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ABSTRACT  

The new version of EN 459–1 standard for building limes redefined the classes of 

hydraulic limes and made the producers reformulate or reclassify their natural hydraulic 

limes.  

This work evaluates the mechanical, physical and microstructural behavior of 

mortars formulated with a recently produced natural hydraulic lime NHL3.5 that 

conforms to EN 459-1, submitted to natural marine environment, humid and 

standardized conditions, and also the benefits and drawbacks of adding metakaolin in 

partial replacement of lime. 

Mortars with NHL3.5 present positive results at young ages. The metakaolin 

addition increases strength while decreasing the capillary water coefficient. The 

behavior in an aggressive marine environment seems promising. 
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1. Introduction 

There are records and archaeological sites which prove that ancient civilizations 

used limes with pozzolans for the preparation of mortars with hydraulic characteristics 

namely to be into contact with water, which contributed to the development of limes 

with hydraulic properties [1]. With the discovery of hydraulic binders during the 18th 

century, air limes were gradually replaced by hydraulic limes and by the beginning of 

the 20th century, mainly by Portland Cement (PC), a binder with a faster hardening and 

stronger mechanical characteristics [1-5].  

Nowadays, it is common knowledge that the PC used in mortars for conservation 

and repair of old buildings was generally a wrong choice, being responsible for several 

problems in the repaired area, where it is frequently associated with the origin of the 

pathology [6,7]. Many buildings are prone to moisture action and particularly to marine 

environment, which can lead to degradation of rendering systems. This situation urges 

the need to select adequate mortars to be applied for repair purposes. In the last 

decades, due to better compatibility with masonries and facades of old buildings, lime 

mortars are slowly returning to repair works. Bearing this in mind, facing the 

degradation of the housing stock and the global construction crisis, maintenance of 

buildings arises as both a work and study opportunity, promoting the development of 

new and compatible mortars based on lime for the repair of old masonries.  

Nowadays natural hydraulic lime NHL3.5 can be produced by calcination at around 

900ºC of more or less argillaceous or siliceous limestones, forming calcium silicates 

and aluminates. The implementation of the new version of European Standard EN 

459–1:2010 [8] made some producers reformulate or reclassify some of their building 

limes [9-11]. The new version of the building lime standard establishes three groups of 

limes with hydraulic properties: the natural hydraulic limes, NHL, the hydraulic limes HL 

and the formulated limes, FL. Some of the limes formerly classified as NHL by EN 459–

1:2001 [12] are now classified as HL or FL by EN 459–1:2010 [8] due to more 

restricted requirements for NHL. This new version of EN 459–1 standard defines three 
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classes for natural hydraulic limes according to compressive strength developed after 

28 days of curing, as well as to Ca(OH)2 content. NHL3.5 limes must present a 

characteristic value of compressive resistance between 3.5 MPa and 10 MPa at 28 

days and a content of Ca(OH)2 of at least 25 % (weight percentage). 

 Pozzolans are defined as materials rich in silica and/or alumina in amorphous 

form, with high specific surface that have the property of reacting with calcium 

hydroxide, in the presence of water, forming hydraulic products. The pozzolanic 

materials can be obtained by many ways: they can be natural, originating from igneous 

rocks  and only need to have their particle size reduced, or they can be artificial. 

Artificial pozzolans can be produced by thermal treatment. This is are the case of 

ashes resulting from the combustion of vegetal products (like rice husk ashes), of 

natural materials such as clays for example metakaolin. They may result directly from 

ground industrial byproducts (e.g. some ceramics or coal and biomass fly ashes) [13-

15]. Their use has great advantages, both economic and environmental. Artificial 

pozzolans from calcinated materials are produced recurring to thermal treatment at 

temperatures below the sintering temperature of hydraulic binders. Therefore when 

incorporated in building materials they contribute to diminishing greenhouse gas 

emissions, which makes them more sustainable materials than common hydraulic 

binders. Interest concerning the use of pozzolans has been increasing once the 

mixture of hydraulic binders and pozzolans results in mortars with improved durability 

characteristics [15,16].  

Metakaolin (MK) is a pozzolanic material resulting from kaolinitic clays thermally 

treated. After calcination and grinding it can become a highly reactive pozzolan with a 

high potential for mortars based on lime. However, studies of lime-metakaolin mortars 

and renders are relatively rare (only about 30–40 references in Web of Science during 

the last 30 years) [17], compared to cement-metakaolin mortars, and are even more so 

in the case of natural hydraulic lime-metakaolin mortars. 
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The curing conditions are an important parameter for the mortars’ characterization. 

Different curing conditions produce changes in characteristics due to the development 

of chemical reactions in time [16,18] and propitiate different developments in the setting 

and hardening reactions, which will influence the mortars strength, porosity and 

microstructure [11,19]. Actually, the onsite curing conditions are completely different 

from laboratory standardized conditions, so it is important to analyze the influence of 

this factor, by testing mortars with different   curing conditions, either laboratorial or 

natural. 

In this paper, mortars formulated with a new NHL3.5, without and with metakaolin, 

are characterized in terms of mechanical, water action and porosity behaviour after 

different curing conditions, one of them being a natural marine environment curing 

condition in. The influence of metakaolin incorporation and of the curing conditions on 

the evolution of NHL mortars with ageing is evaluated in terms of their durability 

characteristics. 

 

2. Experimental study 

The experimental study involved hydraulic lime mortars preparation, based on a 

natural hydraulic lime NHL3.5 with binder:aggregate ratio of 1:5 in weight. The mass of 

binder was maintained (NHL mortar) or partially replaced by metakaolin (MK) in weight 

percentages of 10% (NHL_10MK mortar) and 20% (NHL_20MK mortar). The mortar 

samples were exposed to three different curing conditions, and afterwards tested at 

different ages, up to 180 days. The weight ratio 1:5 was chosen because it 

corresponds approximately to a commonly used reference volumetric 1:3 

binder:aggregate ratio [14], in which the volume of binder fills the voids between the 

sand grains, 
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2.1 Mortars preparation: materials and mixture 

The mortars were prepared with a Portuguese natural hydraulic lime NHL3.5 [8] 

produced by SECIL, and a French metakaolin Argical M1200S produced by IMERYS. 

The chemical compositions of the NHL and the MK are presented in Table 1. The MK’s 

Blaine specific surface is 3.38 m2/g, and the particle size distribution d(10%) = 1.53 µm, 

d(50%) = 4.35 µm and d(90%) = 11.97 µm 

A mixture of three washed and well graded siliceous sands was used as 

aggregate. The mixture of sands was composed of coarse sand, medium sand and 

finer sand in a volumetric ratio of 1:1.5:1.5, and intended to reduce the volume of voids 

between the grains, increasing the loose bulk density. The particle size distribution 

curves of each sand type and of the corresponding mixture are presented in Figure 1. 

The loose bulk density of the granular constituents, determined according EN 1097-

3:1998 [20], is presented in Table 2. For each NHL-MK mortar, a defined percentage of 

lime (10% or 20%, in weight) was substituted by the same weight of metakaolin. The 

mortars’ weight percentage of lime substitution by MK, the volumetric and the weight 

compositions in terms of NHL+MK:Sand and NHL:MK:Sand, are shown in Table 3.  

A quantity of potable water, previously determined to obtain mortars with flow 

consistency around of 150mm was used. The preparation of the mortars and samples 

was based on 1015–2:1998/A1:2006 [21] but adapted to lime-based mortars, as 

follows: each mortar began with the correct weighing and manual homogenization of all 

dry materials and their introduction into the mechanical mixer container; the mechanical 

mixer worked at low speed and the water was introduced during the first 15 to 20 

seconds; after 150 seconds the machine was stopped to scrape the borders and 

involve the mortar and turned on for another 30 seconds to complete the mixture.  

The water/(NHL+MK) ratio of the mortars is presented in Table 3, as well as the 

flow table consistency, which was determined based on the European Standard EN 

1015–3:1999 [22]. The mortars were then cast into metallic prismatic moulds with 40 x 
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40 x 160 (mm), completed with two layers, each of one mechanically compacted with 

20 strokes within a mechanical mortars compacter device.  

Table 1 - Chemical composition (in wt. %) of materials used as binder in mortar 

preparation [11]. 

Material SiO2 Al2O3 Fe2O3 MnO MgO Na2O K2O TiO2 P2O5 SO3 CaO LOI* 

MK 54.39 39.36 1.75 0.01 0.14 – 1.03 1.55 0.06 - - 1.90 

NHL 5.70 1.84 1.22 0.02 1.00 0.08 0.49 0.14 0.03 1.00 62.00 26.00 

LOI - Loss on ignition  

 
 

Table 2 – Loose bulk density of the materials. 

Loose bulk Density (g/cm3) 

MK 0.294 

NHL 0.846 

Coarse Sand 1.412 

Medium sand 1.405 

Finer sand 1.388 

Sand mixture 1.463 

 

It can be seen from Table 2 that among the different sand types, the finer sand 

presents the minor loose bulk density value, as expected. As it can be observed by 

Figure 1 the sand mixture presents an extended particle size distribution with the 

objective to obtain more compact mortars. In Table 3 the weight proportions of the 

constituents are presented for all the mortars. 

 

 
Fig. 1 – Particle size distribution of the sands and its mixture. 
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Table 3 – Mortar mixes identification, metakaolin weight content, volumetric and weight 

ratios, water/binder ratio and flow table consistency. 

Mortar 
MK 

substitution 
[% NHL wt] 

Weight composition 
Water/binder 

ratio 

Consistency 
[mm] 

(average of 2 
replications) 

 
NHL+MK:Agg NHL:MK:Agg [-] 

NHL 0 1:5 1:0:5 1.1 152 ± 1 

NHL_10MK 10 1:5 1:0.1:5.5 1.1 149 ± 2 

NHL_20MK 20 1:5 1:0.2:6 1.1 143 ± 1 

 

2.2 Curing conditions 

The freshly moulded mortar samples were placed inside polyethylene bags for 7 

days for initial curing; after the two first days the samples were demoulded and 

continued inside the bags. After this pre-curing time, the samples were divided in three 

groups, each group corresponding to a distinct curing condition. The curing conditions 

employed were: M -  natural marine environment at the experimental station of LNEC in 

Cabo Raso (Cascais village, Portugal, close to the Atlantic Coast); H – laboratorial 

controlled humid curing, with temperature (T) = 21 ± 2 ºC and relative humidity (RH) = 

95 ± 5%; S - laboratorial controlled standard curing, according to EN 1015–11 [23] 

where the mortars were placed in T = 20 ± 3 ºC and RH = 65 ± 5%. 

The mortar samples exposed to M curing were placed vertically, with the top 

protected by a ceramic tile to avoid the risk of damage by weather during the first days, 

and experienced natural salt water spray and salt fog conditions from January to July 

2012 (winter and spring time). The average T and RH conditions during this period in 

the experimental station are presented in Table 4.  

 

Table 4 – Average values of T and RH at marine environment M curing 
condition 

Curing periods Temperature [°C] Relativity Humidity [%] 

0-28 days 10.2±3.7 57.0±17.2 

29-90 days 13.7±3.4 67.3±17.4 

91-180 days 17.1±3.3 75.1±16.6 
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2.3 Testing program: methods and results 

Characterization tests of hardened mortars were carried out at 28 days and 180 

days of age for all the mortars in all curing conditions. The day before testing, the 

samples were all conditioned at S curing conditions to guarantee that none was too wet 

for testing.  

Tests were generally performed on a minimum of three samples of each 

mortar/curing/age, except for mercury porosimetry for which only one sample of each 

mortar/curing/age was used.  

Mortar specimens were initially tested for dynamic modulus of elasticity and 

flexural strength. After that, each specimen produced two halves. One half was 

subjected to compressive strength test, which resulted in sufficiently intact parts for the 

hydrostatic open porosity and mercury porosimetry tests; the other half specimen was 

subjected to another set of tests, including water absorption capillarity and drying. 

 

2.3.1 Dynamic modulus of elasticity and flexural and compressive strength 

The dynamic modulus of elasticity test was based on EN 14146:2004 [24], with 

measurement of the longitudinal resonance frequency of the sample performed by a 

ZEUS Resonance Meter equipment. The flexural (FS) and compressive (CS) strength 

tests, were based on the European standard EN 1015–11:1999 / A1: 2006 [23], and 

the flexural and compressive actions were imposed through a universal machine, 

ZWICK Z050. For flexural test a 2 kN load cell was used while for compressive strength 

a 50 kN load cell was applied. The test results can be found in Table 5. 

 

Table 5 – Dynamic modulus of elasticity, flexural  and compressive strength (average 

values and standard deviation) of mortars aged 28 and 180 days. 

Mortar 
E [MPa] FS [MPa] CS [MPa] 

28 days 180 days 28 days 180 days 28 days 180 days 

NHL_M 4142 ± 127 6746 ± 227 0.50 ± 0.02 1.14 ± 0.03 1.19 ± 0.14 2.54 ± 0.37 

NHL_H 5181 ± 467 7243 ± 198 0.87 ± 0.05 1.27 ± 0.16 1.51 ± 0.16 2.50 ± 0.12 

NHL_S 4094 ± 82 4694 ± 170 0.52 ± 0.04 0.58 ± 0.04 1.01 ± 0.02 1.14 ± 0.13 
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NHL_10MK_M 5457 ± 172 4788 ± 110 0.88 ± 0.03 0.88 ± 0.05 3.16 ± 0.03 4.02 ± 0.71 

NHL_10MK_H 9185 ± 251 8285 ± 306 0.75 ± 0.09 1.38 ± 0.03 3.75 ± 0.32 3.62 ± 0.32 

NHL_10MK_S 4951 ± 743 4559 ± 762 0.84 ± 0.13 0.64 ± 0.11 4.07 ± 0.61 3.76 ± 1.29 

NHL_20MK_M 8904 ± 219 5875 ± 963 1.14 ± 0.02 0.88 ± 0.07 6.54 ± 0.31 5.10 ± 1.25 

NHL_20MK_H 12786 ± 1444 8828 ± 1211 1.39 ± 0.16 1.33 ± 0.10 7.10 ± 0.68 5.09 ± 0.41 

NHL_20MK_S 7746 ± 246 6959 ± 521 1.11 ± 0.06 1.13 ± 0.04 6.93 ± 0.13 4.53 ± 1.52 

Note: Compressive strength values at 28 days from mortars NHL are different from the values 

indicated by the producer because the aggregates and the water quantity used in the mortar´s 

preparation, as well as mixing procedures, are different from those that are standardized. 

 

2.3.2 Bulk density and open porosity by hydrostatic method  

 

Before the test, mortar samples were placed in an oven at 60°C for a minimum 

of 24 hours in order to attain mass stabilization. These tests were performed based on 

stone standard EN 1936:2006 [25], by total saturation with water under vacuum and 

hydrostatic weighing. Samples were kept dry and under vacuum for 24 hours , 

maintained under vacuum but immersed in water for another 24 hours and then left for 

24 hours immersed at ambiance pressure; after these periods they were hydrostatically 

and water saturated weighed. The results can be consulted in Table 6. 

 

Table 6 – Bulk density and open porosity by the hydrostatic method (average and 

standard deviation) of mortars aged 28 and 180 days. 

Mortar 
Open porosity - hydrostatic [%] Bulk density [kg/m

3
] 

28 days 180 days 28 days 180 days 

NHL_M 28.1 ± 0.2 25.1 ± 0.5 1787 ± 9 1903 ± 8 

NHL_H 28.6 ± 0.9 25.9 ± 1.3 1762 ± 19 1902 ± 12 

NHL_S 27.9 ± 0.6 25.7 ± 0.5 1783 ± 9 1884 ± 18 

NHL_10MK_M 28.3 ± 0.2 26.2 ± 0.6 1735 ± 11 1855 ± 17 

NHL_10MK_H 27.9 ± 0.8 26.7 ± 0.6 1755 ± 10 1845 ± 13 

NHL_10MK_S 27.7 ± 0.7 26.2 ± 0.9 1759 ± 18 1848 ± 14 

NHL_20MK_M 27.7 ± 0.1 26.2 ± 0.2 1733 ± 22 1838 ± 3 

NHL_20MK_H 28.0 ± 0.6 26.5 ± 0.3 1750 ± 15 1826 ± 7 

NHL_20MK_S 27.1 ± 0.2 26.5 ± 0.5 1753 ± 23 1835 ± 19 
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2.3.3 Mercury porosimetry 

 

Pore size distribution was determined with a mercury porosimeter Micromeritics 

Autopore II. The test samples were previously placed in an oven at 40°C for mass 

stabilization. Penetrometers had a 5 cm3 bulb and total capacity of 1.716 cm3; the 

samples were prepared in order to occupy the greater part of this volume. Tests began 

with low pressure testing, ranging from 0.014 MPa to 0.207 MPa, and afterwards high 

pressure analysis from 0.276 MPa to 206.843 MPa. The range of the micropores is 

located at 0.1-1µm. Incremental curves are plotted in Figure 2. The pore size diameter 

is expressed in microns and each step of the mercury intrusion is represented in ml/g. 

Figure 3 shows the main pore size and incremental intrusion evolution. All curing 

conditions show a decrease of the main pore size with the increment of MK content. 
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Fig. 2 – Mercury porosimetry of all mortars in marine (a), humid (b) and standard (c) 

curing conditions.   
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Fig. 3 – Main pore size and incremental intrusion evolution of all mortars. 
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and the asymptotic value (AV in kg/m2) that corresponds to the maximum value of 

water absorbed by contact area during the test. The results obtained are presented in 

Table 7. 

 

Table 7 – Capillary water coefficient and asymptotic water absorption (average and 

standard deviation) of mortars aged 28 and 180 days. 

Mortar 
C [kg/(m

2
.min

0.5
)] AV [kg/m

2
] 

28 days 180 days 28 days 180 days 

NHL_M 3.48 ± 0.12 3.09 ± 0.26 21.9 ± 0.5 19.4 ± 1.4 

NHL_H 2.88 ± 0.41 2.72 ± 0.16 21.9 ± 1.6 19.7 ± 2.1 

NHL_S 3.56 ± 0.23 3.61 ± 0.05 21.4 ± 1.1 19.7 ± 0.6 

NHL_10MK_M 2.43 ± 0.15 2.33 ± 0.16 23.9 ± 2.8 20.6 ± 0.7 

NHL_10MK_H 2.10 ± 0.04 2.29 ± 0.14 22.5 ± 1.7 22.9 ± 1.5 

NHL_10MK_S 2.23 ± 0.06 2.43 ± 0.43 21.8 ± 1.9 21.1 ± 2.2 

NHL_20MK_M 1.55 ± 0.08 2.04 ± 0.22 22.7 ± 0.9 20.7 ± 0.6 

NHL_20MK_H 1.46 ± 0.04 2.12 ± 0.29 23.1 ± 0.5 20.8 ± 0.5 

NHL_20MK_S 1.66 ± 0.15 1.89 ± 0.00 22.7 ± 0.8 21.9 ± 1.6 
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Fig. 4 – Water absorption curves of all mortars in marine (a), humid (b) and standard 

(c) curing condition. 
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2.3.5 Drying test 

The drying test was performed based on RILEM specification, Test nº. II.5 [28] 

and on Italian standard, NORMAL 29/88 [29]. The test was conducted in a stable 

environment in terms of temperature and humidity (T = 20±3 ºC and RH = 65±5 %). 

Only the top of the samples was not waterproof and the test began when the capillary 

test stopped, with the samples completely saturated with water. The samples were 

weighed in the first hours and daily thereafter up to 480 hours, when all the samples 

met equilibrium with the environmental conditions. The water content (wt) of the 

samples was determined by Equation 1:  

    
     
  

 

[Equation 1] 

wti [%]: water content at instant ti 

mi [g]: mass of the sample at instant ti 

m0 [g]: dry mass of the sample 

 

The drying curve was built, relating in abscissae the time in hours (t in h) and in 

ordinate the water content, in percentage (wt in %).  

With the water content it is also possible to calculate the drying index (DI), value 

that reflects the global drying evaluation; a minor value of the drying index reflects a 

globally easier drying behavior. The drying index can be calculated by equation 2 from 

the Italian standard [29] and was simplified to Equation 3: 

    
∫  (  )  
  
  

       
 

[Equation 2] 

     
∑ [(       )  (

         
 )]   

   

       
 

[Equation 3] 

DI [-]: drying index 

ti [h]: test time ti 
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tf [h]: total duration of the test 

wti [%]: water content in time ti 

wmax [%]: maximum water content  at initial testing time 

f(wt) [-]: water content  function of time 

 

Instead of the water content (in %) the drying curve can also be determined with 

the mass per drying area of the top of the sample (in kg/m2), Figure 5. The drying rate 

was calculated by the slope of the initial portion of the drying curve and represents the 

initial velocity of water drying; a higher slope of the curve to the horizontal axis reflects 

major initial drying rate and faster initial drying (Drying Rate, DR). 

The drying index and drying rate results are shown on Table 8. 

 

Table 8 – Drying index and drying rate (average values and standard deviation) of 

mortars aged 28 and 180 days. 

Mortar 
DI [-] DR [kg/(m

2
.h)] 

28 days 180 days 28 days 180 days 

NHL_M 0.35 ± 0.02 0.34 ± 0.09 0.13 ± 0.01 0.10 ± 0.02 

NHL_H 0.35 ± 0.03 0.34 ± 0.02 0.13 ± 0.01 0.11 ± 0.01 

NHL_S 0.34 ± 0.02 0.32 ± 0.07 0.13 ± 0.01 0.09 ± 0.02 

NHL_10MK_M 0.40 ± 0.02 0.42 ±0.01 0.14 ± 0.02 0.07 ± 0.02 

NHL_10MK_H 0.45 ±0.01 0.41 ± 0.03 0.12 ± 0.01 0.11 ± 0.02 

NHL_10MK_S 0.38 ±0.04 0.37 ± 0.00 0.14 ± 0.00 0.10 ± 0.02 

NHL_20MK_M 0.49 ±0.02 0.43 ± 0.02 0.12 ± 0.00 0.10 ± 0.02 

NHL_20MK_H 0.55 ±0.02 0.40 ± 0.01 0.10 ± 0.01 0.10 ± 0.02 

NHL_20MK_S 0.47 ±0.01 0.41 ± 0.03 0.12 ± 0.00 0.10 ± 0.01 
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Fig. 5 – Drying curves of all mortars in marine (a), humid (b) and standard (S) curing 

condition. 
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3. Discussion 

Microstructure 

The MIP results show that at 28 and 180 days the mortars with MK present a 

remarkable pore size reduction when compared with the NHL mortars. At 28 days, the 

NHL mortars present pores around 1.40 µm, while the NHL_10MK and NHL_20MK 

mortars mainly present pores around 0.15 µm to 0.11 µm.  At 180 days, the mortars 

without MK present pores around 1.37 µm, while the NHL_10MK mortars present pores 

around 0.17 µm and 0.13 µm for NHL_20MK mortars. These results also show an 

improvement of the pore size reduction with the increase of MK content. 

The pore size distribution does not register a significantly variation with ageing, 

although some differences can be seen for MK mortars in humid and marine curing; 

however the main pore sizes decrease in mortars without MK and increase in mortars 

with MK.  

Values of open porosity and average pore radius are within the range of NHL-

based mortars recently studied by Gullota [30]. 

 

Mechanical parameters 

Results of the three mechanical parameters – flexural strength, compressive 

strength and dynamic modulus of elasticity have a similar evolution trend, which 

validates the obtained results. For that reason the discussion of results will focus 

mainly on compressive strength but, with no major changest, can be extrapolated for E 

and FS. 

At young ages (28 days) the humid curing leads to higher results of CS, as 

expected considering that a higher value of RH favors a higher hydration degree. With 

the addition of MK, mortars mechanical behavior is even higher inhumid curing 

conditions, reflecting the fact that higher values of RH favor both hydration and 

pozzolanic reactions. These two reactions influence the microstructure evolution, 
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contributing to the reduction of the main pore size, leading to more compact mortars 

and consequently to higher CS. 

At older ages (180 days) it can be seen that the marine curing leads to equivalent 

results to those obtained with humid curing. That is a promising result because 

itpermits to foresee a good performance of these mortars, with or without MK, in 

exterior marine natural environment even if the initial relative humidity is not very high, 

as can be noticed by Table 4. 

In mortars without MK the CS evolution with curing time shows an increment of 

strength. That fact can be associated with the evolution both of the hydration and 

carbonation reactions, and this increase is more noticeable at curing conditions with 

moisture access (M and H curing). However, mortars with MK show a general strength 

decrease over time for all curing conditions (except for M curing with 10% MK), 

suggesting instability of the hydrated compounds that are formed. This fact was 

discussed elsewhere based on mineralogical and chemical analysis [11] and has 

already been pointed out for different formulations, with air lime and MK [31] and 

hydraulic limes [16]. 

Analyzing the MIP results it is observed that main pores with smaller sizes lead to 

higher values of CS, Figure 6. This fact is clear in the mortars’ evolution, where mortars 

without MK present the highest main pore size and smallest CS values, in opposition to 

the mortars with MK content that have the lowest main pores size and bigger CS 

values. 
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Fig. 6 – Main pore size and compressive strengths evolution. 
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the lowest values. The relationship between C and the main pore size in MIP can be 

analyzed in Figure 7. Over curing time the evolution in all mortars is not very 

significant; however the increase of C in mortars with MK can be registered. 

 

 
Fig. 7 – Capillary water coefficient and main pore size evolution. 
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clear enhancement in terms of lowering capillary water absorption without worsening 

the drying ability to an inadequate degree. These  improvements are also connected to 

the curing conditions used. At this respect, it is shown that higher RH curing regimes 

benefits hydration and pozzolanic reactions, and also contributes to voids infilling. 

Moisture presence has a great contribute to the infilling of the porous structure of 

these mortars, shown by the decrease of main pore sizes of the NHL mortars. 

Considering the global analysis of absorption rate and drying rate, the mortars with MK 

incorporation present appropriate results, and particularly the NHL_20MK mortars, 

showing significantly lower capillary coefficient and comparatively similar drying rate. 

The mortars described in this study presented interesting results in terms of 

water action behaviour and mechanical strength that fact found explanation in the 

analysis of their microstructure. The results obtained in marine curing condition, a 

natural environment with an aggressive action, very common in Portugal and many 

other countries with ocean coasts, perspective that this type of mortars, based on a 

natural hydraulic lime, can be suitable for applications as renders, plasters and 

repointing mortars in these aggressive conditions. The partial substitution of lime by 

metakaolin can be useful to adjust the mortars characteristics for different types of 

supports and applications sites. 
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