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ABSTRACT 

 

Aims:  To contribute to the evaluation of the pathogenic potential of Aeromonas, through the test of 24 

Aeromonas spp. strains of Portuguese origin, for the adherence, invasion and cytotoxicity abilities in 

mammal cells. 

Rationale:  Studies on other enteropathogens indicate that a pathogen must be able to attach to host 

target cells to cause gastrointestinal disease [Finlay and Falkow, 1997; Scoglio et al., 2001], via either 

toxin production or host cell invasion, or both [Knutton, et al. 1987]. 

Results: 19 (79%) and 12 (50%) strains were found to have the ability to adhere and invade 

differentiated cells respectively while 22 (92%) and 13 (54%) strains had ability to adhere and invade 

undifferentiated Caco-2 cells. These results indicate that most Aeromonas spp. strains interact 

optimally with cultured human intestinal cells at cellular sites expressed in the brush border early in the 

differentiation process of Caco-2 cells. In 13 (54%) strains it was observed an aggregative adhesion 

pattern as observed in other enteropathogens, including all clinical strains. 6 (25%) isolates express 

both adherence and extracellular cytotoxicity, but preheating caused a decrease in the citotoxicity of 

the supernatants of 5 of these strains suggesting that the remainder clinical strain (A255) has the 

ability to produce extracellular heat-stable toxins. 17 (71%) isolates express cell contact dependent 

cytotoxicity, but only 13 of these strains were able to invade Caco-2 cells, indicating the presence of 

others mechanisms of cell lysis not yet determined.  

Conclusions: Aeromonas spp. strains isolated from water, food and food processing surfaces 

showed adhesive, invasive and cytotoxic patterns similar or larger than clinical strains, suggesting that 

environmental Aeromonas spp. stains have the potential to cause human illness and that food and 

water sources may act as dissemination vehicles of this human pathogen with implication in the public 

health in Portugal. 

KEYWORDS: Aeromonas, Cytotoxicity, Adherence, Invasion, Caco-2 Cells. 
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RESUMO 

 

Objetivos: Contribuir para a avaliação do potencial patogénico das Aeromonas, através da análise de 

24 estirpes de Aeromonas spp., com origem em Portugal, da capacidade de aderência, invasão e 

citotoxicidade em células mamíferas. 

Base: Estudos sobre outros enteropatógenos indicam que um agente patogénico deve ser capaz de 

aderir a célula alvo para causar doenças gastrointestinais [Finlay and Falkow, 1997; Scoglio et al., 

2001], quer através da produção de toxinas ou quer pela invasão da célula hospedeira, ou por ambas 

[Knutton, et al. 1987]. 

Resultados:  19 (79%) e 12 (50%) estirpes apresentaram capacidade de aderir e invadir células 

diferenciadas, respetivamente, enquanto 22 (92%) e 13 (54%) estirpes apresentaram capacidade de 

aderir e invadir células indiferenciadas Caco-2. Estes resultados indicam que a maioria das estirpes 

de Aeromonas spp. interagem otimamente com células intestinais humanas cultivadas em locais 

celulares expressas nas microvilosidades no início do processo de diferenciação das células Caco-2. 

Em 13 (54%) estirpes observou-se um padrão de adesão agregativa igual ao observado em outros 

enteropatogénicos, incluindo todas as estirpes clinicas. 6 (25%) estirpes expressam tanto aderência 

como citotoxicidade extracelular, mas o pré-aquecimento causou uma diminuição na citotoxicicidade 

dos sobrenadantes de 5 dessas estipes, o que sugere que a restante estirpe clinica (A255) têm a 

capacidade de produzir toxinas termorresistentes. 17 (71%) estirpes expressam citotoxicidade 

dependente de contacto celular, mas apenas 13 dessas estirpes foram capazes de invadir células 

Caco-2, indicando a presença de outros mecanismos de lise celular ainda não determinados. 

Conclusão:  As estirpes de Aeromonas spp. isoladas a partir de água, alimentos e superfícies de 

processamento de alimentos apresentaram padrões de adesão, invasão e citotóxicos semelhantes ou 

maiores que as das estirpes com origens clínicas, sugerindo que as estirpes Aeromonas spp. com 

origens ambientais têm o potencial de causar doenças humanas e que alimentos e água podem 

podem atuar como veículo de difusão destes patogénicos humanos com implicação na saúde pública 

em Portugal. 

PALAVRAS-CHAVES: Aeromonas, Citotoxicidade, Aderência, Invasão, Células Caco-2. 
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Chapter 1    Introduction  

 

1.1. Taxonomy of genus Aeromonas 

The genus Aeromonas belongs to a single family of bacteria, Aeromonodaceae, of the order 

Aeromonadales. They consist of straight, coccobacillary to bacillary gram-negative bacteria with 

rounded ends measuring 0.3-1.0 x 1.0-3.5 µm [Martin-Carnahan and Joseph, 2005]. They occur 

singly, in pairs, and rarely as short chains. Aeromonas spp. are facultative anaerobic, catalase 

positive, oxidase positive, chemoorganotrophic bacteria that exhibit both oxidative and fermentative 

metabolism of carbohydrates. Aeromonas spp. are waterborne and grow optimally within 22-35ºC, but 

some species can growth within 0-45ºC [Mateos et al., 1993], they tolerate a pH range from 4.5 to 9 

and have a optimally growth at sodium chloride concentrations between of 0-4% [Isonhood and Drake, 

2002].  

Aeromonas spp. can be divided in two major groups, according to different phenotypical 

characteristics. The strains that grow at 35ºC to 37ºC and are motile by polar flagella, belong to 

mesophilic group and are commonly responsible for numerous human infections, being subdivided 

into Aeromonas hydrophila, Aeromonas caviae and Aeromonas sobria. The psychrophilic group 

comprises non-motile strains that grow better between 22ºC and 28ºC are responsible for causing fish 

infection, and are designated by Aeromonas salmonicida [Janda and Abbott, 1998]. 

Currently there are thirty one recognized Aeromonas species at list of prokaryotic names with standing 

in nomenclature: genus Aeromonas [Euzéby, 2013]. 

1.2. Occurrence  

Aeromonas species are autochthonous (natural inhabitants) to the aqueous environment and due to 

their high adaptation capacity, are widely distributed in nature occurring in many different habitats, 

namely freshwater, marine and estuarine waters, sewages and ground waters [Havelaar et al., 1992; 

Holmes et al., 1995; Nielsen et al., 2001; Rahman et al., 2007 in USEPA, 2006] where they may be 

pathogenic for poikilotherms (cold-blooded animals) [Janda and Abbott, 1998].  

Aeromonas spp. have been isolated in several countries from chlorinated drinking water supplies 

[Hazen et al., 1978; Burke et al., 1984; Van der Kooij, 1988; Fernandez et al., 2000; Figueras et al., 

2005 in USEPA, 2006] and in concentrations typically below 10 CFU/mL [Havelaar et al., 1990; Van 

der Kooij, 1991 in USEPA, 2006]. An Australian study correlated the increased incidence of 

gastroenteritis in households where the water supply system had significant Aeromonas biofilm 

buildup [Kirk et al., 1997]. Multiple strains are frequently found [Kuhn et al., 1997; Sen and Rodgers, 

2004 in USEPA, 2006] and they occur in biofilms where they mainly may be protected from 

disinfection [Holmes and Nicolls, 1995; Van der Kooij et al., 1995 in USEPA, 2006]. In the Netherlands 

a drinking water standard of 2 CFU/mL at 25ºC has been established [Havelaar et al., 1990 in USEPA, 

2006], a bottled water standard is in effect in Canada [Warburton et al., 1998; Warburton, 2000 in 



 

2 

 

USEPA, 2006] and in the U.S. Aeromonas hydrophila is listed by EPA (Protection Agency’s) on the 

Candidate Contaminant List (CCL) since 1998 [USEPA, 1998].  

Isonhood and Drake (2002) reviewed Aeromonas spp. in foods. While Aeromonas spp. have been 

isolated from fish, shellfish, meats (chicken, beef, lamb, pork, etc.), vegetables, dairy products 

(cheese, raw milk, etc.) and ready to eat foods, few foodborne outbreaks have been reported and 

most resulted from ingestion of fish or shellfish. However a growing body of epidemiological evidence 

supports the possibility of Aeromonas causing foodborne gastroenteritis. While plethora of putative 

virulence factors has been postulated and demonstrated in food isolates, the exact role and 

mechanism of Aeromonas in causing diarrheal illness has not been elucidated. Evidence suggests 

that a high infective dose is necessary to produce gastrointestinal disease in a susceptible host, 

however, the fact that Aeromonas may survive and grow at refrigerator temperatures raises the 

concern that a reservoir of bacteria that may be created and able to achieve an infective dose when 

foods are mishandled.  

As mentioned before, Aeromonas form biofilms on surfaces (including within water distributing 

systems) and this may pose a threat of contamination in food processing. Bal’a et al. (1998) found that 

heat and chlorine were effective against biofilms on stainless steel surfaces, but older biofilms were 

more resistant recently established biofilm to heat. An eight-day old biofilm was destroyed by heating 

to 60ºC and by exposure to 75 mg/L chlorine for 1 minute. 

1.3. Health effect in humans 

Figueras (2005) reviewed human infections caused by Aeromonas spp. They have multiple virulence 

factors that are typically associated with gastrointestinal diseases in other pathogenic bacteria, but 

while the production of extra-intestinal disease in humans is undisputable, the role of Aeromonas spp. 

as gastroenteritis agents is controversial, and has been based on extrapolation from anecdotal case 

reports, case-control studies, and a handful of outbreaks epidemiologically associated with food or 

water ingestion. The direct relationship between the presence of most of these virulence factors and 

gastrointestinal disease has not been proven. No epidemiological studies have indisputably linked 

Aeromonas with outbreaks of diarrheal disease. The association is strongest in children under the age 

of 2 years, adults over 50 and the immunocompromised, but a high number of asymptomatic persons 

carry Aeromonas in their gastrointestinal tract.  

Fecal isolation rates of Aeromonas in asymptomatic persons, in developed countries, range between 

0% to 4.0% [Millership et al., 1983; Agger et al., 1985; Svenungsson et al., 2000 in USEPA, 2006]; 

while in symptomatic persons it ranges between 0.8 to 7.4% [Agger et al., 1985; Moyer, 1987; Albert 

et al., 2000 in USEPA, 2006]. In lower developed regions like in Southeast Asia, asymptomatic 

carriage rates are as high as 27.5%, while in patients with diarrhea rates have been reported as high 

as 34% [Pazzaglia et al., 1990 in USEPA, 2006]. 

Aeromonas hydrophila, Aeromonas veronii biovar Sobria and Aeromonas caviae are the most 

frequently associated with gastrointestinal disease. Gastrointestinal infections are usually self-limiting, 

but antibiotic therapy may be required with prolonged infection. 
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Aeromonas. hydrophila, Aeromonas caviae, Aeromonas veronii biovar Sobria, Aeromonas veronii 

biovar Veronii, Aeromonas jandaei, Aeromonas trota and Aeromonas schubertii are also known to be 

pathogenic to humans. They cause a variety of extra-intestinal infections such as wound infection, 

memingitis, osteomyelitis, septic arthritis, endocarditis, peritonitis, eye and urinary tract infections. 

Those extra-intestinal infections are usually serious and potentially life-threatening and for a 

successful recovery is necessary an aggressive antibiotic therapy after an antimicrobial susceptibility 

test, because multi-drug resistance is common among Aeromonas. 

1.4. Health effect in animals 

Gosling (1996) reviewed animal infections caused by Aeromonas spp. Diseases caused by 

Aeromonas represent a significant source of loss to the aquaculture industry. The disease 

mechanisms of Aeromonas that cause animal disease are essentially the same ones that produce 

disease in humans.  

1.5. Virulence properties 

Janda and Abbott (2010) reviewed the virulence factors produced by Aeromonas spp. and the 

pathogenicity of Aeromonas is complex and multifactorial and incompletely understood despite 

decades of intense investigation. Although an established animal model that faithfully reproduces the 

syndrome associated with Aeromonas does not exist, testing with isogenic mutants in animal cells 

show that many virulence factors produced by Aeromonas are associated with its pathogenesis. 

Factors contributing to virulence are present in two forms, cell-associated structures and extracellular 

products.  

1.5.1. Cell-associated virulence factors 

Structural factors have been discovered in Aeromonas ssp. that promote their attachment (pili, 

flagella) and colonization (adhesins, outer membrane proteins (OMPs)). Other factors protect 

Aeromonas from host response (S-layer, lipopolysaccharide (LPS), capsule) and are responsible for 

delivering virulence factors directly into the host cell (Type II and Type III secretion systems) [USEPA, 

2006]. 

A vital step for the enteropathogens to initiate infection is through adherence to host cells, allowing 

localization and subsequent colonization of the appropriate target tissues [Finlay and Falkow, 1997; 

Scoglio et al., 2001]. It is essential to cause gastrointestinal disease, via either toxin production or host 

cell invasion, or both [Knutton et al., 1987]. 

Flagella have been referred to have a crucial role in adhesion, biofilm formation, and colonization of 

several other pathogenic bacteria, such as Pseudomonas aeruginosa [Stanley, 1983 in USEPA, 

2006], Salmonella enterica [Ciacci-Woolwine et al., 1998 in USEPA, 2006], Escherichia coli [Pratt and 

Kotler, 1998 in USEPA, 2006], Helicobacter pylori [Eaton et al., 1996 in USEPA, 2006] and Vibrio 

cholerae [Gardel and Mekalanos, 1996 in USEPA, 2006].  

Only a limited group of bacteria is capable of expressing two types of flagellar systems such as 

Aeromonas spp. [Kirov et al., 2004; Merino et al., 2006; Sen and Lye, 2007], being well studied in 
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Aeromona hydrophila and they do not seem to share structural genes or regulatory [McCarter, 2004 in 

Merino et al., 2006]. Polar flagella and lateral flagella were described by Rabaan et al. (2001) and 

Kirov et al. (2002). Kirov (2003) reviewed the expression of lateral flagella and their multi-functional 

role in pathogenesis.  

The swimming motility has been linked to a single polar unsheathed flagellum in all mesophilic 

Aeromonas, which is expressed constitutively and highly regulated by a number of environmental 

factors [Merino et al., 2006]. They respond to sensory stimuli (chemotaxis), allowing locomotion 

toward new substrates and, therefore, confer an adaptive advantage in the colonization of different 

environments [Merino et al., 2006]. The swarming motility has been linked to many unsheathed 

peritrichous lateral flagella in 50 to 60% of Aeromonas [Kirov et al., 2004], which are expressed when 

grown in matrices that do not allow motility by a single polar flagellum, like viscous environments or 

over surfaces and solid media [Kirov et al., 2003; Naharro et al., 2011].  

In this bacterial genus both types of flagella function as adhesins enabling adherence of human cell 

lines by most Aeromonas isolates, observed in experimental tests with Caco-2, HEp-2 e Henle 407 

cells [Kirov et al., 2004; Sen and Lye, 2007]. Strains that loose polar flagella are virtually nonadherent 

to cell lines, while strains lacking lateral flagella have a reduced capacity for cell binding. Flagellar 

mutants were shown to have decreased binding capacity by more than 80% [Kirov et al., 2004]. In 

addition, the flagella have been described as colonization factors and biofilm formation in different 

surfaces [Kirov et al., 2004]. 

Several studies have shown a relationship between the adhesive patterns and the increased potential 

for virulence of bacteria [Parsot, 2005; Mitache et al., 2009; Mora et al., 2009]. Because they are well 

studied, adhesive patterns obtained with Escherichia coli serves as a model for studies of infection of 

other bacteria in eukaryotic cells. Diffuse adhesion (DA), can be observed in Escherichia coli as well 

as localized (LA) and aggregative (AA) with "stacked-brick" appearance. It is believed that the latter is 

related to the higher bacterial virulence, in contrast to other patterns which are seen in less virulent 

bacteria [Challapalli et al., 1988; Singh et al, 1992; Parras et al., 1993]. 

Several studies suggest that attachment to host cells is mediated by pili, extracellular filamentous 

appendages, and were described as potential colonization factors in Aeromonas hydrophila and 

Aeromonas veronii biovar Sobria [Hokama and Iwanaga, 1991 in USEPA, 2006]. Kirov (1993) 

reported that pili were important adhesive factors for mucosal surface attachment and described 

filamentous and nonfilamentous adhesins. Two morphotypes of pili have been observed in Aeromonas 

spp., short rigid pili (S/R type) similar to those of Escherichia coli Type I and Pap pili [Ho et al., 1992 in 

USEPA, 2006] and long wavy flexible pili (L/W type) belong to a class of Type IV bundle-forming pili 

(Bfp) [Kirov and Sanderson, 1996 in USEPA, 2006]. Removal of pili or neutralization of attachment 

sites by homologous antibody treatment limits or defeats adherence properties in cell culture systems 

in Aeromonas [Iwanaga and Hokama, 1992 in USEPA, 2006].  

Several studies also suggest that non-pilar adhesins play a major role in adhesion of Aeromonas. 

Rocha de Souza et al. (2003) studied interaction of adherence and invasion properties of Aeromonas 

caviae using Caco-2 cells and observed that the 43 kDa OMP facilitated cell binding. Transmission 
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electron microscopy (TEM) did not demonstrate fimbrial structures on cell surfaces of highly-adherent 

Aeromonas caviae strains. These data suggest that OMPs mediate adherence in Aeromonas caviae 

instead of pili. Some OMP have hemagglutination activity, while other OMPs are thought to have pore-

forming capability.  

One of the possible mechanisms involved in the Aeromonas pathogenesis is associated with the 

production of type III (T3SS) or injectisome secretion system, which was reviewed by Coburn (2007). 

A broad clinical spectrum of diseases have been referred as being caused by T3SS containing 

pathogens, for example, infections with enteropathogenic Escherichia coli, Shigella, Salmonella and 

Yersinia species which result in serious intestinal diseases.  

There is high structural similarity between the bacterial flagellum and the T3SS, many structural 

proteins are clearly homologous. This system is composed of several rings, the basal area is 

anchored in the inner membrane forming a canal that crosses the outer membrane and projected 

outwards, this way allows adherence to cell membranes and injection of bacterial toxins (effector 

proteins) directly in the cytosol of host cells [Alberts et al., 2002]. Some of these effector proteins have 

multiple biological functions, such as changing the cytoskeleton to facilitate the invasion or activation 

of intracellular signaling cascades within the host cells, eventually causing lysis of host epithelial cells 

and contributing to the degradation of tissues host [Alberts et al., 2002; Sha et al., 2005; Krzymińska 

et al., 2012].  

Several studies have shown invasive ability of Aeromonas to equal that of Campylobacter [Nishikawa 

et al., 1994; Shaw et al., 1995 in USEPA, 2006], while intracellular bacteria have been demonstrated 

by electron microscopy, no gene or product has been identified specifically with invasion [USEPA, 

2006]. 

1.5.2. Extracellular virulence factors 

Extracellular factors have been discovered in Aeromonas ssp. that promote their ability to obtain 

nutrients that allow the proliferation and dissemination of the microorganism in the host, such as 

enterotoxins, proteases, phospholipases and hemolysins associated [Khajanchi et al. 2010].  

DNases can act as food enzymes used to obtain phosphorus and nitrogen [Pemberton et al., 1997] 

and provide a barrier to the entry of foreign DNA in the host cell, playing an important role in microbial 

defense mechanisms [Kamble and Deshmukh, 2012], but can also act as virulence factors due to the 

ability to degrade extracellular fibers released by neutrophils, preventing phagocytosis [Brinkmann et 

al., 2004]. 

Lipases can act as food enzymes used to obtain compounds as carbon source, they are classified as 

hydrolases that can act on ester bonds, promoting triacylglycerol hydrolysis and causing the release of 

fatty acids and glycerol [Hedstrom and Nisson, 1975 in Chuang et al., 1997], but can also act as 

virulence factors due to the concentration increased of free fatty acids interferes in various immune 

system functions [Buttke and Cuchens, 1984, Eftimiadi et al., 1987 in Chuang et al., 1997]. Some 

strains appear to express more than one gene whose product has lipolytic activity, but the products of 
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gcat, pla, and apl-1 genes encode phospholipases often associated with intestinal lesions, while the 

lipA and lipH3 genes encode lipases without phospholipid action [Chuang et al., 1997].  

Elastases have elastolytic and caseinolytic activities. In the Aeromonas genus, the caseinolytic activity 

is mainly a result of the AhyA serine protease, ahyA gene product which a weak elastolytic activity, 

and it has been associated with the acceleration of the maturity of the AhyB elastase, extracellular 

metalloprotease encoded by the ahyB gene, that the elastolytic activity has been associated [Cascón 

et al., 2000a, 2000b]. The role of AhyB elastase in Aeromonas spp. is not yet completely elucidated, 

but revealed a 52% aminoacid identity when compared to the sequence of the LasB elastase identified 

in Pseudomonas aeruginosa, which can degrade many components of the immune system, including 

chemokines and cytokines [Horvat et al., 1989; Kevin et al., 2003 in Kuang et al., 2011] and 

antimicrobial peptides [Schad et al., 1987 in Kuang et al., 2011]. 

Enterotoxins produced by Aeromonas spp. include into two categories, cytotoxic and cytotonic 

[Krzymińska et al., 2003; Von Gravaenitz, 2007]. Chopra and Houston (1999) reviewed enterotoxins of 

Aeromonas spp. associated with production of gastrointestinal disease.  

The cytotoxic enterotoxins may cause extensive damage to the epithelia, include heat-labile and 

stable compounds, with hemolytic and cytotoxic activities, like pore-forming toxin aerolysin and 

different α- and β-hemolysins [Galindo et al., 2006; Von Gravaenitz, 2007], while progress is being 

made in understanding aerolysin activity, the actual mechanism is complex and incompletely 

understood. The cytotoxin Act, which is structural and functional closely related to the cytotoxin 

Aerolisina [Martin-Carnahan e Joseph, 2005], is consensually considered the most important virulence 

factor associated with the genus Aeromonas. It’s secreted by the type II secretion system (T2SS), 

expressing hemolytic and cytotoxic activity, which involves the formation of pores in the target cell 

membrane and consequently occurs the influx of water, resulting in cell lysis [Khajanchi et al., 2010]. 

The cytotoxin HlyA is a non-channel forming β-hemolisina similar to the Vibrio cholerae hemolysin, 

widespread in the genus Aeromonas and is virtually ubiquitous in Aeromonas hydrophila [Naharro et 

al., 2011].  

The cytotonic enterotoxins, on the other hand, cause increase in the level of cAMP in intestinal 

epithelial cells, like cholera toxin [Galindo et al. 2006], resulting in fluid secretion from intestinal cells, 

not causing the degeneration of crypts and villi of the small intestine [Sha et al, 2002]. The cytotonic 

Ast and Alt cause fluid accumulation in ligated ileal loops in animal models and probably have an 

undescribed role in causing diarrhea in humans [Sha et al., 2002]. Laohachai et al. (2003) reviewed 

the role of bacterial toxins that induce changes in membrane transport leading to diarrheal disease. 

The cytotoxic properties have been considered a major virulence factor presented by Aeromonas, 

making essential to assess the cytotoxicity of different strains in order to evaluate their pathogenic 

potential [Ghatak et al., 2006].  
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1.6. Caco-2 cell line as a model of intestinal barr ier 

Several infection in vitro studies in animal cell lines support the ability of these bacteria to cause 

cellular damage, in addition to its ability to adhere and to invade cells [Schiavano et al., 1998; Martins 

et al., 2002; Balaji et al, 2004]. 

Caco-2 cells, which are derived from a human colon adenocarcinoma, have gained great attention in 

recent years as an in vitro model of the intestinal epithelium. In culture Caco-2 cells spontaneously 

differentiate and organize as a polarized monolayer with tight junctions and microvilli, mimicking the in 

vivo enterocyte, expressing relatively high levels of digestive brush border enzymes and display other 

morphological, structural and functional properties similar to intestinal enterocytes [Pinto et al., 1983 in 

Delie and Rubas, 1997]. Due to these characteristics, the Caco-2 cell culture is now widely used as a 

tissue model for studying adhesion and invasion of probiotic bacteria or entericpathogens [Delie and 

Rubas, 1997]. For example, Panigrahi et al. (1990) showed that the adhesion of non-01 Vibrio 

cholerae to Caco-2 cells correlated with human intestinal colonization and disease. 

Traditional Caco-2 cell culture requires a 21-day period to attain a differentiated monolayer. During the 

growing phase Caco-2 cells remain undifferentiated and immediately after they reach the status of 

confluence, cells start the differentiation program that will be finished 18-21 days later [Delie and 

Rubas, 1997]. According to the morphological and functional grade of differentiation they can be 

divided into three subgroups:  

1) cells homogeneously undifferentiated (sub confluent population);  

2) cells heterogeneously polarized and differentiated (intermediate phase);  

3) cells homogeneously polarized and differentiated (>15 days after seeding).  

A number of enzymes typical of the mature enterocyte are located on the microvilli forming the brush 

border such as: sucrase-isomaltase, lactase, aminopeptidase N, dipeptilpeptidane IV and alkaline 

phosphatase, and the level of expression is comparable to the in vivo level, increasing with the 

different stages of differentiation as in the human small intestine. They also express the polarized 

membrane receptors for growth factors and a number of transport activities located either on apical or 

basolateral membrane [Delie and Rubas, 1997]. 
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Chapter 2   Objectives  

 

In the last decade Aeromonas have been referred as an emergent pathogen of gastrointestinal 

disease in humans and normally associated to ingestion of contaminated water or food [Figueras, 

2005]. However the presence of virulence genes does not correlate with expression of gene products 

or with manifestations of disease in animals or humans [Bondi et al., 2000] and therefore the precise 

combination of virulence factors that invariably confer virulence on a particular strain has not been 

determined.  

A vital step for the enteropathogens to initiate infection is through adherence to host cells, allowing 

localization and subsequent colonization of the appropriate target tissues [Finlay and Falkow, 1997; 

Scoglio et al., 2001]. Colonization is therefore essential to cause gastrointestinal disease, via either 

toxin production or host cell invasion, or both [Knutton, et al. 1987]. Knowledge of these may help to 

identify strains which pose a public health risk. 

The Caco-2 cells are derived from a human carcinoma of the colon, they exhibit structural and 

differentiation patterns characteristic of mature enterocytes and are being increasingly used as a 

substitute for human intestinal cells to study the adhesion of enteric pathogens [Pinto et al., 1983; 

Russel and Blake, 1994 in Delie and Rubas, 1997]. 

The work reported here was therefore conducted on those cells as a preliminary investigation to 

determine, if Aeromonas present in several human environments, from food industry (slaughterhouse, 

cheese factory and supermarkets) to water treatment facilities (EPAL), in Portugal, may pose a threat 

to public health. 

24 strains were chosen as representatives of the diversity present in a set of Aeromonas isolates 

obtained by the team of Doctor Teresa Semedo-Lemsaddek at the Faculty of Veterinary Medicine, 

University of Lisbon, according to the results of clusters diversity, presence of virulence factors and 

resistance to antibiotics. 

The specific aims that were pursuit were: 

� To implement assays for adherence, invasion and cytotoxicity for bacteria in mammal 

cells, particularly the Caco-2 cell line;  

� To evaluate eventual cytotoxicity of bacterial culture medium to the intestinal Caco-2 cell 

line, in undifferentiated cells (UC); 

� To characterize the ability of the different bacterial strains to adhere and to invade the 

intestinal Caco-2 cell line, in both undifferentiated (UC) and differentiated cells (DC); 

� To compare the phenotype profile determined in this study with the genetic profile 

determined by Barroco (2013). 

To our knowledge, this study is the first carried out on Aeromonas strains isolated from Portugal for 

adhesive and invasive properties.  
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Chapter 3   Materials and Methods  

 

3.1. Aeromonas culture and growth study 

24 previously isolated Aeromonas spp. strains, identified by phenotypic and genomic typing, were 

used in this study and their source and characterization carried out to date by Barroco (2013) are 

listed in Table 1 in Annex. The strains were stored at -20ºC in brain heart infusion broth (BHI, AES 

Laboratories) containing 45% (v/v) glycerol (Hi-media Laboratories).  

Escherichia coli K-12 C600 (No. 426, DSMZ; Braunschweig, Germany), a non-pathogenic strain, and 

Pseudomonas aeruginosa PAO1 (No. 19880, DSMZ; Braunschweig, Germany), an adherent, invasive 

and cell-contact cytotoxic strain, were included as negative and positive controls, respectively. 

Aeromona hydrophila subsp. hydrophila (No. 30187t, DSMZ; Braunschweig, Germany), an adherent, 

invasive and extracellular cytotoxic strain, was included as a reference of the Aeromonas genus. 

Optical density was used to estimate colony forming units (CFU) in a bacterial suspension which was 

possible after taking some basic precautions to control the following: type of media, growth phase of 

microorganisms, nature and condition of the equipment [Scott, 2011]. Therefore the 

spectrophotometer (Ultraspec 20100 pro) used was calibrated for the linear range of absorption vs 

CFU relevant values, using the bacterial suspension under the specific conditions of the future assays. 

Bacterial strains were subcultured on BHI agar (BHI broth with 15 g/L agar, Scharlau) plates and 

incubated at 30ºC overnight, then passed to new plates of BHI agar and incubated at 37ºC overnight. 

The bacterial were then washed by harvesting and suspending in BHI broth, centrifuged at 10.000xg 

for 10 minutes and resuspended in fresh BHI broth.  

Bacterial suspensions were adjusted to 0.400 optical density at 600 nm wave-length (OD600) and 

twofold serial dilutions were performed in BHI broth (0.400 to 0.005). Spectrophotometer readings of 

the dilutions, stored on ice, were taken in triplicate before performing serial dilutions of the bacterial 

suspension in peptone water (Merck Millipore) and plated by the pour plate method, which consists in 

suspending 1 mL of the dilutions in a Petri-dish using molten Luria-Bertani agar (LBA, Bioreagentes 

Fisher) cooled to approximately 48°C (just above the point of solidification to minimize heat-induced 

cell death), after the medium solidifies the plates were inverted and incubated for 24-48 hours at 37ºC.  

Each dilution was plated in duplicate and the viable counting was performed in the dilutions that have 

between 30 and 300 colonies. The results were expressed in colony forming unit (CFU) per mL by 

using the following formula:  

Average of colonies x (1 / dilution factor) x (1 / dilution volume) 

The calibration curves obtained with this method are represented in Figure A1A, 2.A and 3.A in Annex. 

The same cultures were adjusted to 0.005 OD600 and incubated at 37ºC for 10 hours with 150 rpm. 

Spectrophotometer readings were taken from 30 to 30 minutes for 8 hours in triplicate, dilutions of the 

samples in BHI broth were carried out when the absorbance of the culture exceed 0.400 OD600.  
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The growth curves obtained with this method are represented in Figure 1.B, 2.B and 3.B in Annex. 

 

3.2. Caco-2 cells culture and growth study 

Human colon carcinoma Caco-2 cells were purchased from Deutsche Sammlung von 

Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany). They were stored at -80ºC in 

fetal bovine serum (FBS, Gibco) containing 5% (v/v) dimethyl sulfoxide (DMSO, Sigma) at a 

concentration of 2x106 cells/mL in passage 30. The cells were routinely grown in 75 cm2 plastic tissue 

culture flasks (Falcon) containing Dulbecco’s modified Eagle minimum essential medium (DMEM, 

Gibco) supplemented with 10% (v/v) FBS and 1% (v/v) nonessential amino acids (NAAS, Gibco) at 

37ºC in a humidified atmosphere of 95% (v/v) air and 5% (v/v) CO2. The culture medium was changed 

every 48 hours and passed before reaching confluence (once a week).  

For the cytotoxicity, adhesion and invasion assays, the cells were expanded in 175 cm2 plastic tissue 

culture flasks (Nunc) and when reaching 70-90% confluence, the cells were trypsinized with 0.25% 

(v/v) trypsin (Gibco) for 5 minutes and adjusted to a concentration of 2x105 cells/mL in culture medium. 

Depending on the assay, 4.8 mL, 1 mL or 0.16 mL of cell suspension was dispensed into each well of 

a 6, 24 or 96-well tissue culture plate (Falcon), respectively, to attain 1x105 cells/cm2 and incubated at 

37ºC in 5% (v/v) CO2 to obtain, 3 days later, undifferentiated semi-monolayers (± 80% confluent), or 4 

days later, confluent undifferentiated cells (UC) monolayers and, after 18 days or more, differentiated 

cells (DC) monolayers. The culture medium was changed every 48 hours. The Caco-2 cells used for 

those assays were at passage numbers between 35 and 45.  

The existence of Caco-2 cell lines maintained in different laboratories and/or of different clonal origin, 

in addition to the effects of different culture protocols may result in variations in growth rate of the cell 

line. For this reason a growth study of Caco-2 cell line was undertaken in the in-house conditions of 

the assays to be performed in order to estimate growth kinetics and cell concentration. 

Semi-confluent cell monolayers were trypsinized and adjusted to a concentration of 1x105 cells/mL 

(5x104 cells/cm2) in culture medium and then 1 mL cell suspension was dispensed into each 2 cm2 

well (2x104 cells/cm2) of a 24-well tissue culture plate was visually evaluated in an inverted 

microscope (OlymPus CKX41) every day of incubation. The cells of 3 wells were trypsinized and 

counted using a Fuchs-Rosenthal Counting Chamber (EMS #63512-10) and the cell viability was 

evaluated by diluting the cell suspension in Dulbecco's phosphate-buffered saline (DPBS, Gibco) 

containing 0.1% (v/v) trypan blue (Gibco) exclusion dye to establish the growth curves.  

The results were expressed in cells per cm2 by using the following formula:  

(Average of viable cells x (1 / dilution factor) x (1 / volume per quadrant)) / surface growth 

The calibration and growth curve obtained with this method are represented in Figure 4 in Annex. 
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3.3. Bacterial adhesion and invasion evaluation on Caco-2 cell line 

3.3.1. Adherence and invasion quantitative assays 

Bacterial strains were subcultured on BHI agar plates and incubated at 30ºC overnight, then passed to 

new plates of BHI agar and further incubated at 37ºC overnight. The bacterial were then washed as 

described previously. Bacterial suspensions were adjusted to approximately 5x107 CFU/mL by 

measuring 0.115 OD600 (0.080 and 0.085 OD600 for K-12 and PAO1 strains, respectively), according to 

the calibration curves previously established (Figures 1, 2 and 3 in Annex), and kept on ice until use; 

the number of bacteria of each strain was confirmed by CFU determination immediately after use as 

described previously. 

In the adherence assay, differentiated and undifferentiated Caco-2 cells monolayers plated in 24-well 

plates and containing 400 µL of fresh culture medium, were incubated at 37ºC in 5% CO2 for 90 

minutes with 100 µL of bacterial suspension to give a MOI of 10 bacteria / Caco-2 cell (approximately 

5x105 epithelial cells per mL to 5x106 bacteria per mL, according to the calibration curve presented in 

Figure 4 in Annex. To remove non-adherent bacteria, the monolayers were washed gently three times 

with 1 mL of DPBS and then the cells were lysed by adding 0.5 mL of DMEM containing 2% (v/v) 

Triton X-100 (Sigma-Aldrich) for 30 minutes at 37ºC. To ensure full lysis and release of all the 

bacteria, including those eventually internalized, the lysate was pipetted up and down several times, 

pointing the tip of the pipette directly at the surface of the well,  

For the invasion assay, performed similarly and in the same plate as the adhesion test, after the 

period of infection, the cultures were replaced by 1 mL of a 300 µg/mL Gentamicin solution and 

incubated for 1 hour at 37ºC to kill extracellular bacteria. To remove the antibiotic, the monolayers 

were washed gently 2 times with 1 mL of DPBS and then the intracellular bacteria were released by 

lysing the cells as described above. 

Lastly, 0.5 mL of cold DMEM was added to 0.5 mL of each lysate, while keeping them on ice, for the 

determination of the number of adherent and invasive bacteria by CFU as described previously. The 

results are expressed in percentage of bacteria recovered in comparison to other wells where the 

monolayers were infected under the same conditions but untreated, the culture was kept on ice rather 

than discarded after the period of infection and the cell lysate was subsequently added. This step is 

performed because the bacteria in the inoculum can sometimes grow much faster than the bacteria in 

the presence of cells, skewing the size of the inoculum by comparison with the real total number of 

bacteria in wells with cells. The percentage of adherent/invasive bacteria can then be calculated by 

dividing the number of CFU of adherent/invasive bacteria by the addition of the number of CFU of 

adherent/invasive and non- adherent/non-invasive bacteria. All tests were performed in duplicate and 

in two separate experiments for each isolate. The variation is expressed as propagated error. 

Isolates which show adhered bacterial numbers up to 3 times the negative control were considered as 

non-adherent. Due to a higher error associated with invasion assays in this case, only the isolates that 

did show invasion number greater than 10 times the negative control were considered as invasive.  
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3.3.2. Adherence patterns assays 

In this adhesion assays were used monolayers of cells plated on sterilized glass coverslips (20x20 

mm, Marienfeld) in 6-well plates with 80% of confluence (3 days old cells) and containing 1 mL of 

fresh culture medium which were then incubated at 37ºC in 5 % CO2 for 90 minutes with 2 mL of 

bacterial suspension to give a MOI of 100 bacteria / Caco-2 cell. To remove non-adherent bacteria, 

the monolayers were washed gently 3 times with 2 mL of DPBS and then the remaining adherent 

bacteria and monolayers were fixed with 2 mL of 99.8% (v/v) methanol (J. T. Backer) for 5 minutes. 

Methanol was removed by washing the cells with 2 mL of PBS (Calbiochem) and then the cells were 

stained for 45 minutes with 2 mL of 10% (v/v) Giemsa stain (Sigma) prepared in Giemsa buffer 

(Sigma). The coverslips were removed from wells, washed in distilled water, air dried, mounted on 

glass slides and examined by oil immersion under a light microscope (Zeiss Imager A2 with Zeiss 

AxioCam MRm) at x1000 magnification.  

Isolates which show a uniform distribution on the cell surface, were characterized as having a diffuse 

adhesion (DA) pattern; those which show a localized distribution, were characterized as having a 

localized adhesion (LA) pattern; and those which show a "stacked-brick" appearance on the cell 

surface, were characterized as having a aggregative adhesion (AA) pattern. 

 

3.4. Bacterial cytotoxicity evaluation on Caco-2 ce ll line 

In vitro cytotoxicity assays may make use of various cell lines and the quantitative assessment of 

cytotoxicity generally relies on the visual counting of cells [Balaji et al., 2004; Ghatak et al., 2006; 

Castilho et al., 2009], leading to low reproducibility of these approaches and consequently conferring 

significant limitations. Previous studies suggest that the MTS assay in vitro cytotoxicity assay 

combines all features of a good measurement system in terms of ease of use, precision, rapid [Berg et 

al., 1994], as well as sensitive and specific indication of toxicity whose performance is very competitive 

to other toxicological test systems [Gregor et al., 1997]. The MTS assay is based on the conversion of 

MTS, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner 

salt into a colored, aqueous soluble formazan product by mitochondrial activity of viable cells at 37°C. 

The amount of formazan produced by dehydrogenase enzymes is directly proportional to the number 

of living cells in culture and can be measured at 490 nm [Barltrop et al., 1991]. 

3.4.1. Cytotoxicity induced by culture supernatants  assays 

Bacterial strains were subcultured on BHI agar plates and incubated at 30ºC overnight, the bacterial 

were then washed as described previously. Bacterial suspensions were adjusted to 0,005 OD600 and 

incubated at 37ºC for 8 hours with 150 rpm, while the growth was at the beginning of the stationary 

phase, see Chapter 3.1. Subsequently, the bacterial supernatants were carefully collected in sterile 

tubes after centrifugation at 10.000xg for 10 minutes and filter sterilized through 0.45 µm pore size 

sterilized nylon syringe filter (VWR). Finally the crude protein suspensions (cell-free filtrates, CFS) 

were stored at -20ºC until further use which occurred not longer than one week after. The sterility of 

each preparation was checked by inoculation 100 µL in BHI broth and incubation at 37ºC for 48h.  
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Undifferentiated Caco-2 cells monolayers, grown in 96-well plates, were incubated at 37ºC in 5% CO2 

for 4 and 24 hours with 100 µL of twofold serial dilutions in culture medium with only 0,5% FBS (1:2 to 

1:2048 v/v) of CFS of Aeromonas spp. strains, non-pathogenic E. coli K-12 and P. aeruginosa PAO1. 

Morphological changes were evaluated in an inverted microscope over the first 1-4 hours period. 

Afterwards the monolayers were washed gently with 200 µL DPBS and the viability of the cells was 

assessed by MTS assay. For this assay, 100 µL of DMEM containing 2% (v/v) of the colorimetric 

reagent MTS (CellTiter 96® AQueous One Solution Cell Proliferation Assay, Sigma) were added in 

each well and incubated for 1-4 hours at 37ºC. The medium with the colorimetric reagent was 

transferred to a new 96-well plate and were perform measurements of the absorbance at 490 nm in a 

BioTekTM Power Wave XS microplate reader. For the isolates that shown to be positive a sample of 

the same supernatant was pre-heated to 65ºC for 20 minutes in a water bath thermostated and 

analyzed again. 

The results are expressed in percentage of viable cells, using the following formula:  

((OD cell treatment – OD negative control) / (OD positive control – OD negative control)) x 100, 

where the negative control (total cellular damage) is culture medium alone and the positive control (no 

cellular damage) are cells that receive BHI broth instead of CFS. Assays were performed in duplicate 

and in two separate experiments for each isolate. The variation is expressed as propagated error. 

Cytotoxic titre was considered as the reciprocal of the highest dilution of the culture filtrate that caused 

destruction of 50% of the Caco-2 cells. The CFS preparations that induced cytopathic effect above to 

1:2 dilution in 50% or more cells were recorded as cytotoxic positive isolates.  

3.4.2. Cytotoxicity induced by cell-contact assays 

Bacterial strains were subcultured on BHI agar plates and incubated at 30ºC overnight, then passed to 

new BHI agar plates and incubated again at 37ºC overnight. The bacterial were then washed by 

harvesting and suspending in BHI broth, centrifuged at 10.000xg for 10 minutes and resuspended in 

fresh BHI broth. Bacterial suspensions were adjusted to approximately 5x107 CFU/mL by measuring 

0.115 OD600 (0.080 and 0.085 OD600 for K-12 and PAO1 strains, respectively), according to the 

calibration curves previously established (Figures 1, 2 and 3 in Annex) and kept on ice until use; the 

number of bacteria of each strain was confirmed by CFU determination immediately after use as 

described previously. 

Undifferentiated Caco-2 cells monolayers grown in 96-well plates containing 100 µL of fresh culture 

medium were incubated at 37ºC in 5% CO2 for 90 minutes with 160 µL of bacterial suspension to give 

a multiplicity of infection (MOI) of 100 bacteria / Caco-2 cell, meaning that 1x105 epithelial cells per mL 

were incubated with approximately 1x107 bacteria per mL, according to the calibration curve presented 

in Figure 4 in Annex) and with 160 µL of bacterial suspension 1:10 diluted in BHI broth to give a MOI 

of 10:1. Next, the bacteria were removed and replaced by 200 µL DMEM containing 300 µg/ml 

Gentamicin (Sigma-Aldrich) for 1 hour at 37ºC. After washing gently two-times with 200 µL DPBS, for 

bacteria removal, the viability of infected cells was assessed by MTS assay as described previously.  
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To test the importance of bacteria-host cell contact in cytotoxicity, co-cultures of the bacteria and 

Caco-2 cells at the same time and under the same conditions were performed but by using cells 

cultivated on 96-well plates with 0.45 µm pore size transwell inserts (Corming). Caco-2 cells were 

cultured in the lower chamber and the bacteria cells were added in the upper chamber, preventing 

bacterial contact with Caco-2 cells.  

Extracellular cytotoxicity activity was determined using transwells, while cell-contact cytotoxicity 

activity, after the subtraction of the extracellular cytotoxicity was determined in the plain wells, after the 

subtraction of the extracellular cytotoxicity activity. 

The results are expressed in percentage of cell damage, which is the reverse percentage of the viable 

cells and was calculated by using the following formula:  

(1 – ((OD cell treatment – OD negative control ) / (OD positive control – OD negative control ))) x 100, 

where the negative control (total cellular damage) is medium alone and the positive control (without 

cellular damage) are cells that receive BHI broth instead of bacterial suspension. Assays were 

performed in duplicate for each isolate. The variation is expressed as propagated error.  
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Chapter 4   Results and Discussion 

 

4.1. CFU determination by optical density 

The species of each isolate had not yet been clearly established at the time of the experiments 

(ongoing work at the laboratory of Doctor Teresa Semedo-Lemsaddek at the Faculty of Veterinary 

Medicine, University of Lisbon), therefore, the Aeromona hydrophila subsp. hydrophila (DSM 30187t) 

strain and 5 isolates was used to obtain an average calibration curve to estimate the concentration of 

the remaining isolates, but it must be stressed that this calibration must be done for all isolates, or per 

species, if it were needed a more accurate determination for future assays. 

 

4.2. Aeromonas adhesion and invasion evaluated on Caco-2 cell lin e 

The observed percentage of bacteria recovered is often very dependent on the experimental set-up 

(and, to a lesser extent, on the analyst), particularly the MOI and the number of washes [Letourneau, 

2011]. A method for determining adherence and cytotoxic activity of Aeromonas has not been 

standardized, and cautious comparisons of between published reports are advised. 

Bacterial resistance or sensitivity in the presence of Triton X-100 and gentamicin for each strain was 

demonstrated in control experiments with equivalents numbers of bacteria and under the same assay 

conditions (concentration, temperature and duration). Cell viability was determined by visual 

observation of growth / no growth after inoculation in BHI broth. Complete lysis of monolayer Caco-2 

cells in 2% Triton X-100 after 30 minutes incubation was confirmed by microscopy. 

The CFU determination at the start (to determine the initial MOI) and at the end (to determine the total 

number of bacteria) of each assay proved that, after the 90 minutes infection period, bacterial 

multiplication, that is required for the adhesion process, occurred in all the strains. 

4.2.1. Aeromonas spp. adherence activity 

The clinical relevance of in vitro adhesion is sometimes contested, firstly because bacterial interaction 

with the intestinal mucosa is complex, and secondly because it cannot be assumed that tissue culture 

cells derived by cell transformation possess the same surface receptors for bacterial adherence as 

those found on human intestinal cells in vivo [Freter and Jones, 1983 in Delie and Rubas, 1997]. 

However, in several cases a correlation between in vitro adhesion and in vivo infectivity has been 

demonstrated [Mathewson et al., 1985; Kelly et al., 1993 in Delie and Rubas, 1997].  

The adherent activity ranged between 1.7% ± 0.3% to 92% ± 14% and 2.1% ± 0.3% to 69% ± 14% of 

recovered cells at MOI 10:1 in 92% (22) and 79% (19) of the strains that revealed values three times 

above to that of nonpathogenic K-12 strain, negative control which showed 0.32% ± 0.03% and 0.3% 

± 0.1% as recovered cells baseline, and were classified as adherent to UC and to DC, respectively, 

which 21% (5) and 25% (6) expressing the lowest adherence values, but only 8% (2) and 21% (5) 

were classified as non-adherent to UC and to DC, respectively (Table 4.1, Figure 5A and Figure 6A ).  
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Table 4.1.  Adhesion abilities of Aeromonas isolates to undifferentiated (4-6 days old) and differentiated (19-21 days old) Caco-2 cells, as described in Chapter 3.3.1.  
The results are average ± propagated error. 

Isolates Sources 

Adherence 
% of bacteria associated with Caco-2 cells  Invasion (ID) Adherence 

patterns 
Cytotoxicity 

CCD / ECD / ECD after preheating 

MOI 10:1 
 

MOI 10:1 MOI 100:1 Titer at 24h 

Undifferentiated 
cells (UC) AD Differentiated 

cells (DC) AD UC DC Undifferentiated cells (UC) 

K-12 E. coli K-12 C600 0.32% ± 0.03% NA 0.3% ± 0.1% NA  NI NI None NC 1:2  
PAO1 P. aeruginosa PAO1 6% ± 1% MA 8.9% ± 0.9% MA  SI SI Aggregative SC 1:2  
AR5 A. hydrophila 30187t 9% ± 1% MA 5% ± 1% WA  SI MI Aggregative MC 1:8 1:2 

A 5 surfaces (slaughterhouse) 16% ± 4% SA 7% ± 2% MA  MI SI Aggregative MC 1:2  
A 11 surfaces (slaughterhouse) 16% ± 3% SA 11% ± 3% MA  MI WI Aggregative MC 1:4 1:2 
A 13 surfaces (slaughterhouse) 92% ± 14% SA 69% ± 14% SA  MI WI Aggregative MC 1:64 1:2 
A 26 food (slaughterhouse) 7% ± 2% MA 3% ± 1% WA  SI SI Diffuse SC 1:2  
A 31 food (slaughterhouse) 1.7% ± 0.3% WA 1.1% ± 0.2% NA  NI NI Diffuse  1:1024 1:4 
A 53 surfaces (supermarket) 0.9% ± 0.2% NA 0.9% ± 0.1% NA  NI NI None  1:2  
A 62 surfaces (supermarket) 4% ± 1% MA 3% ± 1% WA  NI NI Diffuse LC 1:2  
A 78 food (supermarket) 48% ± 7% SA 24% ± 4% SA  SI MI Aggregative SC 1:2  
A 92 surfaces (supermarket) 1.6% ± 0.3% WA 1.3% ± 0.2% NA  NI NI Diffuse  1:2  
A 97 surfaces (cheese factory) 2.5% ± 0.4% WA 1.8% ± 0.7% NA  WI NI Diffuse NC 1:64 1:2 
A 98 surfaces (cheese factory) 4.5% ± 0.8% MA 3.5% ± 0.7% WA  MI WI Diffuse LC 1:512 1:2 
A 99 surfaces (cheese factory) 14% ± 4% SA 7% ± 2% MA  NI NI Aggregative LC 1:2  

A 101 surfaces (cheese factory) 14% ± 3% SA 7% ± 3% MA  SI MI Aggregative MC 1:512 1:2 
A 104 surfaces (cheese factory) 2.5% ± 0.4% WA 2.1% ± 0.3% WA  NI NI Diffuse NC 1:2  
A 127 food 2.9% ± 0.7% WA 3% ± 1% WA  NI NI Diffuse NC 1:256 1:2 
A 172 clinic 1.0% ± 0.1% NA 0.95% ± 0.09% NA  NI NI None  1:256 1:8 
A 255 clinic 10% ± 4% MA 6.7% ± 0.7% MA  NI NI Aggregative LC 1:512 1:4 
A 258 clinic 34% ± 6% SA 17% ± 6% SA  SI SI Aggregative SC 1:2  
A 259 clinic 15% ± 2% SA 8% ± 1% MA  SI SI Aggregative SC 1:2  

S 2 water (EPAL) 15% ± 5% MA 6.7% ± 0.3% MA  NI NI Aggregative LC 1:2  
S 3 water (EPAL) 75% ± 13% SA 36% ± 8% SA  SI MI Aggregative SC 1:2  
S 8 water (EPAL) 23% ± 4% SA 16% ± 2% SA  SI SI Aggregative SC 1:2  

S 10 water (EPAL) 11% ± 2% MA 7% ± 2% MA  SI WI Aggregative MC 1:2  
S 18 water (EPAL) 5% ± 2% MA 2.3% ± 0.6% WA  NI NI Aggregative LC 1:2  

% of positive 92% (22) 79% (19)  54% (13) 50% (12)  71% (17) 41% (10) 17% (4) 

AD: Adhesion degree: NA: no adhesion (< 3x K-12); WA: weak adhesion (3x to10x K-12); MA: moderate adhesion (10x to 30x K-12); SA: strong adhesion (> 30x K-12); 
ID: Invasion degree: NI: no Invasion (< 10x K-12); WI: weak invasion; MA: moderate invasion (20x to 40x K-12); SA: strong invasion (> 40x K-12); 

CCD: Cell-contact cytotoxic degree: NC: no cytotoxic; LC: low cytotoxicity (< 25%); MC: moderate cytotoxicity (25 to 45%); SC: strong cytotoxicity (> 45%);  
ECD: Extracellular cytotoxicity degree: NC: no cytotoxic (100% in 1:2 titer); LC: low cytotoxicity (< 1:2 titer); MC: moderate cytotoxicity (1.2 to 1:64 titer); SC: strong cytotoxicity (> 1:128 titer). 



 

19 

 

The adherent activity in 71% (17) and 54% (13) of the strains revealed adherence values equal to or 

greater than the adherence values of the pathogenic PAO1 strain to UC and to DC, respectively 

(Table 4.1). The highest adherent activity ranged between 14% ± 4% to 92% ± 14% and 16% ± 2% to 

69% ± 14%, in 42% (10) and 21% (5) of the strains and only one of them is from clinical origin, where 

the pathogenic PAO1 strain only rated 6% ± 1% and 8,9% ± 0,9% in UD and DC, respectively (Table 

4.1). In this study was observed that adherence of Aeromonas spp. strains were significantly higher in 

UC than in DC and that 3 weak adherent isolates to UC were not considered adherent to DC. 

In Caco-2 cells, the time-course of the differentiation process, with UC exponentially dividing cells 

which differentiate when the cells stop dividing, closely mimics the situation found in the small intestine 

[Zweibaum et al., 1991]. A major tropism for UC or DC is related to the species of microorganism, for 

example, Salmonella typhimurium and enteropathogenic Escherichia coli were found to have a more 

efficient adherence to brush borders of DC, while Yersinia pseudotuberculosis and Listeria 

monocytogenes presented an optimum adherence to the borders of UC [Coconnier et al., 1993].  

A decrease of adherence with the stage of differentiation of the cells was observed in all adherent 

Aeromonas strains and it is proportional; strains expressing very high levels of adherence in UC had 

consistently high levels of adherence in DC, and conversely, the adherence values of the PAO1 strain 

increased with the age of the cells. 

These results indicate that Aeromonas interacts optimally with cultured human intestinal cells at 

cellular sites expressed in the brush border early in the differentiation process. These results also 

indicates a difference between the adhesion mechanism of the Aeromonas strains and the one 

belongs to the Pseudomonas aeruginosa PAO1 strain, whose adherence were significantly higher in 

DC than in UC, interacting optimally at cellular sites expressed late in the differentiation process,  

All strains originated from water samples are adherent. 80% (4/5) have moderate to high levels of 

adhesion (Table 4.2), which may be related to a need of these strains have to form biofilms in their 

niche. This was similar to what was observed in the clinical strains that showed 75% (3/4) with the 

same levels of adhesion (Table 4.2). This similarity supports the thesis that the major cause of 

gastrointestinal infections by Aeromonas spp. is from ingesting infected water [Statner and George, 

1987; Holmberg et al., 1986], especially considering that only 25% (1/4) of the strains originated from 

food samples and 45% (5/11) of the strains originated from food processing surfaces have shown the 

same levels of adhesion (Table 4.2). 

 
Table 4.2.  Distribution of adherent Aeromonas isolates by source and level ability levels. 

Adhesion Degree 
(Differentiated cells) 

Strain Sources (%)  
Surfaces  Food  Water  Clinic  Total  

SA; strong adhesion (> 30x K-12) 9% (1) 25% (1) 40% (2) 25% (1) 21% (5) 
MA; moderate adhesion (10x to 30x K-12) 36% (4) 0% (0) 40% (2) 50% (2) 33% (8) 

WA; weak adhesion (3x to 10x K-12) 27% (3) 50% (2) 20% (1) 0% (0) 24% (6) 
NA; no adhesion (< 3x K-12) 27% (3) 25% (1) 0% (0) 25% (1) 21% (5) 

Total strains  11 4 5 4 24 
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Barroco (2013) determined the presence of flaA/flaB genes in the strains used in this study (Table 

4.3), they encode two subunits of flagellin that compose the complex filament of the polar flagellum, 

that allow the colonization of different niches, including the colonization of host tissues [Kirov, 2003]. 

Its expression is highly regulated by a number of environmental factors, but the molecular inhibition 

mechanism is not known [Merino et al., 2006].  

The presence of flaA/flaB genes was detected in the genome of 2 strains, A53 and A172, considered 

nonadherent and in other 2 strains, A31 and A97, which expressed low adherence in UC and were 

considered nonadherent in DC. These results indicate the existence of a mechanism or genetic flaw in 

these strains that is preventing the polar flagellum to be expressed, at assay conditions, and the 

absence on the genome or no expression of other structures (e.g.: lateral flagella or pilli) and proteins 

(e.g.: OMPs) that can act as adhesins, allowing or facilitating adhesion to human epithelial cells in 

vitro. 

The Aeromona hydrophila insertional flaH, flaJ, mutant and flaA/flaB double mutant resulted in the 

complete loss of motility, showing lateral flagella, absence of polar flagella, and a dramatic reduction in 

adhesion to HEp-2 cells and in ability to form biofilms [Canals et al., 2006].  

The presence of flaA/flaB genes were not detected in the genome of 8 strains with moderate to high 

levels of adhesion, including all adherent clinical strains and in other 2 strains (A92 and A127) with low 

levels of adhesion to UC. These results show that the polar flagellum of this genus, although important 

to acquire maximum adherence in some Aeromonas strains/species, as described in some literature, 

is not essential for adhesion to human epithelial cells in vitro in other strains, indicating the existence 

of other main adhesion mechanism which allows to obtain a level of adhesion capacity in these strains 

that competes with recognized pathogens, such as PAO1 strain. These strains are important for 

further analysis in order to determine the adhesion mechanism, especially in clinical strains.  
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Table 4.3.  Comparison of the phenotype and genotype characterization of Aeromonas isolates carried out to date by Barroco (2013) and the phenotype characterization 
carried out in this study. 

Isolates  Sources 
Virulence genes Phenotype  Adhesion (AD) / Invasion (ID)  

Cytotoxicity  
CCD / ECD / ECD after 

preheating 

ASC AHH ALT AEXT ELA LIP FLA AST ACT LIPA  HEM GEL Dnase  Undifferentiated cells MOI 100:1  Titer at 24h 

AR5 A. hydrophila 30187t + + + - + + + + + + + + +  Aggregative MA SI MC 1:8 1:2 

A 5 surfaces (slaughterhouse) - - + - + + + - - + + + +  Aggregative SA MI MC 1:2  
A 11 surfaces (slaughterhouse) - - - - + - + - - + + + +  Aggregative SA MI MC 1:4 1:2 
A 13 surfaces (slaughterhouse) + - - + - - + - + + + + +  Aggregative SA MI MC 1:64 1:2 
A 26 food (slaughterhouse) - - - - - + + - + + + + +  Diffuse MA SI SC 1:2  
A 31 food (slaughterhouse) - + + - + - + - + + + + +  Diffuse WA NI  1:1024 1:4 
A 53 surfaces (supermarket) - - - - + - + - + + + + +  None NA NI  1:2  
A 62 surfaces (supermarket) - + - - + + - - + + + + +  Diffuse MA NI LC 1:2  
A 78 food (supermarket) - - + - - + + - + - + + +  Aggregative SA SI SC 1:2  
A 92 surfaces (supermarket) - - - - + - - - + + + + +  Diffuse WA NI  1:2  
A 97 surfaces (cheese factory) + + + + + + + + + - + + +  Diffuse WA WI NC 1:64 1:2 
A 98 surfaces (cheese factory) - + + - + + - + - + + + +  Diffuse MA MI LC 1:512 1:2 
A 99 surfaces (cheese factory) - - - - + + + - + + + + +  Aggregative SA NI LC 1:2  

A 101 surfaces (cheese factory) - + + - + + + + + + + + +  Aggregative SA SI MC 1:512 1:2 
A 104 surfaces (cheese factory) - - + - + + + - - + + + +  Diffuse WA NI NC 1:2  
A 127 food - - - - - - - - - + + - -  Diffuse WA NI NC 1:256 1:2 
A 172 clinic - + + - + + + - + - + - +  None NA NI  1:256 1:8 
A 255 clinic - + + - + + - + + - + + +  Aggregative MA NI LC 1:512 1:4 
A 258 clinic - - + - + + - - + + + + +  Aggregative SA SI SC 1:2  
A 259 clinic + - - - - - - - - - + + +  Aggregative SA SI SC 1:2  

S 2 water (EPAL) - - + - + - - - + - + + +  Aggregative MA NI LC 1:2  
S 3 water (EPAL) - - - - - - - - + + + + +  Aggregative SA SI SC 1:2  
S 8 water (EPAL) - - - - + + - - + + + + +  Aggregative SA SI SC 1:2  
S 10 water (EPAL) - - + - + + + - - + + + -  Aggregative MA SI MC 1:2  
S 18 water (EPAL) - - - - - + + - - + + + +  Aggregative MA NI LC 1:2  

% of positive (> 5%) 13%  30%  50%  8% 71% 63% 58% 17%  66%  75%  100%  92%  92%   92% 54%  71% 42% 17% 

Virulence genes: ASC (TTSS structural protein - ascV); AHH (β-hemolisina - hlyA); ALT (Aeromona heat-labile cytotonic enterotoxin- alt); AEXT (TTSS effector protein - ADP-Ribosyltransferase 
- aexT); ELA (elastase - ahyB); LIP (lipases and phospholipases - pla/lip/lipH3/alp-1); FLA (flagellin A and B - flaA/B); AST (Aeromonas heat-stable cytotonic enterotoxina - ast); ACT 

(Aeromonas cytotoxic enterotoxina - act). Phenotype: LIPA (lipase); HEM (hemolysin); GEL (gelatinase); DNases. 

ECD: Extracellular cytotoxicity degree: NC: no cytotoxic (100% in 1:2 titer); LC: low cytotoxicity (< 1:2 titer); MC: moderate cytotoxicity (1.2 to 1:64 titer); SC: strong cytotoxicity (> 1:128 titer); 
CCD: Cell-contact cytotoxic degree: NC: no cytotoxic; LC: low cytotoxicity (< 25%); MC: moderate cytotoxicity (25 to 45%); SC: strong cytotoxicity (> 45%); 

 AD: Adhesion degree: NA: no adhesion (< 3x K-12); WA: weak adhesion (3x to10x K-12); MA: moderate adhesion (10x to 30x K-12); SA: strong adhesion (> 30x K-12); 
ID: Invasion degree: NI: no Invasion (< 10x K-12); WI: weak invasion; MA: moderate invasion (20x to 40x K-12); SA: strong invasion (> 40x K-12).
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4.2.2. Aeromonas spp. adherence patterns  

Microscopic examination of the adhesive process indicated aggregative adhesion patterns similar to 

those of the stacked brick appearance noted for members of the Enterobacteriaceae [Knutton et al., 

1987; Gunzburg et al., 1993] (Figure 4.1) in 54% (13) of the strains investigated here (Table 4.4), that 

include the PAO1 strain (Table 4.1), all clinical adherent strains and from source water (Table 4.4), 

and they are among the isolates that showed the highest adhesive capacity (Table 4.1). These results 

is another common feature between clinical and water strains that supports the thesis above-

mentioned, that the major cause of gastrointestinal infections by Aeromonas spp. is from ingesting 

infected water [Statner and George, 1987; Holmberg et al., 1986] 

The remaining 9 adherent isolates (38%) showed a diffuse adherence pattern (Table 4.4), 

characterized by a uniform distribution of bacteria on the cell surface (Figure 4.1) that generally 

containing fewer bacteria compared to the aggregative patterns and they are among the isolates that 

showed the lowest adhesive capacity (Table 4.1).  

These results indicate that the mode of arrangement of bacteria on the surface of human cell culture is 

related to the levels of adhesion obtained, being a good phenotypic trait to characterize strains, 

gathering all clinical strains in one group. 

 

Table 4.4. Distribution of adherence patterns of Aeromonas isolates by source. 

Adherence Patterns 
(Undifferentiated cells) 

Strain Sources (%)  
Surfaces  Food  Water  Clinic  Total  

Aggregative pattern 36% (4) 25% (1) 100% (5) 75% (3) 54% (13) 
Diffuse pattern 55% (6) 75% (3) 0% (0) 0% (0) 38% (9) 

None 9% (1) 0% (0) 0% (0) 25% (1) 8% (2) 
Total strains  11 4 5 4 24 

 

The similarities of adhesive patterns suggest similarities between the pathogenic mechanisms of these 

isolates with other recognized pathogens [Parsot, 2005; Mitache et al., 2009; Mora et al., 2009].  

One aggregative adherent pathogen that is well studied is enteroaggregative Escherichia coli (EAEC). 

Colonization by these bacteria induces damage in the intestinal epithelium characterized by 

shortening of the villi, hemorrhagic necrosis of the villous tips, and a mild inflammatory response of the 

submucosa, causing diarrhoea that is often watery and can be accompanied by mucus or blood 

[Nataro, 1998].  

The colonization of diffusely adherent Escherichia coli (DAEC), on the other hand, induces only the 

effacement of the brush border microvilli [Berger, 2004]; these type of lesions disrupt several brush 

border enzymes that are involved in intestinal secretion and absorption, which may contribute to 

diarrhea [Servin, 2005]. 
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Figure 4.1.  Optic microscopy observation showing the adherence ability and patterns of the Aeromonas isolates to undifferentiated (4-6 days old) Caco-2 cells, as described 
in Chapter 3.3.2. Giemsa stain: magnification (x1000).
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4.2.3. Aeromonas spp. invasion activity 

The ability to adhere and penetrate the epithelial cell barriers has been recognized as an 

important step in the pathogenesis of most infections in man and animals [Finlay and Falkow, 

1997]. It has been reported that there is a direct correlation between the isolation of Aeromonas 

spp. strains from dysentery-like illness and the in vitro adhesion and the posterior invasion 

[Lawson et al., 1985; Watson et al., 1985].  

The invasion activity ranged between 0.015% ± 0.002% to 0,49% ± 0,06% and 0.020% ± 

0.004% to 0.32% ± 0,09% of recovered cells at MOI 10:1 in 54% (13) and 50% (12) of the 

strains that revealed values tenfold above to that of nonpathogenic K-12 strain, negative control 

which showed 0.0007% ± 0.0003% and 0.0010% ± 0.0004% as recovered cells baseline, and 

were classified as invasive to UC and to DC, respectively, which 17% (4) expressing the lowest 

values of invasion, but only 45% (11) and 50% (12) of the strains were classified as non-

invasive to UC and to DC, respectively (Table 4.5, Figure 5A and Figure 6A).  

Pseudomonas aeruginosa is an opportunistic pathogen, in immunocompromised hosts; it 

frequently causes severe septicemia, due to its invasiveness and subsequent passage to the 

bloodstream, arising from their own endogenous intestinal flora [Bryan, et al, 1983; Dick et al, 

1988; Hirakata et al, 1991; Hirakata et al, 1993 in Hirakata, 1998]. In this study 8% (2) of the 

strains revealed values of cell invasion equal to or greater than the values of the PAO1 strain to 

DC and UC (Table 4.5). The highest invasion activity ranged between 0.054% ± 0,009% to 

0,49% ± 0,06% and 0.10% ± 0.02% to 0.036% ± 0,009%, in 21% (5) and 25% (6) and only two 

of them is from clinical origin, where the pathogenic PAO1 strain rated 0,36% ± 0,05% and 

0,31% ± 0,08% in UD and DC, respectively (Table 4.5).  

A decrease of invasion with the stage of differentiation of the cells was observed in some 

adherent Aeromonas strains (4/12), which can be associated with the decrease in the number 

of bacteria in association with differentiated cells, but most (7/12) keep their values within the 

estimated error, similarly to PAO1 strain (Table 4.5), which indicates the existence of an 

invasion mechanism not specific to DC or to UC. Still one of the strains, the A5 strain, did 

increases its invasiveness from 0.025% ± 0.006% in UC to 0.11% ± 0.03% in DC (Table 4.5), 

which indicates the existence of a different invasion mechanism from the others Aeromonas 

strains, one more specific to cellular sites expressed in the brush border late in the 

differentiation process. 
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Table 4.5.  Invasion abilities of Aeromonas isolates to undifferentiated (4-6 days old) and differentiated (19-21 days old) Caco-2 cells, as described in Chapter 3.3.1.  
The results are average ± propagated error. 

Isolates Sources 

Invasion 
% of intracellular bacteria in Caco-2 cells 

 
Adherence (AD) Adherence 

patterns 
Cytotoxicity 

CCD / ECD / ECD after preheating 

MOI 10:1 MOI 10:1 MOI 100:1 Titer at 24h 

Undifferentiated 
cells (UC) ID Differentiated 

Cells (DC) ID UC DC Undifferentiated cells (UC) 

K-12 E. coli K-12 C600 0.0007% ± 0.0003% NI 0.0010% ± 0.0004% NI NA NA None NC 1:2  
PAO1 P. aeruginosa PAO1 0.36% ± 0.05% SI 0.31% ± 0.08% SI MA MA Aggregative SC 1:2  
AR5 A. hydrophila 30187t 0.046% ± 0.008% SI 0.03% ± 0.01% MI MA MA Aggregative MC 1:8 1:2 

A 5 surfaces (slaughterhouse) 0.025% ± 0.006% MI 0.11% ± 0.03% SI SA MA Aggregative MC 1:2  
A 11 surfaces (slaughterhouse) 0.035% ± 0.005% MI 0.024% ± 0.008% WI SA MA Aggregative MC 1:4 1:2 
A 13 surfaces (slaughterhouse) 0.029% ± 0.007% MI 0.020% ± 0.004% WI SA SA Aggregative MC 1:64 1:2 
A 26 food (slaughterhouse) 0.28% ± 0.06% SI 0.26% ± 0.07% SI MA WA Diffuse SC 1:2  
A 31 food (slaughterhouse) 0.004% ± 0.002% NI 0.004% ± 0.001% NI WA NA Diffuse  1:1024 1:4 
A 53 surfaces (supermarket) 0.0006% ± 0.0003% NI 0.005% ± 0.002% NI NA NA None  1:2  
A 62 surfaces (supermarket) 0.0021% ± 0.0006 NI 0.0043% ± 0.0005% NI MA WA Diffuse LC 1:2  
A 78 food (supermarket) 0.054% ± 0.009% SI 0.046% ± 0. 009% MI SA SA Aggregative SC 1:2  
A 92 surfaces (supermarket) 0.0061% ± 0.0009% NI 0.0023% ± 0.0008% NI WA NA Diffuse  1:2  
A 97 surfaces (cheese factory) 0.015% ± 0.002% WI 0.013% ± 0.005% NI WA NA Diffuse NC 1:64 1:2 
A 98 surfaces (cheese factory) 0.030% ± 0.005% MI 0.020% ± 0.004% WI MA WA Diffuse LC 1:512 1:2 
A 99 surfaces (cheese factory) 0.004% ± 0.002% NI 0.005% ± 0.002% NI SA MA Aggregative LC 1:2  

A 101 surfaces (cheese factory) 0.11% ± 0.02% SI 0.06% ± 0.03% MI SA MA Aggregative MC 1:512 1:2 
A 104 surfaces (cheese factory) 0.0048% ± 0.0007% NI 0.0057% ± 0.008% NI WA WA Diffuse NC 1:2  
A 127 food 0.0057% ± 0.0009% NI 0.0011% ± 0.0005% NI WA WA Diffuse NC 1:256 1:2 
A 172 clinic 0.0059% ± 0.0008% NI 0.0007% ± 0.0002% NI NA NA None  1:256 1:8 
A 255 clinic 0.007% ± 0.003% NI 0.0013% ± 0.0003% NI MA MA Aggregative LC 1:512 1:4 
A 258 clinic 0.21% ± 0.04% SI 0.10% ± 0.02% SI SA SA Aggregative SC 1:2  
A 259 clinic 0.49% ± 0.06% SI 0.32% ± 0.09% SI SA MA Aggregative SC 1:2  

S 2 water (EPAL) 0.0012% ± 0.0002% NI 0.0017% ± 0.0007% NI MA MA Aggregative LC 1:2  
S 3 water (EPAL) 0.05% ± 0.01% MA 0.043% ± 0.009% MI SA SA Aggregative SC 1:2  
S 8 water (EPAL) 0.14% ± 0.02% SI 0.12% ± 0.03% SI SA SA Aggregative SC 1:2  
S 10 water (EPAL) 0.035% ± 0.007% MA 0.028% ± 0.008% WI MA MA Aggregative MC 1:2  
S 18 water (EPAL) 0.003% ± 0.001% NI 0.002% ± 0.001 NI MA WA Aggregative LC 1:2  

% of positive 54% (13) 50% (12) 92% (22) 79% (19)  71% (17) 41% (10) 17% (4) 

ID: Invasion degree: NI: no Invasion (< 10x K-12); WI: weak invasion; MA: moderate invasion (20x to 40x K-12); SA: strong invasion (> 40x K-12); 
AD: Adhesion degree: NA: no adhesion (< 3x K-12); WA: weak adhesion (3x to10x K-12); MA: moderate adhesion (10x to 30x K-12); SA: strong adhesion (> 30x K-12); 

CCD: Cell-contact cytotoxic degree: NC: no cytotoxic; LC: low cytotoxicity (< 25%); MC: moderate cytotoxicity (25 to 45%); SC: strong cytotoxicity (> 45%); 
ECD: Extracellular cytotoxicity degree: NC: no cytotoxic (100% in 1:2 titer); LC: low cytotoxicity (< 1:2 titer); MC: moderate cytotoxicity (1.2 to 1:64 titer); SC: strong cytotoxicity (> 1:128 titer). 
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50% of the strains originated from food samples showed moderate to high ability for cell invasion. The 

same was observed in 50% of the clinical strains and in 40% of the strains originated from water 

samples (Table 4.6). These results indicate that both water and food have the ability to serve as 

vehicles of potentially pathogenic strains. 

 

Table 4.6. Distribution of invasive Aeromonas isolates by source and ability levels. 

Invasion Degree 
(Differentiated cells) 

Strain Sources (%) 
Surfaces Food Water Clinic Total 

SI; strong Invasion (>40x K-12) 9% (1) 25% (1) 20% (1) 50% (2) 21% (5) 
MI; moderate Invasion (20x to 40x K-12) 9% (1) 25% (1) 20% (1) 0% (0) 13% (3) 

WI; weak Invasion (10x to 20x K-12) 27% (3) 0% (0) 20% (1) 0% (0) 16% (4) 
NI; no Invasion (<10x K-12) 55% (6) 50% (2) 40% (2) 50% (2) 50% (12) 

Total strains  11 4 5 4 24 
 

4.3. Aeromonas cytotoxicity evaluation on Caco-2 cell line 

The data in both assays of cytotoxicity establishes a clear difference between cytotoxic and non-

cytotoxic isolates, revealing high sensitivity and producing more accurate results than other viability 

assays, providing slightly differences between cytotoxicity levels and without the bias of human 

interpretation related to methods based on visual determination.  

4.3.1. Aeromonas spp. cell-contact cytotoxic activity 

A quantitative assay was implemented to characterize cell-contact cytotoxic activity of the strains and 

the results showed that bacterial cells were able to lyse epithelial cells within 90 minutes of incubation 

only by contact (Table 4.7, Figure 7A and Figure 8A).  

The cell-contact cytotoxic ranged between 5% ± 3% and 82% ± 4% of cell damage at MOI 100:1 in 

71% (17) of the strains that revealed values above to that of nonpathogenic K-12 strain, negative 

control which showed -1% ± 3% of cell damage baseline (Table 4.7 and Figure 7A). The highest cell-

contact cytotoxic ranged between 61% ± 4% to 82% ± 4% of cell damage in 25% (6) of the strains and 

only two of them is from clinical origin, where the pathogenic PAO1 strain rated 49% ± 4% of cell 

damage in UD (Table 4.7).  

Only low cytotoxicity, below 25% of damaged cells, could be observed when bacterial cells were not 

allowed contact with epithelial cells (Table 4.7 and Figure 7A). The extracellular activity ranged from 

7% ± 3% to 20% ± 3% at MOI 100:1 in 25% (6) of the strains and the highest level of activity within the 

range (above 10%) was observed for 4 (17%) of the isolates (Table 4.7), which suggests that these 

strains produced extracellular toxins. 

At MOI 10:1 there was a significant lowering of cell-contact cytotoxicity (without extracellular 

cytotoxicity), but still ranged between 6% ± 4% to 25% ± 3% in 41% (10) of the strains (Table 4.7 and 

Figure 8A). For this reason the MOI 10:1 was used to determine the ability of adhesion / invasion of 

each strain to prevent high tissue damage to the Caco-2 cells monolayers during the assays. 
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Table 4.7.  Cell-Contact cytotoxicity ability of Aeromonas isolates to undifferentiated (4-6 days old) Caco-2 cells, as described in Chapter 3.4.2.  
The results are average ± propagated error. 

Isolates Sources 

Cytotoxicity of Bacterial Cell-Contact 

 

Cytotoxicity 
ECD / ECD after 

preheating 

Adherence 
patterns  

Adhesion 
(AD) 

Invasion 
(ID) 

MOI 100:1 MOI 10:1 Undifferentiated cells 

Extracellular  Cell-Contact  CCD Extracellular  Cell-Contact  CCD Titer at 24h MOI 100:1 MOI 10:1 

K-12 E. coli K-12 C600 -1% ± 2% -1% ± 3% NC -1% ± 3% 0% ± 4% NC 1:2  None NA NI 
PAO1 P. aeruginosa PAO1 0% ± 3% 49% ± 4% SC -1% ± 3% 13% ± 4% LC 1:2  Aggregative MA SI 
AR5 A. hydrophila 30187t 8% ± 3% 28% ± 4% MC 1% ± 3% 7% ± 3% NC 1:8 1:2 Aggregative MA SI 

A 5 surface (slaughterhouse) -1% ± 3% 30% ± 3% MC -1% ± 3% 9% ± 3% LC 1:2  Diffuse SA MI 
A 11 surface (slaughterhouse) 1% ± 3% 27% ± 4% MC 0% ± 3% 8% ± 4% LC 1:4 1:2 Diffuse SA MI 
A 13 surface (slaughterhouse) 7% ± 3% 31% ± 3% MC 3% ± 2% 9% ± 3% LC 1:64 1:2 None SA MI 
A 26 food (slaughterhouse) -1% ± 3% 75% ± 4% SC 0% ± 2% 21% ± 3% LC 1:2  Diffuse MA SI 
A 31 food (slaughterhouse)       1:1024 1:4 Aggregative WA NI 
A 53 surface (supermarket)       1:2  Diffuse NA NI 
A 62 surface (supermarket) -1% ± 3% 6% ± 3% LC -1% ± 3% 0% ± 4% NC 1:2  Diffuse MA NI 
A 78 food (supermarket) 0% ± 2% 69% ± 3% SC -1% ± 3% 18% ± 4% LC 1:2  Diffuse SA SI 
A 92 surface (supermarket)       1:2  Aggregative WA NI 
A 97 surface (cheese factory) 9% ± 3% 0% ± 3% NC 0% ± 3% 0% ± 4% NC 1:64 1:2 Aggregative WA WI 
A 98 surface (cheese factory) 20% ± 3% 18% ± 4% LC -1% ± 2% 4% ± 3% LC 1:512 1:2 Diffuse MA MI 
A 99 surface (cheese factory) -2% ± 4% 5% ± 4% LC -1% ± 3% 0% ± 5% NC 1:2  Diffuse SA NI 

A 101 surface (cheese factory) 20% ± 3% 40% ± 4% MC 1% ± 3% 9% ± 3% LC 1:512 1:2 None SA SI 
A 104 surface (cheese factory) 0% ± 3% 0% ± 3% NC 0% ± 2% 0% ± 3% NC 1:2  Aggregative WA NI 
A 127 food 15% ± 3% 1% ± 4% NC 1% ± 2% -1% ± 3% NC 1:256 1:2 Aggregative WA NI 
A 172 clinic       1:256 1:8 Aggregative NA NI 
A 255 clinic 19% ± 4% 12% ± 5% LC 2% ± 3% -2% ± 4% NC 1:512 1:4 Aggregative MA NI 
A 258 clinic -2% ± 4% 82% ± 4% SC -2% ± 3% 25% ± 3% MC 1:2  Aggregative SA SI 
A 259 clinic 0% ± 2% 69% ± 3% SC 0% ± 3% 18% ± 3% LC 1:2  Aggregative SA SI 

S 2 water (EPAL) 0% ± 3% 10% ± 4% LC -1% ± 2% -1% ± 3% NC 1:2  Aggregative MA NI 
S 3 water (EPAL) -1% ± 3% 52% ± 4% SC 0% ± 3% 12% ± 4% LC 1:2  Aggregative SA SI 
S 8 water (EPAL) -1% ± 2% 61% ± 4% SC -1% ± 3% 16% ± 3% LC 1:2  Aggregative SA SI 

S 10 water (EPAL) 0% ± 3% 29% ± 4% MC -1% ± 3% 6% ± 4% LC 1:2  Aggregative MA SI 
S 18 water (EPAL) -1% ± 3% 5% ± 3% LC -1% ± 2% 0% ± 3% NC 1:2  Aggregative MA NI 

% of positive (> 5%)  30% (6) 71% (17) 0% (0) 50% (12) 42% (10) 17% (4)  92% (22) 54% (13) 

CCD: Cell-contact cytotoxic degree: NC: no cytotoxic; LC: low cytotoxicity (< 25%); MC: moderate cytotoxicity (25 to 45%); SC: strong cytotoxicity (> 45%); 
ECD: Extracellular cytotoxicity degree: NC: no cytotoxic (100% in 1:2 titer); LC: low cytotoxicity (< 1:2 titer); MC: moderate cytotoxicity (1.2 to 1:64 titer); SC: strong cytotoxicity (> 1:128 titer); 

AD: Adhesion degree: NA: no adhesion (< 3x K-12); WA: weak adhesion (3x to10x K-12); MA: moderate adhesion (10x to 30x K-12); SA: strong adhesion (>30x K-12); 
ID: Invasion degree: NI: no Invasion (< 10x K-12); WI: weak invasion; MA: moderate invasion (20x to 40x K-12); SA: strong invasion (>40x K-12). 
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All strains tested were able to adhere to differentiated Caco-2 cells, but 25% (5) of the strains did not 

expressed cell-contact dependent cytotoxicity (Table 4.7), 3 environmental strains (A97, A104 e A127) 

that showed low adhesion capacity as 2 other environmental strains (A62 and A99) that showed 

moderate and strong adhesion capacity to DC, respectively (Table 4.1). These results indicates that 

the ability to adhere can be a prerequisite for colonization, as described in the literature, but alone 

does not lead to subsequent infection, characteristics of the pathogenic strains.  

Most of the cell-contact cytotoxic strains, 76% (13/17), were able to invade UD (Table 4.5), as 

expected since invasion causes cell lysis, however, cellular damage is not restricted to toxin 

production and bacterial invasion, the induction of apoptosis and the disruption of normal cellular 

functions can all cause lysis of host epithelial cells and contributing to tissue damage which is 

necessary for bacterial invasion and a more rapid translocation of bacteria through the intestinal 

barrier to other sites within the host. The results suggest that close contact of the strains with host 

cells is a prerequisite to cause high levels of cytotoxicity and indicate the presence of another cell lysis 

mechanism than invasion, mainly because of 2 low cell-contact cytotoxic strains, S2 environmental 

strain and A255 clinical strain, that did not show invasive ability (Table 4.5) and those with highest 

invasion ability are not the only strains that cause the highest cell-contact damage; for example, A78 

with 0.054% ± 0.009% recovered cells (Table 4.5) causes 69% ± 23% cell damage (Table 4.7), while 

S8 with 0.14% ± 0.02% recovered cells (Table 4.5) causes 61% ± 2% cell damage (Table 4.7), under 

the same conditions and incubation times. These results indicate that the strain A78 is a good 

candidate for further analysis to determine this cell lysis mechanism which is mediated by direct 

contact between bacteria and host cell. 

60% of the strains originated from water samples have moderate to high levels of cell-contact 

cytotoxic. The same was observed in 50% of the clinical strains and 50% of the strains originated from 

food samples (Table 4.8). These results contribute to the previous conclusion that the water and food 

have the ability to serve as vehicles of potentially pathogenic strains. 

 

Table 4.8.  Distribution of cell-contact cytotoxic Aeromonas isolates by source and ability levels. 

Cell-contact Cytotoxicity Degree 
(MOI 100:1) 

Strain Sou rces (%)  
Surfaces  Food  Water  Clinic  Total  

SC; strong cytotoxicity (> 40%) 0% (0) 50% (2) 40% (2) 50% (2) 25% (6) 
MC; moderate cytotoxicity (20% to 40%) 36% (4) 0% (0) 20% (1) 0% (0) 21% (5) 

LC; low cytotoxicity (5% to 20%) 27% (3) 0% (0) 40% (2) 25% (1) 25% (6) 
NC; no cytotoxicity (0% to 5%) 36% (4) 50% (2) 0% (0) 25% (1) 29% (7) 

Total strains  11 4 5 4 24 
 

Barroco (2013) determined the presence of the ascV gene in the strains used in this study (Table 4.3), 

that encode a conserved structural protein of secretion system used as a marker for the presence of 

T3SS [Stuber et al. 2003] and the presence of the aexT gene (Table 4.3), that encode one of the most 

studied proteins secreted by T3SS in Aeromonas, Aeromonas salmonicida bifunctional toxin [Sha et 

al., 2007; Khajanchi et al., 2010], when active, have cytotoxic activity, catalyzing the depolymerization 

of the actin cytoskeleton, which results in cell morphological changes, leading to host cell death [Litvak 
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et al., 2007 in Sha et al., 2007], has been associated with the inhibition of phagocytosis of polarized 

epithelial cells and macrophages [Garrity-Ryan et al., 2000 in Sha et al., 2007], and have ADP-

ribosyltransferase activity [Braun et al., 2002 in Sha et al., 2007], as Pseudomonas aeruginosa toxins, 

Exos and Exot, which have high homology with AexT, leading to apoptosis of host cells [Kaufman et 

al., 2000; Jia et al., 2007 in Sha et al., 2007]. 

The presence of both genes, aexT and ascV, was detected in 2 environmental strains, A13 and A97. 

The A97 strain did not express adhesiveness in UC, indicating the inability of this strain to express 

cytotoxicity via T3SS, since an initial attachment is required to stabilize interactions between strain 

and host cells, in order to insert the T3SS through the cell membrane and then inject cytotoxic 

properties. The A13 strain, on the other hand, express the higher valor of adherence to UC, did 

express a moderate valor of cell invasion, 0.029% ± 0.007% recovered cells, and cell-contact 

cytotoxicity, 31% ± 3% cell damage. The A98 strain, in comparison, also express a moderate valor of 

cell invasion, 0.030% ± 0.005% recovered cells, but express a low valor of cell-contact cytotoxicity, 

18% ± 4% cell damage, demonstrating a significant difference in cytotoxicity express by the A13 

strain. This indicates the possibility of the T3SS and the AexT toxin are being expressed in A13 strain 

or other cytotoxic properties that are injected by this system. 

The presence of ascV gene was detected in 2 strains, AR5 and A259, that express moderate and high 

levels of cell-contact cytotoxicity, respectively, but also express moderate and high levels of cell 

invasion, respectively, not demonstrating a significant difference in cytotoxicity when compared with 

the other strains. This indicates that the T3SS is not being expressed in these strains or they not have 

or not expressed cytotoxic properties that are injected by this system.  

 

4.3.2. Aeromonas spp. extracellular cytotoxic activity  

The Aeromonas produce a variety of biologically active extracellular products similar to those of 

enteropathogenic bacteria [Von Gravaenitz, 2007; Janda and Abbott, 2010], therefore for a better 

discrimination of the cytotoxic extracellular abilities other quantitative assay was performed, this time 

with supernatant that includes all products produced during the growth phase and early stationary 

phase, keeping the cell lysis and thereby endotoxin release in the culture broth to a minimum.  

Some studies reported a correlation between the higher toxic activities from Aeromonas isolates and 

its potential to induce diarrhoea [Albert et al., 2000; Sha et al., 2002; Chang et al., 2008] and both 

adhesins and enterotoxins were necessary for production of diarrhoea in volunteers fed orally with 

Enterotoxigenic Escherichia coli (ETEC) [Sattherwhite, 1978]. In the present study 6 (25%) 

Aeromonas isolates were found to express both adherence to DC (Table 4.1) and extracellular 

cytotoxicity with titers greater than 2 after 24 hours of incubation (Table 4.9 and Figure 10A), and only 

one of those strains come from clinical origin, demonstrating that environmental strains also have the 

ability to express these putative virulence properties at least at human body temperature. 
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Table 4.9.  Extracellular cytotoxicity ability of Aeromonas isolates to undifferentiated (4-6 days old) Caco-2 cells, as described in Chapter 3.4.1.  
The results are average ± propagated error. 

Isolates Sources 

Cytotoxicity  of bacterial culture supernatants 

 
 
 

Cytotoxicity 
(CCD) 

Adherence 
patterns  

Adhesion 
(AD) 

Invasion 
(ID) 

4 hours 24 hours 24 hours after preheating Undiffer entiated cells (UC) 

ECD % Cell viability ECD % Cell viability ECD % Cel l viability MOI 100:1 MOI 10:1 

K-12 E. coli K-12 C600 1:2 100% ± 1% 1:2 99 ± 1%   NC None NA NI 
PAO1 P. aeruginosa PAO1 1:2 89% ± 2% 1:2 81 ± 1%   SC Aggregative MA SI 
AR5 A. hydrophila 30187t 1:2 62% ± 2% 1:8 43 ± 2% 1:2 90% ± 1% MC Aggregative MA SI 

A 5 surface (slaughterhouse) 1:2 82% ± 2% 1:2 73 ± 1%   MC Aggregative SA MI 
A 11 surface (slaughterhouse) 1:2 51% ± 1% 1:4 40 ± 1% 1:2 84% ± 1% MC Aggregative SA MI 
A 13 surface (slaughterhouse) 1:8 30% ± 1% 1:64 20 ± 2% 1:2 86% ± 2% MC Aggregative SA MI 
A 26 food (slaughterhouse) 1:2 95% ± 1% 1:2 83 ± 2%   SC Diffuse MA SI 
A 31 food (slaughterhouse) 1:512 35% ± 2% 1:1024 38 ± 1% 1:4 40% ± 2%  Diffuse WA NI 
A 53 surface (supermarket) 1:2 80% ± 2% 1:2 74 ± 1%    None NA NI 
A 62 surface (supermarket) 1:2 88% ± 1% 1:2 78 ± 1%   LC Diffuse MA NI 
A 78 food (supermarket) 1:2 81% ± 1% 1:2 70 ± 1%   SC Aggregative SA SI 
A 92 surface (supermarket) 1:2 81% ± 1% 1:2 69 ± 1%    Diffuse WA NI 
A 97 surface (cheese factory) 1:16 30% ± 1% 1:64 18 ± 1% 1:2 26% ± 2% NC Diffuse WA WI 
A 98 surface (cheese factory) 1:256 32% ± 1% 1:512 31 ± 2% 1:2 60% ± 3% LC Diffuse MA MI 
A 99 surface (cheese factory) 1:2 86% ± 1% 1:2 77 ± 1%   LC Aggregative SA NI 

A 101 surface (cheese factory) 1:256 30% ± 2% 1:512 40 ± 2% 1:2 88% ± 3% MC Aggregative SA SI 
A 104 surface (cheese factory) 1:2 90% ± 1% 1:2 55 ± 2%   NC Diffuse WA NI 
A 127 food 1:128 40% ± 2% 1:256 29 ± 2% 1:2 87% ± 1% NC Diffuse WA NI 
A 172 clinic 1:64 31% ± 2% 1:256 26 ± 1% 1:8 43% ± 1%  None NA NI 
A 255 clinic 1:256 47% ± 2% 1:512 25 ± 1% 1:4 46% ± 3% LC Aggregative MA NI 
A 258 clinic 1:2 80% ± 2% 1:2 74 ± 1%   SC Aggregative SA SI 
A 259 clinic 1:2 92% ± 1% 1:2 58 ± 1%   SC Aggregative SA SI 

S 2 water (EPAL) 1:2 88% ± 2% 1:2 55 ± 1%   LC Aggregative MA NI 
S 3 water (EPAL) 1:2 79% ± 1% 1:2 45 ± 2%   SC Aggregative SA SI 
S 8 water (EPAL) 1:2 88% ± 1% 1:2 55 ± 2%   SC Aggregative SA SI 

S 10 water (EPAL) 1:2 91% ± 1% 1:2 54 ± 1%   MC Aggregative MA SI 
S 18 water (EPAL) 1:2 93% ± 1% 1:2 60 ± 1%   LC Aggregative MA NI 

% of positive (> 1:2 titre) 33% (8) 42% (10) 17% (4 ) 71% (17)  92% (22) 54% (13) 

ECD: Extracellular cytotoxicity degree: NC: no cytotoxic (100% in 1:2 titer); LC: low cytotoxicity (< 1:2 titer); MC: moderate cytotoxicity (1.2 to 1:64 titer); SC: strong cytotoxicity (> 1:128 titer); 
CCD: Cell-contact cytotoxic degree: NC: no cytotoxic; LC: low cytotoxicity (< 25%); MC: moderate cytotoxicity (25 to 45%); SC: strong cytotoxicity (> 45%); 

AD: Adhesion degree: NA: no adhesion (< 3x K-12); WA: weak adhesion (3x to10x K-12); MA: moderate adhesion (10x to 30x K-12); SA: strong adhesion (>30x K-12); 
ID: Invasion degree: NI: no Invasion (< 10x K-12); WI: weak invasion; MA: moderate invasion (20x to 40x K-12); SA: strong invasion (>40x K-12). 
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The highest activity of the toxins was observed at 24h of incubation and all of the strains supernatants 

were found to have the ability to cause damage to Caco-2 cells above nonpathogenic K-12 strain that 

reached 100% ± 1%, but 63% (15) of the strains showed low cytotoxic activity, producing titers lower 

than 2 (Table 4.9). The highest cytotoxic titre ranging from 1024 to 64 was observed for 33% (8) of the 

strains (Table 4.9) and in these strains was observed morphological alteration within 30 minutes of 

incubation and cellular destruction within 1h, which was followed by the complete destruction of cell 

line within 4h (Table 4.9 and Figure 10A), but only 17% (4) of these strains also exhibit the capacity of 

cell adhesion in DC, including the A13 strain that showed the highest adherent (Table 4.1). Preheating 

(56ºC for 20 minutes) of the culture supernatants caused a decrease in the activity, not showing titers 

greater than 8, that suggested production of extracellular heat-stable toxins in 17% (4) of the strains 

that show positive titers (Table 4.9 and Figure 11A), and only one of those, A255 clinical strain, 

showed adherent activity to DC (Table 4.1).  

50% of the strains originated from food samples have moderate to high levels of cell-contact 

cytotoxicity. The same was observed in 50% of the clinical strains and 45% of the strains originated 

from food processing surfaces (Table 4.10).  

These results reinforce the previous conclusion that food has the ability to serve as vehicles of 

potentially pathogenic strains. 

 

Table 4.10.  Distribution of extracellular cytotoxic Aeromonas isolates by source and ability levels. 

Extracellular Cytotoxicity Degree 
(24h incubation) 

Strain Sources (%)  
Surfaces  Food  Water  Clinic  Total  

SC; strong cytotoxicity (> 1:128) 18% (2) 50% (2) 0% (0) 25% (1) 21% (5) 
MC; moderate cytotoxicity (1:2 to 1:64) 27% (3) 0% (0) 20% (1) 25% (1) 21% (5) 

LC; low cytotoxicity (< 1:2) 55% (6) 50% (2) 80% (4) 50% (2) 58% (14) 
NC; no cytotoxicity (100% in 1:2) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 

Total strains  11 4 5 4 24 
 

Certain enterotoxins, with different functions, have been associated with the pathogenic potential in 

the genus Aeromonas. Barroco (2013) determined the presence of two enterotoxins with cytotonic 

activity - Alt (Aeromonas heat-labile cytotonic enterotoxin) and Ast (Aeromonas heat-stable cytotonic 

enterotoxin) (Table 4.3) - and two enterotoxins with cytotoxic activity – Act (Aeromonas cytotoxic 

enterotoxin) and HlyA (β-hemolisina) (Table 4.3). 

In this study was not determined the expression of cytotonic activity since the cytotonic toxins do not 

cause cell lysis of Caco-2 cells, but produce a secretory response in intestinal cells. The expression of 

these toxins can be determined in the presence of CHO cells (Chinese Hamster Ovarian cells) where 

there is good correlation between the Alt and Ast cytotonic enterotoxins expression and elongation of 

CHO cells [Chopra et al., 1994], but previous data show that Act is the major enterotoxin contributing 

to fluid secretory response, followed by Alt and Ast in Aeromonas hydrophila [Sha et al., 2002], the 

presence of these three enterotoxin genes in various combinations may act synergistically [Albert et 

al., 2000; Sha et al., 2002] and the presence of all three genes is rare [Albert et al., 2000]. In the 
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Barroco (2013) study, 50% (12), 17% (4) and 66% (15) of the strains used in this study showed the 

presence of alt, ast and act genes, respectively. The combinations were alt and act genes in 21% (5) 

of the strains, 3 environmental strains (A31, A78 and S2) and 2 clinic strain (A172 and A258), alt and 

ast genes in A98 strain and the combination of all three genes in 13% (3) of the strains, 2 

environmental strains (A101 and A97) and 1 clinic strain (A255) as the Aeromonas hydrophila 

reference strain. 

Barroco (2013) determined, regarding cytotoxins with hemolytic activity, that 30% (7) of the strains 

used in this study showed hlyA gene and that 66% of the strains showed act gene (Table 4.3), but 

also that all strains expressed hemolytic activity, including at least 7 strains expressing other 

hemolysins whose genes were not surveyed. Barroco (2013) also determined that 25% (6) of the 

strains expressed phospholipase activity, including at least 7 strains expressing other lipases/ 

phospholipases whose genes were not surveyed. These results may explain the ability of culture 

supernatants obtained by all the strains have the ability to lyse Caco-2 cells to a certain extent. Also, 

the molecular level identification of genus involved the detection of two targets genes, rRNA16S and 

gcat gene, both amplified with primers designed for conserved sequences between Aeromonas 

species [Barroco, 2013]. The fact that the product of gcat gene, the GCAT phospholipase is 

associated with lysis of erythrocytes, may be contributing to the hemolytic phenotypes observed 

[Barroco, 2013]. 

The majority, 80% (8/10) of the strains, that showed cytotoxic titer after 24 hours of incubation showed 

at least one of cytotoxic genes searched, act and hlyA genes. In 50% (5/10) of the cytotoxic strains, 

including Aeromonas hydrophila reference strain and A255 clinic strain, showed both genes and 

exhibit a strong cytotoxic capacity. Moreover, the A13 (1:64 titer) and A98 (1:512 titer) strains showed 

only one of the genes, act and hlyA, respectively, but continue to demonstrate the same high levels of 

extracellular cytotoxic. These results indicate that the combined capacity of both toxins is not required 

to achieve high cytotoxic ability, but the individual expression of both toxins was not determined as the 

presence of other toxins that may be contributing to cytotoxic ability of these strains.  

The A127 strain (1:256 titer) and A11 (1:4) strain supports this hypothesis, because they do not have 

these two genes in the genome, but their strong and moderate cytotoxic abilities respectively are due 

to the presence of other toxins whose genes has not been searched. These results indicate that the 

A127 and A11 strains are good candidates for further analysis to determine other toxin genes or 

putative genes.  

On the other hand, the A62 strain has both genes in the genome, but their expression was not 

detected in the extracellular cytotoxicity assay, showing a titer of less than 2, as in 56% (10/18) of the 

strains that exhibit the act gene. These results indicate that there is an abstraction for the expression 

and release of Act toxin in most strains, may be related to the absence of the T2SS system where this 

toxin is secreted.   
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Chapter 5   Conclusions  

A proportional decrease of adherence with the stage of differentiation of the Caco-2 cells was 

observed in all adherent Aeromonas strains, 22 (92%) and 19 (79%) Aeromonas isolates were found 

to be adhesive to undifferentiated and differentiated Caco-2 cells, respectively. These results indicate 

that the genus Aeromonas interacts optimally with cultured human intestinal cells at cellular sites 

expressed in the brush border early in the differentiation process, and that the Aeromonas strains 

adhesion mechanism is different from the one present in the Pseudomonas aeruginosa PAO1 strain, 

whose adherence were significantly higher in differentiated Caco-2 cells. In 13 (54%) strains 

investigated here showed aggregative adhesion patterns similar to those of the stacked brick 

appearance noted for members of the Enterobacteriaceae [Knutton et al., 1987; Gunzburg et al., 

1993], including all clinical adherent strains and source water. 

The invasion activity was show by 13 (54%) and 12 (50%) strains to undifferentiated and differentiated 

Caco-2 cells, respectively. A decrease in invasion was also observed in some adherent Aeromonas 

strains, which can be associated with the decrease in the number of bacteria in association with 

differentiated cells, but most keep their values, similarly to PAO1 strain, which indicates the existence 

of an invasion mechanism not specific to both undifferentiated and differentiated Caco-2 cells. Still the 

A5 strain did increases its invasiveness in differentiated Caco-2 cells, which indicates the existence of 

a different invasion mechanism from the others Aeromonas strains, one more specific to cellular sites 

expressed in the brush border late in the differentiation process. 

The extracellular cytotoxicity was show in 6 (25%) Aeromonas isolates adherents to differentiated 

Caco-2 cells, with titers greater than 2 after 24 hours of incubation. Preheating the culture 

supernatants of these strains caused a decrease in the activity, only showing titer in the A255 clinical 

strain, which suggest production of extracellular heat-stable toxins in this strain.  

The results also show that one of the important mechanisms of Aeromonas spp. cytotoxicity may be 

cell-contact mediated, that expressed cell damage greater than the extracellular properties expressed 

by the same strains. In this study 17 (71%) Aeromonas isolates were found to express this type of 

cytotoxicity to differentiated Caco-2 cells, but only 13 were able to invade undifferentiated Caco-2 cells 

and those with highest values of invasion are not the only strains that cause the greatest cell-contact 

damage, indicating the presence of another cell lysis mechanism than invasion, not yet determined.  

The A255 clinical strain showed strong adherence and extracellular cytotoxicity heat-stable and the 

two other clinical strains, A258 and A259, showed to be very adherent and invasive, demonstrating 

the higher levels of cell damage. However, the A172 clinical strain did not show the ability to adhere to 

Caco-2 cells, but showed a high level of cytotoxicity, like the A31 environmental strain, which showed 

the highest level of extracellular cytotoxicity of all strains, but showed no ability to adhere to 

undifferentiated Caco-2 cells. Previous studies suggest that putative virulence associated or 

colonization factors of pathogenic strains can be lost upon in vitro passage [Morgan et al., 1985]. 

Another explanation for this could be that the patient with gastroenteritis was a healthy carrier of 

Aeromonas spp. and the real etiological agents of the disease were not identified.  



 

34 

 

Overall, some Aeromonas strains isolated in this study from environmental, food and food processing 

surfaces showed adhesive, invasive and extracellular cytotoxic to Caco-2 cells similar or grater to 

those of clinical strains. These findings indicate that environmental Aeromonas spp. have the potential 

to cause human illness at 37ºC, human body temperature, consubstantiating the potential of food and 

water as vehicles for Aeromonas diseases.  

One of the most important strains of environmental origin found in this study was the A26 strain, which 

showed the highest ability to invade cell and to cause cell damage by contact to Caco-2 cells. The A78 

strain is the second environmental strain expressing the highest ability to cause cell-contact damage 

to Caco-2 cells, but causing only a low level of invasion, indicating the presence of a different 

cytotoxicity mechanism. Another is the A101 strain that showed high levels of adhesion, invasion and 

extracellular cytotoxicity to Caco-2 cells. Finally the A13 strain that showed the highest ability to 

adhere to Caco-2 cells, a high level of invasion and a moderate level of extracellular cytotoxicity. 

These strains, as many enteropathogens, express a variety of virulence factors involved in the 

infection process, showing the ability to damage host tissues as well as to evade the host defense 

system. However, it is important to note that infections by potentially pathogenic Aeromonas may not 

always lead to disease, due to host factors such as susceptibility or immune status and infectious 

dose of the microorganism. For these reasons, gastroenteritis caused by Aeromonas spp. in humans 

remains relatively rare, but they are potential waterborne and foodborne pathogens and it is important 

further evaluation, research and regulatory consideration, which includes risk assessment. 

When looking at Caco-2 cell cultures microscopically, it is evident even by visual inspection that the 

cells are heterogeneous. As a result, the existence of Caco-2 cell lines maintained in different 

laboratories and/or of different clonal origin, in addition to the effects of different culture protocols, 

have then diverged significantly, which makes the comparison of results particularly difficult across 

laboratories. Carrello et al. (1988) found that clinical strains were more adhesive on cells lines than 

environmental strains, while the opposite was found by Sechi et al. (2002). For this reason, the 

conclusions of the present study may not be directly comparable to those of other published studies.  

The results presented in this thesis are an import contribution to knowledge on the pathogenicity of 

Aeromonas and when joined with other data gathered in the overall project will allow developments in 

food and water microbial quality control as well as in the area of study of virulence of species of 

clinical relevance.  
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Chapter 7   Future Work  

One major problem in Aeromonas identification relies on the fact that some species are phenotypically 

very similar (for example: Aeromonas caviae and Aeromonas media, Aeromonas veronii and 

Aeromonas sobria). A valid alternative to conventional methods of bacterial identification and 

classification, that is based on the characterization of biomarker molecules, but definitely more rapid 

and reliable is the mass spectrometry technique [Fenselau, 2001]. Is in progress a preliminary 

investigation on the potential of fingerprinting data obtained by matrix-assisted laser desorption 

ionization – time of flight - mass spectrometry (MALDI-TOF-MS) to identification of the most virulent 

strains. 

Further investigations are in progress to confirm the enteropathogenicity and clarify the mechanisms 

of adhesion, because the adhesion to Caco-2 cells does support the diarrhoeagenicity of the 

Aeromonas organisms. However, the importance of this process in human gastrointestinal disease 

has yet to be verified under competitive conditions of the gut and in the presence of mucus. 

A set of assays can be suggested to provide further insights into these processes: 

- Assessment of Aeromonas adherence in the presence of a competitive ecosystem  

Adhesion of probiotic bacteria to the intestinal mucosa is considered important for the protection 

against pathogens [Coconnier et al., 1993a, 1993b], transient intestinal colonization [Morelli et al., 

2006], modulation of the immune system [Schiffrin et al., 1997], and enhanced healing of damaged 

intestinal mucosa [Elliott et al., 1998]. Adhesion assays in the presence of an intestinal microbial 

community can be performed using samples taken from the descending colon of an informed donor or 

from a Simulator of the Human Intestinal Microbial Ecosystem (SHIME) [Molly et al., 1993; Van den 

Abbeele et al., 2010] and would be particularly interesting to evaluate Aeromonas performance in a 

competitive environment.  

- Assessment of Aeromonas adherence in the presence a mucus layer  

Intestinal epithelial cells are covered by a relatively thick (up to 400 µm) mucus layer consisting of 

mucin, a 2-megadalton (MDa) gel-forming glycoprotein, and a large number of smaller glycoproteins, 

proteins, glycolipids, and lipids [Allan, 1981; Kim et al., 1984 in Neutra and Forstner, 1987]. The 

mucus layer itself is in a dynamic state constantly being synthesized and secreted by specialized 

goblet cells as well as degraded to a large extent by indigenous intestinal microbiota [Hoskins, 1984 in 

Neutra and Forstner, 1987] Bacterial enteropathogens must traverse the mucus layer in order to 

approach and adhere to intestinal epithelial cells. The mucus layer has been implicated in interacting 

with bacteria in a number of ways: as an initial site for bacterial adhesion, as a protective barrier which 

the bacteria must penetrate, and as a source of nutrients and matrix for bacterial replication, 

colonization, and infection [Hoskins, 1984 in Neutra and Forstner, 1987]. Adhesion assays with mucus 

can be performed by inclusion of HT29 cells in the Caco-2 cell model. HT29 cells are a human colonic 

adenocarcinoma cell line that forms a multilayer of UC in culture media containing glucose and serum. 

When glucose deprived, however, HT29 cells differentiate into a monolayer of cells with phenotypical 
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characteristics of enterocytes and mucin-secreting goblet cells [Zweibaum et al., 1982 in Neutra and 

Forstner, 1987].  

- Translocation tests  

It is not yet clear whether gastrointestinal disorders and gut-associated septicaemia are caused by 

ingesting environmental strains exhibiting the aforementioned pathogenic properties. In normal 

functioning gastrointestinal tracts, very few species of bacteria are capable of translocating to extra-

intestinal sites. However, under certain conditions, some bacteria can cross gut epithelia and appear 

in mesenteric lymph nodes or other normally sterile sites to cause septicaemia, a process termed 

bacterial translocation [Berg, 1999]. Translocation mechanisms vary among bacteria and are 

dependent on bacterial interactions with the gut mucosal epithelium [Cruz et al., 1994] and its inherent 

ability to translocate [Lunghdahl et al., 2000]. For a translocation assays the differentiated Caco-2 cells 

are cultured in inserts with a 0.8 µm pore diameter filter containing and the bacteria were inoculated 

into each inner chamber and incubated, samples are collected, after certain periods of time, from each 

outer chamber. 
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ANNEX

      

Figure A1. Calibration curve (A) and growth curve (B) of Escherichia coli K-12 C600 strain, performed 
as described in Chapter 3.1. 

      

Figure A2. Calibration curve (A) and growth curve (B) of Pseudomonas aeruginosa PAO1 strain, 
performed as described in Chapter 3.1. 

      

Figure A3. Average calibration curve (A) and growth curve (B) of Aeromona hydrophila subsp. 
hydrophila (DSM 30187t) strain and 5 Aeromonas isolates, performed as described in Chapter 3.1. 
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Figure A4. Growth curves of Caco-2 cells line at passage 35, performed as described in Chapter 3.2. 
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Figure A5. Adhesion and Invasion abilities of Aeromonas isolates to undifferentiated (4-6 days old) Caco-2 cells, as described in Chapter 3.3.1.  
The results are average ± propagated error.  



 

 

 

Figure A6. Adhesion and Invasion abilities of Aeromonas isolates to differentiated (19-21 days old) Caco-2 cells, as described in Chapter 3.3.1.  
The results are average ± propagated error.  



 

 

 

Figure A7.  Cell-Contact cytotoxicity ability of Aeromonas isolates to undifferentiated (4-6 days old) Caco-2 cells at MOI 100:1, as described in Chapter 3.4.2.  
The results are average ± propagated error.  



 

 

 

Figure A8.  Cell-Contact cytotoxicity ability of Aeromonas isolates to undifferentiated (4-6 days old) Caco-2 cells at MOI 10:1, as described in Chapter 3.4.2.  
The results are average ± propagated error.  



 

 

 

Figure A9.  Extracellular cytotoxicity ability of Aeromonas isolates to undifferentiated (4-6 days old) Caco-2 cells at 4 hours of incubation, as described in Chapter 3.4.1.  
The results are average ± propagated error.  



 

 

 

Figure A10.  Extracellular cytotoxicity ability of Aeromonas isolates to undifferentiated (4-6 days old) Caco-2 cells at 24 hours of incubation, as described in Chapter 3.4.1.  
The results are average ± propagated error.  



 

 

 

Figure A11.  Extracellular cytotoxicity ability of Aeromonas isolates to undifferentiated (4-6 days old) Caco-2 cells at 24 hours of incubation after preheating, as described in 
Chapter 3.4.1. The results are average ± propagated error.  



 

 

Table A1.  Characterization of Aeromonas isolates carried out to date by Barroco (2013) at the Faculty of Veterinary Medicine, University of Lisbon. 

  Virulence genes Phenotype Antibiograms 

Isolates  Sources ASC AHH ALT AEXT ELA LIP FLA AST ACT LIPA HEM GEL Dnase AMC CTX CAZ CRO ETP IPM ATM AK CN TE NA CIP LEV NOR C STX 

AR5 A. hydrophila 30187t + + + - + + + + + + + + + n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

A 5 surfaces (slaughterhouse) - - + - + + + - - + + + + + - - - - - - - - - - - - - - - 

A 11 surfaces (slaughterhouse) - - - - + - + - - + + + + - - - - - - - + - - - - - - - - 

A 13 surfaces (slaughterhouse) + - - + - - + - + + + + + + - - - - - - - - - + - - - - - 

A 26 food (slaughterhouse) - - - - - + + - + + + + + - - - - - - - - - - - - - - - - 

A 31 food (slaughterhouse) - + + - + - + - + + + + + + - - - - - - - - - - - - - - - 

A 53 surfaces (supermarket) - - - - + - + - + + + + + + - - - - - - - - - - - - - - - 

A 62 surfaces (supermarket) - + - - + + - - + + + + + - - - - - - - - - - - - - - - - 

A 78 food (supermarket) - - + - - + + - + - + + + - - - - - - - - - - + - - - - - 

A 92 surfaces (supermarket) - - - - + - - - + + + + + + - - - - - - - - - - - - - - - 

A 97 surfaces (cheese factory) + + + + + + + + + - + + + - - - - - - - - - - - - - - - - 

A 98 surfaces (cheese factory) - + + - + + - + - + + + + - - - - - - - - - - - - - - - - 

A 99 surfaces (cheese factory) - - - - + + + - + + + + + + - - - - - - - - - - - - - - - 

A 101 surfaces (cheese factory) - + + - + + + + + + + + + - - - - - - - - - - - - - - - - 

A 104 surfaces (cheese factory) - - + - + + + - - + + + + - - - - - - - - - - - - - - - - 

A 127 food - - - - - - - - - + + - - - - - - - - - - - - - - - - - - 

A 172 clinic - + + - + + + - + - + - + + - - - - - - - - - - - - - - - 

A 255 clinic - + + - + + - + + - + + + - - - - - - - - - - - - - - - - 

A 258 clinic - - + - + + - - + + + + + - - - - - - - - - - - - - - - - 

A 259 clinic + - - - - - - - - - + + + + - - - - - - - - + + - - - - - 

S 2 water (EPAL) - - + - + - - - + - + + + + - - - - - - - - - - - - - - - 

S 3 water (EPAL) - - - - - - - - + + + + + - - - - - - - - - + + - - - - - 

S 8 water (EPAL) - - - - + + - - + + + + + + - - - - - - - - + + - - + - + 

S 10 water (EPAL) - - + - + + + - - + + + - - - - - - - - - - + + - - + - - 

S 18 water (EPAL) - - - - - + + - - + + + + + - - - - - - - - - + - - - - - 

Virulence genes: ASC (TTSS structural protein - ascV); AHH (β-hemolisina - hlyA); ALT (Aeromona heat-labile cytotonic enterotoxin- alt); AEXT (TTSS effector protein - ADP-Ribosyltransferase 
- aexT); ELA (elastase - ahyB); LIP (lipases and phospholipases - pla/lip/lipH3/alp-1); FLA (flagellin A and B - flaA/B); AST (Aeromonas heat-stable cytotonic enterotoxina - ast); ACT 

(Aeromonas cytotoxic enterotoxina - act). Phenotype: LIPA (lipase); HEM (hemolysin); GEL (gelatinase); DNases. Antibiograms: AK (amicacina); AMC (amoxicilina/clavulanic acid); ATM 
(aztreonam); C (cloranfenicol); CAZ (ceftazidima); CIP (ciprofloxacina); CN (gentamicina); CRO (ceftriaxona); CTX (cefotaxima); ETP (ertapenem); IMP (imipenem); LEV (levofloxacina); NA 

(nalidixic acid); NOR (norfloxacina); STX (trimetoprim/sulfametoxazol); TE (tetraciclina).
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