - Interoperability on all layers of an enterprise (Chen & Doumeingts 2003) 8

Figure 2-2 - ATHENA MDI Framework (ATHENA 2010) .. 11

Figure 2-3 - The C
4
IF (Peristeras & Tarabanis 2006) ... 12

Figure 2-4 – The EIF (ISA 2010) ... 13

Figure 2-5 - Interoperability Classification Framework (Panetto 2007) 15

Figure 2-6 - Interoperability Practices Pyramid (Jardim-Gonçalves et al. 2010) 16

Figure 2-7 - LISI interoperability maturity model (C4ISR 1998)... 17

Figure 2-8 - The levels of MDA approach (Petzmann et al. 2007) .. 19

Figure 3-1 - Sustainable Interoperability Framework (Agostinho & Jardim-Gonçalves 2009) 23

Figure 3-2 - Increasing the SEI through negotiations (Cretan et al. 2012) 24

Figure 3-3 - NEGOSEIO methodology (Cretan et al. 2012) .. 25

Figure 3-4 - NEGOSEIO framework architecture (Cretan et al. 2012) 26

Figure 4-1- The JADE architecture (Bellifemine et al. 2003) ... 33

Figure 4-2 - Traditional Rules Engine architecture (D. I. Liu et al. 2010) 36

Figure 4-3 - Global vision of the proposed Prototype environment ... 39

Figure 4-4 - System Controller architecture ... 40

Figure 4-5 - Trigger Agent architecture .. 41

Figure 4-6 - System Controller use case diagram .. 43

Figure 4-7 - System Controller class diagram .. 44

Figure 4-8 - System Controller sequence diagram ... 46

Figure 4-9 - Questionnaire made by negotiation initiator .. 47

Figure 4-10 - Example of a rule ... 48

Figure 4-11 - Trigger Agent use case diagram ... 49

Figure 4-12 - Trigger Agent class diagram ... 50

Figure 4-13 - Trigger Agent sequence diagram .. 52

Figure 4-14 - Block negotiation method scenario ... 53

Figure 4-15 - Split negotiation method scenario ... 53

Figure 5-1 - Block negotiation method scenario detailed .. 56

Figure 5-2 - Split negotiation method scenario detailed .. 58

Figure 5-3 - Environment agents setup .. 59

Figure 5-4 - Block negotiation method sequence ... 61

Figure 5-5 - Split negotiation method sequence ... 61

Figure 5-6 - Negotiation rule example .. 62

Figure 5-7 - System Controller knowledge management process ... 63

Figure 5-8 - Knowledge results rules example ... 63

Figure 5-9 - Knowledge decision rules example ... 64

Figure 5-10 - Knowledge suggestion rules example ... 64

XX

Figure 6-1 - GUI of System Controller when the application starts ... 73

Figure 6-2 - System Controller initiated successfully .. 73

Figure 6-3 - Trigger Agent connected to System Controller .. 74

Figure 6-4 - System Controller with two Trigger Agents connected .. 74

Figure 6-5 - System Controller receives the change notification from TriggerAgent-C 76

Figure 6-6 - TriggerAgent-A receives the proposal made by the TriggerAgent-C 77

Figure 6-7 - Proposal questionnaire created by TriggerAgent-C ... 77

Figure 6-8 - System Controller receives a reject decision from TriggerAgent-A for Proposal 1 .. 78

Figure 6-9 - System Controller after receiving all proposal decisions .. 79

Figure 6-10 - Proposal creation from TriggerAgent-N... 80

Figure 6-11 - TriggerAgent-X response to the proposal made by TriggerAgent-N..................... 81

Figure 6-12 - Proposal received by TriggerAgent-X with a suggestion by the System Controller

 ... 81

Figure 6-13 - Time spent in the system change vs. the complexity of the changes without

negotiation .. 84

Figure 6-14 - Complexity of the system change over time with negotiation 85

Figure 6-15 - Interoperability complexity over time with and without negotiation 85

Figure 6-16 - Systems re-establishment time vs. interoperability complexity, with and without

negotiation .. 86

XXI

LIST OF TABLES

Table 2-1 - Compatibility levels (adapted from (IEC TC65 2002)) ... 9

Table 4-1 - Agent technologies comparison ... 32

Table 4-2 - Rules Engine technologies comparison ... 38

Table 6-1 - Simplified example of a TTCN table test .. 69

Table 6-2 - System Controller initialization functional test .. 75

Table 6-3 - Second Trigger Agent connection functional test ... 75

Table 6-4 - System Controller disconnects an Trigger Agent functional test 76

Table 6-5 - Negotiation flow functional test .. 79

Table 6-6 - System Controller knowledge process functional test ... 82

XXII

1

1. INTRODUCTION

As the current world’s economy navigates through serious difficulties in, basically, all

markets, the involved enterprises are struggling and fighting to remain healthy and competitive.

This fight in some cases is aimed to survive among other enterprises, since that in all markets

there are more and more enterprises “closing their doors”. To counteract these economy

instabilities, enterprises must do some continuously adaptations in their current methods of

work, such as, search, face and act. These constant adaptations will allow a better response to

new business and collaborative opportunities. In order to be capable of such responsiveness

and because most of enterprises might not be able to provide some requested competencies,

they will have to collaborate with their peers, and to make this happen, enterprises should be

capable of forming Virtual Organizations (VO) to reach some agile and survival mechanisms to

confront the current markets turbulence (Oliveira & Camarinha-Matos 2012).

The creation of new VOs is not the only concern that enterprises should face, they must

also be aware that in order to collaborate with other enterprises, their systems and applications

need to be interoperable, in other words, they should be capable of changing all types of

defined information without any constraint, within and across enterprises. The interoperability

between the involved enterprises also means that their systems and applications must be

adaptable to different network environments (Ray & Jones 2006), (Jardim-Goncalves et al.

2007). Since that the environments are constantly changing and evolving, enterprises need to

find a solution to maintain the interoperability with their partners, suppliers and customers when

these changes occur.

 All the concerns about the reliability in the data exchanges on the emergence of a

Future Internet that are being addressed by the advances in the Information and

Communication Technology (ICT) go beyond the current concerns of being able to interconnect

and establish a data flow without errors in data exchanges. These new concerns about

interoperability are related to deeper knowledge, semantics, models and business flows (Cretan

et al. 2012) leading to the concept of Sustainable Enterprise Interoperability (SEI), where

enterprises can create sustainable environments with cooperation networks in order to maintain

their interoperability even when the environments are constantly changing and evolving (Jardim-

Gonçalves et al. 2010).

Similarly to the behavior of personal relationships, the SEI only can be achieved if

interoperability is not static which also is the key to make the SEI a valuable option to grant the

enterprises interoperability (Coutinho et al. 2012), since that the sustainable interoperability add

some extra time on total time spent on the communications between the enterprises comparing

to the semantic interoperability (Jardim-Gonçalves et al. 2010). The environment evolution often

leads to system changes that will break the interoperability between the already established

parties. After the interoperability breaks, the parties need some time to adjust their systems in

2

order to re-establish the interoperability. The re-establish time, called “downtime” grows with the

interoperability complexity, leading to large out-of-business time where all parties loose

(Coutinho et al. 2012).

 In (Coutinho et al. 2012) is proposed a Collaborative Negotiation Framework

contributing to the improvement of the Enterprise Interoperability which offers new mechanisms

to support negotiation towards interoperability in distributed environments. These negotiation

mechanisms will allow enterprises negotiating their interoperability between each other with the

proposed interoperable players of business-to-business interactions.

The motivation of this thesis is centralized on the Collaborative Negotiation Framework

added to the SEI, which using the negotiation factor on the SEI environment as a possible

solution for the problem on the time spent in the SEI when is necessary to adjust some system

in order to re-establish the interoperability in the environment.

1.1. Research Framework and Motivation

As time passes, the meaning of interoperability also evolves, since that it is no longer

associated only to the messages exchanging between two or more systems. In the present

days the term interoperability must rely on knowledge and share of the involved business

models and semantics which allows richer and stronger interoperability between parties making

much more harder to break it and quicker to regain it (Coutinho et al. 2012).

So, this dissertation aims to contribute with an implementation of a negotiation SEI

environment that will allow to the involved enterprises, negotiate their interoperability strategies

in order to fortify the interoperability relations in the environment. The proposed environment will

also allow better responses to the interoperability harmonization breaks that occur in the

relations between enterprises which will be translated in shorter enterprise downtimes.

1.2. Research Method

This dissertation uses a research method based on the classical research method

proposed in (Camarinha-Matos 2010) which is composed by seven phases and is represented

in Figure 1-1. Each phase is composed by several tasks and as Figure 1-1 shows, the method

starts with the problem finding and ends with the publication results and transfer to industry right

after the results interpretation. This method also allows starting over again if the results are

unsatisfactory as Figure 1-1 illustrates with the arrows on the left side of the picture.

3

Figure 1-1 - Classical Research Method phases (based on (Camarinha-Matos 2010))

Each phase of the research method will now be explained more detailed:

1. Research question / Problem: This first step is the most important in this research

method and it will define the area of interest of the research. The questions made

in this step must be capable of being confirmed or refused. These questions are

presented in the Section 1.3.

2. Background / Observation: This step is aimed to study the state of the art by

reviewing some literature, previous done projects and informal discussions which

will help to discover and distinguish the previous related work from what it will be

done in the this research. This task may create new ideas for the research and

because of that, this research model allows iteration between this step and the

first one. The background task is made in the Sections 2 and 3.

3. Formulate hypothesis: In this step the scientific hypothesis should be made, what

will bring clarity, specificity and focus to the research. The hypothesis should be

simple, specific, conceptually clear and capable of verification. This research will

present the hypothesis in the Section 1.4.

4. Design experiment: This step includes planning in detail all the experimental

phase, often this step includes the design of a prototype or the system

architecture. The Sections 4 and 5 will present the design experiments for this

research.

4

5. Test hypothesis / Collect data: Here is where the pilot tests are done allowing the

first architecture evaluation by testing and simulating different scenarios. These

tests will be presented in the Section 6.

6. Interpret / Analysis results: This phase will use the data collected in the previous

phase to perform an analysis of the results and do some discussion regarding the

literature, the research objectives and the research questions. If the results are

satisfactory is possible to consider the next steps making some

recommendations for further research, but if the results are unsatisfactory, as

referred before, here it is possible to return to first step and try a different

approach. These tasks are made in the section 6.

7. Publish findings and Transfer to Industry: The final step is where it gives to know

all the work done, because, as mention by Camarinha-Matos in (Camarinha-

Matos 2010), a research result is not a contribution to the field if no one knows

about it or can use it. So, when positive results are achieved is important to share

these results to the scientific community, like in scientific papers, conferences

and Journals. This step is presented in the sub-section 6.5.

1.3. Research Problem and Questions

Following the research method presented in the previous section, some questions will be

presented in order to define the course of this thesis.

 In a SEI environment, introducing the interoperability negotiation will help the

environment to reach better and stable interoperability states?

 The system downtime due to harmonization breaks, it will be greater than

if the environment does not have negotiation?

 The environment can benefit from the interoperability negotiation?

 The networked enterprise environment can benefit from the interoperability

negotiation?

1.4. Hypothesis

 If the proposed framework is capable of manage the negotiation and knowledge

in the networked enterprise environment, then it is possible to make the

environment more stable and more efficient to the harmonization breaks towards

a robust SEI.

5

1.5. Dissertation Outline

This section will describe the context of this dissertation, explaining the main goal of all

sections. In the sections 2, 3 and 4 are presented the topics that are the background of this

thesis, where it is explained the Enterprise Systems Interoperability in the section 2, covering

the interoperability subject, making a brief description of some approaches to classify the

interoperability layers and also a brief explanation of the Model-Driven Interoperability (MDI)

method. In the section 3 it will be explained more detailed the Enterprise Interoperability

Sustainability, regarding the important points that this thesis will be focused.

In the section 4 is made a description about the Multi-Agent System and the Rules

Engine that will support the proof-of-concept implemented in this thesis. The section will also

define the framework and the architecture that will be the base for the proof-of-concept. The

proof-of-concept implementation will be presented in the section 5, describing the environment

creation, the negotiation and the knowledge steps. Section 6 is where the proof-of-concept is

validated and where the tests over the system will be described.

Finally, in the section 0 it will be presented the thesis conclusions and the future work

topics.

6

7

2. ENTERPRISE SYSTEMS INTEROPERABILITY

In a not very distant past, enterprises and organizations really needed to put their focus

on being able to interconnect and to establish a data flow between their partners where the

information changed should not contain any errors. Today, the enterprises and organizations

main focus is much more complex because they need to be made interoperable in some

different ways, such as both in terms of their business processes, their applications or IT

systems and even in terms of their human resources, in order to face the current business

challenge (F. Vernadat 2003) and (F. Vernadat 2004).

The term interoperability was defined by IEEE (Geraci et al. 1991) as the ability of two or

more systems or components to exchange information and to use the information that has been

exchanged. These means that, today, the new concerns about interoperability relate to deeper

knowledge, semantics, models and business flows (Cretan et al. 2012) which will force both

enterprises and organizations to stay connected in a network in order to succeed.

According to the European interoperability framework (Ruggaber 2006), interoperability

can be considered in three aspects:

 Technical aspect that represents the data and message exchange;

 Semantic aspect that represents the meaning of the information and service

shared;

 Organizational aspect that represents the business units, process and people

interactions across organization borders.

2.1. The Interoperability Problem

Nowadays, the great trend in the global market is the continually collaboration between

the enterprises and organization during the entire product life cycle where constant changes,

both in inter and intra organizational environment, will continues in the future. With the aim to

overcome these constant changes, organizations should not only have the necessary flexibility

to react to these changes in markets and trading partners but also they have to deal with the

internal changes from both technical and organizational point of view (Chen & Doumeingts

2003).

Thinking now in the enterprise applications, another problem stands out since that the

software code, once written and implemented, turns very hardly to be modified and in many

cases, the software previously developed was not designed to be interoperable with other

applications. A great example of this problem is that, today, although many systems and

applications speak through XML language, their data models and schemas are often a bit

8

different. Another obstacle in the software code is the lack of standards, for example, to control

the business process flows across multiple systems (Chen & Doumeingts 2003).

These problems tend to getting worse in extended enterprises and networked

organizations where the collaboration is the key to achieve further benefits. It is very important

to understand the socioeconomic influences that surround the enterprises in order to deal with

these interoperability problems. Also, with the same importance, it is necessary to understand

the general set-up of organizations in the present and also in the future business networks

realizing their influence on interoperability issues (Ruggaber 2006).

Since that interoperability is not only a concern in the software and IT technologies, it is

necessary to change the focus to the communication and transactions between different

organizations which must be based on shared business references. These references that are

shared between the organizations must be based on business standards and norms in order to

facilitate the interaction among organizations (Chen & Doumeingts 2003).

In the Figure 2-1 is illustrated an example of a conceptual model of the interaction

between two enterprises where interoperability must be achieved on all layers of an enterprise,

in order to reach a meaningful interoperation between enterprises. This concept includes some

extra points in each layer and is it is also possible use some semantic descriptions to achieve

the necessary mutual understanding between enterprises that want to collaborate. In the

Business layer are included the business environment and the business processes. The

Knowledge layer contains the organizational roles, skills and competencies of employees and

the knowledge assets. In the last layer, the ICT layer hosts the applications, data and

communication components (Chen & Doumeingts 2003).

Figure 2-1 - Interoperability on all layers of an enterprise (Chen & Doumeingts 2003)

2.2. Networked Organizations

As stated before, enterprises and organizations have better changes to survive in the

current economy if they are connected to a network of organizations. So, networked

organizations are characterized by having a distributed control, inter-organizational business

process crossing the enterprise boundaries, various producer-consumer supply chains and

shared information and knowledge. These networked organizations have some important

challenges such as the operation optimization via co-decision, co-ordination and even

9

negotiation mechanisms. The main advantages of the networked organizations are the flexibility

and the dynamics that their structures offer, which allows a better control of the network, since

that it is possible to add or remove new nodes to the network in order to face the economic

turbulence and provides the a better agility to implement new business strategies (F. B.

Vernadat 2007).

2.3. Interoperability Concept

Vernadat (F. B. Vernadat 1996) defines interoperability as the ability to communicate with

their pier systems and access the functionality of the pier systems, but from the software

engineering point of view, the term interoperability is defined by two or more software systems

that are capable of co-operate and easily work together in a simple way, i.e. without a particular

interfacing effort. The concept of interoperability was defined by (IEC TC65 2002) as a certain

degree of compatibility, which can be seen in the Table 2-1, as “The application data, their

semantic and application related functionality of each device is so defined that, should any

device be replaced with a similar one of different manufacturer, all distributed applications

involving the replaced device will continue to operate as before the replacement, but with

possible different dynamic responses”.

Table 2-1 - Compatibility levels (adapted from (IEC TC65 2002))

 Compatibility levels

In
c
o
m

p
a
ti
b
le

C
o
e
x
is

te
n
t

In
te

rc
o
n
n
e
c
ta

b
le

In
te

rw
o
rk

a
b
le

In
te

ro
p
e
ra

b
le

In
te

rc
h
a
n
g
e
a
b
le

S
y
s
te

m
 F

e
a
tu

re

Dynamic Behavior X

Application Functionality X X

Parameter Semantics X X

Data Types X X X

Data Access X X X X

Communication Interface X X X X

Communication Protocol X X X X X

Merging the definition of interoperability made in (IEC TC65 2002) and the definition of

enterprise application made in (Chen & Doumeingts 2003) it is possible to presume that the

interoperability is achieved only when the interaction between two systems can, at least, be

granted in three levels, namely: data, resource and business process where the semantics are

defined in a business context (Chen & Doumeingts 2003).

10

2.4. Interoperability Typologies

As time elapses, more and more authors present new solutions to help achieve

interoperability. Sometimes the interoperability types are called levels because normally the

interoperability types follow a scale of advancement, where the higher a type is placed in the

scale, the more advanced the achieved interoperability is considered. In order to reach an upper

level of interoperability advancement, all the previous levels have to be successfully addressed,

which means that certain features of an upper interoperability type may become available

without fully addressing all the lower interoperability levels (Peristeras & Tarabanis 2006).

In the next sub-sections are presented and explained some well-known interoperability

typologies.

2.4.1. ATHENA Interoperability Framework

 In order to achieve real and meaningful interoperation between enterprises, ATHENA

Interoperability Framework was created with a holistic perspective on interoperability. This

framework is represented in the Figure 2-2 and was built on the vision “Enterprises are able to

flexibly develop and execute interoperable applications based on model-driven development

approaches to service-oriented and adaptive software solutions” and integrates principles of

model-driven development, service-oriented architectures and adaptive architectures. The

ATHENA framework is structured in three main integration areas (ATHENA 2010), that are

described below:

 Conceptual Integration that is focuses on concepts, metamodels, languages and

model relationships. It provides us with a foundation for systemising various

aspects of software model interoperability;

 Technical Integration which focuses on the software development and execution

environments. It provides us with development tools for developing software

models and execution platforms for executing software models;

 Applicative Integration which focuses on methodologies, standards and domain

models. It provides us with guidelines, principles and patterns that can be used to

solve software interoperability issues.

11

Figure 2-2 - ATHENA MDI Framework (ATHENA 2010)

2.4.2. Connection, Communication, Consolidation, Collaboration

Interoperability Framework (C4IF)

The C
4
 Interoperability Framework was presented in (Peristeras & Tarabanis 2006) and

has been developed focusing on the ways that the Information Systems (IS) communicate,

modeling this communication as a discourse. Basically, this framework tries to transfer basic

linguistic concepts to the domain of IF communication, in order to build their interoperability

typology.

The C
4
IF defines four interoperability types that are explained below and are represented

in the Figure 2-3.

 Connection refers to the ability of IS to exchange signals. To succeed in this, a

physical contact/connection should be established between two (or more)

systems;

 Communication refers to the ability of IS to exchange data. To succeed in this, a

predefined data format and/or schema need to be accepted by the interlocutors.

The focus of this type is on the data content and can be considered at least two

levels of communications. The first level, the exchange is based on a commonly

accepted data and in the second level, the exchange includes data;

 Consolidation refers to the ability of IS to understand data. To succeed in this, a

commonly accepted meaning for the data needs to be established between the

interlocutors;

 Collaboration refers to the ability of systems to act together. Action results in

changes in the real world. To succeed in this, a commonly accepted

12

understanding for performing functions/services/processes/actions needs to be

established between the interlocutors or IS.

Figure 2-3 - The C
4
IF (Peristeras & Tarabanis 2006)

The four interoperability types that were presented above are organized in three

demarcated areas, as illustrated on the Figure 2-3 and these areas are explained below:

 Channel refers to the connection layer and the ability of IS to exchange signals;

 Information refers to the communication and the consolidation layers, and the

ability of IS to exchange data and information;

 Process refers to the collaboration layer and the ability of IS to act together.

2.4.3. European Interoperability Framework

The European Interoperability Framework (EIF) presented in (ISA 2010) addresses

interoperability in the very specific context of providing European Public Services (EPS),

although the provision of EPS almost always involves exchanging data between ICT systems.

For EIF, EPS means “a cross-border public sector service supplied by public administrations,

either to one another or to European businesses and citizens”.

The EIF presents four levels of interoperability where each one deserves special attention

when a new EPS is established. These four interoperability levels are illustrated in the Figure

2-4 and are explained below.

 Political Context represents the establishment of a new EPS in the result of direct

or indirect action at political level. In order to be effective, efforts should be done

to facilitate cooperation among public administrations where all stakeholders

involved must share visions, agree on objectives and align priorities;

13

 Legal Interoperability is where the legal validity of exchanged information

between Member States to provide EPS must be maintained across borders and

data protection legislation in both originating and receiving countries must be

respected;

 Organisational Interoperability is concerned how organizations, such as public

administrations in different Member States, cooperate to achieve their mutually

agreed goals;

 Semantic Interoperability enables organizations to process information from

external sources in a meaningful manner and ensures that the precise meaning

of exchanges information is understood and preserved throughout exchanges

between parties. In order to reach semantic interoperability at European level, it

is necessary at least agreed processes and methodologies for developing

semantic interoperability assets and agreement by sector-specific and cross-

sectoral communities on the use of semantic interoperability assets at EU level;

 Technical Interoperability covers the technical aspects of linking information

systems which includes aspects such as interface specifications,

interconnections services, data integration services, data presentation and

exchange, etc. Technical interoperability should be ensured, whenever possible,

via the use of formalized specifications.

Figure 2-4 – The EIF (ISA 2010)

14

2.4.4. Interoperability Classification Framework

The Interoperability Classification Framework was proposed in (Panetto 2007) and is

composed by six kinds of interoperability solutions that are illustrated in Figure 2-5 and are

explained below.

 Synchronic interoperability are issues where applications exchange models

defined by compatible languages (the same syntax) but with different semantics,

in a synchronous way;

 Model-driven interoperability is focus mainly, but not only, on technologies (or

standards) to solve model syntactic transformations;

 Semantic-driven interoperability is focus only on developments where the

semantic alignment is the main issue;

 Vertical interoperability is when exchanging models from different abstraction

levels. This exchange process from one application to another involves models

transformations (syntactic) and semantic alignment (also called concept

mapping);

 Horizontal interoperability is when applications interoperability problems may

occur when exchanging models at the same abstraction level (CIM, PIM or PSM).

As in the vertical interoperability, the exchange process from one application to

another, also involves models transformations (syntactic) and semantic alignment

(also called concept mapping);

 Diachronic interoperability are issues when applications interoperate over time by

exchanging models referring to different views of the same product. In this case,

models have compatible semantics but need to be syntactically transformed

before being exchanged. This allows streamlining model management and

creating a true information management system.

15

Figure 2-5 - Interoperability Classification Framework (Panetto 2007)

2.4.5. Interoperability Practices Pyramid

The Interoperability Practices Pyramid was presented in (Jardim-Gonçalves et al. 2010)

and includes five layers of interoperability types. These layers are represented in Figure 2-6 and

explained below.

 Slack interoperability is when there is no previous understanding between the

sender and the receiver on all communication sets. This layer uses a rudimentary

communication methodologies where the time spent on the communication is

increased with the time spent on clarifications, responses and human

interventions;

 Unregulated interoperability is when organizations are focused on peer-to-peer

relationships and each organization uses its own data format and business rules.

Also each organization handles as many mappings as the number of business

partners;

 Standard-based interoperability is when the exchanged information is based on

common models using standards as the reference format for that information

exchange;

 Semantic interoperability is defined by two kinds of knowledge: tacit knowledge,

that people carry in their minds, providing context for people, places, ideas and

experiences; and explicit knowledge that has been or can be articulated, codified,

and stored in certain media;

 Sustainable interoperability is composed by some capabilities, such as discovery,

learning, adaptability, transient analysis and notifications. All these capabilities

work together aiming of improving the quality of service by contributing to a more

16

robust interoperability, avoiding excessive consumption of resources when the

dynamicity of systems and networks causes harmonization breaking.

Figure 2-6 - Interoperability Practices Pyramid (Jardim-Gonçalves et al. 2010)

2.4.6. Levels of Information System Interoperability (LISI)

Levels of Information System Interoperability (LISI) was created and presented on

(C4ISR 1998) and considers five increasing levels of sophistication with respect to exchanging

and sharing information and services through the system's life cycle. These levels are

illustrated in Figure 2-7 and are described below.

 Level 0 – Isolated Interoperability in a Manual Environment – This level

embraces a wide range of isolated or stand-alone systems and is not allowed,

nor are available, direct electronic connections. So the only interface between

these systems is by manual re-keying or via extractable, common media;

 Level 1 – Connected Interoperability in a Peer-to-Peer Environment – In this

level, systems are capable of being linked electronically and providing some

form of simple electronic exchange. Generally these systems exchange

homogeneous data types, such as voice, simple “text” e-mail, or fixed graphic

files because have a limited capacity;

 Level 2 – Functional Interoperability in a Distributed Environment – These

systems reside on local networks that allow data sets to be passed from system

to system. There is an increase on the complexity of the media exchanges with

the use of formal fata models (logical and physical);

17

 Level 3 – Domain-Based Interoperability in an Integrated Environment – These

systems are capable of being connected via wide area networks which allow

multiple users to access data. It is present a domain-based data model that is

understood, accepted and implemented across a functional area or group of

organizations that comprises a domain.

 Level 4 – Enterprise-Based Interoperability in a Universal Environment – In this

level, systems are capable of operating using distributed global information

space across multiple domains, which allows the simultaneous access and

interaction of multiple users to complex data. All data and applications are fully

shared and can be distributed throughout this space to support information

fusion.

Figure 2-7 - LISI interoperability maturity model (C4ISR 1998)

2.4.7. Outlook in the Interoperability Typologies

With some important interoperability typologies already presented, where all of them have

the purpose to evaluate the interoperability status inside an organization, a specific systems or

a network, this thesis will focus on the Interoperability Practices Pyramid that (Jardim-Gonçalves

et al. 2010) presented in 2.4.5 section, more precisely in the Sustainable Interoperability layer of

18

this pyramid, because it represents a clear advancement on the state of art on the

interoperability among enterprises and organizations.

2.5. Model-Driven Interoperability

As presented before, enterprises and organizations face many challenges related to the

lack of interoperability which they need to grant between their applications and software in order

to achieve seamless business across organizational boundaries. Today Model-Driven

Development (MDD) and in particular OMG’s Model-Driven Architecture (MDA
1
) (Miller &

Mukerji 2003) is emerging, providing tools to develop modern enterprise applications and

software systems. Compared to the earlier non-modeling approaches, MDD paradigm provides

a better way of addressing and solving interoperability issues, however this is not an easy task.

In order to facilitate this task, several projects were created providing guidance on how MDD

should be applied to address interoperability. Some of those created project were presented in

the previous section (Elvesæter et al. 2006).

2.5.1. Model-Driven Engineering

Model-Driven Engineering (MDE) also called MDD is a software-engineering approach

consisting of the application of models and model technologies to raise the level of abstraction

at which developers create and evolve software. This approach tries to both simplify (making

easier) and formalize (standardizing) the various activities and tasks that comprise the software

lifecycle (Hailpern & Tarr 2006), (ATHENA 2010).

The developing of MDE technologies that combine the following aspects is a promising

approach to address platform complexity (Schmidt 2006).

 Domain-specific modeling languages whose types systems formalize the

applications structure, behavior and requirements within particular domains, such

as, for example, warehouse management and middleware platforms;

 Transformation engines and generators that analyze certain aspects of models

and then synthesize various types of artifacts, such as, for example, simulations

inputs, XML deployment descriptions and alternative model representation.

Using the MDE technologies it is possible to tailor the Domain-Specific Modeling

Languages (DSMLs) to precisely match the domains semantic and syntax, instead of general-

purpose notations that rarely express application domain concepts and design intent. Another

advantage of the MDE is the utilization of graphic elements that relate directly to a familiar

domain which allows the system engineers and software architects ensure that software

systems meet user needs. Moreover, MDE tools impose domain-specific constraints and

1
 Model-Driven Architecture and MDA are registered trademarks of the Object Management

Group (OMG)

19

perform model checking that can detect and prevent many errors early in the life cycle and it is

often much easier to develop, debug and evolve the applications created with MDE tools since

that today’s platforms have much richer functionality and QoS than those in the past years.

2.5.2. Model-Driven Architecture

MDA was introduces in 2001 by the OMG as an approach for the specification of software

systems based on a model transformation concept. One of the principal goals of the MDA

approach is to separate software design from architecture and realization technologies

facilitating that design and architecture can alter independently increasing the possibilities of

automation in software development. The other important goals of MDA are portability,

interoperability and reusability. Basically, to reach these goals, MDA is focused only on

standardized techniques, like the Unified Modeling Language (UML), the Meta Object Facility

(MOF), the XML Metadata Interchange (XMI) and the Common Warehouse Meta Model (CWM)

(Petzmann et al. 2007), (ATHENA 2010), (Truyen 2006).

Since technology is constantly evolving and new platforms and technologies are

constantly emerging, MDA allows a rapid development of new specifications that leverage them,

and streamlines the process of their integration. This makes MDA a comprehensive and

structured solution for application interoperability and portability into the future (Truyen 2006).

 In order to solve this situation, MDA contains in its core an approach to design IT

system architectures taking into consideration heterogeneous systems to be discovered in

different level of models. This approach tries to describe how to perform a transformation on

these models, step by step, from an independent system level to platform models. MDA defines

three different types of models that can perhaps more accurately be described as layers of

abstraction, since within each of these three layers, a set of models can be created, each one

corresponding to a more focused viewpoint of the system (user interface, information,

engineering, architecture, etc.). These models or layers of abstractions are explained below and

are illustrated in the Figure 2-8 (Petzmann et al. 2007), (Truyen 2006).

Figure 2-8 - The levels of MDA approach (Petzmann et al. 2007)

20

 Computation Independent Model (CIM) is where the environment and situation in

which the system will be used from a business point of view are described. A CIM

is also referred as a business or domain model because it uses a familiar

vocabulary to the Subject Matter Experts (SMEs).Here is presented exactly what

the system is expected to do, hiding all related technology information in order to

remain independent of how that system will be implemented;

 Platform Independent Model (PIM) is where the view of a system from the

platform independent viewpoint is designed. The main goal of this layer is

producing models, which can be transformed in an arbitrary system platform. A

PIM is independent enough to enable its mapping to one or more platforms

through the definition of a set of services in a way that abstracts out technical

details;

 Platform Specific Model (PSM) is a view of specific platform. PSM merges the

specification of the PIM with the specific details of a particular system;

 Code is the code produced (in the broader sense) that can be run on specific

platforms since MDA is a software engineering approach.

21

3. ENTERPRISE INTEROPERABILITY SUSTAINABILITY

In the previous section some details about interoperability was described and explained

in order to clarify some terms and some methodologies that are used in the systems

interoperability. In this section it will be explained in more detail the already started subject that

is focus on the sustainable interoperability, proposed in (Jardim-Gonçalves et al. 2010), and

presented in the section 2.4.5. Since that the enterprise interoperability sustainability is a state

of the art topic, with some research already done, it will be the base of this dissertation.

3.1. Sustainable Interoperability

 In the global market, all the companies and networks which they are part of have a

certain behavior with some special characteristics similar to the characteristics of Complex

Adaptive Systems (CAS). These characteristics are the trend that the companies and their

networks to follow a dynamic and evolutionary behavior. Also, they have some properties in

common such as the heterogeneous agents, interaction, autonomy, ability to learn, self-

organization, melting zone and coevolution. The main goal of all organizations is to adapt

themselves to the market demands and the availability of new requirements and applications,

which in some cases, it is just necessary introducing some corrections to the existing ones.

However, these adaptations require models and semantic changes which bring complexity

resulting in harmonization breaking. All these problems introduce a new dimension to

interoperability research, the sustainable interoperability, more precisely, the Sustainable

Enterprise Interoperability (Agostinho & Jardim-Gonçalves 2009), (Jardim-Gonçalves et al.

2010), (Coutinho et al. 2012).

3.1.1. Harmonization Breaking

The authors of (Agostinho & Jardim-Gonçalves 2009) designate harmonization breaking,

as the interoperability behavior equivalent to symmetry breaking from classical sciences. This

comparison is made because in the classical sciences, like physics, certain phenomena can be

described in exactly same way even if experiments are carried out under different observational

circumstances. This means that the laws describing the phenomena display similar results for

similar inputs, i.e. symmetric behavior. Also, experiments have proven that small fluctuations

acting on a system may cause it to cross a critical point and evidence an expected behavior,

which is called symmetric breaking. In the collaboration networks side when the interoperability

is established, the set of organizations within a network demonstrate stability, exchanging e-

messages following established laws. Therefore, networks display symmetry, so, if just one of

the network members adapts to a new requirement, the harmony is broken, and the network

begins experiencing interoperability problems, like in the classical sciences (Agostinho &

Jardim-Gonçalves 2009).

22

3.1.2. Collaboration Networks and Complex Adaptive Systems

Cybernetic systems operate at the level of basic processes that are relatively

undistributed and are limited in scope to the boundaries of a system and by the perspective of

management, as well as the systems thinking that is an approach to problem solving when

substantial changes occurs in processes leading to disruptions of an overall system. However,

neither can deal with major environmental changes of collaborative networks, because real

dynamic systems are too complex to manage in a traditional manner (Agostinho & Jardim-

Gonçalves 2009).

CAS studies the ultimate interdisciplinary science, focus on how microstate events,

whether particles, molecules, human agents or firms, self-organize into emergent aggregate

structure. Speaking in a computer way, CAS is focus on the interplay between a system and its

environment and the co-evolutions of both. Models of CAS can be used to determine how

different patterns of local interactions and organization adaptive behavior impact the overall

network behavior and performance. Therefore, CAS can be used to analyze how intervention

strategies on the network evolution, namely attempts to shape local interaction patterns and

mappings, affect the network interoperability sustainability (Agostinho & Jardim-Gonçalves

2009).

3.1.3. Heuristic Framework for Network Stability Maintenance

It is clearly, with some available literature to prove (Wycisk et al. 2008), that the CAS

results in non-linear behavior when changes happen in the systems. This non-linear behavior

can result in butterfly events spiraling into positive and negative extremes. In order to avoid this

behavior the Integration Intelligence Layer was created in the framework making that the

context awareness is demanded in support of intelligence. Also, Monitoring and Decision

Support Systems must be considered in the creation of the framework that implements

sustainable interoperability in cooperation networks. The result is the Sustainable

Interoperability Framework (SIF) that is illustrated in the Figure 3-1 with all layers explained

below (Agostinho & Jardim-Gonçalves 2009):

 Monitoring System addresses multiple stages, from capturing information to its

analysis, and is structured into specific components in order to meet a set of

requirements. So, mainly this layer is responsible for detecting the harmonization

breaking explained in the section 3.1.1 and analyzing it in order to discovery what

causes the anomaly;

 Discovery capabilities in order to detect when new system is added, or

updated in the network, thus creating harmonization breaking;

 Integration Intelligence Layer is responsible for the system learning that occurs

after the Monitoring System detecting the harmonization breaking. Also, when

23

this happen, it should calculate the required adaptation in the system nodes. The

adaptation of the system and the optimization of the maintenance process is

made through dynamic model morphisms, using knowledge representation

technologies applied to the model management domain;

 Learning and Adaptability capabilities in order to learn when changes

occur and to help adapt the system facing the new changes;

 Decision Support System acts when changes at the internal or interfaces

structures of the organization’s information systems lead to unexpected

situations. When this happen, SIF must consider some kind of decision support,

allowing the manager or any other decision responsible to take the final word

regarding whether or not to execute the mapping proposed in the adaptation;

 Transient Analysis capabilities to understand how a network will suffer

from the transient period;

 Communication Layer is responsible to the re-adaptation of a network node and

for the communications in the entire business network in such a way that it

causes minimal disruption to the other members of the network;

 Notification capabilities in order to inform in what way should the network

nodes react leading the entire network to a new interoperable state.

Figure 3-1 - Sustainable Interoperability Framework (Agostinho & Jardim-Gonçalves 2009)

24

3.2. NEGOSEIO – A collaborative framework for SEI

In (Cretan et al. 2012) and (Coutinho et al. 2012) was proposed a collaborative

negotiation framework for improving interoperability in systems and applications by negotiating

the enterprise interoperability changes with the proposed interoperable players of business-to-

business interactions. Mainly, this framework was proposed aiming the time required to regain

interoperability between systems when a harmonization breaking occurs in a previous

established party. This out-of-business “downtime” is higher as the complexity of the

interoperability, leading to large periods of no operation where all parties loose (Coutinho et al.

2012).

The NEGOSEIO is a framework for NEGOtiations for achieving and maintaining a

Sustainable Enterprise Interoperability and purpose some solutions to solve some problems of

achieving a SEI scenario. These solutions include the creation of negotiation mechanisms that

analyze and reduce the impact of the interoperability changes that may occur in the systems,

not by avoiding them, but by compromising these changes with the need of maintaining

interoperability and with the need of reducing effort and downtime. In order to reach an ideal

solution for all member of the interoperability party, the resulting decision may vary from

implementing the changes, rejecting the changes, performing partial changes, delaying the

changes, selecting new strategies or even determine that interoperability is not possible,

desirable or worthy. In the Figure 3-2 is described current and proposed scenarios (Cretan et al.

2012).

Figure 3-2 - Increasing the SEI through negotiations (Cretan et al. 2012)

3.2.1. The NEGOSEIO methodology

The NEGOSEIO framework is composed by a methodology with several steps and a set

of services to accomplish a SEI. The first step of this methodology is responsible to submit a set

of assessments to all involved enterprises in order to acquire the enterprises knowledge and

their requirements towards interoperability. This shared knowledge must be divided in a “public”

part and a “private” part, so that the “private” part of knowledge needs to be kept safe from other

enterprises aiming the competitiveness of the enterprise, while the “public” knowledge will be

used by the interoperating parties to reach a desirable interoperable state (Cretan et al. 2012).

25

The second step of the NEGOSEIO methodology is to model the captured business

knowledge into MDAs and MDI, where the MDA will responsible to define the solutions and

architecture foundations and the MDI will allow a flexible horizontal transformation of data

towards interoperability on all MDA layers, defining and understanding of how the

interoperability between the enterprises may be defined on the MDA abstraction, from business

layers to the computerized layer (Cretan et al. 2012).

The third step of this methodology is the implementation of PSM in the shape of flexible

services organized in Service Oriented Architectures (SOAs). This will allow some flexibility and

adaptability, where services in a SOA may be improved, updated, adapted and combined in

order to build more complex services. Since SOA is independent of the underlying technology,

makes it suitable to work together with de MDA and the MDI paradigms. Other feature of SOA is

the capability of encapsulate information, which is an asset for the separation in the “public” and

“private” knowledge (Cretan et al. 2012).

Distributed computing is a complement to the service flexibility in the implemented

solutions. The cloud-computing concept is a very flexible way to deal with scalability,

redundancy and security, in terms, not only, of service deployment, but also, of the entire

architecture deployment (Cretan et al. 2012), (Coutinho et al. 2012).

The final step is the introduction of a negotiation mechanism. Negotiations start in the

MDA/MDI definitions, where the involved parties can propose their interoperability, exposing

their own “public” Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis and will

determine if the parties are suited to collaborate among them. When negotiations between

already established interoperable parties are about interoperability changes that are proposed

by some enterprise that belongs to the party, the negotiation outcomes may vary from, e.g.,

accepting the change, rejecting it, adopting new consensus solutions or even ending

interoperability, as illustrated in Figure 3-3 (Cretan et al. 2012), (Coutinho et al. 2012).

Figure 3-3 - NEGOSEIO methodology (Cretan et al. 2012)

26

3.2.2. The NEGOSEIO architecture

The NEGOSEIO framework is composed by a multi-leveled set of services that are

deployed over a Cloud “Software as a Service” (SaaS) platform adopting the MDA and MDI

paradigms, implementing a level Middleware services to handle the heterogeneity issues on the

basic interoperability level, e.g., authentication, permissions, communications, syntax, session

and data. These middleware services are divided in levels and in the top of the these levels

stands the Coordination Services (CS), which is responsible to perform activities, e.g.,

management of data transactions, agent-based change detection, semantic interpretation,

dynamic discovery of services, ontology harmonization and implementation of the business

model and negotiation rules. The final level is the Negotiation Manager that interacts with the

enterprises applications in the client level, allowing the negotiation actions, e.g., creation of

proposals, invitation of new partners and decision about accepting and rejecting proposals

(Cretan et al. 2012).

In the Figure 3-4 is illustrated the NEGOSEIO framework architecture and as shown, the

cloud-based services that handle and encapsulate the interoperable environment communicate

to the Negotiation Manager of each enterprise through web-services and accessed by an

Enterprise Service Bus (ESB), which grants the protection of the private knowledge and the

separation and disclosure of the public information. In (Cretan et al. 2012) the architecture was

applied to the European Space Agency’s Concurrent Design Facility (ESA-CDF), but in this

thesis it will be presents generally, which allow it to be applied to a lot of different scenarios,

mainly because the architecture was designed to be flexible, using rules engine to implement

the dynamic negotiation flows and rules, a SOA to implement the services that support the

interoperability and the cloud management to support flexibility and scalability. Moreover,

modeling data using standard reference models, data can be persisted on a cloud-based

(Infrastructure as a service (IaaS)) infrastructure (Cretan et al. 2012), (Coutinho et al. 2012).

Figure 3-4 - NEGOSEIO framework architecture (Cretan et al. 2012)

27

3.2.3. Negotiation

Basically, negotiation on the NEGOSEIO framework is divided in three main steps, the

Initialization, where it is defined what has to be negotiated and how. The second step is the

Refinement and here is where the negotiation participants exchange proposals on the

negotiation object aiming to satisfy their constraints. The final step is the Closure and is where

the negotiation is concluded (Cretan et al. 2012).

NEGOSEIO allows that different negotiation scenarios can be modeled from a simple

case of selection of possible partners and a direct outsourcing of a job, to more complex

scenarios of concurrent negotiations with multiple partners to outsource a non-divided job, or

even concurrent negotiations with the possibility to dynamically split the job during the

negotiation. In order to handle these different scenarios, NEGOSEIO offers several services

that are able to evaluate the received proposals and are able to reply with new proposals

constructed based on their particular coordination constraints (Cretan et al. 2012).

28

29

4. MULTI-AGENT SYSTEM AND RULES ENGINE TO SUPPORT

NEGOTIATION ON SEI

As presented in the previous sections, the introduction of negotiation on a SEI scenario

requires some additional factors that can affect the development of the entire SEI environment.

In (Cretan et al. 2012) the authors already have referred the utilization of agents and rules

engine, in the development process of the network, to perform some tasks in the framework.

Since that dissertation is about an implementation of a negotiation in a SEI environment, it will

be used the same concepts of agents and rules engine, but at least the rules engine technology

it will be different from the NEGOSEIO framework, which will bring some extra challenges to

development of this proof-of-concept, but this will be described on the next section.

From the list of capabilities that the SEI environment must have, some may be

highlighted for their importance, such as the discovery, the learning and the negotiation.

Thinking in terms of the prototype implementation, these three capabilities may be assigned to

different development technologies. So, for the discovery capability, will be needed an tool that

is able to detect changes in the systems, and for that the proposed solution is the use of a Multi-

Agent System (MAS), i.e., the use of agent technology, mainly because they can be

autonomous, reactive and pro-active. Agents will also be used to do all the communications,

since each entity on the envisioned environment contains an agent. The learning capability will

be ensured by the rules engine technology, because they can make a clearly separation

between the business data and the business logic, which is perfect as knowledge represents

the business data. The negotiation will be divided between the agents and the rules engines

because the communication part of the negotiation will be implemented in the agents side and

the negotiation flow will be implemented in the rules engine side, since the negotiation flow can

be represented as a state machine that has the state transitions declared in the form of rules.

In the next sub-sections will be explained more deeply these two technologies and how

can they be developed in order to reach a SEI environment with negotiation. It will be explaining

also, the architecture of this prototype.

4.1. MAS overview

We can define agents as autonomous entities located in some environment where they

are capable of flexible behaviors with several abilities that make them responsive, pro-active

and social-able (R. Jennings et al. 1998). Our objective is to create a multi-agent platform where

all agents in the platform can communicate with each other. To do this, we will analyze the

Java-based agent platforms technologies in order to choose only one that fit in the criteria

explained hereafter.

30

A multi-agent platform or a MAS is an environment where various agents working in

collaboration with a series of assigned tasks aiming to reach the overall goal of the system.

MAS are autonomous because they operate without human intervention, they are social-able

because they interact with other agents in the system through some kind of agent

communication language, they are reactive because they perceive and react to their

environment and finally, they are proactive because they can take initiatives through the pre-

defined behaviors (Leeton & Kulworawanichpong 2012). So, when we refer to agents we mean

interactive and autonomous systems where they have the ability to make decisions for

themselves and execute actions that are pre-defined (Alonso 2002).

In software development, there are two factors for handling the systems complexity:

modularity and abstraction. In order to achieve these factors we use agents or more precisely

MAS because they represent a powerful tool to add modularity to systems. They can turn a

complex software system into a society of cooperating autonomous problem solvers (Massawe

et al. 2010).

4.1.1. MAS as a technology for a negotiation SEI environment

One of the many advantages of the MAS technology according to Alonso (Alonso 2002)

is that an agent-based approach can often provide an effective solution when the domain

involves a number of distinct problem solving entities which are physically or logically

distributed, which means that is possible to develop a distributed multi-agent application through

MAS, making it the base of this proof-of-concept.

Beyond all the control in the system, MAS is capable of other things. The communication

between the agents is another thing that MAS can do easily (Chmiel et al. 2004). In this case,

since, each enterprise in the system will be represented by an agent, all the communications in

the environment will pass through the agents, making them the communications actors on the

system.

Agents can execute very well some programmed task, which adding to the fact that they

can be autonomous and they can operate without human intervention, they are the best choice

to control a list of interoperability points of an enterprise that is in the SEI environment. This

control involves a constant observation of a list of interoperability points, which will fire a trigger

when some change is made to the list that can compromise the interoperability between other

systems. This trigger will notify the responsible authority that deals with these occurrences.

4.1.2. Choice of a MAS technology

Since agent technology offers a wide range of particular applications is necessary to

choose one of them to use in this prototype. The selection criteria were the following aspects:

 Costs to obtain the full version of the platform;

31

 Documentation available to have enough support on installation and developing;

 Preference on the use of Java programming language;

 Ease on developing and understanding the programming code;

 Must have an easy way to do the agent communication.

The analyzed applications were:

 Java Agent Development Framework (JADE) (JADE Agent Framework);

 JACK Agent Framework (JACK Agent Framework);

 Open Agent Architecture (OAA) (Open Agent Architecture);

 Jason Agent Framework (Jason Agent Framework).

Analyzing these technologies one by one, over the selection criteria, JACK can be

excluded, as it is a technology that though having a cool interface with the user through their

graphical agent development tool and being lightweight, it is a technology that is paid. And

worse, it has its own programming language, which is not easy to integrate with the Java

language. OAA also can be excluded from the list of possible winners because despite that is a

technology that has a well-defined communication language – the Interagent Communication

Language (ICL) – and has no costs associated, the last version was released five years ago

and is not very well documented. From the last finalists, Jason is the technology that is

excluded due to the fact that is uses JADE in order to run a multi-agent system distributed over

a network, and it is better to use one single technology to do the job. Despite this, Jason is a

great technology with great documentation available, it’s free to use and can be programmed in

AgentSpeak language or in Java.

Finally, the JADE that from the selected technologies is the most used in research (like

(R. Jennings et al. 1998) and (Leeton & Kulworawanichpong 2012)), in commercial applications,

and also in industrial applications, entertainment applications and medical applications (Nguyen

et al. 2009) and has a very active user and developer community over the entire internet. JADE

stood out from the other technologies because has various positive points, such as being free to

use, allowing very simple implementations on MAS, using the Foundation for Intelligent Physical

Agents (FIPA) specification for inter agent communication, provides a Graphical User Interface

(GUI) to control the agents in the system and as has it been said previously, has a lot of

documentation available over the internet and in the JADE website (JADE Agent Framework).

This comparison can be viewed in a simple way in the Table 4-1.

Other features that JADE technology can offer are listed below (Bellifemine et al. 2003):

 Pro-activity, since JADE agents can control their own thread of executions;

32

 Versatility, because JADE provides a set of Application Program Interfaces

(APIs) that are independent from the network or the Java version;

 Ease of use, since JADE APIs reduce the time spent in the development of the

agents comparing with the utilization of the Java traditional packages.

Table 4-1 - Agent technologies comparison

Criteria aspects

C
o

s
ts

D
o

c
u

m
e
n

ta
ti

o
n

J
a
v
a
 o

ri
e
n

te
d

P
ro

g
ra

m
m

in
g

 l
a
n

g
u

a
g

e

A
g

e
n

t
c
o

m
m

u
n

ic
a
ti

o
n

T
e
c
h

n
o

lo
g

y

JADE Free Very Good Yes Java FIPA

JACK Paid Good No Own FIPA

OAA Free Poor Yes Java/Others ICL

Jason Free Very Good Yes Own/Java Speech-act based

4.1.2.1. JADE

As presented above, JADE uses the FIPA specifications for inter-agent communications,

more precisely it uses the Agent Communication Language (ACL) to perform their

communications. ACL is not only a high level and message-oriented agent communication

language it is also a logical layer of communications protocols. This protocol defines the type

and the meaning of the messages changed between the agents (X. Liu et al. 2011). JADE also

includes all libraries required to develop agent applications and the runtime environment in

order to accommodate the agents. Each instance of JADE runtime that contains agents is called

Container and the group of all containers is called Platform, as we can see in JADE architecture

illustrated in Figure 4-1 (Bellifemine et al. 2003).

In (Bellifemine et al. 2003) the author described JADE as an enabling technology, a

middleware for the development and run-time execution of peer-to-peer applications which are

based on the agents paradigm and which can seamless work and interoperate both in wired

and wireless environment. JADE is fully developed in Java and is based on the following driving

principles:

 Interoperability – JADE is compliant with the FIPA specifications. As a

consequence, JADE agents can interoperate with other agents, provided that

they comply with the same standard;

33

 Uniformity and portability – JADE provides a homogeneous set of APIs that are

independent from the underlying network and Java version. More in details, the

JADE run-time provides the same APIs both for the Java 2 Platform, Enterprise

Edition (J2EE), Java 2 Platform, Standard Edition (J2SE) and Java 2 Platform,

Micro Edition (J2ME) environment. In theory, application developers could decide

the Java run-time environment at deploy-time.

 Easy to use – The complexity of the middleware is hidden behind a simple and

intuitive set of APIs.

 Pay-as-you-go philosophy – Programmers do not need to use all the features

provided by the middleware. Features that are not used do not require

programmers to know anything about them, neither adds any computational

overhead.

Figure 4-1- The JADE architecture (Bellifemine et al. 2003)

4.1.2.2. FIPA

FIPA (Foundation for Intelligent Physical Agents) is an Institute of Electrical and

Electronics Engineers (IEEE) Computer Society standards organization that promotes agent-

based technology and the interoperability of its standards with other technologies. FIPA just not

promote a technology for a single application but promote a set of general technologies for

34

different application areas where developers can integrate to make complex systems with a

high degree of interoperability.

FIPA is responsible to define the normative rules that allow a society of agents to exist,

operate and be managed. First of all, they describe the reference model of an agent platform,

then they identify the roles of some key agents necessary for managing the platform and to

finish they describe the agent management content language and ontology. An agent platform

needs to have three mandatory roles, such as:

 The Agent Management System (AMS) that is responsible to exerts supervisory

control over access to/use of the platform. This agent is also responsible to for

maintaining a directory of resident agents and for handling their life cycle;

 The Agent Communication Channel (ACC) that provides the path for basic

contact between agents inside and outside the platform. This agent is the default

communication method, which offers a reliable, orderly and accurate message

routing service;

 The Directory Facilitator (DF) which provides a yellow page service to the

platform.

Other specification is the utilization of the ACL by the agents to exchange messages which is a

language describing message encoding and semantics, but it does not mandate specific

mechanisms for message transportation.

4.2. Rules Engine overview

With the current software development methodologies, in order to fit the complexity and

frequent changes of software requirement, too much time and money are being spent. Since

then, when a new problem comes out, it’s necessary to develop new things. With the utilization

of rules engines, we can save some time and money because the reasoning of the Java-based

rules engine technology is to make a clear separation between the business logic and the

business data, i.e., separate the application code (the code that generally is not modified) from

the logic code (the code that can be modified to change the logic of the application) (Gang

Zhang et al. 2010). In a more practically way, the basic task of a rule engine is to compare the

submitted data (the facts) with the business rules (the rules) in the engine and when the engine

found a match, according to the logic of the rule, the rule engine can execute any specified

operation (D. I. Liu et al. 2010), this task is made by an inference engine that is a part of the rule

engine and that will be explained later.

The rules engine technology offers various advantages on using it on the today’s

applications. These advantages are listed below (JBoss Drools team 2012):

35

 Declarative programming, i.e. rules engines allow that we say “What to do” and

not “How to do it”;

 Logic and data separations as we explained above;

 Speed and scalability, since the pattern matching algorithms like the Rete or

Leaps provide very efficient ways of matching the rules;

 Centralization of knowledge, by using rules we can create a repository of

knowledge which can be executable;

 Understandable rules, i.e. it’s possible to write rules that are very close to natural

language.

Most of all rules engines have a structure with three modules, which are the Production

Memory, where the business rules (rules) are stored, the Working Memory, where the business

data (facts) are stored, and the most important, the Inference Engine, where a pattern matcher

exists that compares the data of the rules and the facts and adds to the agenda the rules that

satisfy the facts. The agenda will manage the execution sequence of the rules which are chosen

by the pattern matcher and executed by the executions engine. In Figure 4-2 is illustrated the

traditional rule engine architecture like was explained before. This architecture is used in the

most used rules engine technologies (D. I. Liu et al. 2010). Most of them also use an enhanced

implementation of the Rete algorithm to do an efficient pattern matching over the business

rules.

The Rete algorithm is located in the pattern matcher sub module and is an efficient

pattern matching algorithm. Rete will give an efficient method to implement the matching state

from the three states present when the facts are being asserted by the rules engine which are

matching, selecting and implementing, since the Rete is pattern matching algorithm. Inference

engine in the most of the cases also has two modes of reasoning, the Forward-Chaining (FC)

and the Backward-Chaining (BC). FC is “data-driven” and uses the rules to deduce the result

from the initial facts and the BC is “goal-driven” and searches in the facts that satisfying the

hypothesis (D. I. Liu et al. 2010).

With all the reasons presented above, it is clearly that the rules engine technology

became a very important tool in the software development market, not only in the commercial

field but also in research, as we can see in (Bayegan & Moslehi 2011), (Xu & Xie 2008) and

(Yin et al. 2012). As proof of this we can see in (Kim et al. 2010) that are being done some

research over the rules engines in the mobile market, which is a market in continuously

expansion.

36

Figure 4-2 - Traditional Rules Engine architecture (D. I. Liu et al. 2010)

4.2.1. Rules Engine as a technology for a negotiation SEI

environment

With all features that were presented above, it is clearly that the rules engine technology

allows a lot of useful characteristics that can be an asset, not only, to introduce the negotiation

factor into the SEI environment, but also, it can perform some tasks in the SEI environment.

Basically, these tasks are the negotiation flow and the knowledge manager, once the

negotiation flow corresponds to the negotiation part and the knowledge manager to the SEI

environment.

In more practically terms, rules engine can learn from negotiations that occurs in the SEI

environment once this technology allows a great control of the rules in the production memory,

inclusive, allows adding more rules to the production memory in runtime, which means that if we

represent the knowledge in form of rules we will be able to save this knowledge in runtime while

the negotiations are running, without stopping the entire system.

Rules engine can also be used to control the negotiations flow as a state machine

controller, i.e. if the negotiation transitions were represented in rules and the inputs were

represented in facts. So, it is possible to separate the flow from the application core code, which

will allow a better control over the flow (state machine).

4.2.2. Choice of a Rules Engine technology

Like as the agent technology, rules engine also have a lot of applications over the web

and because of that in this section it will be made an analysis to some of those applications.

The following selection criteria were used in order to select only one application capable of

satisfying all criteria:

 Cost to obtain the full version of the engine;

37

 The available documentation in order to have enough support, both in terms of

installation and in terms of developing;

 Ease of understanding the rule language;

 Ease of java integration;

 Performance of the engine.

The rules engines applications to be analyzed were:

 JESS (JESS Rule Engine);

 OpenRules (OpenRules Rule Engine);

 Drools (Drools Rule Engine).

Analyzing the previous criteria over the selected technologies, it is possible to conclude

that despite all of them are good enough to use in this prototype, only Drools fitted perfectly in

the used selection criteria. OpenRules, although being a rules engine that deals well with

Microsoft Excel files (which is a great feature because anyone can create or edit this files and is

a free product for academic use), the interaction between Excel files and Java is a bit

complicated, when compared with a Drools rule file that can easily be created or edited, even in

runtime. About JESS, is a technology widely used in research and have some positive points,

like the fact that it is free to use for academic usage. Like Drools, JESS uses an enhanced Rete

algorithm and the rule language is actually not very complicated, but the last version of JESS

was released four years ago, which probably means that some features may be obsolete.

Comparing with Drools, JESS has much less documentation available.

Hence the chosen technology to perform the pretended tasks was Drools, which

comparing with other rules engines technologies that were been analyzed has some

advantages, such as the different possibilities to store rules. In this case, it will be used the

Drools specific rule language, which is very accessible and very easy to understand. The

existing documentation is extensive, and it is an open source project, an asset when we are

developing a prototype with no costs associated. Drools offers various products to connect with

the rules engine, like a business rule manager for example, but it is only necessary the module

that contains the rules engine to benefit from the advantages of Drools. The available

documentation can be found in the Drools website (Drools Rule Engine) as well as an issue

tracker that can help anyone found any bug in the Drools platform.

38

Table 4-2 - Rules Engine technologies comparison

Criteria aspects

C

o
s
ts

D
o

c
u

m
e
n

ta
ti

o
n

R
u

le
 l
a
n

g
u

a
g

e
 d

if
fi

c
u

lt
y

J
a
v
a
 i

n
te

g
ra

ti
o

n

T
e
c
h

n
o

lo
g

y

JESS Free Good Easy Good

OpenRules Paid/Free Very Good Very Easy Not so Good

Drools Free Very Good Very Easy Good

4.2.2.1. Drools

Drools (Drools Rule Engine) provides a unified and integrated platform for Rules,

Workflow and Event Processing divided in some projects, like the Drools Guvnor that is a

business rules manager, the Drools Expert that is the rule engine, the Drools Fusion that is an

event processing/temporal reasoning, and some more. For this dissertation it is necessary only

one module of Drools, the Drools Expert that is a declarative, rule based and coding

environment, which allows to put the focus on "what it is you want to do" and not the "how to do

this".

Drools offers some features that are important assets for this prototype, like the utilization

of the Rete algorithm that supports FC and BC. Drools provides an Eclipse-based IDE to

simplify the utilization of this technology, since the Eclipse Integrated Development Environment

(IDE) is a great tool to develop in Java. The efficient integration of Drool with Eclipse, allows the

developer running a Drools application in Debug mode, passing through the rule file, viewing

step by step what is being executed. Drools uses a simple native language to represent the

rules and it is very easy to integrate with the Java which is a great asset when creating and

editing new rules is very important on this prototype.

4.3. Negotiation on SEI Framework and Architecture

The proposed prototype in this thesis is focused on proving that the interoperability

between two or more systems is much more controllable and stable when negotiation is used to

reach an interoperability state between the interoperability participants, ensuring that the

participants will spent less time to modify their systems to handle the changes proposed by

some participant system. This approach, in general, should produce better results than having

systems where one of them performs changes unilaterally, leading the other ones to adjust its

39

system in order to continue with previous interoperability. This often carries a lot of time and

produces poor and immature solutions. With the proposed solution, if a system wants to change

something, it will trigger a negotiation, where the involved systems can reach a solution that is

probably better for all the systems instead of only one.

The proposed prototype consists in a distributed system composed by a central

application and various clients connected to it, forming a basic negotiation SEI environment.

Figure 4-3 shows an illustration that transmits the “big picture” of the environment, where is

represented the System Controller (the central application) connected to the Trigger Agents (the

clients). Note that although only three Trigger Agents are represented in Figure 4-3, the

environment supports many more Trigger Agents connected to each System Controller. The

names of the applications were chosen by the tasks that each application performs, therefore,

the trigger agent is the application responsible for the detection of changes in the system, and

the System Controller is the application that controls the entire system, governing the connected

agents and the negotiation flow.

Figure 4-3 - Global vision of the proposed Prototype environment

As illustrated in Figure 4-3 this prototype is divided in two applications, the System

Controller and the Trigger Agent. Basically these two applications have complete different

behaviors, which are described below:

 System Controller is the central point in proposed environment and is responsible

to control all interactions between all clients connected to him through the MAS.

This application is also responsible to control the negotiations in the environment,

not only the negotiation flows, but also to save same negotiation knowledge in

order to be capable of helping the clients in the negotiations decisions. These

40

features will be performed by the rules engine situated in the knowledge manager

and in the negotiation manager.

 Trigger Agent completes the MAS, as it is connected to the System Controller by

its agent. This application, besides performing all communications with the

System Controller, also has a task to fire a trigger when a change occurs in the

Trigger Agent system. When this happens, the trigger notifies the System

Controller that a negotiation round should start to handle the change. The

negotiation module is responsible only to notify the user that is necessary to

make and action over the current negotiation round.

In order to implement the framework that was described until now, it was created an

architecture for each application that performs the entire system. These architectures were

created having in mind the main objectives of this dissertation, that are the communication

between the involved enterprises, negotiation to reach interoperability, knowledge to help the

negotiation and to grant the interoperability sustainable and a GUI to make possible the human

intervention and interaction. So, in the Figure 4-4 is shown the architecture of the System

Controller that is divided in five important blocks. These blocks are described below.

Figure 4-4 - System Controller architecture

 GUI is the block responsible to make a bridge between the internal parts of the

System Controller to the outside world. i.e., makes the interaction with the human

that in this case will be a System Moderator that will be responsible to act on

System Controller if necessary;

41

 System Controller Agent is the block that grants the communication with the rest

of the environment through the FIPA inter agent communication. This block is

also responsible to make decisions and act when it’s not necessary human

intervention, which make it the principal block on the application due to the fact

that is it that controls all operations in the System Controller application;

 JADE Platform is where the MAS is created and is where all agents in the

systems are connected;

 Knowledge Manager is where all the knowledge that is saved in the Knowledge

Repository, is managed, i.e., in the course of negotiation, a lot of data about the

involved enterprises are exchange, this block is responsible to collect that data

and change it into knowledge. The knowledge saved in the Knowledge

Repository must be used in order to help System Controller Agent to make

suggestions about each negotiation;

 Negotiation Manager is where the negotiation flows are controlled. This block

maintains the negotiation flows saved in the Negotiation Flows Repository in form

of rules, in order to control different type of negotiations between the involved

enterprises.

The architecture of the Trigger Agent is shown in the Figure 4-5 and the descriptions of

each block are also described below.

Figure 4-5 - Trigger Agent architecture

 GUI, as in the System Controller, is the block responsible to make a bridge

between the internal parts of the Trigger Agent to the outside world. i.e., makes

the interaction with the human that in this case will be a Company User that will

be responsible to act on Trigger Agent if necessary;

42

 Trigger Agent, as the name suggests, is the block that make the communication

with the System Controller and more important, is responsible to control the

entire operation of the Trigger Agent application;

 Negotiation Module is the block responsible for the treatment of the negotiation

messages that the System Controller sends to the Trigger Agent, e.g., when the

agent receives an negotiation message, the Negotiation Module takes care of the

message and analysis it. In some cases it requires the human intervention for the

negotiation continues, and in these cases, the GUI needs to be notified through

the Trigger Agent;

 Interoperability List Watcher is responsible to make a continue observation on the

enterprise interoperability list of points that are important to that enterprise to be

interoperable to other enterprises. When some change occurs, i.e., when this

block detects a possible harmonization break, it is responsible to notify the

Trigger Agent in order this notification reach the System Controller. The

functionality of this block is a bit complicated, so it not be focused on this

dissertation and it will be used a simulation of it.

4.4. System Controller

In the previous sub-section it was introduced the architecture of System Controller and it

was explained the functions of each block. In this sub-section it will be explained more detailed

all the components of this application and how they interact with each other. Since that this

application will be the central application on the Negotiation SEI environment, it will have a more

important job, in the environment, that the Trigger Agent application. Being the central

application on the environment, all interactions between the connected enterprises will pass

through it.

The proposed Negotiation SEI environment is based on negotiations and knowledge,

which means that the System Controller will be able to control these factors. The negotiations

as described in the previous sub-section will be controlled by the Negotiation Manager that will

control them through the rules engine, since that this technology is capable of separate the

application code from the logic code (Gang Zhang et al. 2010), what would be an asset if the

negotiation flows are saved as logic code in form of rules. Once more, all the knowledge of the

system will be saved as rules, since this technology allows a full control of the saved rules in

runtime (JBoss Drools team 2012).

4.4.1. Application Overview

The Figure 4-6 illustrates the System Controller UML Use Case diagram that represents

the relationships between the actors and the use cases within the system (OMG 1999). In this

43

particular case, the proposed application system it will have only one actor and will be a person

responsible for the environment, capable of “moderate” the negotiations and control the

connections of Trigger Agents.

The use cases of the application system are the actions that the actor can perform in the

application, and in this case, these actions are mostly, just to let the actor see what is happing

in the environment. Looking at the use cases available in the Figure 4-6, it’s possible to analyze

that the actor will not need to act very often due to the fact that the most use cases are for view

information about the state of the entire environment and not to perform action on the

environment. That means that the System Controller will bring some automation to the system,

making that the System Controller agent, one of the blocks of the System Controller architecture

(Figure 4-4), has very important tasks to ensure the proper operation of the environment.

Figure 4-6 - System Controller use case diagram

4.4.2. Application Specifications

Now that the options available to the actor were explained in the previous sub-sections

through the UML class diagram, here it will be explain more deeply the application

specifications and how the application is constituted. In the Figure 4-7 is illustrated the UML

class diagram of the System Controller which represents the static structure of the application,

in particular, the things that exist (such as classes and types), their internal structure, and their

relationships to other things (OMG 1999).

44

Basically, as shown in the Figure 4-7, the class diagram is divided in four classes and

each class represent each block illustrated in the Figure 4-4. Below is explained the content of

each class and how they interact.

 System Controller GUI is the class that interacts with the actor, providing

essential functions to allow the interaction between the actor and the System

Controller. Mostly, the functions provided in this class are directly related to the

use cases shown in the Figure 4-6.

 Knowledge is the class responsible to interact with the knowledge that is saved

during the negotiations. Besides the functions to control the knowledge

(“addRule” and “executeDroolsKnowledge”) that interacts directly with the Drools

rules engine, this class also offers a function to determine the level of suggestion

that the System Controller is able to offer to each Trigger Agent during the

negotiations.

 Negotiation is the class that keeps all the negotiation information, including the

interaction with Drools rules engine to control the negotiation flows. The

functions available in this class are mainly to set or to get some variable. This

class also contains two types of constants which are the types of negotiation

messages and the negotiation status.

 System Controller Agent is the core of the System Controller and is the class

that represents the agent. Basically, is in this class where all the information and

actions pass through since this class is where all other ones are connected.

Figure 4-7 - System Controller class diagram

45

The class diagram presented above was designed in order to include all System

Controller specifications, but when the design passes to the implementation some changes on

the class diagram may occur, because there are some things that probably require an

adjustment when implemented. But despite the changes that possible will be occur, the main

structure of System Controller will be the structure presented in the Figure 4-7.

4.4.3. Application Workflow

In the previous sub-sections it were presented the actions that the actor will be available

and the classes structure that the System Controller will have, now it will be presented the

temporal information of the System Controller through the UML sequence diagram that shows

the interactions arranged in time sequence and in particular, it shows the objects participating in

the interaction and the sequence of messages exchanged (OMG 1999).

In the Figure 4-8 is illustrated the sequence diagram of System Controller, where is

represented the actions to complete a negotiation flow, from the beginning to the end with the

interactions between the System Controller (Knowledge Manager, Negotiation Manager and

System Controller Agent) and the Environment. Note that in this diagram the interactions

between the actor and the System Controller GUI were not included because the focus of this

diagram is the internal sequence of actions.

46

Figure 4-8 - System Controller sequence diagram

The diagram begins with a connectivity message, of a Trigger Agent, from the

Environment, which came from a fresh started Trigger Agent. After that, supposing that all

involved enterprises are interoperable, forming an interoperability group, some Trigger Agent

detects a change in his system and fire a trigger that notify the System Controller. In this step is

where the negotiation will begin, only if there are two or more Trigger Agents already registered

in the System Controller, because the negotiation to reach an interoperability state only make

sense if is made between two or more entities. So, when exist two or more Trigger Agents

connected, the System Controller Agent will notify the Negotiation Manager to start the

negotiation flow. When the negotiation flow starts, the first important move is to ask the

Knowledge Manager if there is some saved knowledge about previous negotiation and if it can

be used in that negotiation. After this, the negotiation flow enters on a loop in order to be

executed all negotiation steps, which involve all System Controller blocks. This part of the

47

diagram is a bit widespread because this flow depends on the negotiation flow, defined on the

rule files accessed by the Negotiation Manager. To finish the negotiation, when the Negotiation

Manager detects that the negotiation is over, the negotiation loop is stopped and the System

Controller Agent is notified about it and notify all negotiation participants about the negotiation

results.

4.4.4. Learning Methodology

After knowing how the classes in the System Controller interact between each other, in

this sub-section it will be explain how the System Controller works with the knowledge. This

knowledge is controlled by the Knowledge Manager and as it has been said before, the

knowledge is saved in form of rules, more precisely, in Drools rules files.

The knowledge is acquired from negotiation decisions made by the Trigger Agents to the

formularies (questionnaires) created in the negotiation initiator and is stored in the System

Controller. These formularies in the prototype are static, i.e. the negotiation initiator system is

limited to the pre-created formulary that is illustrated in the Figure 4-9, but efforts are being

made in this research to change them to dynamic surveys. Each questionnaire is intended to all

negotiation participants when a new negotiation round starts and all the answers made by the

participants are saved in the System Controller’s knowledge base where each answer is saved

in form of a rule. These rules are constituted by key elements, like the name of the agent that

made that answer, the elements that constitute the questionnaire, the answers to each question

and the decision taken by the Trigger Agent.

Figure 4-9 - Questionnaire made by negotiation initiator

48

An example of a rule can be viewed in the Figure 4-10 and in this rule it is possible to see

that when the negotiation initiator creates a questionnaire that has the value “Characteristic 1”

selected (true value), the response of the TriggerAgent-2 to this questionnaire will be to reject,

i.e., in a previous negotiation the enterprise with the “TriggerAgent-2” associated decided to

reject when only the “characteristic 1” was selected. This means that when another negotiation

is started, with only the value “characteristic 1” selected, the agent “TriggerAgent-2” maybe

want to reject again. Of course that this suggestion is not direct from this rule, because the

knowledge base can contain more rules of this type but with accept result which may influence

on the suggestion certain percentage.

Figure 4-10 - Example of a rule

4.5. Trigger Agent

The Trigger Agent application is a client application that will be responsible to connect the

enterprise to the SEI environment. This application as explained in the Section 4.3 it will be

responsible to perform all communication between the System Controller and also, it will be

responsible to perform a continuous watch over the enterprise interoperability list of points that

are important to that enterprise to be interoperable to other enterprises and when some change

occurs it will be fired a trigger that will notify the System Controller that will occurs a

harmonization break.

4.5.1. Application Overview

Figure 4-11 illustrates the Trigger Agent use case diagram, as described above,

represents the relationships between the actors and the use cases within the system.

Compared to the use case diagram of the System Controller (Figure 4-6) this has more use

cases due to the fact that this application has much more interaction with the actor, compared to

the System Controller. The basic use cases are the connect/disconnect Trigger Agent from the

49

System Controller and the view options that allows the actor to view some important

information. The more important use cases are the one that simulates a change in the

interoperability list and create new proposal, which will affect the SEI environment.

Figure 4-11 - Trigger Agent use case diagram

The use case for the simulation of a change in the enterprise system, is available for the

actor only because that in this proof-of-concept the Interoperability List Watcher will not be

implemented, so it is necessary a simulation button in order to allow the actor simulates a real

change in the interoperability list. Of course that this feature is one of many that will be

considered to implement on the future work, because it is an important feature that will bring

more automation to the system.

4.5.2. Application Specifications

With all the use cases for the Trigger Agent presented, in this sub-section it will be

presented the classes of the application through the UML class diagram, which according to

OMG in (OMG 1999), represents the static structure of the application, in particular, the things

that exist (such as classes and types), their internal structure, and their relationships to other

things. The class diagram for the Trigger Agent application is shown in the Figure 4-12 and all

the classes that form the Trigger Agent will be explained below.

50

Figure 4-12 - Trigger Agent class diagram

 Trigger Agent GUI is the class responsible for the main interaction between the actor of

the application and the Trigger Agent application. Basically this class implements all use

cases defined in the Figure 4-11 and is the “face” of the application, since that is that

class that will show the actor all the information that the System Controller sends to the

Trigger Agent.

 Negotiation represents the Negotiation Module and is responsible to let the actor know

all the information about the negotiations.

 Trigger Agent is where the agent is located and is the main class of the application

since that is this class that will control all information that is exchanged between the

Trigger Agent and the System Controller.

 View Questionnaire GUI and Questionnaire GUI are two simple GUIs whose functions

are to show the questionnaire made by the negotiation initiator to the Trigger Agent and

also, to show the actor the questionnaire to be filled when the changes are made by

him.

As explained in the System Controller class diagram, it is possible that some changes

may occur in this diagram due to the fact that when the development process starts, is always

necessary some adjustments in the diagrams to grant that all features specified will work

without any problem.

4.5.3. Application Workflow

Now that all options available to the actor and all the classes were presented, in this sub-

section it will be explained how the internal parts of Trigger Agents, i.e., classes, work together

51

through UML sequence diagram that shows the interactions arranged in time sequence and in

particular, it shows the objects participating in the interaction and the sequence of messages

exchanged (OMG 1999), as explained in the Section 4.4.3.

The UML sequence diagram of the Trigger Agent is illustrated in the Figure 4-13 and as

in the System Controller, here it will be presented the sequence for a negotiation flow, since that

is the main focus of the application.

The sequence starts with the Trigger Agent connection to the System Controller which is

represented in the Environment in order to simplify the diagram. When the Trigger Agent is

connected to System Controller, it could send/receive messages to/from System Controller,

which means that in the second action in the diagram, Trigger Agent simulates that a change

occur in his interoperability list and notify the System Controller about this event with a

message. This trigger will make System Controller start a negotiation round and with that all

involved Trigger Agents will receive a message informing the initiation of a new round of

negotiations. When the Trigger Agent receives that message from System Controller it will enter

on a negotiation loop and all negotiation messages that are received by Trigger Agent will be

treated inside of the negotiation loop. The first action that Trigger Agent does to the received

negotiation messages is to check if the message is to inform the end of negotiation round, in

order to exit the loop and treat that type of message.

52

Figure 4-13 - Trigger Agent sequence diagram

4.6. Usability Cases

Earlier it was explained how the proposed prototype works through the UML diagrams, in

this sub-section it will be presented some scenarios to be implemented on the system. These

scenarios will differ in the negotiation flows and will be the most important scenarios that

enterprises can face in their lifecycles, passing from the easiest scenario to a much more

complicated scenario.

In the Figure 4-14 is illustrated the first usability case that the system will perform. This

scenario is the negotiation method called Block. This negotiation method can be characterized

by the specific number of the Trigger Agents (Enterprises) that will perform the necessary

modification to bring interoperability to the system again. In this method, the job of regaining

interoperability is given only to one enterprise. This means that during the negotiation, and after

enterprises changing some proposals between them, only one these proposals will be accepted

and is it that will be taken into account to perform the necessary modifications to the system.

53

Figure 4-14 - Block negotiation method scenario

The second scenario is the negotiation method called Split and is illustrated in the Figure

4-15. This method, as the name suggests, is when the job of rearranging the system is done by

different proposals, i.e., partners. This method shows a great advantage when the solution for

regaining interoperability is a bit complicated, which can be simplified if the work is divided in

some parts.

Figure 4-15 - Split negotiation method scenario

54

55

5. PROOF-OF-CONCEPT IMPLEMENTATION

The framework and architecture that are proposed in the sub-section 4.3 need to be

validated in order to prove their viability which requires an implementation of what is presented

in the sub-sections 4.4 and 4.5. Since that this dissertation is based on the SIF prosed in

(Agostinho & Jardim-Gonçalves 2009) and in the NEGOSEIO framework proposed in (Cretan et

al. 2012), this proof-of-concept also be based on this frameworks, although it will be more

simple as it was presented in their original proposed documents.

Some technologies were used in the development of this proof-of-concept such as the

JADE (JADE Agent Framework) that was responsible for the agents implementation and Drools

(Drools Rule Engine) that implements the rules engine, which were already introduced in the

sub-sections 4.1 and 4.2 respectively.

5.1. Application Scenarios

In order to maintain a system sustainable interoperable with negotiation involved between

the systems clients, were presented in the sub-section 4.3 an architecture that is capable of

accomplish this task. To demonstrate the reliability of this framework, will be presented two

application scenarios that will simulate real scenarios of enterprise negotiation methods to reach

an interoperability state.

The different scenarios that will be presented next have the objective to simulate a real

negotiation situation between various enterprises aiming to reach a stable state which all of

them are interoperable in the system. So, these scenarios take into account that the system is

composed by a System Controller already started and working and some enterprises connected

to him, those are the Trigger Agents. Since that a negotiation only make sense when exists

more than one actor, System Controller will only allow that the negotiation begins when are

more than one Trigger Agent connected. The two negotiation method that will be presented as

scenarios will be presented below:

 Block, this method is when a negotiation is initiated by some enterprise and the

System Controller will choose only one presented proposal to be the one that will

be used to implement the necessary changes in the system to allow regaining

interoperability. The chosen proposal is associated with the enterprise that made

the proposal and that enterprise will be responsible to implement that changes.

 Split, as the name suggests is when the System Controller can choose, from all

received proposal, some proposals that will be responsible, together, to modify

the system in order to bring the interoperability to the system. The number of the

chosen proposals will be the split number, defined in the System Controller. This

56

means that the chosen proposals will make that the enterprises will divide the

work between them.

Since the proposed framework is also based in knowledge, during the negotiation, both in

the block or split method, System Controller will learn from all negotiations. This knowledge will

help System Controller to make some decision suggestions to the negotiation participants,

when new proposals are received and help them also with their previous decisions to the

proposals. As knowledge is a thing that grows with time, in this case the System Controller

knowledge will grow with the number of negotiations, which means that the help that System

Controller can provide to the Trigger Agents will be more accurate as time passes and the

number of negotiations grows.

In the two presented scenarios will be assumed that System Controller will have four

Trigger Agents connected to him, representing four different enterprises, the enterprise A, B, C

and D.

5.1.1. First Scenario – Block negotiation method

This scenario demonstrates how the proposed architecture works in the Block negotiation

method. An overall picture of this method can be viewed in the Figure 5-1, where it is shown a

possible negotiation round over the Block negotiation method. Basically, in the Figure 5-1, the

Enterprise C starts the negotiation by simulating a change in their system and with that, they

create a proposal to go with the change notification. After Enterprise A and D reject the first

proposal, Enterprise A creates a new one. Enterprise B responds to the first and second

proposals and next, Enterprise D and C accept the second proposal. In this state, where all

proposals are answered, System Controller can evaluate the 2 proposals and select the winner

proposal and notify the winner Enterprise, that in this case is the second proposal from

Enterprise A.

Figure 5-1 - Block negotiation method scenario detailed

57

In this particular case, System Controller has chosen the Proposal 2 to be the one that

will be implemented in the system. This choice was made because among all received

proposals, the Proposal 2 was the one that had one hundred percent of acceptance, which is

greater than the Proposal 1 that had only thirty tree percent of acceptance. The value of the

acceptance percentage can be defined in the System Controller, which in a future version of the

prototype, possible can be defined by all involved enterprises or even other method that is more

appealing for the enterprises. For default, this value is defined at fifty percent which will make

that in a negotiation round with several proposals, when none of them will pass the fifty

percentage of acceptance, the negotiation will be failed, and possible it will be require passing

to the second scenario, which will bring the Split negotiation method.

Not represented in the Figure 5-1 is the knowledge that System Controller acquires with

the represented negotiation round. Of course, when the system starts does not exist any

knowledge in the system, but after the first negotiation round, some knowledge was acquire and

with that, the following negotiation rounds will have the help of that knowledge. This knowledge

will make that the involved enterprises will answer faster and more accurately to the received

proposals. Of course that these two characteristics becomes much stronger with the lapse of

time and the number of negotiation rounds.

5.1.2. Second Scenario – Split negotiation method

The second scenario is the Split negotiation method that is represented in the Figure 5-2,

where it is shown an example of a negotiation round over the Split method. In this case, the

negotiation initiator is the Enterprise D which also creates the Proposal 1 that is rejected by the

Enterprise C. Enterprise B created a new proposal and accepts the initial one. Enterprise A

rejects the first proposal and accepts the second one which makes the Proposal 1 with thirty

three percent of acceptance. After Enterprise C accepts the second proposal, Enterprise A

creates a new proposal, which after the Enterprise D accepts the second proposal, is accepted

by the Enterprise B and C and is rejected by the Enterprise D. With all answers to the proposals

received by the System Controller, they are analyzed and since that exist tree proposals and

the split number is two, means that the negotiation may end with success. The Proposal 1, as

concluded before, reached an acceptance percentage of thirty three percent of acceptance

which makes it excluded for the winners list, because as the Block negotiation method, in the

Split method, the default value of fifty percent of acceptance also is important in order to accept

or reject the proposals. With the first proposal excluded, remain the second and third ones. The

second proposal was accepted by all enterprises which makes it with one hundred percent of

acceptance. The last proposal was accepted by the Enterprise B and C and rejected by

Enterprise D which makes it with sixty six percent of acceptance, which is greater than the

acceptance percentage value. Thus, the Proposal 2 and 3 are in conditions to be accepted and

as the split number is also two (which mean that is necessary to have two proposals to split the

58

work between them), the negotiation round reach the end with two winners, the Proposal 2 and

3 from Enterprise B and A respectively.

Figure 5-2 - Split negotiation method scenario detailed

As in the Block method and as explained before the conclusion of this negotiation round

was dependent from the acceptance percentage value which makes that the proposals that had

an acceptance percentage lower than the fixed value, are excluded from the winners list. In this

method is added another selection variable, the split number which in the end, the negotiation is

succeed only when the number of accepted proposals, that are those that have the acceptance

value greater than the acceptance fixed value, are equal or greater than the split value. If are

more accepted proposals than the split number, the best ones are chosen to equal the split

number.

Once more, the knowledge is not represented in the Figure 5-2, but as in the Block

negotiation method, it is present in all decisions made by the Trigger Agents.

5.2. Implementation Steps

The main objective of this proof-of-concept consists on the implementation of a

negotiation SEI environment that is represented in the Figure 4-3 and as this architecture are

divided in two different application, it is possible to see, more detailed, the architecture of the

two applications that forms the pretended architecture, in the Figure 4-4 and in the Figure 4-5.

The implementation of this proof-of-concept can be divided in three parts. The first step shows

the implementation of the agents through the JADE platform and how these agents are

distributed over the applications. The part two explain how the system controller controls the

59

negotiation flows through the Drools and the final part, the part three is explained how the

System Controller manages the knowledge, also through the Drools.

5.2.1. Step 0 – Environment setup

Figure 5-3 - Environment agents setup

In sub-section 4.3 was explained how the proposed framework works, now it will be

explained the setup of the agents in the framework. In the Figure 5-3 is represented the agents

that make up the system. Since that the number of Trigger Agents can be variable, in the Figure

5-3 they are represented from 1 to N which mean that the number N can be any number. So,

the framework starts in the System Controller that initiate the JADE platform and after that starts

the SystemController Agent that will be responsible to communicate to the rest of the

environment. When the System Controller is initialized correctly, it can start to receiving

connections from Trigger Agents. Actually, the connections from Trigger Agents are made to the

JADE platform, but the SystemController Agent is notified about these events, in order to control

the connected agents. When there are more than one Trigger Agents connected, System

Controller is able to start a negotiation round with the connected Trigger Agents.

5.2.2. Step 1 – Negotiation

 The most important work on this framework is done in this step, which is the negotiation

of the interoperability over the environment. As already presented, the negotiation is controlled

by a state machine developed in Drools rule engine. The sequences of the two negotiation

methods are illustrated on the Figure 5-4 and Figure 5-5 and basically, the rules that define the

60

states of the state machine are these sequences. Since that in the sub-sections 5.1.1 and 5.1.2

these two methods were explained in a functionality view, in this sub-section it will be explained

how they are implemented in the system.

In the two negotiation methods it is possible to view that the doted arrows represent some

external events to the state machine, and these events are explained below:

 clone_create(…) is the event that will create the negotiation round. This event is

generated when a change notification is received from some Trigger Agent,

meaning that is necessary to start a negotiation round in order to overcome the

changes imposed by the initiator system;

 clone_propose(…) is the event generated when a proposal is received in the

System Controller from some Trigger Agent during a negotiation round;

 clone_reject(…) is the event generated when a proposal does not meet the

necessary attributes to be accepted, i.e., when a proposal has an acceptance

percentage below the value defined.

 clone_accept(…) is the event generated when a proposal is good to be

accepted, unlike the previous event, here is when the acceptance percentage ir

greater than the defined value.

When some event is generated, the Drools is executed in order to check if the current

state meets the requirements to change to the next state. The state changes are not dependent

only to the external event as it is shown in the Figure 5-4 and Figure 5-5, they depend also from

the other state variables. These state variables are explained below:

 name is the variable that represents the name of the state;

 status represents the current status of the state, which in the Figure 5-4, the first

state starts with the status start;

 test_size represents the size of the interoperability task fixed by the initiator

enterprise and is used only in the Block method;

 count is the variable that represents the value of the split defined by the System

Controller. This variable is used only in the Split method, i.e., in the Block

method, count is equals to zero, because the regain interoperability job will not be

splited;

 localr is a representation particle of the negotiation method;

 firstr is a representation particle of the outsrc, used by the negotiation

participants;

61

 extr is a representation particle of the enterprise that has the accepted proposal.

Figure 5-4 - Block negotiation method sequence

Figure 5-5 - Split negotiation method sequence

Since that the sequence of the two negotiation methods is presented, in the Figure 5-6 is

illustrated an example of a negotiation rule. In this specific case, this rule is the first rule of the

Block method, which will make that the state changes from #0 to #1. The rule is written in Drool

rule language which is very easy to understand. So, below is explained the four numbered

rectangles in the Figure 5-6.

1. This rectangle is where the conditions are declared, which in this case will represent

the conditions that the current state needs to have in order to change the state, which

will make the rectangles 2, 3 and 4 to be executed. As shown in the first rectangle,

the current state need to have the “name = #0”, the “status = start”, the System

Controller should have received a clone_create event and the count must be equal to

zero, which represent the Block method;

2. When the conditions in the rectangle 1 are verified the lines below the then clause

are executed. In the second rectangle is defined the base characteristics of the next

62

state which are the “name = #1”, the “status = freeze”, the “localr(Rname, initiated,

0)”, the “firstr(Rname, initiated, 0)”, the “create” that correspond to the clone_create

and the “test_size” which is equal to the initial one;

3. In the third rectangle, is created a negotiation atom that represents the previous

states. This means that even when the state machine reach the last state, it is

possible to know all the previous states;

4. The two lines in the fourth rectangle are only to allow a better control over the states

and are not important.

Figure 5-6 - Negotiation rule example

5.2.3. Step 3 - Knowledge

Other important step in the framework is the knowledge process that is controlled by the

System Controller in form of rules and is managed with the Drools tool, also as in the

negotiation flow. The knowledge management process is illustrated in the Figure 5-7 and

basically it is characterized by save the information about the Trigger Agents decisions to a

certain proposal, into the knowledgebase, in order to be used in future negotiations. Explaining

more detailed the Figure 5-7, when a Trigger Agent makes a proposal, he need to fulfill the

questionnaire, which contain various points that are important to their system that will be

modified. When System Controller receives this information it will run Drools in order to get

some precious information that can be helpful for Trigger Agents that are participating in the

negotiation.

63

Figure 5-7 - System Controller knowledge management process

There are two types of knowledge that System Controller will look for. The first type is the

qualification that each Trigger Agent makes to each point in the questionnaire made by the

Trigger Agent that made the proposal. For example, if Trigger Agent N makes a proposal that

contains a point “Less costs = true”, the participants in the moment of the decision can choose if

the point “Less costs = true” is a positive or negative point. As System Controller will save this

information, the next time that some Trigger Agent put the point “Less costs = true” in his

questionnaire, System Controller will help the participants and will provide the last choice that

they did, helping them with a possible qualification for that point. This type of rules can be

viewed in the Figure 5-8.

Figure 5-8 - Knowledge results rules example

The second type of saved knowledge by the System Controller is a bit more complex

because each rule has much more information than the previous type of rules. This type of

knowledge will save the decision of each Trigger Agent mapped with the points in the proposal

questionnaire. This knowledge will help System Controller to determine a percentage of

certainty that a Trigger Agent has to accept or reject a proposal. This percentage can be

64

calculated due to the fact that this type of rules can be repeated, which means that if System

Controller has some rules for the same characteristics and the same Trigger Agent, the number

of accepts and rejects will produce a percentage that will be the certainty of the decision. An

example rule of this knowledge can be viewed in the Figure 5-9.

Figure 5-9 - Knowledge decision rules example

In the Figure 5-9 example, when the System Controller receives a proposal with the

illustrated characteristics, it will count the number of accepts and rejects and the result

percentage will be sent to the TriggerAgent-2 in order to help him to make a decision. The

suggestion that is sent to the destination Trigger Agent is calculated with the tree pre-defined

rules that are illustrated in the Figure 5-10. The suggestion level will depend on the

“resultPercentage” explained before and with the number of answered questions.

Figure 5-10 - Knowledge suggestion rules example

65

6. TESTING AND HYPOTHESIS VALIDATION

Some definitions about testing can be found over the documentation available about

tests. According to (Tretmans 2001) testing is the process of trying to find errors in a system

implementation by means of experimentation. To (ISTQB 2011), a common perception of

testing is that it only consists of running tests, i.e., executing the software, depending on the test

type, testing can mean cause as many failures as possible so that defects in the software are

identified and can be fixed or can mean the confirmation that the system works as expected.

Basically these two definitions about testing will mean the same and the both definitions agree

that the main goal of testing is to gain confidence that during normal use, the system will work

satisfactory. Since testing of realistic systems can never be exhaustive, because systems can

only be tested during a restricted period of time, testing cannot ensure complete correctness of

an implementation, which means that it can only show the presence of errors, not their absence

(Tretmans 2001).

Testing can have some objectives, like finding defects, gaining confidence about the level

of quality, providing information for decision-making and preventing defects. Different viewpoints

in testing take different objectives into account. For example, in development testing (e.g.,

component, integration and system testing), the main objective may be to cause as many

failures as possible as described above. In acceptance testing, the main objective may be to

confirm that the system works as expected, also as described above (ISTQB 2011).

In the next sub-sections it will be presented some testing methodologies that are

available for software testing. Through these methodologies it will be chosen one that will be the

best approach to apply to this particular proof-of-concept implementation. After some tests

formalization it will be presented the acquired results based on the differences between different

approaches of negotiating interoperability in the SEI environment. To conclude this section a

scientific context validation will be presented.

6.1. Testing Methodologies

Many testing methodologies are well known and are available to use in the software

projects. Many of these methodologies are abstract concepts like the white-box testing, the

black-box testing, the grey-box testing, the unit testing, the conformance testing and so on.

Particularly, in software testing, the methodology that distinguishes is the functional and the

structural testing (ISTQB 2011), (White 1987), (Myers et al. 2004).

Structural testing, also referred to as white-box testing, is based on the internal structure

of a computer program. The main goal of this methodology is to exercise thoroughly the

program code, e.g., by executing each statement at least once, or by trying to execute all paths

through the program code taking into account decisions, branches, loops, etc. These tests are

66

derived from the program code, since that the code is essential to perform a good structural test

and for that, structural testing is most used in the early stages of program development

(Tretmans 2001).

With functional testing the emphasis is on testing the externally observed functionality of

a program based on its specification. Functional testing is also called black-box testing, where a

system is treated as a black box, whose functionality is checked by observing it, i.e., no

reference is made to the internal structure of the program. The aim of this methodology is to

determine whether the right (with respect to the specification) product has been built. These

tests are derived from the specification and consequently, the most important prerequisite is a

precise, complete and clear specification. Functional testing is usually concentrated in the later

stages of program development (Tretmans 2001).

Conformance testing is a kind of functional testing where an implementation of a protocol

entity is solely tested for conformance with respect to the requirements given in its specification.

The idea is that only systems with correctly implemented protocols can communicate

successfully with peer entities. In practical, conformance testing tests the internal structure of an

entity that usually is not accessible to the tester, which means that the computer system in

which the entity under test is located need not be accessible, e.g., when testing is performed by

an independent, accredited test laboratory, that has no access to the implementation details of

an implementation (Tretmans 2001).

In the next subsections it will be presented two standards that implement the previous

presented methods. These standards were defined and revised throughout the years based on

the expertise of using them and their practical results.

6.1.1. iSurf Functional and Non-Functional Evaluation Methodology

The iSURF European Project is integrated in the European Community’s Seventh

Framework Programme and develops an intelligent collaborative supply chain planning network

that realizes a knowledge-oriented inter-enterprise collaboration environment in which

distributed intelligence of multiple trading partners are exploited in the planning and fulfillment of

customer demand in the supply chain. The project provides interoperability solutions for

achieving the semantic reconciliation of the planning and forecasting business documents

exchanged between the companies according to different standards (Anon 2010).

The iSurf evaluation and testing framework follows the standard process defined on the

evaluation reference model and guide ISO/IEC CD 25040 (ISO/IEC CD 25040) of the Software

product Quality Requirements and Evaluation (SQuaRE) series of standards. This standard

details the activities and tasks providing their purposes, outcomes and complementary

information that can be used to guide a software product quality evaluation. The outcomes of

applying a standard process approach for the evaluation activities in iSurf will be the

repeatability, reproducibility, impartiality and objectivity of all process (i-Surf 2009).

67

The principal standard steps for iSurf evaluation strategy are the following: prepare;

establish; specify; design; execute; report. The iSurf project also defines in detail the

procedures used to generate the evaluation criteria that were applied for the functional and non-

functional characteristics, which are: functionality, reliability, usability, efficiency, maintainability

and portability. The project identifies the following techniques that are applied for evaluation of

the iSurf components and architecture: functional tests; unit tests; fault tolerance analysis; user

interface analysis; execution time measurements; inspection of documentation and analysis of

software installation procedures (i-Surf 2009).

This techniques and the iSurf evaluation criteria are modularized as recommended in

ISO/IEC 25041 former ISO/IEC 14598-6 (ISO/IEC 14598-6 2001), in order to have a structured

set of instructions and data used for the evaluation. It specifies the evaluation methods

applicable to evaluate a quality characteristic (functional/non-functional) and it identifies the

evidence it needs. It also defines the elementary evaluation procedure and the format for

reporting the measurements resulting from the application of the technique (i-Surf 2009).

Functional and non-functional evaluation criteria modules provide a flexible and

structured approach to define criteria for monitoring the quality of intermediate products during

the development process and for evaluation of final products. The purpose of using evaluation

modules is to ensure that software evaluations can be repeatable, reproducible and objective.

These modules define a set structured instructions and data used for an evaluation. It specifies

the criteria applicable to evaluate a quality characteristic and it identifies the evidence of it

needs. It also defines the elementary evaluation procedure and the format for reporting the

measurements resulting from the application of the technique (i-Surf 2009).

The modules described define a specific aspect of a software quality characteristic that is

being measured. It specifies the criteria for making the measurement as well as the

preconditions and accuracy of the measurement. The aim is to make the various aspects

(principles, metrics, activities, etc.) of evaluation visible and to show how they are handled.

They are documented as specified on the standard ISO/IEC 14598-6 (i-Surf 2009):

 It provides formal information about the evaluation module and gives an introduction to

the evaluation technique described in the evaluation module;

 Defines the scope of applicability of the evaluation module;

 Specifies the input products required for the evaluation and defines the data to be

collected and measures to be calculated;

 Contains information about how to interpret measurement results;

The evaluation modules define the criteria for the evaluation of the iSurf components

considering the functional and non-functional quality characteristics specified on the SQuaRE

series of standards (i-Surf 2009):

68

 Functional

 Functionality: Functional Test Cases

 Functionality: Unit Tests

 Non-functional

 Reliability: Fault tolerance Analysis

 Usability: User interface

 Efficiency: Execution time measurement

 Maintainability: Inspection of development documentation

 Portability: Analysis of software installation procedures

6.1.2. Tree and Tabular Combined Notation – Test Notation

Standard

Test and Test Control Notation (TTCN-3) is the evolution of Tree and Tabular Combined

Notation (TTCN-2) and is a standardized testing technology developed and maintained by the

European Telecommunication Standards Institute (ETSI) and specifically designed for testing

and certification. TTCN-3 shows a lot of new capabilities comparing to the old TTCN-2, but

since that for the validation of this proof-of-concept is enough a basic and simple test

methodology, the main focus will be over the TTCN-2 technology (TTCN-3).

TTCN is a flexible and powerful language applicable to the specification of all types of

reactive system tests over a variety of communication interfaces. Typical areas of application

are protocol testing (including mobile and Internet protocols), service testing (including

supplementary services), module testing, testing of Common Object Request Broker

Architecture (CORBA) based platforms, API testing, etc. TTCN is not restricted to conformance

testing and can be used for many other kinds of testing including interoperability, robustness,

regression, system and integration testing (ETSI ES 201 873-1 2012).

In TTCN, the tests behaviors are defined by a sequence of events that are represented

as trees, containing branches of actions based on evaluation of the system output after one or

more executed events. Each event has its own respective level of indentation and can be

declared in two different types: action or question. Actions are preceded by an exclamation

point before its description and are performed on the System Under Test (SUT). Questions are

preceded by an interrogation point and represent evaluations of the output of the SUT after one

or more actions are completed. Since the answer can be positive or negative, multiple questions

can exist at the same indentation level, covering all possible outputs of the system. To complete

a TTCN test table, a verdict must be deliberate, which can be “Success”, “Failure” or

69

“Inconclusive”. This verdict is based on the sequence of events which travel through the tree

and was conditioned by the outputs of the system and evaluated by the question events (ETSI

ES 201 873-1 2012).

In the Table 6-1 is described a simplified example of a phone call establishment

evaluation. As shown in the Table 6-1 different verdicts result after a series of actions and

evaluations. Below is explained textually the content of the table (TTCN-3).

Table 6-1 - Simplified example of a TTCN table test

Test Case

Test Case: Basic connection

Group:

Purpose: Check if a phone call can be established

Comments:

Behavior Constraints Verdict

! Pick up headphone

 ? Dialing tone

 ! Dial number

 ? Calling tone

 ? Connected line

 ! Hung up headphone Success

 OTHERWISE Failure

 ? Busy tone

 ! Hung up headphone Inconclusive

 OTHERWISE Failure

 ? Dialing tone absent Failure

 The user picks up the headphone;

 Tests if the dialing tone is present;

 If the dialing tone is present, then the user must dial the other phone’s number.

Otherwise, if the dialing tone is absent, the verdict is a “Failure” of the possibility of

establishing a phone call;

 If there is a calling tone after dialing the number, the user may test if the line is in fact

connected;

 If the line is connected, the user may hung up the headphone and the verdict is set as

“Success” on establishing a phone call, otherwise the verdict is a “Failure” of the

possibility of establishing a phone call;

70

 If the dialing tone is not heard, but a busy tone instead, then the user may hung up the

headphone and the verdict is set as “Inconclusive” on establishing a phone call;

 If none of the tones corresponds to calling or busy, then the verdict is set as “Failure” on

establishing a phone call.

6.1.3. Adopted Test Methodology

The proof-of-concept developed in this thesis is not like a commercial product that is not

supposed to be flawless and should be a complete solution. Unlike that, this proof-of-concept

should be a working proof of feasibility of a full solution. So, this means that is not necessary a

complex methodology for testing this proof-of-concept, since that is too expensive for such kind

of implementation. With this and analyzing the two presented methodologies, it is clearly that

the iSurf is much more complex than the TTCN, which means that it will be used a mix of these

two methodologies to validate the proof-of-concept implementation.

Based on these two methodologies, a series of functional test cases and unit tests

described by TTCN tables will be designed and applied to the various units of the

implementation steps. Besides this, non-functional tests such as reliability, efficiency and

portability were also addressed. The results taken by the execution of these tests were

published in the sub-section 6.3.

6.2. Requirements and Functionalities

The requirements and the functionalities of the system that are defined during the design

of the system are presented in this sub-section. All the requirements and functionalities

presented here are responsible to define all the capabilities of the developed proof-of-concept

and in order to evaluate the extent of the proof-of-concept implementation, it will be made a

mapping between the requirements and functionalities of the system and what is implemented.

 Requirements

 Each application should have a GUI

The developed implementation has a GUI for each application, allowing a

full interaction between the application and the user both in the System

Controller as in the Trigger Agent;

 Both System Controller and Trigger Agent should be able to run on

different machines, i.e., with different IP addresses

Since the developed system is a distributed system, controlled by JADE,

it allows that all connected Trigger Agents were in different networks of

the System Controller;

71

 Every connected Trigger Agent should be able to start a negotiation

round

Since that exists two or more connected Trigger Agents to System

Controller, every Trigger Agent can start a negotiation round when it

detects a change in is interoperability list;

 The Trigger Agent application should detect the changes on the

interoperability list of his system and initiate a trigger to the System

Controller indicating what has changed

As explained earlier, this requirement is out of scope of this thesis, thus,

it is used a simple button to simulate the changes in the interoperability

list;

 The System Controller should have a rule engine system in order to

process all the negotiation functions

The implemented System Controller uses the Drools rule engine, which

allows the application to control the flows of the negotiations and control

the knowledge of the system;

 The communications between the applications should be made

through the agents

The utilization of JADE to implement a MAS allows the perfect

communication between the applications through the agents;

 The System Controller should support at least two Trigger Agents

connected to him

The System Controller allows much more Trigger Agents connected to

him due to the utilization of JADE. The limit of connections depends on

the JADE;

 Each Trigger Agent should be able to connect only to one System

Controller

The Trigger Agent application only allows one connection, controlled in

the application;

 Functionalities

 The architecture of the system should be implemented using agents

technology

In the execution steps of this proof-of-concept it is possible to see that

the architecture developed consists in a central agents that accepts

connections from various client agents.

72

 The system should have a mechanism based on a rules engine that

control the knowledge of the system, helping clients in their

decisions

Also on the implementation steps, it is possible to see that the System

Controller keeps the knowledge in a knowledge base, using Drools.

 The system must be capable of control the negotiation flows

through the rules predefined in a rules engine technology.

The system controls the various types of negotiation methods trough the

Drools rules engine.

6.3. Testing

In order to address the functional and non-functional testing of the implemented proof-of-

concept, in this sub-section it will be demonstrated all the steps presented in the sub-section 5.2

followed by the explanation that how this prototype works. As in the sub-section 5.2, the

following sub-section will cover the four steps of the implementation, showing all the results of

the tests made to each step. The functional tests will be presented through the Table 6-1 and

the non-functional tests will be executed in order to test if the software performs the required

functions under a given conditions for a given time interval. The last point that is important to

test is a comparison between the performance of this proof-of-concept compared to the old

method, i.e., without negotiation.

6.3.1. Step 0 – Environment setup

The environment setup can be tested with an example showed before, like in the Figure

5-3, where the System Controller initiate and then, four Trigger Agents connect to him. This is a

basic test but it will test if the environment is performing the connections and disconnections

correctly.

So, when the System Controller application starts, the user have the GUI showed in the

Figure 6-1 available. As shown in the Figure 6-1, the status if “Offline” and only the Start button

is enabled. When the user clicks in the Start button, the system will initialize, starting the JADE

platform and the Drools rule engine. This operation may last a few seconds to be completed.

When System Controller is initiated successfully, a message is shown and the other buttons

became enabled, as shown in the Figure 6-2. In this process of initialization, System Controller

beyond of starting JADE and Drools, it creates the SystemController agent and registers it in the

JADE platform in order to be able to communicate with the connected Trigger Agents.

73

Figure 6-1 - GUI of System Controller when the application starts

Figure 6-2 - System Controller initiated successfully

In the Trigger Agent side, when the user connects the Trigger Agent, the agent is

registered in the JADE platform and the System Controller receives a notification of this event in

order to add the connected agent to his list. The Figure 6-3 shows the Trigger Agent already

connected to System Controller by its Internet Protocol (IP) address.

74

Figure 6-3 - Trigger Agent connected to System Controller

After the initialization, System Controller is now able to receive connections from the

Trigger Agents and when it receives the second connection, Trigger Agents can start a

negotiation round. In the Figure 6-4 it is possible to view this case, which shows in the last line

of output field that the initial state was created, meaning that it can receive an interoperability

change notification in order to start a new negotiation round.

Figure 6-4 - System Controller with two Trigger Agents connected

75

Now the results of the functional tests will be presented, covering the initialization of the

System Controller, the Trigger Agent connections and the Trigger Agent disconnections.

Starting with the System Controller initialization, in the Table 6-2 is shown the results of this test,

using the method explaining in the sub-section 6.1.3.

Table 6-2 - System Controller initialization functional test

Test Case

Test Case: System Controller connection

Group:

Purpose: Check if the System Controller starts successfully

Comments:

Behavior Constraints Verdict

! Start System Controller

 ? JADE starts Success

 ? Drools starts Success

 ? SystemController agent is registered in JADE Success

 OTHERWISE Success

 OTHERWISE Success

 OTHERWISE Success

The second functional test case is represented in the Table 6-3 and correspond to the

connection of a Trigger Agent, more precisely, it consists in the connection of the second

Trigger Agents, which allow to test, not only the agent connection, but also the creation of the

initial state which will allow that the negotiation round could start.

Table 6-3 - Second Trigger Agent connection functional test

Test Case

Test Case: System Controller receives the second Trigger Agent connection

Group:

Purpose: Check if the Trigger Agent is successfully connected and the initial state is created

Comments:

Behavior Constraints Verdict

! Connect Trigger Agent

 ? TriggerAgent agent is correctly initiated in JADE Success

 ? System Controller receives a CONNECT a notification Success

 ? SystemController creates the initial state Success

 OTHERWISE Success

 OTHERWISE Success

 OTHERWISE Success

The last functional test in this step is a disconnection from the System Controller of an

connected Trigger Agent and is represented in the Table 6-4.

76

Table 6-4 - System Controller disconnects an Trigger Agent functional test

Test Case

Test Case: System Controller disconnects an Trigger Agent

Group:

Purpose: Check if the Trigger Agent is successfully disconnected

Comments:

Behavior Constraints Verdict

! Disconnect Trigger Agent from System Controller

 ? TriggerAgent agent is correctly disconnected from JADE Success

 ? TriggerAgent agent is correctly disconnected from
System Controller

 Success

 OTHERWISE Success

 OTHERWISE Success

6.3.2. Step 1 – Negotiation

In this step it will be tested the negotiation between the enterprises through their Trigger

Agents. For this test will be used the Block negotiation method explained in the sub-section

5.1.1, in particular, it will be used the example of the Figure 5-1 with four Trigger Agents in the

negotiation round.

First of all, when all the four Trigger Agents are connected to System Controller, the

TriggerAgent-C will simulate a change in his interoperability list in order to start the negotiation

round. When the TriggerAgent-C makes the simulation it will send the Proposal 1 to System

Controller and all the other participants will receive the notification of a new proposal, as shown

in the Figure 6-5, Figure 6-6 and Figure 6-7.

Figure 6-5 - System Controller receives the change notification from TriggerAgent-C

77

As illustrated in the Figure 6-5 the system controller changes it state to “#4[ENABLE]”

which correspond to the state that waits for the decisions from the other participants. In this

state, the negotiation participants may create new proposals.

Figure 6-6 - TriggerAgent-A receives the proposal made by the TriggerAgent-C

In the Figure 6-6, TriggerAgent-A receives the proposal made by the TriggerAgent-C and

with the GUI is updated to show the user some important negotiation information, like the

negotiation status, the current negotiation method, and the negotiation participants. By clicking

in the View Questionnaire button, a new window opens with the details of the proposal made by

the TriggerAgent-C which is illustrated in the Figure 6-7.

Figure 6-7 - Proposal questionnaire created by TriggerAgent-C

78

As shown in the Figure 6-7, TriggerAgent-A have some possibilities to respond to this

proposal, but first, if there is more than one proposal to answer, they can be chosen in the

proposal combo box. In this case, following the example in the Figure 5-1, TriggerAgent-A will

reject this proposal and the System Controller will receive this decision as shown in the Figure

6-8.

Figure 6-8 - System Controller receives a reject decision from TriggerAgent-A for Proposal 1

In the Figure 6-8 it is possible to see that the TriggerAgent-A rejected the Proposal 1 as

explained before and the TriggerAgent-B and D have not yet answered to the Proposal 1.

This negotiation process will continue, regarding the example in the Figure 5-1. When all

proposals are answered, System Controller will automatically change the state and it will

evaluate the proposals in order to end up with a winner proposal, as shown in the Figure 6-9.

The Figure 6-9 shows the System Controller after receiving all proposals decisions from

all negotiation participants and as illustrated, the winner proposal was the Proposal 2 as

expected. The negotiation round reach the final state and with that, the System Controller

prepare himself for a new negotiation round, restarting the states and put the previous

negotiation available to be viewed in the Negotiation History list.

79

Figure 6-9 - System Controller after receiving all proposal decisions

In the Table 6-5 is presented the results of the functional tests done during a negotiation

round with the some Trigger Agents involved. This test is generic, which make it a good test to

apply over the Block or Split methods.

Table 6-5 - Negotiation flow functional test

Test Case

Test Case: Negotiation flow

Group:

Purpose: Check if the negotiation flow is correct

Comments:
For the Block method is only necessary one proposal but for the Split method is
necessary a number of proposals equal or greater than the split number defined
in the System Controller

Behavior Constraints Verdict

! Trigger Agent simulates a change in his interoperability list

 ? System Controller receives the notification Success

 ! System Controller notify all negotiation participants

 ? Participants receive the notification Success

 ! Participants respond to the proposal

 ? System Controller receives all decisions Success

 ! System Controller choose the
winner(s) proposal

 OTHERWISE Success

 OTHERWISE Success

 OTHERWISE Success

80

6.3.3. Step 3 – Knowledge

In the previous sub-section the main focus was over the negotiation flow and not over the

knowledge, but as the knowledge is related with the negotiation, in the some illustrations was

possible to see some points of knowledge that will be presented in this sub-section. As in the

previous tests, this test also will be done regarding an example that in this case will be the

example shown in the Figure 5-7, that once more it will be the System Controller with four

Trigger Agents connected.

For this test, TriggerAgent-N from the Figure 5-7 will start to create a proposal that

contain the point illustrated in the Figure 6-10.

Figure 6-10 - Proposal creation from TriggerAgent-N

When TriggerAgent-X receives this proposal, it will accept with the results defined for

each point in the proposal that are represented in the Figure 6-11. In the Figure 6-11 it is

possible to view that the System Controller failed to give an suggestion about the decision of the

proposal because this proposal was the first proposal running in the System Controller,

meaning that when the System Controller searched in the rules for a rule that can help in this

proposal, there was no rules in the knowledgebase.

When the System Controller receives the decisions from the negotiation participants, it

will save the knowledge into the knowledgebase, as explained in the sub-section 5.2.3.

81

Figure 6-11 - TriggerAgent-X response to the proposal made by TriggerAgent-N

When the previous negotiation round reach the end and the TriggerAgent-N starts other

negotiation round by simulating a change in his interoperability list, System Controller will check

once more if there are any rules to help the negotiation participants. In this case TriggerAgent-N

will create a proposal equal to the one in the Figure 6-10 causing there any some valid

knowledge to help the TriggerAgent-X in this negotiation round. So, when System Controller

notifies the negotiation participants, TriggerAgent-X will receive the proposal as shown in the

Figure 6-12.

Figure 6-12 - Proposal received by TriggerAgent-X with a suggestion by the System Controller

82

In the Figure 6-12 is shown that as TriggerAgent-X accepted the first proposal, in this

proposal, the System Controller, not only, makes a suggestion to accept the proposal with one

hundred percent certainty, but also, fulfill automatically the results for each point in the proposal,

which can be very useful for the TriggerAgent-X.

This example only reaches the second proposal, but if the negotiation continues, System

Controller will enrich his knowledgebase and the next suggestions will certainly be more

consistent.

In the Table 6-6 is represented the results of the functional test for the knowledge

process that consists basically in the example explained before, where in the first proposal the

System Controller does not have any knowledge about it, but in the second one, it is possible to

help the negotiation participants through the knowledge acquired in the first proposal.

Table 6-6 - System Controller knowledge process functional test

Test Case

Test Case: System Controller knowledge process

Group:

Purpose: Check if the System Controller is control well the knowledge

Comments: This test case starts with no previous negotiation rounds

Behavior Constraints Verdict

! Trigger Agent creates a proposal

 ? System Controller does not have any knowledge about it Success

 ! Participants respond to the proposal

 ! System Controller saves the knowledge

 ! Trigger Agent creates another equal
proposal

 ? System Controller have some
knowledge about it

 Success

 ! System Controller sends the
suggestion to the participants

 OTHERWISE Success

 OTHERWISE Success

6.3.4. Performance comparison

In this sub-section it will presented a method to do some tests in order to determine the

time that a client needs, to change his system to continue interoperable with the system that

made the interoperability change. For that, it was created a web-service to accommodate some

changes, this web-service was created in both Java and C#, but since both showed similar

results, the focus it will be on the Java web-service.

83

The created web-service consists in one method called “carPaint” that takes for input a

car and a date of delivery and returns the date that the car will be painted and ready for

delivery. In order to reach the pretended results, it will be applied some changes in the

previously created web-service that will consume some time that is different depending on the

change complexity. The changes and the time consumed are listed below:

1. In the first change, only the port of the web server has change from 8080 to 8081.

This change requires some changes in WSDL file and requires generating the client

classes and will consume between thirty seconds and one minute.

2. The second change was made in the delivery date that now becomes to be validated

in the server side. This change requires a validation in the date returned by the

method and requires a rebuild. This will consume about one and a half minute.

3. In the third change was added a new argument to the previous method. A color

variable to determine the color that the car will be painted. For that, it is necessary

some changes in WSDL file, requires generating the client classes and requires a

rebuild. This will consume about three minutes.

4. The fourth change was in the semantic side. Previously, the class named Car, that

represents a car, can be interpreted differently by different people. So, it is necessary

to develop an ontology in order to represent the Car equally for all clients that use this

method. Developing an ontology includes some steps, like defining classes in the

ontology, arranging the classes in a taxonomic (subclass-superclass) hierarchy,

defining and describing allowed values for this slots and filling in the values for slots

for instances. This change can be made in about three or four days.

5. The fifth change occurs when an entity wants to do a modification in the car ontology

used in the previous example. For example, previously the ontology represents a toy

car, whereas now, the ontology represents a real car. This change may take very

long time to be matched, since the client needs to know exactly what the server are

“talking”. The changes are the same as in the fourth point adding just one more task

before, that is know exactly what has changed. These changes will take five or 6

days to do all the tasks.

6. The last change is the most complex, since it’s a change in the process of an

operation. In this case is a change in the painting process. The previously process of

painting was done by spray and now the car is painted by submersion technique.

This change seems to be a simple change, but looking more deeply, it reveals that

this change has a lot of complications in the client side. These complications are the

method that the client delivery the car, because now, the client have to delivery only

the car body and not the whole car, the car body needs to resist painting temperature

which in this case the temperature is very high, all that the submersion process may

84

do to the car body, for example, corrosion, deformation and the screw holes can be

covered and finally, changes in the logistics, since it must be delivered only the car

body and the rest of the car should be treated separately, which may be cause some

problems with other supplier companies. This complex change will consume between

fifteen to twenty days.

In the chart of the Figure 6-13 it is shown a curve that characterizes in a very good way

the time spent in the client side in terms of the complexity of the change. This time represents

the time that the client needs to change his system to continue interoperable with the system

that make the change, in other words, represent the system “downtime”. The curve that is

represented in the Figure 6-13 is an illustration based on the above six changes that were made

to the previous created web-service, which means that the axis that refers to “Interoperability

Complexity” is just a sensitivity representation of complexity, since this characteristic is not

measurable in practical terms, meaning that the scale goes from 1 to 6 where, 1 is the low

complexity and 6 is high complexity of interoperability, and the “downtime” axis represents the

real time spent in the web-service modifications.

Figure 6-13 - Time spent in the system change vs. the complexity of the changes without negotiation

Regarding the chart in the Figure 6-13 that shows a representation of the required time to

change the system relatively to the interoperability complexity of the change, when is introduced

negotiation between entities allied to the systems knowledge, it is possible to change the

interoperability curve drastically in a long term way, as illustrated in the chart of the Figure 6-14.

This curve shows that the interoperability complexity grows over the time, but since the

negotiation is allied to the knowledge, in some point of the time, the complexity tends to

decrease. This characteristic is due to the system knowledge, which increases with the time.

Analyzing more deeply the chart in the Figure 6-14 and since that this chart is just a sensitivity

representation, the growing part of the curve is represented by the system learning which may

be compared to the curve represented in the chart of the Figure 6-13. But, when the system

0

200000

400000

600000

800000

1000000

1200000

1400000

1 2 3 4 5 6

R
e
-s

ta
b

li
s
h

 t
im

e
 "

d
o

w
n

ti
m

e
"
 (
s
)

Interoperability Complexity

85

reach a point of knowledge that may allow it to take some decisions in the negotiations, the

curve of the interoperability complexity tends to decrease, meaning that the system negotiations

will be more efficient, requiring less downtime from the systems. The turning point vary form

system to system, because depends on some variables, like, for example, the number of

interoperability changes performed, the level of system learning and of course, the time

elapsed.

Figure 6-14 - Complexity of the system change over time with negotiation

Representing the chart of the Figure 6-13 in a different way, it is possible to characterize

a line that grows over time as the interoperability complexity grows. This behavior is explained

due to the inexistence of some mechanism that minimizes the system “downtime” when a

harmonization break occurs. This line is illustrated in the Figure 6-15 over the curve that was

already illustrated in the Figure 6-14. As it is possible to retain in this chart, when the system

with negotiation reaches the point when the negotiation allied to the knowledge allows it to

make decisions, it is very clear that the interoperability problems becomes much more easy to

deal and much more easy to reestablish the harmonization breaking.

Figure 6-15 - Interoperability complexity over time with and without negotiation

In
te

ro
p

e
ra

b
il

it
y
 C

o
m

p
le

x
it

y

Time Elapsed

In
te

ro
p

e
ra

b
il

it
y
 C

o
m

p
le

x
it

y

Time Elapsed

With
negotiation

Without
negotiation

86

Now, picking up the curve in the Figure 6-14, but this time representing it in terms of the

time that the system needs to be reestablished as the interoperability complexity grows, it is

possible to estimate, through the performed tests in the above web-service and comparing to

the curve in the chart of the Figure 6-13, that the system downtime will be greater, for low

interoperability complexity but for high levels of interoperability complexity the negotiation allied

to the knowledge becomes an asset, making the systems capable of reduce their downtime.

Observing the two curves in the Figure 6-16 that illustrates, once more in a sensitivity way, the

above analysis, it is possible to conclude that a system with negotiation will show higher

“downtime” for low levels of interoperability complexity than a system without negotiation, but in

the important region of the chart (for high values of interoperability), the “downtime” will be

smaller than the system without negotiation. The advantage of the system without negotiation

shown for low interoperability complexity levels is due to, mainly, the time spent in the

negotiation process which will pay off for higher interoperability complexity.

Figure 6-16 - Systems re-establishment time vs. interoperability complexity, with and without negotiation

With the above analysis over the presented sensitivity charts and the real test performed

over the web-service, it is possible to conclude that for low levels of interoperability allied to

immature systems, the approach without negotiation will show smaller system “downtimes”

because when a system made a simple change, the interoperable systems will adapt

themselves with a simple modification, regardless the system knowledge. So, the real problem

is when a mature system makes a higher complexity change, which, without negotiation, will

cause a huge downtime in the entire system, but if the entire system were capable of perform

some interoperability negotiations and additionally capable of learning with those negotiation,

this kind of system changes becomes much more simplest, reducing drastically the time that the

systems need to be inoperable.

R
e-

st
a

b
lis

h
 t

im
e

 "
d

o
w

n
ti

m
e

"

Interoperability Complexity

With
negotiation

Without
negotiation

87

6.4. Hypothesis Validation

In the sub-section 1.4 was defined the hypothesis of this dissertation as well as the

objectives of this work. After the conclusion of the proof-of-concept implementation and with all

tests executed, it is possible to say that the question made in the hypothesis was successfully

achieved during this dissertation. The developed framework fulfilled the main objectives and it

was able to control a negotiation interoperability sustainable environment, making a much more

stable and prepared for the harmonization breaks environment due to the negotiation and the

knowledge offered by the framework.

6.5. Scientific Validation

In order to validate the proposed work, two scientific publications were made. The first

one was published in the 17th IEEE International Conference on Computer Supported

Cooperative Work in Design (CSCWD 2013), from 27
th
 to 29

th
 of June 2013 in Whistler –

Canada. The second publication was made in International IFIP Working Conference On

Enterprise Interoperability (IWEI 2013), from 27
th
 to 28

th
 of March 2013 in Enschede –

Netherlands. The descriptions of the two papers are listed below:

 Santos, T., Coutinho, C., Jardim-Goncalves R. and Cretan, A., “Negotiation

Environment for Enterprise Interoperability Sustainability”, accepted in: 17th IEEE

International Conference on Computer Supported Cooperative Work in Design

(CSCWD 2013). Jun 27-29, Whistler, Canada, 2013.

 Santos, T., Coutinho, C., Cretan, A. and Jardim-Goncalves R., “Agents and

Rules for the Negotiation of Interoperability Solutions”, accepted in: International

IFIP Working Conference On Enterprise Interoperability (IWEI 2013). Mar 27-28,

Enschede, Netherlands, 2013.

88

89

7. FINAL CONSIDERATIONS AND FUTURE WORK

This dissertation and the developed proof-of-concept was based on the project proposed

by Adina Cretan and Carlos Coutinho et. al. in (Cretan et al. 2012) and (Coutinho et al. 2012)

considering the work published by Ricardo Jardim-Goncalves in (Jardim-Gonçalves et al. 2010),

which basically consists in a framework that offers to companies the possibility of negotiate their

interoperability in order to make all companies involved satisfied when some harmonization

break occurs. As described in the beginning of this dissertation, nowadays with the current

turbulent economy is an asset to companies living in a sustainable environment which can offer

stability and efficiency. Having this in mind, this prototype tries to offer an environment with

these characteristics to the companies, where each company will not work alone, but becomes

work together with all the companies in the environment.

With the implementation of the proof-of-concept that was succeed, all the tests done to

the proof-of-concept, regarding the defined functionalities and requirements, were well succeed,

showing that the developed framework is able to create a sustainable environment providing

two types of negotiation that will meet the needs of the companies in the environment. The

proof-of-concept is prepared to support the creation of more methods of negotiations, which is

an asset to the environment if the involved companies need other negotiation methods. With the

validation of the prototype through the executed tests over the framework, the dissertation

hypothesis becomes validated, since that the framework was capable of create a negotiation

sustainable environment, where the companies downtime when an harmonization break occurs,

tend to decrease with time, since that in an early state of the environment, this time tend to be

greater than a simple environment, without negotiation, as proven in the testing section.

This leads to a conclusion that this environment will be much better when it reaches a

certain state or maturity, and when this state is reached, the environment create stronger and

healthier interconnections between the involved companies which is much more resistant to

changes and improvements which are inevitable in the course of time. Since today’s economy

markets are facing enterprises that changes their system frequently (Coutinho et al. 2012) the

developed framework becomes more reliable, since that the environment will reach a maturity

state much more quickly.

7.1. Future Work

In the future the proof-of-concept has much to improve since there are some points that

need more attention, like the proposal questionnaire filled by the negotiation initiator in the

beginning of a negotiation round. This questionnaire in the current version is static, i.e., the

questions in the formulary are the same for all enterprises, which in the real world is not how

should be, because each enterprise has their characteristics and the points that will change in

90

the system varies, not only from enterprise to enterprise but also varies from negotiation to

negotiation.

Additional work foreseen in the future is the improvement in the knowledge acquired by

the system controller. This work should be done in order to improve the accuracy of the

suggestions that de System Controller does for each participant in the negotiation, which can

contain more variables in order to be more realistic.

In a distant future it is great to think that this proof-of-concept can be converted to work

on the cloud, which will bring much more flexibility to the enterprises to living on the

environment and with that, a larger group of enterprises could work together over the

environment.

91

8. REFERENCES

ATHENA, 2010. MDI - Model-driven interoperability,

Agostinho, C. & Jardim-Gonçalves, R., 2009. Dynamic Business Networks : A Headache for
Sustainable Systems Interoperability. In OTM ’09 Proceedings of the Confederated
International Workshops and Posters on On the Move to Meaningful Internet Systems. pp.

194–204.

Alonso, E., 2002. AI and agents : State of the art. AI Magazine.

Anon, 2010. iSurf European Project. Available at: http://www.srdc.com.tr/isurf/ [Accessed
February 1, 2013].

Bayegan, E. & Moslehi, K., 2011. Experience with rule engines in an outage scheduling system.
In 2011 IEEE Power and Energy Society General Meeting. Ieee, pp. 1–8. Available at:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6039892.

Bellifemine, F. et al., 2003. JADE A White Paper. EXP in search of innovation, 3, pp.6–19.

C4ISR, 1998. Levels of Information Systems Interoperability (LISI),

Camarinha-Matos, L.M., 2010. Scientific Research Methodologies and Techniques - Unit 2:
Scientific Method.

Chen, D. & Doumeingts, G., 2003. European initiatives to develop interoperability of enterprise
applications—basic concepts, framework and roadmap. Annual Reviews in Control, 27(2),
pp.153–162. Available at: http://linkinghub.elsevier.com/retrieve/pii/S1367578803000257
[Accessed November 9, 2012].

Chmiel, K. et al., 2004. Testing the Efficiency of JADE Agent Platform.

Coutinho, C., Cretan, A. & Jardim-Gonçalves, R., 2012. Cloud-based negotiation for sustainable
enterprise interoperability. In Engineering, Technology and Innovation (ICE), 2012 18th
International ICE Conference on. pp. 1–10. Available at:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6297698 [Accessed January 25,
2013].

Cretan, A. et al., 2012. NEGOSEIO: A framework for negotiations toward Sustainable
Enterprise Interoperability. Annual Reviews in Control, 36(2), pp.291–299. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S1367578812000454 [Accessed December 12,
2012].

Drools Rule Engine, Drools Rule Engine. Available at: http://www.jboss.org/drools [Accessed
January 24, 2013].

ETSI ES 201 873-1, 2012. Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 1: TTCN-3 Core Language. , 1, pp.1–289.

Elvesæter, B. et al., 2006. Towards an Interoperability Framework for Model- Driven
Development of Software Systems. In Interoperability of Enterprise Software and
Applications. pp. 409–420.

Foundation for Intelligent Physical Agents, FIPA. Available at: http://www.fipa.org [Accessed
January 29, 2013].

92

Geraci, A. et al., 1991. IEEE Standard Computer Dictionary: A Compilation of IEEE Standard
Computer Glossaries,

Hailpern, B. & Tarr, P., 2006. Model-driven development: The good, the bad, and the ugly. IBM
Systems Journal, 45(3), pp.451–461. Available at:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5386628.

IEC TC65, 2002. Industrial Process Measurement and Control.

ISA, 2010. European Interoperability Framework (EIF) for European public services,

ISO/IEC 14598-6, 2001. Software engineering – Product evaluation – Part 6: Documentation of
evaluation modules.

ISO/IEC CD 25040, Software engineering - Software product Quality Requirements and
Evaluation (SQuaRE) - Evaluation reference model and guide.

ISTQB, 2011. Certified Tester - Foundation Level Syllabus,

JACK Agent Framework, JACK Agent Framework. Available at: http://aosgrp.com/products/jack
[Accessed January 20, 2013].

JADE Agent Framework, JADE Agent Framework. Available at: http://jade.tilab.com [Accessed
January 19, 2013].

JBoss Drools team, 2012. Drools Expert User Guide, Available at:
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/pdf/drools-expert-
docs.pdf.

JESS Rule Engine, JESS Rule Engine. Available at: http://www.jessrules.com [Accessed
January 23, 2013].

Jardim-Goncalves, R. et al., 2007. Harmonising technologies in conceptual models
representation. Int. J. of Product Lifecycle Management, 2, pp.187 – 205.

Jardim-Gonçalves, R., Agostinho, C. & Steiger-Garcao, A., 2010. Sustainable Systems ’
Interoperability : A reference model for seamless networked business. In Systems Man
and Cybernetics (SMC), 2010 IEEE International Conference on. pp. 1785–1792.

Jason Agent Framework, Jason Agent Framework. Available at: http://jason.sourceforge.net/wp
[Accessed January 20, 2013].

Kim, T. et al., 2010. MiRE4OWL: Mobile Rule Engine for OWL. In 2010 IEEE 34th Annual
Computer Software and Applications Conference Workshops. Ieee, pp. 317–322.
Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5615817
[Accessed November 20, 2012].

Leeton, U. & Kulworawanichpong, T., 2012. Multi-Agent Based Optimal Power Flow Solution. In
Power and Energy Engineering Conference (APPEEC), 2012 Asia-Pacific. pp. 1–4.

Liu, D.I., Gu, T.A.O. & Xue, J.I., 2010. Rule Engine based on improvement Rete algorithm. In
The 2010 International Conference on Apperceiving Computing and Intelligence Analysis
Proceeding. Ieee, pp. 346–349. Available at:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5709916.

93

Liu, X. et al., 2011. Research and application of Agent Communication Language Extended
XML. 2011 Seventh International Conference on Natural Computation, pp.1309–1313.

Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6022380.

Massawe, L.V., Kinyua, J. & Aghdasi, F., 2010. An Implementation of a Multi-Agent Based RFID
Middleware for Asset Management System Using the Jade Platform. In IST-Africa 2010
Conference Proceedings.

Miller, J. & Mukerji, J., 2003. MDA Guide Version 1.0.1,

Myers, G.J. et al., 2004. The Art of Software Testing, Second Edition, John Wiley & Sons, Inc.

Nguyen, M.T., Fuhrer, P. & Pasquier-Rocha, J., 2009. Enhancing e-health information systems
with agent technology. International journal of telemedicine and applications, 2009(ii),
p.279091. Available at:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2592555&tool=pmcentrez&rend
ertype=abstract [Accessed October 26, 2012].

OMG, 1999. OMG Unified Modeling Language Specification, Available at: www.omg.org

[Accessed January 30, 2013].

Oliveira, A.I. & Camarinha-Matos, L.M., 2012. Electronic Negotiation Support Environment in
Collaborative Networks. Advances in Information and Communication Technology, 372,

pp.21–32.

Open Agent Architecture, Open Agent Architecture. Available at: http://www.ai.sri.com/~oaa/
[Accessed January 21, 2013].

OpenRules Rule Engine, OpenRules Rule Engine. Available at: http://openrules.com [Accessed
January 24, 2013].

Panetto, H., 2007. Towards a Classification Framework for Interoperability of Enterprise
Applications. International Journal of CIM, 8, pp.727–740.

Peristeras, V. & Tarabanis, K., 2006. The Connection , Communication , Consolidation ,
Collaboration Interoperability Framework (C 4 IF) For Information Systems
Interoperability Defining interoperability. , 1(1), pp.61–72.

Petzmann, A. et al., 2007. Applying MDA ® Concepts to Business Process Management.
Interchang.,

R. Jennings, N., Sycara, K. & Wooldridge, M., 1998. A Roadmap of Agent Research and
Development. Autonomous Agents and Multi-Agent Systems, 1(1), pp.7–38.

Ray, S.R. & Jones, a. T., 2006. Manufacturing interoperability. Journal of Intelligent
Manufacturing, 17(6), pp.681–688. Available at:

http://www.springerlink.com/index/10.1007/s10845-006-0037-x.

Ruggaber, R., 2006. ATHENA–advanced technologies for interoperability of heterogeneous
enterprise networks and their applications. Available at: http://interop-
esa05.unige.ch/INTEROP/Proceedings/IST/IST2_ATHENA.pdf [Accessed January 25,
2013].

Schmidt, D.C., 2006. Model-Driven Engineering. In IEEE Computer Society.

TTCN-3, Tree and Tabular Combined Notation 3. Available at: http://www.ttcn-3.org/ [Accessed
February 4, 2013].

94

Tretmans, J., 2001. An Overview of OSI Conformance Testing. , pp.1–14.

Truyen, F., 2006. The Fast Guide to Model Driven Architecture - The Basics of Model Driven
Architecture. URL: http://www. omg. org/mda/presentations. htm, …. Available at:
http://secure.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf [Accessed January
25, 2013].

Vernadat, F., 2003. Enterprise modelling and integration: From fact modelling to enterprise
interoperability. Enterprise inter- and intra-organizational integration: Building international
consensus, pp.25–33.

Vernadat, F., 2004. Interoperable enterprise systems: Principles, architectures and metrics. In
Proceedings of international conference on management control and production logistics
(Keynote paper).

Vernadat, F.B., 1996. Enterprise modelling and integration: Principles and applications
Chapman & ., London.

Vernadat, F.B., 2007. Interoperable enterprise systems: Principles, concepts, and methods.
Annual Reviews in Control, 31(1), pp.137–145. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S1367578807000132 [Accessed November 4,
2012].

White, L.J., 1987. Software Testing and Verification. Advances in Computers, Academic Press,

pp.335–391.

Wycisk, C., McKelvey, B. & Hülsmann, M., 2008. “Smart parts” supply networks as complex
adaptive systems: analysis and implications. International Journal of Physical Distribution
& Logistics Management, 38(2), pp.108–125. Available at:
http://www.emeraldinsight.com/10.1108/09600030810861198 [Accessed November 6,
2012].

Xu, B. & Xie, S., 2008. Research of dynamic rule engine in financial management software. In
Machine Learning and Cybernetics, 2008 International Conference. pp. 12–15. Available
at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4620622 [Accessed January 25,
2013].

Yin, Z. et al., 2012. Rule Engine-based Web Services Composition. In World Automation
Congress (WAC), 2012. pp. 1–4.

Zhang, Gang, Shan, W. & Wang, F., 2010. Research on the Promotion of Rule Engine
Performance. In Intelligent Systems and Applications (ISA), 2010 2nd International
Workshop on. pp. 1–3.

i-Surf, 2009. Deliverable 8.1.1 - Functional and NonFunctional Evaluation Criteria for i-Surf
Components and Integrated Platform. , pp.1–64.

