
Filipe Miguel Guerreiro Martins

Licenciado em Ciências da
Engenharia Electrotécnica e de Computadores

eVentos 2 - Autonomous sailboat control

Dissertação para obtenção do Grau de Mestre em
Engenharia Electrotécnica e de Computadores

Orientador : Prof. Doutor Luís Filipe dos Santos Gomes,
Professor Associado, Universidade Nova de Lisboa

Júri:

Presidente: Mário Fernando da Silva Ventim Neves

Arguente: Luís Filipe Figueira Brito Palma

Vogal: Luís Filipe dos Santos Gomes

Setembro, 2013

iii

eVentos 2 - Autonomous sailboat control

Copyright c© Filipe Miguel Guerreiro Martins, Faculdade de Ciências e Tecnologia, Uni-
versidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

Acknowledgements

I would like to start by thanking my dissertation supervisor, Prof. Luis Gomes for all his
help, patience and support when i needed and for putting up with my work methods. I
would also like to express my gratitude to my laboratory colleagues Marcelo Rodrigues
and Flávio Gil for all their support and help.

My next acknowledgements go to all my academic colleagues and friends that made
my academic path much more interesting and worthwhile, namely Pedro Cunha, Pedro
Sardinha, Carlos Ribeiro, Diogo Morgado, João Silva, Nuno Pereira, Hugo Serra, Pedro
Leitão, José Vieira, António Furtado, Ricardo Mendonça, Pedro Mota and many, many
more.

I’d like to also acknowledge all my friends and life-time partners from the university’s
archery team, for being fun (most of the times even moronic) and for all their support
when i really needed it.

Last but not least my gratitude goes to my parents and family for their continuous
support along these academic years.

v

vi

Abstract

Sailboat navigation started as a way to explore the world. Even though performance
is significantly lower than that of a motorboat, in terms of resources, these vessels still
are the best low-cost solutions. On the past, navigation depended greatly on estimates
or on the stars. Nowadays it depends on precise data provided by a variety of electronic
devices, independent from the user’s location.

Autonomous sailboats are vessels that use only the wind for propulsion and have
the capacity to control its sails and rudders without human intervention. These particu-
larities give them almost unlimited autonomy and a very valuable ability to fulfill long
term missions on the sea, such as collecting oceanographic data, search and rescue or
surveillance.

This dissertation presents a fuzzy logic controller for autonomous sailboats based
on a proposed set of sensors, namely a GPS receiver, a weather meter and an electronic
compass. Following a basic navigation approach, the proposed set of sensors was studied
in order to obtain an effective group of variables for the controller’s fuzzy sets, and rules
for its rule base. In the end, four fuzzy logic controllers were designed, one for the sail
(to maximize speed) and three for the rudder (in order to comply with all navigation
situations). The result is a sailboat control system capable of operation in a low cost
platform such as an Arduino prototyping board. Simulated results obtained from a data
set of approximately 100 tests to each controller back up the theory presented for the
controller’s operation, since physical experimentation was not possible.

Keywords: Autonomous sailboat, fuzzy logic control, fuzzy set, rule base, sailing, Ar-
duino, GPS, Compass, Anemometer

vii

viii

Resumo

A navegação à vela estreou-se como uma maneira de explorar o mundo. Mesmo
tendo um rendimento bastante menor que o de um barco a motor, estes navios continuam
a ser a melhor solução de baixo custo no que toca ao gasto de recursos. No passado, a
navegação dependia grandemente de estimativas e da leitura das estrelas, hoje em dia
depende de dados precisos fornecidos por uma variedade de aparelhos electrónicos, in-
dependentemente da localização do utilizador.

Veleiros autónomos são veículos que apenas utilizam o vento como forma de propulsão,
com capacidade de controlar as suas velas e lemes sem ajuda humana. Estas particula-
ridades dão autonomia quase ilimitada e uma valiosa habilidade de cumprirem missões
longas, tais como recolha de dados oceanográficos, busca e salvamento ou vigilância.

Esta dissertação apresenta um controlador difuso para veleiros autónomos baseado
num conjunto proposto de sensores, nomeadamente um receptor GPS, anemómetro, cata-
vento e um sensor de bússola. Seguindo uma abordagem baseada em navegação simples,
o conjunto de sensores proposto foi estudado de forma a obter um grupo eficaz de variá-
veis para os conjuntos difusos do controlador, e de regras para a sua base de regras. No
final, quatro controladores de lógica difusa foram projectados, um para a vela (de forma
a maximizar a velocidade) e três para o leme (de forma a cumprir todas as situações pos-
síveis de navegação). O resultado foi a criação de um sistema de controlo para navegação
à vela capaz de actuar numa plataforma de baixo custo, uma placa de prototipagem Ar-
duino. Os resultados de simulação obtidos de um conjunto de dados de aproximada-
mente 100 testes a cada controlador apoiam a teoria apresentada para a operação deste
controlador, visto que a experimentação em ambiente físico não foi possível.

Palavras-chave: Veleiro autónomo, controlador de lógica difusa, conjunto difuso, base
de regras, navegação à vela, Arduino, GPS, Bússola, Anemómetro

ix

x

Contents

Acknowledgements v

Abstract vii

Resumo ix

List of Figures xv

List of Tables xix

Abbreviations xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives and contributions . 2
1.3 Dissertation Outline . 2

2 Related work 5
2.1 FASt - FEUP Autonomous Sailboat . 6

2.1.1 Hardware . 6
2.1.2 Software . 8

2.2 Fuzzy logic control on autonomous sailing systems 9
2.2.1 System Architecture . 9
2.2.2 Fuzzy Control System . 10
2.2.3 Results and conclusions . 12

3 Supporting Concepts 15
3.1 Basics of Sailing . 15

3.1.1 The vessel . 15
3.1.2 The use of sails . 17
3.1.3 Sailing Techniques . 18

xi

xii CONTENTS

3.2 Fuzzy Control . 21

3.2.1 An Introduction . 21

3.2.2 Applications . 22

3.2.3 Essential characteristics . 23

3.2.4 Fuzzy logic controller architecture 24

4 Software and Hardware 29

4.1 Arduino . 29

4.1.1 Hardware . 30

4.2 Proposed sensors for the project . 31

4.2.1 Weather meter . 31

4.2.2 CMPS10 Tilt Compensated Magnetic Compass 32

4.2.3 EM-406A SiRF III GPS Receiver with Antenna 32

4.3 Available sensors and emulators . 34

4.3.1 Simulation platform . 34

4.3.2 PIC-Arduino interface . 35

4.4 Xfuzzy . 35

5 Proposed controller 37

5.1 Transition between manual and automatic control 38

5.2 Designed controller . 41

5.3 Controller Variables . 42

5.3.1 Wind Alignment . 42

5.3.2 Directional Alignment . 44

5.4 Control structure . 46

5.4.1 Sail . 47

5.4.2 Rudder . 50

5.4.3 Rudder decider structure . 55

5.4.4 Goal approaching . 58

6 Experimental results 63

6.1 Xfuzzy- Arduino integration . 64

6.2 Experimental results and analysis . 64

6.2.1 Sail . 65

6.2.2 Favorable Wind . 68

6.2.3 Tack Left . 71

6.2.4 Tack Right . 73

7 Conclusions and future work 77

7.1 Conclusions . 77

7.2 Future Work . 78

CONTENTS xiii

Bibliography 81

A Experimental results tables 87

xiv CONTENTS

List of Figures

2.1 FEUP Autonomous Sailboat [AC09]. 6
2.2 FASt’s electronic system, adapted from [AC09]. 7
2.3 FASt’s software organization, adapted from [AC09]. 8
2.4 (a) - Robbe Atlantis yacht; (b) - Detailed system architecture; 10
2.5 Fuzzy sets for rudder input. 10
2.6 Fuzzy set for rudder output. 11
2.7 Fuzzy set for sail input. 11
2.8 Fuzzy set for sail output. 12
2.9 Test runs for turning against and in favor of the wind respectively with 2

second time intervals. 13

3.1 Main sailboat equipment [Boa] and side terms, viewed from above. 16
3.2 Killer Whales Yacht. 17
3.3 Experienced winds [Ass]. 17
3.4 Lift and aerodynamic force created by the wind [Saib]. 19
3.5 Sailing techniques 1 [Sal96]. 19
3.6 Sailing techniques 2 [Sal96]. 20
3.7 Sailing techniques 3 [Cat, Sal96]. 21
3.8 Fuzzy logic controller [Alo]. 24
3.9 Different membership function types: (a) - Triangular ; (b) - Trapezoidal;

(c) - Bell-shaped; (d) - Singleton; . 25
3.10 Fuzzification stage for crisp inputs [Yal]. 25
3.11 Mamdani two input, two rule inference system [Kna]. 27

4.1 Arduino Mega 2560 board [Ban]. 30
4.2 Proposed sensors: a)Weather Meter [Sysb]; b)Compass Module [PTRb];

c)GPS Module [PTRa]; . 33
4.3 Sensorial emulation setup [Gil13]. 34
4.4 Simulation interface, adapted from [Gil13]. 35

xv

xvi LIST OF FIGURES

5.1 Signal generated when the remote controller is off. 37
5.2 Signal generated when the remote controller is off. 38
5.3 Signal generated when the remote controller is on (noise is irrelevant in

this case as it is only generated from the RF waves into the oscilloscope). . 38
5.4 Transition between manual and remote control. 39
5.5 Different characteristics in the controller’s signal. 39
5.6 a)Counter implementation flowchart; b)Transition strategy flowchart; . . . 40
5.7 Pin scheme used for transition between controls. 41
5.8 General layout of inputs and outputs of the controller system. 42
5.9 New set of variables used for sail and rudder control. 42
5.10 Wind alignment value range. 43
5.11 Wind alignment algorithm confirmation. 43
5.12 Original graphical projection of the intended course. 44
5.13 Modified graphical projection of the intended course. 44
5.14 Rectangular to polar coordinate conversion, adapted from [Vau]. 45
5.15 Directional alignment value range. 45
5.16 Updated layout of the controller system. 47
5.17 Trapezoid point specification. 47
5.18 Roll’s fuzzy set. 48
5.19 Wind Speed’s fuzzy set. 48
5.20 Wind Alignment’s fuzzy set. 49
5.21 Sail’s fuzzy set. 49
5.22 Directional Alignment’s fuzzy set. 51
5.23 Boat Speed’s fuzzy set. 51
5.24 Rudder’s fuzzy set. 52
5.25 State machine of the rudder decider structure. 56
5.26 Potentially used sailing area, defined in the beginning of the course. . . . 57
5.27 Radius from both the objective buoy and distance to the vessel. 58
5.28 a) Finish line half planes identification; b) Lines at right angles to the finish

line; . 59
5.29 Zone division for finish line detection. 60

6.1 Experimental results for the sail controller part 1. 65
6.2 Experimental results for the sail controller part 2. 65
6.3 Experimental results for the sail controller part 3. 66
6.4 Experimental results for the sail controller part 4. 66
6.5 Experimental results for the sail controller part 5. 67
6.6 Experimental results for the favorable wind controller part 1. 68
6.7 Experimental results for the favorable wind controller part 2. 68
6.8 Experimental results for the favorable wind controller part 3. 69
6.9 Experimental results for the favorable controller part 4. 70

LIST OF FIGURES xvii

6.10 Experimental results for the favorable wind controller part 5. 70
6.11 Experimental results for the tack left controller part 1. 71
6.12 Experimental results for the tack left controller part 2. 71
6.13 Experimental results for the tack left controller part 3. 72
6.14 Experimental results for the tack left controller part 4. 72
6.15 Experimental results for the tack right controller part 1. 73
6.16 Experimental results for the tack right controller part 2. 73
6.17 Experimental results for the tack right controller part 3. 74
6.18 Experimental results for the tack right controller part 4. 74

7.1 Alternative tacking approach [Saia]. 78

xviii LIST OF FIGURES

List of Tables

2.1 Rudder rule base. 11

3.1 Applications of fuzzy logic control, as seen in [YLZ95] page 6. 22

4.1 Arduino Mega 2560 features. 31
4.2 RMC Data Format, adapted from [ST]. 33

5.1 Test results for acquiring efficient threshold values. 40
5.2 Confirmation examples for the directional alignment algorithm. 46
5.3 Trapezoid values for each fuzzy set on the sail controller. 50
5.4 Fuzzy rules for the sail inference system. 50
5.5 Trapezoid values for each fuzzy set on the rudder controllers. 52
5.6 Fuzzy rules for the rudder inference system - favorable wind situation. . . 53
5.7 Fuzzy rules for the rudder inference system - left tack situation. 54
5.8 Fuzzy rules for the rudder inference system - right tack situation. 55

7.1 Available router model research. 79

A.1 Sail controller experimental results. 87
A.2 Rudder: Favorable Wind controller experimental results. 90
A.3 Rudder: Tack Right controller experimental results. 92
A.4 Rudder: Tack Left controller experimental results. 94

xix

xx LIST OF TABLES

Abbreviations

COM Component Object Model

CPU Central Processing Unit

FEUP Faculdade de Engenharia da Universidade do Porto

FPGA Field Programmable Gate Array

GPS Global Positioning System

I2C Inter Integrated Circuit

ICSP In Circuit Serial Programming

JRE Java Runtime Environment

NMEA National Maritime Electronics Association

PCB Printed Circuit Board

PWM Pulse Width Modulation

RAM Random Access Memory

RF Radio Frequency

RMB Recommended Minimum Navigation Information

RMC Recommended Minimum Data

SPI Serial Peripheral Interface

SSI Serial Synchronous Interface

UART Universal Asynchronous Receiver/Transmmiter

USB Universal Serial Bus

xxi

xxii

1
Introduction

1.1 Motivation

Developing an autonomous sailboat is a relatively complex task, from the vessel’s me-
chanical construction to implementing its electronic systems. Sailing can be viewed as
a complex problem dependent on unpredictable environmental conditions and interre-
lated variables such as the designated course, wind (direction and speed) and sea state.
In conventional sailing, the sailor controls the rudder according to the desired course of
action and the sail to maximize velocity. For a given course, there is always an optimum
angle between the sail and direction of the wind to maximize the speed of the vessel.

Autonomous sailboats are robotic vessels that use wind for propulsion and are ca-
pable of controlling the rudder and sails without human intervention. Currently, inter-
national regulations for navigation do not contemplate unmanned vehicles because, in
practical terms, solutions that carry out the International Maritime Organization (IMO)
regulations are not yet available. With the potential for autonomous vessels to carry
out real missions, such as navigation for single handed sailors [War91], ocean sampling
[NAC08] or simple auto-pilot functions, allied with low cost solutions can help change
this scenario. Various authors addressed the issues associated with autonomous sailing.
The basic course control problem (resorting on a rudder) has been partially solved for
decades and is currently used on commercial and pleasure crafts. However, the perfor-
mance of a sailboat is strongly dependant on the way the rudder is controlled in order
to advance using minimal wind variations. On competitions, resorting to autopilot is
deemed as a "necessary evil". This way, it is obvious that room exists for new develop-
ments and various projects exist in the area, where techniques such as neural networks
[ATX01] and fuzzy control [SPJ07] have been applied.

1

1. INTRODUCTION 1.2. Objectives and contributions

1.2 Objectives and contributions

Completely autonomous navigation requires other tasks such as reaching a pre-determined
set of geographic points, maintaining the vessel inside a delimited area or achieving
minimal time to pass through a designated course. Various works have been published
[ATA02, SP08, EK06] and from these efforts resulted autonomous sailboats demonstrat-
ing these technologies, appearing in competitions such as Microtransat [Micc]. In Novem-
ber 2010, a meeting between various Portuguese academic institutions culminated in the
idea to start a new maritime robotic competition, MAROCUP (MAritime RObotic CUP).
This dissertation’s main objective is to design, simulate and implement the general archi-
tecture for UNL’s sailboat controller. To achieve this objective, comprehension of how a
sailboat works is necessary to obtain an expert’s view of the system. The strategy used
was independent control of rudder and sail, for decreased complexity and the type of
control used was fuzzy logic. This type of control was chosen mainly because of its abil-
ity to design and simulate a system without a proper description. In this case, the sailboat
system had no description to start working with. Rudder control needed more than one
controller since steering a sailboat is wind dependent, making it a delicate and complex
system, as seen ahead. A secondary objective of this dissertation was improving the work
already done in this project [Gil13]. This objective was achieved by designing a method
for transition between the vessel’s automatic and manual control modes and by various
suggestions done in chapter 7.

1.3 Dissertation Outline

Besides this introductory chapter, this dissertation is organized in six more chapters.

Chapter 2 gives a small introduction about various other projects developed in the
area. A mora detailed description is given of two points of interest: an autonomous sail-
boat system and a fuzzy logic controller for sailing systems. The sailboat was designed
in FEUP and its hardware and software specifications are presented. The fuzzy control
system is described and it is important to notice that it was experimented on a vessel
much similar to the one designed by FEUP.

Chapter 3 presents the main concepts related with the work done on this dissertation.
First, a basic introduction to a sailboat’s most important components, use of sails and
techniques used is presented. A short introduction about fuzzy control is also given,
presenting some applications, its essential characteristics and how a typical inference
system works.

Chapter 4 describes the hardware and software for the project. In hardware aspects,
the Arduino prototyping board is described. Also, proposed and available sensors for
development are presented, namely a weather meter, magnetic compass, GPS receiver
and emulators. These are not the same since most of the work done was in simulation
because of lack of materials. In terms of software, Sevilla Microelectronic Institution’s

2

1. INTRODUCTION 1.3. Dissertation Outline

Xfuzzy design tool is described.
Chapter 5 describes all the developed work. After a general layout, a description of

the transition method between automatic and manual control is given before presenting
the designed controller. This controller is thoroughly described, its variables, control
strategies, methods for changing strategies and two techniques for approaching a finish
point.

Chapter 6 presents experimental results obtained from both Xfuzzy’s simulation and
Arduino code for the designed controllers. These experimental results are obtained using
MATLAB to graphically obtain representations of the the data sets.

Chapter 7 collects a set of conclusions and further research opportunities for this
project.

3

1. INTRODUCTION 1.3. Dissertation Outline

4

2
Related work

A sailboat is a strongly non-linear system that has been given proof to be easily con-
trolled. Its mechanical design comes from hundreds of years of evolution concerning
mainly the efficiency and reliability of the vehicle and its ease of use by human opera-
tors. Out of many, this chapter introduces an existing autonomous sailboat system and
also a fuzzy logic controller designed for use in sailboats.

Additional systems are described in [BJ12, KSJM09, SJ12, RRGI+11, Bri11]. [BJ12] de-
scribes a simple controller based on an expert’s approach and tested on the autonomous
sailboat VAIMOS built by IFREMER. [KSJM09] describes a modification to another au-
tonomous system (ROBOAT) to develop passive acoustic monitoring of marine mam-
mals. [SJ12] describes the above system ROBOAT. [RRGI+11] describes a sailing fuzzy
logic system based on an omni-directional camera for obstacle detection. [Bri11] de-
scribes yet another autonomous sailboat system, from the prototype to the control so-
lution.

5

2. RELATED WORK 2.1. FASt - FEUP Autonomous Sailboat

2.1 FASt - FEUP Autonomous Sailboat

The autonomous sailboat FASt shown in figure 2.1 is an unmanned vessel 2, 5 meters
wide, designed and developed in FEUP (Faculdade de Engenharia da Universidade do
Porto, Portugal) as an extra-curricular project by students of master’s degree in electrical
engineering. Its rig is similar to that of real manned sailboat and it entered the first edition
of the World Robotic Sailing Championship in 2008[OGfiC].

Figure 2.1: FEUP Autonomous Sailboat [AC09].

Its electronic control and navigation system is based on a reconfigurable platform con-
taining a FPGA (Field Programable Gate Array) executing the operating system uCLinux
in a Microblaze processor. Besides the CPU and the peripherals necessary to the compu-
tational system, the FPGA implements a set of dedicated interface and processing units
that realize various communication processes with the peripherals (sensors and actua-
tors). These modules give relevant and pre-processed data do the CPU from each sensor
and generate the control signals necessary to act on the electrical motor actuators) [AC09].

2.1.1 Hardware

FASt’s electronic system was built around a FPGA based commercial platform, which
implements a computational system. Besides the incorporated sensors and actuators, the
vessel has an Ethernet router with wireless connection, remote radio controller and an
IRIDIUM modem for short data message communication when sailing in open sea. The
electric power necessary onboard is provided be a 45 Peak-Watt solar panel, two lithium-
ion with a total capacity of 190 Watt/hour and a commercial module which integrates
the battery charger and power supply.

Figure 2.2 shows a simplified diagram of the electronic system included in the vessel.

6

2. RELATED WORK 2.1. FASt - FEUP Autonomous Sailboat

A motherboard aggregates all the electronic components used in interfacing with the
FPGA. It also offers a set of connectors where all of FASt’s sensors and actuators are
linked. Also, it is included a SD card reader which is used for data registry and non-
volatile data such as real time clock, used to maintain the main state variables and to
provide the current time whenever the GPS module is put in low-consumption mode.

Figure 2.2: FASt’s electronic system, adapted from [AC09].

The computational system was implemented around a Spartan3E 1200 (Suzaku SZ130
[AT]) FPGA. The platform has 32 Mega-Bytes for SDRAM, 8 Mega-Bytes for flash mem-
ory, Ethernet connection and a serial port for the data console. The flash memory main-
tains an image of the operating system and the FPGA configuration. This information can
be refreshed from the operating system’s shell. There is a total of 86 terminals directly
connected to FPGA pins, which permits the direct connection of various peripherals.

The sensors and actuators present in the system connect to these pins through iso-
lation circuits. The main sensors are a GPS receptor, electronic compass, inclinometer,
anemometer, wind vane and sail angle detector. There are still 5 channels available for
digital to analog conversion in case of expansion. The actuators allow the control of the
twin rudders and the position of the two available sails. Rudder control is done by 2
independent servo-motors. The position of the sails is controlled by a single motor by a
PWM (Pulse Width Modulation) modulator.

7

2. RELATED WORK 2.1. FASt - FEUP Autonomous Sailboat

2.1.2 Software

The software component was developed in C, using standard Linux libraries also avail-
able in uCLinux. The navigation and control processes are divided in various concurrent
processes communicating between themselves through UDP sockets, as shown in figure
2.3. The adoption of an operating system based in Linux allows an highly efficient soft-
ware development environment. Any of the implemented programs can be compiled and
executed in any Linux machine that is accessible via TCP/IP to FASt’s onboard computer.

Figure 2.3: FASt’s software organization, adapted from [AC09].

To support the validation and development of the software, a FASt emulator was de-
veloped in laboratory replacing the layer that implements the hardware interface. The
emulator (vaphw-sim) includes a non-linear dynamic model of the vessel, which simu-
lates its behavior according to the wind and the sail and rudder positioning commands.
This is an essential step to allow the independent development of the software part, free
from the hardware and to limit the number of necessary field tests, which require signif-
icant logistics, resource and time spending.

In order to ease the troubleshooting of the interface software and developed hardware
an interactive visual application was created. This application allows direct access to all
FASt’s peripherals (vapif). Real time monitorization is made by another application
(vaplotter) which graphically registers the vessels position, including all the relevant
parameters for the navigation and control algorithms. The same application allows the
vessel’s mission programming as a sequence of geographic points that should be visited,

8

2. RELATED WORK 2.2. Fuzzy logic control on autonomous sailing systems

and also the reproduction of saved data during a navigation mission, real or simulated.

2.2 Fuzzy logic control on autonomous sailing systems

Many different systems are available that can assist in the steering of a sailboat. The most
popular commercial systems are autopilots and wind vanes and both systems can keep
the vessel on a predefined course. While the autopilot keeps the vessel on course using
compass data, the wind vanes keep the course using the wind. Both systems control the
rudder but have no influence on the sail sheets, these need to be adjusted manually. Many
methods for rudder control exist, fuzzy [ASC97, Van97] as well as nonfuzzy [War91] but
none of them cover sail control.

The system proposed in this section is able to control all the manoeuvres of an au-
tonomous sailboat. A separate software module is responsible for weather routing and
delivering directions for the actual vessel position and weather conditions in real time.
If the vessel’s direction deviates, the system adjusts the rudder in order to achieve the
desired course. A second control system assures that there is flow in the sails in order to
get speed. It also controls the tilting of the vessel, depending on the speed and direction
of the wind. The main aim of this system is to imitate the behavior of an experienced hu-
man sailor. Therefore it is not limited to a specific vessel, but applicable to every common
type of sailboat. Fuzzy logic is used to control both actuators for sail and rudder. This
is a very suitable method for transforming expert’s knowledge into a computer program
in form of if-then rules, as presented in [SPJ07], which will be described in the following
sub-sections.

2.2.1 System Architecture

Experimenting the system was carried out on the 1,38m yacht model "Robbe Atlantis"
(figure 2.4 (a)) under real-world conditions. The vessel won the First Microtransat Chal-
lenge [Micc] for autonomous sailboats in Toulouse, France in June 2006. The aim was
to demonstrate completely autonomous sailing, where routing and navigation have to
run automatically on the vessel. The "Robbe Atlantis" is usually used as a remote con-
trolled sailboat. For testing purposes it was additionally equipped with various sensors
to measure the environmental conditions. A program called "abstractor" running on the
boat gathers sensor data and transforms it into semantically useful information for the
routing software. The modular architecture of the system is shown in figure 2.4 (b).

Various sensors deliver data for the routing (navigator) and fuzzy inference system
(skipper) which covers the rudder and sail control circuits. The data abstraction layer
transforms raw sensor data into useable data for the high level applications. Both control
circuits periodically send their results (rudder and sail position) back to the abstraction
layer. This data is then transformed back into a format readable by the hardware con-
troller devices of the actuators.

9

2. RELATED WORK 2.2. Fuzzy logic control on autonomous sailing systems

(a) (b)

Figure 2.4: (a) - Robbe Atlantis yacht; (b) - Detailed system architecture;

2.2.2 Fuzzy Control System

In sailing, different persons are able to control the rudder and sail separately, without
communication. Therefore in the presented system, two independent working control
loops are responsible for the rudder and sail actuators. The rudder controller keeps the
vessel on a predefined course given by the routing software. The sail controller avoids
capsize and assures that there is enough flow in the sails, giving propulsion power to the
vessel. Both actuators should be controlled fast but smoothly, without leaps or oversteer-
ing. Two Sugeno type fuzzy inference systems were used to reach this goal. Trapezoid
fuzzy sets are used as inputs and singletons represent output variables. Defuzzification
is done by the center of gravity of singletons method. The execution of the system was
identified by experimentation and has to be adapted for every type of vessel.

The current vessel direction and desired direction are the input data for the rudder
control circuit. The difference between these two give the necessary course correction
which enters directly into the fuzzy system (desired direction). To avoid oversteering,
the angular velocity of the vessel flows as an additional input variable (turn). The fuzzy
sets representing the linguistic terms of these input variables are shown in figure 2.5.

Figure 2.5: Fuzzy sets for rudder input.

10

2. RELATED WORK 2.2. Fuzzy logic control on autonomous sailing systems

The rudder control output is the change of the rudder position. The fuzzy variable
rudder change (in percentage) contains five singletons representing the linguistic terms
of the variable (figure 2.6).

Figure 2.6: Fuzzy set for rudder output.

The rule base in table 2.1 of the rudder control systems contains 15 rules in the form
IF desired direction IS x AND turn IS y THEN rudder change IS z .

Table 2.1: Rudder rule base.
Rudder change Turn

Desired direction Left Neutral Right
Strong left Left Strong left Strong left

Left Keep Left Strong left
Middle Right Keep Left
Right Strong right Right Keep

Strong right Strong right Strong right Right

The tilting of the vessel, direction and speed of the wind are the inputs for the sail
control circuit. The sail fuzzy system calculates direction and amount of adjustment nec-
essary for the sail winch. The aim of this control system is to keep the vessels tilting on
an optimum according to the actual wind conditions.

The variable heeling(deg) acts as an input for the sail inference system, which is the
difference between the desired tilting and the actual tilting of the vessel. The fuzzy set
representing the linguistic terms of this input variable is shown in figure 2.7.

Figure 2.7: Fuzzy set for sail input.

11

2. RELATED WORK 2.2. Fuzzy logic control on autonomous sailing systems

The sail control system output is the change of the sheet position, via the sheet winch.
The fuzzy variable sail change (in percentage) contains three singletons representing the
linguistic terms of the variable (figure 2.8)

Figure 2.8: Fuzzy set for sail output.

The rule base of the sail control system contains the following if-then rules:

• If heeling is too low then tighten sheets;

• If heeling is optimal then keep sheets;

• If heeling is too high then ease off the sheets;

2.2.3 Results and conclusions

Several test runs were carried out to demonstrate the feasibility and suitability of the
presented approach. The data presented on figure 2.9 refers to the final test run prior
to the Microtransat competition, where wind conditions were within operation range of
the demonstration vessel. The process of two maneuvers being executed are shown, one
representing a turn against the wind and another in favor of the wind, respectively on
the left and right. The drawings represent present vessel heading, sail position, rudder
position, apparent wind direction, tilting and time lapse stated.

As seen above, a sailboat can be effectively controlled by two independent Sugeno
type fuzzy inference systems. This reflects common sailing practice where different per-
sons act more or less independently on rudder and sail control. The system presented
allows to keep the vessel on a predefined course and ensures a suitable sail position. The
test runs presented did not show any conflict between the two fuzzy systems executed in
parallel. The combination of the weather routing system and the described fuzzy control
system allows the sailboat to reach any target completely autonomously.

12

2. RELATED WORK 2.2. Fuzzy logic control on autonomous sailing systems

Figure 2.9: Test runs for turning against and in favor of the wind respectively with 2
second time intervals.

13

2. RELATED WORK 2.2. Fuzzy logic control on autonomous sailing systems

14

3
Supporting Concepts

This chapter introduces the reader to some of the key aspects of this dissertation, such
as basic sailing theory, which is important to learn how to control the vessel. It is also
important to know some basic aspects of fuzzy control theory in order to design a good
controller.

3.1 Basics of Sailing

In order to design a good controller for a sailboat, it is necessary to know how to sail
one properly. Also, it is important to know some essential characteristics of how the
vessel is built, what is the usefulness of the most important features. Finally, basic sailing
techniques are going to be viewed [Sal96]. In regard to sailing techniques, the veracity of
the information was confirmed using the simulator Virtual Skipper 5, available on [Ent].

3.1.1 The vessel

The most common type of small to midsize sailboat is the sloop. The basic equipment
needed for sailing is composed of one mast and two sails. The mainsail is usually a
tall triangular sail mounted to the mast, with its foot along the boom, which extends
towards the back from the mast. The sail in front, called the headsail or the jib, mounts
on the forestay between the bow (frontal part of a ship) and the masthead, with its trailing
corner controlled by the jibsheet. A general idea of these components position and sides
of the ship are shown in figure 3.1.

The ship used for this project is a Killer Whales Radio Controlled Yacht, shown in
figure 3.2. The user is given control of both the rudder direction and the sail trimming

15

3. SUPPORTING CONCEPTS 3.1. Basics of Sailing

Bow

Stern

Starboard Port

Figure 3.1: Main sailboat equipment [Boa] and side terms, viewed from above.

(tightening and loosening of the sail) of both mainsail and jib. Since this is a simple
setup, only these two components and the keel are going to be analyzed. The sail will be
analyzed in section 3.1.2.

Keel or Centreboard

If the wind is coming from behind the stern, the ship is pushed by it, but if the wind is
coming from the side it pushes the vessel sideways. To reduce this effect, a boat needs
a suitable underwater surface to lessen this drift. This drift, know as leeway, cannot be
completely eliminated but can be kept within reasonable limits by the surface presented.
It can also prevent capsizing. This device is the ship’s keel. The two main categories of
keels are swinging centreboards and daggerboards. Centreboards are a rotating type of
keel that can be adjusted while sailing. Daggerboards are fixed boards inserted into a
case, in the center of the vessel. The used vessel uses a daggerboard type keel.

Rudder

In contrast to cars, which follow in the direction set by the front wheels when steering
is applied, a boat is steered by making its stern swing from one side to another. This
can be achieved using a rudder, a device composed mainly of an underwater blade. The
difference in pressure between the two sides of the blade pushes the stern sideways, thus
moving the whole ship from one side to another.

16

3. SUPPORTING CONCEPTS 3.1. Basics of Sailing

Figure 3.2: Killer Whales Yacht.

3.1.2 The use of sails

Wind variables

The wind actually experienced on a vessel is called apparent wind. It is slightly different
in strength and direction from the real (true) wind because a moving boat creates its own
airflow, called the head wind. Apparent wind is a combination of head and true wind, as
shown by figure 3.3.

Figure 3.3: Experienced winds [Ass].

If a gust comes, true wind gets stronger. Since the response time of a vessel’s speed

17

3. SUPPORTING CONCEPTS 3.1. Basics of Sailing

is not immediate, for a moment the head wind remains just as it was. This causes a
momentarily change of direction of the apparent wind, making it come more from the
side. On the other hand, if the windspeed drops suddenly the vessel’s speed will me
maintained for a few seconds and, following the same logic, the apparent wind will come
more from ahead. On both situations the vessel’s direction needs to be adjusted in order
to prevent a loss of speed.

Sails as wind resistance

The earliest form of sailing was based on using the wind simply to push the boat along.
The sail area was arranged as much at right-angles to the wind as possible. The more
area available on the sail, the greater the resistance offered to the wind, thus more power
was available for propulsion.

With the wind dead behind, the shape of the sail or sails is very important. The more
concave or parachute like the shape of the sail the greater is the resistance offered to the
wind. Yet, it is a mistake to think that a boat is sailing at its fastest downwind (with the
wind dead behind). In this situation, the wind meets the sails at right-angles and eddies
around behind them. This way of operation is more the exception than the rule. Most of
the time the wind comes sideways and flows parallel to the curve of the sails, as such,
they act as aerofoils.

Sails as aerofoils

The force of the wind can also be used to make progress against it. For this, the sail
surfaces need to have an aerodynamic shape. In a cross-section view, sails resemble air-
craft wings. When they are trimmed correctly the wind is deflected so delicately that
the airflow remains unbroken. Lift (a combination of suction on one side and pressure
on the other) is developed in the side furthest from the wind and acts at right-angles to
the sail as shown in figure 3.4. Another smaller force acts parallel to the sails, caused by
resistance offered to the airflow.

The force of the wind against the sails consists of two components, lift and resistance.
The two can be expressed as a single force operating in between the two components, by
means of a vector diagram. This force would be neither straight ahead nor at right-angles
to the boat, it would act diagonally instead.

Therefore, the vessel is being pushed not only forward but also sideways. This side-
ways force is counteracted to a great extent by the keel, explained in subsection 3.1.1.

3.1.3 Sailing Techniques

Running before the wind

Sailing with the wind coming from the stern is the most basic form of sailing. The more
resistance offered to the wind, in the form of a larger sail area, the faster the vessel goes.

18

3. SUPPORTING CONCEPTS 3.1. Basics of Sailing

Figure 3.4: Lift and aerodynamic force created by the wind [Saib].

In modern sailing boats, this means arranging all the sails in such a way that the largest
area possible is presented to the wind. For this to happen, the headsail and mainsail need
to be on different sides (goosewinged) as seen on figure 3.5 a).

Broad reaching

If the wind is neither coming from the stern nor blowing at right-angles but coming from
between these two, the vessel is sailing on a broad reach. Both sails are set on the farthest
side from the wind (leeward) and the sheets are eased. This happens because the wind is
not just striking the sails at right-angles but is also being deflected slightly by them. This
makes the vessel go faster than running before the wind (figure 3.5 b)).

a) Running before the wind b) Broad reaching

Figure 3.5: Sailing techniques 1 [Sal96].

Bearing away

Altering the course so that the vessel turns away from the wind is defined as bearing
away as seen on 3.6 a). As it is turning. the angle at which it meets the wind also changes,
so the sails need to be adjusted progressively to suit the new situation. Since the wind is
coming more and more from behind, the sail sheets are eased little by little.

19

3. SUPPORTING CONCEPTS 3.1. Basics of Sailing

Luffing

Luffing means altering the course towards the direction from which the wind is coming.
It does not matter whether the vessel turns to port or starboard, luffing is always done
when turning towards the wind. It is not simply a matter of steering, the sail sheets need
to be adjusted progressively. They need to be gradually pulled in so that the vessel does
not slow down, consequence of flapping sails.

If luffing is done from the stern to a beam reach (when the wind is roughly at right-
angles to the vessel) the sails need to be tightened until they stop fluttering. If the wind is
light the vessel should be allowed to heel so that gravity helps the sails adopt the correct
angle and curvature.

If luffing is done until the vessel is close-hauled (sailing as close to the wind direction
as possible without stopping, figure 3.6 b)) the sail sheets are progressively pulled in.

a) Bearing away b) Luffing

Figure 3.6: Sailing techniques 2 [Sal96].

Beating to windward

It is impossible to sail straight to the wind, instead, to beat to windward, or upwind, a
zigzag route must be adopted as shown in figure 3.7 a). The aim is to sail fast without
reaching too far from the objective. Short routes lead to too much loss of speed because
the boat is heading too much into the wind to sail well. Also, if the boat does not point
high enough into the wind the route becomes much longer than expected. A compromise
between these two must be found.

It can be very difficult in practice to pick the best route to windward as windshifts
also have to be taken into account.

Tacking

Tacking is defined as changing course of about 900 during which the sail crosses over
from one side to the other. It involves entering and leaving the upwind zone, where it is
impossible to sail because the wind is coming from dead ahead. As a result, it involves

20

3. SUPPORTING CONCEPTS 3.2. Fuzzy Control

a loss of speed and if the vessel does not have enough to carry through the turn it may
not respond to the rudder and stop. The rudder should also not be turned too sharply
because this too has a breaking effect. This maneuver is done at the end of each diagonal
leg of a windward beating course.

Because the vessel is constantly losing speed doing this maneuver, it is important to
get the wind back in the sails as quickly as possible and regain speed. Also as said before,
if the rudder is turned too much it will act as a brake because the blade is at a sharp angle
to the water flow. Another compromise has to be found between loss of speed and time
taken to do the tacking maneuver. If the rudder is not pushed far enough, there is a long
delay with constant speed dropping until the wind catches the sails again. It is generally
accepted that the best rudder angle is about 330 to the centreline of the boat. It is specially
important not to come to a full stop while tacking because a sailing boat without speed
cannot be steered.

Stopping

The only way to stop a sailing boat is to turn it directly into the wind to make it start
losing speed. Judgement is needed to gauge how far the vessel will travel head-to-wind
until it stops. Once the goal is reached, the sail sheets are fully released and the rudder is
turned hard into the direction of the wind as shown in figure 3.7 b).

b) Stopping a)

Figure 3.7: Sailing techniques 3 [Cat, Sal96].

3.2 Fuzzy Control

3.2.1 An Introduction

Knowledge representation is one of the most actively research areas in Artificial Intel-
ligence [LB87, Moo82, Neg85]. Still, there are many important issues in this area that
have not been adequately solved. One of this issues is the representation of imprecise
knowledge.

21

3. SUPPORTING CONCEPTS 3.2. Fuzzy Control

Conventional knowledge representation techniques do not provide effective tools for
representing the meaning of everyday like facts such as:

• Usually it takes about an hour to drive from Berkeley to Stanford in light traffic.

• Most experts believe that the likelihood of a severe earthquake in the near future is
very low.

The words in italic in the assertions are labels for fuzzy predicates, quantifiers and
probabilities. Conventional approaches to knowledge representation lack the means to
represent fuzzy concepts. Consequently, approaches based in first order logic and clas-
sical probability theory do not provide an appropriate framework for dealing with com-
monsense knowledge since such knowledge is both imprecise and noncategorical by na-
ture [Zad89].

The development of fuzzy logic was motivated mainly by the need for a concep-
tual framework capable of addressing the issues of uncertainty and lexical imprecision.
Nowadays fuzzy logic has emerged as an alternative to classical logic in application areas
ranging from industrial process control to aerospace and bioengineering [Sug85, Zim91].

3.2.2 Applications

Possibly the most impressive fact about the present success of fuzzy logic is the wide
array of applications of this paradigm, ranging from consumer products to automotive
engineering. Table 3.1 illustrates this point with a list of fuzzy logic uses in an industrial
setting. In brief, fuzzy logic plays a similarly central role in shaping a suitable rule-based
or linguistic control strategy in these applications.

Furthermore, in the majority of these cases, fuzzy logic bridges the gap between sym-
bolic processing and numeric computation, thereby expanding the domain of applica-
tion of control engineering to those outside its realm of usage. Specifically, fuzzy logic
can form the basis of implementation of control strategies in the wide sense to include
decision making and supervisory control.

Table 3.1: Applications of fuzzy logic control, as seen in [YLZ95] page 6.

Consumer Products
Automotive and
Power Generation

Industrial Process
Control

Robotics and Manu-
facturing

•Cameras and cam-
corders (Canon, Mi-
nolta, Ricoh, Sanyo)

•Power train and
transmission control
(GM-Saturn, Honda,
Mazda)

•Cement kiln,
inceneration plant
(K.L.Smith)

•Electrical dis-
charge machine
(Mitsubishi)

•Washing machines
(AEG, Sharp, Gold-
star)

•Engine control
(Nissan)

•Refining, distil-
lation and other
chemical processes

•Refrigerators
(Whirlpool)

22

3. SUPPORTING CONCEPTS 3.2. Fuzzy Control

3.2.3 Essential characteristics

As the name suggests, fuzzy logic is the logic underlying modes of reasoning which are
approximate, and not entirely exact. The importance of fuzzy logic comes from the fact
that most modes of human reasoning are approximate in nature, such as commonsense
reasoning. It is interesting to note that approximate reasoning falls outside the range of
classic logic, because the main concern of the later topic is the reasoning that leads to
precise formulation and analysis.

Some of the main characteristics of fuzzy logic relate to the following:

• Exact reasoning is viewed as a limited case of approximate reasoning;

• Everything is a matter of degree;

• Any logical system can be fuzzified;

• Inference is viewed as a process of propagation of flexible constraints;

Fuzzy logic differs from traditional logical systems in spirit and detail. Some of the
main differences are summarized in the following [Zad83].

• Truth: In bivalent logical systems, truth can have two values: true or false. In multi-
valued systems it can be an element of a finite set, an interval or a boolean algebra
equation. In fuzzy logic, truth may be a fuzzy subset of any partially ordered set or,
a point in the interval [0, 1]. The so-called linguistic truth values such as true, par-
tially true, not quite true are interpreted as labels of fuzzy subsets on an unit interval.

• Predicates: In bivalent systems, predicates are crisp, like mortal, even, larger than. In
fuzzy logic, predicates are fuzzy, such as tall, ill, soon, much larger than. It should be
noted that most predicates in natural language are fuzzy, and not crisp.

• Predicate Modifiers: In classic systems, the most widely used predicate modifier is
the negation (not). In fuzzy logic there is a variety of predicate modifiers which
act as mitigators or weakeners of statements such as very, more or less, quite, rather,
much. Such predicate modifiers play an essential role in the generation of the values
of a linguistic variable : very young, more or less young, rather young, etc [Zad73].

• Quantifiers: In classical logical systems, only two quantifiers exist, universal and
existential. Fuzzy logic admits a wide variety of fuzzy quantifiers exemplified by
few, several, usually, most, always, frequently, etc.

• Probabilities: In classical logical systems, probability is numerical or interval valued.
In fuzzy logic there is also the additional option of linguistic probabilities, exempli-
fied by likely, unlikely, around 0.5, high, etc [Zad86].

It is important to notice that in every instance fuzzy logic adds to the options available
in classical logical systems. Fuzzy logic can then be viewed as an extension of these
systems, rather than a system of reasoning in conflict with classical systems.

23

3. SUPPORTING CONCEPTS 3.2. Fuzzy Control

3.2.4 Fuzzy logic controller architecture

Different methods for developing fuzzy logic controllers have been proposed. In the de-
sign of a fuzzy controller, one must identify the main control parameters and determine
a term set which is at the right level of specification for describing the values of each
linguistic variable. For instance, a term set including linguistic variables such as {Small,
Medium, Large} may not be enough to satisfy some domains, it may be needed to have
more terms in the set, such as {Very Small, Small, Medium, Large, Very Large} [Ber92].

Figure 3.8 illustrates a basic architecture for a fuzzy logic controller. This architecture
consists on four modules whose functions will be described.

Figure 3.8: Fuzzy logic controller [Alo].

Fuzzy Sets

A fuzzy set is an extension of a crisp set. A fuzzy set, defined over some domain of def-
inition, is a mapping from that domain into the interval [0, 1] This mapping is called the
membership function of a given fuzzy set. It takes the value of zero for no membership
and one for full membership. In crisp sets these are the only two allowed values. Fuzzy
sets also allow partial, or graded membership. In other words, an element may partially
belong to a fuzzy set. Different types of fuzzy membership functions have been used to
define fuzzy sets. Some of them are shown in figure 3.9 [Ber92].

The first and second types use triangular (a) and trapezoidal (b) membership func-
tions. Due the simplicity of the formula and computational efficiency, these membership
functions are extensively used, especially in real-time implementations. However, since
they are composed of straight line segments, there is no smoothness on the corner points
specified by the parameters. To cope with this, bell-shaped functions can be used (c).
Another used type, specially in Sugeno-style inference is the fuzzy singleton (d). This

24

3. SUPPORTING CONCEPTS 3.2. Fuzzy Control

Figure 3.9: Different membership function types: (a) - Triangular ; (b) - Trapezoidal; (c) -
Bell-shaped; (d) - Singleton;

membership function is described as unity at a single particular point on the universe of
discourse, and zero everywhere else. The use of singletons is directly tied to the compu-
tational effectiveness of a fuzzy controller.

Fuzzification strategy

In coding the values from outside the fuzzy system, one transforms the given values in
terms of the linguistic variables used in the preconditions of the ruleset. If the given
value is crisp, then the fuzzification stage requires matching the measurement against
the membership function of the linguistic label as shown in figure 3.10. If the given
value contains noise, it may be modeled using a triangular membership function where
the peak of the triangle refers to the mean value of the data set and the base refers to
a function of the standard deviation. The most widely used fuzzification method is the
former case when the given value is crisp [Ber92].

Figure 3.10: Fuzzification stage for crisp inputs [Yal].

25

3. SUPPORTING CONCEPTS 3.2. Fuzzy Control

Knowledge/rule base setup

There are two important tasks in designing the knowledge/rule base setup. First, a set
of linguistic variables must be properly selected in order to describe the main control
parameters of the system. Both the input and output parameters must be linguistically
defined using proper term sets. Also, the granularity of a term set is important for the
smoothness of control. Secondly, a control knowledge base must be developed which
uses the linguistic description described in the first point. Sugeno [Sug85] suggested
four methods for doing this:

1. Expert’s knowledge

2. Modeling the operator’s control actions

3. Modeling a process

4. Self organization

Among these methods, the first method is the most used [MA75]. This method is
effective when expert human operators can express the heuristics that they use in con-
trolling a process in terms of rules.

The second method, directly models the control actions of the operator. Instead of
interviewing the operator, its control actions are imitated by the system.

The third method deals with fuzzy modeling of a process where an approximate
model is configured by using implications describing possible states of a system. In this
method, a model is developed and a fuzzy controller is constructed to control the fuzzy
model, making this approach very similar to traditional approaches in control theory.

The fourth method’s main idea is to develop rules which can be adjusted over time to
improve the controller’s performance.

These rules are a collection of linguistic statements that describe how the system
should make a decision regarding classification of inputs and control of outputs. Fuzzy
rules are always written in the following form:

if (input1 is membership function1) and/or (input2 is membership function2) and/or ...
then (outputX is output membership functionX).

Inference process

In a fuzzy ruleset, there is the possibility of more than one rule being fired at the same
time, because of the partial matching attribute of fuzzy control rules and the fact that the
preconditions of the rules can overlap each other. The methodology used in deciding
what control action should be taken as the result of multiple rules being fired can be
referred to as the process of conflict resolution, or inference.

In a two input, two rule inference system shown in figure 3.11 the process occurs in
the following way:

26

3. SUPPORTING CONCEPTS 3.2. Fuzzy Control

1. The strength for each rule is calculated by taking the minimum of the two input
membership values (boolean "and").

2. The control output of each rule is calculated by applying the matching strength of
the rule on its conclusion.

3. The control outputs of all fuzzy rules are combined to obtain one fuzzy output
distribution. This output usually is obtained using a boolean "or". This technique
combines the fuzzy membership functions into one.

Figure 3.11: Mamdani two input, two rule inference system [Kna].

Mamdani-type inference, as shown above, expects the output membership functions
to be fuzzy sets. After the aggregation process, there is a fuzzy set for each output vari-
able that will need defuzzification. It is possible and much more efficient to use a single-
ton membership function than a distributed fuzzy set. Singletons, used in Sugeno-type
systems, can be thought of as pre-defuzzified fuzzy sets.

The result of this operation is a membership function and has to be defuzzified into a
single crisp value in order to be used.

Defuzzification strategy

The last operation produces a nonfuzzy control action that best represents the member-
ship function of an inferred control action. Several defuzzification strategies have been

27

3. SUPPORTING CONCEPTS 3.2. Fuzzy Control

suggested in literature. Among them, three of the more often applied methods are de-
scribed [Ber92].

Tsukamoto’s defuzzification method calculates a crisp control action, if a monotonic
membership function is used as shown in equation 3.1. This method is also known as
weighted average method and is generally used in Sugeno-type inference systems. n is
the number of rules with firing strength (ωi) greater than 0 and xi is the amount of control
action recommended by rule i.

Z∗ =

∑n
i=1wixi∑n
i=1wi

(3.1)

The center of area method calculates the center of gravity of the distribution for the
control action, assuming that it has has been produced with a point wise membership
function. Assuming a discrete universe of discourse we have equation 3.2 where q is the
number of quantization levels of the output, zj is the amount of control outputs at the
quantization level j and µC(zj) represents its membership value in C.

Z∗ =

∑q
j=1 zjµC(zj)∑q
j=1 µC(zj)

(3.2)

Finally, the mean of maximum method generates a crisp control action by averaging
the support values which their membership values reach the maximum. For a discrete
universe, it is calculated following equation 3.3 where l is the number of quantized z

values which reach their maximum memberships.

Z∗ =
l∑

j=1

zj
l

(3.3)

28

4
Software and Hardware

This chapter introduces the technologies used in the elaboration of this dissertation,
namely the prototyping platform, sensors and software used for model construction /
system emulation.

4.1 Arduino

Arduino is an open-source electronics prototyping platform based on flexible hardware
and software. Its original purpose is the development of interactive projects. The plat-
form can sense the environment around it by receiving inputs from a variety of sensors
and can affect its surroundings by controlling a series of actuators, such as motors. The
microcontroller on the board is programmed using Wiring [BHB] based programming
language and the development environment is based on Processing [FR].

There are many microcontroller platforms available for physical computing, such as
Parallax Basic Stamp, Netmedia’s BX−24 and MIT’s Handyboard. All of these tools are
designed to transform the complicated issue of microcontroller programming into an
easy to use package. Arduino also has the same functionalities but it also offers some
advantages over other systems such as:

• Cost-effectiveness: Arduino boards are relatively inexpensive compared to other
microcontroller platforms. The simplest versions of the Arduino module can be
assembled by hand and even pre-assembled modules cost less than 20 Euros.

• Cross-platform: Arduino software runs on Windows, Mac-OS and Linux operating
systems. Most microcontroller development systems are limited to Windows.

29

4. SOFTWARE AND HARDWARE 4.1. Arduino

• Open source and extensible software: The Arduino software is published as open
source tools, available for expansion by experienced programmers. The language
can be expanded through C++ libraries and by adding AVR-C code directly into
Arduino programs.

• Open source and extensible hardware: Arduino is based on ATMEGA microcon-
troller family. The plans for the modules are published under a special license that
enables experienced designers to make their own versions of the module, extending
and further improving it.

4.1.1 Hardware

The Arduino board used for this project is an Arduino Mega 2560 [Ban] as shown in
picture 4.1.

Figure 4.1: Arduino Mega 2560 board [Ban].

This is a microcontroller board based on the ATmega2560 [Cor12] with characteristics
such as 4 hardware serial ports, USB connection, reset button, ICSP (In Circuit Serial
Programming) header and others. The main characteristics of this board are listed in
table 4.1.

In terms of power supply, Arduino Mega can be powered via USB connection or with
an external power supply. The source is selected automatically. With an external supply
the board can operate on the 6 − 20 volt range. However, less than 7V supply can turn
the board unstable and more than 12V may damage the board, as such the recommended
range of operation is 7 to 12 volt.

The 54 digital pins can be used as inputs or outputs, in addition, some pins have
specialized functions:

• Serial 0: 0(RX), 1(TX); Serial 1: 19(RX), 18(TX); Serial 2: 17(RX), 16(TX); Serial 3:
15(RX) and 14(TX). Used to receive (RX) and transmit (TX) TTL serial data.

• External Interrupts: 2(Interrupt 0), 3(Interrupt 1), 21(Interrupt 2), 20 (Interrupt 3),

30

4. SOFTWARE AND HARDWARE 4.2. Proposed sensors for the project

Table 4.1: Arduino Mega 2560 features.
Microcontroller ATmega2560

Operating Voltage 5V
Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V
Digital I/O Pins 54 (of which 15 provide PWM output)

Analog Input Pins 16
DC Current per I/O Pin 40 mA
DC Current for 3.3V Pin 50 mA

Flash Memory 256 KB of which 8 KB used by bootloader
SRAM 8 KB

EEPROM 4 KB
Clock Speed 16 MHz

19 (interrupt 4), 18 (interrupt 5). These pins can be configured to trigger an interrupt
on a low value, rising edge, falling edge or a change in value.

• PWM: 2–13 ; 44–46. Provides 8-bit PWM output.

• LED: 13. There is a built-in LED connected to digital pin 13 which is ON if the pin
is HIGH value and OFF when the pin is LOW.

• SPI: SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These pins support SPI (Serial Pe-
ripheral Interface) using a library created for the effect. These pins are also broken
out on the ICSP header, which is physically compatible with other Arduino boards.

• TWI: 20 (SDA) and 21 (SCL). Supports TWI(Two-wire interface) using a library cre-
ated for the effect.

The 16 analog inputs provide 10 bits of resolution (1024 different values). By default
they measure from ground to 5 volts though it is possible to change the upper end of
their range.

4.2 Proposed sensors for the project

The initial set of sensors included a wind vane (to measure wind direction), anemometer
(to measure wind speed), compass (to know the vessel’s heading and inclination) and
GPS (to obtain the vessel’s position and speed). The proposed models are shown in this
section.

4.2.1 Weather meter

The core components of weather measurement are wind speed, wind direction and rain-
fall. These components are present in the kit available at [Sysb], shown in figure 4.2a)
and two of them are necessary for the project at hand.

31

4. SOFTWARE AND HARDWARE 4.2. Proposed sensors for the project

None of the sensors in this kit contain active electronics, instead they use sealed mag-
netic switches and magnets . The cup anemometer encodes the wind speed by closing a
switch with each rotation, A windspeed of 1,492 Miles per Hour produces a switch clo-
sure once per second. The wind vane reports wind direction as a voltage produced by a
combination of resistors inside the sensor. When a voltage is supplied, the return can be
translated to any of 16 possible positions. The users manual has a table of voltage and
resistance values for each of the 16 positions [Sysa].

4.2.2 CMPS10 Tilt Compensated Magnetic Compass

The CMPS10 module shown in figure 4.2 b) is a tilt compensated compass employing a
3-axis magnetometer and a 3-axis accelerometer and a 16-bit processor, it has been de-
signed to remove the errors caused by tilting of the PCB (Printed Circuit Board). The
CMPS10 produces a result of 0-3599 representing 0-359.9 or 0 to 255. The output of the
three sensors measuring x, y and z components of the magnetic field, together with the
pitch and roll are used to calculate the bearing, each of these components are also made
individually available [PTRb].

The module requires a power supply at 3.3 - 5v and draws a nominal 25mA of current.
There are three ways of getting the bearing from the module: A serial interface, an I2C
interface or a PWM output. More information about this sensor is available in [Ele].

4.2.3 EM-406A SiRF III GPS Receiver with Antenna

The EM-406A GPS module shown in figure 4.2 c) includes on-board voltage regulation,
LED status indicator, battery backed RAM, and a built-in patch antenna. Its main features
are a 20 channel receiver, high sensitivity (-159dBm) and 10m positional accuracy [PTRa].

This module requires a power supply of 4.5 - 5.5v and draws a nominal 70mA of
current. It has an average cold starting time of 42 seconds and an average 1 second of hot
start. For more information on this sensor check [Glo].

It is also important to note the protocol used by GPS sensors, the NMEA (National
Marine Electronics Association) protocol [Sta]. This protocol defines the interface be-
tween various pieces of marine electronic equipment and permits information sending
from marine equipment to computers and vice versa. Standard GPS receiver communi-
cation is defined on the NMEA specification.

The idea of NMEA is to send a line of data (an NMEA sentence) that is independent
from other NMEA sentences. There are standard sentences for each device category and
the ability to define proprietary sentences. All standard sentences have a two letter prefix
that identifies the device using the sentences (for GPS receivers the prefix is GP) followed
by a three letter sequence that defines the sentence contents. Standard sentences are
constructed using the following rules:

• Each sentence begins with the ’$’ symbol.

32

4. SOFTWARE AND HARDWARE 4.2. Proposed sensors for the project

• The following five characters indicate the origin and type of message as explained.

• Different data items in the sentence are separated by commas.

• If no data is available in an item it is sent null, for example "..123„456...".

• The last item is a checksum field, consisting of a ’*’ character and two hexadecimal
digits representing an 8 bit exclusive OR of all characters between ’$’ and ’*’. This
checksum is obligatory on some sentences only.

The sentence used in this dissertation is the RMC (Recommended minimum data for
GPS). This sentence has all the data needed for the controller’s specification as it will be
explained later. RMC data format is shown in table 4.2.

Table 4.2: RMC Data Format, adapted from [ST].
Name Example Units Description

Message ID $GPRMC RMC protocol header
UTC time 161229.487 hhmmss.sss

Status A A=data valid or V=data not valid
Latitude 3723.2475 ddmm.mmmm

N/S Indicator N N=north or S=south
Longitude 12158.3416 dddmm.mmmm

E/W Indicator W E=east or W=west
Speed Over Ground 0.13 knots
Course Over Ground 309.62 degrees True

Date 120598 ddmmyy
Magnetic Variation 003.1 degrees E=east or W=west

Mode A A=Autonomous, D=DGPS, E=DR
Checksum *10

<CR> <LF> End of message termination

a) b) c)

Figure 4.2: Proposed sensors: a)Weather Meter [Sysb]; b)Compass Module [PTRb]; c)GPS
Module [PTRa];

33

4. SOFTWARE AND HARDWARE 4.3. Available sensors and emulators

4.3 Available sensors and emulators

While the proposed sensors were unavailable, progress was mostly done using emulators
and software to artificially recreate and simulate the needed environment. Using the
same type of interfaces between the sensors and the Arduino prototyping board it is
possible to test the behavior of developed algorithms. In order to achieve this, a kit using
a PIC18F4550 microcontroller was developed [Gil13]. This emulator receives instructions
via USB from a computer through a simulation platform and implements the original
interface communication (original protocols used where UART [Mica] and SSI [NI]) from
each sensor to the Arduino. To complete the cycle, Arduino implements the PWM signals
needed to move the rudder and sail servomotors just as shown in figure 4.3. All the work
presented in this section can be consulted in [Gil13].

Figure 4.3: Sensorial emulation setup [Gil13].

4.3.1 Simulation platform

In order to obtain and easy to use interface a simulator was developed in MATLAB.
The user simply has to fill forms and send information to the available emulators. This
simulator operates on two different modes:

• Step-by-Step mode

• Automatic mode

On Step-by-Step mode, the user fills a form with the information he/she wants to
send, referent to each sensor. Clicking a send button, the respective data is sent by USB
to the PIC18F4550 through a virtual COM interface [Micb]. Each sensor is individually
identified by the characteristics of the protocol it uses and the types of data sent.

On Automatic mode, the user only needs to indicate the location of previously built
files with data from compass and GPS courses. This mode does not contemplate wind
data. Both interfaces are shown in figure 4.4.

34

4. SOFTWARE AND HARDWARE 4.4. Xfuzzy

Step-by-Step
mode

Automatic
mode

Figure 4.4: Simulation interface, adapted from [Gil13].

4.3.2 PIC-Arduino interface

The emulator created using a PIC18F4550 microcontroller in order to emulate sensorial
data uses two different types of interfaces with the system: two UART interfaces and
one SSI. Data receiving uses an USB connection from the computer, the sensor array use
UART for the GPS and compass modules, and SSI for the wind direction sensor (origi-
nally, an AS5040 [Aus] sensor was going to be used for wind direction calculation).

The main algorithm implemented on this microcontroller behaves as a regulator that
routes messages received via USB to their respective destinations. Message association is
made through the first two characters present on the string message. If the first character
is not ’$’ then the message is relative to the AS5040 sensor. If the first character is ’$’ then
the message is relative to the GPS or compass modules, which are distinguished by the
second character being ’G’ or ’C’, respectively. Besides data reception and transmission,
the PIC18F4550 implements an interrupt routine capable of replying to the Arduino’s
solicitations.

4.4 Xfuzzy

Applying an available technology in another technology can sometimes be more than
a simple task. In order to design a fuzzy logic controller usable via the Arduino pro-
gramming language a dedicated development environment was used.The fuzzy system
development environment Xfuzzy integrates a set of tools that ease the user’s coverage
over the several stages involved in the design process of fuzzy logic-based inference sys-
tems [VBSB03, MVBBSS].

35

4. SOFTWARE AND HARDWARE 4.4. Xfuzzy

The version used in the aiding of this project was Xfuzzy 3 [dMdSc]. Its main fea-
tures are the capability for developing complex systems and the flexibility of allowing
the user to extend the set of available functions. The environment has been completely
programmed in Java, so it can be executed on any platform with JRE (Java Runtime En-
vironment) installed. The design flow of Xfuzzy 3 includes the following stages:

1. Description stage - This stage includes graphical tools for the fuzzy system defini-
tion and development. This definition of the system is made using the xfedit tool
[dMdSd]. This tool defines the linguistic variables, logical relations between them,
operator sets and rule bases of the created system.

2. Verification stage - This stage includes tools for simulation, monitoring and repre-
senting graphically the system behavior. The aim is to detect possible deviations on
the expected behavior and to identify the deviation sources. From the tools avail-
able for verification, the simplest to use is the xfmt tool [dMdSb]. This monitoring
tool shows the activation degree of every linguistic label and logical rule, as well as
the value of the different input variables, for a given set of input values.

3. Tuning stage - This stage consists in applying identification, learning and simpli-
fication algorithms to the fuzzy system. It is usually one of the most complex
tasks when designing a fuzzy system. The system behavior depends on the logic
structure of its rule base and the membership functions of its linguistic variables.
The tuning process if often focused on adjusting membership function parame-
ters. Manually this process is cumbersome, automatic techniques are preferable.
The two most widely used learning mechanism and supervised and reinforcement
learning. Xfuzzy 3 currently contains one tool dedicated to supervised learning
algorithms. The tuning stage was not reached in this dissertation.

4. Synthesis stage - This stage includes tools for generating high level descriptions
for software and hardware implementations. Software representations are useful
when there are not strong restrictions on the inference speed, system size and power
consumption. They can be generated from any fuzzy system developed in Xfuzzy
without restraints. On the other hand hardware representations are more adequate
when high speed, small area or low power consumption is needed. For this to
happen some constraints must be imposed to the fuzzy system. Xfuzzy 3 provides
three tools for software synthesis and two tools for hardware synthesis. For the
purpose of this dissertation, the xfcpp [dMdSa] tool was used to develop a C++
description.

36

5
Proposed controller

This chapter will introduce all the work developed for this dissertation. Caused by the
lack of sensors some methods could not be tested. Section 5.1 introduces a method for au-
tomatic control transition and the sections after explain the design used for the controller.
The final design can be viewed in figure 5.1. Most of the protocols used and routines for
data treatment are explained in detail in [Gil13].

GPS

Compass

Wind vane

Anemometer

Rudder

Sail

Rudder control

Sail control

Controller
Fuzzy

Variables:

• Directional
alignment

• Boat speed
• Wind

alignment
• Wind

speed
• Roll

Favorable wind

Tack right

Tack left

Sail

SSI

PWM

SSI

PWM

UART

Not
Known
Yet

Sensors used for data input Control Structure Servomotors controlled by output
 implemented
 Protocols Protocols

Figure 5.1: Signal generated when the remote controller is off.

37

5. PROPOSED CONTROLLER 5.1. Transition between manual and automatic control

5.1 Transition between manual and automatic control

Since a prototype of an automatic system is prone to failure, it is always good practice to
add safety failsafe methods. On the prototype vessel used there is the possibility of using
the original manual remote controller to add this specification. The objective is to give
manual control to the user as soon as the remote controller is on, if the controller is off
then the remote system controls the vessel.

The Killer Whales Yacht comes equipped with a Radio Frequency module for com-
municating with the remote controller. The signal generated from this module is different
whether the remote controller is on or off, as shown in figures 5.2 and 5.3.

Figure 5.2: Signal generated when the remote controller is off.

Figure 5.3: Signal generated when the remote controller is on (noise is irrelevant in this
case as it is only generated from the RF waves into the oscilloscope).

Distinguishing both signals give the possibility to pass from remote to manual control
and from manual to remote control, via multiplexing. The data inputs will be the original
signal from the RF module (manual control) and the signal provided by the Arduino
prototyping board (automatic control) as shown in figure 5.4.

38

5. PROPOSED CONTROLLER 5.1. Transition between manual and automatic control

?

MUX

Figure 5.4: Transition between manual and remote control.

There is still the need to know how to select the right input to control the sailboat.
To solve this problem, the PWM values associated with the rudder and sail servo-motors
generated in the RF Module were used. Figure 5.5 shows two random signals with the
controller off and one stable signal with the controller on.

Controller off Controller on

Figure 5.5: Different characteristics in the controller’s signal.

After analysis it is easily seen that with the controller on, the RF module signal is a
PWM pulse of ±23ms and with the controller off this signal becomes a series of random
pulses. Also, the total period of the positive signal (5V) is less when the controller is
off. Using this property it is possible to distinguish the two types of signal through the
method described in figure 5.6.

Using a counter it is possible to determine whether the controller is on or off (5.6 a).
From Z ms to Z ms the RF module signal is checked upon, if it has a positive signal (1)
the counter is incremented in X units, if not it is decremented in Y units. Since the period
between pulses is quite superior to the total period of a single pulse the increment should
also be superior to the decrement.

39

5. PROPOSED CONTROLLER 5.1. Transition between manual and automatic control

Verify signal

1 0

Increment
counter in X

units

Decrement
counter in Y

units

Wait Z ms

0 or 1?

Verify counter
value

Lower
threshold

Upper
threshold

Activate
automatic

control

Activate
manual
control

Keep same
control
strategy

No

Does it go
over a threshold?

a) b)

Figure 5.6: a)Counter implementation flowchart; b)Transition strategy flowchart;

Limiting the counter’s upper and lower values (between 0 and 512) opens the pos-
sibility of stabilization. This way, and testing different values for X,Y and Z table 5.1 is
obtained. Since the data obtained when the controller is off and on differs, thresholds
can be established to signalize the right moment for changing the control strategy (5.6
b). To prevent unwanted rapid switching between strategies more than one threshold is
established, making this process acquire an hysteresis effect.

Table 5.1: Test results for acquiring efficient threshold values.
Parameters Maximum counter value

Sampling Period (Z) Increment (X) Decrement (Y) Controller: off Controller: on

0.2 ms
10 1 272 70
20 1 366 531
30 2 540 540

0.33 ms
30 1 387 531
40 2 532 156
60 3 550 560

0.5 ms
20 1 313 541
30 2 430 550
50 2 558 570

1 ms 30 1 120 541

40

5. PROPOSED CONTROLLER 5.2. Designed controller

The best results occur with bigger sampling periods, which is advantageous because
there is less processing load on the Arduino board. Initially the values chosen were 0, 5ms
for sampling period, X = 30 and Y = 1. This way it was possible to obtain a big gap
in the maximum counter values for on and off. Later it was necessary to increase the
sampling period to 1ms in order to not create conflicts with older algorithms, created in
a previous work [Gil13]. For the same X and Y the thresholds for on and off maximum
counter values kept separated enough to use this new solution. The threshold values
used in the dissertation were 200 for the lower threshold and 300 for the upper threshold.
Figure 5.7 shows the setup used by the hardware for this method to work.

I0

I1
s

f

I0

I1
s

f

Automatic sail control

Automatic rudder control

Manual sail control

Manual rudder control

Vessel’s Sail
PWM control

Vessel’s Rudder
PWM control

Select input

Arduino

RF
module

PWM channel 1

PWM channel 2

Control signal generator

Pin 8

Pin 24

Pin 50

Pin 52

Figure 5.7: Pin scheme used for transition between controls.

5.2 Designed controller

Before designing a controller for the rudder and sail servomotors it is necessary to learn
which variables are available from the selected sensor array. It is also important to know
which of these variables will be useful for the controller’s design.

The GPS sensor allows the attainment of the vessel’s current position and speed and
from the compass, current heading and inclination are obtained. The wind vane and
anemometer sensors give the direction and speed of the wind, respectively. From these
values alone it is not easy or direct to build a controller intuitively, for neither sail nor
rudder. A new set of variables are needed to produce an easily understandable design,
which is one of the objectives for this dissertation.

41

5. PROPOSED CONTROLLER 5.3. Controller Variables

GPS

Compass

Wind vane

Anemometer

Rudder

Sail

Control
structure

Figure 5.8: General layout of inputs and outputs of the controller system.

The variables shown in figure 5.9 were chosen for the first design of the fuzzy con-
troller. Rudder and sail servomotor control are separated to reduce global complexity
and also because there are situations, such as maintaining a course, where only one of
the controllers needs to act. Some of the variables present are directly obtained from the
sensors. Others such as wind and directional alignment need to be indirectly calculated.

GPS

Compass

Wind vane

Anemometer

Rudder

Sail

Rudder
Control

Sail

Control

Wind
alignment

Direccional
alignment

Boat speed

Wind speed

Roll

Figure 5.9: New set of variables used for sail and rudder control.

5.3 Controller Variables

5.3.1 Wind Alignment

The angle between the vessel’s actual heading, given by the compass, and the wind direc-
tion, given by the wind vane, will be the new variable Wind Alignment. This variable’s
job is to tell in which direction the wind comes, from the vessels perspective. In sailing,
the vessel can be divided in three zones; bow, lateral and stern with bow being the front,
stern the rear and lateral the sides. Due to the sailboat’s shape, these zones are mirrored
and to simplify the variable, it is calculated to obtain values according to figure 5.10.

42

5. PROPOSED CONTROLLER 5.3. Controller Variables

Figure 5.10: Wind alignment value range.

Its calculus consists in equation 5.1:

W.A. = |WindDirection−ActualHeading| (5.1)

It is still possible to obtain angles in the 00 − 3600 range. To obtain angles in the
00 − 1800 range, algorithm 1 is implemented to the result of equation 5.1:

if Wind_Alignment > 180 then
Wind_Alignment = 360−Wind_Alignment;

else
Maintain current Wind_Alignment value;

end
Algorithm 1: Wind Alignment attainment

The examples in figure 5.11 show this reasoning:

𝐴. 𝑉. = 315 − 0 = 315
315>180
360-315=45

𝐴. 𝑉. = 315 − 45 = 270
270>180
360-270=90

𝐴. 𝑉. = 135− 315 = 180

Figure 5.11: Wind alignment algorithm confirmation.

43

5. PROPOSED CONTROLLER 5.3. Controller Variables

5.3.2 Directional Alignment

The angle between the vessel’s actual heading and the intended course (the objective’s
position) will be the new variable Directional Alignment. Its job is to verify if the vessel
is directionally aligned with the objective, as much as possible. This is needed to know
which way the rudder must be turned to effectively follow the designated course.

To obtain this new variable, first it is necessary to obtain the actual heading, directly
from the GPS sensor. The intended course is obtained using the vector between the ac-
tual position given by the GPS sensor and the objective coordinate. A simple graphical
projection of the intended course is shown in figure 5.12.

(0,0)

Y

X

(LatV,LongV)

(LatP,LongP)

Figure 5.12: Original graphical projection of the intended course.

Since an angular value is intended, a conversion from rectangular to polar coordinates
is needed. To simplify this conversion, the vector’s point of origin (this is where the vessel
is, (LatV,LongV)) should be changed to the axis origin (0,0). This is done by subtracting
the value of origin (LatV,LongV) in both the coordinates, origin and destination, as shown
in figure 5.13.

(0,0)

Y

X

(LatP-LatV,LongP-LongV)

Figure 5.13: Modified graphical projection of the intended course.

44

5. PROPOSED CONTROLLER 5.3. Controller Variables

With this projection and converting to polar coordinates, the angle between the in-
tended course and the axis origin (representing the vessel) is obtained, as shown in figure
5.14.

Figure 5.14: Rectangular to polar coordinate conversion, adapted from [Vau].

In order to obtain a referential to the vessel where each angle to its left is negative,
and each angle to its right is positive, as shown in figure 5.15, more mathematical trans-
formations are needed. The first problem is hardware related. The actual heading given
by the compass sensor has its origin angle North (as such, it has 00 North on a compass
chart) while the calculated intended course angle has its origin angle East (00 East by the
same logic) because of the calculus method. As so, in every iteration of the directional
alignment it is necessary to add 90 degrees to the intended course angle, to synchronize
both angles. Knowing this, Directional Alignment is obtained using equation 5.2:

Figure 5.15: Directional alignment value range.

D.A. = ActualHeading − IntendedHeading (5.2)

Also, since the work is done in the [−1800, 1800] range instead of [00, 3600] it is neces-
sary to verify if the value calculated is within the desired range, and if not, the algorithm
2 is applied:

45

5. PROPOSED CONTROLLER 5.4. Control structure

if Directional_Alignment > 180 then
Directional_Alignment = Directional_Alignment− 360;

else if Directional_Alignment < −180 then
Directional_Alignment = Directional_Alignment+ 360;

else
Maintain current Directional_Alignment value;

end
Algorithm 2: Directional Alignment obtainment

The calculus done in table 5.2 confirm the effectiveness of this method:

Table 5.2: Confirmation examples for the directional alignment algorithm.
Intended c. at left of Actual c. Intended c. at right of Actual c.

Range: [-180,0] Range: [0,180]
Actual-Intended Result Correction Actual-Intended Result Correction

45 - 180 -135 0 - 270 -270 -270 + 360 = 90
180 - 300 -120 0 - 225 -225 -225 + 360 = 135
225 - 30 195 195 - 360 = -165 0 - 315 -315 -315 + 360 = 45
270 - 0 270 270 - 360 = -90 135 - 340 -205 -205 + 360 = 155
270 - 45 225 225 - 360 = -135 270 - 225 45

315 - 115 200 200 - 360 = -160 315 - 180 135

5.4 Control structure

The vessel has two different servomotors, one for adjusting the tightening of the sail sheet
and another one for the rudder, used in steering the ship. The first division in the control
structure will be the use of different controllers for different servomotors. On the sail part
the structure is as simple as one controller. Because the dissertation is in a prototyping
stage the main objective of this single sail controller is only to maximize the vessel’s speed
with strategies explained in sub-section 5.4.1 .

As for the rudder, the control structure is going to be more complex. Since there are
several sailing strategies, depending on the sailing conditions there is an obvious need
to use different controllers. The rudder structure created defines only three different
controllers. These are for the situations of favorable wind conditions, and tacking (left or
right). The obtained and final layout with the addition of these controllers is shown in
figure 5.16.

Since all controllers have three variables, in order to display their structure in a more
comprehensive and tabular way, one of the variable’s value will be fixed. On the sail
controller, the variable Roll is the fixed one, since it only has two values. On the rudder
controllers the variable Boat speed has a fixed value in each rule table.

46

5. PROPOSED CONTROLLER 5.4. Control structure

GPS

Compass

Wind vane

Anemometer

Rudder

Sail

Rudder control

Sail control

Controller
Variables

Favorable wind

Tack right

Tack left

Sail

Figure 5.16: Updated layout of the controller system.

5.4.1 Sail

Before presenting the tables of rules and logic behind them, it is important to comprehend
the fuzzy sets and membership functions of each variable. The fuzzy variables used in
this controller are roll for inclination, wind alignment and wind speed. For all variables,
the type of membership function used is the trapezoidal type (figure 3.9(b)). This choice
relied mainly on simplicity of use for prototyping reasons, and because singleton type
membership functions caused malfunctions on Xfuzzy simulations. Specification of each
function required the use of four points, A, B, C and D. The first point is the one where
the function starts to rise, the second where it stabilizes, the third is when it starts to fall
and the last one is the point where the function reaches zero, as shown in figure 5.17. The
value of each point for each membership function is shown in table 5.3.

A

B C

D

Figure 5.17: Trapezoid point specification.

Roll’s fuzzy set consists of only two membership functions, for low inclination and
high inclination. The controller only needs to know if the vessel is in risk of capsizing.
The minimum inclination is 00 and the maximum is 900, no more is needed since a vessel
inclined by 90 degrees has already capsized. The general look of this fuzzy set is shown
in figure 5.18.

47

5. PROPOSED CONTROLLER 5.4. Control structure

Figure 5.18: Roll’s fuzzy set.

The windspeed’s fuzzy set also consists on two membership functions, for slow or
fast wind speed. If the wind is too rough, then the sails should be tightened in order
to prevent capsizing or oversteering. The minimum value for this set is 0 knots and the
maximum is 30 knots. These values are arbitrary, only physical testing can give the usable
range. The general look of this fuzzy set is shown in figure 5.19.

Figure 5.19: Wind Speed’s fuzzy set.

Wind alignment has three functions. Each function represents a different zone of
wind, bow being the front zone, lateral zone and stern being the rear zone of the vessel.
This is the simplest way to describe the most important zones of wind. The minimum
value is 00 and the maximum is 1800, as explained in section 5.3.1. Figure 5.20 shows the
general outline of this set.

48

5. PROPOSED CONTROLLER 5.4. Control structure

Figure 5.20: Wind Alignment’s fuzzy set.

The sail fuzzy set, representing the output of the sail controller has five membership
functions. These functions represent five different positions of the sail during navigation,
two fastened, two loosened and one centered. The number five was chosen for simplicity
of this proof of concept. Minimum and maximum values were arbitrarily chosen and
can be later modified according to the output needed to move the vessel’s servomotors.
The trapezoid functions resemble singletons because the fuzzy inference used for these
controllers is Sugeno type. Figure 5.21 shows the outline of this set.

Figure 5.21: Sail’s fuzzy set.

As mentioned before, the sail controller focuses on obtaining maximum speed effi-
ciency. This is done by loosing or tightening the sail sheet according to certain conditions.
For instance, if the vessel is facing downwind (with the wind on its back) the sail sheet
should be as loose as possible to maximize the area of effect. In contrast, if the vessel is
sailing upwind the sheet should be tightened to reduce wind resistance. It is also impor-
tant to state that the sail controls most of the ship’s inclination. If a ship is leaning too
much, due to strong lateral winds, it can capsize and that is an obvious and important
situation to avoid. As so, the sail sheet should be loosened as the ship is leaning. This
enables most of the wind to pass through the sail and thus the vessel regains its natural
balance. Table 5.4 shows the general outline of the sail inference system.

49

5. PROPOSED CONTROLLER 5.4. Control structure

Table 5.3: Trapezoid values for each fuzzy set on the sail controller.
Sail a b c d

Roll
Low -18 0 30 50
High 30 50 90 108

Wind speed
Slow -6 0 6 18
Fast 8 18 30 36

Wind alignment
Bow -16 0 25 55

Lateral 25 55 135 155
Stern 125 155 180 181

Sail

Tighten_Max 0 1 2 3
Tighten 24 25 26 27

Centered 48 49 50 51
Loose 73 74 75 76

Loose_Max 97 98 99 100

Table 5.4: Fuzzy rules for the sail inference system.
Roll:high

Windspeed
Wind Alignment Slow Fast

X Loose Loose_MAX

Roll: low

Windspeed
Wind Alignment Slow Fast

Bow Tighten Tighten_MAX
Lateral Centered Centered
Stern Loose_MAX Loose

5.4.2 Rudder

The rudder control is structured in order to steer the vessel, according to some condi-
tions. It must avoid the upwind zone while steering to the objective. If it is needed to
pass through, or if the objective is in the upwind zone, then tacking maneuvers must
be deployed (as explained in subsection 3.1.3). As a result, the rudder control structure
uses three different controllers, for tacking situations and normal maneuvers. These con-
trollers are dynamically switched between them as the sailing progresses, in order to
maintain a good course of action. The variables used in all three are the vessel’s speed,
wind alignment and directional alignment. Their fuzzy sets will be analyzed and trape-
zoid values (similar to table 5.3) are shown in table 5.5.

50

5. PROPOSED CONTROLLER 5.4. Control structure

The directional alignment fuzzy set consists on six membership functions. Three rep-
resent the port side of the vessel and the remaining three represent starboard. The num-
ber of membership functions was chosen arbitrarily, and choosing a larger number of
membership functions could mean less efficiency from the fuzzy controller. The mini-
mum value is −1800 and the maximum is 1800, as explained in section 5.3.2. Figure 5.22
shows the general outline of this set.

Figure 5.22: Directional Alignment’s fuzzy set.

The vessel’s speed fuzzy set (Boatspeed) consists on only two fuzzy sets, slow and
fast. If the vessel is slow then turning should be more gentle, in order to maximize the
gain in velocity. If it is fast then turning can be more rough. The minimum and maximum
values are arbitrary in the same fashion as the sail’s wind speed set. Figure 5.23 shows
this set.

Figure 5.23: Boat Speed’s fuzzy set.

The fuzzy set wind alignment is the same as the one described in the sail controller,
thus it will not be analyzed again.

Finally, the rudder output fuzzy set consists in seven different membership functions.
Three for each side (port or starboard) with different sensitivities and one for the cen-
ter position. The logic for the number is the same as in the directional alignment and
sail fuzzy sets. Minimum and maximum values were obtained during laboratory work

51

5. PROPOSED CONTROLLER 5.4. Control structure

[SA13], using the simulator developed in [Gil13]. Also, the functions resemble singletons
for the same reason explained in the Sail output fuzzy set. The general look of this fuzzy
set is shown in figure 5.24.

Figure 5.24: Rudder’s fuzzy set.

Table 5.5: Trapezoid values for each fuzzy set on the rudder controllers.
Rudder a b c d

Direccional alignment

Much_port -205 -180 -75 -60
Port -75 -60 -40 -20

Min_Port -35 -20 -5 5
Min_Starboard -5 5 20 35

Starboard 20 40 60 75
Much_Starboard 60 75 180 205

Boatspeed
Slow -6 0 4 10
Fast 4 10 30 36

Wind alignment
Bow -16 0 25 55

Lateral 25 55 125 155
Stern 125 155 180 181

Rudder

All_starboard 1025 1026 1027 1028
Starboard 1125 1125 1126 1127

Min_Starboard 1225 1226 1227 1228
Centered 1323 1324 1326 1327
Min_Port 1450 1451 1452 1453

Port 1551 1552 1553 1554
All_Port 1646 1647 1648 1649

Favorable Wind

This controller simply sails directly to the objective. Because of this course of action, it
should never enter an upwind zone (wind on front of the vessel) for it would stop mov-
ing. If this condition happens, the vessel steers in the opposite direction of the objective
and is easy to deduce that staying away from the upwind zone is more important than
reaching the objective in this mode. Table 5.6 shows the fuzzy rule set of this controller.

52

5. PROPOSED CONTROLLER 5.4. Control structure

Table 5.6: Fuzzy rules for the rudder inference system - favorable wind situation.
Boat speed: Slow

Wind alignment
Directional Alignment Stern Lateral Bow

Much_port All_port Port Starboard
Port Port Min_port Starboard

Min_port Centered Centered Starboard
Min_starboard Centered Centered Port

Starboard Starboard Min_starboard Port
Much_starboard All_starboard Starboard Port

Boat speed: Fast

Wind alignment
Directional Alignment Stern Lateral Bow

Much_port Port Min_port Min_starboard
Port Min_port Min_port Min_starboard

Min_port Centered Centered Min_starboard
Min_starboard Centered Centered Min_port

Starboard Min_starboard Min_starboard Min_port
Much_starboard Starboard Min_starboard Min_port

Tacking left

When a tacking maneuver to the left is needed this is the chosen controller. The vessel
steers completely to the left until it leaves the upwind zone. If the objective is still at left
of the vessel’s direction, it continues to turn left. If the objective is to the right after the
tacking maneuver it means it is in an upwind zone. If this is the case the vessel is kept
at bay from that zone until it is ready to make another tacking maneuver (using another
controller for this effect). Table 5.7 shows the fuzzy rule set of this controller.

53

5. PROPOSED CONTROLLER 5.4. Control structure

Table 5.7: Fuzzy rules for the rudder inference system - left tack situation.
Boat speed: Slow

Wind alignment
Directional Alignment Lateral Bow

Much_port Port All_port
Port Port All_port

Min_port Port All_port
Min_starboard Centered All_port

Starboard Centered All_port
Much_starboard Centered All_port

Boat speed: Fast

Wind alignment
Directional Alignment Lateral Bow

Much_port Min_port Port
Port Min_port Port

Min_port Min_port Port
Min_starboard Centered Port

Starboard Centered Port
Much_starboard Centered Port

Tacking right

This controller is very similar to the "Tacking left" controller described in section 5.4.2
and it only differs in direction. For instance, the vessel steers completely to the right
leaving the upwind zone. If the objective is still to the right of the vessel after the tacking
maneuver it continues to steer to the right. Table 5.8 shows the fuzzy rule set of this
controller.

54

5. PROPOSED CONTROLLER 5.4. Control structure

Table 5.8: Fuzzy rules for the rudder inference system - right tack situation.
Boat speed: Slow

Wind alignment
Directional Alignment Lateral Bow

Much_port Centered All_starboard
Port Centered All_starboard

Min_port Centered All_starboard
Min_starboard Starboard All_starboard

Starboard Starboard All_starboard
Much_starboard Starboard All_starboard

Boat speed: Fast

Wind alignment
Directional Alignment Lateral Bow

Much_port Centered Starboard
Port Centered Starboard

Min_port Centered Starboard
Min_starboard Min_starboard Starboard

Starboard Min_starboard Starboard
Much_starboard Min_starboard Starboard

5.4.3 Rudder decider structure

Because the rudder strategy is not always the same, it is necessary to dynamically change
the controller according to the present environment. For this, a decider structure is im-
plemented based on the available sensors and variables.

The first step is to decide which initial controller will be used and for this it is neces-
sary to detect if the initial course is on an upwind course or not, using equation 5.3 and
algorithm 3:

UpwindZone = |ActualHeading −WindDirection| (5.3)

if Upwind_Zone > 315 then
Upwind_Zone = 360− Upwind_Zone;

else
Maintain current Upwind_Zone value;

end
Algorithm 3: Upwind_Zone obtainment

55

5. PROPOSED CONTROLLER 5.4. Control structure

Then, if U.Z. > 45 the vessel is outside the upwind zone and the favorable wind
controller is used. If not, it is still needed to know which tack controller is used, left or
right. If the directional alignment is negative, the objective is to the left of the vessel and
tack left controller is used. Is it is positive, tack right controller is used with the same
logic.

After deciding the initial controller, the transitions between different controllers must
respect some conditions. From direct navigation to tacking maneuvers the general condi-
tion is the entering in the upwind zone. This is detected when wind alignment is inferior
to 45o. Deciding which direction the vessel is going to tack is based on the value of the
directional alignment. If positive, tack right is chosen and if negative tack left is chosen.
From tacking to favorable navigation is simpler. This situation only happens if the objec-
tive is outside the upwind zone and in that case the vessel starts to gain distance from
it. In this case, only the wind alignment needs to be taken into account. Finally, tacking
left to tacking right and vice versa is decided using the vessel’s speed and distance to the
original trajectory, when the course was initiated. The general behavior of this structure
is shown in figure 5.25.

Initialization

Upwind

Tack Right

Favorable
Wind

Tack Left

Objective
reached

Upwind Zone > 45

*

Upwind Zone < 45

* *

D. Align. > 0

D. Align. < 0

W.D.<45
&

D.A.>0

W.D.<45 & D.A.<0

Wind
Align. > 60

Wind Align. > 60

Boatspeed > x1
Or

Distance > x2

Figure 5.25: State machine of the rudder decider structure.

56

5. PROPOSED CONTROLLER 5.4. Control structure

This length to the original trajectory is calculated using the notion of distance from
a point to a line (d parameter in figure 5.26) [Dez13] and to find it, the notion of linear
equation is used (equation 5.4).

d

d

Figure 5.26: Potentially used sailing area, defined in the beginning of the course.

a.x+ b.y + c = 0 (5.4)

To determine equation 5.4, linear algebra concepts were used. Applying the rule
of Sarrus [Kha10] to the determinant of a 3 × 3 matrix, the standard form of the lin-
ear equation is obtained. This is described in equation 5.5. Two pairs of coordinates
((x1, y1); (x2, y2)) from all the possible ones where the line will pass are used.

a = y1 − y2

Det

∣∣∣∣∣∣∣
x1 y1 1

x2 y2 1

x y 1

∣∣∣∣∣∣∣ = 0 b = x2 − x1

c = (x1.y2 − x2.y1)

(5.5)

Using the initial position of the vessel and the point of origin as described in figure
5.12, equation 5.5 gives form to equation 5.6.

a = LongV − LongP

Det

∣∣∣∣∣∣∣
LatV LongV 1

LatP LongP 1

x y 1

∣∣∣∣∣∣∣ = 0 b = LatP − LatV

c = (LatV.LongP − LatP.LongV)

(5.6)

Finally, using equation 5.7 it is possible to obtain the distance to the original trajectory.

d =
|a.x0 + b.y0 + c|√

a2 + b2
(5.7)

57

5. PROPOSED CONTROLLER 5.4. Control structure

The values from both boat speed and distance need to be tuned according to the vessel
used. This next stage is only possible if testing in real conditions, which was not done in
the extent of this dissertation.

5.4.4 Goal approaching

Finally, while in the process of navigation, if the vessel is close enough to the objective
it stops. This is done by aligning with the wind as explained in section 3.1.3. A simple
controller for the rudder can put the vessel in the desired position as soon as it enters
the goal range. Originally, there is no transition in modes for approaching the objective.
It could be expected that while approaching the objective, the maximum distance for
tacking decreases. All of this is an area open for development in another dissertation.
There are two types of objectives targeted: buoys and finish lines.

Buoy approaching

A buoy is generally a floating object anchored to a specific location on the sea. These
objects serve as the first target for using approaching techniques by the designed system.
Since a commercial GPS module does not have the utmost precision (the one explained
in section 4.2.3 has 10 meter positional accuracy) it is very difficult to know the exact
location of the buoy. Establishing a radius around its expected position is a good way to
know if the vessel is near this objective, and if so it can stop.

Figure 5.27 shows the way this approach was calculated. Since the distance from
the vessel to the objective is known at every iteration of the course, it can be used as a
second radius (r2). If this radius becomes smaller than the one established by the user
(r1) it means that the vessel is close enough to its objective. This way, determining this
approach is as simple as r1 < r2.

r

r1

r2

Figure 5.27: Radius from both the objective buoy and distance to the vessel.

58

5. PROPOSED CONTROLLER 5.4. Control structure

Finish line approaching

In all kinds of races, the final objective is to pass the finish mark, preferentially in first
place. In maritime races this is also an objective and so, the need to detect the passage
through this line is essential in autonomous sailboats.

Given the coordinates of both end points of the finish line it is possible to obtain its
linear equation following the method used in section 5.4.3, equation 5.5. Using the linear
equation of the finish line in the form shown in equation 5.8 both half-planes formed by
the finish line in a Cartesian plane are easily identified, as shown in figure 5.28 a).

y = −a.x+ c

b
(5.8)

(x1,y1)

(x2,y2)

𝑦 =
−𝑎. 𝑥 + 𝑐

𝑏

𝑦 <
−𝑎. 𝑥 + 𝑐

𝑏

𝑦 >
−𝑎. 𝑥 + 𝑐

𝑏

(x1,y1)

(x2,y2)

a) b)

Figure 5.28: a) Finish line half planes identification; b) Lines at right angles to the finish
line;

Also, it is important to know if the vessel has precisely passed through the finish line
and not by its sides. For this, knowledge of the linear equations at right angles with both
end points of the finish line is relevant. These lines are shown in figure 5.28 b). Being the
slope of the finish line mfn = 1, for an equation perpendicular to this one its slope is its
negative (mfn.mp = −1⇔ 1.mp = −1⇔ mp = 1). Knowing this slope and the end point
coordinate (Xa, Ya) it is possible to obtain the perpendicular linear equation as shown in
equation 5.9.

y − ya = −1(x− xa)⇔ y + x− ya − xa = 0 (5.9)

By means of numerical comparisons described in algorithm 4 it is possible to identify
each of the zones in figure 5.29. These zone separations are essential for the implemented
method to function. The main zones are the upper (5) and lower zone (4) of the finish
line. Also, three more zones are used to identify if the vessel is between both end points
of the finish line (2) or out of bounds (1 and 3). Applying algorithm 5 ensures finish line

59

5. PROPOSED CONTROLLER 5.4. Control structure

detection.

(x1,y1)

(x2,y2)

1

2

3

5

4

Figure 5.29: Zone division for finish line detection.

Using the finish line linear equation;
if y > −a.x+c

b then
The vessel is in zone 5;

else if y < −a.x+c
b then

The vessel is in zone 4;
end

Using the linear equations that pass through (x1, y1) and (x2, y2);
if y1 > −a1.x1+c1

b1
and y2 < −a2.x2+c2

b2
then

The vessel is in zone 2;
else

The vessel is out of zone 2;
end

Algorithm 4: Finish line zone detection algorithms

60

5. PROPOSED CONTROLLER 5.4. Control structure

/* Initializations */

if y > −a.x+c
b then

Initial plane=5;
else

Initial plane=4;
end
Actual plane = Initial plane ;

/* At each iteration of the algorithm */

if y > −a.x+c
b then

Actual plane = 5;
else if y < −a.x+c

b then
Actual plane = 4;

end

if Actual plane == Initial plane then
Finish line not yet reached;

else Finish line half plane crossed
if y1 > −a1.x1+c1

b1
and y2 < −a2.x2+c2

b2
then

Finish line crossed;
else

Course to finish line failed, reroute is needed;
end

end
Algorithm 5: Finish line crossing detection algorithm

Some final considerations and additional specifications on this method are presented
next:

• The method described above, more specifically zone 2 detection in algorithm 4 pro-
duces results if the first coordinate (x1, y1) has a lower value in y than the second
coordinate (x2, y2). If the opposite is the case, then both mathematical operators
in the if condition are reversed (y1 < −a1.x1+c1

b1
and y2 > −a2.x2+c2

b2
instead of

y1 > −a1.x1+c1
b1

and y2 < −a2.x2+c2
b2

).

• Generally, the end points of a finish line are marked with buoys. To avoid crashing,
when using finish lines it is important to mark the distance for tacking (d parameter
in figure 5.26) smaller than the distance between both end points.

• Still concerning the last point, making a turn around a buoy can be seen as a succes-
sion of finish line crossings. If implementing these crossings for making a turn, the
user should mark the objective point as near as possible to the buoy, with a minimal
safe distance to avoid crashing.

61

5. PROPOSED CONTROLLER 5.4. Control structure

62

6
Experimental results

In this chapter results from the XFuzzy libraries will be shown, via the Arduino serial
monitor. To obtain data through the Arduino, code integration was done as explained in
section 6.1. Graphical representations are shown in order to attain a better understand-
ing. The data used in these representations is shown in appendix A and it was obtained
within a laboratory work [SA13]. Different input sets were given to each controller in
order to test the output range, and if this range is different whether on the Arduino or
the Xfuzzy environment. In order to acquire this difference, the percentage error was
calculated between the Xfuzzy and Arduino’s outputs using equation 6.1.∣∣∣∣Outputxfuzzy −OutputarduinoOutputxfuzzy

× 100%

∣∣∣∣ (6.1)

The controllers for the Favorable Wind, Tacking Left and Tacking Right situations
have the same fuzzy variables, being these "Rboatspeed", "Rdir_align" (directional align-
ment) and "Rwind_align" (wind alignment). Sail control has two different fuzzy variables
("Sroll" (vessel’s inclination) and "Swind_speed") and one common variable with the rud-
der, "Swind_align". For better understanding it is convenient to identify every variable
value range. Rboatspeed and Swindspeed have arbitrary values ranging from 0 to 30

since the sensors for measuring them weren’t available. Rdir_align varies from −1800 to
180o (as explained in section 5.3.2), Rwind_align/Swind_align from 0o to 180o (section
5.3.1) and Sroll varies from 0o to 90o, which are the only necessary angles for knowing if
the ship capsized or not. Rudder output varies from 1025 and 1650 which are the values
in milliseconds used by the rudder control system for starboard and port, respectively
[Gil13]. Sail output varies from 0 and 100 which represent the sail tightened and loose,
respectively.

63

6. EXPERIMENTAL RESULTS 6.1. Xfuzzy- Arduino integration

6.1 Xfuzzy- Arduino integration

Xfuzzy’s synthesized C++ descriptions are not 100% compatible with the arduino li-
braries. In order to integrate these generated libraries with the arduino code, the fol-
lowing changes need to be made in the libraries’ code and in the arduino root.

1. Two new functions need to be added to the core Arduino functions on files new.cpp
and new.h. These functions serve for memory allocation and freeing with arrays
and are the following:

void * operator new[](size_t size) {
return malloc(size);
}

void operator delete[](void * ptr) {
if(ptr) free(ptr);
}

2. on the created .hpp file, file extension must be changed to .h instead and the names
of "and", "or" and "not" operators also need to be altered to not enter in conflict with
Arduino’s reserved words.

3. on the created .cpp file, the name of the operators op.and, op.or and op.not must
also be changed.

Automating this process is less time consuming on long term, as such it is an option
to consider in terms of project improvement.

Also, another problem that occurred during development was memory overflow. Ar-
duino is not equipped with a large memory bank and each iteration of the fuzzy infer-
ence engine consumed memory. Consequently, after all memory is used the program
froze. This is probably related to faulty memory freeing functions and it is crucial that it
is solved, in a later stage of the prototype development.

6.2 Experimental results and analysis

The results obtained from figures 6.1 to 6.18 used code generated from libraries obtained
via Xfuzzy’s synthesis tool, version 3.3b1. Since results from the Arduino and XFuzzy
are very similar, as shown in appendix A, the figures shown next only represent data
obtained from Arduino. Each figure is analyzed after it is shown in order to gain a better
understanding.

64

6. EXPERIMENTAL RESULTS 6.2. Experimental results and analysis

6.2.1 Sail

20
30

40
50

60
70

80
90

10

15

20

25

30
0

20

40

60

80

100

Roll

Sail controller for wind alignment 0

Wind speed

T
ig

h
te

n
e
d
 

 O
u
tp

u
t


 L
o
o
s
e
n
e
d

10

20

30

40

50

60

70

80

90
Arduino

Output

Figure 6.1: Experimental results for the sail controller part 1.

0

20

40

60

80

10

15

20

25

30

40

50

60

70

80

90

100

Roll

Sail controller for wind alignment 45

Wind speed

T
ig

h
te

n
e
d
 

 O
u
tp

u
t


 L
o
o
s
e
n
e
d

40

50

60

70

80

90

Arduino

Output

Figure 6.2: Experimental results for the sail controller part 2.

65

6. EXPERIMENTAL RESULTS 6.2. Experimental results and analysis

With the wind in front of the vessel (Wind alignment = 0) the sail tightens itself to
the maximum in order to catch the less possible wind. In this figure and in every other
sail controller result, if the inclination gets too steep then the sail loosens its sheets to the
maximum, as explained in section 5.4.1. As the wind alignment rises, the vessel starts to
catch the wind laterally. With wind alignment at 45 degrees the sailboat loosens its sheets
a bit more. It is also important to notice that the sail control changes with the wind speed.
If the wind is strong, then the sail is tightened a bit more than if the wind was weak.

0

20

40

60

80

5

10

15

20

25

30
50

60

70

80

90

100

Roll

Sail controller for wind alignment 90

Wind speed

T
ig

h
te

n
e
d
 

 O
u
tp

u
t


 L
o
o
s
e
n
e
d

50

55

60

65

70

75

80

85

90

95
Arduino

Output

Figure 6.3: Experimental results for the sail controller part 3.

0

20

40

60

80

10

15

20

25

30

60

70

80

90

100

Roll

Sail controller for wind alignment 135

Wind speed

T
ig

h
te

n
e
d
 

 O
u
tp

u
t


 L
o
o
s
e
n
e
d

60

65

70

75

80

85

90

95
Arduino

Output

Figure 6.4: Experimental results for the sail controller part 4.

66

6. EXPERIMENTAL RESULTS 6.2. Experimental results and analysis

With the wind at right angles, the sails are tightened at their middle position, as it can
be noticed the tendency is to loosen the sail the more the wind comes from behind. With
135 degrees of wind alignment the sail continues relatively in its middle position. As it
can be noticed, the tendency for maximum loosing of the sails if the inclination is high
continues with these values.

0
20

40
60

80
10

15

20

25

30

75

80

85

90

95

100

Wind speed

Sail controller for wind alignment 180

Roll

T
ig

h
te

n
e
d
 

 O
u
tp

u
t


 L
o
o
s
e
n
e
d

75

80

85

90

95

Arduino

Output

Figure 6.5: Experimental results for the sail controller part 5.

With the wind coming from behind the ship the sails are loosened in order to resist
the most to the passage of the wind. Again, with a more steep inclination the controller
focuses on loosing the sail to it’s maximum to avoid capsizing. If the wind is weak then
the sail is loosened. If it is strong then is it loosened to the maximum.

67

6. EXPERIMENTAL RESULTS 6.2. Experimental results and analysis

6.2.2 Favorable Wind

-150
-100

-50
0

50
100

150

5

10

15

20

25

30

1200

1300

1400

1500

Boat speed

Rudder: Favorable wind controller for wind alignment 0

Directional Alignment

S
ta

rb
o
a
rd

 
 O

u
tp

u
t


 P
o
rt

s
id

e

1150

1200

1250

1300

1350

1400

1450

1500

Arduino

Output

Figure 6.6: Experimental results for the favorable wind controller part 1.

-150
-100

-50
0

50
100

150

5
10

15
20

25
30

1150

1200

1250

1300

1350

1400

1450

1500

1550

Directional Alignment

Rudder: Favorable wind controller for wind alignment 45

Boat speed

S
ta

rb
o
a
rd

 
 O

u
tp

u
t


 P
o
rt

s
id

e

1150

1200

1250

1300

1350

1400

1450

1500

1550

Arduino

Output

Figure 6.7: Experimental results for the favorable wind controller part 2.

68

6. EXPERIMENTAL RESULTS 6.2. Experimental results and analysis

In this controller, the situation of wind directly in front never happens. Even though,
if some failure occurs and this controller is chosen in this situation it acts as appropriately
as it can. If the directional alignment has 0 degrees in angle (the objective is directly
ahead) then the controller cannot choose which course of action to take. If it is even a bit
to the left (negative directional alignment) or to the right (positive directional alignment)
then the rudder changes abruptly to turn the vessel away from this zone. In the rudder
controllers the tendency to turn more softly if the vessel has a greater speed follows the
same logic as the tightening of the sail at greater wind speeds. With wind alignment at
45 degrees the vessel starts to move more freely. If the objective is to the left (negative
directional alignment) then the vessel simply sails to portside. If the objective is to the
right it follows the same logic and sails to starboard. As the objective is more centered
to the vessel’s position the rudder starts to turn less and less, in order to make the most
precise approach possible.

-100

0

100

5 10 15 20 25 30

1150

1200

1250

1300

1350

1400

1450

1500

1550

Directional Alignment

Boat speed

Rudder: Favorable wind controller for wind alignment 90

S
ta

rb
o
a
rd

 
 O

u
tp

u
t


 P
o
rt

s
id

e

1150

1200

1250

1300

1350

1400

1450

1500

1550

Arduino

Output

Figure 6.8: Experimental results for the favorable wind controller part 3.

69

6. EXPERIMENTAL RESULTS 6.2. Experimental results and analysis

-150
-100

-50
0

50
100

150

5

10

15

20

25

30

1200

1300

1400

1500

Directional Alignment

Rudder: Favorable wind controller for wind alignment 135

Boat speed

S
ta

rb
o
a
rd

 
 O

u
tp

u
t


 P
o
rt

s
id

e

1150

1200

1250

1300

1350

1400

1450

1500

1550

Arduino

Output

Figure 6.9: Experimental results for the favorable controller part 4.

With wind alignment from 90 to 180 degrees the behavior is similar to when wind
alignment is 45 degrees. The only difference resides in the roughness of the rudder turn.
If the objective is to the left then the vessel turns left, if the objective is to the right then
the vessel turns in this direction. The tendency to turn more smoothly when the vessel
is going "faster" continues. It is also important to notice that the situations where wind
alignment is 90 and 135 degrees are equivalent because the controller marks both situa-
tions as lateral wind situations, described in subsection 5.4.2.

-150
-100

-50
0

50
100

150

5

10

15

20

25

30

1000

1100

1200

1300

1400

1500

1600

Directional Alignment

Rudder: Favorable wind controller for wind alignment 180

Boat speed

S
ta

rb
o
a
rd

 
 O

u
tp

u
t


 P
o
rt

s
id

e

1100

1200

1300

1400

1500

1600
Arduino

Output

Figure 6.10: Experimental results for the favorable wind controller part 5.

70

6. EXPERIMENTAL RESULTS 6.2. Experimental results and analysis

6.2.3 Tack Left

-150
-100

-50
0

50
100

150

5

10

15

20

25

30

1550

1600

1650

Boat speed

Rudder: Tack Left controller for wind alignment 0

Directional Alignment

S
ta

rb
o
a
rd

 
 O

u
tp

u
t


 P
o
rt

s
id

e

1560

1570

1580

1590

1600

1610

1620

1630

1640
Arduino

Output

Figure 6.11: Experimental results for the tack left controller part 1.

-150
-100

-50
0

50
100

150

5

10

15

20

25

30

1400

1450

1500

1550

1600

Directional Alignment

Rudder: Tack Left controller for wind alignment 45

Boat speed

S
ta

rb
o
a
rd

 
 O

u
tp

u
t


 P
o
rt

s
id

e

1400

1420

1440

1460

1480

1500

1520

1540

1560

1580
Arduino

Output

Figure 6.12: Experimental results for the tack left controller part 2.

The tack left controller’s purpose is to pass the upwind zone if the vessel is to the
right of the objective and must pass through it. With this specification, it is normal ma-
neuvering if the vessel turns the rudder all to the left (portside) if the wind alignment is 0
degrees (wind directly in front).With wind alignment at 45 degrees it is safe to sail. Still,
going with the specification, if the objective is to the left of the vessel, it continues turning
in that direction. If the objective is to the right it is still in the upwind zone. In this case,
the rudder is centered, keeping the vessel in the border between the sailing zone and

71

6. EXPERIMENTAL RESULTS 6.2. Experimental results and analysis

the upwind zone until it is ready to make another tacking maneuver. This new tacking
maneuver is set by the rudder decider structure described in section 5.4.3.

-150
-100

-50
0

50
100

150

5

10

15

20

25

30

1350

1400

1450

1500

1550

Directional Alignment

Rudder: Tack Left controller for wind alignment 90

Boat speed

S
ta

rb
o
a
rd

 
 O

u
tp

u
t


 P
o
rt

s
id

e

1340

1360

1380

1400

1420

1440

1460

1480

1500

1520

1540Arduino

Output

Figure 6.13: Experimental results for the tack left controller part 3.

-150
-100

-50
0

50
100

150

5

10

15

20

25

30

1350

1400

1450

1500

1550

Directional Alignment

Rudder: Tack Left controller for wind alignment 135

Boat speed

S
ta

rb
o
a
rd

 
 O

u
tp

u
t


 P
o
rt

s
id

e

1340

1360

1380

1400

1420

1440

1460

1480

1500

1520

1540Arduino

Output

Figure 6.14: Experimental results for the tack left controller part 4.

With lateral wind (90 and 135 degrees) the strategy continues. If the objective is to
the left of the vessel, then it continues turning left until the favorable wind controller is
switched on. If the objective is to the right of the vessel then it is still in the upwind zone
and the vessel keeps at bay from it. The tendency to turn more smoothly when the speed
is greater continues in all tack left results.

72

6. EXPERIMENTAL RESULTS 6.2. Experimental results and analysis

6.2.4 Tack Right

-150
-100

-50
0

50
100

150
5

10
15

20
25

30

1050

1100

1150

1200

Boat speed

Rudder: Tack Right controller for wind alignment 0

Directional Alignment

S
ta

rb
o
a
rd

 
 O

u
tp

u
t


 P
o
rt

s
id

e

1040

1060

1080

1100

1120

1140

1160

1180

1200

1220

Arduino

Output

Figure 6.15: Experimental results for the tack right controller part 1.

-150 -100
-50

0
50 100

150 5

10

15

20

25

301150

1200

1250

1300

Boat speed

Rudder: Tack Right controller for wind alignment 45

Directional Alignment

S
ta

rb
o
a
rd

 
 O

u
tp

u
t


 P
o
rt

s
id

e

1140

1160

1180

1200

1220

1240

1260

1280

Arduino

Output

Figure 6.16: Experimental results for the tack right controller part 2.

73

6. EXPERIMENTAL RESULTS 6.2. Experimental results and analysis

This last controller’s strategy is symetric to that of the tack left controller of section
6.2.3. If the objective is to the right side of the vessel and through or in the upwind zone
then this is the controller to act. With wind alignment 0 all this controller does is steering
the rudder to the right (starboard) as shown in figure 6.15. With wind alignment at 45 it is
possible to navigate, as so if the objective is still to the left of the vessel it is in or through
the upwind zone and the vessel steers centered, avoiding this zone. If the objective is
to the right of the vessel then it continues to steer to the right until a more appropriate
controller is chosen.

-150-100-50050100150

5

10

15

20

25

30

1150

1200

1250

1300

Directional Alignment

Rudder: Tack Right controller for wind alignment 90

Boat speed

S
ta

rb
o
a
rd

 
 O

u
tp

u
t


 P
o
rt

s
id

e

1140

1160

1180

1200

1220

1240

1260

1280

1300

1320
Arduino

Output

Figure 6.17: Experimental results for the tack right controller part 3.

-150 -100 -50 0 50 100 150 5
10

15
20

25
301140

1160

1180

1200

1220

1240

1260

1280

1300

1320

Boat speed

Rudder: Tack Right controller for wind alignment 135

Directional Alignment

S
ta

rb
o
a
rd

 
 O

u
tp

u
t


 P
o
rt

s
id

e

1140

1160

1180

1200

1220

1240

1260

1280

1300

1320
Arduino

Output

Figure 6.18: Experimental results for the tack right controller part 4.

74

6. EXPERIMENTAL RESULTS 6.2. Experimental results and analysis

Lateral wind conditions are similar to that of the wind alignment at 45 degrees. If the
objective is to the left of the vessel then it continues centered until ready to make another
tacking maneuver and if it is to the right the vessel simply steers into it. The specification
to turn more smoothly when the speed is greater continues in all tack right results.

General result analysis
Analyzing the results it is safe to assume that all the controllers work as described in

chapter 5, given the right inputs. Later tuning stages may be needed when sensors are
available for field testing.

There is also the conclusion that, in all controllers both the outputs from the Arduino
and Xfuzzy are practically identical, since the percentage error is very close to zero. The
existing errors can be explained by the fact that both programs have different decimal
precision.

75

6. EXPERIMENTAL RESULTS 6.2. Experimental results and analysis

76

7
Conclusions and future work

In this chapter, a summary of the work done and results achieved in this dissertation is
given, as well as some directions for future research topics and ideas.

7.1 Conclusions

The main objective of the work presented in this thesis is to design the general layout
of an autonomous sailboat controller using fuzzy logic, improvements suggested were
also taken into account. To do this, different activities were performed and results were
obtained, which are summarized next.

In section 5.1 a method to switch between manual and automatic control, using the
vessel’s original PWM signals is presented. Since the RF signals differ when the manual
controller is turned on or off, this contrast was exploited. Implementation of a counter to
use as the selector in a multiplexer was achieved. This way, it was possible to reduce the
load on the Arduino’s processor implementing most of the transition in hardware.

From sections 5.2 to 7.1 the general outline of the designed controller is presented.
The objective was to design a fuzzy logic controller for an autonomous sailboat using
an expert’s approach. Following the knowledge obtained studying other cases [ASC97,
Van97, SPJ07] and training in the Virtual Skipper Simulator the designed system was pre-
sented. First, most variables normally obtained using the available set of sensors where
not intuitive to use and one of the purposes of fuzzy logic is intuitiveness, a new set of
variables were designed. From these variables and following expert knowledge about
sailing the four main controllers and their support structures were obtained. For the sail,
since its only purpose is still speed gaining a single controller is enough. Since the rud-
der of a sailboat needs special navigation in windward zones more than one controller

77

7. CONCLUSIONS AND FUTURE WORK 7.2. Future Work

is needed. To maintain simplicity, a controller was designed for each tacking maneuver,
and another more general was designed. Rule bases for all controllers integrate smooth
output response to avoid rough turns and consequent ship capsizing. The integration
from Xfuzzy to Arduino code was successful, even though suffering minor problems ex-
plained in section 6.1.

As seen in the experimental results presented in chapter 6, all controllers behave as
expected. Further softness of transitions from the output membership functions need
to be tuned as soon as the Killer Whales Yatch is fully equipped with instrumentation
sensors and available for testing.

7.2 Future Work

Following the work done in this dissertation and impossibilities due to lack of material,
new investigation topics emerged. Some of these objectives are described below.

Higher level decider structure

Maritime races and courses do not need to be and usually are not linear. For instance,
a race can have the same line for start and finish, making all the ships pass around a
buoy and returning to their origin. In these cases, more than one course needs to be
planned. On a later phase of this project, after successful testing of the controller on a
vessel, a higher level planning structure can be designed. This structure’s objective is to
plan the general course of action, which can be a set of linear paths, detect when one path
is finished and passing on to the next one until the last one is finished. Implementing a
graphical interface application for planning and communication with the Arduino board
is a possible course of action.

Other calculus options

Since all the calculi done in this work was done from scratch, space for improving is
available. It can be suggested that when in tacking maneuvers, the vessel’s maximum
distance before tacking can be shortened while approaching the objective, in a manner
shown in figure 7.1.

Figure 7.1: Alternative tacking approach [Saia].

This way, tacking maneuvers done too far when the objective is near are avoided.

78

7. CONCLUSIONS AND FUTURE WORK

Also, the distance to the objective is manually calculated as shown in section 5.4.4. NMEA
protocol has a useful sentence to calculate this, the RMB (Recommended Minimum Nav-
igation Information) sentence. It is useful for whenever a route or a goto is active, which
can be the case.

Vessel - land communication
On a more advanced stage of optimization, before using the vessel on long term mis-

sions, the possibility to communicate with land while testing is available. For this, a
small wireless router can be integrated with the system. On an early phase, research of
available models for this objective was done, resulting in table 7.1.

Table 7.1: Available router model research.

Name
Size
(cm)

Consumption
Supported
protocols

Interfaces
Price
range
(Euros)

Apple
Airport
Express

94 x
7.5 x
2.85

46W(?) 802.11a/b/g/n

Ethernet gateway
/ printer USB con-
nection / integrated
charger / 3.5mm
audio minijack,

97-124

D-Link
DAP-1350

9.1 x
6.6 x 2

Specification
not available

802.11n/g
802.3u

LAN/WAN gate-
way / Access Point
/ Wireless client /
usb connection for
Shareport

68-113

D-Link
DWL-
G730AP

8 x 6 x
1,7

6W
802.11b/g
802.3/u

Specification not
available

53 (?)

Asus WL-
330GE

8,6 x
6,2 x
1,7

5W Max (?)

802.11b/d/g
802.3/u
802.1X WPA
WMM IPV4

Ethernet gateway /
Access point / Wire-
less Client / Univer-
sal Repeater

31-82

Asus WL-
330N3G

9 x 3,4
x 1,3

10W Max (?) 802.11n

Ethernet gateway
/ Access point /
Wireless Client /
Universal Repeater
/ Hotspot / 3G
sharing

53-97

Linksys
WTR54GS

10,7 x
7,3 x
3,1

Specification
not available

802.11b/g
802.3/u

Ethernet gateway 100-212

79

7. CONCLUSIONS AND FUTURE WORK

80

Bibliography

[AC09] Jose C. Alves and Nuno A. Cruz. Um sistema computacional reconfigurável
embarcado num veleiro autónomo. V Jornadas sobre Sistemas Reconfiguráveis -
REC’2009, pages 28–35, 2009.

[Alo] Sanjay Krishnankutty Alonso. Structure of a fuzzy inference system. http:
//www.dma.fi.upm.es/java/fuzzy/fuzzyinf/introfis_en.htm.
[Online; accessed 25-March-2013].

[ASC97] Jaime Abril, Jaime Salom, and Oscar Calvo. Fuzzy control of a sailboat. Int.
J. Approx. Reasoning, 16(3-4):359–375, 1997.

[Ass] Historical Naval Ships Association. Hitting a moving target from a moving
ship. http://www.hnsa.org/doc/firecontrol/partd.htm. [Online;
accessed 25-March-2013].

[AT] Atmark-Techno. Suzaku-sz130-u00, hardware manual (english version)
v1.0.2. http://www.atmark-techno.com. [Online; accessed 22-
November-2008].

[ATA02] Martijn L. Van Aartrijk, Claudio P. Tagliola, and Pieter W. Adriaans. Ai on the
ocean: the robosail project. In In Proceedings of the 15th European Conference on
Artificial Intelligence, ECAI, pages 653–657, 2002.

[ATX01] C. Yang A. Tiano, A. Zirilli and C. Xiao. A neural autopilot for sailing
yachts. Proceedings of the 9th Mediterranean Conference on Control and Automa-
tion, pages 27–29, 2001.

[Aus] Inc. Austriamicrosystems. As5040 10 bit 360o programmable magnetic rotary
encoder. http://www.farnell.com/datasheets/77802.pdf. [On-
line; accessed 15-July-2013].

[Ban] Maximo et Al Banzi. Arduino mega 2560. http://arduino.cc/en/

Main/ArduinoBoardMega2560. [Online; accessed 23-May-2013].

81

http://www.dma.fi.upm.es/java/fuzzy/fuzzyinf/introfis_en.htm
http://www.dma.fi.upm.es/java/fuzzy/fuzzyinf/introfis_en.htm
http://www.hnsa.org/doc/firecontrol/partd.htm
http://www.atmark-techno.com
http://www.farnell.com/datasheets/77802.pdf
http://arduino.cc/en/Main/ArduinoBoardMega2560
http://arduino.cc/en/Main/ArduinoBoardMega2560

BIBLIOGRAPHY

[Ber92] HamidR. Berenji. Fuzzy logic controllers. In RonaldR. Yager and LotfiA.
Zadeh, editors, An Introduction to Fuzzy Logic Applications in Intelligent Sys-
tems, volume 165 of The Springer International Series in Engineering and Com-
puter Science, pages 69–96. Springer US, 1992.

[BHB] Hernando Barragan, Brett Hagman, and Alexander Brevig. Wiring. http:
//wiring.org.co/. [Online; accessed 23-May-2013].

[BJ12] Fabrice Le Bars and Luc Jaulin. An experimental validation of a robust con-
troller with the vaimos autonomous sailboat. Proceedings of the 5th Interna-
tional Robotic Sailing Conference, 2012.

[Boa] BoaterEducation. Chapter 1: Know your boat: Sailboats. http://

www.boat-ed.com/nh/course/p1-6_knowyoursailboat.htm. [On-
line; accessed 25-March-2013].

[Bri11] Y. Briere. Sailing robot performance: maximum speed tracking vs energy effi-
ciency. International Conference on Climbing and Walking Robots and the Support
Technologies for Mobile Machines, pages 102–109, 2011.

[Cat] Tom Catalini. Sailing into the wind. www.tomcatalini.com/

sailing-into-the-wind/. [Online; accessed 25-March-2013].

[Cor12] Atmel Corporation. 8-bit atmel microcontroller with 64k/128k/256k bytes
in-system programmable flash. Data sheet, Atmel Corporation, 2012.

[Dez13] Elena Deza. Encyclopedia of Distances. 2013.

[dMdSa] Instituto de Microelectronica de Sevilla. The c++ code generation tool
- xfcpp. http://www2.imse-cnm.csic.es/Xfuzzy/Xfuzzy_3.3/

tools/xfcpp.html. [Online; accessed 26-May-2013].

[dMdSb] Instituto de Microelectronica de Sevilla. The inference monitor tool
- xfmt. http://www2.imse-cnm.csic.es/Xfuzzy/Xfuzzy_3.3/

tools/xfmt.html. [Online; accessed 26-May-2013].

[dMdSc] Instituto de Microelectronica de Sevilla. An overview of xfuzzy 3. http://
www2.imse-cnm.csic.es/Xfuzzy/Xfuzzy_3.3/index.html. [On-
line; accessed 26-May-2013].

[dMdSd] Instituto de Microelectronica de Sevilla. The system edition tool
- xfedit. http://www2.imse-cnm.csic.es/Xfuzzy/Xfuzzy_3.3/

tools/xfedit.html. [Online; accessed 26-May-2013].

[EK06] G. Elkaim and R. Kelbley. Station keeping and segmented trajectory control
of a wind-propelled autonomous catamaran. 45th IEEE Conference on Decision
and Control, 13(15):2424–2429, 2006.

82

http://wiring.org.co/
http://wiring.org.co/
http://www.boat-ed.com/nh/course/p1-6_knowyoursailboat.htm
http://www.boat-ed.com/nh/course/p1-6_knowyoursailboat.htm
www.tomcatalini.com/sailing-into-the-wind/
www.tomcatalini.com/sailing-into-the-wind/
http://www2.imse-cnm.csic.es/Xfuzzy/Xfuzzy_3.3/tools/xfcpp.html
http://www2.imse-cnm.csic.es/Xfuzzy/Xfuzzy_3.3/tools/xfcpp.html
http://www2.imse-cnm.csic.es/Xfuzzy/Xfuzzy_3.3/tools/xfmt.html
http://www2.imse-cnm.csic.es/Xfuzzy/Xfuzzy_3.3/tools/xfmt.html
http://www2.imse-cnm.csic.es/Xfuzzy/Xfuzzy_3.3/index.html
http://www2.imse-cnm.csic.es/Xfuzzy/Xfuzzy_3.3/index.html
http://www2.imse-cnm.csic.es/Xfuzzy/Xfuzzy_3.3/tools/xfedit.html
http://www2.imse-cnm.csic.es/Xfuzzy/Xfuzzy_3.3/tools/xfedit.html

BIBLIOGRAPHY

[Ele] Robot Electronics. Cmps10 - tilt compensated compass module. http://

www.robot-electronics.co.uk/htm/cmps10doc.htm. [Online; ac-
cessed 25-May-2013].

[Ent] Ubisoft Entertainment. Virtual skipper 5. http://www.virtualskipper.
com/. [Online; accessed 25-March-2013].

[FR] Ben Fry and Casey et Al Reas. Processing. http://www.processing.

org/. [Online; accessed 23-May-2013].

[Gil13] Flávio Gil. eventos - arquitectura de controlo distribuido para veleiro
autónomo. Master’s thesis, Faculdade de Ciências e Tecnologia - Univer-
sidade Nova de Lisboa, 2013. In progress.

[Glo] GlobalSat. Product user manual gps receiver engine board em-406a.
https://www.sparkfun.com/datasheets/GPS/EM-406A_User_

Manual.PDF. [Online; accessed 25-May-2013].

[Kha10] Dinesh Khattar. The Pearson Guide to Complete Mathematics for AIEEE. 2010.

[Kna] R. Benjamin Knapp. Fuzzy inference systems (mamdani). http:

//www.cs.princeton.edu/courses/archive/fall07/cos436/

HIDDEN/Knapp/fuzzy004.htm. [Online; accessed 25-March-2013].

[KSJM09] H Klinck, K Stelzer, K Jafarmadar, and DK Mellinger. Aas endurance: An
autonomous acoustic sailboat for marine mammal research. 2009.

[LB87] Hector J. Levesque and Ronald J. Brachman. Expressiveness and tractability
in knowledge representation and reasoning. Computational Intelligence, 3:78–
93, 1987.

[MA75] E. H. Mamdani and S. Assilian. An experiment in linguistic synthesis with a
fuzzy logic controller. International Journal of Machine Studies, 7 (1):1–13, 1975.

[Mica] Inc. Microchip. Pic24f family reference manual section 21. uart. http:

//ww1.microchip.com/downloads/en/DeviceDoc/en026583.pdf.
[Online; accessed 15-July-2013].

[Micb] Inc. Microsoft. What is com? http://www.microsoft.com/com/

default.mspx. [Online; accessed 15-July-2013].

[Micc] Microtransat. The microtransat challenge. http://www.microtransat.
org/. [Online; accessed 28-March-2013].

[Moo82] Robert C. Moore. The role of logic in knowledge representation and com-
monsense reasoning. Technical Report 264, AI Center, SRI International, 333
Ravenswood Ave., Menlo Park, CA 94025, Jun 1982.

83

http://www.robot-electronics.co.uk/htm/cmps10doc.htm
http://www.robot-electronics.co.uk/htm/cmps10doc.htm
http://www.virtualskipper.com/
http://www.virtualskipper.com/
http://www.processing.org/
http://www.processing.org/
https://www.sparkfun.com/datasheets/GPS/EM-406A_User_Manual.PDF
https://www.sparkfun.com/datasheets/GPS/EM-406A_User_Manual.PDF
http://www.cs.princeton.edu/courses/archive/fall07/cos436/HIDDEN/Knapp/fuzzy004.htm
http://www.cs.princeton.edu/courses/archive/fall07/cos436/HIDDEN/Knapp/fuzzy004.htm
http://www.cs.princeton.edu/courses/archive/fall07/cos436/HIDDEN/Knapp/fuzzy004.htm
http://ww1.microchip.com/downloads/en/DeviceDoc/en026583.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/en026583.pdf
http://www.microsoft.com/com/default.mspx
http://www.microsoft.com/com/default.mspx
http://www.microtransat.org/
http://www.microtransat.org/

BIBLIOGRAPHY

[MVBBSS] F.J. Moreno-Velo, I. Baturone, A. Barriga, and S. Ságnchez-Solano.

[NAC08] José C. Alves Nuno A. Cruz. Ocean sampling and surveillance using au-
tonomous sailboats. Journal of the Osterreichische Gesellshaft fur Artificial Intel-
ligence (Austrian Society for Artificial Inteligence), pages 25–31, 2008.

[Neg85] C.V. Negoita. Expert systems and fuzzy systems. The Benjamin/Cummings
series in computer sciences. Benjamin/Cummings Pub. Co., 1985.

[NI] Inc. National Instruments. What is serial synchronous
interface (ssi)? http://digital.ni.com/public.

nsf/websearch/862567530005F09C862566BE004E469D?

opendocument&Submitted&&node=133020_US. [Online; accessed
15-July-2013].

[OGfiC] INNOC Österreichische Gesellschaft für innovative Computerwis-
senschaften. World robotic sailing championship 2008. http:

//www.roboticsailing.org/en/2008. [Online; accessed 30-May-
2013].

[PTRa] PTRobotics. 20 channel em-406a sirf iii gps receiver with antenna. http://
www.ptrobotics.com/product.php?id_product=829. [Online; ac-
cessed 25-May-2013].

[PTRb] PTRobotics. Cmps10 - tilt compensated magnetic compass. http://www.
ptrobotics.com/product.php?id_product=1195. [Online; accessed
25-May-2013].

[RRGI+11] M.A. Romero Ramirez, Y. Guo, S.H. Ieng, F. Plumet, R Benosman, and B. Gas.
Omni-directional camera and fuzzy logic path planner for autonomous sail-
boat navigation. Research in Computing Science, Special Issue in Advances in
Computer Science and Electronic Systems, 52:335–346, 2011.

[SA13] Ricardo Silva and Rita Alhandra. Controladores digitais e controlo difuso
na navegação autónoma de veleiros - relatório final do piic. 2013. Internal
Document.

[Saia] Ocean Sail. When to tack or gybe. http://www.oceansail.co.uk/

Articles/VMGArticle.html.

[Saib] Spinnaker Sailing. The sail as an airfoil - sailing upwind.
http://spinnaker-sailing.com/online-courses/lesson-1/

sailing-upwind. [Online; accessed 25-March-2013].

[Sal96] Jim Saltonstall. This is Sailing: A Complete Course. Adlard Coles Nautical,
fourth edition, 1996.

84

http://digital.ni.com/public.nsf/websearch/862567530005F09C862566BE004E469D?opendocument&Submitted&&node=133020_US
http://digital.ni.com/public.nsf/websearch/862567530005F09C862566BE004E469D?opendocument&Submitted&&node=133020_US
http://digital.ni.com/public.nsf/websearch/862567530005F09C862566BE004E469D?opendocument&Submitted&&node=133020_US
http://www.roboticsailing.org/en/2008
http://www.roboticsailing.org/en/2008
http://www.ptrobotics.com/product.php?id_product=829
http://www.ptrobotics.com/product.php?id_product=829
http://www.ptrobotics.com/product.php?id_product=1195
http://www.ptrobotics.com/product.php?id_product=1195
http://www.oceansail.co.uk/Articles/VMGArticle.html
http://www.oceansail.co.uk/Articles/VMGArticle.html
http://spinnaker-sailing.com/online-courses/lesson-1/sailing-upwind
http://spinnaker-sailing.com/online-courses/lesson-1/sailing-upwind

BIBLIOGRAPHY

[SJ12] Roland Stelzer and Karim Jafarmadar. The robotic sailing boat asv roboat
as a maritime research platform. In Proceedings of 22nd International HISWA
Symposium, 2012.

[SP08] Roland Stelzer and Tobias Pröll. Autonomous sailboat navigation for short
course racing. Robot. Auton. Syst., 56(7):604–614, 2008.

[SPJ07] Roland Stelzer, Tobias Proll, and Robert Ivor John. Fuzzy logic control system
for autonomous sailboats. FUZZ-IEEE, pages 1–6, 2007.

[ST] Inc. Sirf Technology. Nmea reference manual. https://www.sparkfun.

com/datasheets/GPS/NMEA%20Reference%20Manual1.pdf. [Online;
accessed 03-July-2013].

[Sta] National Marine Electronics Association 0183 Standard. Nmea 0183
standard. http://www.nmea.org/content/nmea_standards/nmea_

0183_v_410.asp. [Online; accessed 03-July-2013].

[Sug85] Michio Sugeno. Industrial Applications of Fuzzy Control. Elsevier Science Inc.,
New York, NY, USA, 1985.

[Sysa] Argent Data Systems. Weather sensor assembly p/n 80422. https:

//www.sparkfun.com/datasheets/Sensors/Weather/Weather%

20Sensor%20Assembly..pdf. [Online; accessed 25-May-2013].

[Sysb] Argent Data Systems. Wind / rain sensor assembly. https://www.

argentdata.com/catalog/product_info.php?products_id=145.
[Online; accessed 25-May-2013].

[Van97] T W Vaneck. Fuzzy guidance controller for an autonomous boat. IEEE Control
Systems, pages 43–51, 1997.

[Vau] Bruce Vaughan. Polar-rectangular conversion. http://www.

teacherschoice.com.au/Maths_Library/Coordinates/polar_-_

rectangular_conversion.htm. [Online; accessed 30-May-2013].

[VBSB03] F.J.M. Velo, I. Baturone, S.S. Solano, and A. Barriga. Rapid design of fuzzy
systems with xfuzzy. The 12th IEEE International Conference on Fuzzy Systems,
1:342 – 347, 2003.

[War91] W. H. Warden. A control system model for autonomous sailboat navigation.
IEEE Proc. of Southeastcon’91, pages 944,947, 1991.

[Yal] Yaldex. Fuzzification. http://www.yaldex.com/game-development/
1592730043_ch33lev1sec2.html. [Online; accessed 25-March-2013].

[YLZ95] J. Yen, R. Langari, and L.A. Zadeh. Industrial applications of fuzzy logic and
intelligent systems. IEEE Press, 1995.

85

https://www.sparkfun.com/datasheets/GPS/NMEA%20Reference%20Manual1.pdf
https://www.sparkfun.com/datasheets/GPS/NMEA%20Reference%20Manual1.pdf
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
https://www.sparkfun.com/datasheets/Sensors/Weather/Weather%20Sensor%20Assembly..pdf
https://www.sparkfun.com/datasheets/Sensors/Weather/Weather%20Sensor%20Assembly..pdf
https://www.sparkfun.com/datasheets/Sensors/Weather/Weather%20Sensor%20Assembly..pdf
https://www.argentdata.com/catalog/product_info.php?products_id=145
https://www.argentdata.com/catalog/product_info.php?products_id=145
http://www.teacherschoice.com.au/Maths_Library/Coordinates/polar_-_rectangular_conversion.htm
http://www.teacherschoice.com.au/Maths_Library/Coordinates/polar_-_rectangular_conversion.htm
http://www.teacherschoice.com.au/Maths_Library/Coordinates/polar_-_rectangular_conversion.htm
http://www.yaldex.com/game-development/1592730043_ch33lev1sec2.html
http://www.yaldex.com/game-development/1592730043_ch33lev1sec2.html

BIBLIOGRAPHY

[Zad73] Lotfi A. Zadeh. Outline of a new approach to the analysis of complex systems
and decision processes. Systems, Man and Cybernetics, IEEE Transactions on,
SMC-3(1):28 –44, jan. 1973.

[Zad83] L. A. Zadeh. The role of fuzzy logic in the management of uncertainty in
expert systems. Fuzzy Sets Syst., 11(1-3):197–198, January 1983.

[Zad86] L. A. Zadeh. Test-score semantics as a basis for a computational approach to
the representation of meaning. Literacy Linguistic Computing, (1):24–35, 1986.

[Zad89] L.A. Zadeh. Knowledge representation in fuzzy logic. IEEE Transactions on
Knowledge and Data Engineering, 1(1):89–100, 1989.

[Zim91] H.J. Zimmermann. Fuzzy Set Theory and its applications. Kluwer Academic,
Dordrecht, 1991.

86

A
Experimental results tables

Table A.1: Sail controller experimental results.
Input Output

Rdir_align Rboatspeed Rwind_align Xfuzzy Arduino Percentage error
15,3 9,9 0 17,07 17,07 0
15,3 19,5 0 1,512 1,51 0,15
15,3 30 0 1,512 1,51 0,15
30,6 9,9 0 17,07 17,07 0
30,6 20,1 0 1,512 1,51 0,15
30,6 30 0 1,512 1,51 0,15
45 9,6 0 56,51 56,51 0
45 19,5 0 48,6 48,6 0
45 30 0 48,6 48,6 0

60,3 10,2 0 88,2 88,2 0
60,3 19,2 0 74,5 74,5 0
60,3 30 0 74,5 74,5 0
74,7 9 0 94,12 94,12 0
74,7 19,5 0 74,5 74,5 0
74,7 30 0 74,5 74,5 0
90 10,2 0 88,2 88,2 0
90 19,8 0 74,5 74,5 0
90 30 0 74,5 74,5 0

87

A. EXPERIMENTAL RESULTS TABLES

Input Output
Rdir_align Rboatspeed Rwind_align Xfuzzy Arduino Percentage error

0 9,6 45 34,17 34,02 0,44
0 19,8 45 35,98 35,98 0
0 30 45 35,98 35,98 0

15,3 9,6 45 34,02 34,02 0
15,3 19,5 45 35,98 35,98 0
15,3 30 45 35,98 35,98 0
30,6 9,9 45 32,47 32,48 0
30,6 19,5 45 35,98 35,98 0
30,6 30 45 35,98 35,98 0
45 10,5 45 51,43 51,43 0
45 19,5 45 49,12 49,12 0
45 30 45 49,12 49,12 0

60,3 9,6 45 91,36 91,36 0
60,3 20,1 45 74,5 74,5 0
60,3 30 45 74,5 74,5 0
74,7 10,2 45 88,2 88,2 0
74,7 21,9 45 74,5 74,5 0
74,7 30 45 74,5 74,5 0
90 10,2 45 88,2 88,2 0
90 19,8 45 74,5 74,5 0
90 30 45 74,5 74,5 0
0 9,9 90 50 50 0
0 20,1 90 50 50 0
0 30 90 50 50 0

15,3 5,1 90 49,9 50 0
15,3 9,9 90 50 50 0
15,3 22,5 90 49,9 50 0
30,6 9,6 90 50 50 0
30,6 18,3 90 49,999 50 0
30,6 30 90 49,999 50 0
45 12 90 60,8 60,8 0
45 18,9 90 63,8 63,8 0
45 30 90 63,8 63,8 0

60,3 10,2 90 88,2 88,2 0
60,3 20,1 90 74,5 74,5 0
60,3 30 90 74,5 74,5 0
74,7 9,6 90 91,36 91,36 0
74,7 19,8 90 74,5 74,5 0
74,7 30 90 74,5 74,5 0
90 9,6 90 91,36 91,36 0
90 19,5 90 74,5 74,5 0
90 30 90 74,5 74,5 0
0 9,6 135 50 50 0
0 19,8 135 49,9 50 0
0 30 135 49,9 50 0

15,3 30 135 49,9 50 0
15,3 20,7 135 49,9 50 0
15,3 10,2 135 50 50 0

88

A. EXPERIMENTAL RESULTS TABLES

Input Output
Rdir_align Rboatspeed Rwind_align Xfuzzy Arduino Percentage error

30,6 10,1 135 50 50 0
30,6 20,7 135 49,9 50 0
30,6 30 135 49,9 50 0
45 9,9 135 71,9 71,9 0
45 19,8 135 63,8 63,8 0
45 30 135 63,8 63,8 0

60,3 9,9 135 89,8 89,8 0
60,3 19,5 135 74,5 74,5 0
60,3 30 135 74,5 74,5 0
74,7 9,6 135 91,3 91,3 0
74,7 20,4 135 74,5 74,5 0
74,7 30 135 74,5 74,5 0
90 9,9 135 89,8 89,8 0
90 19,8 135 74,5 74,5 0
90 30 135 74,5 74,5 0
0 9,9 180 89,8 89,8 0
0 20,4 180 74,5 74,5 0
0 30 180 74,5 74,5 0

15,3 9,6 180 91,4 91,4 0
15,3 19,5 180 74,5 74,5 0
15,3 30 180 74,5 74,5 0
30,6 9,6 180 91,4 91,4 0
30,6 20,4 180 74,5 74,5 0
30,6 30 180 74,5 74,5 0
45 10,5 180 86,47 86,47 0
45 20,1 180 74,5 74,5 0
45 30 180 74,5 74,5 0

60,3 10,2 180 88,2 88,2 0
60,3 19,8 180 74,5 74,5 0
60,3 30 180 74,5 74,5 0
74,7 10,5 180 86,47 86,47 0
74,7 19,2 180 74,5 74,5 0
74,7 30 180 74,5 74,5 0
90 9,9 180 89,83 89,83 0
90 20,1 180 74,5 74,5 0
90 30 180 74,5 74,5 0

89

A. EXPERIMENTAL RESULTS TABLES

Table A.2: Rudder: Favorable Wind controller experimental results.
Input Output

Rdir_align Rboatspeed Rwind_align Xfuzzy Arduino Percentage error
-180 6 0 1127,4 1127,45 0
-180 19,8 0 1226,8 1226,87 0
-180 30 0 1226,8 1226,87 0
-90 5,7 0 1127,4 1127,45 0
-90 20,4 0 1226,8 1226,87 0
-90 30 0 1226,8 1226,87 0

-43,199 6 0 1127,4 1127,45 0
-43,199 19,5 0 1226,8 1226,87 0
-43,199 30 0 1226,8 1226,87 0

0 6 0 1338,9 1340 0,1
0 19,8 0 1339 1339 0
0 30 0 1339 1339 0

46,8 5,7 0 1553,1 1554,15 0,1
46,8 20,4 0 1451,1 1451,19 0
46,8 30 0 1451,1 1451,19 0
90 6 0 1553,1 1553,15 0
90 19,8 0 1451,1 1451,19 0
90 30 0 1451,1 1451,19 0
180 6 0 1553,1 1553,15 0
180 19,8 0 1451,1 1451,19 0
180 30 0 1451,1 1451,19 0
-180 5,7 45 1553,1 1553,15 0
-180 21 45 1451,1 1451,19 0
-180 30 45 1451,1 1451,19 0
-90 6 45 1553,1 1553,15 0
-90 18,3 45 1451,1 1451,19 0
-90 30 45 1451,1 1451,19 0

-43,199 6 45 1451,1 1451,19 0
-43,199 18,3 45 1451,1 1451,19 0
-43,199 30 45 1451,1 1451,19 0

0 5,7 45 1325 1325 0
0 21 45 1325 1325 0
0 30 45 1325 1325 0

46,8 6 45 1226,8 1226,87 0
46,8 19,2 45 1226,8 1226,87 0
46,8 30 45 1226,8 1226,87 0
90 4,5 45 1127,4 1127,45 0
90 18,3 45 1226,8 1226,87 0
90 30 45 1226,8 1226,87 0
180 4,8 45 1127,4 1127,45 0
180 21,9 45 1226,8 1226,87 0
180 30 45 1226,8 1226,87 0
-180 5,1 90 1553,1 1553,15 0
-180 19,2 90 1451,1 1451,19 0
-180 30 90 1451,1 1451,19 0

90

A. EXPERIMENTAL RESULTS TABLES

Input Output
Rdir_align Rboatspeed Rwind_align Xfuzzy Arduino Percentage error

-90 4,8 90 1553,1 1553,15 0
-90 18,3 90 1451,1 1451,19 0
-90 30 90 1451,1 1451,19 0

-43,199 4,8 90 1451,1 1451,19 0
-43,199 21,9 90 1451,1 1451,19 0
-43,199 30 90 1451,1 1451,19 0

0 5,1 90 1324,9 1325,01 0
0 19,2 90 1325 1325 0
0 30 90 1325 1325 0

46,8 5,7 90 1226,8 1226,87 0
46,8 18,3 90 1226,8 1226,87 0
46,8 30 90 1226,8 1226,87 0
90 6 90 1127,4 1127,45 0
90 21,9 90 1226,8 1226,87 0
90 30 90 1226,8 1226,87 0
180 4,8 90 1127,4 1127,45 0
180 19,2 90 1226,8 1226,87 0
180 30 90 1226,8 1226,87 0
-180 4,8 135 1553,1 1553,15 0
-180 19,2 135 1451,1 1451,19 0
-180 30 135 1451,1 1451,19 0
-90 6 135 1553,1 1553,15 0
-90 21 135 1451,1 1451,19 0
-90 30 135 1451,1 1451,19 0

-43,199 4,5 135 1451,1 1451,19 0
-43,199 19,2 135 1451,1 1451,19 0
-43,199 30 135 1451,1 1451,19 0

0 5,1 135 1324,9 1325,01 0
0 17,4 135 1325 1325 0
0 30 135 1325 1325 0

46,8 6 135 1226,8 1226,87 0
46,8 21 135 1226,8 1226,87 0
46,8 30 135 1226,8 1226,87 0
90 5,7 135 1127,4 1127,45 0
90 19,2 135 1226,8 1226,87 0
90 30 135 1226,8 1226,87 0
180 5,1 135 1127,4 1127,45 0
180 17,4 135 1226,8 1226,87 0
180 30 135 1226,8 1226,87 0
-180 6 180 1647,4 1647,46 0
-180 21 180 1553,1 1553,15 0
-180 30 180 1553,1 1553,15 0
-90 5,7 180 1647,4 1647,46 0
-90 18,9 180 1553,1 1553,15 0
-90 30 180 1553,1 1553,15 0

-43,199 5,1 180 1553,1 1553,15 0
-43,199 17,4 180 1451,1 1451,19 0
-43,199 30 180 1451,2 1451,19 0

91

A. EXPERIMENTAL RESULTS TABLES

Input Output
Rdir_align Rboatspeed Rwind_align Xfuzzy Arduino Percentage error

0 6,9 180 1324,9 1325,01 0
0 21 180 1325 1325 0
0 30 180 1325 1325 0

46,8 6 180 1127,4 1127,45 0
46,8 18,3 180 1226,8 1226,87 0
46,8 30 180 1226,8 1226,87 0
90 5,1 180 1025,4 1025,49 0
90 19,5 180 1127,4 1127,45 0
90 30 180 1127,4 1127,45 0
180 6 180 1025,4 1025,49 0
180 21 180 1127,4 1127,45 0
180 30 180 1127,4 1127,45 0

Table A.3: Rudder: Tack Right controller experimental results.
Input Output

Rdir_align Rboatspeed Rwind_align Xfuzzy Arduino Percentage error
-180 9,3 0 1226,8 1226,8 0
-180 20,4 0 1226,8 1226,8 0
-180 30 0 1226,8 1226,8 0
-90 10,2 0 1226,8 1226,8 0
-90 19,8 0 1226,8 1226,8 0
-90 30 0 1226,8 1226,8 0

-43,199 10,2 0 1226,8 1226,8 0
-43,199 19,8 0 1226,8 1226,8 0
-43,199 30 0 1226,8 1226,8 0

0 6 0 1025,4 1025,4 0
0 19,8 0 1226,8 1226,8 0
0 30 0 1226,8 1226,8 0

46,8 5,7 0 1025,4 1025,4 0
46,8 20,4 0 1226,8 1226,8 0
46,8 30 0 1226,8 1226,8 0
90 5,7 0 1025,4 1025,4 0
90 20,1 0 1226,8 1226,8 0
90 30 0 1226,8 1226,8 0
180 5,7 0 1025,4 1025,4 0
180 20,7 0 1226,8 1226,8 0
180 30 0 1226,8 1226,8 0

92

A. EXPERIMENTAL RESULTS TABLES

Input Output
Rdir_align Rboatspeed Rwind_align Xfuzzy Arduino Percentage error

-180 6,3 45 1225,3 1225,3 0
-180 20,7 45 1299,8 1299,8 0
-180 30 45 1299,8 1299,8 0
-90 6,9 45 1282,7 1282,7 0
-90 20,1 45 1299,8 1299,8 0
-90 30 45 1299,8 1299,8 0

-43,199 6 45 1225,1 1225,1 0
-43,199 20,1 45 1299,8 1299,8 0
-43,199 30 45 1299,8 1299,8 0

0 5,7 45 1225,5 1225,5 0
0 19,8 45 1261,1 1262,1 0
0 30 45 1261,9 1262 0

46,8 6,9 45 1169,1 1169,1 0
46,8 20,4 45 1174,8 1174,9 0
46,8 30 45 1174,8 1174,9 0
90 6 45 1126,1 1126,1 0
90 20,4 45 1174,8 1174,9 0
90 30 45 1174,8 1171,9 0,24
180 5,7 45 1126,1 1126,1 0
180 20,4 45 1174,8 1174,9 0
180 30 45 1174,8 1174,9 0
-180 6,9 90 1324,9 1325 0
-180 19,8 90 1325 1325 0
-180 30 90 1325 1325 0
-90 6 90 1324,9 1325 0
-90 19,5 90 1325 1325 0
-90 30 90 1325 1325 0

-43,199 5,7 90 1324,9 1325 0
-43,199 20,1 90 1325 1325 0
-43,199 30 90 1325 1325 0

0 6,9 90 1257,9 1258 0
0 19,8 90 1270,7 1270,9 0
0 30 90 1270,7 1270,9 0

46,8 6,9 90 1137,3 1137,3 0
46,8 19,5 90 1127,4 1127,4 0
46,8 30 90 1127,4 1127,4 0
90 6,3 90 1197 1197 0
90 19,5 90 1127,4 1127,4 0
90 30 90 1127,4 1127,4 0
180 6,6 90 1167,2 1167,2 0
180 18 90 1127,4 1127,4 0
180 30 90 1127,4 1127,4 0
-180 6,3 135 1324,9 1325 0
-180 19,5 135 1325 1325 0
-180 30 135 1325 1325 0
-90 6,3 135 1324,9 1325 0
-90 19,5 135 1325 1325 0
-90 30 135 1325 1325 0

93

A. EXPERIMENTAL RESULTS TABLES

Input Output
Rdir_align Rboatspeed Rwind_align Xfuzzy Arduino Percentage error

-43,199 6,6 135 1324,9 1325 0
-43,199 18 135 1325 1325 0
-43,199 30 135 1325 1325 0

0 6,3 135 1271,6 1271,6 0
0 19,5 135 1270,7 1270,9 0
0 30 135 1270,7 1270,9 0

46,8 6,3 135 1197 1197 0
46,8 19,5 135 1127,4 1127,4 0
46,8 30 135 1127,4 1127,4 0
90 6,6 135 1167,2 1167,2 0
90 18 135 1127,4 1127,4 0
90 30 135 1127,4 1127,4 0
180 6,3 135 1197 1197 0
180 19,5 135 1127,4 1127,4 0
180 30 135 1127,4 1127,4 0

Table A.4: Rudder: Tack Left controller experimental results.
Input Output

Rdir_align Rboatspeed Rwind_align Xfuzzy Arduino Percentage error
-180 6,6 0 1590,8 1590,8 0
-180 20,4 0 1553,1 1553,1 0
-180 30 0 1553,1 1553,1 0
-90 5,7 0 1647,4 1647,4 0
-90 19,8 0 1553,1 1553,1 0
-90 30 0 1553,1 1553,1 0

-43,199 6,3 0 1619,2 1619,17 0
-43,199 19,8 0 1553,1 1553,1 0
-43,199 30 0 1553,1 1553,1 0

0 6,6 0 1590,8 1590,8 0
0 19,8 0 1553,1 1553,1 0
0 30 0 1553,1 1553,1 0

46,8 5,7 0 1647,4 1647,4 0
46,8 20,4 0 1553,1 1553,1 0
46,8 30 0 1553,1 1553,1 0
90 6 0 1647,4 1647,4 0
90 19,8 0 1553,1 1553,1 0
90 30 0 1553,1 1553,1 0
180 5,7 0 1647,4 1647,4 0
180 19,5 0 1553,1 1553,1 0
180 30 0 1553,1 1553,1 0

94

A. EXPERIMENTAL RESULTS TABLES

Input Output
Rdir_align Rboatspeed Rwind_align Xfuzzy Arduino Percentage error

-180 6 45 1600,2 1600,3 0
-180 20,4 45 1485,1 1485,1 0
-180 30 45 1485,1 1485,1 0
-90 6,6 45 1538,4 1538,4 0
-90 19,8 45 1485,1 1485,1 0
-90 30 45 1485,1 1485,1 0

-43,199 5,7 45 1600,2 1600,3 0
-43,199 19,5 45 1485,1 1485,1 0
-43,199 30 45 1485,1 1485,1 0

0 6 45 1462,6 1462,6 0
0 20,4 45 1406,4 1406,4 0
0 30 45 1406,4 1406,4 0

46,8 5,7 45 1432,4 1432,4 0
46,8 19,8 45 1383,4 1383,4 0
46,8 30 45 1383,4 1383,4 0
90 5,7 45 1432,4 1432,4 0
90 19,5 45 1383,4 1383,4 0
90 30 45 1383,4 1383,4 0
180 6 45 1432,4 1432,4 0
180 20,4 45 1383,4 1383,4 0
180 30 45 1383,4 1383,4 0
-180 5,7 90 1553,1 1553,1 0
-180 19,8 90 1451,1 1451,1 0
-180 30 90 1451,1 1451,1 0
-90 7,5 90 1553,1 1553,1 0
-90 19,5 90 1451,1 1451,1 0
-90 30 90 1451,1 1451,1 0

-43,199 6 90 1553,1 1553,1 0
-43,199 20,4 90 1451,1 1451,1 0
-43,199 30 90 1451,1 1451,1 0

0 5,7 90 1401 1401,05 0
0 19,5 90 1376,4 1376,4 0
0 30 90 1376,4 1376,4 0

46,8 5,7 90 1324,9 1325 0
46,8 19,5 90 1325 1325 0
46,8 30 90 1325 1325 0
90 6 90 1324,9 1325 0
90 20,4 90 1325 1325 0
90 30 90 1323 1323 0
180 5,7 90 1324,9 1325 0
180 19,5 90 1325 1325 0
180 30 90 1325 1325 0
-180 6 135 1553,1 1553,1 0
-180 19,5 135 1451,1 1451,1 0
-180 30 135 1451,1 1451,1 0
-90 6 135 1553,1 1553,1 0
-90 20,4 135 1451,1 1451,1 0
-90 30 135 1451,1 1451,1 0

95

A. EXPERIMENTAL RESULTS TABLES

Input Output
Rdir_align Rboatspeed Rwind_align Xfuzzy Arduino Percentage error

-43,199 6,6 135 1491,9 1491,9 0
-43,199 19,8 135 1451,1 1451,1 0
-43,199 30 135 1451,1 1451,1 0

0 5,7 135 1401 1401 0
0 19,5 135 1376,4 1376,4 0
0 30 135 1376,4 1376,4 0

46,8 6 135 1324,9 1325 0
46,8 20,4 135 1325 1325 0
46,8 30 135 1325 1325 0
90 6 135 1324,9 1325 0
90 19,8 135 1325 1325 0
90 30 135 1325 1325 0
180 5,7 135 1324,9 1325 0
180 19,5 135 1325 1325 0
180 30 135 1325 1325 0

96

	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation
	Objectives and contributions
	Dissertation Outline

	Related work
	FASt - FEUP Autonomous Sailboat
	Hardware
	Software

	Fuzzy logic control on autonomous sailing systems
	System Architecture
	Fuzzy Control System
	Results and conclusions

	Supporting Concepts
	Basics of Sailing
	The vessel
	The use of sails
	Sailing Techniques

	Fuzzy Control
	An Introduction
	Applications
	Essential characteristics
	Fuzzy logic controller architecture

	Software and Hardware
	Arduino
	Hardware

	Proposed sensors for the project
	Weather meter
	CMPS10 Tilt Compensated Magnetic Compass
	EM-406A SiRF III GPS Receiver with Antenna

	Available sensors and emulators
	Simulation platform
	PIC-Arduino interface

	Xfuzzy

	Proposed controller
	Transition between manual and automatic control
	Designed controller
	Controller Variables
	Wind Alignment
	Directional Alignment

	Control structure
	Sail
	Rudder
	Rudder decider structure
	Goal approaching

	Experimental results
	Xfuzzy- Arduino integration
	Experimental results and analysis
	Sail
	Favorable Wind
	Tack Left
	Tack Right

	Conclusions and future work
	Conclusions
	Future Work

	Bibliography
	Experimental results tables

