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ABSTRACT  

 

Photovoltaic systems present themselves as an excellent alternative for clean energy production. 
To reach large applications, obstructions as high silicon prices must be overcome. Solar concentration 
systems are a potential solution since silicon is replaced by cheaper material (like mirrors or lenses). 
Nevertheless, there are still many issues and challenges yet to overcome. One of these challenges is the 
economic cost of the solar cells, since the CPV systems need to integrate expensive high efficiency solar 
cells specially designed to operate at high levels of radiation.  Thus, it is necessary to explore new 
approaches. 

In this thesis presents a study of the potential of the screen-printed silicon solar cells to integrate 
the CPV systems, concretely the HSUN system.  Two solar cells, conventional 1Sun and conventional 
15Suns, were analyzed and integrated in the HSUN sub-receivers, in order to understand their behavior 
under several levels of concentration and when integrated in series in sub-receivers. After the first part 
of the experimental campaign (electrical characterization of solar cells) it was concluded that the 
conventional standard silicon solar cells are unsustainable for use in the HSUN system (which operates 
a 15 suns), since these solar cells only work properly up to a concentration of 5 suns. Regarding the 
Upgraded 1-sun silicon solar cells, the results were satisfactory regarding their behavior under 
concentration, until a concentration level of 20 suns. 

In the second part of the experimental campaign, the Upgraded 1-sun solar cells were integrated 
in the HSUN sub-receivers and their behavior was analyzed. The results taking from this part of the 
experimental campaign prove the good performance of the Upgraded solar cells and that their 
performance is unaffected by their integration in the sub-receivers. Associated to this part of the 
experiments, was also performed the optimization of the mounting process of the sub-receivers. This 
optimization provided a faster process with a lower probability of damaging the solar cells.  To a 
complete study of the potential of these solar cells, it is important to take into account the economic 
viability of the solar cells. Comparing the cost-efficiency of the standard conventional solar cells, the 
LGBC solar cells (cells used actually in the HSUN system) and the Upgraded 1-sun solar cells, it was 
concluded that the solar cells more viable up to a concentration level of 24 suns are the Upgraded 1-sun 
solar cells, being that from this concentration level the LGBC solar cells solar cells present themselves 
as the most viable. 

Therefore, and taking into account all the work developed along this thesis, it was concluded that 
the most cost-efficient solar cells to integrate the HSUN system are the conventional solar cells with 
some characteristics optimized for the required concentration levels. 
 

Keywords: Concentration Photovoltaic systems, Silicon solar cells, Screen- printing, Laser Grooved 
with Buried Contacts 
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RESUMO 

 
Os sistemas fotovoltaicos apresentam-se como uma excelente alternativa para produção de 

energia limpa. Os concentradores solares mostram-se como uma potencial solução, uma vez que parte 
do silício é substituído por materiais menos dispendiosos (como espelhos e lentes). Contudo, existem 
ainda vários desafios associados a este tipo de sistemas que necessitam ser resolvidos. Um desses 
desafios prende-se com os custos económicos associados ao uso de células solares de alta eficiência 
muito caras, desenhadas para funcionarem a altos níveis de radiação. Assim, mostra-se necessário a 
exploração de novas ideias e tecnologias. Nesta tese é apresentado um estudo da potencialidade de 
células solares screen-printed de silício para integração em sistemas de CPV, concretamente no 
sistema HSUN.  

Dois tipos de células solares, convencionais standards e células solares de silício optimizadas 
para uma concentração de 15 sois, foram analisadas, com o objectivo de se perceber o seu 
comportamento e a sua performance sob vários níveis de concentração. No fim da primeira parte da 
campanha experimental desenvolvida (caracterização eléctrica das células solares), foi possível 
concluir que as células convencionais não são uma opção viável para integrar o sistema HSUN (que 
opera a uma concentração de 15 sóis), uma vez que as estas células apenas apresentam um correcto 
funcionamento até uma concentração de 5 sóis. No que respeita as células solares de silício 
optimizadas, os resultados foram satisfatórios, tendo em consideração o seu comportamento sob 
concentração até 20 sóis.  

Na segunda parte da campanha experimental, as células solares optimizadas foram integradas 
em sub-receptores e o seu comportamento foi analisado. Os resultados obtidos provaram a boa 
performance, já demonstrada na sua caracterização eléctrica, e que o seu funcionamento não é 
afectado através da sua integração em sub-receptores. Associado a esta parte experimental, foi ainda 
realizada a optimização do processo de montagem dos sub-receptores. Esta optimização proporcionou 
um processo de montagem mais rápido e com menor probabilidade de danificação das células solares. 
Por fim, e comparando o custo vs. eficiência das células convencionais, das células solares 
optimizadas e das células solares de contacto enterrado (usadas actualmente no sistema HSUN), foi 
possível concluir que a célula solar mais viável até uma concentração de 24 sóis é a célula solar 
optimizada, sendo que a partir desse nível de concentração as células solares de contacto enterrado 
passam a ser as mais viáveis.  

Assim, e tendo em conta todos os resultados obtidos ao longo do desenvolvimento desta tese, 
concluiu-se que as células solares mais viáveis para integrar o sistema HSUN são células solares 
convencionais com algumas características optimizadas para o nível de concentração requerido. 
 

 
Palavras-chave: Sistemas de Concentração Fotovoltaica, Célula solar de silício, Tecnologia Screen-
printing, Células LGBC 
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Chapter 1 

 

INTRODUCTION 

 

1.1 Context  

Since 1860, the average surface temperature increased 0.6 °C. Different future scenarios 

predict that by 2100, this temperature will increase between 1.5 and 6º C, if the energy choices and 

habits of current consumption remain unchanged [1].  

The Renewable Energy whose conversion technologies have reached a maturity which allows 

commercial and technical perspective the application of economic significance, are forms of energy 

that regenerate cyclically in a  reduced scale of time. That is, energies that are in constant renewal, 

are inexhaustible and can be continuously used [2]. Thus, the renewable energies are pointed out as 

one of the solutions to mitigate the energetic problems, as well as a sustainable alternative to fossil 

fuels [2]. Among them, solar energy has the biggest developing potential and has proven to be an 

efficient and cost-effective energy source for different applications. 

The Sun is the most abundant power source and is estimated that the sunlight that reaches the 

Earth's surface is enough to provide more energy as it is currently used. On a global average, each 

square meter of land is exposed to enough sunlight to produce 1700 kWh of power every year [3]. 

Photovoltaic (PV) technology involves the generation of energy from the direct conversion of 

the sunlight into electricity. Since 2000, total PV production increased almost by two orders of 

magnitude, with annual growth rates between 40% and 90%. The most rapid growth in annual 

production over the last five years could be observed in Asia, where China and Taiwan together now 

account for almost 60% of world-wide production. However, the major barrier towards very large-

scale use of PV systems has been the cost of electricity generation with this type of technology [4]. 

Concentrated photovoltaic (CPV), by concentrating the sunlight into the solar cells through the 

use of mirrors or lenses, decreases the silicon area necessary for the production of the same power, 

leading to a decrease of the price of electricity generated by the system. As so, the CPV technology is 

considered by some the technology with most potential to reach costs of electricity that can compete 

with fossil fuels [5].  
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The CPV configurations vary widely according to the concentration ratio, the type of optics 

(refractive or reflective) and the geometry, but also by the type of solar cells used. Since the CPV 

systems operate under concentration, it’s necessary that the solar cells used in this kind of systems 

present several proprieties that lead to a good performance. Thus, the solar cell choice is decisive for 

a CPV system to achieve high performance and to be reliable over its entire lifetime [5].  

 

 

 

1.2 Scope and objectives  

 

This master thesis was developed within the framework of the HSUN project, a new CPV 

system that is being developed in a collaboration between the research and development (R&D) 

Wemans and Sorasio Laboratories of WS Energia, the Departamento de Engenharia Electrotécnica 

from Faculdade de Ciências e Tecnologia – Universidade Nova de Lisboa (FCT-UNL) and the 

Faculdade de Ciências da Universidade de Lisboa (FCUL) and intends to contribute to evolution of 

science and technology on photovoltaic systems, and thus increase the penetration of solar energy in 

the markets. 

The objective of this research was to study the performance of various types of solar cells 

under solar concentration and thus, contributing for the development of the HSUN technology. Thus, 

taking into account the main objective, the thesis is divided in two distinct parts: 

 

• Laboratorial characterization of the solar cells in study to validate the theoretical 

method that was used for predicting the behavior of solar cells under different concentration 

levels.  

 

• Improvement of the mounting process of the HSUN receivers. Through the 

implementation of this process, the soldering of solar cells has become faster with a lower 

probability of damaging the solar cells. It was also performed an experimental campaign to 

understand the behavior of the solar cells when integrated into the HSUN sub-receivers. 

 
 

The objectives were accomplished and are completely integrated in the project: the improved 

mounting process of the HSUN receivers is being used to the preparation of new prototypes and the 

solar cells studied are already being used in the new HSUN prototype. Some of parts of this work 

were presented in the European Photovoltaic Solar Energy Conference in Hamburg and the article 

and poster presented can be consulted in the Annex I.   
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1.3. Structure of the thesis 

 

This thesis is organized in eight Chapters:  

Chapter 1 sets the context, scope and main objectives of the thesis as the necessity of a correct 

choice of the solar cell that integrates the CPV system.  

Chapter 2 presents the fundamental concepts and state of the art of concentrated photovoltaics 

systems 

Chapter 3 presents the fundamental concepts of the solar cells and describes the state of the 

art of the solar cells that are suitable to integarte the CPV systems. Also in this chapter it is presented 

the physical characteristics of the solar cells under study in this thesis. 

 Chapter 4 covers the estimated behavior of the solar cells under different concentration 

levels. A mathematical model to estimate the behavior of solar cells under concentration is explained 

and the expected behavior of the solar cells under concentration is presented.   

Chapter 5 describes the laboratorial characterization of the solar cells under study, with the 

presentation of a full experimental campaign where several experimental procedures were performed 

in order to test and analyze the electrical and physical parameters of the solar cells.  

Chapter 6 describes the behavior of the solar cells tested integrated in the HSUN sub-

receivers. Also in this chapter is explained the whole soldering process of solar cells developed in the 

context of this thesis.  

Chapter 7 describes the cost-efficiency analysis of screen-printed solar cells to integrate CPV 

systems.  

Chapter 8 presents the main conclusions of this work, as well as directions for future 

developments related to the solar cells in the HSUN project.
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Chapter 2 

 

Concentration Photovoltaic Systems 

 

This chapter introduces the fundamental concept and a brief history of Photovoltaic (PV) 

technology. Within this area, Concentration photovoltaic (CPV) systems are pointed out as an 

interesting technological option to significantly reduce the PV electricity costs.  The main areas of 

CPV technology are then briefly described. 

 

 

 

2.1.Photovoltaic Solar Energy 
 

The photovoltaic (PV) effect consists on the direct conversion of sunlight into electricity. Such 

effect, involves the transfer of the photon energy of the incident radiation to the electrons of the 

atomic structure of the semiconductor material. This translates into the creation of free charges in the 

semiconductor, which are separated inside the device by the electric field of the junction, thus 

producing an electric current outside [6]. 

This effect was first observed in 1839 by Edmond Becquerel who found that metal plates, 

platinum or silver, dipped in an electrolyte, when exposed to light, produces a small potential 

difference. Later in 1877, two inventors from the U.S., W. G. Adams and R. E. Day, used the 

photoconductive properties of selenium, to develop the first solid state device for producing 

electricity when exposed to light (Fig. 2.1). 

 

 

 

Figure 2.1 - Adams and Days' Selenium glass tube 
Source: http://ihome21.kennesaw.edu/new/mods/solar_power.htm 



Concentration Photovoltaic Systems 

6 

This device consisted on a film of selenium, iron deposited on a substrate and a second film of 

gold, semi-transparent, which worked as a front contact. Despite the low conversion efficiency of the 

device (about 0.5%) in the late nineteenth century, the German engineer Werner Siemens (founder of 

the industrial empire with his name) marketed as selenium cell light meters for cameras [7]. With the 

advent of the space age, the photovoltaic technology has assumed a new importance, since the solar 

cells began to be used as backup to the chemical batteries used in satellites, in 1958 (Fig.2.2) [7]. 

 

 

 
Figure 2.2– Vanguard 1 was the fourth artificial satellite launched and the first to be solar power. It’s the oldest satellite 

orbiting Earth, but there is no longer any communication with it. 
Source: http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=1958-002B 

 

 

The history of photovoltaic had expected its major scientific developments on the first half of 

the twentieth century, including the explanation of the photoelectric effect by Albert Einstein in 

1905, the advent of quantum mechanics and in particular the theory of bands and the physics of 

semiconductor producers [7]. 

In the 80s, the PV has become an important source of electrical energy associated with 

electrical devices such as watches, calculators and radios and global photovoltaic 

production exceeded 9.3 MW [7]. Due to the growing demand for renewable energy sources, the 

manufacturing of solar cells and photovoltaic arrays has advanced considerably in recent years [6]. 

Driven by advances in technology and increases in manufacturing scale and sophistication, the cost 

of photovoltaic has declined steadily since the first solar cells were manufactured. Net metering and 

financial incentives, such as preferential for solar-generated electricity have supported solar PV 

installations in many countries [6]. In the last 11 years, the total PV production increased almost by 

two orders of magnitude, with annual growth rates between 40% and 90%. The most rapid growth in 

annual production over the last five years was observed in Asia, where China and Taiwan together 

now account for almost 60% of world-wide production (Fig. 2.3) [4]. 
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Figure 2.3 - Annual Photovoltaic Installation from 2000 to 2010 
Source: see reference [4] 

 
 
 
 
 

2.2. Concentration of photovoltaic 
 
 

2.2.1. Why Concentration? 
 
 

Nowadays, the PV technology shows up as a very attractive option for clean energy 

generation. However, this technology have been limited in use due to the high cost associated to 

these systems [8] which was mainly associated to the solar cells price. One approach to reduce PV 

electricity cost lies in the development of concentration photovoltaic (CPV) systems which  lead to a 

decrease in the amount of semiconductor material  per watt of generated power by providing an 

increase of the radiation intensity per area (Fig. 2.4) [8].  

 

 
 

Figure 2.4 – Concentration of the light in the solar cell  
Source: http://i00.i.aliimg.com/photo/v0/452739624/Dual_axis_solar_tracker_for_Concentrated_Photovoltaic.jpg 
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Such increase in the irradiation is provided by mirrors or lenses that concentrate solar radiation 

from a large area, into a smaller area [9]. Since the optical elements are cheaper than the solar cells, a 

further cost reduction on the PV electricity may be expected [9]. The CPV technology advantage is 

illustrated by Fig. 2.5 which shows the percentage of each PV system component cost as to the total 

cost of the system. The relative costs are presented for conventional silicon PV modules integrated in 

two different configurations: a fixed structure and a CPV system, the DoubleSun® technology which 

was developed by WS Energia S.A. As can be observed, in the case of CPV systems, the impact of 

semiconductor material (i.e. of the module), in the total cost of the system, decreases to almost a half.  

 
 

 
 
Figure 2.5 - Relative cost of the components of a PV systems as to its total cost for a conventional PV system (on the right-

hand) and for a CPV system, the DoubleSun® technology (on the left-hand).  
Source: Reis, Filipa, “LCoE analysis as a decision tool for design of concentrated photovoltaic system”, 2011 

 
 
 
 
 
 
 

2.2.2. Fundamentals of CPV systems 
 
 

The CPV systems are usually classified taking into account its concentration level which can 

be quantified in terms of concentration intensity, or “suns”. The “suns” concentration is defined as 

the ratio of the average intensity of the focused light on the cell active area divided by 1000W/m2 

(the standard peak solar irradiance)[10]. Thus, the CPV systems are divided in three classes: Low, 

Medium and High concentration systems (LCPV, MCPV and HCPV, respectively) as showed in 

Table 2.1. 
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Table 2.1 - Description of Classes of CPV systems 
Source: S. Kurtz, “Opportunities and Challenges for Development of a Mature Concentrating Photovoltaic Power Industry”, 2009 

 

Class of CPV Typical Concentration Ration 

High-concentration >400 suns 

Medium-concentration 10 suns – 100 suns 

Low-concentration 2 suns -10suns 

 
 

 As showed in Fig. 2.6, a CPV system can be divided in 3 main components (optics, trackers 

and receiver) which are presented and brief described in the next sections.  

 

Figure 2.6 - Schematic of Linear-Focus Trough PV Concentrator 
Source: IEC62108 Norm 

 

 

2.2.2.1. Optics 

 

The optics of a CPV system is the component that concentrates the sunlight into solar cells. It 

can be divided in two main groups: refractive optics and reflective optics. The refractive optics 

usually  consists on Fresnel lenses and can have two distinct configurations: i) point-focus, where is 

Secondary Optics 

Tracking System 
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show a typical ray hitting the circular active area of the solar cell; or ii) linear focus, in which the 

sunlight is focused on a line of solar cells which are placed in a string (Fig. 2.7) [10]. 

 

 

Figure 2.7 - Fresnel lens configurations: a point-focus Fresnel lens (on the left-hand) and a domed linear Fresnel (on the 
right-hand) 

Source: see reference [10]. 
 

Regarding the reflective optics, the most common solution is the use of mirrors. These 

components can have different configurations such as: i) linear (used for low concentration levels) 

and ii) parabolic shaped (used for medium and high concentration levels). As in the case of the 

Fresnel lenses, the parabolic shapes can be classified in two groups: parabolic with point focus, 

where parabolic dishes are used to focus the sunlight; and linear focus, where the light is focuses 

through the use of parabolic troughs (Fig. 2.8) [10]. 

 

 

 

Figure 2.8 - Reflective concentrator configurations: a point-focus parabolic mirror concentrating (on the left-hand) and a 
linear parabolic (on the right-hand). 

Source: see reference [10]. 

 

As mentioned before, the mirrors or lenses described above are used in the CPV systems as the 

primary optics. However, many of the CPV configurations also use a secondary optics to raise the 

performance of the concentrator. Such improvement may lie on the increase of the acceptance angle 
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or even on a higher homogeneity of the radiation that falls on the cells. As the primary optics, there 

are several configurations for the secondary optics [10].  

 

2.2.2.2. Tracking systems 

 

To correctly concentrate the sunlight on the solar cells, the optics of the CPV systems have to 

be aligned with the sun rays, thus demanding for a tracking system which places the CPV system 

towards the sun from sunrise until sunset [8].In general, the tracking systems, depending of the optics 

requirements, can track in 1 or 2 axes (Fig. 2.9). In the case of the point focus optics (that was 

mentioned above) usually requires the tracking in 2 axes while, in the case of the linear focus optics, 

the tracks in 1 vertical axis can be enough to guarantee a proper performance of the CPV system. 

Although in most cases the solar cells are the most expensive component that integrates the CPV 

system, in some of the cases, when a elevated tracking precision is required, the tracking system and 

its structure can become the most expensive component of a CPV system [10]. Thus, the higher the 

precision, the greater is the cost associated with this equipment. 

 

 
 

 
(a) (b) 

 

Figure 2.9 – Types of Tracking systems: (a) 1 axis tracker and (b) 2 axis tracker 
Source : see reference [10]. 

 

 

2.2.2.2. Receiver 
 

The concentrator receiver can be describe as the group of one or more solar cells and 

secondary optics (if present) that receives the concentrated sunlight and incorporates the means for 

thermal and electric energy transfer. A receiver could be made of several sub-receivers, where the 

sub-receiver can be classified as the elementary unit of the full-size receiver [11]. 
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The concentration ratios that are reached in a CPV system leads to high temperatures, which 

affect the cells performance. Thus, a cooling system may be required. The cooling system can be 

classified in two strands: passive, where the cooling of the module is made through by aluminum 

fins; and active, where the cooling of the module is made with running water[11]. 

To a properly function in the CPV systems, the photovoltaic cells demand for specific 

requirements of the concentrated light and from the solar cell itself. This aspect will be addressed in 

detail in Chapter 3. 
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Chapter 3 

 

Fundamentals of Solar Cells to CPV systems 

 

This Chapter covers the basic principles of PV solar cells by addressing: i) the equivalent 

electrical circuit; ii) the main electrical parameters that characterize a solar cell and iii) the influence 

of radiation and temperature on solar cells performance. This chapter ends with an overview of the 

solar cells that are suitable for CPV applications. 

 

 

3.1. Basic principles of photovoltaic solar cells 

3.1.1. Equivalent electric circuit of the solar cell 

 

Photovoltaic cells are made of semiconductor material, i.e. material with intermediate 

characteristics between a conductor and an insulator. Silicon presents itself typically as sand. 

However, through the appropriate methods is obtained silicon in a pure form. The crystal of pure 

silicon has no free electrons and therefore is a poor electrical conductor [12]. 

Thus, in order to change this situation, percentages of other elements, as phosphorus and 

boron, are added to the silicon. This process is named doping. Through the doping of silicon with 

phosphorus, a material with free electrons or materials with negative charge carriers (n-type silicon) 

is obtained. By performing the same process, but now added boron instead of phosphorus, is obtained 

a material with the opposite characteristics, i.e. lack of electrons or a material with free positively 

charges (p-type silicon) [12].  

Each solar cell is composed of a thin layer of n-type material and a thick layer of p-type 

material. Separately, both layers are electrically neutral. But together, in the p-n region, they form an 

electric field due to free electrons from the n-type silicon that occupy the gaps in the structure of the 

p-type silicon. So, by focusing light on the photovoltaic cell, the photons collide with other electrons 

present in the silicon structure, providing them energy and turning them into conductors. Due to the 

electric field generated by the p-n junction, electrons are guided and flow from the p-layer to the n-

layer, converting part of the incident light into electrical energy direct current (Fig. 3.1)[12]. 
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Figure 10- Principle of operation of a solar cell. 
Source: http://www.esdalcollege.nl/eos/vakken/na/zonnecel.htm 

 

The junction works as a rectifier or diode because the application of a potential difference, 

with the positive potential applied to the p-type material, decreases the potential barrier and allows 

current to pass through the interface, while the application of a reverse potential difference increases 

the potential barrier and not allow the passage of current. Figure 3.2 illustrates the characteristic 

curve of a silicon diode [13]. 

 

 

 

Figure 11 - I-V characteristic of a silicon diode 
Source: see reference [13] 
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When the diode is connected to a circuit so as that the potential is positive on the anode doped 

with impurities of type p, and negative on the cathode doped with impurities of type n, the diode is 

directly polarized. In this case its applied the first quadrant of characteristic curves, where, from a 

defined voltage (threshold driving voltage in this case is 0.7 V), the current will flow [13]. 

If the diode is reverse-biased, current is prevented to move in this direction and in this case, it 

applies to the third quadrant of the characteristic curve. The diode goes into avalanche or breakdown 

region when the reverse voltage exceeds a given threshold value (which may lead to its destruction), 

specific for each diode, called rupture strain. It is the "knee" strain of the I-V curve, and it is 

designated by VZK. In the region of rupture, the reverse current grows quickly, while the 

corresponding increase in voltage drop too low [13]. 

The expression that gives us the variation of intensity of the diode current (Id ) with a 

difference of potential on the terminals is the Shockley equation [13]: 

                                                                                 

�� = �� �exp � 	

	�� − 1� 

(1) 

 

where: 

I0 - Reverse Saturation Current (or leakage) that passes through the diode; 

V - Difference of potential on the terminals of the diode; 

m - Ideality factor of the diode (when m = 1, we have a ideal diode; when the m> 1, we have a 

real diode); 

VT - Thermal Potential that is given by the equation 2 

 

	� = ��
�  

(2) 

                                                                                           

k -Boltzman Constant (� = 1.38 × 10��� �/�); 

T - Absolute temperature of the cell (in Kelvin); 

q – Electron charge (� = 1.60 × 10� ! �/�). 
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The current Id is void when V = 0, increases exponentially for positive values of qV and 

decreases when qV is negative for a value of saturation negative. 

A solar cell that is not exposed to solar radiation is represented by the equivalent circuit of a 

diode and the respective I-V curve in Fig. 3.3 [13]. 

 

 

Figure 12  - a) Diagram of equivalent circuit; b) Characteristic curve of the cell in total darkness 
Source: see reference [13] 

 

The equation that expresses the variation of current vs. voltage for the ideal solar cell is given 

by [13]: 

� = �# − �$ ⇔ � =  �#  −  �� ��&' � 	

	�� − 1� (3) 

                                                   

where IL is the current generated due to exposure to light or solar radiation. Then, it proves that if 

does not exist solar radiation, the value of IL is 0, and the equation (3) leads to the equation (1). In the 

presence of solar radiation, the characteristic curve of diode is deflected by the peak current IL in the 

direction of reverse bias (fourth quadrant in the diagram of I-V curve) (Fig. 3.4) [13]. The current 

generated by the solar radiation can be electrically represented by a current source (Fig. 3.4). 

 

a) b) 
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Figure 13 - a) Diagram of equivalent circuit b) Characteristic curve of the irradiated cell 
Source: see reference [13] 

 

However, contrary to what occurs in the ideal solar cell, in reality the PV cells have associated 

to their characteristic parasitic resistances that affect their performance. As such, the equivalent 

electric circuit should include two elements, the series (Rs) and shunt or parallel (Rsh) resistance 

[13]. Figure 3.5 shows the equivalent electric circuit that represents the operation of one real solar 

cell when connecting its terminals to one electrical charge (Z). 

 

 

Figure 14 - Representation of the electrical circuit of one real solar cell 
Source: http://www.newworldencyclopedia.org/entry/Solar_cell 

 

 

The Rsh is arises from the defects present in the solar cells, while the Rs is formed by many 

individual resistances: 

• Emitter sheet resistance; 

• Bulk substrate; 

• Resistance of the the busbar and fingers; 

• Contact resistance between front gridlines and emitter; 

• Resistance of the back busbar. 

 

a) b) 
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The main effect of Rs on the I-V curve is shown in Fig. 3.6 and consists on the reduction in the 

slope of the curve near the open circuit voltage (Voc) region [6]. 

 

 

 

 

 

 

 

 
 
 

 
Figure 15 - Effect of variation of series resistance in the I-V curve 

Source: see reference [14] 
 

 

As mentioned above, the Rsh (shunt resistance) resistive component brings together the 

various factors which cause leakage current. Ideally Rsh is infinite and its effect on the characteristic 

curve is the reductions of the slope near the short-circuit current (Isc) region, as shown in Fig. 3.7 [6]. 

 

 

 

 

 

 

 

 

 

Figure 16 - Effect of the variation of the parallel or shunt resistance in the I-V curve 
Source: see reference [14] 
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Both resistances influence the I-V curve by reducing the cell fill factor. Very high values of 

Rsh and very low values of Rs may cause the reduction in short circuit current and in the open circuit 

voltage, respectively. In the presence of these resistances, the general equation of the characteristic 

curve of the cell is given by [6, 15]: 

 

� =  �#  −  �� ��&' �	 + )* × �

	� � − 1� − 	 + )* × �

)+,  (4) 

 

 

3.2. Electrical parameters of a solar cell 
 

When through one variable resistance that varies the electrical charge on the terminals of a 

photovoltaic module or other photovoltaic device exposed to solar radiation, the photogenerated 

electrical current that runs through the resistance varies according to the voltage on the terminals. 

The graphical representation of current as a function of voltage is called the characteristic curve, also 

named I-V curve. Figure 3.8 represented a typical I-V curve and a P-V (Power-Voltage) curve for a 

solar module [13]. 

 

 

Figure 17 - I-V and P-V characteristic curve of an silicon cell 
Source: http://www.cleanenergybrands.com/shoppingcart/products/HukseFlux-IV400.html  

 

Through the I-V curve of solar cell, it is therefore possible to find several parameters that 

allow the characterization of one solar cell.  
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3.2.1. Short-circuit current and open-circuit voltage 
 

The two parameters obtained from the intercept of the I-V curve with the axis system for a 

given radiation and temperature, allow to characterize one solar cell of a given area. 

This two parameters are the short-circuit current (Isc (V = 0)) and the maximum voltage on the 

terminals of the cell by the open circuit voltage (Voc (I = 0)) [16]. 

According to equation 5 and 6, the value of ISC and the Voc is given, respectively, by [16]: 

 

�*- = �# (5) 
 

	.- = 
 × 	� × /01
02 + 1 3                                                                    (6) 

 

 

 

 

3.2.2. Maximum power point 

Another parameter that it can be seen through the I-V curve is the maximum power point 

(Pmp). The region of the characteristic curve between Isc and Voc that corresponds to cell 

functioning as a generator, for each point on the I-V curve, yielding a value of voltage and respective 

current, or a power (P = VxI), which can be represented as shown in Fig. 3.9 [6]. 

 

 

  

 

 

 

 

Figure 18 - I-V curve and point of maximum power draw of the CIEMAT’s simulator. 
Source: see reference [6]. 
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The power delivered is given by the above product and there will be an operating point (Impp, 

Vmpp) at which maximum power is delivered - the point of maximum power. 

In a short circuit or in an open circuit the power is zero. The maximum power that emerges 

from the cell (Pmp), occurs at the point of the characteristic curve where the product (I x V) is 

maximum, ie   
�(05)
�(5)  = �(6)

�(5) = 0. 
So, according to equation 7, the value of voltage at the maximum power point is given by [16]: 

	
'' = 	78 − 
 × 	� × /01
02 + 1 3    (7) 

 

And, according to the equation 8, the value of current at the maximum power is given by [16]: 

 

�
'' = �� − 59::
5; × �&' /59::

5;  3    (8) 

 

The value of maximum power is therefore calculated by the product of the maximum values of 

intensity and voltage of the solar cell at the Pmp, as can be seen in the equation 9 [14]. 

 

<
' = 	
'' × �(	
'')   = 	
'' × �
''    (9) 

              
 

 

3.2.3. Fill Factor  
 

The Fill Factor (FF) is a parameter which, in conjunction with Voc and Isc, determines the 

maximum power from a solar cell. The FF is defined as the ratio of the maximum power from the 

solar cell to the product of Voc and Isc and is represented in the following figure by the light blue 

area. It can be estimated by the equation 10 [14]. 

 

Figure 19 - Fill Factor of solar cells 
Source: see reference [6]. 



Fundamentals of Solar Cells to CPV Systems 

22 

 

== = 	
'' × �
''
�*- × 	.-    (10)                                        

 

The FF is a parameter of great importance and of great practical use because it is the indicator 

of the quality of the cells[6]. 

Making use of the definition of FF, the Pmp delivered by a cell is given by equation 11 [6]. 

                                                         

<
' = == ×  �*- × 	.- (11) 

 

 

3.2.4. Conversion efficiency    
 

The energy conversion efficiency of a solar cell is defined by the ratio between the Pmp and 

the power that falls on the solar cell, G [6]. 

> = <
'
?  

(12) 

Naturally, this efficiency and maximum power is obtained only if the load resistance is 

adequate, given by Vmpp / Impp. For example, when one says that a commercial cell has an 

efficiency of 15% it means that if we had a cell surface of 1m2 that is illuminated with 100W/m2 of 

incident radiation, the maximum output power will be 15W [14]. 

 

 

3.3. Influence of temperature and radiation intensity on the characteristic curve 
 

Factors such as the intensity of solar radiation and temperature directly influence the 

performance of a photovoltaic cell, which can easily be observed through its I-V curve, as showed in 

Fig. 3.11. 
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Figure 20 - Effect of a) irradiance and b) temperature in the I-V curve 

Source: see reference [13] 

 

As shown by Fig.3.11, the value of Isc is increased with the raise of the incident radiation on 

the cell, but this variation is more important for lower values of incident radiation. When a PV cell is 

exposed to higher temperatures, the Isc increases slightly, while the Voc decreases more 

significantly. Thus, for a specified set of ambient conditions, higher temperatures result in a decrease 

of Pmp [13]. 

 

3.4. Overview of Solar Cells for CPV 

 

Regarding terrestrial applications, the semiconductor devices used for the production of PV 

cells may be distinguished into several categories depending on the material structure and 

manufacturing process.  Within the solar cells available on the market, the highest efficiencies are 

nowadays achieved by the crystalline and multijunction solar cells (Fig .3.12). These cells are also 

the most expensive; however, its cost is affordable for CPV applications in which the solar cell area 

is reduced [16]. 
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Figure 21 - Historic summary of champion cell efficiencies for various PV technologies. The highest efficiencies have been 
achieved for multijunction solar cells; these efficiencies are still increasing each year. Multijunction cell efficiencies have 

the potential to approach 50% in the coming years. 
Source: see reference [5] 

 

 

Within the crystalline solar cells, the monocrystalline technology are historically the most 

widely used and marketed for converting solar energy into electricity and are made from a single 

silicon crystal. These cells are the most efficient of all silicon cells. The crystal is obtained from high 

purity fused silica (Si = 99% to 100%) in reactors under controlled atmosphere and with very slow 

speeds for the crystal growth (process known as Czochralski method). Finally, the cells are obtained 

by cutting the ingots into fine discs (0.4-0.5 mm thick). The efficiency of this solar cells to convert 

the sunlight into electricity is over 15% [17, 18]. 

Multijunction (MJ) cells consist of multiple semiconductors, each one capable of absorbing in 

a different region of electromagnetic spectrum.  The semiconductors are carefully chosen to absorb 

nearly the entire solar spectrum, thus generating electricity from as much of the solar energy as 

possible (Fig. 3.13) [19]. This approach allows the cell to cover more of the light spectrum, but 

increases the complexity of cell design and manufacture. GaAs based multijunction devices are the 

most efficient solar cells to date. In October 2010, triple junction metamorphic cell reached a record 

high of 42.3%. 

 

 



 

Figure 22 - (a) The structure of a MJ solar cell. There are six important types of layers: p
(BSF) layers, window layers, tunnel junctions,

G vs. Wavelength 
Source: http://en.wikipedia.org/wiki/Multijunction_photovoltaic_cell

 

 

However, the MJ solar cells have a very high cost, which, in the short term, makes these solar 

cells unsuitable to integrate the low and medium 

As so, the silicon solar cells were pointed out as the most cost

MCPV technology (as the HSUN system). The silicon solar cells have many years of on

demonstration performance and a well standardized process for high volume production which makes 

this technology a very reliable technology benefitting from economies of scale 

 

 
3.4.1. Monocrystalline solar cells for CPV applications

The conventional standard mono

1000 W/m2 (1 sun). When this type of solar cells are integrated in the CPV systems and expose

higher amount of irradiation, the current that flows in the solar cells increases, as well as the Joule 

resistance losses, thus leading to a decrease of the FF and the

In order to guarantee an efficient operation of solar cells under concentra

solar cells must be fabricated specifically for concentration systems. In the following sections we 

describe several approaches that were taken to improve silicon solar cells efficiency under CPV 

applications. 
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The structure of a MJ solar cell. There are six important types of layers: p-n junctions, back surface field 

(BSF) layers, window layers, tunnel junctions, anti-reflective coating and metallic contacts; (b) Graph of spectral irradiance 
G vs. Wavelength λ over the AM1.5 solar spectrum. 

http://en.wikipedia.org/wiki/Multijunction_photovoltaic_cell 

However, the MJ solar cells have a very high cost, which, in the short term, makes these solar 

cells unsuitable to integrate the low and medium concentration systems, such as the HSUN concept. 

As so, the silicon solar cells were pointed out as the most cost‐effective solution to integrate the 

MCPV technology (as the HSUN system). The silicon solar cells have many years of on

rformance and a well standardized process for high volume production which makes 

this technology a very reliable technology benefitting from economies of scale [20]

crystalline solar cells for CPV applications 
 

he conventional standard monocrystalline solar cells (Fig. 3.14) are design

(1 sun). When this type of solar cells are integrated in the CPV systems and expose

higher amount of irradiation, the current that flows in the solar cells increases, as well as the Joule 

resistance losses, thus leading to a decrease of the FF and the efficiency of the solar cell) 

In order to guarantee an efficient operation of solar cells under concentration, highly efficiency 

solar cells must be fabricated specifically for concentration systems. In the following sections we 

describe several approaches that were taken to improve silicon solar cells efficiency under CPV 
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n junctions, back surface field 
Graph of spectral irradiance 

However, the MJ solar cells have a very high cost, which, in the short term, makes these solar 

concentration systems, such as the HSUN concept. 

effective solution to integrate the 

MCPV technology (as the HSUN system). The silicon solar cells have many years of on‐field 

rformance and a well standardized process for high volume production which makes 

[20]. 

are designed to work under 

(1 sun). When this type of solar cells are integrated in the CPV systems and exposed to 

higher amount of irradiation, the current that flows in the solar cells increases, as well as the Joule 

efficiency of the solar cell) [21].   

tion, highly efficiency 

solar cells must be fabricated specifically for concentration systems. In the following sections we 

describe several approaches that were taken to improve silicon solar cells efficiency under CPV 
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Figure 23 - Monocrystalline solar cells 
Source: http://www.directindustry.com/prod/kpe-co-ltd/monocrystalline-photovoltaic-solar-cells-54445-358166.html 

 

 

3.4.1.1. Modified screen-printed solar cells 

 

The modified conventional silicon solar cells shows up as the best choice for the existence of a 

compromise between high efficiency and low cost, since small changes on one-sun cell can lead to 

high efficiency cells with higher cost than the standard ones, but affordable when integrated in CPV 

systems and the industrial lines of standard silicon solar cells are easily adaptable to the new high 

efficiency silicon cells, thus benefiting from economies of scale [21]. 

The screen-printed method is an economical metallization technique used by most 

manufactures of conventional solar cells[22]. By printing additional metal on the solar cell front 

surface the resistive losses are reduced; however, additional metal causes additional shading of the 

top surface of the cell. Thus, the design of the front grid contact must result from a  tradeoff between 

the shading and the resistive power loss [23]. With an optimized grid design, in accordance with 

conductivity and shadowing factor, we can maintain their efficiency up to a concentration level of 15 

suns [24]. Through the optimized grid design we obtain a low-cost and low-level technological 

process which allows the use of conventional solar cells, with costs of production similar to the 1 sun 

conventional solar cells [24]. 

Shading losses can be improved through the use of prism covers, which refract light away 

from the metal fingers and hence cause the optical width of the fingers to be less than the geometrical 

width [19]. Figure 3.15 presents the efficiency variation of a silicon cell before and after electrolytic 

deposition to optimize the solar cells to 10 suns.  
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As can be seen, after the optimization of the font grid of the solar cell, the efficiency remains 

high until a concentration of 10 suns. Without the optimization of the front grid, the losses are 

significantly greater beyond 4 suns [24]. 

 

 

  

Figure 24 - Normalized plot of Efficiency against the concentration ratio of the optimized and unoptimized grid solar cell. 
Source: see reference [24] 

 

However, there are other approaches such as the Laser Grooved Buried Contact (LGBC) solar 

cells, the Emitters Wrap Trough (EWT) solar cells and the Metallization Wrap Trough (MWT) solar 

cells, among others. The main problem in using these technologies is that the production process of 

these new solar cells, such as occurred in multijunction solar cells, is still very recent and aren't yet 

completely solidified in the PV market. So, compared to Upgraded 1-sun solar cells, they are more 

expensive [20]. 

 

3.4.1.2. Laser Grooved Buried Contact (LGBC) solar cells 
 

The buried contact solar cell is a high efficiency commercial solar cell technology based on a 

plated metal contact inside a laser-formed groove. The buried contact technology overcomes many of 

the disadvantages associated with screen-printed contacts and this allows that this type of solar cells 

presents a performance up to 25%. A schematic of a buried contact solar cell is shown in the Fig. 

3.16 [22]. 
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Figure 25 - Buried contact solar cells 
Source: http://pvcdrom.pveducation.org/MANUFACT/BCSC.HTM 

 

A key to the high efficiency feature of this type of technology is that, unlike in the screen-

printed cells, the metal is buried in a laser-formed groove inside the solar cell. This type of contact 

allows for  a large metal height-to-width ratio. So, by using this type of technology a large volume of 

metal is used in the contact finger, without having a wide strip of metal on the top surface (thus 

minimizing the shadow effect on the front of the solar cell) [20]. 

In addition to good reflection properties, the buried contact technology also allows low 

parasitic resistance losses due to its high metal ratio, its fine finger spacing and its plated metal for 

the contacts (Fig 3.17). The metal grid resistance is also low since the finger resistance is reduced by 

the large volume of metal in the grooves and by the use of copper, which has a lower resistivity than 

the metal paste used in screen printing.  

 

 

Figure 26 - Buried contact in a silicon solar cell 
Source: http://pvcdrom.pveducation.org/MANUFACT/BCSC.HTM 

 

Further, due to the inclusion of certain area-related costs as well as fixed costs in a PV system, 

a higher efficiency solar cell technology results in lower cost electricity. An additional advantage of 
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buried contact technology is that it can be used for concentrator systems [20] and, after the Upgraded 

1-sun solar cells, it is the most viable technology to be used in the MCPV systems. The solar cells 

currently used in the HSUN system, manufactured by the NaREC company, are Laser Grooved 

Buried Contact (LGBC) solar cells and their specifications and electrical parameters are presented in 

the Annex II.  

 

3.4.1.3. Back contact cells 
 

3.4.1.3.1. Emitters wrap trough (EWT) solar cells 

 

The "emitter-wrap-through" (EWT) solar cell is a back-contact cell that can use solar-grade 

silicon. "Emitter" refers to the current-collection junction that is commonly formed in silicon solar 

cells by diffusing phosphorus (an n-type dopant) into a p-type silicon substrate. The key enabling 

element for the EWT cell is the use of laser machining to make an array of holes in the silicon 

substrate (Fig. 3.18) [20]. 

These holes are diffused with phosphorus during the emitter diffusion, thereby wrapping the 

emitter from the front surface to the rear surface [20]. 

 

 

Figure 27 - Emitters wrap trough (EWT) solar cells 
Source: see reference [20] 

 

The EWT cell is particularly useful with low-quality solar-grade materials because there is an 

emitter on both the front and much of the rear surface over much of the cell. This effectively doubles 

the collection length of carriers in the bulk of the device. Early prototypes of the EWT cell at Sandia 

National Laboratories demonstrated efficiencies a little above 18% and 15%, using thin-film 

metallization and the more commercially relevant screen-printed metallization, respectively.  

Theoretical calculations show that the cell structure is capable of efficiencies approaching 18% 

for a large-area cell using solar-grade materials and low-cost fabrication technologies like screen-

printed metallization [25].  
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3.4.1.3.2. Metallization wrap trough (MWT) solar cells 
 

The contact wrap-through or metallization wrap-through (MWT) back-contact cell is the 

concept that is most closely linked to the conventional cell structure. In these cells, the emitter is 

located near the front surface, but part of the front metallization grid is moved from the front to the 

rear surface (the busbar on the front surface of the solar cells are transferred to the rear side of the 

cell). In the schematic representation in Fig. 3.19, this is depicted as the busbar moving from one 

surface to the other, while the remaining front surface grid is connected to the interconnection pads 

on the rear surface by extending it through a number of openings in the wafer [20]. 

 

 

Figure 28 - Metallization wrap trough (MWT) solar cells 
Source: see reference [20] 

 

The MWT cells requires only a relatively small number of through-holes to direct 

photogenerated electrons to the back surface, through the metal electrodes and n-doped emitters, and 

produce higher collection photocurrents due to absence of a bus bar (main electrode) on the front 

surface (as in conventional cells). A high Jsc of 37.3 mA/ cm–2 and an efficiency of 18.3% were 

reported for a recent MWT cell by Kyocera, and the module efficiency for MWT cell modules by 

ECN, 16.4%, is the highest reported to date [25]. 

 

To understand the real potential single crystalline silicon solar cells integrated in MCPV 

systems, different monocrystalline silicon solar cells were studied and the description of these solar 

cells are presented in the next chapters. 
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Chapter 4 

 

 

Theoretical characterization of Solartec and KVAZAR solar cells 

 

 

This chapter covers the theoretical behavior of the Solartec and KVAZAR solar cells under 

concentration. In section 4.1, the physical characteristics of the Solartec and KVAZAR solar cells are 

presented; in section 4.2, a description of the mathematical model used for estimate the behavior of 

the solar cells is describe and in section 4.3, the theorical results obtained and the consequents 

conclusions are presented. 

 

 

4.1. Physical characteristics of the KVAZAR and Solartec solar cells 

 

In this thesis two types of silicon solar cells were studied: i) the conventional solar cells, 

provided by the KVAZAR company and ii) Upgraded 1-sun screen printed silicon solar cells, 

provided by the Solartec company. In the next section, the physical characteristics of these solar cells 

are explained and the datasheets provided by the suppliers are presented in the Annex III. 

 

 

4.1.1. KVAZAR solar cells 
 

The KVAZAR conventional solar cells (Fig. 4.1), provided by the KVAZAR company, are 

made of monocrystalline silicon and the metallization method is the screen printing.  
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Figure 29

 

The KVAZAR solar cells 

approximately. The active area of these conventional solar cells

by the contacts of the cell) is, approximately, 150 cm

The front of the solar cells is composed by a busbar and fingers

cell)    with 1.5 mm and 0.04 mm of width, respectively. The b

two soldering pads with 3mm of width and a back surface field

 

Figure 30
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29 - Front surface of the KVAZAR solar cell (main cell) 

cells (Fig. 4.1) have a total area of 156.25 cm2 and a thickness of 200 

approximately. The active area of these conventional solar cells (i.e. total area less the area occupied 

by the contacts of the cell) is, approximately, 150 cm2
. 

The front of the solar cells is composed by a busbar and fingers (negative contact of the solar 

cell)    with 1.5 mm and 0.04 mm of width, respectively. The back of the solar cells is composed by 

two soldering pads with 3mm of width and a back surface field (Fig. 4.2). 

 

 
30 - Back surface of the KVAZAR solar cells ( main cell) 

and KVAZAR solar cells 

 

and a thickness of 200 µm, 

(i.e. total area less the area occupied 

(negative contact of the solar 

ack of the solar cells is composed by 
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Table 4.1 summarizes the main features (dimensions and materials) of the KVAZAR solar cells.  

 

Table 4.1 - Dimensions and materials of KVAZAR solar cells 

Dimensions     

 

Cell Cell width (mm)  125 

Cell length (mm)  125 

Cell area (mm2)  15625 

Thickness (mm)  0.20 

Active area (mm2)  15000 

Fingers  Number of fingers  50 

Finger width (mm)  0.04 

Finger length (mm)  125 

Distance between fingers (mm)  3 

Area occupied by the fingers (mm2)  250 

Busbar Number of busbars 2 

Busbar width (mm)  1.50 

Busbar length (mm)  125 

Area occupied by the Busbar (mm2)  375 

Materials     

 

Waffer  Single crystalline silicon (sc-silicon) 

Front grid contacts   Cu + Ag  

Rear contact  AlSi alloy + Cu + Ag 

 
 

However, the cells used in the receivers that integrate the HSUN are smaller than the solar 

cells provided by KVAZAR. As such, we have cut the KVAZAR solar cells as sketched in Fig. 4.3. 
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Figure 4.31 - Drawing of the cut (and dimensions) performed in the solar cells 

 

Each cell was identified with a reference number as showed in Fig. 4.4. This reference number 

takes into account the position of the new cell in the “main cell” as showed in Fig. 4.5. 

 

 

Figure 32  - Reference of the KVAZAR solar cells. 

 

 

KVZ.40 – 6.1 
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Total 

number of 
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Number of 

the Main Cell 

Cell 
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Figure 33 – Number given to each cell according to its position at the conventional wafer. 

 

 

Table 4.2 presents the physical characteristics of the solar cells obtained after the cutting 

process.  

 

Table 4.2 - Physical characteristics of solar cells 

Dimensio
ns       

 

Cell  Cell width (mm)  14 

Cell length (mm)  62.50 

Cell area (mm2)  875 

Thickness (mm)  0.20 

Active area (mm2)  814.13 

Fingers Number of fingers  25  

Finger width (mm)  0.04 

Finger length (mm)  14 

Distance between fingers (mm)  3 

Area occupied by the fingers (mm2)  14 

Busbar Busbar width (mm)  0.75 

Busbar length (mm)  62.50 
Area occupied by the Busbar (mm2)  46.88 

1 2 
3 4 

5 
6 

7 
8 

Figure 34 – KVAZAR solar cell 
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4.1.2. Solartec solar cell 

 

The Solartec solar cells (Fig. 4.7) are conventional solar cells that can be optimized taking into 

account the concentration level under which they are intended to operate. In this case, the cells were 

optimized for 15 suns which is the concentration level that is expected in the HSUN technology. 

These solar cells are made of monocrystalline silicon and the metallization method is the screen 

printing. 

 

 

  

Figure 35 - Front surface of the  Solartec solar cells 
 

The Solartec solar cells (Fig. 4.7) have a total area of 8.78 cm2 and a thickness of 180 µm. The 

active area of these solar cells (i.e. total area less the area occupied by the contacts of the cell) is 

about 4.75 cm2. 

As in the case of KVAZAR solar cells, the Solartec solar cells presents a front surface of the 

solar cells is composed by a busbar and fingers (negative contact of the solar cell) with 1.5 mm and 

0.02 mm of width, respectively. However, in these solar cells, the back of the solar cells is composed 

by an oval soldering pad with 3mm of diameter and a back surface field (Fig. 4.8). 

 

 

 
Figure 36 - Back surface of the  Solartec solar cells 

 

All the cells provided by Solartec have the same dimensions and thickness; however they may 

differ in the front grid design and class: 
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- Front grid design: the cells can have one or two busbar in the front surface (Fig. 4.9). 

- Classes: there are five different classes 23, 24, 25, 26 and 27. This classification is provided 

by Solartec according to the electrical performance of each solar cell. However, in this thesis 

only the classes 24 and 26 were analyzed. 

 

Table 4.3 summarizes the main features (dimensions and the materials) of the Solartec solar 

cells and the Fig. 4.9 presents the front grid designs of the Solartec solar cells. 

 

  

Figure 37 –Solartec solar cells with different front grid designs: a) one busbar; b) two busbars 
 

 

Table 4.3 – Dimensions and materials of Solartec solar cells 
 

Dimensions    Classes 2BB 

Cell Cell width (mm)  14.50 16 

Cell length (mm)  60 60 

Cell area (mm2)  870 960 

Thickness (mm)  0.18 0.18 

Active area (mm2)  760.11 759.36 

 
 

Fingers Number of fingers  66 66 

Finger width (mm)  0.02 0.02 

Finger length (mm)  14.50 14.50 

Distance between fingers (mm)  0.50 0.50 

Area occupied by the fingers (mm2)  19.14 19.14 

 
 

Busbar Number of busbars 1 2 

Busbar width (mm)  1.50 1.50 

Busbar length (mm)  60.50 60.50 

Area occupied by the Busbar (mm2)  90.75 181.50 

 

Materials      

Waffer  Single crystalline silicon (sc-silicon) 

Front grid contacts   Cu + Ag  

Rear contact  AlSi alloy + Cu + Ag 
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Although these solar cells find themselves organized on a variety of electrical classes, the 

present research focuses on the solar cells classified with the class 24 and class 26. As in the 

KVAZAR solar cells, the Solartec cells were also identified with a reference number (Fig. 4.10). 

 

 

 

Figure 38 – Reference of the Solartec solar cells 
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4.2.  Mathematical model to estimate the behavior of solar cells under concentration 

 

The availability of effective modeling techniques to accurately estimate the device behavior is 

quite important to know the viability of solar cells in the different situations to which they are 

exposed [26]. 

In the case of solar cells, through the knowledge of their electrical parameters measured and 

estimated when the solar cells operate at 1 sun, it is possible to estimate the electrical parameters for 

different concentration levels [21]. 

Since the short-circuit density, Jsc, is proportional to the irradiance of the cell (eq. (13)), thus 

the current density under concentration can be described by: 

 

�@8  (@ B *CD*)  = B�@8   (@ B *CD*) (13) 

 

where X is the concentration level that falls on the solar cell.  

 

The open circuit voltage, Voc, increases like the logarithm of intensity. So, the value of this 

parameter under concentration is given by [21]: 

 

	78(@ B *CD*)  =  
 �E�
� ln �B�@8��  +  1� ≈  	78(@ 1 *CD*) + 
 �E�

� ln(B) 
(14) 

 

where q is the electron charge, T is the cell temperature and �E is the Boltzmann constant. 

 

If the cell Fill Factor (FF) remained constant then the power delivered by the cell should 

increase by a factor [21]: 

 

=I-J.K =  B �1 +  
 �E�
�	78(@ 1 *CD*)� ln(B) 

(15) 
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And the efficiency (Ɛ) by a factor [21]: 

 

=I-J.K =  �1 +  
 �E�
�	78(@ 1 *CD*)� ln(B) 

(16) 

 

However, as discussed in the previous sections, a solar cell has a series resistance ()*) where 

the power is dissipated as heat (<LM++) [21]. Thus, 

 

<LM++  =  ��  ×  )* (17) 

 

where � is the current flowing from the cell. Since this current is proportional to the concentration, 

based on eq. (13) and eq. (17), the power wasted is given by the following equation: 

 

<LM++  (@ N +OP+)   ≅  B� ×  �@8 (@   +OP) �  ×  )* (18) 

 

Generally FF increases as Voc increases, mostly because of reduced diode current. However, 

FF is most dependent on parasitic factors, such as shunt resistance and, most importantly at high 

illumination levels, series resistance [26]. Thus, when considering the series resistance, the FF will be 

no longer a constant value, and can be estimate by the following approximation: 

 

<′9: (@ N +OP+)  ≅   	9::(@ N +OP+)  ×  �R66(@ N +OP+)  −  ��9::(@ N +OP+)  )* (19) 

 

<′9: (@ N +OP+)  ≅   	9::(@ N +OP+)  ×  �9::(@ N +OP+)  × S1 − �9::(@ N +OP+)  	9::(@ N +OP+)   )*T 
 (20) 

 

<′9: (@ N +OP+)  ≅   <9: (@ N +OP+) × S1 −  �+U(@ N +OP+)  	MU(@ N +OP+)   )*T 
(21) 
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<′9: (@ N +OP+)  ≅   <9: (@ N +OP+) ×  S1 − )*
)8W(@ N +OP+)   T 

(22) 

 

where RCH is the characteristic resistance of the cell. Through the definition of  a normalized 

series resistance (Rs), it comes: 

K+(@ N +OP+)  =  )@)8W(@ N +OP+)   (23) 

 

Thus, by replacing the eq. (22) in the eq. (23) we have: 

 

<′9: (@ N +OP+)  ≅   <9: (@ N +OP+) × (1 − K@)    (24) 

 

Assuming that the Voc and Isc are not affected by the series resistance allows the impact of 

series resistance on FF to be determined by: 

 

	′78(@ N +OP+)   × �′@8(@ N +OP+)   ×  <′9: (@ N +OP+)  
≅  	78(@ N +OP+)   ×  �@8(@ N +OP+)   × <9: (@ N +OP+)   ×  X1 − K@(@ N +OP+)   Y 

(25) 

 

==′(@ N +OP+)  ≅  ==�  ×  X1 − K@(@ N +OP+)  Y (26) 

 

where FF0 is the fill factor without taking into account the series resistance and FF’ is the fill factor 

including the losses due to the series resistance. Thus, the efficiency must be calculated by: 

 

Z′(@ N +OP+)  =   	78(@ N +OP+) × �@8(@ N +OP+) × ==′(@ N +OP+)  <[P(@ N +OP+)   
(27) 

 

where <[P(@ N +OP+)  is the input power  , which is defined as: 
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<[P(@ N +OP+)  = B <[P(@   +OP)   (28) 

 

where <[P(@   +OP)    is  1000W/m2. 

 

At last, by replacing equations (13), (14), (26) and (28) in equation (27), we obtain to the following 

equation [26]: 

 

Z(@ N +OP+)  =    �@8(@   +OP) × ==� <[P(@   +OP)   \ 	78(@   +OP)  +  ��
� ln(B) −  )@B�@8(@   +OP)] (29) 

 

It can also be calculated the maximum efficiency of the solar cell that will be reached for a 

certain concentration X ( i.e. 
�^
�N  = 0). Thus, the optimum concentration level of a solar cell can be 

estimated by equation (30). 

 

B =  ��
�  S 1

)+  × �@8(@   +OP)T 
(30) 
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4.3. Theoretical behavior of the Solartec and KVAZAR solar cells under concentration  
 

As previously explained, the HSUN system operates a concentration of 15 suns. As such, it is 

important to understand the behavior and the viability of the tested solar cells under different 

concentration levels. Considering the equations (1) and (2), described in section 4.2, Fig.4.11 shows 

the expected values for Isc and Voc as a function of concentration for both Solartec and KVAZAR 

solar cells. 

 

 

 

 
a)  b) 

Figure 39 - Calculated values for Voc and Isc as function of concentration level in the a) KVAZAR solar cells and 
b)Solartec solar cells 

 

 

As expected, the value of Isc increases linearly with increasing concentration, while the value 

of Voc increases with the logarithm of concentration. At a concentration level of 15 suns, the values 

of  Isc and Voc in the Solartec and KVAZAR solar cells were estimated to be 4.35 A and 0.66 V and 

4.8 A and 0.63 V, respectively. As can be observed the Voc values achieved by the Solartec solar 

cells are higher than the values reached by the solar cells provided by KVAZAR. However, as 

mentioned before, the efficiency of a solar cell depends on many factors. Although the relative 

increase in efficiency of the ideal cell is proportional to the natural logarithm of the concentration 

ratio, in the practical devices the efficiency cannot increase indefinitely. 

As already mentioned, a real solar cell has a finite series resistance (Rs) that leads to power 

dissipated as heat. Resistance directly influences both voltage and current, and an increasing 

resistance will cause the voltage-current curve of the solar cell to move away from the so-

called maximum power point. So, when the solar cells are exposed to a higher concentration of 

sunlight, the current flowing from the solar cell also raises, leading to a rapidly grows of the power 

wasted. Due to this situation, it is important that the solar cells used in CPV systems can maintain a 

low value of Rs. Through the use of the value of Rs measured to 1 sun of Solartec and KVAZAR 

solar cells (0.09 Ω and 0.06 Ω, respectively), the power loss (due to the Joule effect) and efficiency 

of the cells were also estimated (Fig. 4.12) and the results showed an exponential increase of the 
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power losses and decrease of the efficiency. As can be seen in Fig. 4.12, the KVAZAR conventional 

cells presented an higher increase of power losses from a concentration of 5 suns, while the Solartec 

cells presented an higher power losses only from the 12 suns, where at a concentration level of 15 

suns, the power losses on the Solartec and KVAZAR solar cell were estimated to be 2.02 W and 

2.074 W, respectively. The values obtained by the KVAZAR solar cells already were expected, since 

the conventional cells are designed to work under 1 sun conditions. The efficiency of the solar 

cells also suffers a great drop. In this case, the Solartec and KVAZAR solar cells, at 15 suns, reached 

a value of efficiency of 10.3 % and 4.2%, respectively. 

 

 

 

a)  b) 

Figure 40 - Estimated power loss (Ploss) and efficiency (ε) as a function of the concentration level of a) Solartec solar cells 
and b) KVAZAR solar cells 

 

 

The expected electrical parameters for the Solartec and KVAZAR solar cells under different 

concentration levels are summarized in Table 4.4. As can be seen in Table 4.4, the values of 

efficiency of the Solartec solar cell decrease until they reach a concentration of 20 suns (8.7%), while 

the FF values remain high until a concentration of 15 suns (54%). Contrary to what happened in the 

case of Solartec cells, the values of efficiency and FF estimated for the KVAZAR solar cells presents 

a high decrease from the 5 suns. As so, the KVAZAR solar cells seem not to be the most suitable 

type of solar cell to integrate a CPV system, as the HSUN technology. 
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Table 4.4- Calculated electrical parameters of Solartec and KVAZAR solar cells under different concentration levels 
 

 C (suns) Isc (A) Voc (V) Pmp (W) FF (%) Ε (%) 

S
ol

ar
te

c 
5 1.45 0.63 0.64 71 13 

10 2.9 0.65 1.32 62 11.7 

15 4.35 0.66 2.02 54 10.3 

20 5.8 0.67 2.70 45 8.7 

30 8.7 0.68 4.15 29 5.6 

K
V

A
Z

A
R

 

5 1.60 0.60 0.64 52 9.8 

10 3.20 0.62 1.32 37 7.1 

15 4.80 0.63 2.02 22 4.2 

20 6.40 0.64 2.70 7 1.3 

30 8 0.643 -0.412 -8 0 
 

 

However, in order to validate the data obtained analytically, a characterization of these solar 

cells was performed and is described in the next chapter of this thesis. 
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Chapter 5  

 

Experimental characterization of the Solartec and KVAZAR solar cells 

 

 

This chapter covers the electrical characterization of the Solartec and KVAZAR solar cells 

under concentration, where several experiments were performed as the electroluminescence of the 

solar cells (section 5.1), the measurement of the electrical parameters (section 5.2), the measurement 

of the series resistance (section 5.3), the spectral response (section 5.4) and the measurement of the 

thermal coefficients of the solar cells (section 5.6). 

 

 

5.1. Electroluminescence of solar cells 

 

In order to find out if the soldering and the cutting process damaged the solar cells, the 

electroluminescence was performed in the KVAZAR and Solartec solar cells. 

In this chapter it is performed a brief review of the main concept about the 

electroluminescence process, followed by the description of the experimental process and discussion 

of the results. 

 

 

5.1.1. Electroluminescence 

 
The determination of electroluminescence (EL) in solar cells is an important characterization 

tool. It can provide spatially resolved information about defects which may limit the efficiency and 

lifetime of the solar cell. Thus, the EL techniques are very important to manufacturers not only in 

research and development, but also in solar cell production [27, 28]. 

Electroluminescence imaging takes advantages of the inter-band recombination of excited 

charge carriers in solar cells. For electroluminescence investigation, the solar cell is supplied, via 
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their metal contacts, with a certain external excitation current which is provided by a power source. 

Thus, the solar cell is operated as a light emitting diode and the emitted radiation, due to 

recombination effects, is detected with a sensitive camera. [27, 29]. Since EL is a low light source, a 

dark environment is required in order to decrease the background noise during the measure. The 

images provided by this technique show the damaged areas of a solar cell as dark spots or less bright 

than the good areas [30]. The EL technique provide images with very high resolution that enable to 

resolve details that should be hardly perceptible to the eye (Fig. 5.1), such as [30, 31]: 

 

• Micro cracks; 

• Bad finger contacts; 

• Electrical shunts; 

• Broken contacts; 

• Fragments in broken cells; 

• Electrically separated cell areas; 

• Grain boundaries; 

• Crystallization faults in cell material. 

 
 

 
Figure 41 - Electroluminescence image of a) a monocrystalline and b) poly-crystalline silicon cell. The intensity of the light 

given off is proportional to the voltage, so poorly contacted and inactive regions show up as dark areas. The micro crack 
and printing problem are not detectable with visual inspection. 
Source: http://www.cepsolar.com/electroluminescence-imaging 

 

 

In a typical EL system configuration (Fig. 5.2)., the solar cell is placed in the camera’s field of 

view, and the contact to the anode and cathode leads of the solar cell is performed. A constant current 

sources connected to the contacts of the solar cell [27].In order to keep out ambient light and protect 

the operator to be exposed to the current on the solar cell, the whole system is inside a 

box properly designed. The camera collects an image while the current is on, and then sends it to a 

computer for analysis. The computer displays the EL image and gives information on the solar cell 

such as dark defects or black spots [32].  
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Figure 42 – Electroluminescence System.  
Source: True, Bruce, Photoluminescence an Electroluminescence for Silicon Solar Cell Inspection, APPLICATIONS SCIENTIST, 

INTEVAC, INC., website "http://www.laser2000.de/fileadmin/kataloge/INTEVAC_SolarCellWhitePaper_BruceTrue.pdf 

 

 

5.1.2. Experimental procedure  

 

In this thesis, the electroluminescence technique was used in order to understand if the cutting 

method (in case of KVAZAR solar cells) and the soldering process damages the solar cells in 

analysis. 

In the case of KVAZAR solar cells, the EL technique was performed in three different steps: i) 

in the main cell before it was sliced; ii) in the solar cells obtained after the cutting process and; iii) in 

the solar cells after the soldering process. For the Solartec solar cells, only step iii) was carried out, 

since the solar cells provided by Solartec company had already suitable dimensions to integrate 

HSUN.  

The experiment was performed in the EL apparatus presented in Figure 435.3. The current 

injected into the solar cell was 1 A and the images took 60 seconds to be captured. The values used in 

voltage source were: 

 

• Voltage = 1,405 V 

• Limiting value of voltage (Voltage Compliance.) = 2,1 V 
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Figure 43 – Electroluminescence apparatus, located in the laboratory of the Faculty of Science, University of Lisbon 
(FCUL) 

 

5.1.3. Results  

 

5.1.3.1. KVAZAR solar cells 

Table 5.1 presents the photographs that were taken to the KVAZAR solar cells with the EL 

method for the steps i) to iii) referred in section 5.1.2. The photos taken before the cutting process, 

i.e. to main cell, presents a thin black line which is due to the needle required for the negative contact 

of the primary cell. It can still be seen in this photo, small black spots (marked in red). This spots 

highlights the existence of small defects in the main solar cell surface, which may have occurred 

during the deposition of the front contacts paste. 

Regarding the photographs obtained after the cutting process of the main solar cell, no 

difference was observed as to the photographs taken before the cutting process and after the soldering 

process. This situation proves that the solar cells were physically unaffected by the cutting and 

soldering process. 

However, in Table 5.1 it can also be observed that the KVZ.40-6.5 and KVZ.40 -6.6 show 

dark spots and cracks. In these cases, the damages are not inherent to the soldering process, but due 

Chamber where the 

receiver is placed 

Si-CCD Camera 
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to their handling during the experimental process. The solar cells nº 6.5 and 6.7 have broken during 

the electrical characterization of the solar cells. 

It also must be noticed that the photos taken before the soldering process shows a brightest 

area near the point where the needle is injecting the current into the cell and some of the cells are 

brighter than others. This effect occurs due the method used to inject the current into the cell and to 

the quality of the contacts. This situation can be proved through the observation of the 

photos taken after the soldering process. In this case, the contacts are soldered (providing 

them a better quality), causing in the solar cells a more homogeneous brightness in the illuminated 

area. 

 

 

 

 

 

 

 

 

 

 

 

 





 

 

 

 

 

 

 

  





 

Table 5.1 - Photographs taken with the Electroluminescence method: before and after the cutting process of 

Main Cell before the Cutting process 

KVZ.40-6 
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Photographs taken with the Electroluminescence method: before and after the cutting process of KVAZAR solar cells, and after the soldering process.

Solar cells obtain from the  
cutting process 

Solar cells after the 

 

KVZ.40 – 6.2 

 

KVZ.40 – 6.4 

 

KVZ.40 – 6.5 

 

KVZ.40 – 6.6 

 

KVZ.40 – 6.7 

 

KVZ.40 – 6.8 
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KVAZAR solar cells, and after the soldering process. 

Solar cells after the soldering process 
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5.1.3.2. Solartec solar cells 

 

Table 5.2 presents the electroluminescence images that were taken to the Solartec solar cells 

after the soldering process. 

 

Table 5.1- Electroluminescent images taken to Solartec solar cells after the soldering process. 

Classification of the solar cell After the soldering process 

 

CLASS 24.1 

 

 

 

CLASS 24.2 

 

CLASS 26.1 

 

CLASS 26.2 

 

2BB.1 

 

2BB.2 

 

 

The image taken to the cell SLT.C26 -1 (Table 5.2), shows a small black spot (marked in 

red).This spot highlights the existence of a small defect in the solar cell surface, probably occurred 

during the deposition of the front contacts metallization. The absence of black spots/lines near the 

busbar of the cells showed in Table 5.2, leads to the conclusion that the soldering process is harmless 
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to the cells. This means that the Solartec solar cells, as in the case of KVAZAR solar cells, were 

physically unaffected by the soldering process. 

 

5.1.4. Main Conclusions 

 

The main conclusions are: 

a) The process used to cut the solar cells was proved to be harmless to the solar cells. 

b) In both cell types (KVAZAR and Solartec), the EL photographs taken before and after 

the soldering process proved that the solar cells were unaffected by the soldering 

process, i.e. the appearance of new black spots after the soldering process was 

undetectable.  
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5.2. Measurement of electrical parameters of the solar cells 

 

The electrical behavior of the cells should be well known. As such, it was carried out a study 

of the behavior of KVAZAR and Solartec solar cells under uniform light, to be known the electrical 

parameters of the solar cells. The electrical characteristics of cells tested were previously estimated 

for different levels of concentration. 

Thus, in this chapter it is performed a brief review of the main concept about the electrical 

parameters of the solar cells and the measured process, followed by the description of the 

experimental process and discussion of the results. 

  

5.2.1. Electrical parameters  

 

According to S. Madougou et al., there are several techniques in the literature to determine the 

electrical and recombination parameters of solar cells [33]. In this thesis, the electrical parameters of 

the cells were obtained only by the method based on the I-V curve [34]. As mentioned in the Chapter 

3, through the cell characteristic I-V curve we can obtain the main electrical parameters for the 

characterization of solar cells under study, such as the Isc, the Voc, FF and Pmp. To correctly 

measure an I-V curve, some parameters, such as the incident irradiance and its spectrum and the cell 

temperature should be controlled [35]. Usually the I-V curve is measured under standard test 

conditions (STC), which are: [3]: 
 

• Incident Irradiance: 1000 W/m2 

• Spectrum of incident irradiance: AM1.5 G 

• Temperature of the solar cell: 250C. 
 

As can be seen in Fig. 5.4, the value of Voc and Isc corresponds to the value where the current 

and voltage are zero in the I-V curve, respectively [36]. It can also be observed that the maximum 

power point (Pmp) of the I-V curve corresponds to the point at which the maximum value of voltage 

and current is reached (Fig. 5.4) [33, 37].  
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Figure 44 - Power and characteristic curves of a solar cell 
Source: http://zone.ni.com/devzone/cda/tut/p/id/7230 

 

Another electrical parameter that can be calculated from the I-V curve is the Fill Factor (FF). 

This parameter is calculated by comparing the maximum power (Pmpp) reached by the solar cell 

with the theoretical ideal power (PT) that would be calculated from the multiplication of the value of 

open circuit voltage and the value of short circuit current [31]:  The FF can also be interpreted 

graphically as the ratio of the rectangular areas as shown in Fig. 5.5 (ideal and real area) [6]. 

 

Figure 45 – Measurement of the FF from the I-V curve of a solar cell 
Source: http://zone.ni.com/devzone/cda/tut/p/id/7230 

 

5.2.2. Experimental procedure 

 

In order to estimate the electrical parameters of solar cells under study (KVAZAR and 

Solartec), the I-V curves were measured for each cell, in a calibrated solar simulator with a light 

intensity of one sun (1000W/m2) (Fig. 5.6). The temperature of the cell is maintained constant by a 

cooling system that consists on a water flux passing through the sample holder. It must be noticed 

that the cell length is slightly higher than the sample holder, which could lead to a slight increase of 
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the cell temperature; however the temperature of the cell has remained constant as it will be seen. All 

the cells were measured at the same position (Fig. 5.7). 

 

 

Figure 46 – Solar Simulation located in the Laboratory of FCUL 

 

The I-V curves of solar cells that are being studied were measured before and after the 

soldering process. Thus, it becomes possible to determine what effect the soldering process causes in 

the electrical behavior of the solar cells (Fig. 5.7). 

                                                                          

 

Figure 47 – Detail of the solar cell placed on the sample holder in the solar simulator. 
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To validate the data obtained we have performed the I-V curve measurements using two 

different acquisition methods:  the I-V Tracer apparatus and the direct acquisition method (Four-

point I-V measurement). 

In this last method, the I-V curves are measured automatically through a computer program, 

where the cell is stepped through several voltage limiting levels, measuring the current values 

corresponding to these points. In the end, through the voltage-current points found, the I-V curve of 

the solar cell is traced. Unlike in the I-V Tracer apparatus, which uses only two points of the cell to 

measure the I-V curve (crocodiles that are connected to positive and negative contacts of the cell), in 

the direct acquisition method are used four points (two points in the positive contact (table where the 

cell is placed and the needle that comes in contact with the back of the cell) and two contact points on 

the negative (two needles which come into contact with the busbar) of the solar cell) [38]. 

 

 

5.2.3. Results 

 

5.2.3.1. KVAZAR solar cells 

 

As mentioned before, during the experiment, I-V curves at 1 sun were traced for each solar cell 

by using two different methods:  1) the I-V Tracer apparatus and 2) the direct acquisition method. 

 

1. I-V Tracer 
 

The I-V curves measured with the I-V tracer apparatus shows that: 

‐ In all the cells, the I-V curve measured after the soldering process has a lower 

series resistance (slope near the Voc) than the ones that were measured before the soldering 

process. 

‐ Fig. 5.9 and 5.12 shows a decrease of the Isc after the soldering process. This 

decrease should be to the fact that the solar cell has been damaged during the soldering 

process and the part that was broken is not electrically connected to the rest of the cell. 
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Figure 48 – I-V curve of cell nº 6.2 with the I-V tracer 
. 

 

Figure 49 – I-V curve of cell nº 6.3 with the I-V tracer 

Figure 50  – I-V curve of cell nº 6.4 with the I-V tracer Figure 51  – I-V curve of cell nº 6.5 with the I-V tracer 

  

Figure 52 – I-V curve of cell nº 6.6 with the I-V tracer Figure 53 – I-V curve of cell nº 6.7 with the I-V tracer 
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Figure 

 

Table 5.3 shows the electrical parameters (Voc; Isc; Vmpp; Impp

from the I-V curves of each solar cell before and after the soldering process. 

As expected, the value of Isc remains almost constant through all the experience. However, in 

the case of the KVZ.40-6.3 and KVZ.40

process (decrease between 0.05 and 0.17 A). This situation i

were broken during the measurements (Fig. 5.9 and 5.13

after the soldering process, the values decrease between 0.004V and 0.03V. However, in the case of 

KVZ.40-6.8 solar cell, the value of Voc increased after the soldering process (increase between 0.004 

and 0.008V) (Fig.5.15). Based in T

the solar cells have presented only small 

V and 0.02 V). 
 

a) 

Figure 55 – Values of a) Voc and b) Isc measured from the I
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Figure 54 – I-V curve of cell nº 6.8 with the I-V tracer 

shows the electrical parameters (Voc; Isc; Vmpp; Impp and Pmp

V curves of each solar cell before and after the soldering process.  

As expected, the value of Isc remains almost constant through all the experience. However, in 

6.3 and KVZ.40-6.6 solar cells, the value of Isc decreases after the soldering 

process (decrease between 0.05 and 0.17 A). This situation is due to the fact that these solar cells 

measurements (Fig. 5.9 and 5.13). In the case of the value of Voc before and 

after the soldering process, the values decrease between 0.004V and 0.03V. However, in the case of 

cell, the value of Voc increased after the soldering process (increase between 0.004 

Based in Table 5.3, it is also possible to observe that the electrical values of 

have presented only small variations (variations between 0.01A and 0.04 A and 

b) 

Values of a) Voc and b) Isc measured from the I-V curves before and after the soldering process of the 

KVAZAR solar cells 
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Pmp) that were taken 

As expected, the value of Isc remains almost constant through all the experience. However, in 

solar cells, the value of Isc decreases after the soldering 

s due to the fact that these solar cells 

In the case of the value of Voc before and 

after the soldering process, the values decrease between 0.004V and 0.03V. However, in the case of 

cell, the value of Voc increased after the soldering process (increase between 0.004 

, it is also possible to observe that the electrical values of 

between 0.01A and 0.04 A and .0.01 

V curves before and after the soldering process of the 

6.5 6.6 6.7 6.8

KVAZAR Solar cells

Before the soldering process
After the soldering process
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Table 5.2 - Values of parameters of the solar cells tested before and after the soldering process. 

Cell Nº 

Before the soldering process After the soldering process 

Voc Isc Vmpp Impp Pmp Voc Isc Vmpp Impp Pmp 

(V) (A) (V) (A) (W) (V) (A) (V) (A) (W) 

K
V

A
Z

A
R

 s
ol

ar
 c

el
l 

6.2 0.58 ∓ 0.001 0.33 ∓0.000 0.38 ∓0.008 0.29 ∓0.007 0.11 ∓0.001 0.54 ∓0.016 0.17 ∓0.001 0.42 ∓0.004 0.14 ∓0.001 0.06 ∓0.000 

6.3 0.59 ∓0.003 0.31 ∓0.002 0.33 ∓0.003 0.26 ∓0.001 0.08 ∓0.001 0.56 ∓0.019 0.16 ∓0.004 0.46 ∓0.006 0.13 ∓0.001 0.06 ∓0.001 

6.4 0.58 ∓0.001 0.33 ∓0.001 0.34 ∓0.004 0.27 ∓0.002 0.09 ∓0.002 0.55 ∓0.015 0.33 ∓0.004 0.42 ∓0.003 0.30 ∓0.002 0.13 ∓0.002 

6.5 0.59 ∓0.002 0.30 ∓0.001 0.40 ∓0.004 0.27 ∓0.003 0.11 ∓0.000 0.57 ∓0.012 0.33 ∓0.003 0.47 ∓0.002 0.31 ∓0.003 0.14 ∓0.001 

6.6 0.59 ∓0.000 0.31 ∓0.001 0.38 ∓0.023 0.27 ∓0.003 0.10 ∓0.007 0.58 ∓0.009 0.30 ∓0.003 0.46 ∓0.001 0.26 ∓0.001 0.12 ∓0.001 

6.7 0.59 ∓0.003 0.31 ∓0.001 0.39 ∓0.002 0.27 ∓0.002 0.10 ∓0.001 0.57 ∓0.018 0.31 ∓0.003 0.47 ∓0.002 0.29 ∓0.002 0.13 ∓0.001 

6.8 0.57 ∓0.006 0.31 ∓0.001 0.39 ∓0.004 0.27 ∓0.002 0.10 ∓0.001 0.58 ∓0.007 0.30 ∓0.002 0.48 ∓0.003 0.28 ∓0.002 0.13 ∓0.001 
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2. Direct acquisition method (Four-point I-V measurement) 

 

As it can be seen in the Fig. 5.16, the I-V curves obtained by the Four-point I-V measurement 

(violet curves) presented a lower value of series resistance as to the I-V curves obtained with the I-V 

Tracer (green curves). This situation is due to the fact that with the use of four point measurement 

method, the resistance associated to the contacts and to cables is inexistent.  

However, when we compare the values of Voc and Isc obtained by the two methods, can be 

conclude that are similar (variations between 0.03 A and 0.05 A, and 0.01 V and 0.03 V). 

a) b) 

c) d) 
  

Figure 56 – I-V curves traced with the four-point I-V measurement (green) and the I-V tracer (violet) of  the a)solar cell nº 
6.2, b) solar cell nº 6.4, c) solar cell nº 6.7 and d) solar cell nº 6.8 
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Table 5.4 presents the electrical parameters measured for the KVAZAR solar cells at 1 sun 

using the four point I-V curve measurement. 

 

Table 5.3 – Electrical parameters estimated for KVAZAR solar cells at 1 sun. 

Electrical parameters 
Concentration @ 1 sun (1000W/m2)  

Isc (A) 0.32∓0.003 

Voc (V) 0.56∓0.001 

Pmp (W) 0.12∓0.002 

Impp (A) 0.28∓0.003 

Vmpp (V) 0.43∓0.001 

Efficiency 0.15∓0.003 

Fillfactor 0.67∓0.002 
 

 

5.2.3.2. Solartec solar cells 

 

As it was observed in the method of acquisition of the I-V curve through the I-V Tracer 

apparatus, the resistances associated to the cables were higher. Thus in the case of Solartec solar cells 

the I-V curves were only acquired through the direct acquisition method. 

As can be seen in the Fig. 5.17 to 5.22, the I-V curve measured after the soldering process has 

a lower value of Voc than the ones that were measured before the soldering process. This situation 

can result from a slight increase in temperature of the solar cells.  

 

 
Figure 57 – I-V curve of cell nº 24.1 before and after the 

soldering process 

 
Figure 58 – I-V curve of cell nº 24.2 before and after the 

soldering process  
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Figure 59  – I-V curve of cell nº 26.1 before and after the 

soldering process 
Figure 60  – I-V curve of cell nº 26.2 before and after the 

soldering process 
  

 
Figure 61  – I-V curve of cell nº 2BB.1 before and after 

the soldering process 

 
Figure 62 – I-V curve of cell nº 2BB.2 before and after the 

soldering process 
  

   
 

 

Table 5.5 shows the electrical parameters that were taken from the I-V curves of each solar cell 

before and after the soldering process.  Analyzing the results presented in Table 5.5 it can be 

observed that in the case of cell SLT.C24, the value of Pmp is higher after the soldering process, 

while in other tested cells, after the soldering process, the value of Pmp has decreased or remained 

equal. As expected, the value of Isc remains almost constant through all the experience (variation 

between 0.02 and 0.06A).  

In the case of the value of Voc before and after the soldering process, the values decrease 

between 0.04V and 0.03V. However, in the case of SLT.C24 solar cell, the value of Voc remains 

equal after the soldering process. 
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Based in Table 5.5, it is also possible to observe that the electrical values of the solar cells 

present only slights variations (the Voc presents variations between 0 V and 0.01V, the Isc presents 

variations between 0.01 A and 0.04 A and the Pmp presents variations between 0.01 W and 0.03 W). 

However, it is also possible to observe that the SLT.C24 solar cells have lower electric values 

(as the Isc and FF) when compared with SLT.C26 solar cells. 

Another observation visible through the Table 5.5 is that the value of Isc is relatively lower 

than the value of Isc achieved in the KVAZAR solar cells. This situation can be justified due to the 

fact that Solartec cells have an increased number of fingers (because they are conventional solar cells 

optimized for concentration), and consequently less active area due to higher shadowing on the front 

surface. 

 

 

Table 5.4 - Values of parameters of the solar cells tested before and after the soldering process. 

Electrical parameters  at 1 sun (1000 W/m2) 

Before the soldering process After the soldering process 
CELL Class 24 Class 26 2BB Class 24 Class 26 2BB 

  
     

Isc (A) 0.25 0.28 0.29 0.29 0.29 0.29 

Voc (V) 0.58 0.58 0.59 0.58 0.54 0.55 

Pmp (W) 0.10 0.12 0.13 0.11 0.12 0.12 

Impp (A) 0.21 0.25 0.25 0.24 0.26 0.24 

Vmpp (V) 0.48 0.49 0.51 0.47 0.48 0.49 

Fillfactor (%) 70 75 75 67 80 74 

 

5.2.4. Main conclusions 

 

In Table 5.6 are presented the values of electrical parameters obtained for the Solartec and 

KVAZAR solar cells. 
 

Table 5.5 - Values of electrical parameters of the Solartec and KVAZAR solar cells. 

Electrical parameters of solar cells @ 1 sun (1000W/m2) 
 KVAZAR Class 24 Class 26 2BB 

Isc (A) 0.32 0.25 0.28 0.29 

Voc (V) 0.56 0.58 0.58 0.59 

Pmp (W) 0.12 0.10 0.12 0.13 

Impp (A) 0.28 0.21 0.25 0.25 

Vmpp (V) 0.43 0.48 0.49 0.51 

Fillfactor 0.67 0.70 0.75 0.75 
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Through the values presented, it can be concluded that, when compared, the Solartec solar 

cells show lower values of Isc at one sun, while the value of Voc is very similar in all solar cells, and 

the value of FF and Pmpp is higher in the Solartec solar cells. 

On the contrary as occurred with the direct acquisition method, the I-V Tracer apparatus shows 

associated values of resistance of cables, since in this method the contacts are made through long and 

thin wires and only two points make contact with the solar cell. So, it can be concluded that the direct 

acquisition method is more suitable to measure the I-V curves of the solar cells. 

After the soldering process, the I-V curves obtained have lower series resistance (slope near 

the Voc) than the ones that were measured before the soldering process, since after the soldering 

process the contacts presents a better quality. 
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5.3. Measurement of the Series Resistance 

 

For high current devices, such as solar cells, minimization of the ohmic series resistance losses 

is crucial. The analysis of the series resistance (Rs) requires an accurate determined value and should 

also give a conclusive proof of its correctness [35]. There are many techniques to measure/estimate 

the series resistance of solar cells. In this chapter  we present the Rs estimated for the KVAZAR and 

Solartec solar cells by using two different methods: i) I-V curve measurement and ii) Suns-Voc. The 

concept behind each of the previous methods as well as the experimental procedure and results are 

described in the following lines. 

 

5.3.1. I-V curves 

 

5.3.1.1. Theoretical Introduction 

 

A current-voltage (I-V) curve is usually described as the possible combinations of current and 

voltage output of a photovoltaic (PV) device. However, to represent a real behavior of the device, it 

should be taken into account the presence of parasitic series resistance and shunt conductance as an 

integral part of the system [35]. 

Through the I-V curves, the series resistance can be estimated by two methods: i) The Slope method 

at constant light intensity and ii)  Multiple light intensity method.  

 

 

i) Slope method at constant light intensity 

As mentioned in the previous chapters, the maximum voltage value is achieved at open circuit 

conditions thus being known as the open circuit voltage (Voc). At this point, the series resistance is 

infinitely high and there is no current [39].  

Thus, in this method, series resistance is estimated by the inverse of the slope of the I-V curve 

near the Voc (equation (31)). The Rs parameter is one of the parameters that mainly influence the I-V 

curve of a solar cell. As can be seen in Figure 5.23, how much higher is the value of Rs, greater is the 

slope of the IV curve near the point I = 0 [32].[40] 
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)* = −1
Slope of the I − V curve near the Voc 

(31) 

 

This is the method to calculate the series resistance most commonly used, since it is only 

necessary to know the I-V curve of the solar cell under study (Fig. 5.23). 

 

 

Figure 63 - Obtaining the series and shunt resistances from the I-V Curve. 

 

 

 

ii)  Multiple light intensity method  

 

In this method the series resistance is calculated through the use of two I-V curves measured at 

different light intensities. Such curves have also two different values of Isc (Isc1 and Isc2, 

respectively). Then, a value of current below the Isc is picked (δI) and is subtracted from the value of 

Isc on both curves (eq. (32) and eq. (33)), originating two new points equally spaced from the point 

where V = 0 (Fig. 5.24) [33][34]. 
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Figure 64 - Two I-V curves of the same solar cell under different illumination intensities. 
Source: See reference [33] 

 

 

�  =  �@8  −  δI  (32) 

��  =  �@8�  −  δI  (33) 

 

The values of current obtained from the new points, corresponds the voltage values (V1 and 

V2, respectively) to calculate the series resistance [33]. So can be said that the series resistance is 

calculated by: 

 

)+  =  	  −  	��  −  ��  
(34) 

 

Thus, replacing the equations (32) and (33) in the equation (34),  

 

)+  =  	  −  	��+U  −  �+U� 
(35) 

 

where V1 and V2 are the voltage that corresponds to I1 and I2, respectively. 
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5.3.1.2. Results 

 

In order to estimate the series resistance by using the two methods explained in section 5.3.1.1. 

we have exposed to different light intensities (1, 2 and 10 suns)  all the solar cells under analysis and 

the I-V curve was measured. Figure 5.25 shows the I-V curves registered for the KVAZAR, Solartec 

and NaREC solar cells, normalized to the Isc and Voc of each curve.  

From these I-V curves it must be noticed that, as the concentration level increases, the 

KVAZAR solar cell shows higher resistive losses (lower FF) than the Solartec and NaREC solar cell.  

 

  

a) b) 

 

c) 
 
 

Figure 65 - I-V curve registered for the a) KVAZAR, b) Solartec and c) NaREC solar cells under 1, 2 and 10 suns. I-V 
curves are normalized to Isc and Voc. 

 

 

It is also important to refer that the oscillation of the I-V curves under 10 suns is due to the 

oscillation of the lamp in the concentration simulator (Fig. 5.26). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1

KVAZAR cell at 1 sun

KVAZAR cell at 2 suns

KVAZAR cell at 10 suns

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.5 1

Solartec cell at 1 sun
Solartec cell at 2 suns
Solartec cell at 10 suns

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.5 1

NaREC cell at 10 suns

NaREC cell at 2 suns

NaREC cell at 1 sun



Experimental Characterization of Solartec and KVAZAR solar cells 

72 

 

Figure 66 - Concentration Simulator placed in the FCUL laboratory 

 

Through the I-V curves obtained for each solar cell we have calculated the series resistance 

values by: i) the slope method at constant light intensity and ii) the multiple light intensity method. 

 

Table 5.7 presents the results obtained by the slope method at constant light intensity. 

 

 

Table 5.6 – Series Resistance estimated by the slope method 

C 
1 sun 

(1000W/m2) 
2 suns 

(2000W/m2) 
10 suns 

(10000W/m2) 

KVAZAR 0.16 ∓ 0.03 Ω 0.14 ∓ 0.01 Ω 0.20 ∓ 0.14 Ω 

Solartec 

Class 24 0.065 ∓ 0.02 Ω 0.19 ∓ 0.11 Ω 0.20 ∓ 0.007 Ω 

Class 26 0.045 ∓ 0.007 Ω 0.165 ∓ 0.02 Ω 0.12 ∓ 0.007 Ω 

2BB 0.045 ∓ 0.007 Ω 0.125 ∓ 0.02 Ω 0.13 ∓ 0.01 Ω 

NaREC 0.15 ∓ 0.03Ω 0.16∓ 0.03 Ω 0.11∓ 0.03 Ω 
 

From this table it must be noticed that the series resistance (Rs) estimated for the KVAZAR 

solar cells are higher than the one estimated for the NaREC solar cells at 1 sun. However, at 2 suns, 

the Rs estimated are higher in the NaREC solar cells. On the other hand, the series resistance (Rs) 

estimated for the Solartec solar cells are higher than the one estimated for the NaREC solar cells at 2 

and 10 suns. However, at 1 sun, the Rs estimated are higher in the NaREC solar cells. 

Although the Rs obtained for the Solartec solar cells, at 10 suns, is higher than the value of the 

value obtain to the NaREC solar cells,  it can be noticed that the difference is relatively small. The 

same situation do not occur in the Rs values obtained for the KVAZAR solar cells at 10 suns, since 
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this values are more higher when comparing with two other cells. This situation can be explained by 

the technology of the solar cells. In the case of Solartec and NaREC solar cells, their production 

technology were designed to operate under concentration, while the KVAZAR solar cells are 

conventional silicon solar cells (which means that they are not prepared to be exposed to 

high levels of radiation). 

 It can also be observe that in the same group of solar cells (i.e. the Solartec solar cells) were 

obtained different values of Rs. When the three classes of Solartec cells are compared, it is observed 

that the higher values of Rs obtained was in the Solartec solar cells with the class 24 and the lowest 

values in the class of two busbars. 

The values obtained in class 24 can be justified due to electrical classes in which these solar 

cells are classified. As mentioned in section 4.1(Physical Characteristics of the KVAZAR and 

Solartec solar cells) of this thesis, the Solartec solar cells, despite having the same physical 

characteristics, are grouped into different electrical classes (Class 24 and Class 26). 

In the case of solar cells with two busbars, the Rs values are lower than the obtained in other 

solar cells, due to their design. As mentioned before, the series resistance depends of the movement 

of current through the emitter and base of the solar cell, the contact resistance between the metal 

contact and the silicon, and finally the resistance of the top and rear metal contacts. As these solar 

cells have two busbars, the current generated in the cell will not be subject to go "one way" so long, 

since the current generated will be distributed homogeneously by the two busbars. Through this 

simple division of output current between the two busbars, the resistance associated to the contacts of 

the solar cell is relatively reduced. 

In the case of multiple light intensity method, it were used the I-V curve obtained under 1 and 

10 suns to estimate the series resistance. The results obtained are presented in the following table. 

 

Table 5.7 – Series Resistance estimated by the multiple light intensities method 

 

As it can be seen in the Table 5.8, and as in the slope method, the values of Rs estimated for 

the KVAZAR solar cells are relatively higher when compared to the values of Rs estimated for the 

NaREC solar cells, while the values of Rs obtained for the Solartec solar cells are lower when 

compared with two other cells.  

Cell Rs (Ω) 

KVAZAR 0.046 ∓ 0.03  

Solartec 

Class 24 0.06 ∓ 0.02 

Class 26 0.035 ∓ 0.02 

2BB 0.059 ∓ 0.02 

NaREC 0.075 ∓ 0.02 
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5.3.2. Suns-Voc method 

 

5.3.2.1. Theoretical Introduction 

 

The Suns-Voc method directly measures the Voc parameter as a function of the light intensity 

[40]. Since it is a direct electrical measurement with an electrical contact, and assuming that the 

spectrum of the lamp is similar and the cell temperature is constant, the Voc measured at one sun 

should match with the value from a I -V curve obtained in the solar simulator [41]. This method can 

provide a large range of information that can be used in a large number of ways; the most important 

for this dissertation is the calculation of series resistance of the solar cells [40].  

The Suns-Voc setup (Fig. 5.27) includes a light source whose intensity decreases linearly with 

time, at a rate that allows for quasi-stationary measurement but fast enough to avoid an increase in 

the temperature of the solar cell. The intensity of the light source is constantly monitored by a 

calibrated sensor and the Voc is measured directly from the contacts of the solar cell. The Suns-VOC 

measurement provides the I-V curve of the diode without the effects of series resistance and the 

concentration level at the samples is exposing [40, 41]. 

By fitting to the Suns-Voc curve this setup provides estimation for the Rs. 

 

 

 

 

Figure 67 – Suns-Voc apparatus placed in the FCUL laboratory. 
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5.3.2.2. Results 

 

Table 5.9 presents the results of Rs obtained by the Sun-Voc method for the KVAZAR, 

Solartec and NaREC solar cells.  

Table 5.8 - Series Resistance estimated by the Suns Voc setup 

 

 

As the values obtained by the slope method, the results presented in Table 5.9 shows that the 

series resistance (Rs) estimated for the KVAZAR and Solartec solar cell is very close the Rs values 

of the NaREC solar cell. It can also be observe that the values of Rs obtained in the Solartec solar 

cells before the soldering process was higher that the values obtained after the soldering process. This 

situation occurs due the fact that after the soldering process, the quality of the contacts of solar cells 

improved leading to lower resistivity losses. 

 

 

5.3.3. Conclusions 

 

Table 5.10 shows the values obtained for the series resistance of the KVAZAR, Solartec and 

NaREC solar cells using the four methods presented in this thesis. 

 

Cell 
Before the soldering process After the soldering process 

Rs (Ω) Rs (Ω) 

KVAZAR 
0.096 ∓ 0.002 

0.095 ∓ 0.002 

Solartec 

Class 24 0.120 ∓ 0.001 0.112 ∓ 0.002 

Class 26 0.102 ∓ 0.0002 0.098 ∓ 0.0004 

2BB 0.105 ∓ 0.003 0.096 ∓ 0.002 

NaREC 0.098 ∓ 0.0006 0.098 ∓ 0.0006 
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Table 5.9 – Series Resistance of the KVAZAR, Solartec and NaREC solar cells estimated by the different methods. 

Cell KVAZAR Solartec NaREC 

  Class 24 Class 26 2BB  

I-V curve      

 Slope near Voc      

 C = 1 sun 0.16 Ω  ∓ 0.03 0.065 Ω  ∓ 0.02 0.045 Ω∓0.007 0.045 Ω∓0.007 0.15 Ω ∓ 0.04 

 C = 2 suns 0.14 Ω ∓ 0.01 0.19 Ω ∓ 0.11 0.165 Ω ∓ 0.02 0.125 Ω ∓ 0.02 0.16 Ω ∓ 0.03 

 C = 10 suns 0.20 Ω ∓ 0.14 0.195 Ω ∓ 0.007 0.12 Ω ∓ 0.007 0.13 Ω ∓ 0.01 0.11 Ω ∓0.03 

 Multiple light intensity      

  0.046 ∓ 0.03 Ω 0.06 ∓ 0.02 Ω 0.035∓ 0.02 Ω 0.059∓ 0.02 Ω 0.075 Ω ∓ 0.01 

Suns Voc      

 0.095 Ω ∓0.002 0.112 Ω ∓0.002 0.098 Ω ∓0.0004 0.096 Ω ∓0.002 0.098 Ω ∓ 0.0006 
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The main conclusions are: 

a. When expose to 1 or 2 suns, the standard commercial silicon solar cell from 

KVAZAR features a series resistance similar to the NaREC solar cell, while the Solartec 

solar cells features a series resistance lower to the NaREC solar cell; 

b. This difference becomes higher when the solar cells are exposed under 

concentrated radiation; while the Rs values of KVAZAR solar cells raise under 10 suns, the 

Rs values of NaREC solar cells remain low. However, in the case of the Solartec solar cell, 

although the Rs values raises under 10 suns, when compared with the values obtained by 

the NaREC solar cells, the values are very similar; 

c. When compared the several groups of Solartec cells, the cells classified with the 

class 24 are the cells that show higher values of Rs and the solar cells with two busbars 

shows the lowers Rs values. 
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5.4. Spectral Response and Quantum Efficiency 

 

For a full characterization of the solar cells, a spectral response (SR) experiment was carried 

out in order to determine the quantum efficiency of the KVAZAR and Solartec solar cells. 

This chapter starts with a brief description of the Spectral Response concept, which is followed 

by the experimental procedure and results obtained. 

 

 

5.4.1. Theoretical Introduction 

 

The concept of spectral response (SR) shows itself very similar to the concept of quantum 

efficiency (QE).The spectral response (Fig. 5.28) is the ratio between the current generated by the 

solar cell and the power incident on the solar cell, while the quantum efficiency (QE) can be describe 

as the ratio between the number of output electrons and the number of photons incident on the solar 

cell [42]. 

 

 

Figure 68 - The spectral response of a silicon solar cell under glass. As can be observed, at short wavelengths (below the 
400 nm) the glass absorbs most of the light, leading to a very low response of the solar cell. In the intermediate 

wavelengths, the solar cell approaches the ideal (line market in red). However, in the long wavelengths (under 1100 nm) the 
solar cell response falls back to zero. 

Source: See Reference [37] 
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The spectral response (SR) of the tested cell (under short-circuit) is obtained using the 

relationship shown in equation (36) [42], 

 

m)nop(q) =  m)noprns(q) I (q)
Irns(q) 

(36) 

 

where I (q) is the amplitude of the signal in the cell that we intend to test, Irns(q) is the 

amplitude measured in the reference cell and m)noprns(q)  is the spectral response of the reference solar 

cell. 

In the case of an ideal solar cell, the SR and the QE curves are limited in the higher 

wavelengths, due the inability of the semiconductor (as in the case of a solar cell) to absorb photons 

with energies below the band gap. However, when we observe the SR curve it is possible to see that, 

unlike the square shape that QE curves presents along the entire spectrum, the SR curve decreases in 

the small photon wavelengths. This situation occurs due the fact that in these kinds of wavelengths, 

the photon has a higher energy which consequently leads to a reduced ratio of photons and power. 

[42]. 

The SR is an important parameter since it is the SR that is measured from a solar cell, and 

from this the quantum efficiency is calculated. The QE can be determined through the SR by 

replacing the power of the light at a particular wavelength with the photon flux for the same 

wavelength [43]. So, the QE can be calculated by [44], 
 

tu =  ℎ-
�q  m) 

 (37) 

 

Where c and h are respectively the speed of light and Planck's constant, λ the wavelength and 

q represents the electron charge. 
 

Figure 5.29 presents the quantum efficiency of an ideal and a real silicon solar cell [37]. As 

can be seen in Fig. 5.29, the QE for photons with energy below the band gap is zero. It can also be 

seen that while QE of an ideally solar cell, as mentioned before, has a square shape, the QE for 

most of the real solar cells is reduced due to recombination effects, reflections and low diffusion 

length.  
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Figure 69 - Quantum Efficiency of a silicon solar cell. The QE of an ideal solar cell is market in brown, while the QE of a 
real solar cell is market in black 

Source: See reference [39] 
 

 

 

5.4.2. Experimental procedure  

 

The spectral response measurements of Solartec and KVAZAR solar cells were obtained by 

an experimental setup, shown in Fig. 5.30, consisting by a Xenon lamp, a monochromator, a 

frequency controller, a power source, an oscilloscope and an optical fiber with two branches that is 

used to converge the light beam of the monochromator. To avoid the contamination of the signal it 

was used a modulation system of the light beam, using a synchronized chopper with a lock-in, 

making in this way measurements in the frequency modulation and filtering the possible existing 

noise added to the signal. It was also used a vacuum system to ensure as the light hits the solar cell 

always in the same point, fixing it and preventing possible displacements. 

 

 

 

 

a)  b) 

Figure 70 - System for measuring the spectral response and quantum efficiency: a) Apparatus used for measurements placed 
in the FCUL Laboratory, b) Schematic diagram of the installation used for the measurements 
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Assuming that the solar cells from the same classification group presents equal behave, the 

SR was carried out only in some selected cells which are representative of each group of solar cells 

tested in the present thesis. In the case of KVAZAR cells we have picked up two solar cells: nº 6.7 

and 6.8. While, in the case of Solartec cells, we have chosen one solar cell of each group: a cell of 

class 26, one of class 24 and a cell with two busbars. 

It is important to notice that in the case of the KVAZAR solar cells, the measurement of SR 

was carried out in two cells because these solar cells derive from different parts of a main solar cell 

which may differ in bulk quality. 

The measurements were performed in for a spectrum range of [400 nm - 1200 nm]. At the 

800 nm it was used a filter to ensure only infrared radiation reaches the cells. During the 

measurements, the values used in voltage source were (Fig. 5.31): 

 

• Voltage = 21 V 

• Current = 9.4 A 

 

  

a) b) 

 
Figure 71 - Measurement of the SR  in the solar cells: a) reference solar cell, b) KVAZAR or Solartec solar cell 

 

 

 

5.4.3. Results  

Figures 5.32 and 5.33 show the external quantum efficiency (QE) estimated in the KVAZAR 

solar cells 6.8 and 6.7, respectively. The curves reproduce the efficiency of solar cells in absorbing 

photons in each wavelength. As it can be seen in the Fig. 5.32 and 5.33, the SR was performed in 

three different positions. As can be seen, the highest quantum efficiency is achieved between the 500 

nm and 900 nm, which corresponds to the visible and IV zones of the spectrum. Below 500 nm (i.e. 

blue light and UV zone) the QE is reduced due to the front surface recombination, while above the 
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1000 nm (i.e. I.V. zone), the QE is reduced due to bulk and rear surface recombination. It also can be 

seen that the QE obtained in the three different positions on the solar cells, is very similar.   

 

 

Figure 72 - External quantum efficiency of  a  conventional solar cell (KVZ.40 – 6.8) measured in different positions on the 
cell. 

 

 

 
Figure 73 - External quantum efficiency of  a  conventional solar cell (KVZ.40 – 6.7) measured in different position 
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In the case of the Solartec solar cells, Fig. 5.34 shows the external quantum efficiency (QE) for 

the cells SLT.C24-1, SLT.C26-1 and SLT.2BB-1, respectively. As in the KVAZAR solar cells, the 

highest quantum efficiency is achieved between the 500 nm and 900 nm. 

However, in the case of the Solartec solar cells, there are small differences in the QE curves 

obtained for the different classes of solar cells. While in class 24 and 2BB solar cells, between the 

500 nm and 1000 nm, the quantum efficiency keeps in the highest values (values between 0.8 and 

0.9), in the class 26 solar cell, although the quantum efficiency reaches its maximum values near the 

ideal (values between 0.9 and 0.97), the wavelength range is more reduced (only between 600 nm 

and 900 nm). 

 

  

a) b) c) 

 

Figure 74 - External quantum efficiency of  the Solartec solar cell a) class 24; b) class 26; c) with two busbar 

 

 

When comparing the quantum efficiency of the KVAZAR and Solartec solar cells, it is 

possible to observe some differences. Figure 5.35 shows the QE curves of the KVAZAR (cell 6.8, in 

the center) solar cell (marked in blue) and Solartec (class 26) solar cell (marked in red). 
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Figure 75 - QE curves obtained for the KVAZAR (red markers) and the Solartec (blue markers) solar cells. 

 

As can be seen in the Fig. 5.35, both cells show similar behavior between 420 nm and 1200 

nm. However, although the Solartec solar cells present QE values slightly lower than those reached 

by the KVAZAR solar cell until the 700 nm. From 820 nm onward, the QE curve of the Solartec 

solar cell always remains above to the QE curve of the KVAZAR solar cell. 

This situation shows that the Solartec solar cells, despite showing a similar behavior to the 

KVAZAR solar cells along the spectrum, have a higher power of conversion the incident energy in 

the cell. 
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5.5. Thermal coefficients of solar cells 

As mentioned in the previous chapters, the solar cell temperature is one of the important 

factors that affect how much electricity that the solar cells will produce. So, given this situation, the 

influence of this characteristic, should not be overlooked. In order to understand the influence of 

increase of the temperature in the KVAZAR and Solartec solar cells, through an experimental 

campaign, their thermal coefficients were calculated. In this chapter a brief description of the thermal 

coefficients concept is performed, passing through the description of the experimental procedure 

performed to measure these parameters in the KVAZAR and Solartec solar cells, ending with a 

description of the results obtained and the respective conclusions. 

 

 

5.5.1. Thermal coefficients concept 

 

The temperature of a solar cell is a parameter that highly influences its electrical behavior, being such 

variation usually described by thermal coefficients (%/ºC).  In the case of Voc and Isc, as the 

temperature increases, the first will decrease while the latter will rise. Still, it must be noticed that the 

Voc variation is much higher (Fig. 5.36) [45].   

 

 
Figure 76 - Measured temperature coefficients for voltage for solar cell with uniform and nonuniform temperature during 

testing.  
Source: see reference [45] 

 
 

According to King et al.[45], the procedures for measuring the thermal coefficient(s) for solar 

cells don’t exist yet standardized, and systematic influences are common in the experimental methods 

performed to measure them. However, it can be stated that the most common method used to 

calculate the thermal coefficient is the Equivalent Cell Temperature method (ECT) [46 Germany 
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(2001) 156. #139]. According to I. Antón, the thermal coefficient β has a high variation with 

concentration level for a silicon solar cell, but when the temperature is lower than 100 ºC,  the  

thermal coefficients has very little variation, being considered constant at the usual one-sun operating 

conditions [45]. Usually, to estimate the thermal coefficients, the solar cell is placed in a solar 

simulator being illuminated with a uniform light and remains at constant temperature. The I-V curve 

is measured for a range of different temperatures and then the rate of change of the desired parameter 

with temperature (i.e. the thermal coefficients) is calculated according with equation (38)[45]: 

 

w� =  Δ B
Δ� = B(  +OP,�) −  B(  +OP,�!z. { |)� − 298.15  

(38) 

 

where B(  +OP,�) is the value of the electrical parameter registered under a certain temperature 

and at 1 sun,  B(  +OP,�!z. { |) is the value of the electrical parameter at 1 sun and 25º C and T is the 

temperature of the solar cell and CT is the thermal coefficient in study. 

 

 

5.5.2. Experimental procedure 

 

In order to calculate the thermal coefficients of the KVAZAR and Solartec solar cells, the solar 

cells were exposed to a uniform light (equivalent to 1 sun), through the use of a solar simulator (Fig. 

5.37). In order to exists a coherence of data, and to check if the radiation incident on cells was 

constant, was also carried out a control of the emitted radiation by the lamps of the solar simulator 

through the use of a radiation meter apparatus (Fig. 5.37). 
 

 

Figure 77 – Solar Simulator located in the Laboratory of the WS Energia S.A. 

Table where 

the solar cell 

is placed 

Radiation

meter 
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The I-V curves of the solar cell (one of each type of solar cell) were acquired through the I-V 

tracer apparatus, each 60 seconds, and solar cell temperature was measured by a thermocouple placed 

on the back of the solar cell. 

 

5.5.3. Results 

 

Through the I-V curves measured during the experiment, it was possible to visualize the 

behavior of the KVAZAR and Solartec solar cells as function of temperature. 

Figure 5.38 presents the values registered for the Voc and Isc as a function of the temperature 

of the solar cells. As can be seen, when the temperature of the solar cell rises, the values of Voc 

decreases while the values of Isc increases. Regarding the values of Voc, Fig. 5.38 shows that in 

SLT.C24, SLT.2BB and KVAZAR solar cells the values of Voc decrease almost linearly, with the 

increase in temperature. However, the SLT.C26 solar cell shows a slightly different behavior when 

compared to the other studied solar cells. In this case, the decrease of Voc presents a behavior less 

linear, as can be seen by the value of the R2 (value relatively less that 1). As in the case of the Voc 

values, the Isc increase almost linearly with the increase of temperature. This occurs to the fact of the 

increase of temperature of solar cells, which despite being a slight increase is enough to increase the 

value of Isc of solar cells. 
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Figure 78 - Variation of the Voc and Isc as a function of the temperature of the: a) KVAZAR, b) SLT.C24, c) SLT.C26 and d) 

SLT.2BB solar cells. 
 

By using equation (39) and the values obtained from the I-V curves and registered 

temperature, the thermal coefficients of the solar cells were calculated and are presented in Table 

5.11. 

 

Table 5.10 – Thermal coefficients estimated for the Solartec and KVAZAR solar cells 

 
KVAZAR solar cells 

Solartec solar cells 

  SLT.C24 SLT.C26 SLT.2BB 

Voc (%/°C) -0.18 -0.23 -0.23 -0.23 
Isc (%/degC increase) 0.05 0.03 0.03 0.04 

Impp (%/degC increase) 0.03 0.02 0.02 0 
Vmpp (%/degC increase) -0.13 -0.23 -0.21 -0.25 
FF (%/degC increase) -0.11 -0.03 -0.07 -0.04 

Pmpp (%/degC increase) -0.05 -0.04 -0.06 -0.09 
 

 

As can be seen in the Table 5.11, the values obtained, presents negative values in the cases of 

Voc, Vmpp, FF and Pmpp, and positive values in the cases of Isc and Impp, meaning that these 

electrical parameters decrease or increase, respectively, with temperature increase. It can also be 

observed that the Voc is the parameter of the solar cells that presents a higher decrease as a function 

of the increase of temperature.  

When compared the Solartec solar cells with the KVAZAR solar cells, it can be observed that 

the firsts presents a lower value of decrease as a function of temperature in the FF and Pmpp. 
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However, in the remaining electrical parameters, the KVAZAR solar cells presents lower values of 

degradation as a function of the increase of temperature in the solar cell. Regarding the Solartec solar 

cells, the SLT.C24 presents the lowest values of thermal coefficients of Voc and Vmpp. 

 

 

5.5.4. Main conclusions 

 

Despite all the electrical parameters of solar cell being affected by the increase in temperature, 

is the Voc that presents a further decrease with the increase of temperature in the solar cell. 

Regarding the results obtained for the Solartec solar cells, the SLT.C24 solar cells present 

themselves with the lowest values of thermal coefficients, when compared with the remaining 

Solartec solar cells.  

Another conclusion that can be observed is that in comparison, the KVAZAR and Solartec 

solar cells show quite different thermal coefficients. While the Solartec solar cells present lower 

thermal coefficients in the case of FF and Pmpp, the KVAZAR solar cells present lower thermal 

coefficients in the remaining electrical parameters. So, it can be affirm that the KVAZAR solar cells 

seem to be the solar cells with lower decrease of electrical parameters with the increase of 

temperature. 

 

The datasheets with the values measured in the experimental campaign are presented in the 

Annex IV.  
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Chapter 6 

 

 

 

Integration of the solar cells in the HSUN sub-receivers 

 

 

In this chapter is presented the behavior of the Solartec solar cells integrated in the HSUN sub-

receivers. In section 6.1 the entire HSUN system is described, while in the section 6.2 the mounting 

process of the sub-receivers is explained. In the section 6.3 the behavior of the solar cells integrated 

in the sub-receivers was analyzed. 

 

 

6.1. Integration of solar cells in the HSUN technology 

 

The HSUN technology (Fig. 6.1) is a medium concentration photovoltaic (MCPV) system that 

is being developed by WS Energia S.A. It has a total area of 1.68 m2 and 6.3 kg/m2 of weight. This 

technology is based on a 20X integrated parabolic trough (primary optics) that focus the light on a 

receiver with coupled reflective secondary optics. Each module has 7 successive primary optics (high 

reflective aluminum mirrors), being each receiver attached to the backside of the parabolic mirror 

that succeed [47]. This configuration is used as a passive cooling integrated system through which 

the heat dissipation of the receiver is performed. 

Each HSUN receiver is composed by three sub-receivers which have five solar cells each (i.e. 

each HSUN receiver integrates a total of 15 solar cells).  
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Figure 79 – HSUN module mounted on a 2-axes tracking system 

 

 

This thesis focuses on the HSUN receiver development by addressing: 

- Mounting process of the receiver and preliminary tests for validation 

- Optimization of the mounting process 

- Evaluation of the receiver electrical performance 

- Evaluation of the temperature effects on the receiver 

 

 

6.2. Mounting process of the receiver and preliminary tests 

 

The HSUN sub-receiver consists on an integrated printed circuit board (Fig. 6.2 and 6.3) that is 

produced and supplied by the company Globaltronic. The back surface of the five solar cells that 

integrate each sub-receiver is soldered to the squares showed in Fig. 6.2, and interconnected in series 

by soldering several Busing Ribbons to the busbar of each solar cell (Fig. 6.2 and 6.3).The mounting 

process will be described in detail in section 6.2.1 and the several improvements that were tested 

along the time until this process final was structured and tested are presented in the Annex V. 

 

Traking System 

PV Receiver 

Primary Optics 
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Figure 80 – Components and characteristics of the PCB. 

 

 

 

 

 

Figure 81 – Sub-receiver. When three of these sub-receivers are connected, a receiver is obtained. 

 

6.2.1. Process 
 

As mentioned before, each HSUN receiver results from the attachment of three sub-receivers. 

The components that integrate each sub-receiver are: 

i) Printed Circuit Board (PCB) 

ii)  Solar cells 

iii)  Diodes 

iv) Busing ribbons 

 

Figure 6.4 presents the specific position of each component on the PCB. 

Solar cell 

Busing Ribbon 

Copper 

Bypass Diodes 



Integration of the solar cells in the HSUN sub-receivers 

94 

 

 

 

 

 

Figure 82 –Specific position of the each component on the PCB. 

 

 

i) PCB 
 

The sub-receivers PCBs are supplied as a set of six boards all integrated in a single frame as 

showed in Fig. 6.5. It must be noticed that the whole mounting process of each sub-receiver, i.e. 

placement of the components on the PCB as well as its soldering, is performed without detaching the 

boards from the frame.  

 

 

Figure 83 – Set of six PCBs that are the base for the HSUN sub-receivers. 
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ii)  Solar cells 
 

The back surface of the solar cell is only soldered in the central area. Otherwise, if the whole 

back surface of the solar cell is soldered to the PCB, the solar cell is unable to support the thermal 

expansions and eventually breaks.  

In order to promote a better heat dissipation from the solar cell to the PCB, the unsoldered 

back surface of the solar cell is filled with thermal tape. Notice that the thermal tape must be placed 

on the PCB before the solar cell. The thermal tape should be placed inside the delimited area for the 

positioning of the solar cell, as can be visualized in Fig. 6.6. 

 

 

 

 

Figure 84 – Position where the thermal tape and the solder is placed on the PCB 

 

 

iii)  Diodes 

 

In the printed circuit board it is also integrated a bypass diode for each solar cell. This is because, 

as the cells are connected in series, if one of the solar cell is damaged, the entire sub-receiver would 

crash, leading to high losses of efficiency in the entire system. However, through the application of 

these diodes, this situation may be circumvented. For a correct functioning, the bypass diode is 

connected in parallel, but with an opposite polarity as to the solar cell. If any of the solar cells is 

damaged, the diode of this cell begins to conduct current, allowing the current generated by the solar 

cells that stills operate flows by an external circuit [3].  

 

 

iv) Bussing Ribbon 

 

To connect the five solar cells in series, a Busing Ribbon is soldered on the busbar of 

each solar cell and on the superior strip of the PCB, as can be observed in Fig. 6.5. 
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The whole mounting process of the sub-receiver is sketched in Fig. 6.7. To finalize the 

mounting process, the frame with six sub-receivers is placed in the furnace, where it remained around 

10 minutes at a controlled temperature cycle, to accurately promote the soldering process.  

STEP 1 Placement of thermal tape on the printed circuit board 

  

 
 

STEP 2 Placement of the soldering paste on: 
i) the squares of PCB that are soldered to the back surface of the solar cell  
ii)  the superior strip of each receiver, where the busing ribbon will be soldered 

  

 
 

STEP 3 Removal the protective film of thermal tape and placement of the solar cells 

  

 
  

STEP 4 Placement of the diode in the printed circuit board  
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STEP 5 Preparation of the Busing ribbon: 
 i) Cutting process ii) Placement on the printed circuit board 

  

 
 

 

 

 i) ii) 
 

Figure 85 – Mounting process of the sub-receivers 

 

In order to test the mounting process presented here, forty-eight sub-receivers were 

manufactured. These tests highlighted some failures associated to the soldering process which are 

described in the following lines. 

 

6.2.2. Tests 

 

Forty-eight sub-receivers were manufactured by using the procedure described before. The 

sub-receivers only differ on the amount of soldering paste that was used. It must be noticed that all 

the components on a sub-receiver were mounted/soldered by using the same amount of soldering 

paste. These sub-receivers were analyzed in two phases: i) a preliminary visual inspection of the 

receivers which was performed immediately after the process (i.e. soldering) carried out in the 

furnace, followed by ii) the evaluation of the receivers performance regarding maximum power 

output. 

 

 

i) Visual inspection 

 

From the 48 receivers that were mounted, 25% showed visual defects after the furnace step. 

Four main defects may be pointed out: 
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a. Arising of some spots on the front surface of the solar cells (Fig. 6.8): 

 

Table 6.1 to 6.8 present the configurations of soldering paste and a qualitative 

assessment of the presence of spots on the solar cells. It must be noticed that the sub-receivers 

that present spots in the solar cells are also those where it was placed a larger amount of 

soldering paste. For example, in case of sub-receiver nº 2 the copper area, where the center of 

the cell is placed,  was wholly  filled with soldering paste and the superior strip of the sub-

receiver, where the busing ribbon will be soldered, had more than three lines of soldering 

paste. Such soldering amount lead sub-receivers nº 2 to present the highest number of spots 

(Fig. 6.8). 
 

 

Figure 86 – Presence of spots in the solar cell of the sub-receiver nº 2. 

 

b. Displacement of the ribbon as to its specific position.  
 

The ribbon must be fixed on its specific position before the soldering process; otherwise 

some displacements from its specific position may occur during the soldering process (Fig. 

6.9). For example, the solar cells are glued with thermal tape before the furnace step. This 

thermal tape promotes the thermal dissipation on the cells but it also warrants that they will 

remain on its specific position. 

Figure 87 – Displacement of the ribbon from its specific position. 
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c. Unsoldered ribbons.  

 

Some ribbons were not soldered to the solar cell busbar (Fig. 6.10) during the 

furnace step. To promote its adhesion, some flux must be applied on the busbar before 

the furnace step. 

 

 

Figure 88 – Unsoldered ribbon 

 

d. Displacement of the bypass diode as to its specific position. 

 

Some diodes were displaced from its position on the PCB (Fig. 6.11) during the furnace 

soldering process.  

 

 

 

 

 

 

 

 

Figure 89 – Diode displaced from its position on the PCB. 
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Table 6.11 - Description of the soldering paste configuration used on each sub-receiver of board nº 1

Board Sub-receiver Image of soldering paste configuration 

VISUAL INSPECTION: 

Presence of spots in solar cells 

ELECTRIC EVALUATION: 

Power  (mW) registered for each sub-

receiver  

A few None < 400 400-500 >500 

1 

1 

 

X    X 

2 

 

X    X 

3 

 

X    X 

4 

 

X    X 

5 

 

X    X 

6 

 

 X   X 
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Table 6.12 - Description of the soldering paste configuration used on each sub-receiver of board nº 2. 

  

Board Sub-receiver Image of soldering paste configuration 

VISUAL INSPECTION: 

Presence of spots in solar 

cells 

ELECTRIC EVALUATION: 

Power  (mW) registered for each sub-

receiver  

A few None < 400 400-500 >500 

2 

7 

 

 X   X 

8 

 

 X   X 

9 

 

 X   X 

10 

 

 X   X 

11 

 

 X X   

12 

 

X   X  
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Table 6.13 - Description of the soldering paste configuration used on each sub-receiver of board nº 3. 

Board Sub-receiver Image of soldering paste configuration 

VISUAL INSPECTION: 

Presence of spots in solar 

cells 

ELECTRIC EVALUATION: 

Power  (mW) registered for each sub-

receiver 

A few None < 400 400-500 >500 

3 

13 

 

 X  X  

14 

 

X  X   

15 

 

 X   X 

16 

 

 X X   

17 

 

 X   X 

18 

 

 X  X  
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Table 6.14 - Description of the soldering paste configuration used on each sub-receiver of board nº 4 

 

Board Sub-receiver Image of soldering paste configuration 

VISUAL INSPECTION: 

Presence of spots in solar 

cells 

ELECTRIC EVALUATION: 

Power  (mW) registered for each sub-

receiver 

A few None < 400 400-500 >500 

4 

19 

 

X    X 

20 

 

 X   X 

21 

 

 X   X 

22 

 

X    X 

23 

 

 X   X 

24 

 

X    X 
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Table 6.15 - Description of the soldering paste configuration used on each sub-receiver of board nº 5. 

Board Sub-receiver Image of soldering paste 
configuration 

VISUAL INSPECTION: 

Presence of spots in solar cells 

ELECTRIC EVALUATION: 

Power  (mW) registered for each sub-receiver 

A few None < 400 400-500 >500 

5 

25 

 

 X   X 

26 

 

X   X  

27 

 

 X X   

28 

 

 X X   

29 

 

X    X 

30 

 

 X   X 
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Table 6.16 - Description of the soldering paste configuration used on each sub-receiver of board nº 6 

Board Sub-receiver Image of soldering paste 
configuration 

VISUAL INSPECTION: 

Presence of spots in solar cells 

ELECTRIC EVALUATION: 

Power  (mW) registered for each sub-receiver 

A few None < 400 400-500 >500 

6 

31 

 

     

32 

 

 X X   

33 

 

 X  X  

34 

 

 X   X 

35 

 

 X X   

36 

 

 X X   
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Table 6.17 - Description of the soldering paste configuration used on each sub-receiver of board nº 7. 

Board Sub-receiver Image of soldering paste 
configuration 

VISUAL INSPECTION: 

Presence of spots in solar cells 

ELECTRIC EVALUATION: 

Power  (mW) registered for each sub-receiver 

A few None < 400 400-500 >500 

7 

37 

 

 X X   

38 

 

 X  X  

39 

 

 X   X 

40 

 

 X   X 

41 

 

 X   X 

42 

 

X    X 
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Table 6.18 - Description of the soldering paste configuration used on each sub-receiver of board nº 8. 

Board Sub-receiver Image of soldering paste 
configuration 

VISUAL INSPECTION: 

Presence of spots in solar cells 

ELECTRIC EVALUATION: 

Power  (mW) registered for each sub-receiver 

A few None < 400 400-500 >500 

8 

43 

 

 X   X 

44 

 

X    X 

45 

 

X    X 

46 

 

X  X   

47 

 

 X   X 

48 

 

 X   X 



 

 

ii)  Electrical performance of the sub
 

After visual inspection, the

measurement of an I-V curve. Table

The sub-receivers on which

receiver nº 11 and 42, presented lower power values

these sub-receivers was minimal

source of the lower power values 

inadequate soldering of the busing ribbons to the solar cell busbar or even to the PCB,

poor or inexistent electrical interconnection

the sub-receivers reached the expected

receivers were fixed, i.e. a manual re

a prior application of flux on the 

The re-soldering process ha

the number of sub-receivers within the 

process was about 632mW, while before it was about 

have registered a Pmp higher than 500 mW

 

Figure 90 – Percentage of sub-receivers that are within a certain range of 

 

It can also be seen that, initially, 19% of sub

being this percentage diminished to 6%, after the re

The increase in power of some sub

due to the re-soldering process that 

receiver to properly work. 

19%

2%

15%

27%

35%

a)

Integration of the solar cells in the HSUN sub

lectrical performance of the sub-receiver 

After visual inspection, the 48 sub-receivers were electrically characterized by the

Table 6.1 to 6.8 summarizes the Pmp measured for each sub

on which a very little amount of soldering paste was used

, presented lower power values. Since the amount of soldering paste used 

was minimal, the solar cell was most probably unsoldered to the 

lower power values presented by the sub-receivers may be 

ing of the busing ribbons to the solar cell busbar or even to the PCB,

or inexistent electrical interconnection between the cells.  Figure 6.12 shows that only 35% of 

the expected power range (600-700 mW).  As such

a manual re-soldering process was carried out by using a soldering iron 

the solar cells busbar.  

soldering process has improved most of the sub-receivers increasing from 35% to 46% 

within the expected power range. The average Pmp after the re

, while before it was about 455 mW. Moreover, 82% of the sub

higher than 500 mW while before the re-soldering process this value was 62%.

receivers that are within a certain range of Pmp a) before and b) after

It can also be seen that, initially, 19% of sub-receivers had values of Pmp 

being this percentage diminished to 6%, after the re-soldering process. 

The increase in power of some sub-receivers (nº 11,12,14,27,28,32,35,36,37,38

that has electrically interconnected some solar cells 

0%

2%
2%

<=100

100<P<=200

200<P<=300

300<P<=400

400<P<=500

500<P<=600

600<P<=700

6%

0%
2%

2%

8%

36%

46%

b)
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receivers were electrically characterized by the 

measured for each sub-receiver.  

soldering paste was used, such as sub-

soldering paste used in 

to the PCB. Another 

 associated with an 

ing of the busing ribbons to the solar cell busbar or even to the PCB, leading to a 

shows that only 35% of 

700 mW).  As such the damaged sub-

using a soldering iron with 

increasing from 35% to 46% 

Pmp after the re-soldering 

. Moreover, 82% of the sub-receivers 

soldering process this value was 62%. 

after the re-soldering process. 

 lower than 100mW, 

(nº 11,12,14,27,28,32,35,36,37,38 and 42) was 

solar cells allowing the sub-

2%

2%

<=100

100<P<=200

200<P<=300

300<P<=400

400<P<=500

500<P<=600

600<P<=700
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Figure 6.13 presents the values of 

receivers that, initially, had values of 

 

Figure 91 - Values of Pmp before (dark blue) and after (light blue) the re
initially, had values of Pmp lower than 100mW.

 

As can be seen, the re-soldering pro

to 630mW (sub-receiver 28). Figure 

sub-receiver may raise from less than 0.5 V up to 3 V. The increase of the Voc

weren’t electrically connected to the sub

connected in series the voltage of the sub

correctly soldered to it.  

 

Figure 92 – Open-circuit voltage before (dark 
initially, had values of Pmp lower than 100mW.
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presents the values of Pmp before and after the re-soldering process of sub

receivers that, initially, had values of Pmp lower than 100mW. 

Pmp before (dark blue) and after (light blue) the re-soldering process of the sub
initially, had values of Pmp lower than 100mW. 

soldering process led to an increase of the Pmp from a few 100mW up 

Figure 6.14 highlights that after the re-soldering process

receiver may raise from less than 0.5 V up to 3 V. The increase of the Voc means that some cells 

electrically connected to the sub-receiver before the re-soldering process. Since the cells are 

connected in series the voltage of the sub-receiver is strongly affected by the number of cells that are 

circuit voltage before (dark green) and after (light green) the re-soldering process of sub
initially, had values of Pmp lower than 100mW. 

28 32 35 36

Sub-receiver

28 32 35 36

Sub-receiver

soldering process of sub-

 

soldering process of the sub-receivers that, 

from a few 100mW up 

soldering process the Voc of the 

means that some cells 

soldering process. Since the cells are 

receiver is strongly affected by the number of cells that are 

 

soldering process of sub-receivers that, 

37

36 37



 

Contrary to what occurred in the values 

increase (Fig. 6.15). 

 

Figure 93 – Short-circuit current before (dark orange) and after (light orange) the re
initially, had values of Pmp lower than 100mW

As can be seen in Fig. 6.15

mA. This occurred since, when solar cells are connected in series, the current has small variations, 

and the current generated by a sub

higher value of Isc due to the bypass diodes. 

However, even after the re

of the Pmp and, in some of the cases, the value of 

receiver was even more damaged with the re

14, 38 and 42 the values of Isc and 

while the values of Voc increased slightly (Fig. 6.18

the values of Pmp decreases, the difference between values 

process didn't exceed the 8%. 
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Contrary to what occurred in the values of Voc, the values of Isc didn't suf

circuit current before (dark orange) and after (light orange) the re-soldering process of sub
initially, had values of Pmp lower than 100mW 

 

As can be seen in Fig. 6.15, the value of Isc has been increased only between 32 mA and 100 

mA. This occurred since, when solar cells are connected in series, the current has small variations, 

and the current generated by a sub-receiver is close to the current generated by the cell that has the 

the bypass diodes.  

However, even after the re-soldering process, some sub-receivers didn’t show an 

and, in some of the cases, the value of Pmp had declined which means that the sub

receiver was even more damaged with the re-soldering process. In the case of sub

of Isc and Pmp decreased after the re-soldering process (Fig. 6.16 and 6.17

c increased slightly (Fig. 6.18). However, it is noted that despite the fact that 

decreases, the difference between values obtained before and after the re

28 32 35 36

Sub-receiver

in the HSUN sub-receivers 
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of Voc, the values of Isc didn't suffer the same 

 

soldering process of sub-receivers that, 

ly between 32 mA and 100 

mA. This occurred since, when solar cells are connected in series, the current has small variations, 

receiver is close to the current generated by the cell that has the 

receivers didn’t show an improvement 

which means that the sub-

In the case of sub-receivers nº 11, 12, 

soldering process (Fig. 6.16 and 6.17), 

). However, it is noted that despite the fact that 

obtained before and after the re-soldering 

37
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Figure 94 – Maximum power before (dark blue)
blue) the re-soldering process of sub-receivers that had not 

presented improvements

 

 Figure 96 – Open
the re-soldering process of sub

 

As such, it can be concluded that the manual 

difficult to fix them.  

Another reason for the sub

process, is the fact that the thermal tape

certain thickness which can prevent the cell to get

consequently not be soldered to the PCB

without damaged prematurely the solar cell.

 

 

6.2.3. Optimization of the mounting process
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(dark blue) and after (light 

receivers that had not 
ovements. 

Figure 95 – Short-circuit before
(light orange) the re-soldering process of sub

had not presented imp

 
Open-circuit voltage before (dark green) and after (light green) 

soldering process of sub-receivers that that had not presented 
improvements 

As such, it can be concluded that the manual re-soldering process works, but

Another reason for the sub-receivers presents lower values of Pmp, even after the re

process, is the fact that the thermal tape, that fulfills the solar cell back surface not soldered, 

which can prevent the cell to get into contact with the soldering paste and 

consequently not be soldered to the PCB. However, such situation is almost impossible to rectify 

thout damaged prematurely the solar cell. 

Optimization of the mounting process 

38 42

receiver

240

250

260

270

280

290

300

310

11 12 14

C
u

rr
e

n
t 

(A
)

Sub-receiver

11 12 14 38 42

Sub-receiver

 
before (dark orange) and after 

soldering process of sub-receivers that 
improvements. 

 

 

soldering process works, but in some it very 

, even after the re-soldering 

that fulfills the solar cell back surface not soldered, have a 

the soldering paste and 

uch situation is almost impossible to rectify 

14 38 42

receiver



Integration of the solar cells in the HSUN sub-receivers 

117 
 

As described in the previous chapter, several failures were detected on the sub-receiver after 

the soldering process. In this section, some solutions are suggested to avoid such failures and 

optimize the mounting process. 

 

a) Elimination of the spots 
 

Regarding the spots that appeared on the solar cells, and after studying the various 

configurations of soldering paste, it was concluded that: i) the spots on the solar cell only appeared in 

the sub-receivers on which a higher quantity of soldering paste was used (see Tables 6.1-6.8, sub-

receivers nº 1,2, 3,4,5,12,14,19,22,24,26,25,42,44,45,46) however, ii) in the sub-receivers on which it 

was used only a meager amount of soldering paste (see Table 6.1-6.8, sub-receivers nº 

11,12,14,16,27,28,32 and 37), the solar cells were improperly soldered to the PCB. As such, the 

soldering process should be optimized by using an intermediate amount of soldering paste, which lies 

between 4 to 5 risks of soldering paste on the copper square that is soldered to the solar cell back 

surface and 3 lines of soldering paste on the superior strip of copper that is soldered to the busing 

ribbon. Moreover, a thinner thermal tape (with the same thickness of the copper square) should 

promote the contact between the solar cell back surface and the copper square. 

 

b) Avoid displacement of the busing ribbon 

 

To avoid the displacement of the busing ribbon, before the furnace soldering step, a plate (as 

showed in Fig. 6.19) should be used to exert  a small pressure on the ribbons, so they remain fixed 

and connected to the solar cell during the passage of printed circuit board in the furnace. 

 

Figure 97 – Pressure Board 

 

 

c) Avoid unsoldered ribbons  
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Regarding the unsoldered busing ribbons challenge, some procedures should be added to the 

mounting process of the receiver: 

- a pen flux (Fig. 6.20) must be used to clean the busbar of the solar cell thus providing a 

higher adherence between them during the soldering process. The busbar must be 

cleaned before placement of the busing ribbon. 

- the ribbon must be cut in a flat form, in order to achieve a completely flat area that 

entirely fit on the solar cell busbar to increase the contact area and promote the 

soldering.  

 

 

Figure 98 – Pen flux 

 

Thus, in order to understand if the solutions presented before were adequate to improve the 

mounting process, 6 new sub-receivers were produced by following the solutions presented in the 

Table 6.9. 

 

Table 6.9 – Method used in each of the sub-receiver 

Number of Sub-receiver Configuration 

1 Pen flux  + Solder in the Busbar 

2 Pen flux 

3 Irregular Ribbons + Pen flux + Pressure 

4 Pen flux 

5 Pen flux + Pressure 

6 Pen flux + Pressure 

 

 

6.2.3.1. Tests 
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As in the previous chapter, to have a better analysis of the results, these are divided in two 

phases: i) a preliminary visual inspection of the sub-receivers and ii) evaluation of electrical 

performance of the sub-receivers. 

 

 

iii)  Visual inspection 

 

After the process carried out in the furnace (i.e. the soldering process), only 1 of the 6 

receivers showed visual defects. The resin spots on the front surface of the solar cells have only 

arisen at the sub-receivers in which a small amount of soldering paste was placed on the solar cell 

busbar (sub-receiver nº 1). Also in this sub-receiver little balls of soldering paste have risen on the 

solar cell busbar (Fig. 6.21). This results shows that the placement of soldering paste on the solar cell 

busbar will promote the soldering between the busbar and the busing ribbon but also harm the solar 

cells, thus invalidating the method.  

The amount of soldering paste (4-5 risks of weld in the copper square and about 3 lines on 

superior strip) used in the soldering process was visually validated due to the inexistence of spots on 

the front surface of the solar cells. However, this amount of soldering will only be completely 

validated after the electrical performance test. 

 

 

 

 

 

 

 

Figure 99 – Presence of spot sand balls of soldering paste on the solar cell busbar. 
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Regarding the displacement of the 

process, the use of the pressure plate was unsuccessful

The implementation of th

significantly reduce the amount of unsoldered busing ribbons.

 

 

 

iv) Electrical performance of the sub

 

As in the previous chapter, a

characterized by the I-V measurement.   

It must be noticed that the sub

lower Pmp (e.g. sub-receiver nº 3

soldering of the ribbon to the PCB was due to a 

show that only 50% of the sub-receivers 

the previous chapter, a manual re

The re-soldering process has 

the maximum power range has risen from 50% to 83%, being the average 

Moreover, all of the sub-receivers have registered a 

 

 

 

 

Figure 100 – Percentage of sub-receivers that ar
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the displacement of the busing ribbon from its specific position during the soldering 

process, the use of the pressure plate was unsuccessful suggesting that other solution must be found

The implementation of the busbar cleaning step (by using a pen flux) has showed to 

significantly reduce the amount of unsoldered busing ribbons. 

Electrical performance of the sub-receiver 

As in the previous chapter, after the visual inspection, the 6 sub-receivers were electrically 

measurement.    

It must be noticed that the sub-receiver, in which the busing ribbons were wavy,

receiver nº 3). The wavy shape of the busing-ribbon led to an inefficient 

soldering of the ribbon to the PCB was due to a weak contact between both surfaces.

receivers present a Pmp between 300 - 400 mW.  As such, 

a manual re-soldering was performed.  

soldering process has improved most of the receivers. The number of receivers within 

the maximum power range has risen from 50% to 83%, being the average Pmp

receivers have registered a Pmp higher than 300 mW. 

receivers that are within a certain range of Pmp a) before and 

process. 

33%

17%
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100-200
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400-500

500-600
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(B)

its specific position during the soldering 

suggesting that other solution must be found. 

e busbar cleaning step (by using a pen flux) has showed to 

receivers were electrically 

the busing ribbons were wavy, registered 

ribbon led to an inefficient 

between both surfaces.  Figure 6.22 

400 mW.  As such, and as in 

roved most of the receivers. The number of receivers within 

Pmp about 500mW. 

before and b) after the re-soldering 
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It can also be seen that, initially, 

being this percentage diminished to 0%, after the re

6 had several disconnected solar cells that when re

Pmp registered for each sub-receiver before and after the soldering process are presented in 

 

Figure 101 – Maximum power point before and after the re

 

As can be seen, the re-soldering process 

10mW and 210 mW). This increase in the 

of the sub-receiver, which in turn rises due to the re

well performed before. Figure 6.2

of the sub-receiver rose between 5 mV and 600 mV. 
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It can also be seen that, initially, 33% of sub-receivers had values of Pmpp

being this percentage diminished to 0%, after the re-soldering process. The sub-

several disconnected solar cells that when re-soldered began to work properly.

receiver before and after the soldering process are presented in 

Maximum power point before and after the re-soldering process of sub

soldering process led to an increase of the f Pmp

This increase in the Pmp is mainly due to a significant increase in the voltage 

receiver, which in turn rises due to the re-soldering of some interconnections that were not 

well performed before. Figure 6.25 highlights this situation since after re-soldering process the Voc 

se between 5 mV and 600 mV.  

2 3 4 5

Sub-receiver

Before After

in the HSUN sub-receivers 
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of Pmpp lower than 200mW, 

-receivers nº 3, 5 and 

soldered began to work properly. The values of 

receiver before and after the soldering process are presented in Fig. 6.23. 

 
soldering process of sub-receivers. 

led to an increase of the f Pmp (increase between 

is mainly due to a significant increase in the voltage 

some interconnections that were not 

soldering process the Voc 

6
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Figure 102 – Open circuit voltage befo

These results a significant improvement 

sub-receivers. In order to solve the 

configuration of busing ribbons

would probably improve the adherence 
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Open circuit voltage before and after the re-soldering process of sub-receivers that initially, had values of 
Pmpp lower than 100mW 

 

 

a significant improvement of the failures found in the mounting process of the 

n order to solve the persistent challenges of ribbons displacement, a new 

ibbons is suggested. For example, a slight lift in the center of the ribbon

adherence between the ribbon and the PCB. 

 

2 3 4 5

Number of the sub-receiver

Before After

 
receivers that initially, had values of 

mounting process of the 

displacement, a new 

. For example, a slight lift in the center of the ribbon 
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6.3. Electrical performance  

 

The electrical characterization of solar cells (section 4) has shown that the solar cells provided 

by the KVAZAR company are only suitable up to a concentration of 8 suns, while the Solartec solar 

cells showed to be suitable up to a concentration of 20 suns. In this section we present and discuss the 

tests that were carried out on sub-receivers that integrate Solartec solar cells since the HSUN system 

was designed to operate at a concentration of 15 suns.  

Within the Solartec cell designs studied in this thesis,  the SLT.2BB solar cells  has presented 

the best electrical performance (section 4.3); however, its front grid design (two busbars instead of 

just one) is incompatible with the HSUN sub-receivers design that are currently being used in the 

HSUN system. Thus, only the cells SLT.C26 and SLT.C24 were used in the receiver tested here (the 

tests conducted in the NaREC solar cells (cells used actually in the HSUN system) are presented in 

the Annex VI).  

.  

 

 

 

6.3.1 Experimental procedure 

 

Four sub-receivers (two sub-receivers integrating SLT.C26 solar cells and the remaining two 

integrating SLT.C24 solar cells) were mounted following the procedure presented in section 6.2. To 

measure the I-V curve of each cell, individually, output ribbons were soldered between each 

consecutive solar cell and at the ends of the sub-receiver (Fig. 6.25).   

 

 
Figure 103 – Sub-receiver with the output ribbons soldered. 

 

The I-V measurements were carried out at outdoor conditions (sunlight), i.e. the sub-receiver 

was placed towards the sun at optimized position without being integrated in the HSUN module (Fig. 

6.26). During all the experiment, the sub-receiver temperature, the ambient temperature and the 

incident radiation were recorded at the same time of the I-V curve measurements: 
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- to measure the temperature of each sub-receiver a thermocouple was glued at the center of 

the back surface of the sub-receiver (Fig. 6.27 a); 

- the incident radiation was measured with the radiation meter apparatus, which was placed 

side-by-side with the sub-receiver (Fig. 6.27 b), and the ambient temperature was measured by using 

a thermocouple. 

 

 

 

Figure 104 – Experimental set to measure the I-V curves under outdoor conditions. 

 

a) b) 

Figure 105 – Placement of the a) thermocouple at the rear surface of the sub-receiver and b) the radiation meter apparatus 

side-by-side with the sub-receiver. 

6.3.2. Results 

 

All the I-V curves measured for each solar cell and for corresponding sub-receiver during the 

experiments, previously described, may be found in Annex VII. Figure 6.28 shows the I-V curve of 

the sub-receivers with the corresponding irradiation and temperature of the PCB back surface at the 

time of the measurements. The average ambient temperature registered during all the experiment was 

30.5 (±0.5) ºC. 
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Figure 106 – I-V curves measured to SLT.26 sub-receiver nº1, SLT.24 sub-receiver nº1, SLT.24 sub-receiver nº2 and 
SLT.26 sub-receiver nº2 under outdoor conditions. The average ambient temperature at the time of the whole 

experiment was 30.5±0.5ºC. 

 

Figure 6.29 highlights a problem on the SLT.C24-1 sub-receiver since its Voc is considerably 

lower than the expected one (2.90 V). The Voc registered for this sub-receiver (1.72 V) suggests that 

only 3 cells were properly working since the typical Voc of the solar cells under study is about 0.58V 

under STC conditions (see section 4.1). Also in Fig.6.29, it must be noticed that the diodes are 

working properly, it is important to note that the fact that solar cells aren't in the same operating 

mode (which will be discussed in detail in the next sections), causes adverse effects on the I-V curve 

of the sub-receiver (Fig. 6.29) and, consequently, in the maximum output power produced by the 

system. Figure 6.30 presents the Pmp of the sub-receiver, the average of the Pmp produced by each 

solar cell, individually. This figure highlights that higher deviations of the individual Pmp of each 

solar cell to the average Pmp of the solar cells, that integrate the sub-receiver, lead to lower Pmp of 

the whole sub-receivers, i.e. solar cells operating in different conditions lead to higher losses in the 

system. 

In the following sections the behavior of each individual solar cell is analyzed in detail taking 

into account the incident radiation (section 6.3.2.1.) and cell temperature (6.3.2.2.). 
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Figure 107 – Measured values of Pmp of the sub

 

Figure 6.30 presents the values of FF of the sub

When these values are compared, it is possible to say that the averages of FF of the solar cells are 

very similar between themselves (difference between 0.5% and 2%). However

values of Pmp, higher deviations of the individual FF of each solar cell to the average FF of the solar 

cells, that integrate the sub-receiver, lead to lower FF of the entire sub

 

Figure 108 – Estimated values of 
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Measured values of Pmp of the sub-receiver and the average of the Pmp of the solar cells

presents the values of FF of the sub-receivers estimated through the I

When these values are compared, it is possible to say that the averages of FF of the solar cells are 

very similar between themselves (difference between 0.5% and 2%). However, as in the case of the 

values of Pmp, higher deviations of the individual FF of each solar cell to the average FF of the solar 

receiver, lead to lower FF of the entire sub-receivers. 

values of FF of the sub-receiver and the average of the FF of the solar cells

SLT.C26-1 SLT.C24-2 SLT.C26

Sub-receivers

Pmp of the Sub-receiver Average of the Pmp of the solar cells

SLT.C26-1 SLT.C24-2 SLT.C26

Sub-receivers

-receiver Average of the FF of the solar cells

 

receiver and the average of the Pmp of the solar cells. 

receivers estimated through the I-V curves. 

When these values are compared, it is possible to say that the averages of FF of the solar cells are 

, as in the case of the 

values of Pmp, higher deviations of the individual FF of each solar cell to the average FF of the solar 

 

of the solar cells. 

SLT.C26-2

Average of the Pmp of the solar cells

SLT.C26-2

Average of the FF of the solar cells



6.3.2.1. Analysis of the results taking into account the incident radiation 

 

Figure 6.31 presents the values of Isc

individually, and for the sub-receiver 

presents the expected values for the

during the measurements and considering a cell temperatu

all the solar cells present a value of Isc 

with two factors: 

i) a slight deviation of the radiation meter as to the optimum position of the receiver

may lead the radiation meter to register lower irradiation values than the 

irradiation that is indeed falling on the receiver;

ii)  higher cell temperatures lead to a slight increase of the Isc (

 

Since the Isc only varies by 0.03%/°C and is extrem

the cell, the mismatch in Fig. 6.3

 

 

a) 

Figure 109 –Values of a) Isc and b) Voc of each solar cell (different red hue bars) and sub

at outdoor conditions: 680 W/m2 and 30.5 (±0.5) ºC of ambient temperature

dashed black lines indicate the estimated Isc and Voc (see Chapter 4

ones in analysis. This value was estimated for the same atmospheric conditions and considering a temperature of 25ºC 

 

By performing the ratio between the average of the Isc measured for each cell (notice that the 

inoperable cells of the SLT.C24

estimated for 1 sun, the expected incident radiation level that falls on the cells would be 10% higher 
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6.3.2.1. Analysis of the results taking into account the incident radiation  

presents the values of Isc and Voc that were measured for

receiver under the conditions previously mentioned. 

values for the Isc and Voc of Solartec cells under the irradiation registered 

during the measurements and considering a cell temperature of 25°C. It must be noticed that almost 

value of Isc higher than the expected one. Such mismatch may be related 

a slight deviation of the radiation meter as to the optimum position of the receiver

the radiation meter to register lower irradiation values than the 

irradiation that is indeed falling on the receiver; 

higher cell temperatures lead to a slight increase of the Isc (see section 6.3.2.2

Since the Isc only varies by 0.03%/°C and is extremely sensitive to the irradiation that falls on 

6.31 is most probably due to a deviation in the radiation meter position.

b) 

Values of a) Isc and b) Voc of each solar cell (different red hue bars) and sub-receiver (blue bars) 

and 30.5 (±0.5) ºC of ambient temperature normalized for the Isc and Voc expected

mated Isc and Voc (see Chapter 4) for a solar cell with the same characteristics of the 

ones in analysis. This value was estimated for the same atmospheric conditions and considering a temperature of 25ºC 

registered for the cell. 

By performing the ratio between the average of the Isc measured for each cell (notice that the 

of the SLT.C24-1 sub-receiver were disregarded for this average value) and the Isc 

estimated for 1 sun, the expected incident radiation level that falls on the cells would be 10% higher 
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that were measured for each solar cell, 

under the conditions previously mentioned.  This figure also 

Solartec cells under the irradiation registered 

It must be noticed that almost 

Such mismatch may be related 

a slight deviation of the radiation meter as to the optimum position of the receiver 

the radiation meter to register lower irradiation values than the 

see section 6.3.2.2). 

ely sensitive to the irradiation that falls on 

is most probably due to a deviation in the radiation meter position. 

receiver (blue bars) normalized 

normalized for the Isc and Voc expected. The 

) for a solar cell with the same characteristics of the 

ones in analysis. This value was estimated for the same atmospheric conditions and considering a temperature of 25ºC 

By performing the ratio between the average of the Isc measured for each cell (notice that the 

receiver were disregarded for this average value) and the Isc 

estimated for 1 sun, the expected incident radiation level that falls on the cells would be 10% higher 
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receivers
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than the value measured by the radiation meter, i.e. 800W/m

Taking into account the radiation level that results from the previous fit, we have estimated again the 

“Expected” Isc and Voc and the resu

This figure shows that with 800W/m

while the Voc variation is barely visible. So, assuming that the position of radiation meter was not 

optimized can be concluded that the real incident radiation level at the moment of the measurements 

in the solar cells was about 800 W/m

Looking to the behavior of each solar cell individually

it is noticeable that the cells present a different behavior

difference may be related with accum

Regarding the Voc, the values registered for each cell are lower than the values expected for 

the 800W/m2 of irradiation. However, 

for a temperature of 25ºC. Since highe

back surface was 39 (± 0.9) º C

expected Voc after a temperature correction, which is discussed in the next section. 

 

a) 

Figure 110 –Values of a) Isc and b) Voc of each solar cell (different red hue bars) and sub

at outdoor conditions: 800 W/m2 and 30.5 (±0.5) ºC of ambient temperature

dashed black lines indicate the estimated Isc and Voc (see Chapter 

ones in analysis. This value was estimated for the same atmospheric conditions and considering a temperature of 25ºC
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than the value measured by the radiation meter, i.e. 800W/m2 instead of the 680W/m

Taking into account the radiation level that results from the previous fit, we have estimated again the 

Isc and Voc and the results are presented in the Fig. 6.32. 

This figure shows that with 800W/m2, the Isc measured is very similar to the value expected 

while the Voc variation is barely visible. So, assuming that the position of radiation meter was not 

optimized can be concluded that the real incident radiation level at the moment of the measurements 

was about 800 W/m2. 

the behavior of each solar cell individually (Fig. 6.32 a)) in the same sub

it is noticeable that the cells present a different behavior when exposed to the same conditions

difference may be related with accumulated dust on the cells.  

Regarding the Voc, the values registered for each cell are lower than the values expected for 

However, we must bear in mind that the theoretical Voc was estimated 

for a temperature of 25ºC. Since higher temperatures reduce the Voc and the temperature of the PCB 

C, it is expected a better match of the measured Voc values as to the 

expected Voc after a temperature correction, which is discussed in the next section. 

b) 

Values of a) Isc and b) Voc of each solar cell (different red hue bars) and sub-receiver (blue bars) 

and 30.5 (±0.5) ºC of ambient temperature normalized for the Isc and Vo

dashed black lines indicate the estimated Isc and Voc (see Chapter 4) for a solar cell with the same characteristics of the 

This value was estimated for the same atmospheric conditions and considering a temperature of 25ºC

registered for the cell. 
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we must bear in mind that the theoretical Voc was estimated 

r temperatures reduce the Voc and the temperature of the PCB 

, it is expected a better match of the measured Voc values as to the 

expected Voc after a temperature correction, which is discussed in the next section.  

receiver (blue bars) normalized 

normalized for the Isc and Voc expected. The 

) for a solar cell with the same characteristics of the 

This value was estimated for the same atmospheric conditions and considering a temperature of 25ºC 

SLT.C24‐2 SLT.C26‐2
receivers

Cell 1

Cell 3



Integration of the solar cells in the HSUN sub-receivers 

129 
 

6.3.2.2. Analysis of the results taking into account the radiation and cell temperature 

6.3.2.2.1. Experimental procedure 

 

In order to observe the effects of the temperature in the SLT.C26 and SLT.C24 solar cells 

integrated in the sub-receivers we have registered each 60 seconds the I-V curves of solar cell nº3 of 

each sub-receiver during 15 minutes of sunlight exposure at optimal position. As in the previous 

experiment, the irradiation, ambient temperature and temperature of the PCB back surface were 

recorded. 

The I-V curves were acquired through the I-V Tracer apparatus and the solar cell temperature 

was measured by a thermocouple placed on the back surface of sub-receiver, right next to the rear 

area of the cell that is being measured cell nº 3 (Fig. 6.33), while the incident radiation was measured 

with the radiation meter apparatus, which was placed in the same position that the solar cell 

measured.  

 

 

 

Figure 111 - Placement of the Thermocouple in the back rear surface of the solar cell nº 3 of the sub-receiver. To the 
acquisition of temperature by the thermocouple was made always in the same location, the thermocouple was fixed with 

thermal tape 

 

 

6.3.2.2.2. Results 

 

As mentioned in the chapter “Thermal Coefficients” of this thesis, from the value of Voc 

acquired at a concentration of 1 sun and the thermal coefficient estimated for the solar cells, it is 

possible to calculate the temperature of the cells when the I-V curves were measured. Thus, the 

temperature of the solar cells can be estimated through the following equation [48], 

Thermocouple 
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� (�) = 	MU(w, �) − 	MU(1*CD, 298.15) −  
��   × 298.15 × ln (w)
�( w = 1) +  
�� × ln (w) +  298.15 

 

 (40) 

 

Table 1 to 3, presented in the Annex VIII, presents the electrical parameters (Pmp, Impp, 

Vmpp, Voc and Isc) measured for each solar cell and sub-receiver. Also in these tables we present: 

the concentration level (in suns) estimated by the ratio between the Isc measured and the Isc at 1 sun 

(which is 0.29 A for the Solartec solar cells) and the temperature of the cell estimated by using the 

equation (40). 

Figure 6.34 shows the I-V curves measured for cell nº 3 of each sub-receiver during the 15 

minutes of the experience in the sunlight. The first two curves highlight the effect of the temperature 

on the cells Voc and Isc. It may notice that the Voc significantly decreases during the experiment 

period, which is mainly related with the increase of the cells and sub-receivers temperature. It can 

also be notice a slight increase of the Isc, which is also caused by the temperature increase.  

By these figures it also can be observe that the highest Isc achieved during this experiment was 

0.26 A in the SLT.C26 solar cell and 0.28 A in the SLT.C24 solar cell. By performing the ratio 

between the measured Isc and the Isc at 1000W/m2 (which is 0.29 A) it can be concluded that the 

maximum irradiation registered during the experiment was about 960 W/m2. 

 

Figure 6.35 presents the temperature measured on the rear surface of the PCB and the 

estimated temperature of the solar cell nº 3 (for both SLT.C24 and SLT.C26 sub-receivers) by using 

  

a) b) 

Figure 112 - I-V curves measured during 15 minutes in the sunlight exposure from the a) SLT.C26-2 and b) SLT.C24-2 

sub-receivers. 
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the measured Voc. As can be observed in the figures, all solar cells tested shows an increase in the 

temperature measured and estimated during the experiment. This figure also highlights that the 

temperature measured in the rear surface of the solar cells is about 10(±0.9)ºC lower than the 

temperature estimated to the solar cell; moreover, such difference between the two temperatures 

presents a constant behavior of 11(±0.5)º C and 9(±0.8)ºC  for the case of SLT.C26 and SLTC24, 

respectively. The difference between the temperatures of the cell and PCB back surface occurs due 

the thermal resistances that exist on the PCB layers [49].  

 

 

a) b) 

Figure 113 – Temperature of the rear surface of the cell and the temperature estimated of the a) SLT.C24 solar cell and b) 
SLT.C26 solar cell in the sunlight. 

 

6.3.2.3. Adjust of the results obtained by the temperature estimated of the solar cells 

 

In the previous section the temperature of the solar cell was calculated through the Voc 

produced by the solar cells when the measurement is performed.  However, such temperature may be 

also estimated by the thermal resistances of the PCB and the irradiation falling on the cells [49] 

through the following equation: 

t =  �[ −  ��)[�  
(41) 

 

where Q is the radiation that falls on the solar cells when the measurement is performed, 

�[ − �� is the difference of temperature between the two materials in analysis and )[� is the thermal 

resistance between the materials (in this study, the thermal resistance between the back surface of the 

PCB and the solar cells was considered to be about 0.003 ºC.W/m2, according to [49]). 
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Figure 6.36 present the values of 

very similar. The temperature of the sub

lower than the estimated from the Voc of the I

is very reduced (always lower than 4ºC) a

 

Figure 114 – Temperatures of the sub
measured (dark green bars) and ii) through the thermal resistances of the P

 

Through the temperature estimated from these methods, it is possible 

adjustment of the value of Isc and Voc of the solar cells at the moment of measurement

As can be observed, the Voc measured in the sunlight are equal to the value estimated for the 

conditions (temperature and radiation) at the time of the measurements. 

 

a) 

Figure 115 –Values of a) Isc and b) Voc of each
outdoor conditions: 800 W/m2 of irradiation and 30.5 (±0.5) ºC of ambient temperature, normalized to the Isc and Voc 

estimated  by the temperature of the solar cells (dashed black lines).
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present the values of cell temperature estimated by the two methods

very similar. The temperature of the sub-receivers estimated by the thermal resistances are a little 

lower than the estimated from the Voc of the I-V curves measured on the sunlight, but this difference 

is very reduced (always lower than 4ºC) and are covered by the error bars.  

 

Temperatures of the sub-receivers estimated by two different methods: i) from the Voc of the I
measured (dark green bars) and ii) through the thermal resistances of the PCB and irradiation (light green bars).

Through the temperature estimated from these methods, it is possible 

adjustment of the value of Isc and Voc of the solar cells at the moment of measurement

As can be observed, the Voc measured in the sunlight are equal to the value estimated for the 

conditions (temperature and radiation) at the time of the measurements.  

b) 
 

Values of a) Isc and b) Voc of each solar cell (different red hue bars) and sub-receiver (blue bars) measured at 
of irradiation and 30.5 (±0.5) ºC of ambient temperature, normalized to the Isc and Voc 

estimated  by the temperature of the solar cells (dashed black lines). 
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receivers estimated by two different methods: i) from the Voc of the I-V curves 
CB and irradiation (light green bars). 

Through the temperature estimated from these methods, it is possible to perform the 

adjustment of the value of Isc and Voc of the solar cells at the moment of measurement (Fig.6.37). 

As can be observed, the Voc measured in the sunlight are equal to the value estimated for the 

receiver (blue bars) measured at 
of irradiation and 30.5 (±0.5) ºC of ambient temperature, normalized to the Isc and Voc 
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6.3.3. Main conclusions  

 

The values of Isc and Voc estimated for the condition at the moment of the measurement 

(radiation level and temperature of the solar cells) prove to be similar to the values obtained by the 

measurement. So, it can be concluded that the performance of the solar cells is unaffected by their 

integration in the HSUN sub-receivers.  
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Chapter 7 

 

 

 

Cost-efficiency analysis of screen-printed solar cells to integrate CPV 

systems 

 

 

 

 

 

Most CPV systems integrate high efficiency solar cells which are designed to operate under 

high levels of radiation. Such cells are more expensive than the standard screen-printed solar cell 

technology which is being produced at high volume by a well-standardized industry thus benefitting 

from economies of scale. Thus, in this thesis we have been evaluating the potential of such cells to 

integrate CPV systems.  

The previous sections have focused on the electrical characterization and technological 

integration of conventional 1-sun solar cells (such as KVAZAR) and upgraded 1-sun solar cells (such 

as Solartec) to operate under different concentration levels. However, to really understand the 

potential of a specific solar cell technology, when integrated in a CPV system, we have to analyze the 

relation between its cost and power output, i.e. to perform a cost-efficiency analysis.  As such, the 

cost-efficiency of a solar cell can be estimated by equation (42)[50]. 

 

 

€/�IJJ =  <K�-� .� Jℎ� *.�IK -��� (€)
<
' .� Jℎ� -��� (w)(�)  

(42) 

 

 

where the <
' .� Jℎ� -��� (w) is the maximum power of the cell for a concentration C.  

In the following lines we perform a comparison of the cost-capacity between: 

i) Conventional 1-sun screen-printed solar cells 

ii)  Upgraded screen-printed solar cells (optimized for 15 suns) 
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iii)  Laser Grooved Buried contact soar cells (optimized for 15 suns). 

 

To estimate the cost-efficiency of these solar cells (NaREC, Solartec and KVAZAR solar 

cells) where only taking into account the unit price of the cells and not the design and the mask used 

in the NaREC and Solartec solar cells, since these are only paid once. 

Table 7.1 presents the prices of the previously mentioned solar cell technologies being LGBC 

technology the most expensive ones (€ 32.44 / wafer) and KVAZAR solar cells the cheapest (5.12 € / 

wafer). These values were expected since the LGBC solar cells are, nowadays, mainly produced for 

CPV applications at a considerably lower scale than the conventional screen-printed solar cells, 

which present lower prices due to economies of scale.  

However, when looking to the cell unitary price, we should notice that the solar cells provided 

by Solartec presents the lowest price/cell. This situation is due to the fact that a Solartec wafer has 14 

solar cells while the KVAZAR wafer only provides 8 solar cells. So, when the price of each solar cell 

is calculated, the Solartec solar cells showed the cheapest unitary price. 

 

 

Table 7.1 – Technology and prices of the Solartec, NaREC and KVAZAR solar cells. 

 Technology 
Solar cells per 

Wafer 

Price (€) 

Wafer Solar cell 

NaREC LGBC optimized for 15 suns 14 32.44 2.32 

Solartec 
Upgraded screen-printed solar 

cells (optimized for 15 suns) 
14 0.58 8.12 

KVAZAR Conventional silicon solar cells 8 5.12 0.64 

 

 

The cost-efficiency of the solar cells was estimated through eq. 1 for a concentration level that 

lies between 1 and 30 suns (since the HSUN system was initially designed for a concentration of 15 

suns). The Pmp values used in these calculations were provided by section 4.3. Figure 7.1 shows the 

expected cost-effectiveness vs. the concentration level.  
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Chapter 8 

 

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

 

8.1. Conclusions 

  

The use of alternative and environmentally friendly energy is a crucial issue in the fight against 

waste and proper use of natural resources. Thus, dominate and spreading the processing technology 

of photovoltaic energy, as the CPV market, is the primary task for the technological areas. 

The HSUN is a concentration photovoltaic (CPV) system concept under development by WS 

Energia S.A. It uses crystalline silicon solar cells optimized for a concentration factor of about 15 

suns. However, the price of the HSUN PV receiver is strongly conditioned by the expensive high 

efficiency solar cells that integrate. Thus, the main purpose of this thesis regards the study of new 

approaches of silicon solar cells to use in the HSUN PV receiver. 

In a first approach, a theoretical mathematical analysis was made in order to understand what 

the behavior of solar cells studied in several levels of concentration. This study, later supported by 

the full electrical characterization of the solar cells performed, allowed to conclude that the 

conventional cells provided by the KVAZAR company show to be viable only up to a concentration 

of 8 suns, while the modified silicon cells for concentration, provided by the Solartec company, 

prove to be viable up to a concentration of 20 suns. Thus, since the HSUN system operates at a 

concentration of 15 suns, the viability of KVAZAR solar cells proves to be insufficient to integrate 

this system. 

Thus, for the experimental campaign performed to understand the behavior of the solar cells 

integrated in the HSUN sub-receivers were only tested sub-receivers. 

Throughout this experimental campaign was possible to compare the results obtained 

experimentally with the values estimated by the theorical model. The values appear to be similar and 

show that the Solartec solar cells present a good performance (according to the expectative), that is 

unaffected, when integrated in the sub-receivers of the HSUN system. 
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The best performance of solar cells when integrated into the sub-receivers, in the context of 

experimental campaign, was also carried out an improvement of the mounting process of the HSUN 

receivers. Through the preliminary tests conducted to validate this process was possible to discover 

some issues such unsoldered Ribbons, appearance of spots on solar cells and displacement of 

Ribbons. After studying the results obtained in these preliminary tests, solutions were found and 

implemented to optimize the process (application flux and straight cut of the ribbons). After the 

optimization, this process was again tested and the results showed that the solutions were feasible, 

eliminating the problems previously encountered. Much more experimental tests were performed and 

were not included in this thesis. 

As the main aim of the study of these new approaches is to reduce the cost of the system, it is 

important not only to have a good perspective of the solar cell performance when integrated in a CPV 

system, but also take into account the economic viability of the solar cells. Thus, to a correct choice 

of the most viable solar cell to integrate the HSUN system was taken into account not only the values 

of output power produced by the solar cells, but also their cost-efficiency. Through this cost-

efficiency, where the KVAZAR conventional solar cells, the NaREC LGBC solar cells and Solartec 

optimized solar cells were compared, it was concluded that the solar cells more viable up to a 

concentration level of 24 suns are the Solartec solar cells, being that from this concentration level the 

NaREC solar cells present themselves as the most viable solar cells. 

 

Therefore, and taking into account all the work developed along this thesis, it can be concluded 

that the most cost-efficient solar cells to integrate the HSUN system are the mono-crystalline silicone 

solar cells with optimized screen-printing, such as the Solartec solar cells. 

 

 

8.2. Future Work 

 

As mentioned throughout the thesis, this work was integrated in the development of a new 

photovoltaic concentrator. Therefore, much work still needs to be done. One of the conclusions of the 

comparison of the behavior of the solar cells estimated by the mathematical model and the 

measurements on field is the confirmation of the values estimated. However, in this thesis, it was 

only possible perform measurements at 1, 2, 4 and 10 suns. So, for a complete understanding of the 

real behavior and validation of theoretical values of the solar cells under each concentration level, 

measurements under other concentration levels should be further performed. 

Other development to be made is the upgrade of the design of the PCB plate, so that solar cells 

with new settings (as in the case of Solartec solar cells with two busbars) can be integrated and 

studied in the HSUN sub-receivers. 
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Another important issue, as evidenced in the experiments conducted in this thesis, is the effect 

of the inhomogeneous sunlight on the solar cells. This phenomenon shows to be harmful for the 

performance of the system. Thus, a study of the effect of inhomogeneous irradiation on solar cells 

performance seems to be a good approach to understand the real effect of this phenomenon and the 

solutions needed to minimize these effects on the output efficiency of the system. 

As regards the soldering of the solar cells, in this thesis was conducted an improvement of the 

mounting the sub-receivers components and the soldering method of solar cells. However, in order to 

make the whole process ready for the industrialization of the HSUN system, it seems necessary to 

automate the entire soldering process (including the mounting of the several components on the 

PCB). Thus, a study in the automation of this part of the process seems to be necessary. 
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Estimated temperatures of the solar cells 
integrated in the sub-receivers 


