

 Júri:

Presidente: [Nome do presidente do júri]

Arguentes: [Nome do arguente 1]

 [Nome do arguente 2]

Vogal: Prof. Doutor Henrique João Domingos

Setembro, 2013

João Miguel Cardia Melro Rodrigues

Licenciado em Engenharia Informática

TSKY: A Dependable Middleware Solution for
Data Privacy using Public Storage Clouds

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Orientador: Doutor Henrique João Domingos, Prof. Auxiliar,
Universidade Nova Lisboa

 Júri:

Presidente: Doutor Nuno Manuel Robalo Correia

Arguente: Doutor Salvador Luís Bettencourt Pinto de Abreu

Vogal: Doutor Henrique João Lopes Domingos

TSKY: A Dependable Middleware Solution for Data Privacy using Public
Storage Clouds

Copyright © João Miguel Cardia Melro Rodrigues, Faculdade de Ciências e
Tecnologia, Universidade Nova de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o
direito, perpétuo e sem limites geográficos, de arquivar e publicar esta disserta-
ção através de exemplares impressos reproduzidos em papel ou de forma digi-
tal, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a
divulgar através de repositórios científicos e de admitir a sua cópia e distribui-
ção com objectivos educacionais ou de investigação, não comerciais, desde que
seja dado crédito ao autor e editor.

iii

Agradecimentos

Desde já agradeço à Faculdade de Ciências e Tecnologia de Universidade
Nova de Lisboa, mais especificamente ao Departamento de Informática e a todo
o corpo docente, não docente e a todos os colegas pelo apoio prestado no decor-
rer dos vários anos lectivos e em especial durante a fase de preparação e elabo-
ração de dissertação período durante o qual me foi atribuída uma bolsa de in-
vestigação. Ainda mais, agradeço ao meu orientador, Henrique João Lopes
Domingos, pelo apoio prestado relativo não só á dissertação e ao projeto TSKY,
como agradeço todo o apoio prestado ao nível académico.

Finalmente, e não menos importante, agradeço a todos os meus amigos,
familiares e conhecidos pelo apoio prestado ao longo dos últimos anos, em que
fui aluno da FCT.

v

Resumo

A presente dissertação visa tirar partido das virtudes oferecidas pelos sis-
temas de armazenamento de dados em nuvem, disponibilizados por diferentes
provedores na Internet. A solução proposta visa o incremento de garantias de
segurança, disponibilidade e fiabilidade, através da utilização combinada de
vários provedores, numa visão de armazenamento e computação em nuvem-
de-nuvens. O sistema de middleware, designado por TSKY (Trusted Sky), preten-
de constituir uma solução confiável, para intermediação entre aplicações finais
e nuvens de armazenamento de vários provedores. Para isso o sistema combi-
na, na sua arquitetura, componentes e serviços para indexação, distribuição e
replicação de dados em múltiplas nuvens de armazenamento, tendo em vista
assegurar condições de resiliência perante falhas ou ataques que podem ocorrer
de forma independente ao nível do provedor. Para garantir as condições de se-
gurança são utilizados vários mecanismos criptográficos para cifra e autentica-
ção de dados, com base em esquema de partilha de segredos (secret sharing
schemes) e assinaturas de limiar (threshold signatures). Para concretizar e avaliar o
sistema TSKY, como sistema genérico, foi criado um repositório confiável de
correio electrónico, designando por TSKY-TMS (Trusted Mail System). Este sis-
tema constitui um protótipo que utiliza os serviços base do middleware TSKY
para armazenamento de mensagens numa tipologia de nuvem-de-nuvens.

Palavras-chave: Computação em Nuvem, Armazenamento em Nuvem,
Esquemas e Algoritmos de Criptografia de Limiar, Esquemas de Encriptação
Holomórfica, Privacidade, Fiabilidade e Disponibilidade dos Dados.

vii

Abstract

This dissertation aims to take advantage of the virtues offered by data
storage cloud based systems on the Internet, proposing a solution that avoids
security issues by combining different providers’ solutions in a vision of a
cloud-of-clouds storage and computing. The solution, TSKY System (or Trusted
Sky), is implemented as a middleware system, featuring a set of components
designed to establish and to enhance conditions for security, privacy, reliability
and availability of data, with these conditions being secured and verifiable by
the end-user, independently of each provider. These components, implement
cryptographic tools, including threshold and homomorphic cryptographic
schemes, combined with encryption, replication, and dynamic indexing mecha-
nisms. The solution allows data management and distribution functions over
data kept in different storage clouds, not necessarily trusted, improving and
ensuring resilience and security guarantees against Byzantine faults and at-
tacks. The generic approach of the TSKY system model and its implemented
services are evaluated in the context of a Trusted Email Repository System
(TSKY-TMS System). The TSKY-TMS system is a prototype that uses the base
TSKY middleware services to store mailboxes and email Messages in a cloud-
of-clouds.

Keywords: Cloud Computing, Cloud Storage Services, Threshold Crypto-
graphic Schemes and Algorithms, Homomorphic Encryption Schemes, Data
Privacy, Reliability and Availability

ix

Table of Contents

1. INTRODUCTION ... 1
1.1. CONTEXT AND MOTIVATION .. 1
1.2. CLOUD AS A SERVICE ... 2
1.3. SECURITY ISSUES OF DATA STORED IN PUBLIC CLOUDS ... 3
1.4. THESIS PROBLEM STATEMENT .. 6
1.5. OBJECTIVES ... 7
1.6. MAIN CONTRIBUTIONS ... 8
1.7. CONTRIBUTIONS AND ACHIEVED RESULTS .. 10

2. RELATED WORK ... 11
2.1. CRYPTOGRAPHIC MECHANISMS AND TOOLS ... 13

2.1.1 Secret Sharing Schemes ..13
2.1.2 Threshold Signatures ...22
2.1.3 Homomorphic encryption ..24

2.2. DATA MANAGEMENT .. 27
2.2.1 Dependable Data Storage Systems ..27
2.2.2 Cloud Oriented Dependable Solutions ..30
2.2.3 Final Discussion ..36

2.3. CLOUD STORAGE PLATFORMS AND SERVICES .. 37
2.3.1 Amazon S3...37
2.3.2 Google Cloud Storage ...38
2.3.3 Nirvanix Cloud Storage ...39
2.3.4 Rackspace Cloud Files ..40
2.3.5 Microsoft Azure...41
2.3.6 Dropbox ..42
2.3.7 Luna Cloud ..43

x

2.3.8 Comparison .. 43

3. SYSTEM MODEL AND ARCHITECTURE .. 45
3.1. ATTACKER MODEL ... 45
3.2. SYSTEM REQUIREMENTS .. 46
3.3. SYSTEM ARCHITECTURE .. 47
3.4. DATA MODEL ... 50
3.5. SYSTEM MODEL GENERALIZATION .. 52

4. IMPLEMENTATION ... 55
4.1. STORAGE MODULE .. 56
4.2. FRONTEND AND ENDPOINTS ... 57
4.3. CORE MODULES ... 59
4.4. CLOUD STORAGE LAYER ... 62
4.5. ALGORITHMS .. 63

5. EVALUATION .. 67
5.1. THE TSKY FRAMEWORK ... 67
5.2. TEST EXECUTION ENVIRONMENT ... 68
5.3. CLOUD PROVIDER PERFORMANCE BENCHMARKS (PUT/GET) 69
5.4. THRESHOLD MODULE BENCHMARK .. 73
5.5. SECRET SHARING MODULE BENCHMARK ... 74
5.6. ENCRYPTION MODULE BENCHMARK ... 76
5.7. OVERALL SOLUTION BENCHMARK ... 78
5.8. CLOUD BASED PROXY SOLUTION BENCHMARK ... 82

6. CONCLUSION AND FUTURE WORK ... 85

xi

List of Figures

FIGURE 1: MAIN SYSTEM CONCERNS ... 11
FIGURE 2: INTERPOLATION PROBLEM, 4 POINTS, 3RD DEGREE FUNCTION .. 14
FIGURE 3: THREE 3-DIMENSIONAL PLANE INTERSECTION ... 17
FIGURE 4: IDATAGUARD DATA MODEL .. 32
FIGURE 5: VARIOUS WORLDWIDE AMAZON DATA CENTER LOCATIONS ... 37
FIGURE 6: VARIOUS WORLDWIDE NIRVANIX DATA CENTER LOCATIONS ... 39
FIGURE 7: VARIOUS WORLDWIDE RACKSPACE DATA CENTER LOCATIONS ... 40
FIGURE 8: VARIOUS WORLDWIDE MICROSOFT AZURE DATA CENTER LOCATION .. 41
FIGURE 9: VARIOUS WORLDWIDE LUNA CLOUD DATA CENTER LOCATIONS ... 43
FIGURE 10: TSKY-TMS ARCHITECTURE ... 48
FIGURE 11: TSKY-TMS DATA MODEL .. 50
FIGURE 12: CLOUD BASED DEPLOYMENT ARCHITECTURE ... 52
FIGURE 13: MAILBOX LAYER CLASS DIAGRAM .. 57
FIGURE 14: CORE LAYER CLASS DIAGRAM .. 59
FIGURE 15: CLOUD STORAGE LAYER CLASS DIAGRAM ... 62
FIGURE 16: PERFORMANCE GRAPHIC OF PUT OPERATION (IN SECONDS AND MEGABYTES) 69
FIGURE 17: PERFORMANCE GRAPHIC OF GET OPERATION (IN SECONDS AND MEGABYTES) 70
FIGURE 18: PERFORMANCE OF THRESHOLD SIGNATURE MODULE IN DIFFERENT STAGES 73
FIGURE 19: PERFORMANCE OF SECRET SHARING MODULE USING MULTIPLE SCHEMES 75
FIGURE 20: PERFORMANCE OF ENCRYPTION MODULE USING AES256 IN SECONDS/MEGABYTES 77
FIGURE 21: MESSAGE SEND TIMES TO GMAIL SERVICE, TMS-MAC AND TMS-TS 80
FIGURE 22: MESSAGE RECEIVING TIMES TO GMAIL SERVICE, TMS-MAC AND TMS-TS 81
FIGURE 23: OPERATIONS LATENCY WITH TMS-TS RUNNING IN A COMPUTATIONAL CLOUD 82

xiii

List of Tables

TABLE 1: COMPARISON TABLE BETWEEN MULTIPLE DEPENDABLE SYSTEMS .. 36
TABLE 2: PERFORMANCE TABLE OF PUT OPERATION (IN SECONDS AND MEGABYTES)............................. 69
TABLE 3: PERFORMANCE TABLE OF GET OPERATION (IN SECONDS AND MEGABYTES) 70
TABLE 4: ADDRESSES, PROBABLE LOCATION AND LATENCY OF CLOUD STORAGE PROVIDERS 71
TABLE 5: PERFORMANCE OF THRESHOLD SIGNATURE MODULE IN DIFFERENT STAGES 73
TABLE 6: PERFORMANCE OF SECRET SHARING MODULE IN SECONDS/BITS .. 75
TABLE 7: DETAILED PERFORMANCE OF SECRET SHARING MODULE IN MILLISECONDS/BITS 76
TABLE 8: PERFORMANCE OF ENCRYPTION MODULE USING AES256 IN SECONDS/MEGABYTES 77
TABLE 9: PERFORMANCE COMPARISON (IN SECONDS) SYMMETRIC ENCRYPTION ALGORITHMS 77
TABLE 10: PERFORMANCE (IN SECONDS) OF GMAIL VERSUS TMS (MAC AND TS) 79

1

1. Introduction

1.1. Context and Motivation

In the current globalization context, it has become increasingly important
to securely manage data regarding the internal operations of enterprises and
their clients. Given the inevitable generation and exchange of new data, with an
increasing tendency, and with the growing of the use of the Internet as a global
business platform [1], the use of cloud based solutions has become even more
appealing. This kind of solutions (cloud based solutions) offer multiple ad-
vantages compared with traditional solutions based on localized data centers
and infrastructures maintained by own companies [2]:

• Pay-per-use cost model, in which the clients pay just for the resources in
use, reducing the infrastructure allocation and update costs as the need for
more resources increase;

• Ubiquity, enabled by the public cloud access, end-user applications and
middleware systems can access computational resources from any location
without relying on resources real location. Furthermore the use of public
cloud services enables the combination of different data centers (in different
locations) from the same or from different providers in order to achieve bet-
ter reliability and availability for the target solutions;

• Scalability and Elasticity, the on-demand resources provided in mul-
titenant systems, allow the adaptation of resources like memory, available
storage or computational power, accordingly to system loads or necessities;

1

2

• Maintenance costs, while providing maximum control, local infrastructures
carry total ownership costs [3] associated the cost of building the infrastruc-
ture itself along with maintenance costs. In multitenant public cloud solu-
tions ownership and maintenance costs are omitted and the actual costs are
easily managed as a pay-per-use cost model demands;

• Security, although not auditable cloud based solutions offer interesting reli-
ability and availability conditions that could be explored by existing or new
solutions.

1.2. Cloud as a Service

Recently, the number of cloud services providers has substantially in-
creased [4] which has promoted the competitiveness in those markets and con-
sequently lowering the prices. These providers, offering different cost models to
different targets (private or corporative customers), divide the provided ser-
vices in three different standard categories:

• Infrastructures as a Service or IaaS – consisting in providing pure or virtu-
alized computational resources without outbox features;

• Platform as a Service or PaaS – in which resources, as databases, key-value
storage services or content delivery networks, are provided as a platform to
new or existing systems and applications;

• Software as a Service or SaaS – in which the provided services consist in
out-of-the-box server software (e.g. email, messaging, file storage, CMS).

The proposed solution is introduced as a Middleware as a Service in
which a key-value storage API is provided as a middleware service offering
data confidentiality, integrity and availability services. This API is then ex-
plored by an email repository service used as validator to the proposed mid-
dleware solution. The multiple categories of services including the MaaS, are
leveraged by a set of advantages, as stated before:

• Elasticity – provided by public cloud services, the resources are dynamical-
ly adjusted accordingly a set of well-defined needs (e.g. number of accesses
per time period, data volume) or manually as customer demands;

• Scalability and resources Relocation – Normally application supported,
scalability and relocation can be provided through data center virtualization

3

techniques. In the proposed solution this scalability can be provided
through the use of multiple dynamic instances offering both scalability and
relocation and consequently ubiquitous capabilities;

• Costs – The cost model, of the multiple cloud services are considered attrac-
tive due to the lack of ownership costs associated to traditional infrastruc-
tures that carry establishment and maintenance costs. Furthermore the use
of private infrastructures carries constant energetic costs which can exceed
the infrastructure effective profit.

In contrast to the proposed solution, the standard provided services are
based on a set of non-auditable promises regarding durability, integrity, availa-
bility and confidentiality, defined in Service Level Agreements describing the
maximum time impact of future unpredicted events. Furthermore the presented
solution is intended to run in a trusted environment, namely in a local trustable
proxy or locally in the users’ computers.

1.3. Security Issues of data stored in public clouds

As previously described, the use of cloud storage repositories on the In-
ternet leverages a set of operational advantages, the analysis of such advantages
raises an interest in the use of such services as storage platform to existing ap-
plications, however the adoption of such providers reveals itself problematic
when certain requirements are considered [19]. Requirements as maintenance
and management with confidentiality and privacy guarantees or permanent
user control and auditability are hard or even impossible to ensure. In fact, the
use of such cloud based services as outsourced data management solutions are
itself a still open problem [5]. These issues, widely discussed, are introduced by
the following question: “How to keep public data secure?”, furthermore, various
entities [20], [21] have analyzed these issues inspiring new research fields in
computer systems security and cloud computing. For example in health field
the adoption of cloud storage solutions requires a confidential and decentral-
ized management of user’s persistent medical data [22]. Moreover, the medical
data must be kept available and uncorrupted at any time and if deleted, in must
be in a permanent way.

4

Beyond users control and auditability over security agreements, the use of
outsourced solutions raises issues related with the prices unpredictability and
data migration costs. These issues occur when large data volumes are stored in
a provider premises and the service associated costs are substantially raised,
which introduces a dilemma: keep the data in providers’ premises accepting the
new cost model or do an expensive data migration to other provider. This sort
of distress is called vendor lock-in.

Recent events have exposed multiple security vulnerabilities in cloud plat-
forms, multiple reported cases [23], [24], [25], [26] shown that for multiple rea-
sons the data stored on such platforms were disclosed, destroyed or corrupted
accidentally or on purpose by identified or unidentified third parties exposing
private data and so violating basic security properties as confidentiality, integri-
ty and data availability leading to huge financial losses. These security related
issues become more pronounced when critical data and services are considered.
Almost all society sectors rely on critical applications and services. E.g.:

• Applications that manage and handle users’ medical files and history in-
volving patient-doctor confidentiality;

• Email messaging services, that handle critical messages from multiple
users in corporative or personal contexts involving financial, legal, moral
or even ethical matters;

• Applications that manage private banking data subject to strict terms
and conditions in which the clients accounting data should not be dis-
closed under any circumstances;

• Any application that handles user history and that for legal or ethical
reasons should guaranty that the stored data will only be accessible by
trusted and authenticated parties;

• Applications that support resource management to armed forces in na-
tional security matters.

This thesis presents a middleware concept that act between final applications or
services and the cloud storage providers offering reliability, availability integri-
ty, confidentiality and indexing services to applications.

5

The above concerns have been extensively referred in the literature, as
well as, in relevant reports published by different institutions [5] or results ad-
dressed in relevant research projects [6], [7].

The combination of mechanisms and services to deal with security, relia-
bility and availability properties, conjugated in dependable and trusted solu-
tions to manage outsourced data in public storage clouds, is a challenging re-
search direction. The support for those properties with the addition of inde-
pendent auditing control guarantees by the users is also a timely and innova-
tive research contribution. Recently, the research community has been address-
ing these challenges, discussing the relevance and combination of different di-
mensions of the problem. Some approaches are particularly concerned in im-
proving dependability services as requirements of cloud computing infrastruc-
tures and cloud data-centers [8], [9], [10]. Other approaches are more concerned
in designing middleware services, implementing trust computer bases, to in-
termediate the use of untrusted public clouds, as they are provided today, but
adding dependability guarantees under the user control [11], [12], [13], [14].

The approach of the present dissertation follows the latter approaches,
considering the adoption of well-known and well-established cloud storage so-
lution providers, such as: Amazon [15], Google [16], Nirvanix [17] or Rackspace
[18] and the way to explore such solutions in a secure, reliable and high-
available way. The main focus is the design, implementation and validation of a
middleware solution, used as a trusted computing base under the user control,
to provide a set of security and reliability services, independently of native de-
pendability mechanisms supported or not by the cloud-service providers in
their data-centers.

Regardless of the dissertation focus, the combination of security and relia-
bility mechanisms and services, complementarily addressed with other ap-
proaches to improve native dependability services on cloud-based infrastruc-
tures, will be certainly a way to provide an integrated and global solution for
security, privacy, reliability and availability, to support dependable end-to-end
arguments in cloud computing systems and applications design.

6

1.4. Thesis problem statement

The dissertation problem is focused in finding possible answers and con-
tributions to the following questions:

• Is it possible to build a middleware solution supporting a storage cloud-
of-clouds approach to overcome the limitations of Internet public storage
clouds in assuring reliability, availability and privacy guarantees for
their users?

• How can we compose different mechanisms, in such middleware ap-
proach, combining reliability, availability and privacy-enhanced services
by the use of appropriate cryptographic tools and replication strategies
that can benefit from a cloud-of-clouds implicit diversity and heteroge-
neity?

• Is it possible to address this type of solutions, guaranteeing the secure
deployment of critical applications while maintaining the user control
and benefiting from the advantages of cloud-based outsourcing data
management services?

• What kind of mechanisms and services are candidates to be conjugated
in a generic middleware approach, to serve different types of applica-
tions?

In order to give response to the above questions, this dissertation address-
es a system that provides multiple services attained by a set of components, al-
gorithms and techniques combined in a middleware approach. In our approach
the data-storage clouds are considered primarily as simple storage services,
without the capacity of executing middleware’s code. In the primarily approach
(and in the addressed solution) we consider the clouds as not trusted, just being
used to provide a data-integration support layer, accessed by their specific ac-
cess interfaces or APIs, without modifications. The middleware itself was de-
signed to execute as a local software library supporting applications in an end-
user machine. However, the design concerns in the dissertation also address the
possible evolution of the middleware abstraction, to run in remote trusted
computing bases (as a proxy service implementing a transparent cloud-API ab-
straction to the remote clients). With this concern in mind, the current middle-
ware solution addresses some important issues namely the minimization of the

7

trusted computing base abstractions, in order to address, a future work vision,
of possible support of some middleware components executing in a public
computing cloud. From this generic problem statement, we identify the objec-
tives and contributions introduced in the next sections.

1.5. Objectives

To draw all the advantages provided by cloud based services and to ad-
dress the problems associated to their use, the current thesis aims to conceive,
implement, test and evaluate a trustable middleware system that takes ad-
vantage of the benefits offered by multiple cloud storage providers in a cloud-
of-clouds approach. The presented middleware can be explored in multiple ap-
plication contexts by means of an API similar to the APIs offered by standard
cloud storage provider solutions (used as key-value cloud storage services). The
proposed middleware framework implements a TCB system that enables the
composition of a set of components leveraging data privacy, reliability and
availability properties while ensures auditability mechanisms under the user
control.

The proposed middleware framework can be composed in a variety of
ways, with multiple modules such as: fragmentation, encryption, replication
and indexing modules. The solution indexes, authenticates, encrypts and repli-
cates data on multiple storage clouds ensuring data integrity, data privacy and
key-management in safety conditions. At the same time, the solution provides
high-availability and fault-tolerance guarantees, supporting independent cloud-
service failures than can occur in each storage cloud used.

By using threshold-based cryptographic techniques and tools the security
support is mapped into a byzantine fault-tolerant replication model, using mul-
tiple storage clouds as a data-storage backend. Furthermore, homomorphic
techniques have been included in a way to enhance data privacy purposes, en-
suring the protection of middleware-side indexing and searching operations
over encrypted data. The implemented middleware framework, in a proof-of-
concept prototype (named TSKY), supports an object storage solution provided
as a key-value storage service. TSKY provides a generic object storage service
and can be used as a backend storage system for different applications.

8

As proof of concept, and to test and evaluate the proposed solution, an
email repository was designed and developed over the TSKY object storage sys-
tem. This email repository system, named TSKY-TMS (Trusted Email System),
was designed and implemented to support a set of standard protocols, namely
POP3, SMTP and REST protocols. Through these endpoints any mail user agent
application can send, store or retrieve electronic mail messages. Additionally,
the TSKY-TMS system provides search operations over e-mail message headers
(according to the RFC822 standard) and e-mail body contents (including some
types of attachments). The TSKY-TMS repository service has enabled the vali-
dation of different evaluation metrics, to test reliability and performance condi-
tions regarding not only the TSKY-TMS integrated solution as regarding the
base TSKY framework and the cloud providers’ storage services themselves.

1.6. Main Contributions

As a solution to the described problem it was intended to design and de-
velop a middleware solution that acts as a proxy between the client and the
cloud storage providers in order to accomplish the proposed objectives. The
proposed solution is composed by mechanisms based on a set of security ser-
vices. The developed mechanisms integrated in the proposed framework com-
bined with replication make up the following main contributions:

Controlled Data Management, by the use of the provided interface, appli-
cations will be able to list, add, remove and search data in a permanent way.
Furthermore since that, the data is stored encrypted in data storage providers
and since the key cryptographic materials are locally stored, the data retrieva-
bility and interpretation can only be made by the middleware, ensuring data
privacy and giving total user control;

Data Confidentiality, delivered by the use of symmetric cryptography
complemented with use of secret sharing schemes over encryption keys. Be-
sides of minimizing the key management overhead, secret sharing schemes al-
low data deployment in byzantine context, i.e., it is possible to successfully re-
cover data with at least 3f+1 replicas, where f is the number of corrupted or un-
available replicas. The presented middleware was tested using AES encryption

9

and three distinct secret sharing schemes: Shamir [27], Asmuth-Bloom [28] and
Blackley [29] secret sharing scheme, detailed on related work section;

Data Integrity and Availability, delivered by the use of threshold signa-
tures, providing unforgeable data integrity proofs that, as in other threshold
schemes, threshold signatures can be mapped into a byzantine model, comple-
mented with replication techniques, the use of threshold signatures guarantees
corruption free data recoverability. Alternatively MACs were used as base to
performance test comparisons;

Confidential Data Indexing and Searching provided by the application
components the developed indexes with homomorphic properties, leverage the
system security guarantees minimizing the middleware’s TCB while providing
search operations over encrypted stored data at API level. The components
providing such operations were designed using LSS and Paillier homomorphic
schemes enabling ciphered keyword search and encrypted scoring updates re-
spectively as defined in [30];

Cloud Storage Providers Individual Independence, the presented mid-
dleware solution, as described before, explores a cloud-of-clouds topology in
which the middleware itself can be considered a cloud exploring a set of other
clouds. Each and all cloud providers are explored and supported by a set of
heterogenic adapters. Furthermore, the presented solution assumes a fail model
in which each cloud can fail independently without compromising data confi-
dentiality, availability or integrity.

The validation of the proposed system, which comprises all the above con-
tributions, includes not only the evaluation of each of the components individ-
ually as include performance tests of the overall solution including over-cloud
operations latencies. Furthermore, the above contributions included in the final
solution and deployed using TSKY framework guarantee, in whole, the desired
properties with main focus in data confidentiality, integrity, availability and
system reliability. The overall solution desired properties are provided not only
by the above contributions as are enforced by the cloud storage providers guar-
antees and mechanisms, i.e., the system desired properties are enforced by
availability and durability guarantees defined in each providers SLA.

10

1.7. Contributions and achieved results

As a corollary of the current dissertation three main results were pro-
duced:

• The TSKY-TMS system prototype. The prototype is available for use,
for possible demonstration and validation purposes, downloadable from
the TSKY project site (http://asc.di.fct.unl.pt/TSKY);

• The presentation and publication of two articles introducing and discuss-
ing the TSKY-TMS design model and prototype implementation criteria,
presenting also different assessment metrics for the system implementa-
tion analysis and validation:

o J. Rodrigues, B. Ferreira, H. Domingos, “A Secure Email Reposito-
ry Service using Public Untrusted Storage Clouds,” in INForum
Informatics Symposium, 2013, pp. 395-406

o J. Rodrigues, B. Ferreira, H. Domingos, “TMS – A Trusted Mail
Repository Service using Public Storage Clouds,” in Eighth Work-
shop on Middleware for Next Generation Internet Computing,
2013, article no. 2

http://asc.di.fct.unl.pt/TSKY

11

2. Related Work

Figure 1: Main System Concerns

In Figure 1 we identify a set of important research directions related with
components and services integrated in the architectural vision of the proposed
system. The multiple components and the provided services motivate the study
of relevant research work. Accordingly to Figure 1, in the next sections we will
approach the studied related work references in the following areas:

2

12

Indexing – Although not as main focus, indexing techniques and services
tend to be important to a set of applications we want to support. In the presence
of large data sets indexing is key feature enabling the management of such data.
One of the key issues, in this research direction, is how to extract actual infor-
mation from large heterogeneous (different types/formats of data) datasets.
Different techniques to address this issue, including multimedia information
extraction, have been already addressed in [31]. In the context of development
of this thesis, the indexing components are addressed using specific techniques
for text-based information retrieval, namely simple linear searching schemes
[32], [33] combined with ranking based indexing techniques, namely using the
Okapi BM25 scoring scheme [34] for the purpose of validation of application
scenario (email repository platform);

Data management services - In this direction, systems addressing the use
of third party data-repositories not necessarily trustable for the applications us-
ing them are particularly interesting [13], [14]. More recently, approaches to de-
pendable services in cloud-oriented middleware systems addressing security
and reliability concerns, are important contributions inspiring the ideas for this
thesis [11], [12].

Cryptographic Mechanisms and Tools – One of main issues addressed in
this thesis regards data security, and so cryptographic mechanisms represent a
big role in such objective. As research direction, we explored not only widely
used encryption algorithms, as we explored some novel approaches using exist-
ing mechanisms, namely secret sharing schemes [27], [28], [29], threshold signa-
tures [35] and cryptographic homomorphic schemes [30]. The solution we in-
tended to create uses these mechanisms integrated in other research directions,
namely integrated in indexing, data management and cloud replication;

Data Replication – Finally and also as a research direction, the use of rep-
lication mechanisms including Byzantine fault tolerant replication has been ex-
tensively studied in multiple contexts as [36] or [37]. Although could be ad-
dressed as future work, the use of fault tolerant replication algorithms is out of
scope for the current thesis (and is addressed in the context of the TSKY project
architecture in the context of other dissertations). Nevertheless, replication
plays an important role in the designed solution regarding availability and reli-

13

ability issues assumed as objectives of the solution. Furthermore, the use of rep-
lication using multiple clouds (in a cloud-of-cloud solution) enables new re-
search directions concerning profiling and erasure codes techniques and also
ubiquity and location awareness, all addressed as future work.

2.1. Cryptographic Mechanisms and Tools

2.1.1 Secret Sharing Schemes

To easily understand the problem behind the existence of such schemes,
Shamir (in [27]) has enunciated the following problem:

“Eleven scientists are working on a secret project. They wish to lock up the docu-
ments in a cabinet so that the cabinet can be opened if and only if six or more of the sci-
entists are present. What is the smallest number of locks needed? What is the smallest
number of keys to the locks each scientist must carry?”

To solve such problem we could think in a combinatory solution where
252 keys per scientist and 462 locks are needed. This solution, not just is imprac-
tical for the above problem as, it is impractical and even infeasible in a compu-
tational solution where some data need to be encrypted and keep secure on
threshold basis. So, we need a secret sharing scheme to solve such problem in a
practical way.

A secret sharing scheme, also called secret splitting or threshold(t,n)
scheme, refers to a method for distributing a secret amongst a group of partici-
pants, each whom is allocated a share of the secret. This secret can be any kind
of numerical data, whereas any content can be converted to numerical data. The
shared secret can be reconstructed only when a sufficient number, of possibly
different types, of shares are combined together. This kind of schemes should
held two essential properties:

• The knowledge of any 𝑡 or more 𝐷𝑖 pieces makes 𝐷 easily computable;
• And the knowledge of any 𝑡 − 1 or fewer 𝐷𝑖 pieces leaves 𝐷 completely

undetermined (in the sense that all its possible values are equally likely).

This kind of schemes held a huge advantage in the present dissertation,
due to the replication (mapped into a Byzantine fault model) defined as an ob-
jective and due to the confidentiality that must be held. Although useful this

14

kind of schemes are based on numerical operations and so are pretty heavy re-
garding CPU processing. Some tests regarding the various scheme performanc-
es were made and can be seen in evaluation section.

2.1.1.1. Shamir Secret Sharing Scheme

Published in 1979, the Shamir Secret Scheme [27] is based on polynomial
interpolation, this is, a set of planar points are generated in such way that the
result of their interpolation is a function that held the secret. The Lagrange In-
terpolation Theorem used to interpolate the points states that given 𝑛 + 1 data
points (𝑥0,𝑦0), … , (𝑥𝑛,𝑦𝑛) in the plane, with xi ≠ 𝑥𝑗 , for 𝑖 ≠ 𝑗, there is a unique
polynomial 𝑝 of degree at most 𝑛 that interpolates the given data, i.e.: such that
𝑝(𝑥𝑖) = 𝑦𝑖 for 𝑖 = 0, … ,𝑛.

In other words using a polynomial of degree 𝑡 − 1 as the secret we share a
set of 𝑛 points as a set of shares of that secret. In order to recover the secret we
will need at least 𝑡 points to be able to recover the secret, i.e. we need 𝑡 points to
be able to build the original 𝑡 − 1 function that interpolates all the points.

Figure 2: Interpolation Problem, 4 points, 3rd degree function

As seen in Figure 2, through Lagrange interpolation definition we verify
that a set of 4 point (n+1 points) determine uniquely the function of degree 5
(degree n) interpolating such points. This assumption is based on the existence
of a solution and the uniqueness of such solution (found in [38]).

15

Algorithm

To share a secret D we start by randomly generate a polynomial of 𝑘 − 1
degree:

𝑞(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑘−1𝑥𝑘−1

Where:

𝑞(0) = 𝑎0 = 𝐷

We generate and distribute 𝑛 distinct points (𝑥1,𝑦1), … , (𝑥𝑛,𝑦𝑛) ∈ 𝑞 modu-
lus 𝑝 such that 𝑝 > 𝐷 and 𝑝 > 𝑛. To recover the secret we need at least 𝑘 points
from 𝑞. For each of the 𝑘 points we compute the Lagrange polynomials:

𝑙𝑗 = �
𝑥 − 𝑥𝑖
𝑥𝑗 − 𝑥𝑖

𝑘

𝑖=1,𝑗≠𝑖

Finally we recover the secret computing:

𝑞(𝑥) = �𝑙𝑗(𝑥) ∙ 𝑦𝑖

𝑘

𝑗=1

We get 𝑞(0) = 𝑎0 = 𝐷 mod 𝑝.

16

Practical Example

We want to share the secret 𝐷 = 4321 amongst 6 people and we want at
least 3 of them needed to recover the secret. We generate a function randomly
with 𝑎0 = 𝐷 :

𝑓(𝑥) = 4321 + 192𝑥 + 105𝑥2

Next we select 6 distinct points from 𝑓 modulus a prime 𝑝 = 4327:

(1,291), (2,798), (3,1515), (4,2442), (5,3579), (6,599)

We distribute the shares among the players. To recover the secret we se-
lect randomly at least 𝑘 = 3 points (shares):

(2,798), (4,2442), (5,3579)

Next, we compute Lagrange polynomials for each of the selected points:

𝑙2 =
1
6
𝑥2 −

3
2
𝑥 +

10
3

𝑙4 = −
1
2
𝑥2 +

7
2
𝑥 − 5

𝑙5 =
1
3
𝑥2 − 2𝑥 +

8
3

Finally, to recover the secret, we compute:

𝑓(0) = 768 ∙
10
3

+ 2442 ∙ (−5) + 3579 ∙
8
3

 mod 4327 = 4321

In this thesis the people correspond to a set of heterogenic clouds and the
secret we pretend to share correspond to the seed used to generate a crypto-
graphic key or a set of keys which in turn are used to encrypt the stored data.
Although considered perfect and the most efficient method to share a secret this
method present an error as defined in Lagrange Theorem. This error doesn’t
occur frequently, even so, and to avoid secret corruption, the secret can be
wrapped in some random data so the less significant data is discarded in the
process.

17

2.1.1.2. Blakley Secret Sharing Scheme

Figure 3: Three 3-Dimensional Plane Intersection

As with Shamir Scheme, this scheme was invented in 1979 but by George
Blakley. The idea behind this scheme [29] is that we can create a hyperspace in
such way that a subset t out of n planes can be intercepted in a point in that hy-
perspace. This point is the secret we want to share. In other words, each share
corresponds to a plane and the secret held in the point of intersection of at least
t planes as illustrated in Figure 3.

Algorithm

First we select a prime 𝑝 > 𝐷 where 𝐷 is the secret we want to share. We

generate a random point 𝑃 = (𝑃1, … , 𝑃𝑘) where 𝑃1 = D.

Now we need to generate 𝑛 linearly independent (𝑑𝑒𝑡 ≠ 0) k-dimension
planes:

�
𝛼1,1 ⋯ 𝛼1,𝑘−1
⋮ ⋱ ⋮

𝛼𝑛,1 ⋯ 𝛼𝑛,𝑘−1

� :∀𝑖,𝑗𝛼𝑖𝑗 = rnd mod 𝑝

Finally we define the last monomial:

𝛼𝑖,𝑘 = 𝑃𝑘 − 𝛼𝑖1𝑃1 − ⋯− 𝑎𝑖𝑗𝑃𝑗(mod 𝑝), 𝑗 ∈ [2,𝑘], 𝑖 ∈ [1,𝑛]

Having at least 𝑘 planes we can precede to the secret recovery. To do so
we must solve the following congruences’ system:

𝑆 = �
𝛼1,1 ⋯ 𝛼1,𝑘−1
⋮ ⋱ ⋮

𝛼𝑘,1 ⋯ 𝛼𝑘,𝑘−1

 (−1)
⋮

 (−1)
� �
𝛽1
⋮
𝛽𝑘
� ≡ − �

𝛼1,𝑘
⋮

𝛼𝑘,𝑘1

� (mod 𝑝) → (𝑃1, … ,𝑃𝑘) = (𝛽1, … ,𝛽𝑘)

Note that if the randomly generated planes aren’t linear independent they
can null each other, this means that they doesn’t intercept each other.

18

Example

Again, we want to share the secret 𝐷 = 4321 amongst 6 people and we
want at least 3 of them needed to recover the secret. Select a prime 𝑝 = 7333.

Next we randomly generate a k-dimensional point 𝑃 = (4321,12,35) where
the first coordinate is the secret we need to share. Generate random 𝑎 and 𝑏
values modulus 𝑝 to form a set of 𝑛 linearly independent planes:

𝐴 = (𝑎1, … ,𝑎𝑛) = (10,11,13,23,33,25)

𝐵 = (b1, … , bn) = (14,25,18,21,43,6)

Finally we compute the last monomial for each plane, completing our
shares set:

𝑐𝑖 ≡ 𝑧0 − 𝑎𝑖𝑥0 − 𝑏𝑖𝑦0 (𝑚𝑜𝑑 𝑝) → 𝐶 = (655,3535,2310,3062,3586,1933)

To recover our secret we start by selecting 𝑘 out of 𝑛 planes and build a
congruences system matrix. Now we can solve the congruences matrix by ap-
plying the Gaussian elimination process obtaining the secret:

�
10 14 −1
11 25 −1
13 18 −1

� �
𝑥
𝑦
𝑧
� ≡ �

−655
−3535
−2310

� (𝑚𝑜𝑑 7333)

⇔

(𝑥,𝑦, 𝑧) = (4321,12,35)

As in the Shamir algorithm people correspond to a set of heterogenic
clouds and the secret we pretend to share correspond to the seed used to gener-
ate a key or a set of keys which in turn cipher the stored data. Unlike Shamir
scheme, this scheme cannot be considered perfect because at each plane inter-
section the solution space is reduced [39]. For instance in Figure 3 we can check
that without any plane our point of intersection is localized in a 3-Dimensional
space. By adding one plane we know that the secret is localized is a plane. By
adding other plane we get a line of intersection corresponding to a reduced se-
cret space. Since we are working in 𝑍𝑝 this scheme can be considered ideal.

19

2.1.1.3. Asmuth-Bloom Secret Sharing Scheme

Invented by C. Asmuth and J. Bloom and published in 1983 the Asmuth-
Bloom secret sharing algorithm [28] is based on the Chinese Remainder Theo-
rem. The Chinese Remainder Theorem [40] states that a set of linear congruenc-
es with distinct co-prime moduli has a unique solution in moduli multiplicato-
ry. This is:

Let 𝑚1,𝑚2,𝑚3, … ,𝑚𝑛 be positive integers such that:

gcd�𝑚𝑖 , 𝑚𝑗� = 1 for 𝑖 ≠ 𝑗

Then the simultaneous linear congruences:

𝑥 ≡ 𝑎1 (mod 𝑚1)

𝑥 ≡ 𝑎2 (mod 𝑚2)

⋮

𝑥 ≡ 𝑎𝑛 (mod 𝑚𝑛)

Has a unique solution modulo 𝑚1 …𝑚𝑛 satisfying all these congruences.

Algorithm

The algorithm is divided in two phases. The first phase or dealing phase is
described as follows. Let 𝐷 be the secret we pretend to share and let

𝑚0 < ⋯ < 𝑚𝑛 be a set of co-prime values, ∀i,j gcd�𝑚𝑖,𝑚𝑗� = 1

𝑚0 ∙�𝑚𝑛−𝑖 < �𝑚𝑖

𝑘

𝑖=1

𝑘−2

𝑖=0

 with 𝑚0 > 𝑑

Let 𝑀 = ∏ 𝑚𝑖
𝑡
𝑖=1 the dealer select a random 𝑎 for 𝑦 = 𝐷 + 𝑎 ∙ 𝑚0 such that

0 ≤ 𝑦 < 𝑀. To each player a share of the secret (a congruence of the system) is
delivered:

𝑦𝑖 ≡ 𝑦 𝑚𝑜𝑑 𝑚𝑖

The recovery phase consists in selection at least 𝑘 shares (𝑘 congruences)

𝑦 ≡ 𝑦𝑖 �𝑚𝑜𝑑 𝑚𝑖� for any 𝑖 ∈ [1,𝑛], in turn, we apply the Chinese Remainder
Theorem in order to find 𝑦. Finally we apply the modulus to 𝑦 to find the secret.

20

Example

We want to share the secret 𝐷 = 4321 amongst 6 people and we want at
least 3 of them needed to recover the secret. We select a 𝑚0 and 𝑛 co-prime
numbers accordingly to the previously described algorithm restrictions:

𝑚0 = 25561

(𝑚1, … ,𝑚𝑛) = (38219,38231,38237,38239,38261,38273)

Then we generate a random value 𝑎 = 1104742420 and compute:

𝑦 = 4321 + 1104742420 ∙ 25561

Now we obtain a set of congruences (𝑎𝑖 = 𝑦 mod 𝑚𝑖):

𝑥 ≡ 10330 mod 38219

𝑥 ≡ 9405 mod 38231

𝑥 ≡ 12243 mod 38237

𝑥 ≡ 16349 mod 38239

𝑥 ≡ 4831 mod 38261

𝑥 ≡ 34276 mod 38273

To recover the secret we select a subset of congruences 𝑡 ≥ 3:

𝑥 ≡ 10330 mod 38219

𝑥 ≡ 12243 mod 38237

𝑥 ≡ 4831 mod 38261

Then applying the CRT algorithm we compute:

𝑀 = �𝑚
𝑛

𝑖=1

= 55913856468683

(1462985857 ∙ 34023 ∙ 10330) +

(1462297159 ∙ 34431 ∙ 12243) +

(1461379903 ∙ 8009 ∙ 4831) = 28238321001941 mod 25561 = 4321

21

This scheme should be considered perfect due to the fact that the modulus
value is unknown for the attacker so with just part of the congruences it is im-
possible to know where de solution stands. As with others, this scheme is con-
sidered ideal because are working in 𝑍𝑝. Though only Asmuth-Bloom has ho-
momorphic properties documented in [41], Shamir and Asmuth-Bloom can be
used in such way through the point or plane translation respectively. Although
interesting to maintain key freshness, this kind of properties will be addressed
as future work.

22

2.1.2 Threshold Signatures

With the paper work being replaced by email and electronic documents
the use of traditional signatures has been voided. The use of digital signatures
offer not only data authenticity as provide a message integrity proof, this is, the
signer cannot be impersonated and the authenticated messages can be verified
against corruption or tampering. Signatures as RSA or DSA are widely used
and leverage message integrity and authenticity verifiable by any party, pro-
vided that a public key is available. The use of public/private key based signa-
ture schemes confines the authenticity to a unique key and so to a unique entity
that detains the key, which can be seen as an unique point of failure or simply
very limited when a set of parties represent an unique entity. Multisignature
and Threshold Signatures Schemes has been designed to solve such problems.
As defined in [42] , there are two major differences between threshold signature
schemes and multisignature schemes. Multisignature schemes, unlike with
threshold schemes, do not restrict a minimum number of parties to generate a
valid signature, i.e., do not define a threshold. Finally in multisignatures
schemes each entity signs the message individually while in threshold signa-
tures schemes a well-defined group of entities sign the message using a splitted
key.

The existing threshold signature schemes are based on existing signature
schemes as ElGammal (discrete logarithm problem), RSA (factorization prob-
lem) or Elliptic Curve ElGammal (elliptic curve discrete logarithm problem). A
threshold signature scheme is defined by two basic requirements [42]:

• At least t participants in the group can collaborate to generate a valid
signature on behalf of the group signature;

• Anyone who plays the role of a verifier can use the group’s public key to
verify the group signature without exposing the identities of the signers.

Our solution approach, based on an algorithm defined at [35], explores a
RSA approach mixed with Lagrange interpolation formula (as in Shamir secret
sharing scheme) complemented by individual share verification process that
enables fault detection avoiding process failure. The author describes the algo-
rithm as unforgeable and robust in the random oracle model, this is, no attacker

23

should be able to generate a valid threshold signature and corrupt players pre-
sent signature process should not be able to prevent fair players from generat-
ing valid signatures. Furthermore it is assumed the hardness of the RSA prob-
lem.

The article defines a set of players, a trusted dealer and an adversary as
part of the system model. Additionally he defines t as the number of corrupted
players and k the minimum number of signature shares needed to obtain the
signature. Being l the total number of players, k and t are restricted by 𝑘 ≥ 𝑡 + 1
and 𝑙 − 𝑡 ≥ 𝑘. Finally, it’s defined a signature verification, share verification and
share combining algorithms used in the various process phases. The algorithm
defines a dealing phase in which the dealer generates a public key along with l
private key shares and l verification keys. After the dealing phase each player
including the corrupted ones signs a message of their choice (it is intended to be
the same legit message) resulting in l signature shares. Once signed each player
outputs their signature share. The use of a share verification algorithm before
the combing phase allows the selection of valid signatures that are then used in
the combining algorithm resulting in a signature.

As defined by the author the signature scheme assumes a “static corrup-
tion model” in which the adversary can choose which players corrupt. In TSKY-
TMS system the use of multiple storage clouds in a Byzantine fault tolerant
model rise issues regarding the adversary attacks nature and location, for this
purpose the use of threshold signatures is suitable in a way that middleware
acts as dealer and players signing the same data and distributing the verifiable
shares by the multiple storage clouds, in this way, an attack can occur in any
storage node as long as the middleware is trustable and the number of affected
nodes do not exceed the threshold value.

24

2.1.3 Homomorphic encryption

Due to cloud based platforms characteristics and costs, the migration of
data has become increasingly interesting. To keep data safe we can apply a set
of widely used techniques, namely symmetric/asymmetric crypto techniques
along with replication. Though, the secure data must be managed by applica-
tions running in controlled/trusted environments. Due to the hostile nature of
cloud environments the migration of such applications can be considered a
thread to data safety.

To allow the execution of operations over encrypted data, without expos-
ing any critical information, homomorphic encryption techniques has emerged
as techniques allowing such operations. In this way is possible to keep both ap-
plications and data in public cloud storage without threatening data privacy.
There are two groups of homomorphic schemes: the most common ones, called
partial homomorphic cryptosystems allow specific operations to be executed
over encrypted data (addictions or multiplications), for instance Paillier allow
addition over encrypted data:

𝐸(𝑥1) ∗ 𝐸(𝑥2) = (𝑔𝑥1𝑟1𝑚)(𝑔𝑥2𝑟2𝑚) = 𝑔𝑥1+𝑥2(𝑟1𝑟2)𝑚 = 𝐸(𝑥1 + 𝑥2 mod 𝑚)

A homomorphic scheme supporting both addiction and multiplication is
called a fully homomorphic scheme. Through the time, various authors have
proposed these kind of schemes. Recently (in 2009) Gentry [43] proposed a fully
homomorphic encryption scheme based using ideal lattices along with the for-
malization of theorems and definitions that can be used to create other homo-
morphic schemes. Subsequently, Dijk, Gentry, Halevi and Vaikuntanathan cre-
ated a fully homomorphic scheme [44] based on modular operations over inte-
gers which does not require ideal lattices.

Due to poor performance of fully homomorphic schemes different ap-
proaches have been taken, namely the use of multiple partial homomorphisms
in a context-aware approach, in which the used homomorphisms are chosen
based on the target application and data.

25

2.1.3.1. CryptDB

As the name suggests CryptDB [45] is a middleware system that provides
practical and provable confidentiality in the face of data disclosure attacks over
database systems. The base idea of the system is enabling the execution of SQL
queries over encrypted data, to do so homomorphic properties are explored
using SQL-aware encryption schemes. Since the encryption schemes are SQL-
aware some primitive operators must be considered, namely equality or ine-
quality checks, order comparisons, aggregations and joins. Furthermore
CryptDB implements an adjustable query-based encryption in which encryp-
tion schemes are adjusted accordingly to the runtime executed queries. The en-
cryption schemes are arranged in onions. Each onion, define a set of layers and
each layer allow the execution of a certain type of operation. The choice of such
layers is dependent of the kind of operation and security level we want to guar-
antee. For instance, layers go from Random, with maximum security offering in
distinguishability under CPA to deterministic with weaker guarantees.

Finally CryptDB chains encryption keys to user passwords and so in order
to access data user’s password is needed. If the target user is not logged and if
the adversary has no access to the user’s password, the adversary cannot de-
crypt the stored data even if DBMS and application server are completely com-
promised. Through annotations over application’s SQL schema, the developer
can define security and sharing policies, defining which users have access to
each data item. The system architecture defines two parts, a database proxy and
an unmodified DBMS. CryptDB defines two threat levels, one in which a curi-
ous database administrator (DBA) try to learn data by snooping into DBMS
server and a second threat in which the attacker takes control of the application
and DBMS server. The first threat is defined as occurring in the DBMS server
while the second thread also includes the database proxy containing users’ ac-
tive sessions.

One of the key points of CryptDB system is the seamless integration with
existing database backed up applications and so to evaluate such solution the
authors have used real applications, namely they used phpBB revealing a 14.5%
of throughput reduction. Although convincing the system presents some weak-
nesses namely regarding data managed by users that are currently logged.

26

2.1.3.2. Discussion

Due to the cloud nature of TSKY-TMS solution, the inclusion of homo-
morphic schemes leverage the privacy of the overall solution by reducing the
exposed data stored locally in the middleware. This is, since the middleware is
running locally or in a computational proxy we can take advantage of homo-
morphic schemes applied to a locally stored index, protecting the data from
possible index disclosure attacks. It would be interesting to apply such homo-
morphic operations to the stored data itself, but since the data stored in cloud
storage repositories cannot be directly manipulated the use of homomorphic
schemes is confined to the locally stored structures, namely the index.

27

2.2. Data Management

2.2.1 Dependable Data Storage Systems

2.2.1.1. Farsite

Farsite [46] is a distributed file system, secure and scalable that works like
a centralized file server. The system is designed to execute on client machines,
offering data availability, reliability, confidentiality and integrity over the
stored files and directories. It explores a local cache system with slow update
propagation in order to achieve a good performance. The system protects the
data against corruption or unavailability through the use of symmetric encryp-
tion and byzantine fault tolerant replication. To manage the permissions differ-
ent types of certificates were defined: namespace, user and physical machine
certificates assuring the authenticity of all engaged entities.

Each system machine can take three distinct roles: it can be a client, a
member of a directory group or a files host. The client machine interacts direct-
ly with the user while a member of a directory group is a machine that manages
the data using a fault tolerant byzantine protocol. Every member in the group
stores a data replica and as new requests arrive the group handles them in a
deterministic way, updating the replicas and sending confirmation to the client.
Along with semantic verification in group accesses this mechanisms offers sys-
tem reliability and data integrity.

By using cryptographic secure hashes over the content the directory
groups can detect corruption in hosts stored data avoiding overall data corrup-
tion, this is, detecting replica corruption the system avoids actual data corrup-
tion. In order to achieve reliability and availability Farsite replicates the directo-
ry metadata by multiple directory groups and the files data across multiple
hosts. To redundantly store data erasure codes are used instead of simple repli-
cation. If a machine stays unavailable for a substantial amount of time its func-
tions are migrated into other machine using other data and metadata replicas in
order to generate a new replica.

Data privacy is archived by the means of using symmetric encryption over
files content and sensitive metadata. When the client creates a new file, a ran-

28

dom symmetric key file is generated then the client calculates the file’s hash
and uses it as encryption key to the newly created file. Finally the created en-
cryption file is used to encrypt the hashes instead of the data directly. This
technique is called convergent encryption because a set of identical files con-
verge into a single ciphered file independently of users key. Block level encryp-
tion instead of file level encryption allows the execution of operations over a
subset of blocks avoiding reading or writing the entire block. Furthermore the
use of blocks allows read on demand operations, e.g., streaming applications.

Farsite system, as other distributed file systems, is very interesting con-
cerning this thesis since it addresses confidentiality, integrity and availability
issues over a file system which enables a comparison regarding de data stored
in the multiple hosts. The use of certificates, addressed as future work in the
current thesis, can be used to leverage the authenticity of the multiple instances
of the middleware and probably for users and/or clients’ access control. Other
fact that is considered interesting and that was explored in the presented mid-
dleware solution was the use of hashes in order to detect file corruption. In the
current solution the objects’ cloud identifiers are data hashes that allow integri-
ty check on data retrieval. Although addressed as future work, the use of con-
vergent encryption, as presented in Farsite system, could be used as means to
reduce the storage costs which can be interesting regarding the cost model im-
provement objectives.

2.2.1.2. EHR

The system described in the article intend to ensure security and privacy
of Electronic Health Records or EHRs [47], this is, it is required to guarantee
that health records are kept confidential being only accessible by the health sys-
tem personnel and their patients. To ensure such properties the system makes
use of an Attribute Based Encryption or ABE. An ABE system is a public key
cryptographic system in which each user’s key is labeled with a set of attributes
and the ciphered content is associated with an access policy. The user’s secret
key can only decipher the content if the key associated attributes satisfy the
content access policy.

29

The solution assumes the existence of a trustable authority or TA that gen-
erates users’ keys and publishes the public values. The system assumes that
cloud storage providers provide a reliable service and that data can be manipu-
lated and analyzed by the same providers.

Each patient record consist in an encrypted file along with a metadata ta-
ble describing the encrypted file including the encrypted file location, a plain
access policy and a search index or SI for search operations over the ciphered
content. To search over the ciphered data the system uses a Secure Channel
Free Public-Key Encryption with Keyword search or PEKS. This mechanism
gives the users private search abilities over ciphered data without revealing the
search keywords or the partial matches with the server.

This system is interesting, regarding this thesis, due to the homomorphic
search operations it offers. Furthermore, as in TSKY-TMS, EHR has main focus
in protecting data privacy using symmetric keys but complemented with a poli-
cy based public key system.

2.2.1.3. Silverline

Silverline [48] is a system designed to improve the security of data stored
in public clouds. Silverline is based on a simplified model in which the data is
encrypted by the client before storing it to the cloud. Since Silverline is a system
designed to be used as a middleware between applications and databases, and
since some database operations cannot execute over ciphered data (eg. inequali-
ty comparisons or field aggregations), a mechanism was required in order to
determine whether the data could be encrypted or should be let plain. Once de-
termined whether data should be encrypted it is necessary to assign symmetric
key(s) to one or various data fields. One solution would consist in using one
global key to all encrypted data. Although simple, this solution would raise
many security issues regarding a single point of failure. On the other hand, a
key per each data field could be used instead but although highly secure it in-
troduces an overhead in key management and distribution. So the authors came
with a hybrid solution in which are created data groups defining encryption
domains with a single key per each group, this is, the loss or compromise of one
key result in data loss or disclosure of only one of the groups data fields.

30

Silverline ensures a transparent user access, through the use of HTML5
based applications without the need of using modified browsers. Although not
approaching integrity as an issue, this system presents an interesting hybrid
solution regarding the use of multiple keys versus a single key. In TSKY-TMS, a
multiple key scheme is used, where each object is encrypted with a different
key. This approach can reconsidered towards latencies and costs optimization,
and so a solution where multiple objects are merged into a single object creating
larger encryption domains is desirable being addressed as future work.

Other interesting feature of Silverline is the reduced TCB model in which
keys are stored in a client side browser using current technologies, and so the
data security relies on client side stored crypto material. The current approach
of TSKY-TMS has defined a REST API promoting the use of web based technol-
ogies as interface to the evaluated system. A Webmail system with a browser
based key management system would be highly desirable and will be also ad-
dressed as future work.

2.2.1.4. Discussion

Although in a different scope, Farsite file system, as in TSKY-TMS, assures
some dependability attributes and so can be considered a dependable system.
Data confidentiality is achieved by combining symmetric convergent encryp-
tion combined with asymmetric keys that may be used in future as a means to
archive data privacy while reducing storage costs.

The EHR system, unlike the other systems, presents a solution aimed at
ensuring confidentiality using a policy based approach where user’s access to
data depends on a key and an associated policy. Regarding the current thesis it
would be interesting explore such solution as a mean to control multiple mid-
dleware instances or multiple users. Since the current thesis do not addresses
multiple users or multiple instances of TSKY-TMS this mechanism will be as-
signed as future work.

2.2.2 Cloud Oriented Dependable Solutions

As with the current system there were examined a set of dependable sys-
tems. The term dependability [49] is defined in three parts: the threads to the

31

system dependability, the means by which dependability is attained and a set
of attributes. The described systems cover some of combination of dependabil-
ity attributes, this is, cover availability, reliability, safety, confidentiality, integ-
rity and/or maintainability. Beyond dependability these systems are also char-
acterized by functionality, performance and costs discussed in the end of each
subsection, thus creating a comparison with the presented system.

2.2.2.1. Depsky

The DepSky system [11] is described by the authors as a cloud-of-clouds
system that leverages availability, integrity and confidentiality of data stored in
storage clouds and that deals with data integrity and availability through the
use byzantine fault tolerant replication mechanisms.

DepSky cloud-of-cloud model mitigates vendor lock-in problem by the
use of multiple storage providers disposing the dependency of single providers.
Furthermore the use of multiple clouds combined with erasure code techniques
assure not only data integrity and availability as allows the cost reduction of
data storage costs up to 50%, as stated in DepSky storage evaluation. By explor-
ing a set of storage clouds as simple storage nodes and by directing all pro-
cessing needs to a client or to a middleware server, along with encryption and
secret sharing techniques the system attains a TCB (Trustable Computing Base)
reduction to the client itself while offering confidentiality (in the DepSky-CA
version). The DepSky-A version supports all dependability attributes support-
ed by CA version other than confidentiality.

The system defines each data unit or DU by a unique identifier, a version
number (in order to support versioning and updates), application specific
metadata, integrity codes and the data itself. The system was designed consid-
ering three entities, the writers, the readers and the cloud storage providers.
The system assumes that both readers and writers can corrupt the stored data.
As mean to solve corruption and as a concurrency control mechanism DepSky
proposes a low contention locking mechanism that uses the storage clouds itself
as lock platform. In this manner is possible to use authenticated locks, through
the use of asymmetric cryptography, in order to assure authenticated concur-
rency concerning multiple writers and readers.

32

The use of secret sharing techniques, erasure codes and multiple storage
providers provides the system support to a byzantine fault tolerant model
where 3f+1 clouds support at most f faults.

The described system (TSKY-TMS system) is very similar with DepSky
system, as in TSKY-TMS, DepSky-CA explores a cloud-of-clouds model in or-
der to provide data availability, confidentiality and integrity making DepSky
the most similar dependable system analyzed. Although the concurrency con-
trol is addressed as future work the TSKY-TMS supports integrity and authen-
ticity through the use of signatures, more precisely threshold signatures that are
suitable for the replication model that TSKY-TMS supports.

2.2.2.2. iDataGuard

The authors describe iDataGuard [12] as a system to combat cloud diversi-
ty and heterogeneity while enforcing data security with search over encrypted
data functionality.

Figure 4: iDataGuard Data Model

As shown in Figure 4, the iDataGuard architecture is defined in two main
components, a client and middleware components that execute in a client ma-
chine or alternatively in a secure proxy. The system provides two distinct inter-
faces, one based on a file system and other based on abstract objects in which
the file system interface is based on. The system execution is initiated by the

33

conversion of the outsourced data into the abstract data model though the data
translator component or DT. The cryptographic module or Crypto Module uses
a PBE scheme based on a master password in order to encrypt the contents. Fi-
nally an index generator creates a cryptographic index for all text based files.

Each system object is represented by a unique identifier (generated by
concatenation of full path and users’ password making it deterministic), a file
name, content and metadata stored in a key-value approach. Since the identifier
doesn’t provide any information it is kept plain while the metadata is stored
encrypted using an object encryption key or OEK. This key is generated on-the-
fly using a key derivation function or KDF of PBE PKCS#5 specification using
as salt an random string preventing from key pre-calculation to the most com-
mon passwords. The salt is stored in the plain section of objects metadata, in
this way, iDataGuard can regenerate the key on demand. The data integrity is
provided through the use of a Hash Based Message Authentication Code or
HMAC applied to the identifier, name, content, metadata and version, which
ensure the object most current version.

In a similar way, the proposed middleware system ensures confidentiality
through the use of on-the-fly generated keys. As in iDataGuard, TSKY-TMS al-
so faces cloud storage heterogeneity by the use of adapters that implement a
standard cloud storage interface. Furthermore, the current TSKY-TMS architec-
ture includes an index allowing search operations over encrypted data through
the use of an index with homomorphic properties.

2.2.2.3. HAIL

HAIL [13] or High-Availability and Integrity Layer for Cloud Storage is a
system that assures availability and reliability using RAID similar mechanism
where storage clouds are used as base storage rather than traditional hard
disks. The HAIL defines assurances or proofs in two dimensions, the PDP or
Proof of Data Possession that assures the presence of data and POR or Proof of Re-
trievability in which is assured the existence of an effective data recovery pro-
cess.

To assure a Byzantine fault tolerant model HAIL uses replication mecha-
nisms that, i.e., f replicas out of 3f+1 can be corrupted without compromise data

34

retrievability. To do an integrity check HAIL randomly extracts a data block
from each replica checking its equality. In case some discrepancy is found the
system rebuilds a non-corrupt replica using the remaining replicas.

The PDP could be addressed in future implementation, complemented by
threshold signatures, in order to detect possible corruptions while reducing da-
ta transfer rates and consequently reducing the associated costs. However this
technique would not be possible to implement taking into account the inexist-
ent data correlation, i.e., in the current implementation each stored replica dif-
fers due to the use of different keys in different blocks.

2.2.2.4. RACS

RACS [14] or Redundant Array of Cloud Storage is a system that splits da-
ta in a similar manner to RAID systems, using as storage backend various stor-
age clouds. The system, as in TSKY-TMS, offers a transparent and reliable stor-
age service providing data availability and integrity and avoiding vendor lock-
in issues by the use of replication mechanisms. RACS, as other cloud storage
providers provides retrieval, insertion, deletion and listing operations over data
indexed by a unique key.

When a data insertion request arrives, the actual data is divided in m simi-
lar size parts (1/m of the original size). Then RACS uses erasure codes in order
to create n-m redundant parts totaling n parts, where redundant parts size is
similar to the non-redundant ones. When a data retrieval request arrives, RACS
gathers m parts and reconstruct the original data. The objects’ metadata is repli-
cated by multiple servers to enable efficient load distribution.

The use of a single RACS proxy to process all data insertion and retrieval
operations was considered, by the authors, a system bottleneck. To mitigate
such bottleneck related issues, RACS system was designed to run in a distribut-
ed system in which multiple RACS proxies coexist exploring a set of common
cloud storage repositories. Each proxy stores a limited quantity of data, includ-
ing users’ authentication data, locations and credentials of each repository.
Nevertheless, changes in data must be propagated and reflected in the remain-
ing proxies, furthermore, the use of multiple proxies using the same reposito-
ries raises concurrent access issues in write operations. To solve this problem

35

RACS coordinates the access operations is such way that can only exist a writer
with multiple readers at once for each key-value pair, in other words, RACS
implements one-writer many-readers model.

The RACS authors discuss the possibility of using more complex client
applications that can make use of configurable repository selection in order to
explore geographical proximity and consequently reduce latency. Furthermore,
the use of configurable repository sets enables the use of load distribution tech-
niques between multiple RACS proxies. RACS implementation explores two
different providers (Amazon S3 and Rackspace Cloud Files) complemented by
a local disk replica.

In a brief analysis we can verify the existence of common features between
RACS and the system we have designed, namely in the use of a common set of
heterogenic cloud storage providers explored by multiple instances of RACS
proxy (addressed as future work in the current thesis). The use of geographic
adaptation to latency reduction is also addressed as feature work in the current
thesis. Concluding, RACS is a dependable system ensuring data integrity and
availability, present in this thesis main focus, taking into account the costs asso-
ciated with the use of multiple providers, addressed as a future work issue in
this thesis.

2.2.2.5. Discussion

The majority of the referred systems present specific mechanisms that
were or will be possibly incorporated in TSKY-TMS middleware implementa-
tion. DepSky system ensures integrity, availability and confidentiality through
the use of erasure codes and secret sharing schemes combined with Byzantine
replication. The use of low contention locks, as defined by DepSky authors, is
addressed as future work and will perform an important role in concurrency
control mechanisms. Furthermore, garbage collection mechanisms, also includ-
ed in DepSky’s solution could be used, along with erasure codes, as a means to
reduce storage costs.

HAIL and RACS system share a RAID philosophy, ensuring integrity and
availability, where data is stored in multiple storage clouds viewed as local
hard disks. HAIL, unlike in RACS, defines PDP and POR proofs that could be

36

used as a means to ensure data storage reliability and will be addressed as fu-
ture work. On the other hand, RACS models a distributed system by the means
of using multiple RACS proxies, raising concurrency issues regarding write op-
erations solved using a single-writer multiple-reader model achieved by using
Apache Zookeeper library.

2.2.3 Final Discussion

Table 1: Comparison table between multiple dependable systems

Through a brief observation of Table 1 we verify that generally all systems
provide data confidentiality, integrity and availability guarantees which are the
main focus of this thesis and are supported by a set of components, some simi-
lar to the ones used in the presented systems. Some systems handle heterogene-
ity present in cloud storage providers. Since we pretend to use multiple cloud
providers we have implemented a set of adapters to multiple providers, de-
scribed in the next section, providing a common PUT/GET/REMOVE interface
to the other system components. The search functionality is other feature sup-
ported by some systems. In the TSKY-TMS system search is provided as a con-
text specific layer of the middleware, though this feature is not considered main
focus in the presented work.

D
ep

Sk
y

iD
at

aG
ua

rd

Fa
rs

ite

H
A

IL

R
A

C
S

EH
R

Si
lv

er
lin

e

Confidentiality X X X X X
Integrity X X X X X
Availability X X X X X
Handle Heterogeneity X X X
Distributed X X
Search Support X X

37

2.3. Cloud Storage Platforms and Services

2.3.1 Amazon S3

Figure 5: Various worldwide Amazon data center locations

The cloud storage service Amazon S3 [15], provided by the Amazon cor-
poration allows the creation and destruction of objects with sizes understood
between 1 byte and 5 terabytes. There are no limitations regarding the number
of objects that can be inserted. The objects are stored under an unique identifier
and are organized under buckets located in one of the eight word wide loca-
tions (Oregon, US; California, US; Virginia, US; Ireland, EU; Singapore, Asia;
Tokyo, Japan; São Paulo, Brazil; Sydney, Australia) as shown in Figure 5. In
each region the data is replicated across multiple data centers and/or inside
each data center.

To protect data against attackers, by default the stored objects can only be
accessed by the owner and all operations are register on each access so it can be
checked later. Apart from access control mechanisms, Amazon ensures
99.999999999% data durability and 99.99% of yearly availability. This provider
also offers an out-the-box cryptography solution named Amazon S3 Encryption
Client or Amazon S3 Server Side Encryption to client side or server side encryp-
tion respectively. The security on communications is provided by the use of SSL
channels for data transfer. The integrity after a remote transfer is ensured by the
use of checksums.

38

The cost model is GB oriented and can be reduced with increasingly data
volumes. Additionally PUT, COPY, POST, LIST and data transfer requests are
charged, which could result in a vendor lock-in situation.

In Amazon SLA there are a section presenting some terms exclusions ap-
plicable in case of major occurrences as natural disasters or service termination,
threatening service and data availability or integrity.

2.3.2 Google Cloud Storage

Similarly to Amazon S3, Google Cloud Storage service [16] provides an
object oriented storage service and such objects are organized in buckers acces-
sible under a unique identifier through a RESTful API. This provider offers data
availability through an inter-datacenter and possibly intra-datacenter replica-
tion. Although the precise object location is not disclosure the objects may be
stored in United States or Europe data centers. This provider uses an OAuth2.0
based authentication as access control mechanism. As consistency model
Google defines a read-after-write consistency model in which data can only be
read once all write operations are concluded.

Google defines an availability period of 99.9% per month with a credit
based policy in case of lower availability values. As in Amazon, Google defines
exclusion premises regarding durability and availability, so similarly with Am-
azon some issues, regarding data security, can be raised. As in Amazon the GB
oriented cost model can introduce vendor lock-in situations.

39

2.3.3 Nirvanix Cloud Storage

Figure 6: Various worldwide Nirvanix data center locations

The cloud storage service provided by Nirvanix [17] is supported by stor-
age nodes globally spread (California, US; Texas, US; New Jersey, US; Switzer-
land, EU; Japan) as illustrated in Figure 6. Rather than provide an object based
storage, Nirvanix provide a storage service similar to a file system in which di-
rectories and files are hierarchically organized. To file management this provid-
er offers upload, copy, move, rename and file deletion primitives.

The service reliability lies on replication through multiple nodes and the
use of RAID architecture locally in each node or data center. In addition, integ-
rity is provided by the means of hash based verifications before and after data
transfers. As reliability guarantee the service provided by Nirvanix is certified
as a SAS 70 level 2 that certifies the entity as capable of managing the data in a
controllable manner accordingly to data security goals.

The SLA defines an availability period of 99.9% per year for simple stor-
age, 99.99% to policy based storage with two replicas and 99.999% with three
replicas. As the other providers SLA dictates some term exclusions, namely cli-
ent side failures or attacks, improper system usage or service termination.

The data confidentiality is ensured by the use of internal policies, logical
node access mechanisms and by the use of SSL communication channels. Fur-
thermore Nirvanix ensure no correlation between the data and the clients.

40

The cost model is GB oriented and the data transfers are charged, whereas
download and upload costs are differentiated. Data volumes migration can re-
sult in a vendor lock-in situation due to the associated costs.

2.3.4 Rackspace Cloud Files

Figure 7: Various worldwide Rackspace data center locations

Rackspace [18] provides a worldwide cloud storage service with storage
nodes distributed in five different locations (two data centers in Texas, US; Chi-
cago, US; two in Virginia, US; two in United Kingdom, EU; two in Hong Kong)
as illustrated in Figure 7. The security guarantees offered by this provider are
mainly supported by datacenter internal characteristics. This is, the mecha-
nisms to ensure data durability, confidentiality and availability are supported
by a set of physical characteristics and internal policies associated with inner
workings. As so, we cannot conclude about data safety by doing a brief external
analysis.

The cost model is similar to other providers where each gigabyte stored is
charged. In contrast with the other providers, Rackspace only charges down-
load transfers and no HTTP requests are charged, nonetheless this cost model
encourages data upload which can result in a vendor lock-in situation.

41

2.3.5 Microsoft Azure

Figure 8: Various worldwide Microsoft Azure data center location

Microsoft [50] defines its data model as a set of containers containing a set
of BLOBs or Binary Large Objects. BLOB can be defined in two categories: block
BLOBs in which each block is transferred block by block and each BLOB can
accommodate up to 200GB of data; page BLOBs designed to random access can
be divided in pages and can carry up to 1TB of data. The use of BLOBs divided
by blocks assists in rapid failure recovery due to the resume capacity on the
most recently transferred block. Microsoft stores their clients’ BLOBs in three
major world spread regions namely Asia (Hong Kong and Singapore), Europe
(Ireland and Netherlands) and United States (Illinois, Texas, Virginia and Cali-
fornia), illustrated in Figure 8.

As in Amazon, Microsoft provides different data access mechanisms. It
provides a RESTful API defining the common data manipulation operations, as
defined in the most providers. Furthermore Microsoft provides libraries and
facilitates the access to their storage service by using their cloud services or
their operating systems. To improve data availability data is replicated inside
each data center, more precisely, each time a BLOB is written it is replicated by
three machines. Azure also provides tools to do cross-replication by multiple
datacenters (geo-replication).

42

In contrast with the other providers, Microsoft defines in SLA, maximum
latency times for the most operations. The uptimes are expected to be superior
to 99.9% otherwise client will be credited accordingly. As with others Microsoft
include some SLA exclusion terms in which, outside factors and client side fac-
tors are included.

2.3.6 Dropbox

With over 200 Million clients, Dropbox [51] is a file oriented and final cli-
ent service providing a well-known file storage service defining fixed free and
paid storage quotas, with up to 1TB of storage quota, without any file transfer
limitations. The Dropbox’s service terms is extended to third parties, in this case
Amazon. The extension of the trustable domain could lead to undetected data
leaks.

To business clients Dropbox defines security a set of security mechanisms
and guarantees, as SSL connections, file encryption using AES-256,
99.999999999% durability and 99.99% availability offered by Amazon storage
service, a set of certifications provided by Amazon and access control measures.

Although with similar guarantees offered by other storage providers, in
2011 Dropbox has been involved in a critical problem that endangers users’ da-
ta confidentiality by the means of authentication exploit, as posted on Drop-
box’s blog [52], in which non-authorized authorities gained access to users’ ac-
counts.

43

2.3.7 Luna Cloud

Figure 9: Various worldwide Luna Cloud data center locations

Luna Cloud [53] owns a cloud network mainly located in Europe with
nodes present in Lisbon (Portugal), London (UK), Paris (France) and Frankfurt
(Germany) as illustrated in Figure 9. The SLA defines a service availability of
99.99% without any client compensation. For inferior availability times the cli-
ent is credited perceptually. Luna Cloud, unlike the other providers, also de-
fines Web Panel availability time which means that at some time the service
could be running without user control.

As with others, Luna defines some SLA exclusions related with system
misuse by the customer, scheduled maintenance downtimes or downtimes due
to “Force Majeure events”, which we interpret as natural disasters or bankrupt-
cy.

2.3.8 Comparison

Comparing the various services we can verify similar guarantees, though
Amazon has the most detailed documentation and support, describing availa-
bility and durability guarantees. The Google doesn’t disclosure the precise loca-
tion of the stored data, defining only to zones (Europe and US). All services
provide REST based APIs and a set of basic operations, as PUT, GET or
REMOVE data blocks. Furthermore some providers, namely Amazon allow the

44

user to define access policies over the data which sometimes can be translated
into data breaches as some reports stated [25]. The majority of providers base
their availability and durability on local or inter-region replication and on failo-
ver based machines (ex.: redundant storage).

In the current solution we have managed to explore all the described pro-
viders performing some benchmarks discussed in evaluation section. The use of
multiple providers will provide us the ‘power of choice’, this is, if the system is
capable of supporting multiple storage providers a subset may be chosen as
storage support based on their latencies, physical location, cost model or even
provided guarantees, to do so we will use profiling techniques and dynamic
adaptation techniques (addressed as future work).

45

3. System Model and Architecture

As described before, TSKY-TMS system is a middleware service providing
a dependable email repository service using a set of core components that cover
most of the dependable attributes. The use of an applicational layer enables the
evaluation and validation of the system in a real case scenario.

3.1. Attacker model

It is assumed that the most common attacker can, analyze and disclose any
data present in individual storage clouds. These attackers can be inside em-
ployees or outside entities that have all access to the data itself and may per-
form all available operations over such data. The attacker can delete, alter or
replace any data, nevertheless it is assumed that collusive attacks are unlikely
to happen, this is, there is a remotely chance of multiple attackers with diverg-
ing storage cloud accesses collude in order to break the used threshold mecha-
nisms. These collusive attacks are supported by TSKY-TMS in a threshold basis,
the system defines a Byzantine model and so the system can handle collusion
attacks of at most t out of 3t+1 attackers, where 3t+1 is the total number of rep-
licas.

Although, is assumed that the middleware runs locally or in a secure
proxy, eavesdropping attacks between operations or in idle times can happen
without compromising data confidentiality, integrity or availability, as long as
no unauthorized operations are executed.

3

46

3.2. System requirements

As system requirements, and so defined as objectives of this thesis, we
have defined a set of functionalities that we intended to support by the mean-
ing of a set of dependable components placed in the middleware lower layers.
So the designed middleware includes the following requirements:

• As main end user requirement, the system must ensure data confidenti-
ality in a way that data storage and cryptographic mechanisms can be
auditable by the end user without any time-consuming bureaucracy;

• As other end user requirement, the system must ensure that the stored
data is intact (not corrupted) and available at any time;

• The system should tolerate any cloud storage provider unavailability,
and so ensuring data availability to the end user;

• The system must ensure that corrupt data is not delivered to the applica-
tional layer and so data integrity must be eventually verified in at least
one data processing stage;

• The system must tolerate attacks (as specified in attacker’s model) in at
most f out of 3f+1 storage clouds, as defined in the Byzantine model
complemented by the use of threshold schemes (secret sharing schemes
and threshold signatures);

• Acceptable service time loss versus out-of-the-box solutions. This is, due
to the use of multiple cryptographic and replication mechanisms it is ex-
pected to have a worse service time and so the system is intended to mit-
igate such negative impact;

• Support for multiple diverse storage clouds or local storage solutions as
a mean to ensure data availability and integrity;

• Explore multiple cloud storage providers in order to guarantee data
availability and confidentiality while reducing the data access times in
the presence of an ubiquitous, and so dynamic, system access;

• Explore multiple cloud storage providers in order to mitigate vendor
lock-in issues and to leverage optimized and future-proof cost model;

47

• Implementation of the system as a framework based system, ready to ac-
commodate new components, defined in future work;

The email service repository was designed in order to explore the re-
quirements fulfilled by the bellow layers complemented by a set of functional
requirements:

• As MUAs (Mail User Agents) requirement, the system must provide
standard POP3 and SMTP (RFCs 1939, 5321) interfaces or the secure var-
iants POP3S and SMTP over TLS (RFC 2595, 2847) supporting the most
common over-mailbox operations, i.e., the applicational layer must pro-
vide mailbox fetching and email message send operations;

• As additional operation (not supported in POP3 and SMTP standards),
the system must provide search operations over standard email messag-
es headers and body (RFC 2822). Since search operations are not sup-
ported by today’s email standards a RESTful API must be provided in-
stead. This interface must support HTTP requests as defined in RFC
2616. Furthermore, this interface must support all operations as POP3
and SMTP endpoints enabling the use of TSKY-TMS as a backend stor-
age service to existing webmail solutions;

• The index data should be stored locally or remotely without revealing
any information about the message contents in the occurrence of an at-
tack. So the system should enable searching operations at any time with-
out revealing any message data. This issue described later is addressed
by the use of homomorphic schemes.

3.3. System Architecture

The system overall model was defined in three possible variants:

• A local variant, in which the middleware operates in a local trustable
machine and so, private data could be stored in primary and secondary
memories without need of further cryptographic mechanisms;

• A proxy mode, in which the middleware operates in a trustable machine
in the domain of a user or a group of users, for instance, a server running
in a corporative office;

48

• A cloud variant, in which the middleware runs on a computational pub-
lic cloud outside the management domain of users and so, can be con-
sidered untrusted. Although not considered for the current system de-
sign, this approach is considered as future work due to the need of fur-
ther improvements in system TCB minimization.

Figure 10: TSKY-TMS Architecture

The system architecture is divided in two main focus (layers), the applica-
tion support and the generic object storage service that corresponds to TMS and
TSKY service respectively. The overall TSKY-TMS is constituted by four main
layers that can be independently explored in different contexts (as shown in
Figure 10). The first layer provides a way of evaluate the overall solution by
providing standard POP3 (RFC 1725) and SMTP (RFC 821) interfaces. Addi-

49

tionally and in order to support search operations or to provide TSKY-TMS as a
service a REST API was implemented (using HTTP standard protocol).

The second layer provides an email applicational platform and was devel-
oped as a proof of concept to the middleware core. This layer enables the evalu-
ation and validation of the underneath layers. Beyond email repository service
layer other layers could be used, as for instance, distributed file system service
or any other service that uses storage as service foundation. This layer provides
basic email operations over users’ mailboxes including search operations over
headers information and over messages’ contents. Although along, indexing
and mailbox components could be divided in distinct layers leveraging the use
of generic indexing and search operations over non-specific data. Despite this,
the use of generic indexing and searching techniques would clear any semantic
trace from the application itself, for instance it would disable the capacity of do
searches over specific header fields. This issue/feature will be addressed as fu-
ture work.

As seen in Figure 10, the first (interface layer) and second layers are appli-
cation specific and use the beneath layers as storage base for email data in such
way that the aggregation of the different set of layers define the TSKY-TMS sys-
tem/middleware. The lower layers are used as a storage service and can be
used by other applications defining the TSKY framework. The dependable ser-
vice provided by TSKY framework, similar to the one provided by existing
cloud storage services, defines simple PUT/GET/REMOVE and LIST opera-
tions over the stored data.

The third layer, or the core layer, belonging to TSKY framework is the lay-
er responsible for all cryptographic operations including data encryption, using
standard symmetric encryption algorithms, secret sharing over data or over en-
cryption keys, generation of Message Authentication Codes and Threshold Sig-
natures over the message content. Altogether, the components improve data
confidentiality and integrity reducing the trustable computing base to the key
management process itself, this is, to the secret sharing and threshold signa-
tures processes.

Finally, the forth layer gives support to distributed storage over multiple
heterogenic storage clouds, along with threshold mechanisms described earlier

50

a Byzantine fault tolerant model is supported in which f faults, data corruptions
or disclosures out of 3f+1 can without compromising data availability

Since the key management is made by the middleware itself and since the
shares of the signatures and of the keys are stored in threshold basis in multiple
clouds the trust base is reduced to its maximum disallowing successful disclo-
sure attacks on middleware idle times.

3.4. Data Model

Figure 11: TSKY-TMS data model

As shown in Figure 11, the data model is divided in two sections, the
trusted middleware data storage and the untrusted cloud storage repositories.
Although mailbox oriented the middleware data model is generic, this is, as
described before, any data storage application can use the data model, provided
that contextualized or un-contextualized algorithms are defined. Applications
without indexing capabilities can also explore a similar data model using the
system as a raw storage system, i.e., the middleware provides to applications
PUT, GET and REMOVE operations (no SEARCH operation).

For this particular case, the middleware locally stores three indexes, a ref-
erence index, consisting in a structure that directly maps each user’s message
unique identifier to a unique in-cloud Cloud Object reference. The identifiers of

51

the messages consist in small integers that are incremented at each message ar-
rival; the references are tokens consisting of cloud objects identifiers concate-
nated with a key used to encrypt the pointed object. Whereas the local storage
is defined by application specific layers the cloud storage is inherent to the
TSKY framework itself, meaning that any other application would explore an
identical cloud storage data model.

The multi-keyword ranked index, held in middleware local storage, con-
sist in an index over data content with homomorphic properties, enabling
search operations over encrypted message contents using the provided REST or
RMI interfaces.

52

3.5. System Model Generalization

The system model, architecture and data model presented in the previous
sections (subsections 3.3 and 3.4) follow an approach of the TSKY middleware
as instantiated to be used in a user local machine or running in a proxy server,
according to different deployment scenarios as initially stated in subsection 3.3.
The generalization of the system model assumptions for the case of cloud based
deployment can require the addition of new components as represented in the
following architecture (Figure 12).

Figure 12: Cloud based deployment architecture

The presented architecture, in Figure 12, consisting in a generalization of
the system model and architecture as implemented and evaluated in this thesis,
it defines a scenario and a work direction in which a replication component is
necessary. In the presence of multiple instances a layer must be provided in or-
der to keep updated info on shared structures, namely indexes. Such shared
structures could be supported by distributed databases as Apache Cassandra1
or Basho Riak2, however this direction has already been addressed and dis-
cussed in the context of TSKY project [54]. Other issues could be raised when
it’s assumed that instances could run on untrusted public computing clouds.

1 Available at: https://cassandra.apache.org/ [Accessed 22/Sept/2013]
2 Available at: http://basho.com/riak/ [Accessed 22/Sept/2013]

https://cassandra.apache.org/
http://basho.com/riak/

53

The use of such environments raises some concerns regarding the security of
indexes and other structures. To accomplish so, a minimization and circum-
scription of the TCB of the middleware and its components must occur in order
to guarantee security and privacy of stored data. To do so hybrid solutions,
with some components running in untrusted environments combined with
components running locally, could be used. Our design and implementation, as
described in the next section, has main focus on the proxy variant in which no
multiple-instances, state or index replication are addressed.

55

4. Implementation

The TSKY-TMS middleware design has been architected and implemented
in multiple phases. Initially, we began by developing the TSKY framework ca-
pable of accommodating the multiple modules that were posterior developed.
The email repository service deployed over TSKY framework (TSKY-TMS)
comprehends a basic set of applicational interfaces, targeted to Mail User
Agents or MUAs. The lower end of the TSKY framework was designed to sup-
port adapters/drivers for multiple cloud storage providers explored as storage
base for the applications’ data. Finally and most important a core layer was de-
veloped in order to support a set of data processing modules namely an encryp-
tion/decryption module, a secret sharing module, a threshold signatures mod-
ule, a MAC module, a combination module used to build the data block to be
replicated across the multiple storage nodes.

The frontend interface is made by an SMTP standard email interface used
as message send endpoint and were developed using SubEtha SMTP [55]. The
authors of such library describe it as in compliance with RFC2821 and in the
performed tests it has reveal no lack of support to the used operations (message
sending operations). The frontend also contains a POP3 interface used as mes-
sage pop endpoint that were developed from scratch in partially compliance
with RFC1939, this is, POP3 endpoint implements most of the commands nec-
essary for communicating with common MUAs. Finally, the REST endpoint de-
veloped as a means to execute usual push and pop operations and, unlike POP3
and SMTP interfaces, support search operations over mailbox data. The REST

4

56

interface has some interesting properties regarding REST widespread usage as
web service interface, this is, as a web service interface REST could be used by
existing web mail services as backend storage and so offering TSKY-TMS as a
service to existing applications. The REST endpoint was developed using Jersey
RESTful library3 that communicates with an RMI middleware interface in order
to execute the core operations directly. In this way the overhead introduced by
the use of a Java servlet running is eliminated in tests where search operations
are out of scope, this is, the REST service runs only when tests involving search
operations are needed.

4.1. Storage Module

As stated before at the lower end of the middleware architecture a storage
module, responsible for managing a set of storage adapters provides to the
above layer basic data store, retrieval and deletion operations. Were developed
8 adapters: One local, that stores the data directly in the hard disk (in a desired
location); one to Dropbox file storage service, using Dropbox’s API library4; two
adapters for Google Cloud Storage and Amazon S3 using jets3t library5; one
adapter for LunaCloud Storage Service using Amazon S3 SDK6; one for Nirva-
nix using the provided Java SDK7; one for Rackspace using JClouds library8;
and finally one for Microsoft Azure Storage Service using Azure SDK for java.9

3 Available at: https://jersey.java.net/ [Accessed 22/Sept/2013]
4 Available at: https://www.dropbox.com/developers/core/sdks/java [Accessed 19/Sep/2013]
5 Available at: https://jets3t.s3.amazonaws.com/index.html [Accessed 19/Sep/2013]
6 Available at: https://aws.amazon.com/sdkforjava/ [Accessed 19/Sep/2013]
7 Available at: http://developer.nirvanix.com/ [Accessed 19/Sep/2013]
8 Available at: https://jclouds.incubator.apache.org/ [Accessed 19/Sep/2013]
9 Available at: http://www.windowsazure.com/en-us/downloads/ [Accessed 19/Sep/2013]

https://jersey.java.net/
https://www.dropbox.com/developers/core/sdks/java
https://jets3t.s3.amazonaws.com/index.html
https://aws.amazon.com/sdkforjava/
http://developer.nirvanix.com/
https://jclouds.incubator.apache.org/
http://www.windowsazure.com/en-us/downloads/

57

4.2. Frontend and Endpoints

Figure 13: Mailbox Layer Class diagram

The Frontend or applicational context layer provides the platform for Mail
User Agents or MUAs to communicate with the middleware itself. This layer
(as stated earlier) defines SMTP and POP3 standard interfaces, provided by
SMTPAdapter and POP3Adapter (as defined in Figure 13). Additionally the
EmailService is available remotely through RMI service, so other applications
could be easily adapted to invoke over-mailbox operations. As stated before,
the REST interface, needed to test search operations was developed by the
means of the RMI provided interface. EmailService interface provides all
email messages handling operations (retrieve, delete and search). When an op-
eration request arrives from SMTP or POP3 adapters an EmailService instance

58

(EmailServiceImpl) is created for a designated mailbox (sender or recipient
mailboxes). The EmailService, after a simple authentication mechanism
(checkCredentials), can manage the mailbox directly. The Mailbox class con-
tains all mailbox management logic while MailboxData contains the mailbox
actual data. The mailbox data includes user authentication data, email messages
identifiers along with search indexes and the references for the cloud objects
(objects that store in-cloud replicas’ references). The detachment between mail-
box logic and data enables the use of MailBoxData as a data container that can
be serialized and stored. In the current implementation the MailBoxData is
stored locally in a trustable machine (along with middleware running instance).
As future work we propose the use of the cloud itself to store such objects.

The MailBox defines three indexes, one reference index, used to get the in-
cloud CloudObject reference given a unique email identifier, and two search
indexes, a linear index over the header contents (sender, recipient, date and
subject) interesting to execute rapid search operations. The second search index
is a Multikeyword Ranked search index that uses Pallier partial homomorphic
scheme, allowing searching operations over message contents retuning the re-
sults sorted by relevance.

59

4.3. Core Modules

Figure 14: Core Layer class diagram

As we can verify in Figure 14, all core modules implement a common
Module interface that defines a set of main operations:

• Preprocessing – This operation enables performance improvements by
executing the context independent operations, i.e., slower and time con-
suming data independent operations could run before the arrival of the
actual data. For instance, encryption/decryption keys could be generat-
ed before the data is ready to be ciphered;

60

• Forward Execution – This operation is executed when the data needs to
be processed on arrival from the upper layers (middleware frontend or
modules). For instance, the data needs to be encrypted or signed or the
encryption keys’ seed need to be splitted in multiple secret shares;

• Backward Execution – This operation is executed on data retrieval oper-
ations arriving from the upper layers (middleware frontend or modules).
For instance, the data needs to be decrypted or the signature needs to be
verified, or a set of secret shares need to be combined in order to recover
the keys’ seed.

When the middleware is instantiated a PreProcessingDeamon is executed
creating modules preprocessed data. For each executed operation, the Execu-
tionEngine creates an ExecutionAgent responsible by running the modules,
wrapped in ModuleExecutionThreads. The base of TSKY framework is com-
posed by a set of dependable modules, providing distinct guarantees:

Threshold Module - Developed using existing source code10, this module
implements the RSA threshold signature algorithm as defined in the article [35].
The module was created defining two stages, a preprocessing stage, where the
dealing phase occurs and a signing phase in which the key shares are used to
sign the designated data, in this case, plain email messages. This module, run-
ning in forward mode, receives the data as input returning a parameterized
number of shares accordingly with the desired threshold along with a public
key. When running in backward execution mode, this module receives a set or
subset of signature shares, the public key along with the plain data in order to
verify data integrity and authenticity;

Secret Share Module – Developed from scratch, this module in forward
execution receives as input data bytes and splits them into a parameterized
number of shares, accordingly to the desired threshold. The used secret sharing
scheme can be parameterized to use various secret sharing algorithms namely
Shamir, Blakley or Asmuth-Bloom Secret Sharing Schemes. In backward execu-
tion this module receives a set or subset of non-corrupt shares and returns the
original data/secret;

10 Available at: http://code.google.com/p/threshsig/ [Accessed 29/Sept/2013]

http://code.google.com/p/threshsig/

61

Cryptographic Module – Developed from scratch and using JavaSE and
Bouncy Castle security provider, this module can be parameterized to use
common cryptographic encryption/decryption algorithms with different block
ciphers and key sizes. For the executed tests, we have used Bouncy Castle pro-
vider and AES256 standard encryption algorithm;

Combining module – This module unifies all parts (encrypted data,
metadata, keys, signatures) present in the data model into single data blocks
that are then passed to the storage that perform a replicated linear storage over
the multiple storage clouds.

62

4.4. Cloud Storage Layer

Figure 15: Cloud Storage Layer class diagram

The cloud storage layer handles all adapters as independent storage sup-
ports. Each adapter must implement an interface offering a PUT, GET and
REMOVE operation receiving as parameter a token and/or data, depending on
the operation. The storage process is done by this layer is a linear basis, without
any location or cost context. The use of context based storage will be addressed
as profiling techniques in future work section.

As defined in Data Model section the multiple replicas pointers are stored
in a, so named, Cloud Object (CloudMetaObjectImpl), this object is created
every time a PUT request is performed and it is interpreted for every GET re-

63

quest performed. This object keeps track of the cloud location and identifiers of
each replica.

4.5. Algorithms

In order to provide the set of security services defined as objectives of the
current system (TSKY-TMS system), we have carefully designed two algo-
rithms, one intended to store data in dependable way distributed by the multi-
ple repositories and the other intended to retrieve such data.

Algorithm 1: Send message (data store operation)

When a message is sent (or injected in the TMS) through the SMTP or
REST endpoints, it is delivered to the mailbox manager that is charged of ex-
tracting all the words from message body and attachments inserting them into
the search index. The parse of email data is enabled by Java Mail [56] while the

64

extraction of attachment’ content is made by Apache Tika [57] (document data
extractor) and Apache Lucene [58] (prepares document content), in this way we
could provide search capability over email headers and content including some
attachments. Once the indexing is done the mailbox manager perform a PUT
operation request to the layer below, with all the message data. Then the core
proceeds as described in Algorithm 1, returning a master key and reference that
is inserted into reference index within mailbox layer and stored locally on disk
for persistency purposes. Each of encrypted email replicas along integrity
proofs are then stored in a set of different storage clouds.

65

Algorithm 2: Receive message (data retrieval operation)

When a message fetch is requested via the POP3 or REST endpoints the
request is forwarded to the mailbox manager, detaining all the data necessary
to recover the message from the storage clouds. Once the mailbox manager ob-
tains the master keys and references from the index associated with a particular
user mailbox, the mailbox manager invokes a GET operation over core layer,
providing a master reference and key needed to retrieve the message. The core
layer then proceeds as described in Algorithm 2, requesting the data from the

66

multiple storage clouds, applying the operations used in Algorithm 1 in reverse
order and returning the plain email to the mailbox manager which in turn re-
turns it to the POP3 and REST endpoints.

The data processing flow (order of execution), including a set of crypto-
graphic mechanisms, is justified by a set of security properties we wanted to
attain:

• The use of symmetric encryption using different keys (generated by the
same seed) provide data confidentiality while eliminates the possible
correlation attacks that may occur (vaguely probable). Nevertheless, the
process of using different keys, introduces a tradeoff related to the en-
cryption process overhead (further discussed in evaluation section), fur-
thermore the inexistence of any similarity between blocks excludes the
possibility of using Byzantine agreement protocols at storage level.
Though, the use of Byzantine agreement protocols is out of scope in the
current thesis;

• The use of threshold signatures provide unforgeable authentication and
integrity proofs (based on RSA) while reduces the asymmetric keys
management issue. Alternatively MAC integrity proofs were used and
tested (see evaluation section), such proofs can be forgeable if the attack-
er can get the access to the key locally stored in middleware secondary
memory (hard disk), emphasizing the key management issue;

• The use of secret sharing schemes over key generation seed offers not on-
ly, the zero correlation factor between the multiple generated shares, as
reduces the local key management overhead while offering seed resili-
ence. Initially was intended to use such techniques (secret sharing) over
the actual data, but preliminary results (see evaluation section) revealed
that for larger secrets such schemes are unpractical;

• The replicated storage of the encrypted data block along with signature
verification key, signature and seed shares across multiple clouds ensure
data retrievability and availability under Byzantine faults.

67

5. Evaluation

In this section will be presented a system overall evaluation and an evalu-
ation performed to each component individually. The presented evaluation
consists in a security analysis of the multiple components and their perfor-
mance tradeoffs. Initially will be presented the performances of the multiple
cloud storage providers using raw random data without any additional pro-
cessing, i.e., only latency and bandwidth was taken into account in the present-
ed values. Secondly will be presented the performances of the individual mod-
ules, in order to determine whether an asynchronous execution framework
makes the difference or if there is space for further improvements. Finally will
be presented performance metrics of the overall solution using multiple storage
clouds along with a critical analysis about the middleware system practicality
in a real life situation, where a client requesting remote operations are waiting
for on-time responses. The evaluation of the system has been made in various
phases, starting by the testing of each module individually seeking for perfor-
mance bottlenecks.

5.1. The TSKY Framework

The TSKY-TMS middleware was developed by the means of TSKY
framework. This framework provides contextual and execution support for a
set of data processing modules. The framework explores a threshold pipe mod-
el, in which data is available as soon it is acquired and processed (as a producer
consumer model). For instance, since clouds have different data retrieval laten-

5

68

cies (GET operations) and since a threshold is defined as soon as the sufficient
number of replicas is retrieved the data processing can proceed to the next
phases. Furthermore, as soon as one data block is processed it can proceed to
the next processing stage. Although not very significant in the architecture, the
use of pipe based processing can be useful when each replica stores data that
can be independently processed.

The TSKY framework provides an execution context to the multiple mod-
ules and cloud adapters by means of a well-formed XML file. This configura-
tion file includes authentication material for all cloud storage adapters and
module specific configurations like threshold values or cryptographic algo-
rithms. Furthermore, the configuration file contains IO parameters of each
module defining the data processing flow. In current implementation, no verifi-
cations are made regarding the restrictions imposed by a data processing flow
(all input/output data must complete the flow and all inter-dependencies must
be respected), so such issue will be addressed in future framework improve-
ments.

5.2. Test execution environment

All the presented tests where made using the same machine, so both cli-
ents and middleware where instantiated locally and so no latency can be ob-
served or accounted from clients to the middleware itself. The machine running
such tests has the following characteristics:

• Operating System: Microsoft Windows 8 64bits (Java 7 x64 JVM)
• CPU: Intel Core i7-3630QM @ 2.40GHz (4x Cores Laptop)
• RAM: 16 GB

The tests performed on individual components where made using random
data bytes (generated on demand) and for the overall system (including index-
ing mechanisms), the Enron Email Dataset was used instead11. The performed
tests were performed in-campus using the eduroam academic network access
points.

11 Available at: https://www.cs.cmu.edu/~enron/ [Accessed 22/September/2013]

https://www.cs.cmu.edu/~enron/

69

5.3. Cloud Provider performance benchmarks (PUT/GET)

The first test, as shown in Figure 16, presents the performance times of da-
ta insertions into each a set of the cloud storage providers (GS-Google Cloud
Storage, S3-Amazon S3, NV-Nirvanix, RC-Rackspace, LN-Luna Cloud, DB-
Dropbox and AZ-Microsoft Azure). The presented times are the mean of 10 it-
erations runs of the PUT operation with random data blocks with sizes of 1, 10
and 100 Megabytes. The random data generation time is not included in the
presented times.

Figure 16: Performance graphic of PUT operation (in seconds and megabytes)

Table 2: Performance table of PUT operation (in seconds and megabytes)

In the Table 2 and Figure 16 we verify that with file size growing the
throughput times increase significantly. With a 100MB store/upload/put oper-
ation we verify that Microsoft Azure accomplishes the best performance fol-
lowed by Rackspace, Luna Cloud and Google Cloud Storage performances. We
can verify increasing fluctuations regarding the data block sizes, this demon-
strates that for larger data blocks the overhead introduced by the set of chosen
providers is determinant in overall latencies. Furthermore, small data blocks
transfers, for instance 1MB in size, have similar latencies showing that band-

GS S3 NV RC LN DB AZ
1 3.7869 1.8136 2.7357 3.6998 5.2686 3.3417 0.7133

10 5.9312 12.8307 13.1439 5.8583 9.7202 10.2313 3.5994
100 37.6226 60.8223 123.4802 29.8275 33.4254 70.791 20.2205

70

width is determinant is such operations. Through some off-record tests we veri-
fy that over-cloud operation latencies can vary on timely basis (different hours
throughout the day). The diversity imposed by the providers data centers loca-
tions along with variable bandwidth availability provide an interesting envi-
ronment to further investigate profiling techniques combined with ubiquity fac-
tors which are addressed as future word (see future work section).

Figure 17: Performance graphic of GET operation (in seconds and megabytes)

Table 3: Performance table of GET operation (in seconds and megabytes)

By contrast in retrieval/download/get operations Amazon S3 accom-
plishes the best performances followed by Google, Rackspace and Microsoft
Azure. These differences can be backed up by the use of different semantics
used by the different providers. Nevertheless, and in similar way as PUT opera-
tion latencies, GET operation latency times have big fluctuations among the
multiple providers opening a new research direction towards profiling tech-
niques (as stated for PUT operation). Comparing both PUT and GET operations
we verify that, although Nirvanix provider has the most significant latencies in
both cases, Microsoft provider (for example) has the one of the most significant
latency in GET operation but not in PUT operation, so the correlation between

GS S3 NV RC LN DB AZ
1 1.6062 1.2431 2.6679 2.4339 3.1359 4.0688 0.729

10 4.7695 2.909 13.6336 4.3534 13.371 11.4045 3.7341
100 18.6261 17.6095 120.1477 36.6935 102.9719 57.2228 36.4715

71

both graphics is not significant (Figure 16 and Figure 17). This weak correlation
between both operations’ latencies can be used as factor to determine the best
set of providers. For instance, applications with large write operations through-
put could benefit from a service with low PUT latency. Other fact we can ob-
serve in both GET and PUT operation times is the relation between data block
size and latency. Although the block sizes are 10 times superior in each run, the
latency is always inferior to 10 times the larger block size. This fact can be justi-
fied by the end-to-end latency combined with datacenter data allocation and
storage latencies.

Table 4: Addresses, probable location and latency of cloud storage providers

Other than the physical characteristics of the providers’ datacenters, facts
like end-to-end bandwidth and latency can justify the throughput values pre-
sented above. End-to-end bandwidth and latencies (obtained via ping tool) are
directly related with the data centers locations and so, in Table 4 we can verify
the location of the different datacenters (obtained via IP tracing). For some pro-
viders were not possible to obtain latencies due to the zero responses made to
ping requests (ICMP protocol). Although in Portugal, we verify that Luna
Cloud get poor performances in GET operations compared with other world-
wide providers which show that physical location and latency do not determine
univocally the best provider in terms of performance.

Other observed fact is that although Dropbox uses Amazon services to
provide their own service, in the performed traces, the logs show in resolved
addresses that Dropbox service is provided by a computational instance (Ama-
zon EC2) located in the US rather than by Amazon storage service (Amazon S3)
which possibly indicates some further data processing actions, like encryption,
replication or even indexing. Furthermore in PUT operations Amazon and

Provider IP Address Location Latency
Google 173.194.45.12 United States, Mountain View, 94043 21ms
Amazon 178.236.6.225 Ireland -
Nirvanix 208.84.100.17 United States, San Diego, 92122 47ms
Rackspace 174.143.184.158 United States, San Antonio, 78218 157ms
Microsoft 168.63.3.46 Netherlands, Amsterdam -
LunaCloud 176.111.111.248 Portugal 9ms
Dropbox 107.22.161.187 United States, Ashburn -

72

Dropbox manifest similar performances despite of location and customer-
provider relationship between them. Creating a comparison, between our mid-
dleware complemented by some file system oriented applicational layer versus
the service provided by Dropbox, we verify some divergences in contrast with
Dropbox’s service like the use of multiple storage providers and the total ser-
vice auditability.

Again we can use probable location combined with ping latencies and op-
eration latencies to get profiling metrics to use in profiling techniques determin-
ing the set of providers that best fit not only the location of the middleware in-
stances as best fit the target application needs.

73

5.4. Threshold Module Benchmark

This subsection presents the test results and the evaluation on threshold
signatures module that as stated in related work section provides unforgeable
integrity and authenticity proofs (based on RSA) on a threshold basis. The
module preprocessing stage is defined by an initialization phase, in which
structures are initialized (Init) and a key share generation phase (Gen). In for-
ward execution stage (or signing stage) the data is actually signed (Sig) result-
ing in a set of signature shares. Finally in backward execution stage (or signa-
ture verification stage) a set of signature shares are combined resulting in a val-
id signature that is verified (Ver) using a public key (generated in prepro-
cessing stage). The performed tests present the mean times over 100 iterations
for each block size (1, 10 and 100 megabytes) in milliseconds.

Figure 18: Performance of Threshold Signature Module in different stages

Table 5: Performance of Threshold Signature Module in different stages

As we can verify in the Figure 18 and Table 5 the performance times for
key generation, signing and signature verification are similar. The impact of key
generation’s times is the motivation behind the use of a preprocessing mecha-

Init Gen Sig Ver Total(w/o Ver)
1 0.66 305.47 244.59 232.63 550.72
10 0.02 278.25 286.65 277.65 564.92

100 0.03 272.32 714.33 699.63 986.68

74

nism, inherent to the framework itself. In other words, all modules have to im-
plement a common interface that includes a preprocessing method that exe-
cutes independently of and concurrently with the middleware invoked opera-
tions. In this case we verify that, as preprocessed keys are available the pro-
cessing time is reduced by approximately 1/3 comparing with a completely se-
quential execution. For instance, taking into account the availability of prepro-
cessed keys (dealing/key generation phase), for 1MB of data the overall thresh-
old signature time would be reduced from 550.72 to 244.59 milliseconds.

Although in milliseconds, and so not much significant, the times in Table 5
would be much more significant (not tested, addressed as future work) if thou-
sands or even millions of clients store email with attachments data. The signa-
ture verification process does not have any preprocessed data associated
though the times are similar to signing times due to the absence of key genera-
tion. The signing and signature verification operations are significantly in-
creased by the size of the messages to sign due to inner SHA1 hash operation
over the message content. These times could be reduced using compression
techniques that compress the data before the signing and encryption process.

5.5. Secret Sharing Module Benchmark

This parameterized module, allows the definition of three different secret
sharing schemes. Each scheme uses different mathematical approaches and dif-
ferent algorithms. In Figure 19 and Table 6 we verify the performances of each
scheme representing the mean times over 20 iterations of initialization times
plus share creation time and secret recovery time, detailed in Table 7.

75

Figure 19: Performance of Secret Sharing Module using multiple schemes

Table 6: Performance of Secret Sharing Module in seconds/bits

Both Table 6 and Figure 19 present the initialization times along with time
needed to split a secret into a set of shares plus the time needed to reconstruct
such secret. As stated before secret sharing schemes are very timely efficient
regarding small secrets. As presented in Table 6 and as illustrated in Figure 19
secrets up to 128 Bytes (1024 bits) present acceptable performances. Values su-
perior to 256 Bytes are unpractical on on-demand situations. These values are
justified by the use of numerical (modular, arithmetic and matrixes) operations
used in the implementation of each scheme. As discussed before and to mitigate
such overhead introduced by larger data the use of secret sharing schemes is
used at key level instead of data level.

Shamir SSS Blakley SSS Asmuth-Bloom SSS
8 0.0048 0.0068 0.0092
16 0.00635 0.0081 0.0166
32 0.0074 0.0125 0.0375
64 0.0204 0.033 0.1465

128 0.16585 0.18385 1.16735
256 2.43775 2.66345 15.07435
512 31.11145 20.49685 210.79985

76

Table 7: Detailed performance of Secret Sharing Module in milliseconds/bits

Comparing the three schemes we verify that the most efficient regarding
secret share generation and secret recovery is Blakley scheme. Despite this fact,
the performances between Shamir and Blakley schemes are similar and the se-
cret recovery times are higher in Blakley scheme, furthermore and more im-
portant by security analysis we can argue about the properties of each scheme
as defined in related work section, this is, Shamir Scheme is securer in a theoret-
ical vision of the problem. In the analysis of the results we verify that no ad-
vantage is taken from preprocessing process, furthermore, we verify that secret
recovery stage is much performance efficient than secret share generation time.
Analyzing the introduced overhead we verify that in order to be acceptable on
the TSKY-TMS solution (on-demand solution), the use of such schemes must be
confined to small secrets, for instance 128 bits or smaller. For such reason the
use of a seed as secret, instead of the generated keys or even the actual data,
presents a viable solution since the generated seed size could be adjusted in or-
der to improve performance times or on behalf of security of the mechanism
itself.

5.6. Encryption Module Benchmark

In order to verify the overhead introduced by the use of symmetric en-
cryption in the current solution performance test, tests presented in Figure 20
and in Table 8, were made using as base AES256 in CBC mode. Furthermore,
and in order to detect possible further performance improvements other sym-
metric encryption algorism were benchmarked. To do the testing we have used
random data blocks with sizes of 1, 10 and 100 Megabytes. The values present-
ed in the following graphics and tables present average performance times
made in 100 iterations.

Init Gen Rec Init Gen Rec Init Gen Rec
8 1.3 2.55 0.95 1.35 3.9 1.55 1.35 6.85 1
16 1.3 4.3 0.75 1.1 5.5 1.5 1.15 14.4 1.05
32 1.3 5.45 0.65 1.05 9.6 1.85 1.3 35.4 0.8
64 1.2 18.5 0.7 1 29 3 1.1 144.6 0.8

128 1 164.05 0.8 1.1 175.05 7.7 1.1 1165.25 1
256 1.2 2436.15 0.4 1.2 2638.65 23.6 1.1 15071.65 1.6
512 1.3 31109.55 0.6 1.1 20411.25 84.5 1.25 210794.5 4.1

Shamir SSS Blakley SSS Asmuth-Bloom SSS#Bytes

77

Figure 20: Performance of Encryption Module using AES256 in seconds/Megabytes

Table 8: Performance of Encryption Module using AES256 in seconds/Megabytes

In this subsection we present the encryption performance times compari-
son for different data block sizes and verifying that, as expected and as shown
in Figure 20 and Table 8 in a symmetric encryption algorithm, the key genera-
tion times are completely negligible and so no further improvements can be
done regarding the module itself. Furthermore, we can verify that decryption
process is slower (although not significant). Nevertheless, other symmetric en-
cryption algorithms were tested and compared on performance basis as pre-
sented below.

Table 9: Performance comparison (in seconds) symmetric encryption algorithms

As presented in Table 9 AES is the most efficient encryption algorithm.
Although not standard, Blowfish algorithm has similar performances and has
been considered to be secure. Concluding, the AES is a standard algorithm with
proved efficiency and so we have no reason to adopt Blowfish or even the old
3DES that has proven weak in terms of security and poor in terms of perfor-
mance.

Init Gen Enc Dec
1 0.00424 0.00138 0.10821 0.14128
10 0.00109 0.00008 1.03016 1.36002

100 0.00110 0.00011 10.07862 13.27140

AES256 3DES Blowfish256 Blowfish448
1 0.24157 0.8045 0.2636 0.27018
10 2.22752 7.98716 2.52205 2.57867

100 22.69284 80.27249 25.17275 25.668

78

5.7. Overall Solution Benchmark

To demonstrate system usability, we have performed a test that simulates
a real use case scenario using Amazon S3, Nirvanix Cloud Storage, Rackspace
Cloud Files and Google Cloud Storage as storage services to TSKY-TMS. The
TMS service has run in a local machine (laptop) using wireless communications
(eduroam), as defined in evaluation environment subsection. This subsection
presents a brief evaluation of TSKY-TMS service through a set of end user per-
formance tests. These tests basically consist in the extraction of performance
metrics from an email client, sending and receiving messages to and from the
presented system. Each message received by middleware is redundantly stored
in the four different storage clouds, as defined earlier in this subsection. The
tests were divided in multiple iterations: first sending and receiving 10 messag-
es, 100 messages, 1000 messages and finally 10000 messages. Due to limitations
in Gmail service it was impossible to conduct tests with more than 1000 mes-
sages. The used subset of email messages taken from Enron online dataset con-
tains messages from 1Byte to 200Kbytes with plain text content. The conducted
tests allowed us to reason about service acceptance compared with today wide
spread well known email services.

The overall (TSKY-TMS) solution benchmark includes not only execution
times of all the above modules through the evaluation dataset defined in test
execution environment subsection as includes times introduced by POP3 and
SMTP message processing. Table 10 presents three types of metrics: the end-
point metrics consisting in the latency observed by end user (like in Gmail ser-
vice); the core execution metrics include message processing time, indexing and
cryptographic operations. The endpoint and core performance in message re-
ceiving case include over-cloud operations due to the synchronous needs, i.e.,
unlike in message send operations, in message retrieval operations the system
needs to retrieve and process the messages from the clouds before returning
them to the client. Still, in message send case, the endpoint and core perfor-
mance do not include over-cloud operation times since once the message is de-
livered to the system the endpoint return success to email client. The cloud per-
formance times represent the operation execution latency over the slowest
cloud (due to parallel cloud requests).

79

Table 10: Performance (in seconds) of Gmail versus TMS (MAC and TS)

Through a brief observation of the Table 10 we verify that Gmail service
accomplishes worse times in message sending operations on the endpoint point
of view. This fact can be backed by a synchronous message delivery mechanism
held by Google service. Although we cannot take this fact as a performance ad-
vantage, today’s email services include message receipts which tell users the
delivery state of their messages. In the presence of a synchronous send message
operations it would be expected worse times as seen in Figure 21 where the
overall time is 10% to 150% times worse, mainly due to over-cloud operations.
Nonetheless the presented times can be considered acceptable, given that 1 to 5
seconds to send an email is acceptable.

80

Figure 21: Message send times to GMAIL service, TMS-MAC and TMS-TS

On the other side we verify that email receiving times are worse in our
system. The message deliver time is basically determined by over-cloud opera-
tions (Figure 22) taking about 99% of all time needed to deliver a message to
end client. This time could be dramatically reduced by using better low latency
cloud storage services, caching techniques or using the cloud just has a redun-
dant support for storing email data. The overall times are 10 to 15 times worse
than the ones involved in Gmail service.

Other verifiable matter is the fact that endpoint latency in message send
operations of TMS-MAC versus TMS-TS substantially differ (Figure 21). This
fact can be justified by the waiting compass imposed not only by the over-cloud
operations as by threshold signatures process. As in TMS-MAC, in TMS-TS the
waiting compass was artificially introduced in such way that all requests could
be attended without jeopardize the system response capabilities.

81

Figure 22: Message receiving times to GMAIL service, TMS-MAC and TMS-TS

Comparing TMS-TS, in which of Threshold Signatures schemes were
used, with TMS-MAC approach, in which Message Authentication Codes were
used as data integrity proofs, we notice that for message sending operations we
get core processing times 3 to 35 worse. Despite this the message receiving
times are just up to 1.5 worse in TMS-TS which can be considered acceptable.

Unlike in the synchronous receive operation, the considerable endpoint
performance times in message sending operations exists due to an artificially
added constraint so the TMS service would not drown under a large number of
requests.

Excluding the endpoint times in message send operations and comparing
both messages send and receiving times (Figure 21 and Figure 22) we verify
that both operations attain similar performances. Note that graphics have dif-
ferent scales, and so while sending 10000 messages takes up 9.5 hours receiving
the same messages will take only 4.5 hours.

82

5.8. Cloud Based Proxy Solution Benchmark

To evaluate the overall solution, we have performed a complementary test
using two cloud-based virtual machines running the TSKY-TMS middleware
platform. The tests were performed using two distinct Amazon EC2 micro in-
stances running in different locations (Ireland and California, USA). The per-
formed tests have consisted in sending/receiving 1000 email messages to and
from the TSKY-TMS middleware, using the POP3 and SMTP endpoints. In
these tests messages were sent from one EC2 instance (running in the Amazon
Data Center in Ireland) to the other instance (running in the USA – California
Data Center). Such complementary tests have revealed interesting results, as
shown in the following figure.

Figure 23: Operations latency with TMS-TS running in a computational cloud

The observed latencies for message sending and storing are similar to the
previous tests, as represented in Figure 21 and Figure 22. However we verify
that the overhead introduced by the over-cloud operations were substantially
reduced. On the other hand, as expected, the client observed latencies are sub-
stantially increased due to the remote access between the two data centers,
namely the latency between the email user-agent (client) to the TSKY-TMS
middleware instance. Finally, we also verify worse performances regarding
core processing metrics, namely memory access and processing performance.
This fact is certainly due to the low-end hosting characteristics inherent to the
used Amazon EC2 micro instance, running in a virtual machine with only one
virtual core, and 0.6GB of available memory. This computing power when

83

compared with the processing and memory resources of the local machines
used in the tests presented in the section 5.7).

Regarding the observed latencies for message retrieving we verify better
performances comparing with previously made tests and again, reduced laten-
cies concerning over-cloud operations. Unlike in the case of message send oper-
ations, message retrieving operations exhibit a more significant overhead in
core processing times. Such fact can be backed up by the limited amount of
computational power available combined with the maximization of the CPU
usage and message transmission and reception rates. For message sending ob-
servations we induced a transmission delay between messages, in order to
guarantee system reliability. The used time delay in this case was 25ms. This
delay is required because in the scope of the TSKY-TMS implementation and
the focus of the thesis contributions, we did not consider the implementation of
specific handling services for high-concurrency control, memory buffering or
asynchronous batch processing and queuing optimization to deal with high
transmission rates and high volumes of send/receive requests. Then, the delay
parameterization was a simple and pragmatic mechanism to optimize the sys-
tem for the evaluation purposes.

Concluding, we verify that the use of TSKY-TMS, running in a computa-
tional cloud, leverages the performance of the over-cloud operations whose are
considered the bottleneck of the overall performance, as observed in the previ-
ous tests. Furthermore, such performance improvement motivates a rational for
the use of location awareness and operation profiling mechanisms, in order to
further reduce the cloud operations overheads.

85

6. Conclusion and Future Work

Conclusions

As the cloud computing and storage solutions provide interesting charac-
teristics and costs, the corporations tend to deploy new applications and data or
migrate existing applications and data to such platforms, nevertheless some is-
sues are raised when the criticality of the data and applications is taken into ac-
count. Some current events [23], [25], [26] and [52] have shown that cloud based
solutions suffer from lack of user control, lock-in, availability and security is-
sues namely in terms of privacy.

The main objective of the current dissertation was to design and imple-
ment a dependable middleware system/service capable of managing data
stored in such public cloud storage assuring a set security properties over the
stored data. This is, the stored data (considered critical and/or sensitive) should
be stored and kept private, corruption free, authentic and available. Such objec-
tives seem to be incompatible to the above considerations (public cloud storage
solutions raise various security issues). To assure such properties in such hostile
environments TSKY middleware made use of multiple cryptographic mecha-
nisms along with replication process eliminating the dependency of each cloud
storage provider. This is, it is assumed that no passive or active collusive at-
tacks can occur between multiple storage providers.

We have based our solution in a combination of parts of existing solutions
along with novel approaches in order to assure a set of well-defined security

6

86

properties. Components implementing symmetric crypto, secret sharing
schemes, index with homomorphic properties or replication are present in vari-
ous state-of-the-art systems, like DepSky [11] or iDataGuard [12] (further de-
scribed in related work section). As means to accommodate such components
we have developed an extensible framework (TSKY framework) supporting,
not only various data processing modules, as supporting a set of cloud adapt-
ers, capable of communicating with multiple cloud providers’ services.

As mean to test the TSKY storage service and framework an email reposi-
tory service, named TMS, was developed. This service stores private email data
across multiple untrusted cloud storage repositories. The stored data is signed
using threshold signatures resulting in a set of signature shares (or alternatively
MAC integrity proofs), then data is encrypted using different keys (generated
from the same seed) resulting in distinct data encrypted blocks. In turn, the
seed, used to deterministically generate the encryption keys, is splitted in
shares using a secret sharing scheme. Finally an encrypted data replica along
with a signature share and a seed share is stored in distinct clouds. This process
or data flow of storing data in the various clouds is defined in a configuration
file, and has future work execution flow can exchange by the addition of new
modules or the replacement of existing ones.

The evaluation of the TSKY-TMS implementation has led to promising re-
sults regarding the overall system performance. Namely we have verified that,
although TSKY-TMS get worse performance times comparing with a well-
known wide spread email service, TSKY-TMS get times that could be consid-
ered acceptable, in respect to system usability (1 to 5 seconds to receive/send a
message). Furthermore, our evaluation has provided good metrics regarding
cloud storage providers services enabling further optimizations, in order to re-
duce such overhead introduced by over-cloud operations.

87

Future work directions

To further research, in the use of multiple untrusted data repositories, and
with main focus in the development of TSKY framework a set of future work
matters can be addressed in different relevant dimensions related with this dis-
sertation results:

• Further evaluation of the current TSKY-TMS implementation with more
extensive test benches, involving larger data volumes and higher opera-
tions throughput, searching for possible refinements and optimizations
in the current design specifications and implementation. For further test-
ing and evaluation a webmail based application could be designed in
order to get more reliable usability metrics and to do a more consistent
comparison with existing webmail services;

• Support and use of multiple middleware instances in order to test sys-
tem scalability issues. The use of multiple instances, supported by a con-
currency support mechanisms will allow the deployment of the TSKY-
TMS system enabling new test benches regarding ubiquity and perfor-
mance issues;

• Inclusion of multiple components and mechanisms as certificates (as
means to authentication of multiple middleware instances and users),
convergent encryption, garbage collection (to reduce storage costs) and
corruption detection mechanisms (Proof of Data Integrity and Retrieva-
bility);

• Design a concurrency support model, tested using multiple users evok-
ing operations over same (or different) data. The designed model could
include low contention locking mechanisms for multiple instances case
or local concurrency control for single instance. The use of low conten-
tion locking mechanisms could raise security issues regarding the plat-
forms used to store such locks. Such concurrency solution can follow the
initial approach as stated in [11]. Alternatively an approach using relia-
ble distributed coordination (using distributed coordination tools or
frameworks), as in [14], could be used;

• Implement and test a larger set of cloud storage providers making use of
profiling techniques to determine best usage heuristics (based on cost

88

model per data volumes, cost per types of operations, communication la-
tencies or other metrics related with provided guarantees). To address
this problem, one possible idea is to start by implementing and oracle
component, modeling and providing the dynamic behavior of the differ-
ent used clouds, using the following metrics: latencies, bandwidth, data
storage/operation costs or physical location in a location awareness sys-
tem. The same oracle can also, complementarily, provide input profiling
information for specific applications candidate to run on top of the TSKY
middleware. Such a component can benefit from available monitoring
information, about some metrics and indicators of different cloud-
storage services, over time;

• Use of caching, compression and erasure coding techniques as profiling
complements to reduce cloud operation latencies and costs;

• Redesign TSKY-TMS to run as a service in a computational cloud (TSKY-
TMS as service). Refine implementation to support out-of-the-box solu-
tions using different combinations of the existing modules and imple-
mentation of a system generalization model, as initially anticipated in
the system model characterization (section 3). In this direction, a revised
work of the current system model and architecture must address the
possible migration of parts of TSKY framework to run on cloud as a ser-
vice, as a work dimension directly related with the previous one;

• Relocation of indexing capabilities to the TSKY service itself, i.e., generic
text indexing capabilities, as well as, the integration of complementary
homomorphic encryption algorithms, for the possible integration of simi-
larity searches, involving text and multimedia contents and information
retrieval support.

89

References

[1] Cisco, "Global Mobile Data Traffic Forecast," Cisco, 2013.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G.
Lee, D. Patterson, A. Rabkin, I. Stoica and M. Zaharia, "A View of Cloud
Computing," Communications of the ACM, vol. 53, no. 4, pp. 50-58, 2011.

[3] Y. Chen and R. Sion, "To Cloud Or Not To Cloud Musings On Costs and
Viability," Proceedings of 2nd ACM Symposium on Cloud Computing, 2009.

[4] EMC, "The Cloud Service Provider Report, issue 21," 2012.

[5] K. R. Choo, "Trends and Issues in Crime and Criminal Justice," Australian
Institute of Criminology, 2010.

[6] G. Melvin, "Survivability and information assurance in the cloud,"
Proceedings of the 4th Workshop on Recent Advances in Intrusion-Tolerant
Systems (WRAITS’10), pp. 194 - 195, 2010.

[7] TClouds, "Project TCLOUDS – trustworthy clouds - privacy and
resilience for Internet-scale critical infrastructure," [Online]. Available:
http://www.tclouds-project.eu/. [Accessed 23 September 2013].

[8] F. Rocha, S. Abreu and M. Correia, "The Final Frontier: Confidentiality
and Privacy in the Cloud," IEEE Computer, vol. 44, no. 9, pp. 44-50, 2011.

90

[9] N. Santos, R. Rodrigues and B. Ford, "Enhancing the OS against security
threats in system administration," ACM/IFIP/USENIX 13th International
Middleware Conference, pp. 415-435, 2012.

[10] N. Santos, R. Rodrigues, K. P. Gummadi and S. Saroiou, "Building
Trustworthy Cloud Services with Excalibur," 21st USENIX Security
Symposium (USENIX Security '12), 2012.

[11] A. Bessani, M. Correia, B. Quaresma, F. André and P. Sousa, "DepSky
Dependable and Secure Storage in a Cloud-of-Clouds," EuroSys '11
Proceedings of the sixth conference on Computer systems, pp. 31-46, 2011.

[12] R. C. Jammalamadaka, R. Gamboni, S. Mehrotra, K. Seamons and N.
Venkatasubramanian, "iDataGuard An Interoperable Security
Middleware for Untrusted Internet Data Storage," Proceedings of the
ACM/IFIP/USENIX Middleware'08 Conference Companion, pp. 36-41, 2008.

[13] K. D. Bowers, A. Juels and A. Oprea, "HAIL: A High-Availability and
Integrity Layer for Cloud Storage," Proceedings of the 16th ACM conference
on Computer and communications security, pp. 187-198, 2009.

[14] H. Abu-Libdeh, L. Princehouse and H. Weatherspoon, "RACS: A Case for
Cloud Storage Diversity," Proceedings of the 1st ACM symposium on Cloud
computing, pp. 229-240, 2010.

[15] "Amazon S3," [Online]. Available: https://aws.amazon.com/s3/.
[Accessed 19 September 2013].

[16] "Google Cloud Storage," [Online]. Available:
https://cloud.google.com/products/cloud-storage. [Accessed 19
September 2013].

[17] "Nirvanix Public Cloud Storage," [Online]. Available:
http://www.nirvanix.com/products-services/cloudcomplete-public-
cloud-storage/index.aspx. [Accessed 19 September 2013].

[18] "Rackspace Cloud Files," [Online]. Available:
http://www.rackspace.com/cloud/files/. [Accessed 19 September 2013].

91

[19] R. Choubey, R. Dubey and J. Bhattacharjee, "A Survey on Cloud
Computing Security, Challenges and Threats," International Journal on
Computer Science and Engineering, vol. 3, no. 3, pp. 1227-1231, 2011.

[20] Cloud Security Alliance, "Expanded Top Ten Big Data Security and
Privacy Challenges," 2013.

[21] "Controlling Data in the Cloud Outsourcing Computation without
Outsourcing Control," Proceedings of the 2009 ACM Cloud Computing
Security Workshop, 2009.

[22] Hitachi Data Systems, "How to Improve Healthcare with Cloud
Computing," 2012.

[23] Engadget, "Gmail accidentally resetting accounts, years of
correspondence vanish into the cloud?," 27 February 2011. [Online].
Available: http://www.engadget.com/2011/02/27/gmail-accidentally-
resetting-accounts-years-of-correspondence-v/. [Accessed 19 September
2013].

[24] PCworld, "Hotmail Data Loss Reveals Cloud Trust Issues," 3 January
2011. [Online]. Available:
http://www.pcworld.com/article/215365/hotmail_data_loss_reveals_cl
oud_trust_issues.html. [Accessed 19 September 2013].

[25] Sophos, "Many Amazon S3 cloud storage users are exposing sensitive
company secrets, claims report," 29 March 2013. [Online]. Available:
http://nakedsecurity.sophos.com/2013/03/29/amazon-s3-cloud-
storage-data-leak/. [Accessed 19 September 2013].

[26] TheGuardian, "NSA Prism program taps in to user data of Apple, Google
and others," 7 June 2013. [Online]. Available:
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-
data. [Accessed 19 September 2013].

[27] A. Shamir, "How to Share a Secret," Communications of ACM, vol. 22, no.
11, 1979.

92

[28] K. Kaya, S. A. Aydın and Z. Tezcan, "Threshold Cryptography Based on
Asmuth-Bloom Secret Sharing," 2007.

[29] I. N. Bozkurt, K. Kaya, A. A. Selc and A. M. Güloglu, "Threshold
Cryptography Based on Blakley Secret Sharing," Information Sciences,
2008.

[30] B. Ferreira and H. Domingos, "Searching Private Data in a Cloud
Encrypted Domain," Proceedings of the 10th International Conference in the
RIAO (OAIR 2013), 2013.

[31] IEEE Computer Society Publications, Multimedia Information Extraction,
John Wiley & Sons, Inc., 2012.

[32] S. Heinz and J. Zobel, "Efficient Single-Pass Index Construction for Text
Databases," Journal of the American Society for Information Science and
Technology, vol. 54, no. 8, pp. 713-729, 2003.

[33] C. D. Manning, P. Raghavan and H. Schütze, An Introduction to
Information Retrieval, Cambridge: Cambridge University Press, 2009.

[34] K. S. Jones, S. Walker and S. E. Robertson, "A probabilistic model of
information retrieval: development and comparative experiments,"
Information Processing and Management, vol. 36, no. 6, pp. 779 - 808, 2000.

[35] V. Shoup, "Practical Threshold Signatures," EUROCRYPT'00, pp. 207-220,
2000.

[36] J. Cowling, D. Myers, B. Liskov, R. Rodrigues and L. Shrira, "HQ
Replication: A Hybrid Quorum Protocol for Byzantine Fault Tolerance,"
7th USENIX Symposium on Operating System Design and Implementation,
2006.

[37] J. Sousa and A. Bessani, "From Byzantine Consensus to BFT State
Machine Replication: A Latency-Optimal Transformation," Ninth
European Dependable Computing Conference, pp. 37-48, 2012.

[38] L. Tavernini, "Lucio Tavernini Home Page," 15 August 2011. [Online].
Available:

93

http://tavernini.com/tablet_notes/2013_fall/mat_3633.001/mat3633not
e01.pdf. [Accessed 19 September 2013].

[39] R. Martin, "Introduction to Secret Sharing Schemes".

[40] W. Stallings, "The Chinese Remainder Theorem," in Cryptography and
Network Security Principles and Practices, Prentice Hall, 2011, pp. 254-257.

[41] A. J. Menezes, P. C. Oorschot and S. A. Vanstone, "Secret Sharing," in
Handbook of Applied Cryptography, 1996, pp. 524-528.

[42] M.-S. Hwang and T.-Y. Chang, "Threshold Signatures: Current Status and
Key Issues," International Journal of Network Security, vol. 1, no. 3, pp. 123-
137, 2005.

[43] C. Gentry, "Fully Homomorphic Encryption using Ideal Lattices,"
Proceedings of the 41st annual ACM symposium on Theory of computing, pp.
169-178, 2009.

[44] . M. van Dijk, . C. Gentry, . S. Halevi and V. Vaikuntanathan, "Fully
Homomorphic Encryption over the Integers," 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pp.
24-43, 2010.

[45] R. A. Popa, C. M. S. Redfield, N. Zeldovich and H. Balakrishnan,
"CryptDB: Protecting Confidentiality with Encrypted Query processing,"
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, pp. 85-100, 2011.

[46] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur,
J. Howell, J. R. Lorch, M. Theimer and R. P. Wattenhofer, "Farsite:
Federated, Available, and Reliable Storage for an Incompletely Trusted
Environment," Proceedings of the 5th symposium on Operating systems design
and implementation, 2002.

[47] S. Narayan, M. Gagné and R. Safavi-Naini, "Privacy Preserving EHR
System using Attribute-Based Infrastructure," Proceedings of the 2010 ACM
workshop on Cloud computing security workshop, pp. 47-52, 2010.

94

[48] K. P. N. Puttaswamy, C. Kruegel and B. Y. Zhao, "Silverline: Toward Data
Confidentiality in Storage-Intensive Cloud Applications," Proceedings of
the 2nd ACM Symposium on Cloud Computing, 2011.

[49] A. A. Ucla, A. Avizienis, J.-c. Laprie and B. Randell, Fundamental Concepts
of Dependability, 2001.

[50] "Microsoft Azure," [Online]. Available: http://www.windowsazure.com.
[Accessed 19 September 2013].

[51] "Dropbox," [Online]. Available: https://www.dropbox.com/. [Accessed
19 September 2013].

[52] Dropbox, "Yesterday’s Authentication Bug," 20 June 2011. [Online].
Available: https://blog.dropbox.com/2011/06/yesterdays-
authentication-bug/. [Accessed 19 September 2013].

[53] LunaCloud, [Online]. Available: http://www.lunacloud.com/en/cloud-
storage. [Accessed 19 September 2013].

[54] A. M. C. Guiomar, "T-Stratus - Confiabilidade e Privacidade com Nuvens
de Armazenamento de Dados," DI-FCT-UNL, 2013.

[55] I. McFarland, J. Stevens, J. Schnitzer, E. De Oliveira and S. Hernandez,
"SubEtha SMTP," [Online]. Available:
http://code.google.com/p/subethasmtp/. [Accessed 21 September
2013].

[56] Oracle, "JavaMail API," [Online]. Available:
http://www.oracle.com/technetwork/java/javamail/index.html.
[Accessed 20 September 2013].

[57] Apache, "Apache Tika Toolkit," [Online]. Available:
https://tika.apache.org/. [Accessed 20 September 2013].

[58] Apache, "Apache Lucene Project," [Online]. Available:
https://lucene.apache.org/. [Accessed 22 September 2013].

95

Glossary

ABE or Attribute Based Encryption is a type of public key encryption in which the de-
cryption is dependent, not only from a secret key and the correspondent cipher text , as
is dependent of a set of attributes, this is, to decrypt such data user associated attributes
has to match cipher text attributes.

AES or Advanced Encryption Standard also kwon as Rijndael is a block cipher adopted
as standard by the US government.

API Application Programming Interface.

CA Certification Authority.

CBC Cipher Block Chaining.

EHR or Electronic Health Records is a concept of uniting a set of electronic heath infor-
mation (like medical history, medication, allergies, laboratory tests and radiology imag-
es) of each and every patiant in a single record. Theoretically such records can be shared
among different heath care facilities and staff in order to facilitate the access to such da-
ta.

HAIL High-Availability and Integrity Layer for Cloud Storage.

96

HMAC or Hash-based Message Authentication Code, can be used to verify message
integrity and authenticity. The inner process of MAC generation can use any hash func-
tion as MD5 or SHA1. The security of an HMAC depends on the security of the used
hash function. HMACs are used in IPSec and TLS protocols.

HTTP or Hypertext Transfer Protocol, is a application level protocol used as communi-
cation base in World Wide Web. The protocol defines eight different request methods
(GET, HEAD, POST, PUT, DELETE, TRACE, OPTIONS e CONNECT). For each request
a standard response code follows.

IaaS or Infrastructure as a Service, is a provision model in which the organizations out-
source the equipment used to support the operations. Hardware, storage, servers and
networking can be outsourced via a service provider charged of housing, running and
maintaining such components.

MIME or Multipurpose Internet Mail Extensions, it is a standard that defines electronic
message content format. S/MIME extend MIME standard by including cryptographic
security services enabling message authentication and integrity check.

Multitenant, refers to a principle in which a same software, service is provided to mul-
tiple clients or organizations (tenants).

OEK Object Encryption Key.

PaaS or Platform as a Service, is a provision model in which the client creates/uses and
deploys software to the provider premises controlling configurations. The provider may
also provide facilities to application design, development and testing.

PDP Proof of Data Possession.

POP3 or Post Office Protocol is an applicational layer protocol used to remotely access
electronic messages (mailbox access). Defined in RFC 1939 allow that all messages in a
mailbox to be transferred sequentially to a local machine.

POR Proof Of Retrievability.

97

RACS Redundant Array of Cloud Storage.

RAID or Redundant Array of Independent Drives, defines a way of organizing indi-
vidual physical disks in order to improve reliability or attain better performances.
Standard defines RAID 1 to 6 and each standard can be recombined to form new topol-
ogies.

REST Representational State Transfer.

SaaS or Software as a Service sometimes referred as on-demand software, is a provision
model in which the provider offers the client out-of-the-box, sometimes already config-
ured and ready to use, software solutions.

SLA or Service Level Agreement, defines the contracted service deliver times including
expected availability times and performances of the provided service over a certain pe-
riod of time. The SLA can define some standard metrics, as for instance, mean time be-
tween failures (MTBF), mean time to repair or mean time to recovery (MTTR). These
agreements also include exclusion terms safeguarding the provider from unforeseen
circumstances that can lead to loss of availability or durability.

SMTP or Simple Mail Transfer Protocol, is an Internet standard electronic email trans-
mission applicational protocol. Defined in RFC 5321 the protocol is used to send and
receive email messages from MUAs (Mail User Agents) to mail servers or to exchange
messages within email servers.

SSL or Secure Sockets Layer, is a standard, widely used, application layer protocol
providing secure communications over the Internet. Such protocol can be used as
wrapper with other known protocols, as email exchange protocols.

TCB or Trusted Computing Base, defines or delimits a set of hardware or software
components as trustable in a security vision. This is, it is assumed that no vulnerabili-
ties, bugs or attacks can occur in such components.

	1. Introduction
	1.1. Context and Motivation
	1.2. Cloud as a Service
	1.3. Security Issues of data stored in public clouds
	1.4. Thesis problem statement
	1.5. Objectives
	1.6. Main Contributions
	1.7. Contributions and achieved results

	2. Related Work
	1.
	2.1. Cryptographic Mechanisms and Tools
	2.1.1 Secret Sharing Schemes
	2.1.1.1. Shamir Secret Sharing Scheme
	Practical Example

	2.1.1.2. Blakley Secret Sharing Scheme
	Algorithm

	2.1.1.3. Asmuth-Bloom Secret Sharing Scheme

	2.1.2 Threshold Signatures
	2.1.3 Homomorphic encryption
	2.1.3.1. CryptDB
	2.1.3.2. Discussion

	2.2. Data Management
	2.2.1 Dependable Data Storage Systems
	2.2.1.1. Farsite
	2.2.1.2. EHR
	2.2.1.3. Silverline
	2.2.1.4. Discussion

	2.2.2 Cloud Oriented Dependable Solutions
	2.2.2.1. Depsky
	2.2.2.2. iDataGuard
	2.2.2.3. HAIL
	2.2.2.4. RACS
	2.2.2.5. Discussion

	2.2.3 Final Discussion

	2.3. Cloud Storage Platforms and Services
	2.3.1 Amazon S3
	2.3.2 Google Cloud Storage
	2.3.3 Nirvanix Cloud Storage
	2.3.4 Rackspace Cloud Files
	2.3.5 Microsoft Azure
	2.3.6 Dropbox
	2.3.7 Luna Cloud
	2.3.8 Comparison

	3. System Model and Architecture
	3.1. Attacker model
	3.2. System requirements
	3.3. System Architecture
	3.4. Data Model
	3.5. System Model Generalization

	4. Implementation
	4.1. Storage Module
	4.2. Frontend and Endpoints
	4.3. Core Modules
	4.4. Cloud Storage Layer
	4.5. Algorithms

	5. Evaluation
	5.1. The TSKY Framework
	5.2. Test execution environment
	5.3. Cloud Provider performance benchmarks (PUT/GET)
	5.4. Threshold Module Benchmark
	5.5. Secret Sharing Module Benchmark
	5.6. Encryption Module Benchmark
	5.7. Overall Solution Benchmark
	5.8. Cloud Based Proxy Solution Benchmark

	6. Conclusion and Future Work
	Conclusions
	Future work directions

