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Abstract: Páscoa and Seghir (2009) noticed that when collateralized promises become subject to

utility penalties on default, Ponzi schemes may occur. However, equilibrium exists in some interesting

cases. Under low penalties, equilibrium exists if the collateral does not yield utility (for example, when

it is a productive asset or a security). Equilibrium exists also under more severe penalties and collateral

utility gains, when the promise or the collateral are nominal assets and the margin requirements are

endogenous: relative inflation rates and margin coefficients can make the income effects dominate the

penalty effects. An equilibrium refinement avoids no-trade equilibria with unduly repayment beliefs.

Our refinement differs from the one used by Dubey, Geanakoplos and Shubik (2005) as it does not

eliminate no trade equilibria whose low delivery rates are consistent with the propensity to default of

agents that are on the verge of selling.
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1 Introduction

Ponzi schemes and utility penalties

The modern general equilibrium literature on default evolved mainly from two seminal contribu-

tions, the Dubey, Geanakoplos and Shubik (2005) paper on utility penalties and the Geanakoplos and

Zame (1995) work on collateral. In an infinite horizon set-up, collateral has the beauty of eliminating

Ponzi schemes, as shown by Araujo, Páscoa and Torres-Mart́ınez (2002). However, when combined with

a utility penalty, collateral might not avoid a Ponzi game, as illustrated by the examples in Páscoa and

Seghir (2009) for utility penalties prohibiting full default. This observation was clarified recently by

Martins-da-Rocha and Vailakis (2010), who noticed that, in these complete markets examples, a trivial

no-trade equilibrium could nevertheless be found by setting the delivery rate at the minimal level,
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even though such unduly expectation about the delivery rate is not consistent with the harsh penalty.

Once the equilibrium is refined, along the lines of the refinement in Dubey, Geanakoplos and Shubik

(2005), as proposed by Martins da Rocha and Vailakis (2010), non-existence of equilibrium prevails for

the harsh penalties in these examples. Given this negative observation, can we assert anything about

existence of infinite horizon equilibrium when promises are secured by collateral but subject to utility

penalties on default? These penalties try to capture reputation consequences or the embarrassment

when asking for new loans, which may be observed in some credit markets.

Páscoa and Seghir (2009) proposed a default punishment bounded by the utility from individual

endowments, for borrowed amounts that could be collateralized by aggregate physical resources. How-

ever, as Martins-da-Rocha and Vailakis (2010) pointed out, for other borrowing plans, penalties may

be big and consumers do not replace Ponzi schemes by default. Hence, if agents are just constrained by

their budget restrictions, what can be said? Actually, this is an important issue since, in infinite hori-

zon economies, it is not possible to show that an equilibrium for the economy with explicit aggregate

resources bounds is also an equilibrium for the economy where agents are just budget-constrained.

Existence results

In the current paper we present some existence results. As in Dubey, Geanakoplos and Shubik

(2005), penalties are proportional to the real default, using a reference bundle to compute the price

index. We find an upper bound on penalty coefficients that make the collateral cost never fall below the

promise price, which was the crucial condition for the absence of Ponzi schemes in Araujo, Páscoa and

Torres-Mart́ınez (2002). The upper bound on penalty coefficients turns out to be the minimum of the

marginal utility along the direction of the reference bundle, over the set of feasible bundles. Under this

upper bound, Ponzi schemes are ruled out, but, in the presence of penalties, this is only necessary, but

not sufficient, for existence of equilibrium. Consumers may use utility gains from collateral consumption

to do a generalized form of a Ponzi scheme with reallocations of expenditures at every node. Existence

of equilibrium is, therefore, guaranteed, under these moderate penalties, provided that the collateral

does not give any utility, as when it is a durable commodity with no utility yields (as in Fostel and

Geanakoplos (2008)), a productive asset or a share in it (as in Kubler and Schmedders (2003)) or any

real security in positive net supply that cannot be short-sold. Otherwise, additional constraints had

to be added. Actually, the default punishments that utility penalties try to capture are more often

observed in collateralized borrowing for the purchase of equipment or securities (for the former, default

insurance is usually required and for the latter default triggers personal bankruptcy). In contrast, in

mortgages, when foreclosure occurs, the debtor can have a fresh start.

Moderate penalties and absence of direct utility gains from collateral may be a sufficient condition

for existence of equilibrium but it is not necessary. Moderate penalties is a strong condition as it makes

agents give full default (as in the model where utility penalties were absent). However, equilibrium

is compatible with partial default or no default. We give an example motivating our second type of

results. In this example, the sum, across next nodes, of the marginal penalty effects is dominated

by the sum of the marginal income effects, even when at some nodes the penalty allows for a partial

default or prevents default. The problem is that this outcome depends on relative prices and there

is, in general, no room to choose relative spot prices as these are already pinned down by market

clearing in commodity markets. There is, nevertheless, an interesting case where there are degrees of

freedom in market clearing prices. It is the case where contracts are nominal, more precisely, when the

promise, the collateral or both are nominal assets (that is, have exogenous yields in units of account).
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For example, when the contract is a loan with exogenous obligations (hence, nominal) that has the

purpose of financing the purchase of a bond or a stock (hence, a nominal or a real asset, respectively).

In both cases, there is indeterminacy with respect to the inflation rates at the next nodes. In the

latter, high inflation rates across all the next nodes, devaluate the promised payments but not the

collateral (and, therefore, reduce the real value of default on which the penalty is applied). In the

former, there are trade-offs among the inflation rates, but for, endogenous margin requirements, we can

make the marginal penalty effects become dominated by the marginal income effects (and generalized

Ponzi schemes can not occur).

Refinement of equilibrium

Do the equilibria that we found resist a refinement that eliminates no-trade outcomes with spurious

delivery beliefs? Dubey, Geanakoplos and Shubik (2005) showed that for unsecured promises subject to

utility penalties on default, a trivial equilibrium always exists by setting promises prices, delivery rates

and financial trades equal to zero. But the expectations about delivery rates in this trivial equilibrium

may be spurious, when penalty coefficients exceed marginal utilities of income. In fact, in this case,

agents are strictly conscientious and we should have instead an expectation of full delivery. To rule

out this trivial outcome, with unduly pessimistic beliefs, the authors proposed a refinement: checking

whether the equilibrium is a limit of equilibrium of economies where the government buys and sells an

arbitrarily small amount of the promise, with full delivery. In the case of secured promises, the natural

candidate for a trivial equilibrium would be one where promises are not traded and deliveries rates

are at the lowest possible level, given by the ratio of the minimal delivery (the minimum between the

promise and the collateral) to the promised one. In complete markets, such equilibrium can be trivially

found, but that is not the case under incomplete markets. Nevertheless, we may want to rule out unduly

pessimistic expectations, but not by using this refinement, as it tends to eliminate too many no-trade

finite horizon equilibria (possibly ones with duly low delivery rates and duly low promise prices, whose

infinite horizon cluster points would be incompatible with generalized Ponzi schemes).

The refinement should be as effective in eliminating unduly optimistic expectations as it is in

eliminating unduly pessimistic expectations. It should check, in the case promises are not traded,

whether the expectations about delivery rates are consistent with the default attitude (the relation

between penalty coefficients and marginal utilities of income) of agents on the verge of selling. These are

the agents that have their Kuhn-Tucker conditions with respect to selling already holding as equalities

and are already purchasing some amount of what can serve as collateral. If, at an equilibrium, there

are such agents, we check if the equilibrium can be approximated by equilibria of economies where

the government buys a small amount of the promise and uses lump-sum taxes today and lump-sum

subsidies tomorrow, to induce small sales, so that the delivery rates in these auxiliary economies are

consistent with the default attitude of true agents (those that were on the verge of selling). We show

that our proposed refinement is still effective in eliminating no-trade equilibria with unduly pessimistic

expectations when agents are strictly conscientious, but does not eliminate no-trade equilibria with

duly low expectations. In particular, we show that the equilibria we found, under moderate penalties

or when contracts are nominal, are refined equilibria.

The paper is organized as follows. The next section identifies the general condition under which a

cluster point of finite horizon equilibria will be an infinite horizon equilibrium. Then, in Section 3, we

see that, when this condition fails, infinite-lived agents can do a generalized form of a Ponzi scheme.

In Section 4 we address moderate penalties and in Section 5 we look at nominal contracts. Finally, in
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Section 6 we propose a new refinement procedure.

2 From finite horizon equilibria to infinite horizon equilibria.

Consumers trade collateralized promises over a countably infinite tree D with finitely many branches

at each node. Let T = {0, 1, . . . } be the set of dates and ξ0 be the root of the tree D. Given a node

ξ ∈ D, let t(ξ) ∈ T be the date of node ξ. We write ξ > ξ′ if t(ξ) > t(ξ′) and ξ′ belongs to the event-tree

that starts at ξ. Let ξ+ be the set of immediate successors of ξ.

At each node ξ a finite number G of durable or perishable goods is traded together with a finite set

J(ξ) of one-period promises. Short sales of promises are secured by collateral. We want to allow for

the collateral to be not necessarily a durable good, but also a productive asset or a security in positive

net supply that pays real returns and cannot be short sold (as in Kubler and Schmedders (2003)). This

can be accommodated by treating securities formally as durable goods that do not yield utility. In

this context, we may have a non-diagonal transformation matrix Y (ξ), of type G.G, indicating how

commodities of the previous node convert into commodities of the node ξ. If g is a durable good, the

column (Y (ξ))g is equal to a(ξ, g)eg, where a(ξ, g) is a depreciation factor. If g is a security, Ygg(ξ) = 1

and (Yg′g)g′ 6=g is a non-null vector of non-negative dividends. We will allow also for productive assets

(as in Kubler and Schmedders (2003)) which can be treated formally as durable goods whose non-null

columns in Y (ξ) matrices represent their productive returns on other commodities.

There are I consumers whose endowments and preferences verify the following assumptions.

Assumption [E]. Endowments of consumer i of commodity g at node ξ, denoted by ωi(ξ, g),

satisfy

(i) ∃W ∈ IR++ : ∀i ∈ I, ∀ξ ∈ D,
∑
g∈G

ωi(ξ, g) ≤W.

(ii) ω(ξ0)� 0 and, for ξ > ξ0 and any g, ω(ξ, g) > 0 whenever the g−th row of Y (ξ) is null.

Let Yξ1,ξn = Y (ξn)Y (ξn−1) . . . Y (ξ2) for ξk+1 ∈ ξk
+ (and equal to the identity matrix if n =

1). The aggregate physical resources available at node ξ are given by γξ =
∑
i

W i
ξ , where W i

ξ =∑
η∈{ξ0,...,ξ−,ξ}

Yη,ξ ω
i(η).

Assumption [U]. ∀i ∈ I, preferences over consumption are described by a time and state sep-

arable utility U i with instantaneous utility viξ : IRG+ −→ IR which is continuous, monotone and

concave with viξ(0) = 0. Moreover, ∀i ∈ I, ∀α ∈ IRG+,
∑
ξ∈D

viξ(α) is finite. We assume also that∑
ξ∈D

viξ(γξ) <∞.1

Consumers take as given prices p for goods, prices q for promises and delivery rates K on the

promises. A choice variable is a plan (x, θ, ϕ,∆) consisting of purchases of goods not for collateral

purposes, promises purchases, promises short sales and repayments, respectively. As in Páscoa and

Seghir (2009), budget constraints are given by:

p(ξ0) · (xi(ξ0)− ωi(ξ0)) + p(ξ0)C(ξ0)ϕi(ξ0) + q(ξ0) ·
(
θi(ξ0)− ϕi(ξ0)

)
≤ 0, (1)

1When Y was diagonal with elements uniformly bounded away from one, the assumptions made by Páscoa

and Seghir (2009) in [E] (that endowments were uniformly bounded) and in [U] (that the utility of a bounded

plan is finite) were sufficient to ensure
∑
ξ∈D

viξ(γξ) <∞.
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and ∀ξ ∈ D \ {ξ0},

p(ξ) · xi(ξ) + p(ξ)C(ξ)ϕi(ξ) + q(ξ) ·
(
θi(ξ)− ϕi(ξ)

)
≤ p(ξ)ωi(ξ) + p(ξ)Y (ξ)xi(ξ−)

+p(ξ)Y (ξ)C(ξ−)ϕi(ξ−) +
∑

j∈J(ξ−)

Kj(ξ)p(ξ)Aj(ξ)θij(ξ
−)−

∑
j∈J(ξ−)

∆i
j(ξ), (2)

To shorten the notations, we define MINj(ξ) = min{p(ξ)Aj(ξ), p(ξ)Y (ξ)Cj(ξ−)}, for each node ξ

and for each asset j ∈ J(ξ−). The minimal repayment constraint requires

MINj(ξ)ϕj(ξ) ≤ ∆j(ξ). (3)

The coefficients of the utility penalty, linear on default, are given by λ̃ij(ξ) =
λij(ξ)

p(ξ) b(ξ)
, where b(ξ) is

a reference bundle. So, the entire payoff function of consumer i is

Πi(xi, θi, ϕi,∆i) :=
∑
ξ∈D

viξ(x̃
i(ξ))−

∑
ξ∈D\{0}

∑
j∈J(ξ−)

λij(ξ)
[p(ξ)Aj(ξ)ϕij(ξ

−)−∆ij(ξ)]
+

p(ξ)b(ξ)
,

where

x̃i(ξ) = xi(ξ) + C(ξ)ϕi(ξ) and [p(ξ)Aj(ξ)ϕij(ξ
−)−∆i

j(ξ)]
+

= max{p(ξ)Aj(ξ)ϕij(ξ−)−∆i
j(ξ), 0}.

Definition 2.1 An equilibrium of E is a vector (p, q,K, (xi, θ
i
, ϕi,∆

i
)i∈I) such that p(ξ) > 0 at any

node ξ ∈ D and verifying:

(i) For each agent i ∈ I, (xi, θ
i
, ϕi,∆

i
) ∈ argmax Πi(x, θ, ϕ,∆) subject to budget and minimal

repayment constraints.

(ii)
∑
i∈I

[xi(ξ0) + C(ξ0)ϕi(ξ0)] =
∑
i∈I

ωi(ξ0),

(iii)
∑
i∈I

[xi(ξ) + C(ξ)ϕi(ξ)] =
∑
i∈I

[ωi(ξ) + Y (ξ)xi(ξ−) + Y (ξ)C(ξ−)ϕi(ξ−)], ∀ξ ∈ D \ {0},

(iv)
∑
i∈I

θ
i

=
∑
i∈I

ϕi,

(v) ∀ξ ∈ D \ {ξ0}, ∀j ∈ J(ξ−), K
j
(ξ)
∑
i∈I

p(ξ)Aj(ξ)θ
i
j(ξ
−) =

∑
i∈I

∆
i
j(ξ).

Recall that in an economy with a truncated, finite, horizon T , the Kuhn-Tucker conditions on

∆i
j(ξ), ϕ

i
j(ξ), θ

i
j(ξ), x(ξ, g) require the existence of non-negative multipliers µi(ξ) and ρij(η) for η ∈ ξ+,

together with viξ
′
(x̃(ξ)) ∈ ∂viξ

(
xi(ξ) + C(ξ)ϕ(ξ)

)
and dij(η) ∈ [0, 1] supergradient of the function

max{0, ·} evaluated at p(η)Aj(η)ϕij(ξ)−∆i
j(η) such that:

λ̃ij(ξ)d
i
j(ξ) + ρij(ξ) = µi(ξ) (4)

µi(ξ)
(
p(ξ)Cj(ξ)− qj(ξ)

)
− viξ

′
(x̃(ξ))Cj(ξ) ≥

∑
η∈ξ+

[
µi(η)

(
p(η)Y (η)Cj(η)−MINj(η)

)
−λ̃ij(η)dij(η)

(
p(ηAj(η)−MINj(η)

)]
(5)

µi(ξ)qj(ξ) ≥
∑
η∈ξ+

µi(η)Kj(η)p(η)Aj(η) (6)

∀g ∈ G, µi(ξ)p(ξ, g) ≥ v′ξ(x̃(ξ), g) +
∑
η∈ξ+

µi(η)p(η)(Y (ξ))g, (7)
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with equalities in (5), (6) or (7) holding when ϕj(ξ) > 0, θj(ξ) > 0 or x(ξ, g) > 0, respectively.

Equilibrium allocations Z
iT ≡ (xiT , θiT , ϕiT ,∆iT ) of finite horizon economies have upper bounds,

uniformly on the horizon T . Let us see that equilibrium prices and the associated equilibrium multi-

plies also have uniform upper bounds. We normalize prices by placing (p(ξ), q(ξ)) in the G+ J(ξ)− 1

dimensional simplex. The multipliers µi(ξ) and ρj(ξ) have upper bounds that are independent of prices

and of the terminal horizon T of the economy, as established in Remark 1 in the Appendix. So, node

by node, equilibrium variables (prices, delivery rates, allocations, multipliers and the above supergra-

dients) of all finite horizon economies have common upper bounds.

Consider the sequence
(
pT , qT ,K

T
, (Z

iT
, µiT , ρiT , viT

′
, diT )i

)
of equilibrium prices, allocations,

multipliers and supergradients (of the functions viξ and max{0, ·}) verifying the Kuhn-Tucker conditions,

for the truncated economies. This sequence has, node by node, a cluster point
(
p, q,K, (Z

i
, µi, ρi, vi

′
, di)i

)
.

Observe that at the price cluster point p the payoff functions are well defined, as p(ξ) > 0 at any node

ξ, by Lemma 3 in the Appendix.

Proposition. An equilibrium exists for the infinite horizon economy if

lim sup
T

∑
ξ: t(ξ)=T

(
viξ
′
(Z

i
)C(ξ)− µi(ξ) (p(ξ)C(ξ)− q(ξ))

)
ϕ(ξ) ≤ 0, (8)

for any short sales trajectory ϕ which is part of a plan Z = (x, θ, ϕ,∆) satisfying budget and minimal

repayment constraints at prices and delivery rates (p, q,K).

Proof. See Appendix.

In the next section we interpret the failure of condition (8) as an opportunity for doing a generalized

version of a Ponzi squeme. Then, in Sections 4 and 5 we present existence results in contexts where

condition (8) holds.

Remark: Páscoa and Seghir (2009) assumed that, for each node ξ and each agent i,

λ̃ij(η)[p(η)Aj(η)−MINj(η)]ϕij(ξ) < vi(ωi(η)), ∀η ∈ ξ+, (9)

whenever

Cj(ξ)ϕij(ξ) ≤
∑
i

W i(ξ) (10)

This assumption does not suffice to get existence of equilibrium in infinite horizon economies, as

for short sales plans that do not verify (10) nothing is being said about the penalty.2 However, if (10)

is being added as a short sales constraint or if (9) alone had been imposed, then the condition in the

Proposition would hold. In fact, by (5) lim supT
∑

ξ: t(ξ)=T

(
viξ
′
(Z

i
)C(ξ)−µi(ξ) (p(ξ)C(ξ)− q(ξ))

)
ϕ(ξ) <

lim supT
∑

ξ: t(ξ)=T

vi(ωi). The desired condition holds as U i(ωi) <∞.
.

3 Generalized Ponzi schemes.

Note that in the absence of penalties, condition (8) in the Proposition is clearly satisfied due to (5).

However, when there are penalties, this condition may fail even when p(ξ)Cj(ξ) ≥ qj(ξ). That is,

2In the existence proof provided by Páscoa and Seghir (2009), it was overlooked (in the last sentence of the

proof) that the short sales ϕ̂ of the alternative plan might not fulfil Cj(ξ)ϕ̂j(ξ) ≤
∑
i
W i(ξ).
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absence of Ponzi schemes (ensured by p(ξ)Cj(ξ) ≥ qj(ξ)) is not enough to guarantee existence of equi-

librium. Agents could be doing what we will call a generalized Ponzi scheme, reallocating expenditures

at each node ξ towards some promise j(ξ) with viξ
′
Cj(ξ)(ξ)−µi(ξ)

(
p(ξ)Cj(ξ)(ξ)− qj(ξ)(ξ)

)
> 0, so that

the penalty and the minimal repayment associated with the increment in the short position in j(ξ−)

are outweighed by the utility gain viξ
′
Cj(ξ)(ξ) net of the utility loss µi(ξ)

(
p(ξ)Cj(ξ)(ξ)− qj(ξ)(ξ)

)
from

reallocating expenditures (cutting in direct purchases of goods, for instance).

More precisely, a Ponzi scheme stricto sensu, consists in increasing the short position in promise

j(σ) at node σ and then accommodate this by increasing the short position in promise j(ξ) at the

following nodes ξ > σ. According to Páscoa and Seghir (2009), Section 4.1, a Ponzi scheme exists if

there is a direction y = (y1, y2) consisting of a direction y1 of changes in the short sales plan and a

direction y2 of changes in deliveries, given by:

(y1(ξ), y2(ξ)) =
(
αj(ξ)ej(ξ), αj(ξ−) p(ξ)A

j(ξ−)
ξ ej(ξ−)

)
,

satisfying, for some σ ∈ D, αj(ξ) = 0 for ξ < σ and αj(ξ) > 0 otherwise, verifying:

(a) αj(σ)

(
p(σ)Cj(σ)(σ)− qj(σ)(σ)

)
< 0, and

(b) αj(ξ)
(
p(ξ)Cj(ξ)(ξ)− qj(ξ)(ξ)

)
< αj(ξ−)p(ξ)

(
Y (ξ)Cj(ξ

−)(ξ−)−Aj(ξ
−)(ξ)

)
, for ξ > σ.

This direction y is right-admissible, with respect to constraints (1), (2) and (3). Moreover, the direction

is payoff-improving for the right-hand side changes: Π(x, θ, ϕ,∆) < Π(x, θ, ϕ+hy1,∆ +hy2) for h > 0.

The existence of such a direction follows when p(ξ)Cj(ξ)(ξ) − qj(ξ)(ξ) < 0 not just at node σ but also

at every ξ > σ (by choosing αj(ξ)/αj(ξ−) high enough, when the right-hand side in (b) is negative).

There is nevertheless an extended form of Ponzi schemes, compatible with p(ξ)Cj(ξ)(ξ)−qj(ξ)(ξ) ≥ 0

for any asset j and at any node ξ. The cost of the joint operation of constituting the collateral and

short selling (p(ξ)Cj(ξ)−qj(ξ)) may be positive but can be accommodated (together with the penalties

and repayments) by reallocating expenditures, in a way that increases utility.

We say that a generalized Ponzi scheme exists if there is a direction ỹ = (ỹ1, ỹ2) consisting in a

direction ỹ1 of changes in the short sales plan and a direction ỹ2 of changes in deliveries given by:

(ỹ1(ξ), ỹ2(ξ)) =
(
αj(ξ)ej(ξ), αj(ξ−) MINj(ξ) ej(ξ−)

)
,

satisfying αj(ξ) = 0 for ξ ≤ σ and αj(ξ) > 0 otherwise, verifying:

(a’) αj(σ)

[
µi(σ)(p(σ)Cj(σ)(σ)− qj(σ)(σ))− viσ

′
Cj(σ)(σ)

]
< 0 and

(b’)

αj(ξ)

[
µi(ξ)(p(ξ)Cj(ξ)(ξ)− qj(ξ)(ξ))− viξ

′
Cj(ξ)(ξ)

]
< αj(ξ−)

[
µi(ξ)

(
p(ξ)Y (ξ)Cj(ξ

−) −MINj(ξ)
)

− λ̃j(ξ)(ξ)dj(ξ
−)(ξ)(p(ξ)Aj(ξ

−)(ξ)−MINj(ξ))
]
, for ξ > σ.

Now, ỹ itself might not be right-admissible with respect to (1) and (2). However, as viξ
′
Cj(ξ)(ξ) > 0,

it is right-payoff-improving even when we discount the utility loss µi(ξ)(p(ξ)Cj(ξ)(ξ) − qj(ξ)(ξ))αj(ξ)
involved in reallocating expenditures so that budget constraints are satisfied3.

Now, the existence of such direction ỹ follows when viξ
′
Cj(ξ)(ξ)−µi(ξ)(p(ξ)Cj(ξ)(ξ)−qj(ξ)(ξ)) > 0 for

some asset at each node ξ ≥ σ (this is immediate if the right-hand side in (b’) is nonnegative, otherwise

3Say by cutting in a perishable commodity g satisfying Inada’s condition in the amount βξ ≡
αj(ξ)(p(ξ)C

j(ξ)(ξ)− qj(ξ)(ξ))/p(ξ, g) with marginal loss βξ v
i
g
′ ≤ µi(ξ)(p(ξ)Cj(ξ)(ξ)− qj(ξ)(ξ))αj(ξ).
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αj(ξ) can be found high enough, relative to αj(ξ
−) so that (b’) holds). Generalized Ponzi schemes are

not scalable up by an arbitrarily large amount (unless the marginal utility were constant), contrary

to what happened with Ponzi schemes, but if there is an opportunity for agent i to do a generalized

Ponzi scheme at (Z, p, q,K), cluster point of finite horizon equilibria, then Z
i

is not optimal at (p, q,K).

Notice that the dominating short sales plan obtained by adding h ỹ1, with h > 0, might not be bounded,

even for h arbitrarily small, as, node by node, αj(ξ) may have to be sufficiently high relative to αj(ξ
−).

Clearly, generalized Ponzi schemes are avoided when for any node ξ utility penalties are moderate

enough to guarantee p(ξ)C(ξ) ≥ q(ξ), and the collateral does not yield utility (viξ
′
C(ξ) = 0), as in the

cases of a collateral which is a security in positive net supply that cannot be sold short or a durable

good that does not yield utility (as in Kubler and Schmedders (2003) and Fostel and Geanakoplos

(2008)). Actually, utility penalties seem to be more relevant for promises backed by financial collateral

than for mortgages, which tend to be non-recourse loans where just the durable goods-collateral is

garnishable without further reputation or credit-access consequences when default occurs.

4 Existence results.

4.1 Moderate penalties.

We present a result that ensures that condition (8) in the Proposition holds. Let riξ(b(ξ)) be the

minimum of the right derivative, δ+viξ(z, b(ξ)), of viξ along the direction of the reference bundle b(ξ),

taken over all feasible bundles z (see Lemma 2 in the Appendix).

Theorem 1 (Moderate penalties)

If λij(ξ) < riξ(b(ξ)), then p(ξ)C(ξ) ≥ q(ξ) in equilibrium of finite-horizon economies and Ponzi schemes,

in stricto sensu, are avoided.

Equilibrium for the infinite-horizon economy exists if, in addition,

(a) the collateral does not yield utility (it is a durable good that does not give any utility or a productive

asset or a security in positive net supply that cannot be short sold),

(b) or there is κ ∈ (0, 1) such that, for each agent i and at each node ξ, ωi(ξ) ≥ κW i(ξ) and short

sales plans ϕ are required to be such that
p(ξ)Cj(ξ)ϕj(ξ)

p(ξ)W i(ξ)
is uniformly bounded.

(c) or new endowments ωi(ξ) are uniformly bounded away from zero and short sales plans ϕ are

required to be collateralized by uniformly bounded bundles C(ξ)ϕ(ξ) (in particular, when required

to be collateralizable by bounded aggregate physical resources).

In (b) collateral is required not to explode faster (or tend to zero slower) than the consumer’s

cumulated resources. The value of the assets whose purchase is being financed by the secured loan

cannot grow unboundedly, relatively to what the consumer estate is. In (c) the bound on collateral

is exogenous or given by the aggregate resources in the economy. The assumption on endowments in

(b) was previously used by Araujo, Páscoa and Torres-Mart́ınez (2010), whereas the assumption on

endowments made in (c) was considered by Magill and Quinzii (1996) and also by Araujo, Páscoa and

Torres-Mart́ınez (2010).

Under the hypothesis bounding penalty coefficients (but in the absence of (a), (b) or (c)), we can

say that, at a cluster point of finite horizon equilibria, the opportunity of doing a generalized Ponzi

scheme may occur only for agents who have (6) with strict inequality. In particular, those buying asset
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j at node ξ (at the cluster point or except in finitely many finite horizon economies) do not have that

opportunity. This observation follows from the proof of Theorem 1 (see the Appendix).

4.2 Equilibrium without full default.

However, the above low penalties, implying full default when the promises are traded, are not necessary

for equilibrium existence. Partial default or even full repayment are compatible with equilibrium and

may occur under higher penalty coefficients. In fact, generalized Ponzi schemes are avoided when

µi(ξ)(p(ξ)Cj(ξ)− qj(ξ))− viξ
′ · Cj(ξ) ≥ 0, ∀i, ∀ξ. By (5), it suffices to have∑

η∈ξ+
µi(η)(p(η)Y (η)Cj(ξ)−MINj(η)) ≥

∑
η∈ξ+

λ̃ij(η)dij(η)(p(η)Aj(η)MINj(η)), ∀i, ∀ξ, (11)

where dij(η) satisfies (4). Actually, by (4), (11) holds if∑
µ∈ξ+

µi(η)(p(η)Y (η)Cj(η)− p(η)Aj(η)) ≥ 0 (12)

is satisfied for all i and for all ξ. Moreover, when the collateral does not yield utility gains, it is enough

to have (11) (or (12)) satisfied, at each node ξ, for some agent i(ξ), as this implies p(ξ)Cj(ξ) ≥ qj(ξ).
The difficulty is that condition (12) depends on relative spot prices p(η) and on the marginal utili-

ties of income µi(η) and, in general, it is not possible to guarantee that the market clearing spot prices

(and the induced multiplier µi) are such that (12) is satisfied, for an arbitrary combination of returns

(Aj) and collateral yields Y Cj . Let us give, nevertheless, an example where (12) holds for arbitrary

penalty coefficients. This example will motivate our next result.

Example 1

There are two infinite-lived agents, the event-tree has two branches at each node ξ (up (uξ) and

down (dξ)). There is one consumption good and preferences are given by U i(Z) =
∑
ξ∈D

βt(ξ) ψiξ v
i
ξ(Zξ),

where viξ(Zξ) = Zξ and ψξ is the belief that agent i attaches to moving to ξ once ξ− was attained

(ψiuξ + ψidξ = ψi(ξ),
∑

ξ: t(ξ)=t

ψiξ = 1, ∀t). There is one promise paying in the above consumption

good and using as collateral a real security (on a productive asset) that is short-lived but is issued (or

endowed) at each node. Formally, this collateral instrument can be treated as a second commodity

that transforms into the consumption good at the next date and then disappears. Denote by aξ the

promised returns and by yξ the collateral yields. The collateral coefficient is Cξ = 1 and we normalize

prices by taking the perishable consumption good (g = 1) as the numeraire. The reference bundle in

the penalty function is b(ξ) = (1, 0) and the penalty is given by
∑
ξ∈D

βt(ξ)ψiξδξ[aξ ϕ(ξ−)−∆(ξ)]
+
.

Given endowments ωi(ξ) =
(
ωi1(ξ), ωi1(ξ)

)
of the consumption good and the collateral instrument,

we write consumers’ constraints as usual, denoting by p(ξ) the collateral price and by q(ξ) the promise

price. Suppose ψ
(1)
uξ = ψ

(1)
dξ

= 1
2

t(ξ)+1
, whereas ψ

(2)
uξ = 2

3
ψ

(2)
ξ and ψ

(2)
dξ

= 1
3
ψ

(2)
ξ . If auξ = 2, adξ =

1, yuξ = 1 and yuξ = 2, ∀ξ, then (12) holds with equality for agent 1 (and therefore (11) holds for this

agent, for any penalty coefficients δ
(1)
ξ ). For agent 2, we assume δ

(2)
ξ ≥ 1 (i.e.: λ

(2)
ξ ≥ µ

(2)
ξ , ∀ξ) and we

take ρ(2)(ξ) = 0 so that d(2)(ξ) = 1

δ
(2)
ξ

.

For δ
(1)
ξ = 1 (i.e.: λ

(1)
ξ = µ

(1)
ξ ) ∀ξ, we see that Kuξ = 0.9, p(ξ) = q(ξ) = 4.6

3
β and Kdξ = 1 satisfy

(4) through (7), with agent 1 on-the-verge of selling and agent 2 on-the-verge of buying.

For δ
(1)
ξ > 1 (i.e.: λ

(1)
ξ > µ

(1)
ξ ) ∀ξ, we see that Kuξ = Kdξ = 1 and p(ξ) = q(ξ) = 5

3
β satisfy (4)

through (7), with agent 1 on-the-verge of selling and agent 2 on-the-verge of buying.
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Taking ω
(1)
ξ = (1, 0) and ω

(2)
ξ = (1,Ω), ∀ξ, let θ

(2)
ξ = Ω, ϕ

(1)
ξ = Ω, θ

(i)
ξ ϕ

(i)
ξ = 0 and x

(i)
2 ξ = 0 (no

purchase of commodity 2 beyond what might be used as collateral). Then, for δ
(1)
ξ = 1, we obtain ∆

(1)
uξ =

0.9auξ Ω = 1.8Ω, ∆
(1)
dξ

= adξ Ω = Ω. Take x
(i)
1 (ξ) = ω(i)(ξ) +YξC(ξ−)ϕi(ξ−)−∆(i)(ξ) +K(ξ)aξ θ

i(ξ−).

Then, x
(1)
1uξ

= 1 − 0.8Ω, x
(1)
1 dξ

= 1 + Ω, x
(2)
1uξ

= 1 + 1.8Ω, x
(2)
1 dξ

= 1 + Ω. Market clearing follows

(
∑
i

xi(ξ) =
∑
i

ωi(ξ) + yξ Ω) and we assume Ω < 1.25 to obtain an equilibrium.

For δ
(1)
ξ > 1, ∀ξ (that is λ

(1)
ξ = µ

(1)
ξ ) ∀ξ), the equilibrium allocation is given by the same promise

allocation, ∆
(1)
uξ = 2Ω, ∆

(1)
dξ

= Ω, x
(1)
1uξ

= 1 − Ω, x
(1)
1 dξ

= 1 + Ω, x
(2)
1uξ

= 1 + 2Ω, x
(2)
1 dξ

= 1 + Ω. We

assume in this case Ω < 1. We can accommodate δ
(1)
ξ = 1 or δ

(1)
ξ > 1 in equilibrium.

4.3 Nominal contracts.

The above example where both the promise and the collateral are numeraire assets, could be redone

with both being nominal assets (say, the promise is a loan, with exogenous yields, whose purpose

is the purchase of a bond). This leads us to study what happens when the promise or the collat-

eral are nominal assets. In both cases, collateralized borrowing is not inflation proof. Depending

on what the inflation rates are (across the set of nodes ξ+), the negative marginal penalty effects(
λ̃ij(η)dij(η)(p(η)Aj(η) −MINj(η))

)
may become dominated by the positive marginal income effects(

µi(η)(p(η)Y (η)Cj(ξ)−MINj(η))
)
. When that happens, there is no room for generalized Ponzi schemes

(as (11) holds) and equilibrium exists.

The indeterminacy with respect to inflation rates, at finite horizon equilibria of economies with

nominal promises or nominal collateral, may allow us to pick an equilibrium where (11) holds (and,

therefore, condition (8) of the Proposition holds at the cluster point).4

As usual, given a promise with nominal returns bjξ, we let Aj(ξ) =
b
j
ξ

σξ
I1 where σξ stands for ‖p(ξ)‖1.

Recall that for unsecured nominal assets, we had a homogeneity of commodity demanded with respect

to (ση)η∈ξ+ : if we multiply ση by α > 0, ∀η ∈ ξ+, and adjust the portfolio (multiplying by α) and

asset prices (dividing by α), we can maintain the original bundle at the same relative spot prices. For

that homogeneity to hold also for secured promises, the collateral coefficients had to be adjusted also

(divided by α). Actually, in the case of contracts where the promises or the collateral are nominal, it

is harder to accept exogeneity of these coefficients, which are now margin requirements. We will allow

next for margin requirements to be determined in equilibrium: for a promise j, backed by a nominal

or real security g(j) (or a productive asset), Cjg(j)(ξ) becomes an equilibrium variable.

When promise j is nominal and its collateral g(j) is real, the quotient set (for the equivalence

relation induced by the above homogeneity) can be taken as the set {((ση)η∈ξ+ , C
j
g(j)(ξ)) : (σ−1

η )
η∈ξ+ ∈

∆#ξ+−1, Cjg(j) ∈ IR++}.5

Similarly, for a nominal promise j secured under margin requirements Cjg(j) by a nominal collateral

g(j), with exogenous yields, in units of account, ỹ
g(j)
η , we let Y

g(j)
η = ỹ

g(j)
η

1
ση

I1. The real allocation is

preserved under the transformation:(
(ση)η∈ξ+ , q

j(ξ), Cjg(j)(ξ), θ
j(ξ), ϕj(ξ)

)
−→

(
α(ση)η∈ξ+ ,

1

α
qj(ξ),

1

α
Cjg(j)(ξ), α θ

j(ξ), α ϕj(ξ)
)
, α > 0,

(as Y
g(j)
η (αση) = 1

α
Y
g(j)
η (ση) and Aj(η)(αση) = 1

α
Aj(η)(ση)). The quotient set can be taken as before.6

4We are not interested in checking whether the degree of freedom in the choice of inflation rates implies real

indeterminacy of equilibria (and of what degree). This would be another theme, facing the difficulties associated

with the non-differentiability of the functions involved in the default decisions.

5Alternatively, we could had normalized
(

(ση)η∈ξ+ ,
1

C
j
g(j)

(ξ)

)
∈ ∆#ξ+ .

6For the less interesting case of a real promise backed by nominal collateral, using the same matrix Y g(j),
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Theorem 2 Let J? be the set of promises not satisfying the assumptions of Theorem 1. Equilibrium

exists:

(i) for exogenous collateral coefficients if every promise j ∈ J∗ is a nominal promise backed by a real

collateral instrument,

(ii) for exogenous collateral coefficients if every promise j ∈ J∗ is a real promise backed by a nominal

collateral instrument,

(iii) for endogenously determined margin requirements, if every j ∈ J∗ is not a real promise backed

by real collateral.

(See the appendix for a proof).

Intuitively, in cases (i) or (ii), we do not have the homogeneity of real allocations with respect to a

generalized scaling up of prices at all immediately following nodes. Hence, the sum of marginal penalty

effects, across these nodes, gets dominated by the sum of marginal income effects across these nodes,

in case (i) for high inflation rates ση at all these nodes and in case (ii) for low inflation rates ση at all

these nodes. But when the nominal promise/real collateral, real promise/nominal collateral or nominal

promise/nominal collateral contracts coexist, there are trade-offs on the inflation rates, which can be

overcome when margin requirements are endogenously determined.

Notice that for a contract with a nominal promise j backed by real collateral, (11) becomes:∑
σ∈ξ+

σ−1
η max{λij(η), µi(η)} bjη ≤

∑
σ∈ξ+

min{λij(η), µi(η)} p(η)Y (η)Cj(η), (13)

whereas for a contract with a real promise j backed by nominal collateral, (11) becomes:∑
σ∈ξ+

max{λij(η), µi(η)} p(η)Aj(η) ≤
∑
σ∈ξ+

σ−1
η min{λij(η), µi(η)} ỹjη Cj(ξ), (14)

and, finally, for a nominal promise backed by a nominal collateral, (11) is:∑
σ∈ξ+

σ−1
η max{λij(η), µi(η)} bjη ≤

∑
σ∈ξ+

σ−1
η min{λij(η), µi(η)} ỹjη Cj(ξ), (15)

Theorem 2 allowed for direct utility gains from collateral in the case of nominal promises backed

by real collateral, by showing that (13) holds for every agent. If (13) held for just one agent and there

were no utility gains from collateral, then condition (8) in the Proposition would still be verified and

there would exist an equilibrium for the infinite horizon economy.

Example 2

For the economy of Example 1, take agent (1) and the pair of contracts: one nominal-real with

b1uξ = 1, b1dξ = 2 and Yuξ = (1, 0), Ydξ = (1, 0), C1 = (0, 1) and another nominal-nominal with

b2uξ = 1, b2dξ = 3 and ỹuξ = ỹdξ = 1, C2 to be determined. For λ
(1)
j (η) = βt(η)( 1

2
)
t(η)

δ
(1) j
η , let

δ
(1) j
uξ = 2 and δ

(1) j
η = 1 otherwise (j = 1, 2). Then, conditions (13) and (15) hold (for j = 1 and j = 2

respectively), with an exogenous collateral requirement for j = 1 and endogenous ones for j = 2.

These conditions are:

2σ−1
uξ b

1
uξ + σ−1

dξ
b1dξ ≤ Yuξ + Ydξ ,

we see that as (ση)η∈ξ+ is multiplied by α > 0, we can preserve both the bundle and the portfolio, at the same

relative spot prices ans asset prices, by adjusting Cj
g(j)

(multiplying by α > 0 in this case), so the same quotient

set still works.
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2σ−1
uξ b

2
uξ + σ−1

dξ
b2dξ ≤ (σ−1

uξ ỹuξ + σ−1
dξ
ỹdξ )C2.

Holding as equalities for σ−1
uξ = σ−1

dξ
= 0.5 and C2 = 2.5, implying that at uξ, both promises are above

collateral values (with opportunity for default, which will not be used as λ
(1)j
uξ > µ

(1)
uξ ) while at dξ the

first promise matches the collateral values whereas the second one falls below it.

If we had tried to endogeneize collateral coefficients (by scaling them up or down) in the case of real

promises backed by real collateral, with the purpose of having (11) verified in equilibrium, we would

be left with a condition that might not be far from requiring collateral to be so high that the promises

always fall below it. The condition on the scale factor αjξ would be:

αjξ
∑
σ∈ξ+

min{λij(η), µi(η)} p(η)Y j(η)Cj(η) ≥
∑
σ∈ξ+

max{λij(η), µi(η)} p(η)Aj(η).

This is a much more stringent condition than the ones used in the proof of Theorem 2 (on αjξ, j ∈ J1,

or on γjξ , j ∈ J̃ , see proof), which could be combined with the flexibility that the choice of inflation

ratios gave us in the case of contracts with nominal promises or nominal collateral.

5 Should the equilibrium be refined?

5.1 Do trivial equilibria exist?

When promises are not collateralized, a trivial no-trade equilibrium can be found by setting Kj(ξ) = 0,

as already remarked by Dubey, Geanakoplos and Shubik (2005). In fact, if for each node ξ and for

each promise j, Cj(ξ) = 0, let θij(ξ) = ϕij(ξ) = 0, ∀(i, j, ξ) and (6) holds. Now, (5) can be rewritten as

follows:

qj(ξ) ≤
∑
η∈ξ+

min{µi(η), λ̃i(η)} 1

µi(ξ)
p(η)Aj(η) ≡ Ψi

j(ξ),

and let qj(ξ) = min
i

Ψi(ξ). Finally, (4) is replaced by µi(ξ) ≥ λ̃ij(ξ) dij(ξ) and (µi(ξ)−λ̃ij(ξ) dij(ξ)) ∆i
j(ξ) =

0, so dij(ξ) is chosen less than one when µi(ξ) < λ̃ij(ξ).

However, when promises are collateralized, Kj(η) is bounded from below by
MINj(η)

p(η)Aj(η)
when p(η)Aj(η) >

0. Does a trivial equilibrium exist by setting Kj(η) equal to this lower bound and promise positions

equal to zero? Condition (6) holds for all i by making qj(ξ) = max
i

∑
η∈ξ+

µi(η)

µi(ξ)
MINj(η). But, condition

(5) requires:

qj(ξ)−
∑
η∈ξ+

µi(η)

µi(ξ)
MINj(η)

≤
∑
η∈ξ+

λ̃ij(η)dij(η)

µi(ξ)

(
p(η)Aj(η)−MINj(η)

)
+ f ij (ξ),

where f ij (ξ) ≡ p(ξ)Cj(ξ) − v′ξ·C
j(ξ)

µi(ξ)
−
∑
η∈ξ+

µi(η)

µi(ξ)
p(η)Y (η)Cj(ξ) ≥ 0 (and f ij (ξ) = 0 when xi(ξ, g) > 0

for g : Cjg(ξ) > 0).

Clearly, for the agent i with the highest
∑
η∈ξ+

µi(η)

µi(ξ)
MINj(ξ), this inequality holds, as the left hand

side is zero. But, for other agents, there is no reason why the gap on the left hand side can be covered

by the terms on the right hand side (choosing dij(η) < 1 would only hurt and if f i(ξ) = 0 the difficulty

is even worse).



13

If markets were complete, that is, when µi(η)

µi(ξ)
were common across agents, a tradeless equilibrium

could be trivially found.

Hence, when #ξ+ > #J(ξ), no-trade equilibrium cannot be trivially found by setting Kj(ξ) =
MINj(ξ)

p(ξ)Aj(ξ)
, but such equilibrium certainly exists if markets become endogenously complete.

5.2 Removing unduly expectations.

Although it is not necessary to refine the equilibrium concept to rule out trivial equilibria, we may

want to do it always to avoid unduly expectations about delivery rates. Recall that in the absence

of collateral, Dubey, Geanakoplos and Shubik (2005) proposed a refinement consisting of focusing on

equilibria which were limits (as ε −→ 0) of equilibria of economies with an artificial agent buying and

selling ε units of each asset, delivering fully but receiving Kj(ξ)p(ξ)Aj(ξ). Commodity market clearing

was adjusted to accommodate the fact that this agent was injecting
∑
j

ε(1−Kj(ξ))Aj(ξ) goods in the

economy. The delivery rate Kj(ξ) was such that Kj(ξ)p(ξ)Aj(ξ)
(
ε+
∑
i

θij(ξ)
)

= εp(ξ)Aj(ξ)+
∑
i

∆i
j(ξ).

This refinement not just eliminated the above trivial equilibria but also got rid of over-pessimistic

expectations. Without it, when all agent are “strictly conscientious” (that is, λ̃ij(ξ) > µi(ξ)), we would

have the pathological result that Kj(ξ) could be set equal to zero in the trivial no-trade equilibrium.

We may want to refine the equilibrium to avoid irrational over-pessimistic expectations, and why

not, also over-optimistic expectations. The above refinement eliminates pathological equilibria with

Kj(ξ) =
MINj(ξ)

p(ξ)Aj(ξ)
, even though λ̃ij(ξ) > µi(ξ), ∀i (as in the example they discuss). However, this

refinement seems to be too strong, as it eliminates also equilibria where some promise j is not traded

but λ̃ij(ξ) < µi(ξ), ∀i, and Kj(ξ) =
MINj(ξ)

p(ξ)Aj(ξ)
(as expected) if one cannot show that along the sequence

of equilibria for the ε−economy the true agents are trading promise j, even if some agents are actually

on the margin of doing it (with conditions (5) and (6) holding as equalities).

Moreover, in infinite horizon economies, this shortcoming of the above refinement becomes a serious

problem. In fact, unduly high expectations about Kj(η) make asset prices of non-traded promises

become over estimated due to (6) and Ponzi schemes may occur spuriously (as p(ξ)Cj(ξ)− qj(ξ) may

be fictitiously negative).

Actually, when avoiding unduly ((pessimistic and optimistic) expectations, what is important is

to eliminate delivery beliefs that are inconsistent with the penalty functions of agents who are on the

margin of selling the promise. As Dubey, Geanakoplos and Shubik (2005) stressed, these on-the-verge

agents should pin down what the delivery rates are.

5.3 A different refinement concept.

We propose a different refinement. Let E =
(
p, q,K, x, θ, ϕ,∆

)
be an equilibrium and J̃ξ(E) be the

set of promises that are not traded at node ξ. The delivery rate of j ∈ J̃ξ(E) at each node η ∈ ξ+

should be consistent with the penalty coefficients and marginal utilities of income of agents that might

be already purchasing what can serve as collateral for j and are also on-the-verge of selling j.

Before defining the refinement more precisely, we should be explicit about what we mean by on-the-

verge of selling promise j at node ξ. By this we mean that (5) should hold as an equality for (dij(η))
η∈ξ+

consistent with positive sales. If j ∈ J̃ξ(E) we just know that (5) holds with (dij(η))
η∈ξ+ consistent with

null sales. However, if λ̃ij(η) < µi(η) and j ∈ J̃ξ(E), (5) might hold as an equality for dij(η) < 1 (which

is a supergradient of the map y 7−→ max{0, y} at 0), but for i to be on-the-verge of selling, such dij(η)

does not work. We would like to have the Kuhn-Tucker conditions of i ready for him to become a seller
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(and, therefore, a deliver with maximal default, so with dij(η) = 1 for η : p(η)Aj(η) > MINj(η)). For

λ̃ij(η) > µi(η), this problem does not occur as dij(η) must be less than 1 (by (4)), which is compatible

with both a null sale or a sale without default. For λ̃ij(η) = µi(η), the problem is also absent as (i)

if dij(η) = 1 and ρij(η) = 0, we can have either a null sale or a sale (with default or not) or (ii) if

dij(η) < 1, we can have either a null sale or a sale without default.

That is, an agent on-the-verge of selling promise j at node ξ should be ready to deliver at the next

nodes η ∈ ξ+ according to the optimality criterion (4) (for the right supergradient dij(η)), given his

penalty coefficients λ̃ij(η) and the marginal utilities of income µi(η).

Let us assume that different promises use different collateral instruments and that each promise

uses just one collateral instrument.

Assumption [C]. The mapping j 7−→ {g ∈ G : Cjg(ξ) > 0} is an injective function that does not

change from node to node. Denote by g(j) the element g ∈ G such that Cjg(ξ) > 0.

The node-invariance was assumed to simplify the notations. Now, for each node ξ and each promise j, let

N j
ξ (E) = {i : x̃i(ξ, g(j)) > 0 at E} and let V jξ (E) =

{
i ∈ N j

ξ (E) : (5) holds with equality for i at E with

dij(η) ∈ [0, 1] satisfying (4) and such that dij(η) = 1 if λ̃ij(η) < µi(η), η ∈ ξ+
}
.

Notice that if promise j is traded at ξ, then V jξ (E) 6= ∅. When this set is nonempty although j

is not traded at ξ, we should check whether the delivery expectations are consistent with the relation

between penalties and marginal utilities for income of agents in this set.

Definition 5.1 Given an equilibrium E =
(
p, q,K, x, θ, ϕ,∆

)
, let an auxiliary ε−economy differ from

the original economy by adding another agent, called “the government”, that collects at node ξ lump-

sum taxes tij(ξ) from consumers in V jξ (E), j ∈ J̃ξ(E), with
∑

i∈V j
ξ

(E)

tij(ξ) = qj(ξ) ε, spends the tax

revenue purchasing θGj (ξ) units of promise j at ξ, and, then, at ξ ∈ ξ+, gives lump-sum subsidies sij(η)

to consumers in V jξ (E) using returns from the purchase done at ξ. In an equilibrium for the ε−economy

the government choice variables should satisfy Kj(η)p(η)Aj(η)θGj (ξ) =
∑

i∈V j
ξ

(E)

sij(η). At the same time,

the delivery rate should be such that Kj(η)p(η)Aj(η)(θGj (ξ) +
∑
i

θij(ξ)) =
∑
i

∆i
j(η). Market clearing for

j requires now
∑
i

ϕij(ξ) = θGj (ξ) +
∑
i

θij(ξ).

We will be interested in a special class of equilibria for the ε−economy, called Eε equilibria, where

only the government purchases promise j ∈ J̃ξ(E), only consumers in V jξ (E) sell it and marginal

utilities of income µi(η), η ∈ ξ+, for i ∈ V jξ (E), are as in the original equilibrium E, so that agents

V jξ (E) are just as willing to default as they were at the original equilibrium E. Let γij(η) ∈ [0, 1] be

such that γij(η) = 1 if λ̃ij(η) > µi(η) and γij(η) = 0 if λ̃ij(η) < µi(η). In such equilibria, tij(ξ) = qj(ξ)ε

#V
j
ξ

(E)
,

sij(η) =
[
γij(η)p(η)Aj(η)+(1−γij(η))MINj(η)

]
ε

#V
j
ξ

(E)
andKj(η)p(η)Aj(η) = 1

ε

∑
i∈V j

ξ
(E)

sij(ξ), whenever

qj(ξ) > 0

Definition 5.2 An equilibrium E =
(
p, q,K, x, θ, ϕ,∆

)
is a refined equilibrium if, whenever V jξ (E) 6=

∅, for some j ∈ J̃ξ(E) and some ξ, E is a limit (in the product topology of the countable tree) of a

sequence of equilibria Eε for εn−economy (as εn −→ 0).

Clearly, if at the original equilibrium E, qj(ξ) > 0, and, for every η ∈ ξ+ such that p(η)Aj(η) >

0, K
j
(η) is weighted average with weights βij(ξ), of the individual delivery rates ζij(η) ≡ [γij(η)p(η)Aj(η)+

(1−γij(η))MINj(η)]/p(η)Aj(η) of agents in V jξ (E) (possibly with some null weights) for every j in J̃ξ(E),
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as it is known to be the case for traded promises j /∈ J̃ξ(E), then for each ε, we have an equilibrium

Eε that differs from E only by making, for i ∈ V jξ (E), ϕij(ξ) = βij(ξ)ε, t
i
j(ξ) = βij(ξ)εq

j(ξ) and

xi(ξ, g(j)) = xi(ξ, g(j))− Cjg(j)β
i
j(ξ)ε. Then, E is a refined equilibrium.

5.4 Properties of the refinement.

What does the above refinement do when agents are strictly conscientious?

Claim 5.1 If E is such that V jξ (E) 6= ∅ and λ̃ij(η) > µi(η), η ∈ ξ+, ∀i ∈ V jξ (E), then E is a refined

equilibrium if and only if Kj(η) = 1 for η : p(η)Aj(η) > 0.

Proof. (if) For each ε > 0, there exists an Eε−equilibrium with Kj
ε(η) =

∑
i∈V j

ξ
(E)

γij(η)

#V
j
ξ

(E)
= 1 (as

γij(η) = 1, ∀i ∈ V jξ (E)), for η : p(η)Aj(η) > 0.

(Only if) For each ε > 0, at any Eε the ε−economy we must have ∆i
j(η) = p(η)Aj(η)ϕij(ξ), soK

j(η) = 1,

for η : p(η)Aj(η) > 0. 2

To see that the proposed refinement manages also (as the one proposed by Dubey, Geanakoplos and

Shubik (2005)) to eliminate spurious equilibria with unduly pessimist expectations about the delivery

of strictly conscientious agents agents, we combine the above claim with the next one:

Claim 5.2 If E is such that for j ∈ J̃ξ(E), λ̃ij(η) > µi(η), ∀i, then V jξ (E) 6= ∅.

Proof. In fact, under Assumption [C], if j ∈ J̃ξ(E), there exists some agent i such that xi(ξ, g(j)) > 0.

For this agent (as (7) holds with equality for g(j) at ξ), condition (5) becomes:∑
η∈ξ+

λ̃ij(η)dij(η)
(
p(η)Aj(η)−MINj(η)

)
≥ µi(ξ)qj(ξ)−

∑
η∈ξ+

µi(η)Kj(η)p(η)Aj(η), (16)

where the right hand side is non-negative, by (6). Now, λ̃ij(η) > µi(η) implies, by (4), that dij(η) can

be chosen in [0, 1). By choosing dij(η) small enough (for η ∈ ξ+ such that p(η)Aj(η) > MINj(η)) we

get the equality in (16), as desired. 2

Let us see what can be said about the refinement of equilibria found in Theorem 1.

Claim 5.3 Under the assumptions of Theorem 1 and Assumption [C], there exists a refined equilibrium,

where Kj(ξ)p(ξ)Aj(ξ) = MINj(ξ), ∀j, ∀ξ.

Proof. In fact, at the equilibrium E found in Theorem 1, we had K(ξ)p(ξ)Aj(ξ) = MINj(ξ), ∀j, ξ. If

V jξ (E) 6= ∅, for j ∈ J̃ξ(E), then at the Eε equilibrium for each ε−economy, we have p(η)Aj(η)K̂j
ε(η) =∑

i∈V j
ξ

(E)

(1−γij(η))MINj(η)

#V
j
ξ

(E)
, ∀η ∈ ξ+, where γij(η) = 0, ∀i ∈ V jξ (E). So, Kj(η) = K̂j

ε(η), ∀η ∈ ξ+. If

V jξ (E) = ∅, the result is immediate. 2

Are there refined equilibria under the assumptions of Theorem 2? First, we will show that, for finite

horizon economies, we can always find a refined equilibrium (as long as Assumption [C] is satisfied).

Secondly, under the assumptions of Theorem 2, these refined equilibria of finite finite horizon economies

induce a refined equilibrium for the infinite horizon economy.
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Claim 5.4 Under Assumption [C], in a finite horizon economy, there exists a refined equilibrium, where

Kj(ξ) belongs to the convex hull of (ζij(ξ))i∈V j
ξ

(E)
, if p(ξ)Aj(ξ) > 0 and V jξ (E) 6= ∅, for j ∈ J̃ξ(E).

Proof. See Appendix.

Claim 5.5 Under the assumptions of Theorem 2 and Assumption [C], there exists a refined equilibrium

for the infinite horizon economy.

Proof. By the previous claim, finite horizon economies have refined equilibria. Actually, under the

assumptions of Theorem 2, these refined equilibria of finite horizon economies satisfy (11), (12) or

(13). Let the horizon T go to ∞: the cluster point of the finite horizon equilibria satisfies (8) and is

therefore an equilibrium for the infinite horizon economy. Moreover, it is refined equilibrium as, when

p(η)Aj(η) > 0, Kj(η) =
∑

i∈V j
ξ

(E)

βij(ξ)ζ
i
j(η), ∀η ∈ ξ+, (βij(ξ))i ∈ ∆

#V
j
ξ

(E)−1
, whenever V jξ (E) 6= ∅, for

j ∈ J̃ξ(E) (since this relation held at the refined equilibria of finite horizon economies found in the

previous claim).

Appendix

For each µ and for each agent i, Let us define the Lagrangian function associated with agent i′ problem

as follows:

Liξ(Zξ, Zξ− , µ, p, q,K) = viξ(Zξ)−
∑
j

λ̃ij(ξ)
[
p(ξ)Aj(ξ)ϕij(ξ

−)−∆i
j(ξ)

]+
− µ(ξ)

[
p(ξ) ·

(
xi(ξ) + C(ξ)ϕi(ξ)

)
+ q(ξ) ·

(
θi(ξ)− ϕi(ξ)

)
− p(ξ)ωi(ξ)− p(ξ)Y (ξ)

(
xi(ξ−)− C(ξ−)ϕi(ξ−)

)
+

∑
j∈J(ξ−)

∆i
j(ξ)

−
∑

j∈J(ξ−)

Kj(ξ)p(ξ)Aj(ξ)θij(ξ
−)
]

−
∑

j∈J(ξ−)

ρj(ξ)
[
MINj(ξ)ϕ

i
j(ξ
−)−∆i

j(ξ)
]

Lemma 1 For each node ξ ∈ D and for all economies with finite horizon T ≥ t(ξ), one has:

0 ≤ µi(ξ) < U i(W)

W i(ξ) ‖pT (ξ)‖1
,

where Wi(ξ) =
∑
η≤ξ

ξ∏
s=η

Y (s)ωi(η) and W i(ξ) = min
g
Wi(ξ, g).

Proof of Lemma 1. For t ≤ T, let Z = (Z(ξ))ξ∈DT be such that Z(ξ) =
(
Wi(ξ), 0, 0, 0

)
if ξ ∈ Dt−1

and Z(ξ) = 0 otherwise. Now,

∑
ξ∈DT

Liξ
(
ZiT (ξ), ZiT (ξ−), µiT (ξ), pT , qT

)
≤
∑
ξ∈DT

viξ(Z
iT

(ξ)). (17)

It then follows that
∑
ξ∈Dt

µi(ξ)p(ξ)Wi(ξ) ≤
∑
ξ∈Dt

viξ(Z
iT

(ξ)). The lemma follows then as viξ(z
iT (ξ)) ≤

viξ(Wξ), where Wξ :=
∑
i∈I
Wi
ξ. 2
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Lemma 2 Let Wξ =
∑
i

Wi(ξ). Then, δ+viξ(x
i(ξ), κξ) has a positive minimum on the set of bundles

z ≤ Wξ, where κξ = I1 or κξ = b(ξ).

Proof of Lemma 2. Denote by A := B(0,Wξ) ∩ IRG+ + εκξ, where B
(

0, α
)

denotes the ball with

center 0 and radius α. Now, δ+viξ(x
i(ξ), κξ) ≥ min

z∈A
δ+viξ(z, κξ) := riξ(κξ). In fact, let τ ∈ IRG+ and

Sτ = {z ∈ IRG : z = aκξ + τ, for some a}, then for any z ∈ Sτ ∩ dom ∂viξ, δ
+viσ(z, κσ) ≥ δ+viσ(z, κσ),

where {z} = Sτ ∩A (by monotonicity of this directional derivative on the straight line Sτ ). The mini-

mum of δ+viσ(z, κσ) over z ∈ dom ∂viσ such that z ≤ Wξ is therefore attained on the compact set A.

2

Lemma 3 The sum of spot prices is bounded away from zero, at each node (uniformly bounded in the

finite horizon T and, therefore, also bounded in the infinite horizon economy).

Proof of Lemma 3. This can be established as in (b.2) of Lemma A.2 in Páscoa and Seghir (2009)

using an upper bound mj
g(ξ) on qj(ξ)∑

g
p(ξ,g)

. Under assumptions [E] and [U], we get mj(ξ) = C
j
(ξ) +

1

ri
ξ
(I1)

∑
η∈ξ+

λ̃j(η)A
j
(η)

b(η)
, where riξ(I1) is the minimum of the right derivative of viξ in the direction of I1,

over all feasible bundles (see Lemma 2 above)7. 2

Remark A.1 It follows by Lemma 1 and Lemma 3 that multipliers µi(ξ) have upper bounds that are

independent of prices and of the terminal horizon T of the economy , as W i(ξ) > 0 by Assumption [E].

Moreover, it follows from equation (4) that ρi(ξ) also has an upper bound independent of prices and T .

Proof of Proposition. Let the vectors Li1 ξ and Li2 ξ be partial super-gradients of Li(Z) with

respect to the current and past decision variables, respectively, verifying the Kuhn-Tucker conditions

at the cluster point of finite horizon equilibria. These conditions ((4) through (7), holding as equalities

when the respective variables are positive) can be written as:

Li1 ξ(Z
i
) +

∑
η∈ξ+

Li2 η(Z
i
) ≤ 0, (18)

(
Li1 ξ(Z

i
) +

∑
η∈ξ+

Li2 η(Z
i
)
)
Z
i
ξ = 0. (19)

Then, one has:

ΠiT (Z)−ΠiT (Z
i
) ≤

∑
ξ: t(ξ)≤T

(
Liξ(Z)− Liξ(Z

i
)
)

≤
∑

ξ: t(ξ)≤T

(
Li1 ξ(Z

i
), Li2 ξ(Z

i
)
)(
Zξ − Z

i
)

=
∑

ξ: t(ξ)<T

(
Li1 ξ(Z

i
) +

∑
η∈ξ+

Li2 η(Z
i
)
)
Zξ +

∑
ξ: t(ξ)=T

Li1 ξ(Z
i
)Zξ

−
∑

ξ: t(ξ)<T

(
Li1 ξ(Z

i
) +

∑
η∈ξ+

Li2 η(Z
i
)
)
Z
i
ξ −

∑
ξ: t(ξ)=T

Li1 ξ(Z
i
)Z

i
ξ.

7The upper bound
∑
g

(viσ,g)
′
+

(W I
1−k ) for the relative price

qj(ξ)∑
g
p(ξ,g)

, given in item (b.1) of Lemma A.2 in

Páscoa and Seghir (2009), while correct for utilities that are separable in commodities, should, in general, be

replaced by the upper bound given now by Lemma 3.
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Now,
∑

ξ: t(ξ)=T

∑
η∈ξ+

Li2 η(Z
i
)Z

i
ξ ≤

∑
ξ∈D\DT−1

viξ(Z
i
(ξ)) (this inequality follows the same arguments as

Araujo, Páscoa and Torres-Martinez (2010), see Lemma B4 and Claim A2), so lim sup
T

∑
ξ: t(ξ)=T

∑
η∈ξ+

Li2 η(Z
i
)Z

i
ξ ≤

0. Thus, by (18) and (19), lim sup
T

(
ΠiT (Z)−ΠiT (Z

i
)
)
≤ lim sup

T

∑
ξ: t(ξ)=T

Li1 ξ(Z
i
)Zξ. Now,

Li1 ξ(Z)Zξ =
(
viξ
′
(Z)− µi(ξ)p(ξ)

)
x(ξ)− µi(ξ)q(ξ)θ(ξ)

+
(
viξ
′
(Z)C(ξ)− µi(ξ)(p(ξ)C(ξ)− q(ξ)

)
ϕ(ξ)

+
(
λ̃ij(ξ)d

i
j(ξ) + ρj(ξ)− µi(ξ)

)
∆i
j(ξ),

where viξ
′
(Z)− µi(ξ)p(ξ) ≤ −

∑
η∈ξ+

µi(η)p(η)Y (η) ≤ 0 and λ̃ij(ξ)d
i
j(ξ) + ρj(ξ)− µi(ξ) = 0. 2

Proof of Theorem 1. Both along the sequence of finite economies equilibrium and at the limit

point of the relevant subsequence, we have, by (7), that λij(ξ) < riξ(b(ξ)) implies λ̃ij(ξ) ≤ µi(ξ). It

follows, by (4), that ρij(ξ) > 0 and, therefore, ∆i
j(η) = MINj(η)ϕij(ξ). Suppose that for any agent (5)

cannot hold with dj(η) = 0, ∀η ∈ ξ+ (otherwise we get immediately p(ξ)Cj(ξ) ≥ qj(ξ), by (5)).

If promise j is traded at ξ, we get Kj(η) =
MINj(η)

p(η)Aj(η)
for η ∈ ξ+ (along that subsequence and at its

limit point) and (6) holds as equality for some agent. Combining with (7), we get p(ξ)Cj(ξ) ≥ qj(ξ),

as for this agent we have:

µi(ξ)
(
p(ξ)Cj(ξ)− qj(ξ)

)
≥ v′ξ(xiξ)Cj(ξ) +

∑
η∈ξ+

µi(η)
(
p(η)Y (η)Cj(ξ)−MINj(η)

)
≥ 0, (20)

If promise j is not traded, but was traded along a subsequence (of the above subsequence), the

above argument still applies. Otherwise, we can re-set Kj(η) =
MINj(η)

p(ξ)Aj(ξ)
(in fact, (6) remains true

as we just lower the right hand side). Now, if (6) holds with strict inequality for every agent, with

Kj(η) =
MINj(η)

p(ξ)Aj(ξ)
, we lower qj(ξ), until qj(ξ) = max

i

∑
η∈ξ+

µi(η)

µi(ξ)
MINj(η) (notice that (5) still holds, as

we just raise the left-hand side). The agent(s) for whom this maximum occurs will have (20) satisfied

and, therefore, p(ξ)Cj(ξ) ≥ qj(ξ).
Actually the above resetting of qj(ξ), Kj(η) and dj(η) (for η ∈ ξ+) when asset j is not traded

at node ξ, along any subsequence of truncated economies equilibria, could be done already along the

relevant converging subsequence (rather than by modifying the limit point), so we are back in the exact

setting addressed by the Proposition, knowing that p(ξ)Cj(ξ) ≥ qj(ξ).8

Under (a), condition (8) in the Proposition holds. To see that it holds also under (b) or (c), notice

that vi
′
(Z

i
(ξ)) ≤ µi(ξ)p(ξ) and that

∑
ξ: t(ξ)=t

µi(ξ)p(ξ)ωi(ξ) −→ 0 as t −→ ∞. The latter follows as in

Araujo, Páscoa and Torres-Mart́ınez (2010). We have

−
∑

ξ: t(ξ)=t

Li1ξ

(
Z
i
(ξ), Z

i
(ξ−)

)
Zi(ξ) ≥

∑
ξ: t(ξ)≤t

[
Liξ(0, 0)− Liξ

(
Z
i
(ξ), Z

i
(ξ−)

)]
=

∑
ξ: t(ξ)≤t

µi(ξ)p(ξ)ωi(ξ)−Πit(Z
i
),

8In Section 5.2 we will address refinement concepts and see that this no-trade equilibrium, with expectations

Kj(η) =
MINj(η)

p(η)Aj(η)
consistent with these moderate penalties, can be preserved under a refinement that removes

both unduly pessimistic and unduly optimistic expectations.
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where lim sup
t

(
−

∑
ξ: t(ξ)=t

Li1ξ
(
Z
i
(ξ), Z

i
(ξ−)

)
Zi(ξ)

)
≤ 0 (as shown in the proof of the Proposition). So∑

ξ

µi(ξ)p(ξ)ωi(ξ) ≤ Πit(Z
i
) <∞. 2

Remark A.2: It can be seen from the proof of Theorem 1 that agents who have (6) holding with

equality, for every promise, beyond some node ξ, will have (20) satisfied at these nodes for all promises

and, therefore, have no opportunities for doing generalized Ponzi schemes.

Proof of Theorem 2.

(i)

For the finite horizon economy, we adapt the proof of Theorem 1 in Dubey, Geanakoplos and Shubik

(2005). As in their proof the price set is Pξ =
{

(p(ξ), q(ξ)) :
∑
g

p(ξ, g) = 1, p(ξ, g) ≥ s, qj(ξ) ∈

[0, 1/s]
}
. Denote by ψ0

s the arg max∏
ξ∈D

Pξ

{ ∑
ξ∈D

(
p(ξ) ·

∑
i

(xi(ξ)+
∑
j∈J

Cj(ξ)ϕij(ξ)−W i(ξ))+q(ξ) ·
∑
i

(θi(ξ)−

ϕi(ξ))
)}

and by Ks the argmin
{ ∑
η∈ξ+

(
(
∑
i

θi(ξ))Kj
s(η)p(η)Aj(η)−

∑
i

∆i
j(η)

)2

: Kj
s(η) ∈ [0, 1], ∀η ∈

ξ+
}
.

Step 1. Now, we have to select the outcome that makes marginal penalty effects be dominated by

marginal income effects. We do this by defining the correspondence ψνs (ξ) =
{

(νη)η∈ξ+ = νI1 for some ν >

0 :
∑
η∈ξ+

νη max
i

max{λij(η), µi(η)}bjη ≤
∑
η∈ξ+

min
i

min{λij(η), µi(η)}p(η)Y (η)Cj(η), ∀j ∈ J∗ and νη ∈

[0, χξ(s)]
}
, where χξ(s) = χ̃(sI1), χ̃

(
(p(η))η∈ξ+

)
=

max
j

∑
η∈ξ+

min
i

min{λij(η),µi(η)}p(η)Y (η)Cj(ξ)

min
j

∑
η∈ξ+

max
i

max{λij(η),µi(η)}bjη
.

Step 2. We have to accommodate the nominal promises in the framework of the model with real

promises. We do this by defining the mapping Ajξ g (j ∈ J∗) as the function (νξ, b
j
ξ) 7−→ A

j
ξ g = νξb

j
ξ.

Step 3. Consumers have the standard constrained demand correspondence

ψhs = argmaxZξ

{
Πi(Z) : budget and minimal repayment constraints hold at (p, q,K), given A, for

Z = (x, θ, ϕ,∆) such that x(ξ) ≤ Wξ(1 + δ), ϕij(ξ) ≤ W(1+δ)

max
g

C
j
g(ξ)

≡ Ljξ, θ
i
j(ξ) ≤ (#I)Ljξ, ∆i

j(ξ) ≤

(max
g

Ajg(ξ))L
j
ξ), for some δ relatively small

}
.

Step 4. Lagrange multipliers are obtained by introducing the correspondence IL =
∏

(i,ξ)

ILiξ where

ILiξ = argmin(µi(ξ),ρj(ξ))

{
Liξ
(
Ziξ, Z

i
ξ− , p(ξ), q(ξ),K(ξ), µi(ξ), ρ(ξ)) : µi(ξ), ρj(ξ) ∈ [riξ, µ

i(ξ)]
}
.

Final step. For each s > 0 , a fixed point of ψ0
s × Ks × ψνs × A × IL × (

∏
h

ψh) exists, as ψνs (ξ) is

nonempty valued (take νη = ν, ∀η ∈ ξ+, with ν (#ξ+) ≤
min
j∈J∗

∑
η∈ξ+

min
i

min{λij(η),µi(η)}p(η)Y (η)Cj(ξ)

max
j∈J∗

∑
η∈ξ+

max
i

max{λij(η),µi(η)}bjη
) and

upper hemicontinuous.

As in the proof of Theorem 1 in Dubey, Geanakoplos and Shubik (2005), when s −→ 0, aggregate

excess demand goes to zero, p(η, g) does not go to zero and q(ξ) stays bounded. Moreover, νη stays

both bounded from above and bounded away from zero. Passing to subsequences, we obtain a limit

point which is an equilibrium for the finite horizon economy and satisfying condition (11), for any

(η, j) ∈ D × J∗, since at ση = lim ν−1
η we have (13) satisfied.

(ii)
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We redo the above argument, replacing ψνs (ξ) by ψ̃νs (ξ) =
{

(νη)η∈ξ+ = νI1 for some ν > 0 :∑
η∈ξ+

max
i

max{λij(η), µi(η)}p(η)Aj(η) ≤
∑
η∈ξ+

νη min
i

min{λij(η), µi(η)}ỹjηCj(ξ), ∀j ∈ J∗ and νη ∈

[0, χ̂ξ]
}
, where χ̂ξ =

max
j∈J∗

∑
η∈ξ+

max
i

max{λij(η),µi(η)}Aj(η))

min
j∈J∗

∑
η∈ξ+

min
i

min{λij(η),ri(η)}ỹjηCj(ξ)
.

We also replace the construction of real returns matrices for the promises by those for the collateral:

let YIjξg (j ∈ J∗) be the function (νξ, ỹ
j
ξ) 7−→ Y jξg = νξỹ

j
ξ . Notice that ψ̃νs (η) is nonempty valued (take

σ ≥
max
j∈J∗

∑
η∈ξ+

max
i

max{λij(η),µi(η)}p(η)Aj(η))

min
j∈J∗

∑
η∈ξ+

min
i

min{λij(η),µi(η)}ỹjηCj(ξ)
) and upper hemicontinuous. The correspondence ψ0

s ×Ks ×

ψ̃νs ×YI× ψ′ × (
∏
l

ψl) has a fixed point.

A cluster point, as s −→ 0, of the sequence of fixed points is an equilibrium for the finite hori-

zon economy. Notice that, along the converging subsequence, νη is bounded away from zero and take

ση = lim νη. At the limit, (14) holds.

(iii)

Step A. Let Ĵ be the subset of J∗ consisting of nominal promises backed by nominal collateral with

endogenous coefficients ϑjg(j)(ξ). Denote by ψ̂ν =
{

(νη)η∈ξ+ ∈ ∆#ξ+−1 and ϑjg(j)(ξ) ≥ 0, j ∈

Ĵ :
∑

η∈ξ+: ỹj(η)>0

νη(j) min
i

min{λij(η(j)), µi(η(j))}ỹjη(j) ≥
∑
η∈ξ+

max
i

max{λij(η), µi(η)}bjηϑjg(j)(ξ), for j ∈

Ĵ
}
. This correspondence is nonempty valued: we can always take η(j) : ỹj(η(j)) > 0, make νη(j) =

ϑjg(j)(ξ)

∑
η(j)

max
i

max{λij(η),µi(η)}bjη

min
i

min{λij(η(j)),µi(η(j))}ỹjη(j)
≡ Rjη(j)(ϑ

j
g(j)(ξ)) and choose (ϑjg(j)(ξ)) high enough so that∑

j∈Ĵ
Rjη(j)(ϑ

j
g(j)(ξ)) ≤ 1.

Step B. Now, let J1 be the subset of J∗ consisting of nominal promises backed by real collateral.

Let ψν1s =
{

(νη)η∈ξ+ ∈ ∆#ξ+−1 and αjξ ≥ 0, j ∈ J1 :
∑

η(j): b
j
η>0

νη(j) max
i

max{λij(η(j)), µi(η(j))}bjη ≤

∑
η∈ξ+

min
i

min{λi(η), µi(η)}p(η)Y (η)αjξC
j(ξ)−

∑
η: b

j
η=0

max
i

max{λij(η(j)), µi(η(j))}bjη, for j ∈ J1,
}
. This

correspondence is nonempty valued: by scaling up Cj(ξ) by αjξ, high enough, we can make the right

hand side in these inequalities positive (as p(η, g) ≥ s, ∀η, ∀g).

Step C. Actually, ψ̂ν ∩ ψν1s is nonempty valued. Moreover, ψ̂ν takes uniformly bounded values in

γjg(j)(ξ) and ψν1s takes uniformly bounded values in αjξ.
9 We can even see that ψ̂ ≡ ψ̂ν ∩

{
(νη)η∈ξ+ :∑

η(j), j∈Ĵ
νη(j) ≤ 1− ε

}
is nonempty, for ε small enough (as γjg(j)(ξ) can accommodate this requirement)

and we let ν̃ξ be the function (νη(j))j∈Ĵ 7−→ (νη)η∈ξ+ , where νη =

1−
∑
j∈Ĵ

νη(j)

#ξ+−#Ĵ
for η 6= η(j), j ∈ Ĵ .

Denote by ψNs the nonempty intersection ψ̂ ∩ ψν1s ∩ {ν̃ξ}.
The correspondence ψ0

s × Ks × ψNs × YI × A × ψ1 × (
∏
h

ψh) has a fixed point. As s −→ 0, νη

stays bounded and bounded away from zero. Taking a convergent subsequent of fixed points, we let

σn = lim ν−1
n and we see that the limit of the fixed points is an equilibrium for the finite horizon

economy where (13) and (15) hold (respectively, for a nominal-real contract and for a nominal-nominal

9The choice set for αjξ, j ∈ J1, is bounded by

∑
η: b

j
η=0

max
i

max{λij(η),µi(η)}bjη

∑
η∈ξ+

min
i

min{λij(η),ri(η)}s
∑
l,g
Y lηg c̃

j
g(ξ)

. The choice set for

ϑj
g(j)

(ξ), j ∈ Ĵ , is bounded by
min
i

min{λij(η(j)),ri(η)}ỹη(j)∑
η∈ξ+

max
i

max{λij(η),µi(η)}bjη
, for some η(j) : ỹj(η(j)) > 0.
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contract).

We omit the less interesting case of real promises backed by nominal collateral (but the argument

for the set J2 of such contracts follows closely the one made for Ĵ . 2

Proof of Claim 5.4. We adapt the proof of Theorem 1 in Dubey, Geanakoplos and Shubik (2005).

As in that proof, for each s, the price set is such that p(ξ, g) ≥ s,
∑
g

p(ξ, g) = 1 and qj(ξ) ≤ 1
s
. We define

the function F mapping each vector (x̃i(ξ, g(j)))i into the value F (ξ, g(j)) equal to min
i
{x̃i(ξ, g(j))) :

x̃i(ξ, g(j)) > 0} if (x̃i(ξ, g(j)))i 6= 0 and equal to zero otherwise. It is a continuous function. Now, for

each i, let β
i

j(ξ) = x̃i(ξ,g(j)))
s+F (ξ,g(j))

.

Define also the following correspondences: Gij(ξ) = argmax{γij(ξ)(λ̃ij(ξ) − µi(ξ)) : γij(ξ) ∈ [0, 1]}
and let G̃ij(ξ) = argmin{[ζij(ξ)p(ξ)Aj(ξ)− γij(η)p(η)Aj(η)− (1− γij(η))MINj(η)]

2
: ζij(ξ) ∈ [0, 1]}.

Delivery rates Kj(η) are defined jointly with weights βij(ξ) by the next correspondence. The

conditions this correspondence imposes on the weights βij(ξ) become redundant when the promise is

traded. For each (ξ, j) :
(

(Kj(η)η∈ξ+ , (β
i
j)i

)
∈ IHj

ξ, where

IHj
ξ ≡ argmin

{ ∑
η∈ξ+

[
((
∑
i

θij(ξ))K
j(η)p(η)Aj(η)−

∑
i

∆i
j(η))

2
+ (Kj(η)−

∑
i

βij(ξ)ζ
i
j(η))

2

+
∑
i

(
αij(ξ)β

i
j(ξ) + βij(ξ)[µ

i(η)− λ̃ij(η)]
+

(1− dij(η)) + (βij(ξ)
∑
k

ϕkj (ξ)− ϕij(ξ))
2)

: Kj(η) ∈ [0, 1],

∑
i

βij(ξ) ≤
1

1 + s
, 0 ≤ βij(ξ) ≤ β

i

j(ξ)
}
,

where αij(ξ) is the slack in (5).

Lagrange multipliers (µi(ξ), ρi(ξ)) are given by ILiξ ≡ argmin
{
Liξ(x

i, ϕi, θi,∆i, p, q,K) : µi(ξ) ∈

[0, µi(ξ)], ρi(ξ) ∈ [0, µi(ξ)]
}

and the supergradients dij(η) are given by IDi
j(η) ≡ argmin

{
(λ̃ij(η)dij(η)− µi(η))

2
:

dij ∈ ∂(+)(p(η)Aj(η)ϕij(η)−∆i
j(η))

}
, where + stands for the function z 7−→ z+.

For each s, a fixed point of ψ0
s×F×β×

∏
(j,ξ)

IHj
ξ×
∏
i

ψis×
∏
i,ξ

ILiξ×
∏

(i,ξ,j)

IDi
j(ξ)×

∏
(i,ξ,j)

Gij(ξ)×
∏

(i,ξ,j)

G̃ij(ξ)

exists.

As s −→ 0, the sequence of fixed points has a cluster point, at which market clearing holds, p(ξ, g)

does not converge to zero and qj(ξ) stays bounded. This cluster point is an equilibrium E for the

finite horizon economy such that if j ∈ J̃ξ(E), Kj(η) =
∑
i

βij(ξ)ζ
i
j(η) where βij(ξ) = 0 for i with

xi(ξ, g(j)) = 0 or αij(ξ) = 0. Moreover, if V jξ (E) 6= ∅, then βij(ξ) > 0 only for i ∈ V jξ (E). 2
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