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Abstract 

 

 

Cardiovascular diseases are the leading cause of death worldwide, and it is 

predicted that they will continue to be so, with an increasing number of deaths, mostly 

from heart diseases and strokes, which is expected to reach 23.3 million by 2030. 

Hence, it is pivotal that more studies in cardiovascular pathologies are developed. 

The use of nanotechnologies in Medicine has become very promising in multiple 

areas, like drug delivery, gene therapy, tissue engineering and diagnoses, with the 

latter being the core of this project. It follows other essays developed at Instituto de 

Medicina Molecular, with the intended purpose of further studying the fibrinogen 

marker for erythrocytes while investigating the importance of fibrinogen blood 

concentration for cardiovascular diseases. 

The main method used to achieve these goals was atomic force microscopy. This 

equipment has proved to be very promising as a highly sensitive and low operational 

cost diagnostic nanotool for the near future. It allows detailed understanding of the 

molecular mechanisms involved on the development of a disease, which is extremely 

relevant for the future development of new treatments. 

The study of fibrinogen and erythrocyte aggregations became a matter of 

concern since it was found that patients who had suffered from acute cardiovascular 

problems had higher fibrinogen concentration in their blood. From this point on, it was 
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important to prove if and how the concentration of this protein is involved in the 

cardiovascular problem, in order to achieve a new type of functional diagnosis. 

During the experimental time of this project, a thorough molecular study of the 

interactions between fibrinogen and its specific erythrocyte membrane receptor was 

performed with two different approaches:  

i. A follow-up of cardiac insufficiency patients of two different etiologies: ischemic 

and non-ischemic. Our results show that ischemic patient erythrocytes have the 

highest binding force with fibrinogen, indicating that these patients represent 

the group with major cardiovascular risk.  

ii. A fibrinogen   chain mutant was attached to the AFM tip with the intent of 

studying its interaction with rodent erythrocytes. We understood that erythrocyte 

binding was more affected than with platelets. Therefore, we suggest that this 

mutant may be a marker of great importance in the characterization of the 

erythrocyte receptor, once it reveals that erythrocyte’s binding force decreases 

in the absence of the           sequence. 

This new data not only contributes to the prior goal of characterizing the 

erythrocyte receptor for fibrinogen, but also to unveil the effect of cardiac insufficiency 

on erythrocyte aggregation. 

Keywords: Atomic force microscopy; Force spectroscopy; Fibrinogen; 

Erythrocytes; Cardiac insufficiency;    Fibrinogen. 
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Resumo 

 

As doenças cardiovasculares são a principal causa de morte a nível mundial, 

prevendo-se que esta condição assim permaneça, nomeadamente por doença 

coronária e enfarte, até atingir o número alarmante de 23,3 milhões de mortes em 

2030. Posto isto, torna-se mandatório desenvolver mais a investigação em patologias 

cardiovasculares. 

Em Medicina, o uso de nanotecnologias tem vindo a revelar-se muito prometedor 

em várias áreas como a administração controlada de fármacos, terapia por genes, 

engenharia de tecidos e diagnóstico. É neste último ponto que este projecto se 

enquadra, aparecendo na sequência de outros trabalhos desenvolvidos no Instituto de 

Medicina Molecular, com o objectivo comum de aprofundar o estudo do receptor do 

fibrinogénio na membrana do eritrócito, estudando paralelamente a importância da 

concentração de fibrinogénio no sangue como factor de risco para doenças 

cardiovasculares, como resposta à necessidade de criar novas terapias e métodos de 

diagnóstico para estas patologias. 

Para tal, utilizou-se maioritariamente a técnica de espectroscopia de força por 

microscopia de força atómica (AFM). Este equipamento de alta sensibilidade e baixo 

custo de utilização permite uma melhor compreensão dos mecanismos moleculares 

envolvidos no desenvolvimento de uma patologia, revelando-se prometedor no 

desenvolvimento de novos métodos de diagnóstico funcional.  

O estudo da agregação do fibrinogénio à membrana eritrocitária tornou-se de 

grande interesse desde que foi feita a associação entre indivíduos vítimas de 
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episódios cardiovasculares agudos e o elevado nível de fibrinogénio no sangue. Desta 

forma, é importante conseguir provar que a concentração desta proteína no sangue 

está relacionada com este tipo de problemas, por forma a conseguir um novo tipo de 

diagnóstico. 

Durante o tempo experimental deste estudo, foi realizado um estudo acerca das 

interacções entre o fibrinogénio e o seu receptor específico na membrana dos 

eritrócitos através de duas diferentes abordagens: 

i. Um acompanhamento de doentes insuficientes cardíacos de duas 

etiologias diferentes: isquémicos e não-isquémicos. Os resultados 

demonstraram que os eritrócitos dos pacientes isquémicos são os que 

apresentam maior força de rotura entre a ligação fibrinogénio-eritrócito, 

sugerindo que estes pacientes são aqueles que possuem o maior risco 

cardiovascular. 

ii. Ligou-se um mutante da cadeira   do fibrinogénio à ponta do AFM no 

intuito de estudar a sua interacção com os eritrócitos de ratinho. Os 

resultados mostraram que a ligação aos eritrócitos foi mais afectada que 

às plaquetas, sugerindo que este mutante pode ser um marcador muito 

elucidativo na caracterização do receptor dos eritrócitos, na ausência da 

sequência          . 

Todos os resultados obtidos contribuem não só para o objectivo primordial de 

caracterizar o receptor do fibrinogénio na membrana dos eritrócitos, como irão 

contribuir para o descortínio do efeito da insuficiência cardíaca na agregação 

eritrocitária.  

Palavras-chave: Microscopia de força atómica; espectroscopia de força; 

Fibrinogénio; Eritrócitos; Insuficiência cardíaca; Fibrinogénio    .  
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Concepts 

Atheroma – Accumulation and inflammation in artery walls, mostly by 

macrophage cells, debris, lipids, calcium and fibrous connective tissues.  

Buffy-coat – Intermediate layer between erythrocytes and plasma. It is 

comprised by leukocytes and platelets. 

Coagulation Cascade – Process in which blood coagulates in order to stop a 

bleeding, i.e. to maintain hemostasis.  

Dyspnea – Shortness of breath. 

Glanzmann Thrombasthenia – Dysfunction in the platelet αIIbβ3 integrin, which 

results in an autosomal recessive disease causing severe bleeding disorders. 

Hematocrit – Volume fraction of red blood cells in the blood. 

Hemostasis – It’s the action of suspending an hemorrhage, avoiding huge blood 

loss and vessel damage, while assuring the blood fluidity, preventing thrombi 

formation. 

hsCRP – Blood protein synthetized in the liver as a response to inflammation 

(acute-phase protein).  

Juctional Epidermolysis Bullosa (JEB) –  JEB is one of the major forms of 

epidermolysis bullosa, a group of genetic conditions that cause the skin to be very 

fragile and to blister easily. 

K3EDTA – Anticoagulant. Blocks blood coagulation cascade by chelating calcium 

ions of the sample. 

Kindlins – Essential regulators of integrin signaling and cell-matrix adhesion. 

Oxysterols – Oxidized derivatives of cholesterol. 
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their discoid shape. They overlap each other. 

Silanization – Covering of a surface through self-assembly with organofunctional 

alkoxysilane molecules, due to their hydroxyl group. 

Talin – A cytoskeletal protein found in lymphocytes and cell-cell contact,  that is 

capable of linking integrins to actin cytoskeleton. 

http://en.wikipedia.org/wiki/Self-assembly


CHAPTER 1 – Introduction 

1.1. Background 

The atomic force microscope is the instrument that represents the main tool for 

our investigation in this project. It is not only an excellent tool for recording the surface 

topography of a sample, but it also shows an undeniable relevance in biological 

studies, being a good mean for studying the strength of chemical bonds, the elastic 

and mechanical properties of macromolecules and the intermolecular interactions at 

the single molecular level.  

As for the study’s target, this project stands in the cardiovascular diseases 

research through blood cells and its interaction with the blood coagulation protein, 

fibrinogen. Fibrinogen plays a central role in coagulation and thrombosis. It is a high 

molecular weight plasma adhesion protein and a biomarker of inflammation [1, 2].  

There is a growing number of reports evidencing that increased fibrinogen 

plasma concentration is a significant risk factor for various cardiovascular and 

cerebrovascular disorders. Until the recent publication of Carvalho et al [3],the 

prevailing hypothesis for the mechanism of fibrinogen-induced erythrocyte 

hyperaggregation was that it could be caused by a nonspecific binding mechanism, 

despite the published data on the changes in erythrocyte aggregation during 

hypertension pointing to the existence of other mechanism(s) [3]. 

Based on force spectroscopy measurements, the group at IMM reported the 

existence of a single-molecule interaction between fibrinogen and the unknown 

receptor on the erythrocyte membrane, with a lower but comparable affinity relative to 

1 
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platelet binding [3]. The fibrinogen-platelet binding, essential for coagulation, depends 

on the platelet membrane receptor glycoprotein αIIbβ3. This publication also started the 

characterization process of the erythrocyte receptor. This receptor is influenced, 

although not as much as platelets, by calcium and eptifibatide (the αIIbβ3 inhibitor). 

Through Glazmann thrombasthenia patients studies (a rare hereditary bleeding 

disease caused by αIIbβ3 deficiency) which had the β3 gene mutated, Carvalho et al. 

demonstrated that the erythrocyte receptor for fibrinogen should be a β3-like. 

In 2012, the same research team used an identical AFM methodology, 

complemented with fluorescence spectroscopy and zeta-potential measurements, to 

assess the changes on fibrinogen-erythrocyte interaction upon in vivo erythrocyte 

ageing [4]. Their results indicate that, when aged, erythrocytes bind less frequently, 

though with similar force to fibrinogen, suggesting that young erythrocyte population is 

the main responsible for some cardiovascular diseases associated with an increase of 

the fibrinogen content in the blood, which can disturb its normal flow. 

Hereupon, we can say that this thesis reports a project which continues this 

research line. 

1.2. Objectives 

This project aims to acquire new insights on the identification of a number of pre-

thrombotic markers for the prevention of cardiovascular diseases. To this end, studies 

of fibrinogen-erythrocyte interactions in cardiac insufficiency patients were performed 

with atomic force microscopy (AFM). All the results were compared with those obtained 

from healthy donors, so it can be understood if the reduction of erythrocyte-erythrocyte 

interactions mediated by fibrinogen is associated with the reduction and/or prevention 

of cardiovascular pathologies. 

Moreover, the project also intends to complement previous studies of the 

erythrocyte membrane receptor for fibrinogen. To reach this goal, we studied the 

interaction between mouse erythrocytes and a natural fibrinogen  -chain mutant via 

atomic force spectroscopy and Zeta potential measures, comparing those results with 

a wild type fibrinogen. 

1.3. Thesis Outline 

This thesis is comprised of six chapters. 
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In the first chapter a brief introduction about previous work preceding this work is 

made, followed by our general objectives for these experiments. 

The second chapter describes the techniques and laboratorial procedures we 

followed for each assay. It is given a greater importance to the AFM-based force 

spectroscopy, as it is in this methodology that this project is based on. 

Chapter three addresses several important topics that the reader should have 

access in order to completely understand the contents of this paper. 

The fourth chapter’s contents are the cardiac insufficiency assays. Firstly the 

cardiovascular diseases in question are described and then the methodology followed. 

The results and consequent conclusions are presented next. 

 In the fifth chapter we described the used  -mutant fibrinogen before explaining 

our methodology. Then, the results and conclusions are given in the two final 

subchapters.  

Finally, chapter six gives general conclusions about the developed work and 

aims for future work. 

 





CHAPTER 2 – Methodologies 

This chapter describes all the essential laboratory procedures we had to do in 

order to perform our studies. A short introduction to the AFM and Zeta potential 

techniques is made. 

2.1. AFM – Atomic Force Microscopy 

Basic Principals 

The forces involved in biological processes are crucial for their understanding, 

which results in the need of developing a technique capable of analyzing forces at the 

single-molecule level. Atomic force microscopy-based force spectroscopy became a 

fine choice for their measurement due to its piconewton resolution. This equipment has 

also been progressively accepted in biological and biomedical research, as it 

generates high resolution images and allows the capture of transient moments. It is 

also used in the characterization of modified and unmodified surfaces for use in 

medicine and implants [5]. 

This microscope does not require lenses, light source to illuminate the sample or 

an eyepiece to look through, even though some models have an optical microscope 

incorporated. The main components of the AFM are its head – where the sample and 

optical assembly stand – and controller [5]. 

To understand how this equipment operates, the analogy given in Figure 1 will be 

considered. 

 

2 
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Figure 1. “Small ball on a weak spring” model [6]. 

 

The spring represents the cantilever and the ball the tip at the end of the free end 

of the cantilever. The cantilever movements are measured by sensitive optical 

methods. The tip and the sample are linked to each other by piezoelectric ceramics [6]. 

The cantilever is attached to a rigid substrate that can be held fixed. Then, it moves 

depending on the tip-sample interaction (Figure 2) at the tip: if it is attractive it deflects 

towards and if it is repulsive it deflects away from the sample. 

 

 

Figure 2. Interaction between tip and sample [7]. 

 

In Figure 3, a common AFM assembly is represented. The sample is mounted on 

a surface that can move in the x, y and z directions, typically using a piezoelectric 

actuator.  
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Figure 3. Schematic diagram of a common implementation of an AFM. The essential 
elements of an AFM are: a probe (tip) attached to a spring (cantilever); a means of measuring 
deflections of the spring (probe laser and photodiode); a sample; and a mean for moving the 
sample and probe relative to each other (piezoelectric tubes).  Image taken from the Barret Group 
Website 

1
. 

 

The cantilever deflection is detected by an optical lever, in which the movements 

of a laser reflected off the cantilever are detected by an optical detector, a split 

segment photodiode. The deflection data is passed to a computer controller that 

provides appropriate feedback to the stage and collects data [5].  

The forces are calculated by the Hooke’s Law of elasticity (Equation 1), with the 

deflection of the lever being the length and the cantilever stiffness the spring constant: 

        (1) 

 F represents the calculated force, k is the spring constant and d is the cantilever’s 

deflection. 

Force spectroscopy 

AFM-based force spectroscopy is the name given to the AFM quantification of 

the inter and intramolecular forces of interaction needed to separate the microscope tip 

from the sample, with piconewton resolution [5, 8]. 

                                                
1
 http://barrett-group.mcgill.ca/tutorials/nanotechnology/nano02.htm, accessed on 

September, 2013. 

http://barrett-group.mcgill.ca/tutorials/nanotechnology/nano02.htm
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In this mode, the base of the cantilever is moved in the vertical direction towards 

the surface using the piezo and then retracted again. During the motion, the 

cantilever’s deflection (and other parameters) is measured. The repetition of this 

process enables force-distance curves recordings. These curves represent the vertical 

cantilever deflection and include the forces measured as the probe approaches the 

sample and is retracted to its starting position [6]. 

 

Approaching Forces  

As the cantilever approaches the sample surface, there are two phases: in the 

first one, the forces are too weak to give a measurable deflection, Figure 4,①; in the 

second phase, the attractive forces (usually Van der Walls and capillary forces) 

overcome the cantilever spring constant and the tip gets in contacts with the surface, 

Figure 4, ②. 

 

Figure 4. Approach/retraction cycle. Force/vertical cantilever deflection. 

 

Retraction Forces 

The contact between tip and sample remains while the distance between the 

base and the sample is such that the cantilever deflects due to repulsive forces, Figure 

4, ③. As the cantilever is retracted from the surface, the tip remains in contact, and 

the cantilever suffers deflection in the downward sense, until its force is enough to 

break the tip/sample bond. Figure 5 represents the cantilever’s deflection during 

approaching/retraction cycle. 
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Figure 5. Approach/Retraction cycle. This schematic represents the vertical deflection of the 
tip during force spectroscopy [7].  

 

Functionalized Tip 

The force spectroscopy is made in liquid environment, with buffer solution, in 

order to mimetize the physiological medium. 

To study an interaction between the sample and the tip, it is necessary to attach 

the case study biomolecule to it. This link must be stronger than the force that is going 

to be measured, avoiding detachment, but loose enough to allow the molecule to 

change its conformation. 

2.1.1. AFM force spectroscopy tips 

The tips and parameters that were used were the same as described in [3]. Force 

spectroscopy measurements were performed using fibrinogen functionalized OMCL 

TR-400-type silicon nitride tips (Olympus, Tokyo, Japan) (Figure 6).    

 

    

Figure 6. OLYMPUS OMCL TR-400-type silicon nitride tips. Images taken from OLYMPUS’s 
catalogue. The image on the left is a tip’s upper-side view. The image on the right is an image 
taken by the AFM’s video camera where the cantilever’s contact with the cell is represented. 

 

The softest triangular cantilevers, with a tip radius of 15 nm and a resonant 

frequency of 11 kHz, were used. The spring constants of the tips were calibrated by the 

thermal fluctuation method, resulting in values of 19 7 mN/m.  
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2.1.2. AFM tip functionalization for AFM force spectroscopy 

measurements 

For the functionalization, AFM silicon nitride tips were cleaned with an intense 

ultraviolet light for 15 minutes. After cleaning, the tips were silanized in a vacuum 

chamber with 30 µL of 3-aminopropyl-triethoxysilane (APTES) and 10 µL of N,N-

diisopropylethylamine for 1 hour in an argon atmosphere, to be coated with a self- 

assembled monolayer of amines. After 1 hour, the probes were rinsed with fresh 

chloroform and dried with nitrogen gas. The amine-terminated AFM probes were then 

placed in glutaraldehyde solution 2.5% (v/v) for 20 minutes and washed three times 

with PBS (phosphate buffered saline) pH 7.4. 

Finally, the tips were placed in a fibrinogen solution to attach the fibrinogen 

molecules to the AFM tip. The fibrinogen sample in study is used at a concentration of 

1 mg/mL for a 30 minute incubation. The functionalized fibrinogen tips can be stored in 

PBS buffer, but not for more than 24 hours after finishing this procedure 

2.1.3. Tip calibration 

Many authors have noted that the spring values indicated by the manufacturer 

are incorrect, since cantilever manufacturers use wide tolerances in the specified 

values of the force constant of cantilevers [9]. Therefore, before every AFM force 

spectroscopy measurements with a new tip, calibration must be performed in order to 

obtain the tip’s spring constant. 

The method JPK uses to calibrate the tip is the widely-accepted thermal method. 

This method returns a very reliable spring constant value in liquid environment, which 

causes disturbances that interfere with the thermal vibrations of the cantilever. The 

thermal environment of the cantilever is known and the deflection of the cantilever can 

be measured accurately, so the balance between them can be used to calculate the 

spring constant.  

After loading the sample in the AFM and adjusting the AFM laser into the tip of 

the cantilever (the laser is well placed when the signal is at its maximum), some curves 

were measured in the poly-L-lysine (the glass slides’ coat).  The chosen curve must be 

a clean one, meaning no cell can be in contact with the tip (Figure 7). Thereby, we can 

measure the slope of the curve, which corresponds to the cantilever’s deflection. Then, 
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the deflection sensitivity can be measured in nm/V. This voltage corresponds to the 

applied voltage to impede hysteresis effect [9]. 

 

Figure 7. Calibration curve. The overlapping curves show that there is no interaction with 
fibrinogen. 

Then, by vibrating the cantilever with no point of contact, we can measure its’ 

resonance peak as a simple harmonic oscillator. The area under the resonance peak 

curve is used as a measure of the energy in the resonance. Following the equipartition 

theory [7] (Equation 2) we know the system’s energy, which has to be equal to the 

thermal energy due to the absolute temperature of the system: 

         
 

 
       (2) 

 

 
     

 

 
 〈  〉   (3) 

Where          is the thermal energy in Joules,    is the Boltzmann constant,    

is the absolute temperature in Kelvin and   is the cantilever’s deflection.   represents 

the sought value of the spring constant in N/nm (Newtons per nanometer).  

For further information about this method, please check references [7, 9]. 

2.1.4. Blood cells deposition for AFM studies 

500µL of platelets or erythrocytes suspension were placed on a clean poly-L-

lysine coated glass slide surface and allowed to deposit for 30 minutes. 

Nonadherent cells were removed by two sequential washes with 1mL of buffered 

saline glucose citrate supplemented with calcium chloride (BSCG buffer with CaCl2) 

1mM. Then, the cells were loaded into the AFM and allowed to equilibrate in this buffer 

for 15 min before force spectroscopy measurements.  
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2.1.5. AFM force spectroscopy measurement 

Molecular recognition was searched by intermittently pressing the cantilevers on 

different points of the cells adsorbed on the glass slide, 150 times per cell. The 

distance set between cell and cantilever was adjusted to maintain an applied force of 1 

nN before retraction in every contact. Data collection for each force-distance cycle was 

performed at 2 µm/s, leading to a loading rate of 4 nN/s.  

Each approach and retraction from a cell produces two curves as represented 

below. 

 

Figure 8.  AFM approaching/retraction curve. The red line is the attraction curve and the blue 
line is the retraction curve. 

2.1.6. AFM force spectroscopy curves analysis 

Force curves were analyzed using the JPK Data Processing v.4.2.27 (JPK 

Instruments, Berlin, Germany). 

Each experiment was performed at least twice, each time on different samples 

and with different functionalized tips. 

Histograms of the (un)binding forces of each studied fibrinogen-cell complex 

were constructed choosing the ideal bin size to achieve the best fitted Gaussian model 

peak forces, using Origin 8 software. Selected binning sizes had 6 pN. Force rupture 

values ranging between 0 and 10 pN were considered to represent noise, artifacts or 

nonspecific interactions. According to this, the values up to 10 pN were neglected in 

data presentation and analysis. From each histogram, the most likely single fibrinogen 

molecule rupture force can be determined by fitting the distributions of the rupture 

forces with the Gaussian model. The maximum values of the Gaussian peaks 

represent a single-molecule-based statistical measure of the strength of the molecular 

bond. 
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From the collected data, not only we discover the rupture forces of the fibrinogen-

cell complex and their rupture length, but also their frequency of binding. The rupture 

force values are defined as the force necessary to break the bond between the 

fibrinogen’s ligand and the cell receptor. Rupture length values are defined as the 

distance between the cell-AFM tip contact point and the height value at the moment of 

the bond break. The percentage of binding represents the frequency adhesion-rupture 

events, calculated by the number of measured curves and the number of binding 

events. 

2.2. Zeta Potential 

In order to understand the potential stability of a colloidal sample, Zeta potential 

(ZP,   ) measures were performed.  

2.2.1. Basic Principals 

Zeta Potential represents the potential within a particle when exposed to an 

electric charge. It is calculated by determining the Electrophoretic Mobility of the 

sample performing an electrophoresis experiment and measuring the velocity of the 

particles using the M3-PALS measurement technique, which is a Malvern’s patented 

combination of Laser Doppler Velocimetry (LDV) and Phase Analysis Light Scatter 

(PALS). Electrophoretic mobility obtained was used to calculate Zeta-potential through 

the Smoluchowski equation [4]: 

  
    

 
 (4) 

Where u represents the electrophoretic mobility,   the viscosity of the solvent, 

and   its dielectric constant.  
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Figure 9. Optical configuration of the Zetasizer Nano series for Zeta potential 
measurements. Image taken from the Zetasizer Nano series’s user manual. 

 

The figure above, Figure 9, represents the procedure sequence that is necessary 

to measure the ZP value. 

❶ is a laser that serves as a light source to illuminate the particles within the 

sample in ❷. The laser light is split in two beams: the reference beam and the incident 

beam. The incident beam interacts with the sample, suffering a 17º scattering (❼), 

and is subsequently combined with the reference beam. This relation is detected (❸), 

yielding a signal with a rate of fluctuation proportional to the speed of the particles 

during electrophoreses that is analyzed by a digital signal processor (❹) [10]. 

2.2.2. Zeta-potential sample preparation 

The method adopted for Zeta-potential sample preparation was the same used in 

[4]. After blood cells isolation, 3.5 µL of erythrocytes were diluted in 10 mL of BSGC 

buffer, setting the hematocrit (kept constant during the experience) to 0.035%. The 

measurements were performed in the absence and presence of different soluble 

fibrinogen concentrations (0, 0.025 and 0.1 mg/mL) in the blood dilution. The 
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suspensions were filtered using a syringe filter with 0.45 mm pore size (Whatman, 

Florham Park, NJ) to remove any large scattering particle, which would bias the light 

scattering measurements. With a 1 mL syringe, the samples were injected into the 

cuvette. 

2.2.3. Zeta-potential measurements 

Measurements were conducted on a dynamic light scattering and zeta-potential 

equipment Malvern Zetasizer Nano ZS (Malvern, UK), equipped with a He-Ne laser (λ 

= 632.8 nm). The zeta-potential of the samples was determined, at 25ºC, from the 

mean of 15 measurements, with 60 runs each, with an applied potential of 30 V, in the 

absence and presence of different soluble human fibrinogen concentrations, using 

disposable zeta cells with platinum gold-coated electrodes (Malvern). 

2.3. Human Blood Cells Isolation 

Blood was collected (3mL) from adult heart failure patients into K3EDTA 

anticoagulant tubes. In a Sorval TC6 centrifuge, blood was centrifuged at 220 g for 10 

minutes at 10ºC, resulting in a two phase solution: an upper phase of plasma – platelet 

rich plasma (PRP) – and a lower phase of erythrocytes. The supernatant (PRP) and 

the buffy-coat were removed from this tube and held at 4ºC in a new falcon tube. 1 mM 

of BSCG buffer with CaCl2 was added to the blood tube. After every buffer addition, the 

tube must be gently shaken. BSGC buffer is constituted by 1.6 mM KH2PO4, 8.6 mM 

Na2HPO4, 0.12 M NaCl, 13.6 mM sodium citrate, and 11.1 mM glucose, at pH 7.3.  

The blood tube was centrifuged at the same conditions for seven minutes two 

more times, after repeating the cell-washing steps. 

At the end of the first three centrifugations and washings, erythrocyte final 

suspension was prepared with the addition of BSGC buffer, to reconstitute the initial 

hematocrit (approximately 45%).  

To isolate the platelets from PRP and erythrocytes, we washed the tubes twice 

as follows: 

For platelets, the PRP tube was centrifuged at 1620 g at 10ºC for 10 minutes. At 

the end of each centrifugation, the supernatant was disposed and the solution 

ressuspended in 1mL of BSGC buffer. At the end of the two centrifugations, PRP tube 

was kept at 4ºC until use. 
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As for erythrocytes, the blood tube was centrifuged at 1620 g at 10ºC for ten 

minutes. At the end of the first centrifugation, we added 1mL of BSGC buffer. On the 

second centrifugation no buffer was added, and the erythrocyte mush was kept at 4ºC, 

until further use. 

For the atomic force microscopy studies, the erythrocyte suspension was diluted 

1:1000 and for platelets, PRP was diluted 1:2 with BSGC buffer + CaCl2 1 mM. 

No blood was used after two days of being collected. 

The study was approved by the joint Ethical Committee of the Santa Maria 

Hospital and Faculty of Medicine of the University of Lisbon. 

Blood from heart failure patients was obtained with their previous written 

informed consent, following a protocol with the Hospital Pulido Valente. Healthy blood 

donors’ blood from the Portuguese Blood Institute (Lisbon, Portugal) was also obtained 

with their previous written informed consent. 

2.4. Mice Blood Cells Isolation  

Blood was taken from C57BL/6 mice, with ages ranging 8 to 14 weeks, and 

stored in K3EDTA anticoagulant tubes. 500 µL of this blood was transferred into an 

eppendorf tube. In an Eppendorf 5415R centrifuge, this tube was centrifuged at 143 g 

for 20 minutes at 10ºC, resulting in a two phase suspension: an upper phase of plasma 

(PRP) and a lower phase of erythrocytes. The supernatant (PRP) and buffy-coat were 

removed from this tube and held at 4ºC in a new eppendorf tube. 170 µM of BSCG 

buffer was added to the blood tube. After each buffer addition, the tube must be gently 

shaken. 

The blood tube was centrifuged at the same conditions for 7 minutes two more 

times. 

At the end of the first three centrifugations, erythrocyte final suspension was 

prepared with the addition of BSGC buffer, to reconstitute the initial hematocrit. 

To isolate the platelets from PRP and erythrocytes, we washed the tubes two 

times as follows: 

For platelets, the PRP tube was centrifuged at 574 g at 10ºC for ten minutes. At 

the end of each centrifugation, the supernatant was disposed and the solution 
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ressuspended in 170 µL of BSGC buffer with CaCl2 1mM. At the end of the two 

centrifugations, PRP tube was kept at 4ºC until use. 

As for erythrocytes, the blood tube was centrifuged at 574 g at 10ºC for 10 

minutes. At the end of the first centrifugation, we added 170 µL of BSGC buffer. On the 

second centrifugation no buffer was added, and the erythrocyte mush was kept at 4ºC, 

until further use. 

For the atomic force microscopy studies, the erythrocytes were diluted 1:1000 

and platelets were diluted 1:34 with the BSGC buffer + CaCl2 1 mM. 

No blood was used after two days of its collecting. 

2.5. Statistical Analysis 

The Unpaired Student’s t-test was used for statistical analysis of intergroup 

comparison, using GraphPad Prism 5. Differences were considered statistically 

significant for p<0.05. 



 

 

 



CHAPTER 3 – ERYTHROCYTE-

FIBRINOGEN INTERACTION AS A 

CARDIOVASCULAR RISK FACTOR 

3.1. Introduction 

The idea of plasma fibrinogen as a cardiovascular disease (CVD) marker has 

been studied for decades based on numerous prospective epidemiological and clinical 

studies, clinical observation and meta-analysis, gaining a widely spread acceptance in 

the scientific community [11]. 

As for the major incident CVD, high fibrinogen concentration was found to be 

associated with the unfavorable course of patients with acute coronary syndrome; 

myocardial infarction in an acute phase, associated with a new myocardial infarction 

and short-term predictor of mortality; re-stenosis after coronary stenting or balloon 

angioplasty; stroke; severe coronary artery disease; thromboembolism in atrial 

fibrillation; and atherosclerosis [1, 11-13]. More recently, studies have demonstrated 

that fibrinogen also plays a role as a mediator of inflammatory diseases, with a 

potential for selective drug targeting [14]. 

Erythrocytes or red blood cells (RBC) are also related to CVD incidence. 

Associated with high fibrinogen blood concentration, they hypperaggregate, 

representing the main risk factor for venous thrombosis. 

3 
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In this chapter, some relevant information about platelets, erythrocytes, 

glycoproteins (and the role they play in blood viscosity), the fibrinogen molecule (and 

its function as a cardiovascular biomarker), as well as the erythrocyte-fibrinogen 

interaction is introduced. 

3.2. Blood Cells 

3.2.1. Platelets 

Platelets are anucleate plasmatic cells, derived from megakaryocyte’s fragments. 

They have a disc shape with a diameter that varies between 2 and 4 μm, with  

longevity from five to nine days for humans [15]. As for mice, platelet’s mean diameter 

is 0.5 µm and its life span is approximately four days [16]. 

The platelet cytoplasm is constituted by actin and myosin: proteins that promote the 

thrombi contraction mechanism. The membrane contains proteins that are responsible 

for the receptor-ligand recognition. It contains receptors that mediate the 

communication between intra and extracellular domains. The glycoproteins enable the 

aggregation mediated by other molecules, like collagen or fibrin. This is highly 

important as it aids the platelets in their role in maintaining hemostasis, responding to 

vessel injuries (Figure 10), since in the event of bleeding, platelets must associate to a 

fibrin network, creating the blood clot [15]. 

 

Figure 10. Coagulation cascade. A vascular injury triggers the process of coagulation by 
releasing collagen and tissue factor. Such intervenients activate the coagulation factors that will 
activate thrombin, which polymerizes fibrinogen, creating the fibrin network (extrinsic pathway). 
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Coagulation can also occur via intrinsic pathway in the presence of thrombin that leads to Factor 
XI activation. The two mechanisms converge in the formation of factor Xa [17]. Image taken from 
Siemens Website

2
. 

For further information about platelet functions, please see [18]. 

Platelet-rich clots (Figure 11) are formed in arteries, after rupture of 

atherosclerotic plaques and procoagulant agents [19]. 

 

Figure 11. Arterial thrombosis – high shear environment. Image taken from Alisa Wolberg’s 
Lab Website

3
.
 

In Figure 11 it is possible to identify the arterial thrombosis main intervenients:  

fibrin(ogen) (Fgn), thrombomodulin (TM); prothrombin (II); thrombin (IIa); tissue factor 

(TF), collagen and platelets. These are called the “white clots” [19].  

3.2.2. Erythrocytes 

Erythrocytes are the most numerous cells in the blood. Their shape is bi-

concave, with the periphery thicker (2.6 μm) than the center (0.8 μm) and a diameter of 

7.5 μm, for humans, and they can last for 120 days in men and 110 in women. As for 

mice, erythrocyte’s diameter is approximately 6.6 µm [20] and their life span is 

approximately 41 days [21]. During their maturation, these cells lose their nuclei and 

almost every organelle. Their main component is hemoglobin, which provides them 

their red color. This protein combines with oxygen, which the erythrocyte has to 

transport from the alveoli to all body cells [15]. 

Erythrocytes have a great capacity to deform in order to pass through vessels. 

This way they can reach all body surfaces, by means of arterioles that have a smaller 

                                                
2
 http://www.healthcare.siemens.com/hemostasis/hemostasis-online-campus/interactive-

hemostasis-cascade; accessed on September, 2013. 
3
 http://www.med.unc.edu/wolberglab/scientific-images/arterial-thrombosis; accessed on 

September, 2013. 



CHAPTER 3 – ERYTHROCYTE – FIBRINOGEN INTERACTION AS A CVD RISK 
FACTOR 

 

- 22 - 

 

diameter than them. In some cardiovascular diseases, like hypertension, red blood 

cells lose this characteristic, and become more rigid, causing the blood viscosity to 

increase [22]. 

The binding between the erythrocyte membrane and fibrinogen was recently 

characterized [3]. In a non-ideal blood condition, where the concentration of fibrinogen 

is elevated, the aggregation of RBC increases and blood viscosity rises [18]. 

Senescence studies made by Carvalho et al. [4] with atomic force microscopy proved 

that, as aged erythrocytes suffer a decrease in the concentration of sialic acid in their 

membrane, this leads to a decrease in erythrocyte-fibrinogen receptor binding events 

(without significantly affecting the forces of each single binding) and consequently to a 

decrease in the aggregability capacity of RBC – less cardiovascular risk associated to 

these cells. 

It can be observed that RBC suffer deformation in fibrinogen concentrations 

similar to inflammatory conditions [23]. In cases of high blood viscosity and 

hyperaggregation, in hyperfibrinogenemia conditions, with and without acetylcholine, 

nitric oxide (NO) and oxygen delivery may be compromised. However, the NO 

erythrocyte scavenging property is preserved in these conditions. Thereby, this can be 

a compensatory mechanism which represents a benefit in the intravascular resolution 

of inflammation [23]. 

Other erythrocyte aggregation factors are the hematocrit, plasma lipoproteins, 

osmolality and pH. 

Fibrin-rich clots are formed in veins when procoagulant activity and 

hypercoagulant plasma are exposed on intact endothelium in reduced or static blood 

flow [24]. 
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Figure 12. Venous thrombosis - low shear environment. Image taken from Alisa Wolberg’s 
Lab Website

4
. 

Figure 12 shows that thrombomodulim, endothelial protein-C receptor (EPCR), 

prothrombin, thrombin, tissue factor, fibrin(ogen) and red blood cells are the main 

intervenients in venous clot formation. Venous thrombi usually form behind valve 

pockets, since the hypercoagulability is eased by the reduced blood flow. These are 

called the “red clots” [24]. 

For more information about RBC, see [25].  

3.3. Integrins 

Integrins are a large family of type I transmembrane heterodimeric glycoprotein 

receptors first discovered over twenty years ago. They function as the major metazoan 

receptors for cell adhesion and connect the intracellular and extracellular environments 

[26]. 

These glycoproteins play a very important role in many biological processes, 

namely in the assembly of the actin cytoskeleton and modulating signal transduction 

pathways that control biological and cellular functions, like cell adhesion, migration, 

proliferation, cell differentiation, and apoptosis [26]. 

Integrins have two domains, the non-covalently associated subunits, α and β, 

which pair to form heterodimers. Currently, there are eighteen α subunits and eight β 

subunits known, which pair to form at least twenty-four distinct integrin heterodimers 

[26]. 

 

 

                                                
4
 http://www.med.unc.edu/wolberglab/scientific-images/venous-thrombosis, accessed on 

September, 2013. 

http://www.med.unc.edu/wolberglab/scientific-images/venous-thrombosis
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Table 1. Cell membrane integrins and their respective ligands [26]. 

Integrins Ligand 

α1β1 , α2β1 , α10β1 , α11β1 Collagen 

α1β1 ,α3β1 , α6β1 , α6β4 , α7β1 Laminin 

α5β1 , α8β1 , αIIbβ3 , αvβ Fibronectin (RGD-dependent manner) 

 

Table 2. Integrins and their corresponding binding-cell [26]. 

Integrins Corresponding Cells 

αIIbβ3 Platelets 

α6β4 Keratinocytes 

αEβ7, α4β7, α4β1, and β2 family Leukocytes 

3.3.1. Mutants 

Mutated integrins are associated to clinical disorders. There are three well-

described inherited autosomal recessive diseases in humans of this nature: mutations 

in the αIIb and β3 subunits are related to Glanzmann’s thrombasthenia (platelet 

dysfunction with consequent bleeding disorders); point mutations and gene deletion in 

β2 integrin subunit are associated with Leukocyte Adhesion Deficiency (LAD); and 

mutations in α6 and β4 integrin subunits result in juctional epidermolysis bullosa with 

skin blistering [26]. 

3.3.2. Structure 

Each heterodimer contains an extracellular domain that binds to proteins in the 

extracellular environment, a single-membrane-spanning transmembrane domain, and a 

generally short intracellular cytoplasmic tail domain, which forms links with the 

cytoskeletal elements via cytoplasmic adaptor proteins [26]. 

Understanding and characterizing integrin structure and conformation is 

important to describe the mechanisms that underlie their activation. This knowledge 

unblocks the path for understanding integrin features like signaling and mediated 

adhesion. 

Most of the structural data of the extracellular domains comes from high-

resolution X-ray crystallography. These domains generally have large dimensions, 

comprehended between 80 and 150 kDa [26]. 
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The extracellular portion of the α and β subunits contains several subdomains. 

The C-terminal comprises two long and extended legs and provides the connection 

with the transmembrane and cytoplasmic domains of each respective subunit. N-

terminal stands on C-terminal [26]. This terminal is the globular bind site for ligands. 

Figure 13 illustrates these domains and the extended conformation state setting the 

platelet integrin, αIIbβ3, as an example. 

 

Figure 13. αIIbβ3 integrin representation in an extended state [27]. 

 

The α subunit head has a folded seven-bladed β propeller head domain, a thigh 

domain and two calf domains. Half of the α subunits contain an additional inserted I-

domain, which is inserted within the β propeller domain. This domain is provided of two 

exclusivity features: when present, it is the only extracellular-binding site for ligands; it 

contains a conserved Metal-Ion-Dependent Adhesive Site (MIDAS) that binds divalent 

metal cations (Mg2+) and plays important roles in protein ligand binding. Once a ligand 

binds to MIDAS, there is an alteration of the metal ion coordination and the I-domain 

alters from a closed, resting state to an open, active conformation. This ultimate 

conformation increases the ligand affinity and promotes subsequent integrin activation 

[26]. 

The β subunit head is composed by five domains: an I-like domain, structurally 

similar to the α subunits I-domains, a PSI (Plexin-Semaphorin-Integrin) domain, a 

hybrid domain; four EGF repeats, and a membrane proximal β tail (βTD) domain. The β 

subunit plays important roles in ligand binding in α subunits which lack the I-domain. In 

these integrin heterodimers, ligands bind to a crevice between the αβ subunit 
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interfaces, and interacts with an activated β MIDAS and the propeller domain of the α 

subunit [26]. 

 

Figure 14. Integrin structure without the α I-domain. a - the integrin is in its unbound, resting 
state. b - Integrin is activated by proteins. c - Activated integrin binds to ligands [27]. 

 

The activation and re-conformation of the integrin is represented in Figure 14. 

Firstly (a), the integrin is in a bent conformation and the transmembrane and 

cytoplasmatic regions are closely associated. Then (b), the integrin is activated by 

talins and kindlins. The transmembrane and cytoplasmatic subunits separate and the 

extracellular domains extend. This conformation is ready to bind to ligands. Finally, 

when the integrin binds to ligands (c), they cluster at the plasma membrane. Clustering 

is a requisite for signaling tight focal adhesions, actin cytoskeleton assembly, and 

activation of other signals to control cellular functions [26]. 

The structural data of the transmembrane (TD) domains derives from nuclear 

magnetic resonance (NMR) analysis [26]. Integrin TD comprise single spanning amino 

acid residues structures that form α-helical coiled coils that either homo- or 

heterodimerize. For more information about TD, please see reference [26]. 

Cytoplasmic domain information has been also achieved based on NMR data 

[26]. This domain is the shortest of the whole integrin, with a number of largely 

unstructured amino acid residues comprehended between 10 and 70. The β4 subunit 

represents an exception, as it contains more than 1000 amino acid residues [26]. β 

cytoplasmic tails are highly homologous, while α subunit tails are highly divergent. In 
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the membrane proximal regions of these subunits there is a salt bridge between the 

arginine from the α subunit and the aspartic acid from the β subunit. The salt bridge is 

the physical contact between the two subunits tails, supposedly to maintain integrins in 

their inactive, resting state. Still, these are assumptions, as the only cytoplasmic tails 

that have been completely characterized are the ones from the αIIbβ3 integrin. It is also 

believed that the salt bridge may not play a major role in β1 integrin activation [26, 27]. 

The β integrin tails have two well-defined motifs: they represent canonical 

recognition sequences for phosphotyrosine-binding (PTB) domains and serve as 

binding sites for multiple integrin binding proteins, including talin and the kindlins [26]. 

3.4. Fibrinogen 

Fibrinogen (Figure 15) is a protein that represents 4% of the plasma constitution 

[15]. It is a very long – 97.5 nm – and asymmetric molecule, with molecular weight of 

340 kD, with a plasma concentration range between 2 and 4 mg/dL and plasma half-

life of three to five days [1, 23]. Fibrinogen is synthesized in the liver and is secreted 

into the circulating bloodstream. Fibrinogen is constitutively expressed exclusively in 

hepatocytes and is inducible by interleukin-6 (IL-6) as part of the acute phase reactions 

and impaired by transforming growth factor-β [23]. Its quaternary structure is made by 

three pairs of nonidentical polypeptide chains – 2Aα, 2Bβ and 2γ – dimers that bind by 

multiple disulfide bonds [28] (Figure. 15), derived from separate genes (FGA, FGB and 

FGG). Subunits are grouped into three major structural regions: two D-domains and 

one central E-domain. As for binding sites, fibrinogen has three potential integrins 

binding sites: two RGD (arginine – glycine – aspartic acid) amino acid sequences 

within the Aα chain and a 12 amino acid sequence on the γ chain [3]. For more 

information about fibrinogen binding, see [29]. 

 

Figure 15. Fibrinogen molecule structure. Fibrinogen is formed by the central E and the 
distal D regions, connected by α, β and   chains. The α chain is the green ribbon, the β chain is the 
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red ribbon and   chain is the blue ribbon. The   chain C-terminal sequence binds to the KQAGDV 
sequence and the α chain C-terminal binds to the RGD sequence [30]. 

 

3.4.1. Coagulation and Thrombi Formation 

Fibrinogen can be considered the most important glicoprotein involved in clot 

formation and the only one present in plasma.  

When a vessel is injured, fibrinogen polymerization into fibrin is induced by 

thrombin, in the presence of Ca2+ ions. It is this specific fibrous protein that binds with 

platelets in order to form the homeostatic plug. The conversion of fibrinogen into fibrin 

occurs via the multifaceted actions of the coagulation cascade and the proteolytic 

action of thrombin. Thrombin, in the presence of calcium ions, cleaves the A and B 

fibrinopeptides, exposing multiple polymerization sites, allowing for fibrinogen polymer 

formation. It is this specific fibrous protein that binds with platelets in order to form the 

homeostatic plug, when binding to the        receptor in activated platelets [2]. As 

fibrinogen has more than one integrin-binding site, it is possible to simultaneously bind 

two platelets, bridging them. This fibrinogen characteristic is also very important for 

regulating blood hemostasis [31]. 

Fibrinogen and fibrin degradation products have an important role in the 

maintenance of homeostasis, clot formation and fibrinolysis. These mechanisms are 

responsible for the regulation of thrombin activation/deactivation, plasma 

transglutaminase activation and the activation of fibrinolysis [28]. For a further analysis 

of fibrin functionality, see [32]. 

It is important to add that fibrinogen is a determinant of plasma viscosity, among 

other factors, because its concentration is directly related with fibrin concentration, and 

consequently, the size of the formed thrombi [28]. Studies in animal models and in 

humans have demonstrated that the extravascular fibrinogen that is deposited in 

tissues upon vascular rupture is not merely a marker, but a mediator of diseases with 

an inflammatory component [14]. Thus, when in high concentrations, fibrinogen must 

be seen as a thrombogenic and atherogenic factor. 

Recently, Zhmurov et al. [33] developed a study in the mechanisms of 

fibrin(ogen) forced unfolding using AFM single-molecule unfolding and simulations. 

They described the order of unfolding of the protein’s chains and elasticity of each 
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chain by reversible extension-contraction of the α-helical coiled-coils. The fibrinogen 

nanomechanics has implications for the (patho)fisiology of fibrin clots and thrombi.  

 

 

Figure 16. Fibrinogen signal transduction: cellular receptors and target cells [14]. 

 

Fibrinogen mediates several biological reactions (Figure 16). It contains multiple 

binding motifs for different cellular receptors and acts as the molecular link between 

coagulation, inflammation and immunity, regulates cell migration and capillary tube 

formation [14].  

3.4.2. Pharmacology 

Fibrinogen has the potential for selective drug targeting. This allows targeting its 

proinflammatory properties (inhibiting its bind to individual cellular receptors) without 

affecting its beneficial effects in hemostasis, since it interacts with different receptors to 

mediate blood coagulation and inflammation [14]. Thereby, fibrinogen provides specific 

targets for drug design using peptides, monoclonal antibodies or small molecules to 

selectively inhibit its interactions with cellular receptors 

Recently, cellular targets for fibrinogen, such as monocytes and microglia were 

identified and fibrin was identified as a novel inhibitor of neurite outgrowth via direct 

activation of signaling pathways in central nervous system neurons [14]. 

Adams et al. [14] administered fibrin-derived peptides Bβ15-42 and γ377-395 on mice 

and concluded that the Bβ15-42 peptide was protective against myocardial infarction, 

while the Bβ15-42 peptide decreased inflammation and suppressed paralysis in animal 
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models of Multiple Sclerosis. Both peptides interfered with the inflammatory process 

without affecting the beneficial effects of fibrinogen in blood coagulation. 

3.5. Biomarkers 

3.5.1. Introduction 

Clinical laboratory tests provide information for a variety of purposes, including 

diagnosis, monitoring of disease, and risk assessment. Risk assessment is based on 

large-scale epidemiologic studies used to identify potential markers associated with the 

increase or decrease of the risk of CVD. However, these studies are not always clear 

about the reliability of a single measurement performed in one subject. It is mandatory 

that more studies are performed in order to demonstrate the prognostic utility of every 

marker when measured in a patient, and the number of measures needed from each 

marker to assess individual risk. In order to have a good clinical significance, a marker 

of risk should have a low biological variability within a single individual, compared with 

inter-individual variability. A limited number of measurements should be enough to 

assess CVD risk [13]. 

Fibrinogen, as an acute phase protein, indicates inflammation existence. It is 

seen as a danger marker above certain blood concentrations [13]. 

3.5.2. Epidemiology evidence of an association with 

Vascular Disease 

Fibrinogen plays an irrevocably important role as an independently associated 

biomarker in cardiovascular diseases such as atherosclerosis, as fibrinogen levels 

correlate with the number of coronary and extracoronary vascular beds involved in 

atherosclerosis; coronary artery disease (CAD), in which fibrinogen levels may be an 

inheritable risk factor in subjects with a strong family history of myocardial infarction 

(MI) and stroke, both with associated risks proportional to the fibrinogen level and, in 

the case of MI occurrence, fibrinogen becomes a short-term predictor of mortality [1, 2, 

34]. 

As for medical interventions, fibrinogen levels predict stenosis after angioplasty. 

Preinterventional levels are more predictive than postinterventional levels [1]. 

Among the conditions increasing plasma fibrinogen concentration, the major risk 

factors for cardiovascular diseases are: diabetes mellitus, hypertension, obesity, 
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smoking, hyperlipidemia, sedentary lifestyle, and age. On the other hand, moderate 

regular alcohol consumption, polyunsaturated fatty acids and regular exercise 

decrease fibrinogen levels [1]. 

3.5.3. Fibrinogen and Inflammation 

Cases of hyperglycemia can induce a chronic increase of IL-6, turning the acute 

phase reaction into a chronic perpetual state with increased levels of fibrinogen 

(leading to hyperfibrinogenemia), serum amyloid A, C- reactive protein, haptoglobin 

and decreased albumin [2]. Hence, fibrinogen has been extensively used as a marker 

to assess the presence and persistence of inflammation. 

Hyperfibrinogenemia is a natural organism response to aggressive situations, like 

trauma and inflammation. It increases plasma viscosity, platelet and erythrocyte 

aggregation, decreasing blood flow and promoting ischemia [2, 28]. Thus, fibrinogen is 

a determinant of plasma viscosity, as its concentration is directly related with fibrin 

concentration, and consequently, the size of the formed thrombi [28]. Therefore, in high 

concentrations, fibrinogen must be seen as thrombogenic and atherogenic factor. It is 

also a determinant of plasma viscosity and erythrocyte aggregation and, therefore, 

affects blood viscosity both at high and low shear rate [1]. 

As previously mentioned, fibrinogen is expressed exclusively in hepatocytes and 

is inducible by IL-6 as part of the acute phase reaction. Fibrinogen biosynthesis is 

connected to that of cholesterol, because oxysterols, suppressing cholesterol 

biosynthesis and the uptake of LDL-cholesterol, also inhibit constitutive fibrinogen 

expression. For these reasons, fibrinogen-level lowering agents also decrease 

cholesterol and inflammation, as there are no therapeutic agents acting only as a 

fibrinogen inhibitor [1]. 

Infection 

Fibrinogen also plays an important role in bacterial infection, as it binds to 

bacterial cell-wall proteins that regulate the adhesion, hosting and survival of bacteria 

to the host tissue [14]. 

3.5.4.  Cardiovascular Risk 

Fibrinogen may induce arterial diseases by 4 mechanisms: atherogenesis 

(atheroma accumulation on the vessels walls), platelet aggregation and thrombi 

formation, fibrin thrombi formation, and blood viscosity increase [28]. 
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Increased plasma fibrinogen levels are associated with an increased risk of CAD, 

myocardial infarction and stroke.  The aggravation of such conditions, are due to the 

inflammatory effect mediated by fibrinogen, which plays this important role in 

inflammation, once it is regulated by proinflammatory cytokines, like interleukin-6 [1, 2]. 

Besides being an inflammation aggravation factor that increases risk of CAD, MI and 

stroke, fibrinogen correlates with other CVD risk factors including obesity, sedentary 

lifestyle, diabetes mellitus, hyperlipedemia, cigarette smoking and age. However, 

studies performed in atherosclerotic knockout mice, in the absence of fibrinogen, 

showed no decreased extent of the disease, suggesting that fibrinogen seems to be 

just a marker rather than a mediator of vascular disease. On the other hand, fibrinogen 

participates in the formation of atherosclerotic plaque during the first stages of CAD, 

suggesting that it is a mediator factor rather than a result. Therefore, it is difficult to 

clarify the exact role of fibrinogen in the vascular inflammatory processes [1, 2]. 

As an addendum, it is important to add that the changes in circulating fibrinogen 

levels also represent a risk factor for Alzheimer’s disease [14].  

Recently, Lovely et al. characterized γ′ fibrinogen (an alternatively-spliced form of 

the clotting factor fibrinogen) as a biomarker for cardiovascular diseases and single-

nucleotide polymorphisms (SNPs) exclusively in and near the fibrinogen gene locus. 

For further information, please see [35]. For more information about fibrinogen as a 

cardiovascular disease mediator, please see [1]. 

3.5.5. Fibrinogen and Endothelial Cells 

Proinflammatory cytokines increase the synthesis of nitric oxide (NO) and favor 

leukocyte migration in the sub-endothelial space [2]. 

Fibrinogen has a non-specific binding to endothelial cells. Binding to intercellular 

adhesion molecule-1 (ICAM-1), fibrinogen promotes the adhesion of leukocytes, 

platelets, and macrophages to endothelial cells. This feature may have the drastic 

consequence of circulating tumor cells adhesion, creating hematogenous metastases 

[1]. 

Fibrinogen also adheres to subendothelial space, causing the accumulation of 

LDL and apolipoprotein A, contributing to the idea that fibrinogen is a atherosclerosis 

mediator [1]. 
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 Figure 17 summarizes the fibrinogen synthesis, structure and its vascular 

functions. 

 

Figure 17. Fibrinogen biosynthesis, structure and vascular functions. Fibrinogen is 
generated in the liver under the action of IL-6, for later interaction with vascularity. Fibrinogen 
induces cell aggregation among endothelial tissues and vessels walls. When it interacts with 
thrombin, in the final stage of the coagulation cascade, forms fibrin clots that may origin thrombi. 
By means of its ligands, fibrinogen binds with bloods vessels and platelets creating blood clots 
and to erythrocytes, increasing blood viscosity [1]. 

3.5.6.  ’ Fibrinogen 

Different combinations of altered fibrinogen chains can be assembled to this 

molecule, especially in fibrinogens resulting from heterozygous polymorphisms or 

mutations. The fibrinogen  chain, in particular, has two isoforms, the   A (also known 

as    
 or simply  ) isoform and the   also known as      

 or  B) isoform that arise 

from alternative mRNA processing [34]. 

The  ’ isoform chain of fibrinogen is formed by the incorporation of a splice 

variant of the fibrinogen   chain. This alternative splicing event arises from an 

alternative processing event in the   chain mRNA and results in the extended carboxyl 

terminus of the  ’ chain, which contains 20 residues in place of the four 

carboxylterminal residues on the more common  A chain [34, 36]. 
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The  ’ fibrinogen isoform makes up approximately 7% of circulating fibrinogen, 

with a high affinity binding site for thrombin. Its fibrin clots, in the presence of 

coagulation factor XIII (also known as “fibrin-stabilizing factor”), are more resistant to 

fibrinolysis and have altered clot architecture compared with the common fibrinogen 

isoform  A/ A fibrin clots. Therefore, it is considered a risk factor for thrombosis [34, 

36]. 

High levels of  ’ fibrinogen are also associated with several forms of 

cardiovascular disease, not only as a general risk factor, but as a potential biomarker  

for assessing a patient’s inflammatory state and associated cardiovascular disease risk 

[36]. It has been associated with several cardiovascular risk factors: age, sex, BMI 

(Body Mass Index), smoking, diabetes, blood glucose and triglycerides, and inversely-

associated with HDL cholesterol [35]. Unlike many other CVD markers, this particular 

protein has biochemical properties that have the potential to actually contribute in the 

etiology of the disease [35]. As for genetics, which usually is an influential factor for 

CVD, they may not play a greater role in the association of  ’ and CVD. Since  ’ 

fibrinogen is an acute phase reactant in response to inflammation, environmental 

factors may play a greater role than genetics [34, 35]. 

Elevated levels of  ’ fibrinogen have been associated with atrial thrombosis, 

including MI, coronary heart disease and stroke. On the other hand,  ’ fibrinogen is a 

hemostasis inhibitor, as it does not bind to the platelet receptor αIIbβ3, disfavoring 

thrombi formation, creating a paradoxical results and conclusions between studies 

about this topic. Thus, the association between  ’ fibrinogen and venous 

thromboembolism is still controversial, and may be due to genetic variation or the 

design of previous studies [35, 37]. To know more about relevant hypotheses in this 

subject, please see [34].  

In 2011, Farrel et al. [36] conducted their studies in order to unveil more about 

this    chain mutation and its relationship with CVD and inflammation process. Their 

results with normal mean total fibrinogen reinforced the idea of  ’ fibrinogen being 

particularly elevated in the setting of chronic inflammation. Their results, combined with 

previous case-control study of CAD, also suggest that under pathological conditions 

there is a lack of association between  ’ fibrinogen and total fibrinogen levels. Lovely et 

al. [35] suggested that  ’ fibrinogen and total fibrinogen levels are under different 

genetic control. 
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In 2013, Alexander et al. performed a study concerning several biochemical 

markers. They concluded that hsCRP (an acute-phase protein) has very high biological 

variability, therefore, it is not a good marker of CVD.  ’ fibrinogen and LDL needed two 

measures to assess CV risk. HDL cholesterol revealed to be the best marker in this 

study, as only one measure was needed to provide prognostic information [13]. 

To conclude, it is important to denote that it remains to be seen whether or not  ’ 

fibrinogen is just a marker for CVD or a mediator as well. 

3.6. Erythrocyte – Fibrinogen Interaction 

In 1981, Rampling et al. [38] conducted a study aiming to understand the 

fibrinogen binding to erythrocyte membrane and the role of fibrinogen in rouleaux 

formation and erythrocyte flexibility. Their results indicated that fibrinogen does bind to 

erythrocyte membranes and that this bond is affected by physico-chemical factors pH 

and ionic strength, while it is not affected by calcium ions, plasma proteins and 

temperature. These results suggested that the charge interaction between the 

membrane and fibrinogen plays an important role in this binding. From the magnitude 

of the binding ratio, they calculated that approximately 2% of total fibrinogen circulates 

associated to erythrocytes in the blood stream and that, at normal fibrinogen 

concentrations (3g/l), 20.000 fibrinogen molecules bind to each red blood cell. In order 

to understand where the protein binds to the erythrocyte membrane, they used 

fibrinogen degradation products (FDP), represented in Figure 18. The X fragment lacks 

the C-terminal of the α chains. This loss has no significant effect in the binding of 

fibrinogen to the erythrocyte membranes, thus the X fragment plays no role in this 

linkage and is located far from the binding areas. The D fragment has one binding site 

and presents half the binding for fibrinogen, whether it is isolated or not. The Y has two 

binding sites and has a great affinity for binding, which is maintained on the E fragment 

although it has only one binding site.  
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Figure 18. Schematic model of fibrinogen and fibrinogen-derived products [39]. 

 

As for the rouleaux formation and erythrocyte flexibility, this study reveals that 

fragments X and Y are responsible for these features, as they hold two binding sites. 

This characteristic allows the inter-membrane cross-linking, i.e. the same fibrinogen 

molecule binds to more than one erythrocyte [38]. 

In 1987, Meda et al. [39] scrutinized this topic a bit further, in order to discover 

the erythrocyte-binding site in the fibrinogen molecule. The 1 to 206 residues of the 

fibrinogen Aα-chain, by cleavage of the near terminal domain, constitutes the X 

fragment; 207 to 303 fragments are present in naturally occurring low molecular weight 

(LMW) fibrinogen, which preserves the rouleaux formation speed induced by high 

molecular weight (HMW) fibrinogen, meaning that this is the region responsible for the 

erythrocyte binding. The fibrinopeptide-containing region in the central domain (Aα and 

Bβ chains) revealed to be repulsive to the negative charge of the erythrocyte 

membrane. Sialic acid in the erythrocyte promotes aggregation. On the other hand, 

sialic acid from de Bβ and   chains does not intervene in fibrinogen-induced 

erythrocyte aggregation. This suggests that these local structures contribute to the 

rouleaux formation. The fibrinogen C-terminus from the   chain binds to platelets. As 

for erythrocytes, this still is a case study. 
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In 2002, Lominadze et al. [40] presented experiments on the involvement of 

fibrinogen specific binding in erythrocyte aggregation. They used Oregon Green 488-

labeled human fibrinogen and showed that it binds with a dissociation constant, Kd, of 

1.3 μM, to rat erythrocyte membranes, which was estimated to have about 1932 ± 104 

binding sites. To prove whether the binding happens in or outside the erythrocyte 

membrane, they used red blood cells ghosts – cells with the original morphology, but 

void of cytoplasmic contents – and sealed red blood cells. The results showed that the 

specific binding occurs on the outside surface of the erythrocytes.  

In 2010, Carvalho et al. [3] unveiled much more about this protein-membrane 

interaction, making use of the AFM techniques. This nanotool has been proving its 

benefits, since it not only shows that fibrinogen and red blood cells bind, but also can 

characterize this interaction. 

Their results showed that a single molecule interaction between fibrinogen and 

an unknown receptor on the erythrocyte membrane exists. This bond is comparable to 

the fibrinogen-platelet bond, though fibrinogen has a weaker interaction with 

erythrocytes than with platelets. This study also included the characterization of the 

environmental conditions necessary for the binding to occur. Calcium was shown to be 

necessary for fibrinogen-erythrocyte binding, as it was already known for the binding to 

platelets. With the αllbβ3 glycoprotein inhibitor eptifibatide, the same levels of inhibition 

were obtained for erythrocytes and platelets, but only at a higher concentration for 

erythrocytes. These results suggest that an integrin receptor is involved in the 

fibrinogen specific binding to erythrocyte membrane, which is not as calcium 

dependent or eptifibatide influenced as the glycoprotein αllbβ3 platelet receptor, but it 

surely is a related integrin.  The same group performed Glanzmann thrombasthenia [3] 

studies, where patient’s cells that had a mutation in the β3 gene (ITGB3) were used. 

The AFM force spectroscopy results showed that the (un)binding forces were severely 

impaired, stating that the integrin receptor for fibrinogen on erythrocytes membrane is a 

β3-like glycoprotein [3]. 

Recently, Oliveira et al. [41] separated erythrocytes with different age fractions 

and incubated them with human soluble fibrinogen and/or with a blocking antibody 

against CD47 – a membrane protein that avoids phagocytic cells. Their results 

confirmed previous results from Carvalho et al. [4] about cell aging and their 

decreasing aggregation capacity, and presented new insights on CD47 as a putative 

mediator of the aggregation process, suggesting that the interaction erythrocyte-
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fibrinogen and CD47 may contribute to RBC hyperaggregation in inflammation. In 

2011, Carvalho et al. [4] proved through AFM methods, Zeta-potential measurements 

and fluorescence spectroscopy that, although the (un)binding strength is the same as 

for older erythrocytes, younger erythrocytes bind with higher frequency. Thus, we may 

assume that these red blood cell population is the main responsible for some 

cardiovascular diseases associated with an increase on the fibrinogen content in blood. 

Currently, Peacock et al. [42] have been developing studies about the interaction 

of the RBC membrane and the fibrinogen   chain, which have no known binding, by 

analyzing the effect of the erythrocyte presence in fibrin polymerization rates. On one 

hand, there is the  A chain C-terminus that contains an integrin binding site known to 

interact with platelets, while on the other there is a    chain that does not contain this 

platelet’s binding site. Peacock et al. performed turbidity and permeation experiments 

and analyzed the formed clots via confocal microscopy. Results showed that  A is 

more affected than   , suggesting that erythrocyte-fibrinogen interaction occurs via the 

lacking C-terminal receptor. This theory is in agreement with the fact that the   chain 

has a ligand to the platelet receptor αllbβ3, which is from the same family as the 

erythrocyte receptor (β3-like integrin), and absent in the altered C-terminus of    [42]



CHAPTER 4 – Erythrocyte - Fibrinogen 

Interaction in Cardiac Insufficiency Patients 

4.1. Introduction 

Cardiovascular Diseases: Why study them? 

Cardiovascular diseases are the global number one cause of death. World Health 

Organization5 estimated that, in 2008, 17.3 million people died from cardiovascular 

diseases, representing 30% of all global deaths, of which, an estimated 7.3 million 

were due to coronary heart disease and 6.2 million were due to stroke.  In 2011, 

cardiovascular diseases killed nearly seventeen million people, of which, seven million 

died of ischemic heart disease and 6.2 million from stroke. In 2012, the American Heart 

Association [27] statistics stated that CVD claim more lives per year than cancer, 

chronic lung/respiratory disease, and accidents combined. The World Health 

Organization predicts that cardiovascular diseases will remain to be the world leading 

cause of death, with an increasing number of deceased, mostly from heart disease and 

stroke, which are expected to reach 23.3 million by 2030. 

Taking this alarming information into account, it is urgent to continue studying 

these diseases, with the purpose of improving and creating new diagnostic and therapy 

methods. 

In this chapter we introduce the background concepts about the diseases we 

studied in this project. Then, the methodologies used to perform the essays are 

                                                
5
 http://www.who.int/en/, accessed on August, 2013. 

4 
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described and the results are presented. Finally, conclusions are taken from those 

results.   

4.2. Heart Failure 

Heart failure (HF), or cardiac insufficiency, affects more than twenty million 

people in the world, with an exponential tendency to increase [43]. 

The annual incidence of new cases of heart failure rises from less than 0.1%  

among people with less than 45 years old, to 1% for those older than 65 years, to 3% 

for those who are more than 85 years old. Prevalence figures follow a similar 

exponential pattern, increasing from 0.1% before 50 to 55 years of age to almost 10% 

after age 80 years. The overall prevalence of HF in the adult population in developed 

countries is 2%. As for gender, although HF incidence is higher in men than women, 

the female gender represents at least one-half of the cases, probably due to longer life 

expectancy [43, 44]. 

4.2.1. Definition 

Heart failure, is a clinical heterogeneous syndrome, that can be inherited or 

acquired, in which abnormalities of cardiac function are responsible for the inability of 

the heart to pump blood at an output sufficient to meet the requirements of 

metabolizing tissues, or the ability to do so only at abnormally elevated diastolic 

pressures or volumes. Many authors describe this syndrome as a developed 

constellation of clinical symptoms (dyspnea and fatigue) and signs (edema and rales) 

that condemns the patient to a poor quality of life, with frequent hospitalizations, as 

they experience various cardiovascular disorders and adverse events, and to a 

shortened life expectancy [43, 44]. 

HF is characterized according to the patients’ left ventricular ejection fraction 

(EF). HF with a depressed EF, commonly referred as systolic failure, or HF with a 

preserved EF, commonly referred to as diastolic failure [43]. 

4.2.2. Etiology 

Any condition that causes myocardial necrosis or produces chronic pressure or 

volume overload can induce myocardial dysfunction and heart failure. 

Heart failure may occur as a result of several causes: impaired myocardial 

contractility, creating systolic dysfunction, reducing left ventricular ejection fraction; 
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increased ventricular stiffness or impaired myocardial relaxation, creating diastolic 

dysfunction which is commonly associated with a relatively normal left ventricle ejection 

fraction; other cardiac deficiencies, like obstructive or regurgitant valvular disease, 

intracardiac shunting, or disorders of heart rate or rhythm; conditions where the heart is 

unable to compensate increased peripheral blood flow or metabolic requirements. By 

all means, the left ventricle is almost always involved in the cause of this disease, even 

if the symptoms occur primarily as a right ventricular dysfunction.  

Heart failure may result from an acute disruption of the cardiac function, like the 

occurrence of a large myocardial infarction or, more commonly, a chronic process. 

However, the major causes for HF are coronary heart disease, in which the blood 

vessels that supply the heart suffer a severe narrowing; hypertension; diabetes; 

dyslipidemia; obesity in industrialized countries; ischemia and other forms of heart 

disease [44]. 

4.2.3. Symptoms 

The main symptoms of HF are fatigue and dyspnea. The first one is considered 

to be due to low cardiac output, as well as to skeletal muscle anomalies and other 

noncardiac abnormalities, like anemia. As for dyspnea, it becomes more frequent and 

intense as the disease progresses, occurring even at rest. The origin of this symptom 

is probably a result of numerous signs, being the main one the pulmonary congestion 

with accumulation of interstitial or intra-alveolar fluid. Other factors can include 

reductions in pulmonary compliance, increased airway resistance, respiratory muscle 

and/or diaphragm fatigue, and anemia. Dyspnea may become less frequent with the 

onset of right ventricular failure and tricuspid regurgitation [43].  

HF may be manifested chronically, through an acute exacerbation of chronic HF, or 

acutely as a de novo manner (caused by MI, valvular disease, myocarditis or 

cardiogenetic shock) [44]. 

4.3. Ischemic Heart Disease 

The most common cause of heart failure in industrialized countries is ischemic 

cardiomyopathy. This disease causes more deaths and disabilities and economic costs 

than any other illness in the developed countries [43]. 
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4.3.1. Definition 

Ischemic heart disease (IHD) is a chronic condition in which there is a lack of 

blood supply to the myocardium, leading to myocardium’s deoxygenation. This 

cardiomyopathy usually occurs when oxygen supply and demand are not balanced 

[43]. 

4.3.2. Causes 

The main cause for IHD is atherosclerotic disease of an epicardial coronary 

artery or arteries, with such severity, leading to a regional reduction in myocardial 

blood flow and inadequate perfusion of the myocardium supplied by the involved 

coronary artery [43].  

The major risk factors for atherosclerosis are high levels of plasma low-density 

lipoprotein (LDL), low plasma high-density lipoprotein (HDL), cigarette smoking, 

hypertension, and diabetes mellitus [43]. 

4.3.3. Effects 

Ischemia is revealed by episodes of inadequate tissue perfusion caused by 

atherosclerosis. In these episodes, the tension from the oxygen of the myocardial 

tissue falls, causing temporary disturbances of the mechanical, biochemical, and 

electrical functions of the myocardium. The ventricular contractility is affected, 

provoking segmental hypokinesia (body movement decrease), akinesia (loss or 

impairment of voluntary movements), or dyskinesia (voluntary movements diminished 

and presence of involuntary movements), which can reduce myocardial pump function 

[43]. 

The abrupt development of severe ischemia is related with almost instantaneous 

failure of normal relaxation and contraction of the muscle. The relatively poor perfusion 

of the subendocardium causes more intense ischemia of this portion of the wall. 

Gaining a bigger proportion, ischemia of the ventricle causes transient left ventricular 

failure and regurgitation can occur. If ischemia is transient, it may be associated with 

angina pectoris, if it is prolonged, it can lead to myocardial necrosis and scarring with 

or without the clinical picture of acute myocardial infarction [43]. 
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4.4. Methods 

The blood was received from cardiac patients from Hospital Pulido Valente 

(Lisbon, Portugal) and blood donors from the Portuguese Blood Institute (Lisbon, 

Portugal), after their signed consent in the participation in this research project. 

This study was performed with blood samples of twenty patients (N=20), all of 

which suffered from heart failure, with one of two etiologies to distinguish: seven 

patients presented ischemia (ET2), while the other thirteen patients did not (ET1). The 

negative control was done with the blood of twenty healthy blood donors. 

In order to prepare the blood samples for AFM force spectroscopy, we performed 

the blood cells isolation protocol described in Chapter 2.3. For tip functionalization, we 

carried out the protocol described in Chapter 2.1.2. A Human wild-type fibrinogen was 

used to attach to the AFM tip. 

 Approximately 30 minutes before loading the sample in the AFM, we deposited 

blood cells as described in Chapter 2.1.4. Then, we calibrated the tip as required in 

Chapter 2.1.3. and performed the AFM force spectroscopy measurements in 

agreement with the protocol in Chapter 2.1.5.  

4.5. Results 

After analyzing the twenty donors and twenty patients, we had 16,855 curves 

regarding blood donors, 6,448 from erythrocytes and 10,407 derived from platelets 

measure. As for cardiac insufficiency, we collected 66,354 curves. From these, 30,181 

curves are due to ET1 erythrocytes and 12,842 to platelet measures; from the 

remaining curves, 14,867 relate to ET2’s erythrocytes and 8,464 to ET2’s platelets. 

Binding Forces 

Histograms of the (un)binding forces of each studied fibrinogen-cell complex 

were constructed choosing the best fitted Gaussian model peak forces to obtain the 

average rupture force for a single fibrinogen-cell receptor binding. Forces ranging 

between 0 and 10 pN were considered as unspecific interactions and were not taken 

into consideration.  
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Figure 19. Blood donors and CI patients binding forces histograms. The graphic on the left 
represents the normalized frequency of healthy donors’ erythrocytes measures. The unique 
Gaussian peak is at 55.2   0.9 pN. The graphic on the right represents the normalized frequency 
counts for cardiac insufficiency erythrocytes. The three Gaussian curves used for the fitting stand 
at 25.6   0.8 pN, the second peak at 44.1   7.8 pN and the third peak at 79.2   21.4 pN. 

 

Figure 20. Ischemic and non-ischemic binding forces histograms. The graphic on the left 
can be fit with three rupture forces on ET1's erythrocytes. These peaks are at 27.7   0.3 pN, 41.8   

2.0 pN and 75.1   5.6 pN. On the left, the graphic refers to ET2 patients. Their erythrocytes can also 

be fit with three Gaussian curves. The first at 29.4  0 .4 pN, the second at 57.2   4.0 pN and the 

third at 105.2   24.0 pN. 

 

The donors average erythrocyte rupture force was 42.1   1.0 pN, while the 

patients’ was 68.3   0.4 pN. As for platelets, the donors’ average rupture force 

between the cell and fibrinogen was 65.5   0.8 pN and the patients’ was 56.2   0.5 

pN. Regarding the two etiologies, ET1 patients presented average rupture forces in 

their erythrocytes of 63.3   0.5 pN and 68.1   0.8 pN in their platelets; ET2 patients 

had average rupture forces for their erythrocytes of 78.6   0.8 pN and merely 38.1   

0.6 pN in their platelets.  
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We used the Unpaired t-test to statistically assess the differences between the 

fibrinogen-blood cells interaction forces for healthy blood donors and cardiac 

insufficiency patients.  

 

Figure 21.  Binding forces comparison between all subjects. P value significance: *: 0.0018 < 
p < 0.05; **: 0.0001 < p < 0.0018; ***: p < 0.0001. 

 

Regarding the etiologies, the binding forces between cell membrane and 

fibrinogen were all significantly different (p<0.0001 between all parameters, except for 

the comparison between the platelets from donors and ET1 patients where p=0.0181).  

Binding Frequency  

As for the binding frequency, donor erythrocytes bond 19.0   1.8 % of times with 

fibrinogen, while patients erythrocytes bond only 15.3   0.7 % of times. Donor’s 

platelets bound 44.6   1.6 % of times and patients’ platelets bound to fibrinogen 

protein only 38.4   0.8 % of times. Concerning the patients’ etiologies, ET1’s 

erythrocytes bound 15.3   1.4 % and ET2’s erythrocytes bound to fibrinogen with a 

similar frequency (15.3   0.7 %). ET2’s platelets bound with a frequency of 41.9   1.1 

%, while ET1’s platelets bound with a frequency of 36.6   1.5 %. 
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Figure 22. Percentage of events comparison between all subjects. P value significance: ns: 
non-significant (p > 0.05); *: 0.0018 < p < 0.05; **: 0.0001 < p < 0.0018; ***: p < 0.0001. 

 

Applying the Unpaired t-test to these results, we verified that the binding 

frequency values between healthy donor and patients’ erythrocytes were not 

significant, while the difference between donor and patients’ platelet binding frequency 

proved otherwise, with a p value of 0.0016. 

ET1’s erythrocyte binding frequency was not statistically different from ET2 and 

donor’s erythrocyte binding frequencies. ET2’s erythrocytes also showed no statistical 

differences with the donor’s erythrocytes binding frequencies. 

Platelets revealed some significant divergence between the three subjects. ET1’s 

erythrocytes presented a statistically different binding frequency from ET2 (p=0.0284) 

and donor’s (p=0.0018) erythrocytes. As for the test between ET2 and donors’ 

platelets, no statistically significant value was obtained. 

Table 3 summarizes the AFM force spectroscopy acquired data. 
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Table 3. Summary of the AFM force spectroscopy measures. 

  Average Binding Force (pN) Binding Frequency (%) 

  Erythrocytes Platelets Erythrocytes Platelets 

Donors (N=20) 42.1 ± 1.0 65.5 ± 0.8 19.0 ± 1.8 44.6 ± 1.6 

Total Patients (N=20) 68.3 ± 0.4 56.2 ± 0.5 15.3 ± 0.7 38.4 ± 0.8 

ET1 Patients (N=13) 63.3 ± 0.1 68.1 ± 0.8 15.3 ± 1.4 36.6 ± 1.5 

ET2 Patients (N=7) 78.6 ± 0.8 38.1 ± 0.6 15.3 ± 0.7 41.9 ± 1.1 

4.6. Conclusions 

After a thorough analysis of the obtained results, we could take some 

conclusions from these results. 

We verified that there was a great difference between the binding forces of total 

patients and donors, which would be expected since these patients present higher 

thrombosis risks, associated with high blood viscosity, which is directly related to 

fibrinogen blood concentration. The main difference was on erythrocytes’ binding (~26 

pN, while on platelets it was ~10 pN). Binding frequency did not show great divergence 

between the two populations. 

As for the two etiologies’ binding forces, it is clear that erythrocytes and ET1 

platelets maintain their high fibrinogen aggregation, while ET2 platelets suffer a great 

decrease in their binding forces. The binding frequency gives us insights on the effect 

of the pathology in the cells’ membrane physiology. While erythrocytes maintain their 

percentage of binding, platelets increase the number of times they bind to fibrinogen, 

i.e. platelets’ membrane seems to have more fibrinogen receptors, leading to an easier 

thrombi formation.  





 CHAPTER 5 – Mouse Erythrocytes- -Mutant 

Fibrinogen Interaction 

5.1. Introduction 

In this chapter we describe our essays with a    (mutant gamma chain) 

fibrinogen. As already explained in Chapter 3.5.6., mutated fibrinogen’s   chains are 

associated to cardiovascular risk [34, 36]. 

The fibrinogen we studied was received through a collaboration with the principal 

investigator of the Department of Pathology and Laboratory Medicine, School of 

Medicine at University of North Caroline, Alisa Wolberg. Their work lays on the study of 

thrombosis and bleeding disorders. To know more about this laboratory, please check 

their website6.  This lab has been using this type of fibrinogen (unpublished data) on 

mice in order to study the fibrinogen interaction with leukocytes’ integrin     , 

removing this receptor’s ligand (         ). However, the fibrinogen variant remains 

with its full clotting function and capacity to support platelet aggregation. This way, they 

evaluate if the fibrinogen sets thrombi formation through leukocyte      receptor. 

5.2. Methods 

Mice blood from the Instituto de Medicina Molecular’s rodents’ facilities was used 

to perform these experiments. 

                                                
6 http://www.med.unc.edu/wolberglab, assessed on September, 2013. 
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Two types of fibrinogen were used on these studies: a wild-type (WT) and a 

fibrinogen  -chain mutant (  ). Each type of fibrinogen came from two different batches. 

Mouse blood was isolated according to the protocol described in the Chapter 2.4. The 

tip functionalization and later cell deposition were performed as delineated in Chapters 

2.1.2. and 2.1.4., respectively. The tip was calibrated according to 2.1.3. and AFM 

results were obtained as presented in Chapter 2.1.5. 

For Zeta potential experiments, we prepared the sample as described in 2.2.2. 

and performed the measurements as presented in 2.2.3. 

5.3.  Results 

5.3.1. AFM force spectroscopy 

Erythrocytes measures consisted in 12,493 curves for WT fibrinogen and 14,258 

curves for    fibrinogen. Regarding platelets, we obtained 9,344 curves for WT 

fibrinogen and 9,300 for    fibrinogen. 

Histograms of the (un)binding forces of each studied fibrinogen-cell complex 

(Figure 23 and Figure 24) were constructed choosing the best fitted Gaussian model 

peak forces to obtain the average rupture force for a single fibrinogen-cell receptor 

binding. Forces ranging between 0 and 10 pN were considered noise or non-specific 

interactions.  

 

Erythrocytes-WT fibrinogen   Erythrocytes-    fibrinogen  

  interaction      interaction 

 

Figure 23. Rupture-force histograms for erythrocytes-wild type fibrinogen and erythrocytes-
 ’ fibrinogen systems. For WT fibrinogen (left), the first peak is at 21.00   0.04 pN, the second peak 
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at 34.51   0.17 pN and the third at 62.45   2.33 pN. For  -mutant fibrinogen (right), the first peak is 

at 21.88 0.15 pN and the second at 37.05 pN. 

 

Platelets-WT fibrinogen  Platelets-    fibrinogen 

   interaction     interaction 

 

Figure 24. Rupture-force histograms for platelets-WT fibrinogen and platelet-gamma mutant 
fibrinogen systems. For WT fibrinogen (left), its first peak is at 22.7   0.5 pN and the second at 40.0 

  8.2 pN. The interaction between platelets and  -mutant fibrinogen (right), yielded a first peak at 

22.0   0.2 pN and the second is at 40.7   2.2 pN. 

 

The AFM force spectroscopy average binding forces for erythrocytes were 52.9 

 1.3 pN for WT fibrinogen and 40.2   0.6 pN for    fibrinogen. About platelets, we 

obtained average binding forces of 34.0   0.3 pN for WT fibrinogen and 39.2   0.3 pN 

for    fibrinogen. The measured frequency of binding between fibrinogen and the 

erythrocyte’s cell was, for WT fibrinogen, 16% and for    fibrinogen 20%. As for 

platelets, the WT fibrinogen presented 65% of binding events and    fibrinogen 

presented 62% of binding events. 

After the statistical analysis, we noticed that there were no significant differences 

between the two fibrinogen batches. Therefore, no distinction was made for further 

analysis.  

Table 4 and 5 summarize the acquired results. 

Table 4. AFM results for the interactions of fibrinogen with erythrocytes. 

Fibrinogen Type Average Binding Force Binding Frequency (%) 

WT 53.0 ± 1.3 16 

Gamma-mutant 40.2 ± 0.6 20 
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Table 5. AFM results for the interactions of fibrinogen with platelets 

Fibrinogen Type Average Binding Force Binding Frequency (%) 

WT 34.0 ± 0.3 65 

Gamma-mutant 39.2 ± 0.3 62 

5.3.2. Zeta Potential -   

In order to understand better how this  -chain mutant interacts with the cell 

membrane we also performed Zeta potential measurements. With this methodology, 

we measured differences of potential that indicate electrical and physiological changes 

on the membrane. Zeta potential measures were performed for 0, 0.025 mg/mL and 

0.1 mg/mL fibrinogen concentration with 0.035% hematocrit. 

The results are presented graphically in Figure 25. It is clear that there is a large 

difference between the suspensions with and without fibrinogen. At lower 

concentrations, fibrinogen’s presence effects are similar.  It is on the highest 

concentration that the difference between WT and    fibrinogen becomes evident. 

 

Figure 25. Zeta potential results for erythrocyte-fibrinogen interaction. Fibrinogen-free 

suspension presents -14.5 ± 0.14 mV. At 0.025 mg/mL of fibrinogen concentration, WT fibrinogen suspension 
presents -12 ± 0.29 mV and  ’ suspension presents -12.1 ± 0.18 mV as Zeta-potential values. At 0.1 mg/mL of 
fibrinogen concentration, WT fibrinogen suspension presents -11.1 ± 0.19 mV and    suspension presents -12.1 ± 
0.13 mV as Zeta-potential values. 

 

The variation of the Zeta potential (  ) for each sample was calculated by 

subtracting from the zeta-potential value of the sample the initial value corresponding 

to zero fibrinogen concentration. The larger the   , the bigger is the interaction 

between protein and cell membrane. 

 

 



CHAPTER 5 – MOUSE FIBRINOGEN -    FIBRINOGEN INTERACTION  

- 53 - 

 

Table 6. Zeta potential variation. 

    (mV) 

Fibrinogen Concentration 0.025 mg/mL 0.1 mg/mL 

WT Fibrinogen 2.5   0.15 3.4   0.05 

   Fibrinogen 2.4   0.04 2.4   0.01 

 

Table 6 shows that upon fibrinogen binding, the erythrocyte surface charge increases. 

For higher concentrations, the presence of  -mutant fibrinogen reveals lower Zeta 

potential difference, suggesting that there is a lower binding between the cell and the 

protein, while WT fibrinogen, with a larger Zeta potential difference, seems to be more 

prone to bind to erythrocytes. 

5.4. Conclusions 

As mentioned before, this fibrinogen   chain variation does not impair the 

platelets’ clotting function. This confers with the AFM results on Table 5, where there is 

no significant difference between the WT and gamma-mutant binding to platelets (34.0 

± 0.3 pN and 39.2 ± 0.3 pN, respectively) and frequency of binding (62% and 65%). 

On the other hand, erythrocyte data indicates that this mutation leads to lower 

binding forces in the interaction with  -mutant fibrinogen (from 52.9   1.3 pN for WT to 

40.19 ± 0.628 pN for   ), but higher binding frequency (from 16% to 20%).  

As for Zeta potential results, we considered that the number of samples available 

were not enough to take many conclusions. Nevertheless, our results suggest that the 

 -mutant does not bind to erythrocyte as well as the WT fibrinogen. 

Fibrinogen’s effect on the membrane is not very observable at low concentration, 

(∆  is 0.025 ± 0.15 mV for WT and 2.4 ± 0.04 mV for   ), but, according to WT fibrinogen, 

when the concentration increases, it is clear that fibrinogen interacts more with the cell 

(∆  is 3.4 ± 0.05 mV for WT).  Between both types of protein, we can distinguish that WT 

presents a higher affinity to the membrane, with ∆   3.4 ± 0.05 mV, than the  -mutant type 

as it does not present Zeta potential changes (∆ = 2.4 ± 0.01 mV). 





CHAPTER 6 – General Conclusions and 

Future Work 

6.1. Conclusions 

This project had duration of six months. For such a short time and for the number 

of essays performed, we can say that our results are quite conclusive. 

Regarding the cardiac insufficiency patients, it is clear that a twenty people 

population is not enough to make solid conclusions, but we may start drafting some 

important ideas. Further investigation in this project may bring, not only notoriety for the 

AFM techniques, but also new clinical insights in pharmacology. Thus, it is urgent that 

we conclude the characterization of the erythrocyte’s receptor for fibrinogen in order to 

develop new drugs that inhibit higher erythrocyte aggregation. 

The mouse’s erythrocytes measures showed that this  -mutant does not interfere 

with platelets aggregability function. However, the fibrinogen’s ligand to the leukocyte’s 

receptor      seems to interact with the erythrocyte’s receptor for fibrinogen. 

As for me, the author of this thesis, I found profoundly remarkable working in 

IMM. This past six months really filled me with great will to pursue this work. They were 

months of hard work, but when it all came together, and we started to see such sense 

in the acquired data, I could understand that research is even more exciting than I 

already thought it was. For this, I am very glad I had this opportunity of working in such 

an institute. 
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6.2. Future Work 

As a closer future work, we aim at increasing the number of cardiac insufficiency 

patients enrolled in this study, and achieve the same number of subjects from each 

etiology. 

Then, a one-year follow-up of myocardial infarction and hypertension patients will 

continue. We will perform the same AFM force spectroscopy measurements, focusing 

on the fibrinogen-erythrocyte interactions, and on rheological studies on erythrocyte 

aggregation. We shall add a new technique that can be coupled to the AFM: the cell-

hesion module (already acquired) that allows cell-cell adhesion assays. This way, we 

can evaluate the possible association between the reduction of fibrinogen-mediated 

erythrocyte-erythrocyte interactions with the reduction and/or prevention of 

cardiovascular pathologies. Flow cytometry assays will also be performed. 

This way, we expect to be able to fully identify the receptor for fibrinogen on the 

erythrocyte membrane and to identify which drug(s) may be successfully used to 

overcome the risks of fibrinogen-driven erythrocyte hyperaggregation. We expect to be 

able to provide new insights on the identification of some prethrombotic markers on the 

prevention of cardiovascular diseases. We also anticipate having a significant 

decrease of the erythrocyte cell elasticity and higher forces necessary to break the 

erythrocyte-fibrinogen-erythrocyte bridging on both types of patients, since an increase 

of erythrocyte aggregation on this cardiovascular disorders is expectable. 
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