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Abstract 

In today’s global market, the environment of unpredictable events has imposed a 

competitiveness improvement that requires a greater coordination and collaboration among 

Supply Chain (SC) entities, i.e., an effective Supply Chain Management (SCM). In this context, 

Lean, Agile, Resilient and Green (LARG) strategies emerged as a response. However, 

interoperability issues are always presents in operations among SC entities. From the 

Information Technology (IT) perspective, among all the multi-decisional techniques supporting a 

logistics network, simulation appears as an essential tool that allow the quantitative evaluation 

of benefits and issues deriving from a co-operative environment. 

The present work provides a SC simulation model for analysing the effect of the interoperability 

degree of LARG practices in the SC performance, through Key Performance Indicators (KPI’s) 

such as cost, lead time and service level. The creation of two scenarios with a different point of 

view about the LARG practices allowed to analyse which one contributes to the best SC 

performance. Since some of the inputs were assumed, it was made a sensitivity analysis to 

validate the output of the simulation model. Based on the creation of six types of math 

expressions, it was possible to establish the connection between the effect of the 

interoperability degree of LARG practices and the SC performance. This analysis was applied 

on a case study that was conducted at some entities of a Portuguese automotive SC. The 

software used to develop the simulation model is Arena, which is considered a user-friendly and 

dynamic tool. 

It was concluded that SCM, interoperability and simulation subjects must be applied together to 

help organisations to achieve overall competitiveness, focusing their strategies on a co-

operative environment. 

Keywords: Supply Chain Management; Lean, Agile, Resilient and Green; interoperability; 

simulation; Key Performance Indicators; Arena. 
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Resumo 

No mercado global de hoje, o ambiente de acontecimentos imprevisíveis tem imposto uma 

melhoria da competitividade que exige uma maior coordenação e colaboração entre as 

entidades da cadeia de abastecimento, ou seja, uma gestão da cadeia de abastecimento 

eficaz. Neste contexto, as estratégias Lean, Agile, Resilient and Green (LARG) surgiram como 

uma resposta. No entanto, as questões de interoperabilidade estão sempre presentes nas 

operações entre as entidades da cadeia de abastecimento. Na perspetiva da tecnologia de 

informação, entre todas as técnicas de tomada de decisão que suportam uma rede logística, a 

simulação aparece como uma ferramenta essencial que permite a avaliação quantitativa dos 

benefícios e das questões decorrentes de um ambiente cooperativo. 

O presente trabalho apresenta um modelo de simulação de uma cadeia de abastecimento para 

analisar o efeito do grau de interoperabilidade das práticas LARG no desempenho da cadeia de 

abastecimento, através de indicadores-chave de desempenho como o custo, tempo de 

aprovisionamento e nível de serviço. A criação de dois cenários com um ponto de vista 

diferente acerca das práticas LARG permitiu analisar qual deles contribui para um melhor 

desempenho da cadeia de abastecimento. Uma vez que alguns dados foram estimados, foi 

feita uma análise de sensibilidade para validar o resultado do modelo de simulação. Com base 

na criação de seis tipos de expressões matemáticas, foi possível estabelecer uma ligação entre 

o efeito do grau de interoperabilidade das práticas LARG e o desempenho da cadeia de 

abastecimento. Esta análise foi aplicada num caso de estudo que foi realizado em algumas 

entidades de uma cadeia de abastecimento automóvel Portuguesa. O software usado para 

desenvolver o modelo de simulação é o Arena, que é considerada uma ferramenta dinâmica e 

de fácil utilização. 

Concluiu-se que as áreas da gestão da cadeia de abastecimento, interoperabilidade e 

simulação devem ser conjuntamente aplicadas para ajudar as organizações a alcançar a 

competitividade global, focando as suas estratégias num ambiente cooperativo. 

Palavras-chave: gestão da cadeia de abastecimento; Lean, Agile, Resilient and Green; 

interoperabilidade; simulação; indicadores-chave de desempenho; Arena. 
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1.1. Scope 

1.2. Objectives 

1.3. Methodology 

1.4. Organisation of this dissertation 

Chapter 1. Introduction 

Since the end of the 20
th
 century until today, the creation of collaborative networks, such as 

Supply Chains (SC’s), where suppliers, manufacturers, distributors, retailers and wholesalers 

operate in joint activities and sharing information in real time, has been crucial to achieve global 

success (Espadinha-Cruz, 2012). Strategies as Lean, Agile, Resilient and Green have emerged 

as a response to gain competitiveness towards the demands of the market (Espadinha-Cruz, 

2012). The integration of these four different methodologies on the same SC is very important in 

the strategic point of view (Espadinha-Cruz, 2012). 

However, such complex networks are affected by problems of communication between partners 

and some other kinds of disturbance, like incoordination of activities (Espadinha-Cruz, 2012). 

This kind of disturbance is known by interoperability, i.e., the ability of two or more systems to 

share and use information in order to operate effectively together with the objective to create 

value. Therefore, every SC needs to cooperate in order to have significant positive effects on its 

performance. 

The appearance of simulation turns out to be an essential tool in SC’s management, allowing 

the enhancement of their global efficiency through evaluation and comparison of virtual 

scenarios. The development of Information Technology (IT) over the last decades is turning 

simulation into a high speed and relatively low cost tool. 

This dissertation provides a SC simulation model for the analysis of the effect of the 

interoperability degree of Lean, Agile, Resilient and Green (LARG) practices in the SC 

performance. The model is based on the creation of two different scenarios to analyse which 

one will contribute to the best SC performance, in terms of cost, delivery time and service level 

to customers. 

1.1. Scope 

In the perspective of Supply Chain Management (SCM), which has become very popular in 

recent years, the environment of high volatile markets and unpredictable conditions has 

imposed that competitiveness improvement requires collaborative work and partnerships across 

SC’s. To strengthen their business in the market, organisations have adopted strategies such 

as Lean, Agile, Resilient and Green. However, the strategies themselves do not provide all the 

solutions needed for every environment (Espadinha-Cruz, 2012). Thus, hybrid solutions are 

now the forefront in the struggle to achieve competitiveness and company’s profit (Espadinha-

Cruz, 2012).   
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In the context of LARG, the present dissertation was developed to integrate contradictory 

practices and corresponding Key Performance Indicators (KPI’s). 

The concept of interoperability is associated with information, material and services exchange. 

Every activity between actors occurs according to the adopted SCM strategy and the 

correspondent practices (Espadinha-Cruz, 2012). The alignment of these activities is a 

challenge for companies that deal with complex products, such as automakers (Espadinha-

Cruz, 2012). Thus, in the context of interoperability, it is necessary to identify barriers in 

collaboration to achieve the best quality and service, resulting in lower costs for the final 

customer. 

From the IT perspective, among all the quantitative methods, simulation is undoubtedly one of 

the most powerful techniques to apply, as a Decision Support System (DSS), within a SC 

environment (Terzi & Cavalieri, 2004).The ultimate success of SC simulation, however, is 

determined by a combination of the analyst’s skills, the chain members’ involvement, and the 

modelling capabilities of the simulation tool (Zee & Vorst, 2005). In this dissertation, Arena 

simulation software was used to satisfy the emergence of SCM needs.  

The main focus of the present dissertation is based on the future research work proposed by 

Espadinha-Cruz (2012), whose methodology makes a practical exposition of how to assess 

interoperability in LARG practices using subjective information (Espadinha-Cruz, 2012). The SC 

simulation model provided in this dissertation address the second branch of conceptual 

framework proposed by Espadinha-Cruz (2012), which is related to the question “How do we 

evaluate the effect of the interoperability degree of LARG practices in the SC performance?”. To 

answer this question it is necessary to establish a link between the interoperability degree of 

LARG practices and SC performance, through KPI’s that help monitor the practices’ 

implementation (Espadinha-Cruz, 2012). The combination of the methodology proposed by 

Espadinha-Cruz (2012) and the simulation model developed in this dissertation provide a 

complementary and seamless manner to monitor interoperability throughout the SC 

(Espadinha-Cruz, 2012). 

1.2. Objectives 

The aim of this dissertation lies on the construction of an automotive SC simulation model for 

the analysis of the effect of the interoperability degree of LARG practices in the SC 

performance, through KPI’s such as cost, lead time and service level. The creation of two 

different scenarios allowed to analyse which one contributes to the best SC performance.  

In the first scenario, it will be considered one practice of each paradigm, namely Lean, Agile, 

Resilient and Green. By assigning a different interoperability degree for each one of those four 

practices associated with every interaction between two partners in the automotive SC, it is 

possible to assess which is the best SCM strategy that should be adopted. 
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In the second scenario, it will only be considered one practice that can belong not only to the 

Resilient paradigm, but also to the remaining three paradigms, considering the different 

opinions of the authors that were found in the literature review. Note that these two scenarios 

were only considered to obtain different results in order to evaluate if the Resilient practice 

should be associated to the remaining paradigms. Thus, the question “How do we evaluate the 

effect of the interoperability degree of LARG practices in the SC performance?” is not directly 

related with the number of scenarios considered. 

In order to simulate and compare these scenarios, it was used a simulation software, namely 

Rockwell Arena 9.0. 

1.3. Methodology 

The expected achievements for the present work involve the stages summarised in Figure 1.1. 

The first stage consists only in the analysis of the master’s dissertation of Espadinha-Cruz 

(2012). After defining the objectives based on the future research work proposed by Espadinha-

Cruz (2012), an extensive literature review must be made. 

Therefore, in the next stage the aim is to understand the LARG practices and interoperability 

concepts. This literature review research is conducted using the contributions for the project 

LARG SCM. Then, using the B-on scientific database, Web of Knowledge research platform, 

run repository and some books, it was possible to make an in-depth study in the SC simulation 

area and also complement the information provided by the project LARG SCM. 

After formulate the research questions, the automotive SC conceptual model is designed based 

on a journal article written by Carvalho, Barroso, Machado, Azevedo, & Cruz-Machado (2012). 

Some data and model parameters were defined based on that journal article and the remaining 

were assumed based on the information encountered in the conducted research. 

The fourth stage focuses in the conversion of the automotive SC conceptual model in the 

simulation model, with the help of simulation software, namely Rockwell Arena 9.0 that uses a 

SIMulation ANalysis (SIMAN) programming language. 

There follows the verification stage, which consists in evaluating if the simulation model is 

consistent with the designed conceptual model. It is also fundamental to understand if the 

correct model was built, i.e., validate the output of the simulation model. 

Finally, the results must be analysed to draw the conclusions regarding the purpose of the 

entire dissertation. The future research work should not be ignored, because it will be 

interesting to develop other research questions that were not considered for the present work. 
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Figure 1.1 Outline of the dissertation  
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1.4. Organisation of this dissertation 

The dissertation is organised in the following chapters: 

 The first chapter provides a brief introduction, regarding the scope of the study, the 

objectives and the research methodology; 

 Chapters 2 and 3 refer to the literature review of the topics SCM and interoperability, 

respectively; 

 In chapter 4, a brief literature review about SC simulation is presented. Furthermore, 

this chapter describes the automotive SC along with the conceptual model and every 

data and parameters that are assumed for the simulation model development. Finally, 

the simulation model results are presented, followed by a sensibility analysis; 

 The main conclusions and suggested research work are presented in the final chapter; 

 The dissertation ends with the references used in literature review. 
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2.1. Paradigms and practices review 

2.1.1. Lean 

2.1.2. Agile 

2.1.3. Resilient 

2.1.4. Green 

2.2. Paradigms combination 

2.3. Characteristics 

2.4. Performance measurement 

Chapter 2. Supply Chain Management 

In today’s global market, organisations have focused their strategies on inter-functional and 

inter-organisational integration and coordination across the intricate network of business 

relationships (Lambert & Cooper, 2000; Min & Zhou, 2002). This new way of doing business 

allows answering to an increasing rate of change, providing the right products and services on 

time, with the required specifications, at the right place to the customer (Carvalho, Azevedo, & 

Cruz-Machado, 2011). In this context, Supply Chains (SC’s) have become a key concept 

among the organisations to achieve overall competitiveness. 

A SC can be described as a network that links various agents, from the customer to the 

supplier, through manufacturing and services so that the flow of materials, money and 

information can be effectively managed to meet the business requirements (Stevens, 1989). In 

other words, extends from the original supplier or source to the ultimate customer (Blanchard, 

2010). 

Currently there is the assumption that SC’s compete instead of organisations (Christopher & 

Towill, 2000). So, the term Supply Chain Management (SCM) appears to determine, mainly by 

the market, the success or failure of SC. In literature review there are present many definitions 

of SCM, in which some of them are presenting in Table 2.1. All these definitions have some 

concepts in common, such as strategic collaboration, business process management and 

coordination, production and inventory management and Value Added (VA) for final customer 

(Cabral, 2011). 

In order to satisfy the customer requirements, which are continuously changing, businesses 

must adapt their strategies to live and succeed. However, the increasing of the VA is only 

possible with an effective and efficient management.  
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Table 2.1 Definitions of SCM 

Definition Source 

“Process for designing, developing, optimising and managing the 

internal and external components of the supply system, including 

material supply, transforming materials and distributing finished 

products or services to customers, that is consistent with overall 

objectives and strategies.” 

(Spekman, Jr, & Myhr, 

1998) 

“The systemic, strategic coordination of the traditional business 

functions and the tactics across these business functions within a 

particular company and across businesses within the SC, for the 

purposes of improving the long-term performance of the individual 

companies and the SC as a whole.” 

(Mentzer et al., 2001) 

“Based on the integration of all activities that add value to 

customers starting from product design to delivery.” 

(Gunasekaran & Ngai, 

2004) 

“The coordination of production, inventory, location, and 

transportation among the participants in a SC to achieve the best 

mix of responsiveness and efficiency for the market being served.” 

(Hugos, 2006) 

“A set of approaches utilized to efficiently integrate suppliers, 

manufacturers, warehouses, and stores, so that merchandise is 

produced and distributed at the right quantities, to right locations, 

and at the right time, in order to minimize system wide costs while 

satisfying the service level requirements.” 

(Simchi-Levi, Kaminsky, 

& Simchi-Levi, 2008) 

2.1. Paradigms and practices review 

In the definition of SCM there are four paradigms that have emerged to achieve the upmost 

competitiveness. The Lean, Agile, Resilient and Green (LARG) paradigms have thus far been 

explored individually, or by integrating only a couple, e.g., Lean vs. Agile (Naylor, Naim, & 

Berry, 1999) or Lean vs. Green (Kainuma & Tawara, 2006). Nevertheless, the ability to integrate 

these four different management paradigms may help SC to become more efficient, streamlined 

and sustainable (Carvalho, et al., 2011). 

The following sections describe each paradigm from a SCM perspective and a set of principles 

(SCM practices) based on literature review (Azevedo, Carvalho, & Cruz-Machado, 2011a) are 

pointed out. All practices suggested contributes to a SC with less waste (Non-Value Added, 

NVA, activities), more responsive to the customer requirements, able to overcome disruption 

conditions and also to reduce environmental impacts (Azevedo, Carvalho, & Cruz-Machado, 

2011b).  
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The implementation of these practices, which can belong to one or more paradigm, and the 

measurement of different impact on each paradigm, can improve SCM performance (Cabral, 

2011). 

2.1.1. Lean 

The Lean Management (LM) paradigm, developed by Ohno (1998) of the Toyota Motor 

Corporation in Japan, forms the basis for the Toyota Production System with two main pillars: 

‘autonomation’ and ‘Just-In-Time (JIT)’ production. 

There are many definitions of Lean philosophy in literature and all of them have the same 

principles. According to Womack, Jones, & Roos (1991), the Lean paradigm is an approach 

which provides a way to do more with less human effort, equipment, time and space, while 

coming closer to customer requirement. Motwani (2003) argued that LM is an enhanced of 

mass production. Reichhart & Holweg (2007) had extended the concept of Lean production to 

the downstream or distribution level: “We define Lean distribution as minimizing waste in the 

downstream SC, while making the right product available to the end customer at the right time 

and location”. 

Several authors have highlighted Lean key principles, such as: respect for people (Treville & 

Antonakis, 2006), quality management (Brown & Mitchell, 1991), pull production (Brown & 

Mitchell, 1991) and mistake-proofing (Stewart & Grout, 2001). At the operational level, these 

principles led to a number of techniques, like: Kanban, 5S, visual control, takt-time, Poke-yoke 

and Single Minute Exchange of Dies (SMED) (Melton, 2005). In addition to these techniques 

manufacturing practices, such as JIT, Total Productive Maintenance (TPM) and Total Quality 

Management (TQM) are used to eliminate various types of waste (Melton, 2005). 

Table 2.2 shows a set of Lean practices that was selected to assess various levels of the SC to 

contribute to waste elimination and cost reduction. 

Table 2.2 Lean practices 

SCM practice Source 

L1: Customer relationships 
(Anand & Kodali, 2008; Berry, Christiansen, 

Bruun, & Ward, 2003; Doolen & Hacker, 2005) 

L2: JIT (Focal Firm, FF) 

(Anand & Kodali, 2008; Berry, et al., 2003; 

Gurumurthy & Kodali, 2009; Mahidhar, 2005; 

Shah & Ward, 2003) 

L3: JIT (FF       First tier Costumer, 1tC) 

(Anand & Kodali, 2008; Berry, et al., 2003; 

Gurumurthy & Kodali, 2009; Mahidhar, 2005; 

Shah & Ward, 2003) 
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SCM practice Source 

L4: JIT (First tier Suppliers, 1tS       FF) 

(Anand & Kodali, 2008; Berry, et al., 2003; 

Gurumurthy & Kodali, 2009; Mahidhar, 2005; 

Shah & Ward, 2003) 

L5: Pull flow 

(Anand & Kodali, 2008; Doolen & Hacker, 2005; 

Gurumurthy & Kodali, 2009; Mahidhar, 2005; 

Shah & Ward, 2003) 

L6: Supplier relationships/long-term 

business relationships 

(Anand & Kodali, 2008; Berry, et al., 2003; 

Gurumurthy & Kodali, 2009; Mahidhar, 2005; 

Shah & Ward, 2003) 

L7: TQM 

(Berry, et al., 2003; Doolen & Hacker, 2005; 

Gurumurthy & Kodali, 2009; Mahidhar, 2005; 

Shah & Ward, 2003) 

2.1.2. Agile 

The SC objective is to delivering the right product, in the right quality, in the right condition, in 

the right place, at the right time, for the right cost (Azevedo, et al., 2011a). To overcome these 

conditions, SC’s must be adaptable to future changes to respond appropriately to market 

requirements and changes (Azevedo, et al., 2011a). In this context, the concept of Agile 

manufacturing was coined by a group of researchers at Iaccoca Institute of Lehigh University in 

USA, in 1991 (Yusuf, Sarhadi, & Gunasekaran, 1999). 

The origins of agility as a business concept lies in flexibility, named Flexible Manufacturing 

Systems (Christopher, 2000). Agility is a business-wide capability that embraces organisational 

structures, Information Systems (IS), logistics processes, and, in particular, mindsets 

(Christopher, 2000). 

In terms of contributions of agility to SC, Agarwal, Shankar, & Tiwari (2007) have shown that the 

disposition of Agile SCM paradigm depends on the following variables: market sensitiveness, 

delivery speed, data accuracy, new product introduction, centralized and collaborative planning, 

process integration, use of Information Technology (IT) tools, lead time reduction, service level 

improvement, cost minimization, customer satisfaction, quality improvement, minimizing 

uncertainly, trust development, and minimizing resistance to change. In the most general sense, 

according to Ngai, Chau, & Chan (2011), SC agility is defined as the capability of SC functions 

to provide a strategic advantage by converting unexpected market uncertainties and potential 

and actual disruptions into competitive opportunities through assembling requisite assets, 

knowledge, and relationships with speed and surprise. 
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Nonetheless, a SCM paradigm should not be considered as a unique solution to a system. In 

this perspective, the designation Leagile emerged to divide the part of the SC that responds 

directly to the customer (demand is variable and high product variety) from the part that uses 

forward planning and strategic stock to buffer against the demand variability (demand is smooth 

and products are standard) (Naylor, et al., 1999). This means the Lean principles are followed 

up to the decoupling point and Agile practices are followed after that point. 

Agile practices reflect the ability to respond quickly to unpredictable changes. Table 2.3 shows 

some Agile practices that can be implemented in different levels of the SC. 

Table 2.3 Agile practices 

SCM practice Source 

A1: Ability to change delivery times of 

supplier’s order 
(Swafford, Ghosh, & Murthy, 2008) 

A2: Centralized and collaborative planning (Agarwal, et al., 2007) 

A3: To increase frequencies of new product 

introduction 

(Agarwal, et al., 2007; C.-T. Lin, Chiu, & Chu, 

2006; Swafford, et al., 2008) 

A4: To reduce development cycle times (Swafford, et al., 2008) 

A5: To speed in improving customer service (Agarwal, et al., 2007; Swafford, et al., 2008) 

A6: To use IT to coordinate/integrate 

activities in design and development 
(Agarwal, et al., 2007; Swafford, et al., 2008) 

A7: To use IT to coordinate/integrate 

activities in manufacturing 

(Agarwal, et al., 2007; C.-T. Lin, et al., 2006; 

Swafford, et al., 2008) 

2.1.3. Resilient 

Many organisations designed their SC’s with the principal objective of minimizing cost or 

optimising service (Tang, 2006). However, today’s market is continuously affected by 

environmental and external actions, which inserts the concept of resilience as a way to cope 

with higher levels of turbulence and volatility. Resilience is seen in materials science and 

engineering as the ability of a material to return to its original state, when it is changed or 

deformed elastically. 

This concept was adapted to a SCM perspective, defining it as the ability of a system to return 

to its original state or move to a new, more desirable state after being disturbed (Christopher & 

Peck, 2004). Using multidisciplinary perspectives, SC resilience is the adaptive capability of the 

SC to prepare for unexpected events, respond to disruptions, and recover from them by 

maintaining continuity of operations at the desired level of connectedness and control over 

structure and function (Ponomarov & Holcomb, 2009).  
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The goal of SC resilience analysis and management is to prevent the shifting to undesirable 

states, i.e., the ones where failure modes could occur (Azevedo, et al., 2011b). In SC’s 

systems, the purpose is to react efficiently to the negative effects of disturbances (which could 

be more or less severe) (Azevedo, et al., 2011b). The aim of resilience strategies has two 

manifolds (Haimes, 2006): 

 To recover the desired values of the states of a system that has been disturbed, within 

an acceptable time period and at an acceptable cost; 

 To reduce the effectiveness of the disturbance by changing the level of the 

effectiveness of a potential threat. 

The principles of designing resilience in SC are outlined by (Christopher & Peck, 2004): 

selecting SC strategies that keep several options open; re-examining the ‘efficiency vs. 

redundancy’ trade-off; developing collaborative working across SC’s to help mitigating risk; 

developing visibility to a clear view of upstream and downstream inventories, demand and 

supply conditions, and production and purchasing schedules; improving SC velocity through 

streamlined processes, reduced in-bound lead times and NVA time reduction. 

However, resilience is not always desirable if an organisation intends to increase profitability. 

For instance, Lean paradigm purpose is to have a low inventory level for reducing inventory 

cost, which makes it less Resilient. Therefore, the implementation of hybrid solutions that 

combine the previous paradigms with resilience could be difficult in some production scenarios 

(Espadinha-Cruz, 2012). 

Table 2.4 shows a set of Resilient practices that can be implemented in different level in the 

chain, reflecting the entity ability to cope with unexpected disturbances. 

Table 2.4 Resilient practices 

SCM practice Source 

R1: Creating total SC visibility (Iakovou, Vlachos, & Xanthopoulos, 2007) 

R2: Developing visibility to a clear view of 

downstream inventories and demand conditions 
(Christopher & Peck, 2004) 

R3: Flexible supply base/flexible sourcing (Tang, 2006) 

R4: Flexible transportation (Tang, 2006) 

R5: Lead time reduction (Christopher & Peck, 2004; Tang, 2006) 

R6: Sourcing strategies to allow switching of 

suppliers 
(Rice & Caniato, 2003) 

R7: Strategic stock 
(Christopher & Peck, 2004; Iakovou, et 

al., 2007; Tang, 2006) 
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2.1.4. Green 

In the past decades, environmental issues and global warming are becoming a subject of 

concern to organisations. Environment is the main focus of Green Supply Chain Management 

(GSCM) but, instead of focusing on the way environmental agents affect SC’s, Green concerns 

with the effects of SC’s activity on environment (Rao & Holt, 2005). The increased pressure 

from society and environmentally conscious consumers had lead to rigorous environmental 

regulations, such as the Waste Electrical and Electronic Equipment Directive in the European 

Union, forcing the manufacturers to effectively integrate environmental concerns into their 

management practices (Paulraj, 2009; Rao & Holt, 2005). 

Although ecologically adopted legislative requirements, ecological responsiveness also led to 

sustained competitive advantage, improving their long-term profitability (Paulraj, 2009). GSCM 

has emerged as an organisational philosophy by which to achieve corporate profit and market-

share objectives by reducing environmental risks and impacts while improving the ecological 

efficiency of such organisations and their partners (Rao & Holt, 2005; Sarkis, 2003). 

According to Srivastava (2007), GSCM is an integrating environment thinking into SCM, 

including product design, material sourcing and selection, manufacturing processes, delivery of 

the final product to the consumers as well as end-of-life management of the product after its 

useful life. GSCM can reduce the ecological impact on industrial activity without sacrificing 

quality, cost, reliability, performance or energy utilization efficiency; meeting environmental 

regulations to not only minimize ecological damage but also to ensure overall economic profit 

(Srivastava, 2007). 

In term, the impact of the antecedents and drivers for a Green SC may be diverse across 

different SC’s with different manufacturing processes, with different raw materials, conversion 

processes, product characteristics, logistics/reverse logistics activities (Routroy, 2009). 

The GSCM practices should aim at the reduction of environment impact. Table 2.5 shows some 

GSCM practices. 

Table 2.5 Green practices 

SCM practice Source 

G1: Environmental collaboration with suppliers 

(Holt & Ghobadian, 2009; Hu & Hsu, 

2010; Lippmann, 1999; Vachon, 2007; 

Zhu, Sarkis, & Lai, 2007, 2008a, 2008b) 

G2: Environmental collaboration with the 

customer 

(Holt & Ghobadian, 2009; Vachon, 2007; 

Zhu, et al., 2007, 2008a) 
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SCM practice Source 

G3: Environmental monitoring upon suppliers 

(Holt & Ghobadian, 2009; Hu & Hsu, 

2010; Paulraj, 2009; Vachon, 2007; Zhu, 

et al., 2008a) 

G4: ISO 14001 certification 

(Holt & Ghobadian, 2009; Hu & Hsu, 

2010; Rao & Holt, 2005; Vachon, 2007; 

Zhu, et al., 2007, 2008a, 2008b) 

G5: Reverse logistics 

(Hu & Hsu, 2010; Lippmann, 1999; Rao & 

Holt, 2005; Routroy, 2009; Vachon, 2007; 

Zhu, et al., 2007) 

G6: To reduce energy consumption 

(González, Sarkis, & Adenso-Díaz, 2008; 

Holt & Ghobadian, 2009; Paulraj, 2009; 

Rao & Holt, 2005) 

G7: To reuse/recycling materials and packaging 
(Holt & Ghobadian, 2009; Paulraj, 2009; 

Rao & Holt, 2005; Vachon, 2007) 

2.2. Paradigms combination 

In today’s business environment the challenge is to integrate the previous four paradigms on 

the same SC. It may be difficult to categorize an organisation as being Lean, Agile, Resilient or 

Green. Therefore, it is essential to extend knowledge of the trade-offs between these four 

paradigms, assessing their contribute for efficiency, streamlining and sustainability of SC’s. 

Table 2.6 presents the principal attributes of Lean, Agile, Resilient and Green Supply Chains 

(LARG SC’s), based on 10 attributes. 

Table 2.6 LARG attributes (Carvalho, et al., 2011) 

Attributes 

SCM paradigm 

Lean Agile Resilient Green 

Purpose 

Focus on cost 

reduction and 

flexibility, for 

already available 

products through 

continuous 

elimination of 

waste or NVA 

activities across 

the chain. 

Understands 

customer 

requirements by 

interfacing with 

customers and the 

market are being 

adaptable to 

future changes. 

System ability to 

return to its 

original state or to 

a new, more 

desirable one, 

after experiencing 

a disturbance, and 

avoiding the 

occurrence or 

failure modes. 

Focuses on 

sustainable 

development – the 

reduction of an 

ecological impact on 

industrial activity. 
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Attributes 

SCM paradigm 

Lean Agile Resilient Green 

Manufacturing 

focus 

Maintains a high 

average utilization 

rate uses JIT 

practices, “pulling” 

the goods through 

the system based 

on demand. 

Has the ability to 

respond quickly to 

varying customer 

needs (mass 

customization); it 

deploys excess 

buffer capacity to 

respond to market 

requirements. 

The emphasis is 

on flexibility 

(minimal batch 

sizes and capacity 

redundancies); 

the schedule 

planning is based 

on shared 

information. 

Focuses on efficiency 

and waste reduction 

for environmental 

benefit and 

development of 

remanufacturing 

capabilities to 

integrate 

reusable/remanufactu

red components.  

Alliance (with 

suppliers and 

customers) 

May participate in 

traditional 

alliances such as 

partnerships and 

joint ventures at 

the operational 

level. 

Exploits a 

dynamic type of 

alliance known as 

“virtual 

organisation” for 

product design. 

SC partners join 

an alliance 

network to 

develop security 

practices and 

share knowledge. 

Inter-organisational 

collaboration 

involving transferring 

or/and disseminating 

Green knowledge to 

partners and 

costumer 

cooperation. 

Organisational 

structure 

Uses a static 

organisational 

structure with few 

levels in the 

hierarchy. 

Creates virtual 

organisations with 

partners that vary 

with different 

product offerings 

that change 

frequently. 

Creates a SC risk 

management 

culture. 

Creates an internal 

environmental 

management system 

and develops 

environmental criteria 

for risk-sharing. 

Approach to 

choosing 

suppliers 

Supplier attributes 

involve low cost 

and high quality. 

Supplier attributes 

involve speed, 

flexibility, and 

quality. 

Flexible sourcing. Green purchasing. 
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Attributes 

SCM paradigm 

Lean Agile Resilient Green 

Inventory 

strategy 

Generates high 

turns and 

minimizes 

inventory 

throughout the 

chain. 

Makes decisions 

in response to 

customer 

demands. 

Strategic 

emergency stock 

in potential critical 

points. 

Introduces 

reusable/remanufactu

red parts in the 

material inventory; 

reduces 

replenishment 

frequencies to 

decrease carbon 

dioxide emissions; 

reduces redundant 

materials. 

Lead time 

focus 

Shortens lead 

time as long as it 

does not increase 

cost. 

Invests 

aggressively in 

ways to reduce 

lead times. 

Reduces lead 

time. 

Reduces 

transportation lead 

time as long it does 

not increase carbon 

dioxide emissions. 

Product design 

strategy 

Maximizes 

performance and 

minimizes cost. 

Designs products 

to meet individual 

customer needs. 

Postponement. 

Eco-design and 

incorporation of 

complete material life 

cycle for evaluating 

ecological risks and 

impact. 

Product variety Low. High. High. 

For a multiproduct 

analysis 

environmental 

management 

decisions become 

increasingly complex. 

Market 

Serves only the 

current market 

segments, with a 

predictable 

demand. 

Acquires new 

competencies, 

develops new 

product lines, and 

opens up new 

markets with a 

volatile demand. 

Have the 

capabilities to act 

on and anticipate 

changes in 

markets and 

overcome 

demand risk. 

Demands more 

environmentally-

friendly practices. 

From Table 2.6, it is possible to identify some interesting conflicts between the paradigms, for 

instance, Lean, Agile and Resilient paradigms require low inventory, but Resilience demands 

the existence of enough inventories to react to the unexpected disturbances.  
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In terms of product variety, an Agile and Resilient organisation must produce a high variety of 

products, while Lean paradigm is focused to produce improvements in resource productivity. As 

concerns about the Green, multiproduct analysis depends on the environmental impact. 

Although these four paradigms seem to be contradictory, it would be ideal to combine two or 

more paradigms. The managers have to overcome these challenges, reconciling divergent 

paradigms to find the best strategies for their SC’s. 

2.3. Characteristics 

To develop a fully integrated SC, it is necessary the evaluation of the paradigms practices 

contribution for SC performance. Since it would be difficult to analyse all possible relationships 

between performance measures and the paradigm implementation (designed by “management 

characteristics”), the study was limited to the principal paths between the Key Performance 

Indicators (KPI’s) and management characteristics (Carvalho, et al., 2011). 

Figure 2.1 contains the causal diagram with the performance indicators, namely service level, 

lead time and cost, and management characteristics relationships. 

 

 

 

 

 

 

 

 

 

Figure 2.1 Performance indicators and management characteristics relationships (Carvalho, et al., 
2011) 

The causal diagram represented in Figure 2.1 depicts that, for example, the KPI “service level” 

is affected positively by the replenishment frequency (it increases the capacity to fulfil rapidly 

the material needs in SC) (Holweg, 2005), capacity surplus (a slack in resources will increases 

the capacity for extra orders production) (Jeffery, Butler, & Malone, 2008) and integration level 

(the ability to co-ordinate operations and workflow at different tiers of the SC allow to respond to 

changes in customer’ requirements) (Gunasekaran, Lai, & Edwincheng, 2008). The lead time 

reduction improves the service level (Agarwal, et al., 2007). 

The mark +/- is used to show that the inventory level has two opposite effects in the service 

level. Since it increases materials availability a higher service level is expected (Jeffery, et al., 

2008). But this relation happens only under stable customer demands (Carvalho, et al., 2011). 
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High inventory levels generate uncertainties (Vorst & Beulens, 2002), leaving the SC more 

vulnerable to sudden changes (Marley, 2006), and therefore reducing the service level in 

volatile conditions. There are some relationships between the management characteristics, for 

instance, the inventory level is affected negatively by the increasing of the integration level 

(since it increases the procurement flexibility, minimizing the need for material buffers), 

decreasing the flexibility to meet current customers’ demand (Carvalho, et al., 2011). This 

impact will reflect in Lean (we should have low inventory level to decrease the carrying cost) 

and Resilient (with low inventory level, we lose our capacity to respond to unexpected 

disruptions) paradigms and/or perhaps in Green (Cabral, 2011). 

The trade-offs between LARG paradigms must be understood to help companies and SC’s to 

become more efficient, streamlined and sustainable (Carvalho, et al., 2011). To this end, it is 

necessary to develop a deep understanding of the relationships (conflicts and commitments) 

between the LARG paradigms, exploring and researching their contribute for the sustainable 

competitiveness of the overall production systems in the SC (Carvalho, et al., 2011). 

Table 2.7 shows an overview of main synergies and divergences between the LARG 

paradigms. 

Table 2.7 Paradigms synergies and divergences overview (Carvalho, et al., 2011) 

 Lean Agile Resilient Green  

Information frequency    - 

S
y
n

e
rg

ie
s

 

Integration level     

Production lead time     

Transportation lead time     

Capacity surplus     D
iv

e
rg

e
n

c
e

s
 

Inventory level     

Replenishment frequency     

There are evidences that the LARG paradigms are completed by each other (Carvalho, et al., 

2011). The implementation of these paradigms in the SC creates synergies in the way that 

some SC characteristics should be managed, namely, “information frequency”, “integration 

level”, “production lead time” and “transportation lead time” (Carvalho, et al., 2011). However, 

the impact of each paradigm implementation in the characteristic’s magnitude may be different 

(Carvalho, et al., 2011). For example, the Lean paradigm seeks compulsively the reduction of 

production and transportation lead times to reducing the total lead time and minimizing the total 

waste (Carvalho, et al., 2011).  
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However, the Resilient paradigm, although it prescribes this reduction in lead times, it is not so 

compulsive, since the objective is to increase the SC visibility and capability to respond to 

unexpected disturbance (Carvalho, et al., 2011). 

2.4. Performance measurement 

The performance evaluation is an indispensable management tool to better SCM. Hence, 

performance measures are established to achieve goals and are provided with the intent to 

monitor, guide and improve across the different entities on the SC, and can encompass a 

variety of different metrics (Espadinha-Cruz, 2012). Research contributions from Azevedo, et al. 

(2011b) provide a set of performance measures that can be seen in Table 2.8. 

Table 2.8 SC performance measures (Azevedo, et al., 2011b) 

 Measures Metrics Source 

E
c
o

n
o

m
ic

 P
e

rf
o

rm
a
n

c
e

 

Cost 

Cost per operating hour 
(Pochampally, Nukala, & 

Gupta, 2009) 

Manufacturing cost 
(Christiansen, Berry, Bruun, 

& Ward, 2003) 

New product flexibility (Pochampally, et al., 2009) 

Efficiency 
Operating expenses 

(Jiang, Frazier, & Prater, 

2006) 

Overhead expense (Jiang, et al., 2006) 

Environmental costs 

Costs for purchasing 

environmentally friendly 

materials 

(Zhu, Sarkis, & Geng, 2005) 

Cost of scrap/rework (Christiansen, et al., 2003) 

Disposal costs (Tsai & Hung, 2009) 

Fines and penalties 
(Hervani, Helms, & Sarkis, 

2005) 

R & D expenses ratio (Pochampally, et al., 2009) 

Recycling cost = transport 

+ storage costs 
(Tsai & Hung, 2009) 

Environmental revenues 

Cost avoidance from 

environmental action 
(Hervani, et al., 2005) 

Recycling revenues (Hervani, et al., 2005) 
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 Measures Metrics Source 

Revenues from ‘green’ 

products 
(Hervani, et al., 2005) 

E
n

v
ir

o
n

m
e
n

ta
l 

P
e
rf

o
rm

a
n

c
e

 

Business wastage 

Hazardous and toxic 

material output 

(Hervani, et al., 2005; Zhu, et 

al., 2005) 

Percentage of materials 

recycled/re-used 
(Beamon, 1999) 

Percentage of materials 

remanufactured 
(Hervani, et al., 2005) 

Solid and liquid wastes (Zhu, et al., 2005) 

Total flow quantity of scrap 
(Beamon, 1999; Tsai & 

Hung, 2009) 

Emissions 

Air emission (Zhu, et al., 2005) 

Energy consumption 
(Hervani, et al., 2005; Zhu, et 

al., 2005) 

Green house gas 

emissions 
(Hervani, et al., 2005) 

Green image 

Number of 

fairs/symposiums related to 

environmentally conscious 

manufacturing the 

organisation participate 

(Pochampally, et al., 2009) 

O
p

e
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o

n
a
l 

P
e
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o
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a
n

c
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Customer satisfaction 

After-sales service 

efficiency 
(Pochampally, et al., 2009) 

Out-of-stock ratio (Kainuma & Tawara, 2006) 

Rates of customer 

complaints 

(Cai, Liu, Xiao, & Liu, 2009; 

Soni & Kodali, 2009) 

Delivery 

Delivery reliability (Soni & Kodali, 2009) 

On time delivery 
(Pochampally, et al., 2009; 

Soni & Kodali, 2009) 

Responsiveness to urgent 

deliveries 
(Soni & Kodali, 2009) 

Inventory levels 
Finished goods equivalent 

units 

(Goldsby, Griffis, & Roath, 

2006) 

Environmental revenues 
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 Measures Metrics Source 

Level of safety stocks (Sheffi & Rice, 2005) 

Order-to-ship (Goldsby, et al., 2006) 

Quality 

Customer reject rate (Christiansen, et al., 2003) 

In plant defect fallow rate 
(Christiansen, et al., 2003; 

Hugo & Pistikopoulos, 2005) 

Increment products quality (Pochampally, et al., 2009) 

Time 

Cycle times (Martin & Patterson, 2009) 

Delivery lead time (Soni & Kodali, 2009) 

Lead time (Naylor, et al., 1999) 

 

Inventory levels 

O
p

e
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o

n
a
l 
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e
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o

rm
a
n

c
e
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3.1. Concept review 

3.2. Business interoperability 

3.3. Interoperability measurement 

3.4. Perspectives of interoperability 

3.4.1.  Syntax 

3.4.2.  Semantics 

3.4.3.  Pragmatics 

Chapter 3. Interoperability 

Interoperability issues arise whenever systems or organisations need to exchange information 

and work together to achieve common goals (Espadinha-Cruz, 2012). In today’s economy, 

networked business models are becoming an indisputable reality which allows organisations to 

offer innovate products and services and the efficient business conduction (Legner & Lebreton, 

2007). However, there are many barriers in internal and external relationships, namely 

conceptual, technological and organisational. 

In Supply Chain Management (SCM) context, it is needed to be as efficient as possible in the 

planning and execution processes, in order to have an internal and external stable network 

(Espadinha-Cruz, 2012). However, even in a well-structured and integrated network, 

interoperability issues are always presents (Espadinha-Cruz, 2012). 

Interoperability has been often discussed from a purely technical perspective, focusing on 

technical standards and Information Systems (IS) architectures (Legner & Lebreton, 2007). 

During its research, Legner & Lebreton (2007) feel that there was a lack of systematic analysis 

of strategic, organisational and operational issues associated with interoperability. Most of 

publications have explored interoperability in specific industry domains where compatibility is 

still low, such as: public sector (Guijarro, 2007; Kaliontzoglou, Sklavos, Karantjias, & Polemi, 

2005; Otjacques, Hitzelberger, & Feltz, 2007; Roy, 2006), health care (Eckman, Bennett, 

Kaufman, & Tenner, 2007; Egyhazy & Mukherji, 2004), manufacturing (Brunnermeier & Martin, 

2002; H.-K. Lin, Harding, & Shahbaz, 2004) and telecommunications (Moseley, Randall, & 

Wiles, 2004). 

3.1. Concept review 

In literature review, several definitions of the concept of interoperability exist. This concept has 

been constantly varying as the concern for the subject increases (Espadinha-Cruz, 2012). Most 

organisations extend this preoccupation to business level (Espadinha-Cruz, 2012). 

Some of the definitions found in literature are presented in Table 3.1.  
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Table 3.1 Interoperability definitions 

Definition Source 

“The ability of two or more systems or components to exchange 

information and to use the information that has been exchanged.” 
(IEEE, 1990) 

“The capability to communicate, execute programs, or transfer data 

among various functional units in a manner that requires the user to 

have little or no knowledge of the unique characteristics of those units.” 

(ISO, 1993) 

“The ability of a system to communicate with peer systems and access 

their functionality.” 
(Vernadat, 1996) 

“The ability of systems, units, or forces to provide services to and 

accept services from other systems, units, or forces, and to use the 

services so exchanged to enable them to operate effectively together.” 

(DoD, 1998) 

“Ability of interaction between enterprise software applications.” (IDEAS, 2003) 

“The ability of information and communication technology systems and 

of the business processes they support to exchange data and to 

enable sharing of information and knowledge.” 

(IDA, 2004) 

“(1) The ability to share information and services; 

 (2) The ability of two or more systems or components to exchange and 

use information; 

 (3) The ability of systems to provide and receive services from other 

systems and to use the services so interchanged to enable them to 

operate effectively together.” 

(OpenGroup, 2009) 

Looking at all these definitions, one can deduce that the interoperability is the ability of two or 

more systems to share and use information in order to operate effectively together with the 

objective to create value. Nevertheless, to DoD (1998) interoperability is more than systems and 

interaction with systems to electronic exchange information. In this definition it is also exposed 

the human perspective. These perspectives have been extended to the enterprise reality, 

enclosing Information Technology (IT) structures, business processes and strategy (Espadinha-

Cruz, 2012). 

3.2. Business interoperability 

The concept of business interoperability has emerged as an evolution in the contents studied in 

the various approaches, allowing to face major challenges (Espadinha-Cruz, 2012).  
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In the context of the ATHENA project, business interoperability is defined as “the organisational  

and operational ability of an enterprise to cooperate with its business partners and to efficiently 

establish, conduct and develop IT-supported business relationships with the objective to create 

value” (ATHENA, 2006). Based on this definition, business interoperability involves specific 

characteristics of the inter-organisational design of a company’s external relationships 

(ATHENA, 2006). It extends the more technical focussed notion of interoperability to cover 

organisational and operational aspects of setting up and running IT-supported relationships 

(ATHENA, 2006). As such, business interoperability builds on the concept of networkability 

(Osterle, Fleisch, & Alt, 2001; Wigand, Picot, & Reichwald, 1997) which is a continuation of 

coordination theory and sees coordination as the management of relationships of dependence 

(ATHENA, 2006). 

Figure 3.1 depicts the hierarchical nature of business interoperability that most architectural and 

model based approaches to the subject stress at (Zutshi, 2010). 

Figure 3.1 Different aspects of interoperability (ATHENA, 2006) 

This figure shows that any model of business interoperability would comprise of the strategy at 

the highest level, followed by business process and the IS architecture coming at the lowest 

level (Zutshi, 2010). Business interoperability requires the multi-layered collaboration with each 

level complementing the other for the smooth functioning of the overall collaboration (Zutshi, 

2010). 

The increasing use of IT had led to various interoperability issues that had to be solved in order 

to achieve seamlessly integrated collaboration (Legner & Lebreton, 2007). This direct to various 

approaches to interoperability to pass through several stages: syntactic, semantic and 

pragmatic (Espadinha-Cruz, 2012).  
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3.3. Interoperability measurement 

The measurement of interoperability is part of the sensitive analysis of identification and 

improvement of problems of interoperability (Espadinha-Cruz, 2012). In the context of business 

interoperability, Legner & Lebreton (2007) argue that research efforts must be spent in finding 

out which level of interoperability a firm struggle for. The first proposed step is to define where a 

firm currently is and where it should be (Legner & Lebreton, 2007). For this purpose, 

interoperability frameworks, such as DoD (1998) and EIF (2004), already provide a concept to 

perform such kind of assessment but the determination of the target level of interoperability still 

remains, to a greater extent, heuristic. For instance, in a strongly IT-supported automotive 

Supply Chain (SC), interoperability level is expected to be high, in order to deal with the 

complexity of products (Espadinha-Cruz, 2012). 

This considerations lead to the introduction of the concept of optimal interoperability 

(Espadinha-Cruz, 2012). Since is not possible to assign a target to optimal level of 

interoperability valid for all types of collaboration, this level should be established for each type 

of business (Espadinha-Cruz, 2012). For example, IS in the tourism industry especially related 

to hotel booking cannot be so tightly integrated as tourism agencies want to target the maximum 

reach of hotels and lodges (Zutshi, 2010). 

In the literature, interoperability measurement is addressed by two different kinds: qualitative 

and quantitative. Whereas the first approach refers to model-driven approaches, the quantitative 

approach is used to estimate states of lack of interoperability (Espadinha-Cruz, 2012). 

3.4. Perspectives of interoperability 

In literature review it is possible to conclude that the study of interoperability consists on three 

principal phases: syntactic, semantic and pragmatic (Espadinha-Cruz, 2012). 

In the communication theory, the semiotics view defines it as a transmitting message from a 

sender to a receiver using a channel (ATHENA, 2006). As depicted in Figure 3.2, this 

communication involves three subjects (ATHENA, 2006): 

 Syntax – studies the structure of the message; 

 Semantics – refers to the relation between signs and the objects to which they apply 

and enable the receiver of a message to understand it; 

 Pragmatics - adds some aspects of the practice to a better understanding of the 

theory. 

These three constitute the relation of signs and interpreters, so that the message has a 

meaning for the receiver and therefore allows him to react with regards to the content of the 

message (ATHENA, 2006).   
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Similarly, in business interoperability aspects of semantics and pragmatics are related to a 

message, whereas technical interoperability is more related to syntactical and infrastructure 

aspects (ATHENA, 2006)  

Figure 3.2 Semiotic aspects of communication (ATHENA, 2006) 

3.4.1. Syntax 

In traditional grammar, syntax is the “arrangement of words (in their appropriate forms) by which 

their connection and relation in a sentence are shown” or “the department of grammar which 

deals with the established usages of grammatical construction and the rules deducted 

therefrom” (Oxford English Dictionary). Veltman (2001) refers to it as “grammars to convey 

semantics and structure”. 

In interoperability, the syntactic phase is characterized by describing various sets of rules and 

principles that describe the language and structure for the information (Espadinha-Cruz, 2012). 

If two or more systems are capable of communicating and exchanging data, they exhibit 

syntactic interoperability (Espadinha-Cruz, 2012). For instance, XML (Extensible Markup 

Language) is seen as a mark-up idiom for structured data on web (Veltman, 2001). Hence, with 

syntax in the traditional sense, the challenges of syntactic interoperability become (Veltman, 

2001): 

a) Identifying all the elements in various systems; 

b) Establishing rules for structuring these elements; 

c) Mapping, bridging, creating crosswalks between equivalent elements using schemes 

etc.; 

d) Agreeing on equivalent rules to bridge different cataloguing and registry systems. 

Using these guidelines, syntactic interoperability is ensured when collaborating systems should 

have a compatible way of structuring data during exchange, i.e., the manner in which data is be 

codified using a grammar or vocabulary is compatible (Asuncion & van Sinderen, 2010). 
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3.4.2. Semantics 

Semantics is defined as the meanings of terms and expressions (Veltman, 2001). It focuses on 

the relation between signifiers (in linguistic, words, phrases and symbols), and what they stand 

for, their denotation (Espadinha-Cruz, 2012). Hence, semantic interoperability is “the ability of IS 

to exchange information on the basis of shared, pre-established and negotiated meanings of 

terms and expressions”, and is needed in order to achieve other types of interoperability work 

(Veltman, 2001). 

Besides the technological perspective, in medicine, for instance, the definition of the aorta must 

be the same around the world if doctors in Berlin, Rio, Shanghai, Sydney and Los Angeles all 

have to operate on the heart (Veltman, 2001). 

The role of semantic interoperability is to develop a deep understanding of the structure beyond 

the information (Espadinha-Cruz, 2012). If the syntax, on the one hand, governs the structure of 

data (XML and Structured Query Language, SQL), on the other hand, the semantics should 

regulate the meaning of the terms in the expression, and make it compatible between systems 

(Espadinha-Cruz, 2012). To achieve semantic interoperability, both sides must refer to a 

common information exchange reference model (Espadinha-Cruz, 2012). The content of the 

information exchange requests are explicitly defined: what is sent is the same as what is 

understood (Espadinha-Cruz, 2012). If there is any context sensitivity to the way terms are 

used, then the context must also be specified as part of the information using those terms 

(Espadinha-Cruz, 2012). To ensure semantic interoperability, the meaning of the syntactic 

elements should be understood by collaborating systems (Asuncion & van Sinderen, 2010). 

3.4.3. Pragmatics 

Pragmatics or pragmatism is derived from the Greek etymology that means “to do”, "to act” or 

“to be practical” (Asuncion & van Sinderen, 2010). It describes the process where theory is 

extracted from practice, and applied back to practice to form what is called intelligent practice 

(Espadinha-Cruz, 2012). 

To ensure pragmatic interoperability, message sent by a system causes the effect intended by 

that system (Asuncion & van Sinderen, 2010). Therefore, pragmatic interoperability can only be 

achieved if systems are also syntactically and semantically interoperable (Pokraev, 2009). 
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Chapter 4. Supply Chain simulation 

In Supply Chain Management (SCM) context, there are still evident problems to overcome, 

particularly in designing, evaluating and optimising Supply Chains (SC’s). From the Information 

Technology (IT) perspective, among all the multi-decisional techniques supporting a logistics 

network, simulation appears as an essential tool that allow the quantitative evaluation of 

benefits and issues deriving from a co-operative environment. This combination should provide 

the basis for a realistic simulation model, which is both transparent and complete (Zee & Vorst, 

2005). The need for transparency is especially strong for SC’s as they involve 

(semi)autonomous parties each having their own objectives (Zee & Vorst, 2005). Mutual trust 

and model effectiveness are strongly influenced by the degree of completeness of each party’s 

insight into the key decision variables (Zee & Vorst, 2005). 

The choice of the level of detail is also an important issue in SC models (Persson & Araldi, 

2009). Despite the model’s level of detail being one of the major difficulties is SC simulation, it is 

not uncommon to simulate at a level of detail that does not match the objective of the analysis 

(Persson & Araldi, 2009). 

4.1. General overview 

In the past two decades, a large number of simulation tools for SC analysis have been 

developed (Zee & Vorst, 2005). Some of these tools are internal packages developed and used 

by a single company (Zee & Vorst, 2005). Besides these, some commercially available 

packages were also developed (Zee & Vorst, 2005). Most of these packages are not built from 

scratch, but concern applications of general-purpose simulation languages, such as, for 

example, Arena (Kelton, Sadowski, & Sadowski, 1998), Micro Saint (Micro Analysis & Design, 

1998), and Extend (Imagine That, 1997). 

Simulation is preferred to deal with stochastic natures existing in the SC (Lee, Cho, Kim, & Kim, 

2002). Most SC simulation models have been developed on the basis of discrete-event 

simulation, which allows evaluating queuing situations and other phenomena dependent upon 

uncertainty in operation and transportation times (Lee, et al., 2002; Persson & Olhager, 2002).  
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The main reasons to use discrete-event simulation for system analysis in SCM are (Persson & 

Araldi, 2009): 

 The possibility to include dynamics; 

 The simplicity of modelling. 

However, its suitability does not guarantee adequate decision support, that is, mutually 

accepted candidate SC scenarios for which a high performance is indicated (Zee & Vorst, 

2005). After all, simulation boils-down to a heuristic search for good quality solutions led by 

people (Zee & Vorst, 2005). Therefore, the success of a simulation study largely depends on 

the joint availability and use of the skills of the analyst and the chain members, as well as the 

facilities offered by the simulation tool (Zee & Vorst, 2005). 

Figure 4.1 illustrates the basic process flow that is useful for SC simulation (Lee, et al., 2002). 

This procedure first reads all data required by a graphic user interface (Lee, et al., 2002). This 

includes products, market, sales data, and detailed data on the operation of each facility in the 

SC (Lee, et al., 2002). Customer demand is then calculated through a forecasting method 

based on historical data (Lee, et al., 2002). After that optimisation modules (supplier selection, 

location, inventory, transportation, etc.) are run with the configuring and planning parameter in 

the database (Lee, et al., 2002).  

Figure 4.1 Basic process flow for SC simulation (Lee, et al., 2002) 

4.2. Storyline 

Before starting the model development, it is important to understand the contribution of each 

chapter to this thesis. Figure 4.2 depicts the contributions of chapters 2, 3 and 4 to this work 

and the way they relate.  
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Figure 4.2 Summary of contributions to this thesis 

From Figure 4.2 it can be seen that, in the context of this dissertation, SCM, interoperability and 

SC simulation may be directly and/or indirectly related. To achieve global success, SC’s need to 

overcome many barriers in internal and external relationships, namely conceptual, technological 

and organisational. Therefore, the implementation of Lean, Agile, Resilient and Green (LARG) 

practices without interoperability issues is extremely important to an effective SCM. In this 

perspective, simulation can help in the decision-making processes through the evaluation and 

comparison of virtual scenarios. 

From the Information Technology (IT) perspective, among all the multi-decisional techniques 

supporting a logistics network, simulation appears as an essential tool that allow the quantitative 

evaluation of benefits and issues deriving from a co-operative environment. 

In first instance, some LARG practices were selected from a SCM perspective. Considering 

these LARG practices, which were selected based on literature review, it were defined two 

different scenarios. Note that the selected LARG practices, as well as the scenarios description 

will be discussed with more detail at the middle of chapter 4. The analysis of both scenarios was 

made through Key Performance Indicators (KPI’s) such as cost, lead time and service level. 

These KPI’s were selected in order to evaluate the performance of the automotive SC. 

Looking at the aim of this dissertation, it was also necessary to study the interoperability 

concept and its challenges. Therefore, chapter 3 provided the know-how that allowed defining 

the classification of the interoperability degree of LARG practices, which will be also discussed 

on chapter 4.  
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Finally, SCM and interoperability concepts will be converged in a SC simulation context. From 

this perspective, chapter 4 is mainly focused on the development of the automotive SC 

simulation model, with the help of Rockwell Arena 9.0 simulation software. However, the 

development process of a simulation model must follow a set of steps that starts with the 

problem formulation, which includes the definition of the objectives and the involved variables. 

In this case, it was conducted a study at a Portuguese automotive SC, which will be described 

below. After the description of the main characteristics, assumptions and model components, it 

should be developed the conceptual model, which requires an initial validation. The next step 

consists in the specification of the model parameters, based on the collection of data. Note that 

some of the inputs were defined based on a journal article written by Carvalho, Barroso, 

Machado, Azevedo, & Cruz-Machado (2012), and others were assumed based on the 

information encountered in the conducted research. Once the previous steps are completed, it 

can be made the conversion of the model specifications in a computational model, followed by 

the model verification and validation. The verification step should answer the question related to 

the fact if the model is correctly built. On the other hand, the validation allows answering the 

question related to the construction of the correct model. The development process of a 

simulation model ends with the analysis of the simulation results. 

Since simulation modelling is a research work, it can be necessary to adapt SCM and/or 

interoperability concepts regarding the possible limitations that may appear during the 

simulation model development. 

4.3. Model development: an automotive Supply Chain 

In order to study the proposed objectives, an exploratory case study was conducted at some 

entities of a Portuguese automotive SC. The Portuguese auto components industry exports 

98.9% of productions, and plays a strategic role in the economy, representing 1.4% of the 

country’s Gross Domestic Product. 

Besides the economic relevance of this sector, the automotive SC also presents (Carvalho, et 

al., 2012): 

 A Lean production environment; 

 Pressure to reduce costs and lead times; 

 End customers’ demand for highly customized products. 

Since the automotive SC is very complex, with hundred of parts, components and materials 

flowing from hundreds of suppliers, located in different countries, to the automaker only a 

subset of the SC was selected and analysed (Carvalho, et al., 2012). The boundaries were 

defined according to the automaker. First the vehicle model to be studied was defined. Then 

critical First tier Suppliers (1tS) were identified. In turn, these 1tS identified their critical direct 

suppliers, namely Second tier Suppliers (2tS). 
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4.3.1. Supply Chain characterization 

One of the entities of the automotive SC is an automaker which is located in Portugal and is 

responsible for the production of four different models of vehicle, with an installed capacity for 

over 180.000 vehicles per year (Carvalho, et al., 2012). All vehicles produced are customized 

according to the end customer’s requirements, namely body colour, interior trim instrument 

panel and engine characteristics. The automaker manages its operations according to the Just-

In-Time (JIT) and Lean philosophies, and customer orders. 

In a virtual zero stocks environment, and with a highly customized, demanding production 

environment, it is necessary to coordinate the material flow along the whole SC, assuring that 

the automaker has the right components at the right time to fulfil customer orders (Carvalho, et 

al., 2012). To obtain high quality components and materials, with low cost and high reliability in 

deliveries, the automaker developed long-term relationships with about 670 suppliers (Carvalho, 

et al., 2012). 

As represented in Figure 4.3, the subset automotive SC involved in this work is a five-echelon 

SC, composed by two 2tS (suppliers 2_1 and 2_2), two 1tS (suppliers 1_1 and 1_2), the 

automaker, one First tier Distributor (1tD) and the end customer. The customer demand, which 

comes from different countries or continents, has an associated uncertainty that follows an 

Exponential distribution with mean 30 days. 

Regarding to the 1tS, in spite of they are located in the same geographic region as the 

automaker, they have critical suppliers (2tS), with a long time correspondent to the 

transportation of materials (Carvalho, et al., 2012). 

Figure 4.4 shows part of the vehicle Bill Of Materials (BOM) with the critical sub-assemblies, 

components and materials that that flow in the subset SC (Carvalho, et al., 2012).In fact, one 

unit of the vehicle subset requires one component and one sub-assembly. In turn, one 

component requires one material 2 and one sub-assembly requires one material 1. 
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Figure 4.3 Automotive SC 

Figure 4.4 BOM 

4.3.2. Characteristics and assumptions 

In all simulation studies it is relevant to specifically point out the model characteristics and 

assumptions made in order to get the simulation model to operate (Persson & Olhager, 2002). 

The characteristics of the automotive SC include: 

 Customer demands are pulled through the SC (Carvalho, et al., 2012); 

 Final product demand is completely fulfilled. A material/product shortage will be 

backordered and delivered as soon as possible (Carvalho, et al., 2012); 

 All entities, except the customer and 2tS, behave, on one hand, like a customer, placing 

orders and receiving materials and, on the other hand, like a supplier, delivering 

products; 

 The Focal Firm (FF) and suppliers’ production planning follows a make-to-order policy; 
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 The orders are processed using a First In First Out (FIFO) rule; 

 All resources assigned to a process have a fixed capacity of one unit; 

 The resources costs are equal to one Monetary Unit (MU); 

 The processing and maintenance times follow a Triangular distribution. The 

breakdowns and customer orders follow an Exponential distribution; 

 Two different scenarios are considered to assess practices and interoperability. In the 

first scenario, it will be considered one practice of each paradigm and in the second, it 

will only be considered one practice that can belong to the four paradigms. 

In order to manage Arena simulation complexity, several assumptions were made: 

 It is not considered the rejection of orders placed by the customer; 

 Each order is composed by a constant amount of a single type of product; 

 The model has a work day of twenty-four hours, a seven-day work week and a twelve-

month work year; 

 Days are the basic time unit in the model; 

 The simulation is replicated for a time period of 470 days; 

 Human resources have an attendance index of 100%; 

 No planned level of safety stock is assumed; 

 There is no time delay associated with transferring batches between production, quality 

control or reworking processes. 
 

4.3.3. Conceptual model 

Before developing the automotive SC simulation model, it is necessary to design the conceptual 

model in order to define data and model parameters. The use of flowcharts describes part of 

reality or real system that can be used in the creation of SC simulation models. 

The flowchart depicted in Figure 4.5 represents the processes and global functioning of the 

automotive SC. It should be noted that interoperability issues are only associated with the 

logistics processes that are involved in placing and reception orders. Looking at Figure 4.5, one 

can verify that automotive SC processes are executed by each entity, excepting the customer 

and FF, always respecting the three steps represented by the separators. The first step, namely 

“Receive order”, starts when the 1tD receives the customer order. Since customer demands are 

pulled through the SC, the 1tD places an order to the FF and the downstream entities, which in 

this case are the 1tS, receive the order from their upstream entity, the FF, and place an order to 

the 2tS. After receiving the order from 1tS, the 2tS start the step “Process order” with the 

production process. If the entities adopt a quality control policy, the products need to be 

inspected and, in case of non conformity, they should be reworked. The last step includes the 

products delivery to the upstream entities, i.e., the 1tS, whose logic is similar. When the FF has 

the products available, the 1tD is responsible for deliver the product to the customer at the right 

quantities, to right locations, and at the right time. 
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It should be noted that each process is composed by a set of duly organised activities whose 

processing involves the use of resources, during a certain period of time and, consequently, 

with a cost associated (Carvalho, et al., 2012). 

Automotive SC processes
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Figure 4.5 Automotive SC flowchart 

4.3.4. Input data and parameters 

Since the purpose of this dissertation is to assess LARG practices and interoperability, some of 

the inputs were defined based on a journal article written by Carvalho, Barroso, Machado, 

Azevedo, & Cruz-Machado (2012), and others were assumed based on the information 

encountered in the conducted research. 

Tables 4.1, 4.2, 4.3 and 4.4 show the simulation model data displayed on the spreadsheet view 

of the Arena modelling environment, such as times, costs, and other parameters. 

Table 4.1 Entity spreadsheet 

It is assumed that all customer orders have no initial costs associated, as well as holding cost 

per hour. 
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Table 4.2 Queue spreadsheet 

 

One can verify that the orders are processed using a FIFO rule, as pointed out in the 

characteristics of the automotive SC. 

From Table 4.3, it can be seen that all resources have a fixed capacity of one unit and a cost 

equal to one MU, as also mentioned in the model characteristics. Note that all human resources 

have always a unit cost, whether they are busy or idle. Regarding the remaining resources, it is 

assumed that the equipments and transporters have only costs when they are busy, while the 

required materials have a unit cost associated with their use. The column “Failures” indicates 

the number of failures, particularly maintenance or breakdowns, associated to each resource. 
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Table 4.3 Resource spreadsheet 

 

Looking at Table 4.4, one can verify that human resources have an attendance index of 100%; 

which corresponds to a model assumption. On the other hand, the equipments and transporters 

have breakdowns, so, it should be made a maintenance plan. Note that the breakdowns were 

only considered to make the automotive SC simulation model more realistic. All breakdowns 

and maintenance plans are modelled by exponential and triangular distributions, respectively. 

Triangular distribution requires three parameters: a minimum, a modal (most likely) and a 

maximum value. Exponential distribution requires only the mean parameter. For instance, in 

case of 1tD firm transporters breakdown (row 16), the inter-event time in random breakdown 

processes is 365 days, requiring 10 hours for its repair, or 2 and 32 in the best and worst cases, 

respectively. 

In the model window, there is another main region beyond the spreadsheet view, namely the 

flowchart view. The flowchart view contains all of model graphics, including the process 

flowchart, animation and other drawing elements (Rockwell Automation Technologies Inc., 

2007). All information required to simulate the automotive SC processes is stored in modules, 

which are the flowchart and data objects. 
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Table 4.4 Failure spreadsheet 

 

Tables 4.5, 4.6 and 4.7 contain the data associated to the main modules used to build the 

flowcharts for each SC entity. 

Table 4.5 Create module spreadsheet 

SC entity 
Module 

name 
Entity type Type Value Units 

Entities 

per 

Arrival 

Max 

Arrivals 

First 

Creation 

Customer 

Customer 

order 

receive 

Customer 

order 

specification 

Random 

(Expo) 
30 Days 1 Infinite 0.01 

The create module is intended as the starting point for entities in a simulation model (Rockwell 

Automation Technologies Inc., 2007). 

The first entity, which in this case is the customer order, arrives into the SC at 0.01 days (basic 

time unit in the model). The arrival of the next orders is modelled by an exponential distribution 

with a mean of 30 days. 

From Table 4.5, it can also be seen that the number of orders received by the 1tD at a given 

time with each arrival is only one and there is no limit to the maximum number of orders that the 

“Create” module generates.  
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Table 4.6 Process module spreadsheet 

SC 

entity 
Module name Action Priority 

Number of 

resources 
Delay Type Units Allocation Minimum Value Maximum 

1tD 

Close 

order_Maximum 

interoperability 

degree 

Seize Delay 

Release 

Medium 

(2) 
2 Triangular Days Transfer 1 5 10 

1tD 
Make order to the 

FF 
Delay - - Triangular Minutes 

Non-Value 

Added 

(NVA) 

1 10 20 

FF 

Components 

receive_Maximum 

interoperability 

degree 

Seize Delay 

Release 

Medium 

(2) 
2 Triangular Hours Transfer 0.7 1 2 

FF 
Make order to the 

supplier 1_1 
Delay - - Triangular Minutes NVA 3 5 10 

FF 
Make order to the 

supplier 1_2 
Delay - - Triangular Minutes NVA 3 5 10 

FF 
Products 

manufacturing 

Seize Delay 

Release 

Medium 

(2) 
3 Triangular Minutes 

Value Added 

(VA) 
1.9 2 3 

FF 
Products quality 

control 

Seize Delay 

Release 

Medium 

(2) 
2 Triangular Minutes NVA 4.9 5 6 

FF 
Products 

reworking 

Seize Delay 

Release 
High (1) 2 Triangular Minutes NVA 0.5 1 3 

FF 

Sub assemblies 

receive_Maximum 

interoperability 

degree 

Seize Delay 

Release 

Medium 

(2) 
2 Triangular Hours Transfer 0.7 1 2 

Supplier 

1_1 

Make order to the 

supplier 2_1 
Delay - - Triangular Minutes NVA 1 10 20 

Supplier 

1_1 

Material 1 

receive_Maximum 

interoperability 

degree 

Seize Delay 

Release 

Medium 

(2) 
2 Triangular Hours Transfer 5 5.5 6.5 

Supplier 

1_1 

Sub assemblies 

manufacturing 

Seize Delay 

Release 

Medium 

(2) 
3 Triangular Minutes VA 5 6 8 

Supplier 

1_1 

Sub assemblies 

quality control 

Seize Delay 

Release 

Medium 

(2) 
2 Triangular Minutes NVA 3.7 4 5 

Supplier 

1_1 

Sub assemblies 

reworking 

Seize Delay 

Release 
High (1) 2 Triangular Minutes NVA 0.9 1 5 

Supplier 

1_2 

Components 

manufacturing 

Seize Delay 

Release 

Medium 

(2) 
3 Triangular Minutes VA 2 4 6 

Supplier 

1_2 

Components 

quality control 

Seize Delay 

Release 

Medium 

(2) 
2 Triangular Minutes NVA 1 2 3 

Supplier 

1_2 

Components 

reworking 

Seize Delay 

Release 
High (1) 2 Triangular Minutes NVA 0.9 1 3 

Supplier 

1_2 

Make order to the 

supplier 2_2 
Delay - - Triangular Minutes NVA 1 10 20 

Supplier 

1_2 

Material 2 

receive_Maximum 

interoperability 

degree 

Seize Delay 

Release 

Medium 

(2) 
2 Triangular Days Transfer 1 1 1.2 

Supplier 

2_1  

Materials 1 

manufacturing 

Seize Delay 

Release 

Medium 

(2) 
3 Triangular Minutes VA 9 10 12 

Supplier 

2_1 

Materials 1 quality 

control 

Seize Delay 

Release 

Medium 

(2) 
2 Triangular Minutes NVA 5 6 9 
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SC 

entity 
Module name Action Priority 

Number of 

resources 
Delay Type Units Allocation Minimum Value Maximum 

Supplier 

2_1 

Materials 1 

reworking 

Seize Delay 

Release 
High (1) 2 Triangular Minutes NVA 0.9 1 3 

Supplier 

2_2 

Materials 2 

manufacturing 

Seize Delay 

Release 

Medium 

(2) 
3 Triangular Minutes VA 7 8 10 

Supplier 

2_2 

Materials 2 quality 

control 

Seize Delay 

Release 

Medium 

(2) 
2 Triangular Minutes NVA 4 5 7 

Supplier 

2_2 

Materials 2 

reworking 

Seize Delay 

Release 
High (1) 2 Triangular Minutes NVA 0.9 1 2 

The process module is intended as the main processing method in simulation (Rockwell 

Automation Technologies Inc., 2007). 

Looking at the FF presented in Table 4.6, particularly to the “Products reworking” module name, 

one can verify that the type of processing that occur within the module is “Seize Delay Release”, 

indicating that the two resources are allocated followed by a process delay and then the 

allocated resources are released (Rockwell Automation Technologies Inc., 2007). Since both 

resources are also used in the “Products manufacturing” module, it is necessary to establish a 

priority value to the orders that are waiting for the same resources. In case of non conformity 

products, they should be immediately reworked, and after the resources are released, they can 

be used by another order that is waiting to be processed in “Products manufacturing” module. 

This processing time, which is modelled by a triangular distribution, is allocated to the entity, 

i.e., the customer order, and is considered to be NVA. The associated cost is added to the NVA 

category for the entity and process (Rockwell Automation Technologies Inc., 2007). 

Table 4.7 Decide module spreadsheet 

SC entity Module name Type Percent True If Is Value 

1tD 
Maximum interoperability degree 

between customer and 1tD? 

2-way by 

Condition 
- Attribute == 1 

FF 
Maximum interoperability degree 

between FF and supplier 1_1? 

2-way by 

Condition 
- Attribute == 1 

FF 
Maximum interoperability degree 

between FF and supplier 1_2? 

2-way by 

Condition 
- Attribute == 1 

FF Products conformity? 
2-way by 

Chance 
100 - - - 

FF Products quality inspection? 
2-way by 

Chance 
100 - - - 

Supplier 

1_1 

Maximum interoperability degree 

between supplier 1_1 and 

supplier 2_1? 

2-way by 

Condition 
- Attribute == 1 
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SC entity Module name Type Percent True If Is Value 

Supplier 

1_1 
Sub assemblies’ conformity? 

2-way by 

Chance 
95 - - - 

Supplier 

1_1 

Sub assemblies’ quality 

inspection? 

2-way by 

Chance 
100 - - - 

Supplier 

1_2 
Components conformity? 

2-way by 

Chance 
95 - - - 

Supplier 

1_2 
Components quality inspection? 

2-way by 

Chance 
100 - - - 

Supplier 

1_2 

Maximum interoperability degree 

between supplier 1_2 and 

supplier 2_2? 

2-way by 

Condition 
- Attribute == 1 

Supplier 

2_1 
Materials 1 conformity? 

2-way by 

Chance 
90 - - - 

Supplier 

2_1 
Materials 1 quality inspection? 

2-way by 

Chance 
50 - - - 

Supplier 

2_2 
Materials 2 conformity? 

2-way by 

Chance 
90 - - - 

Supplier 

2_2 
Materials 2 quality inspection? 

2-way by 

Chance 
40 - - - 

The decide module allows for a decision-making processes in the system, including options to 

make decisions based on one or more conditions or based on one or more probabilities 

(Rockwell Automation Technologies Inc., 2007). 

Whenever the decision module type is “2-way by Condition”, it is assumed that the 

interoperability degree between two entities of the automotive SC is maximum if the attribute 

value is equal to one. On the other hand, the decision module type “2-way by Chance” is based 

on one probability that correspond to the exit point for “True” entities. The other exit point for 

“False” entities is related to the remaining percentage. 

Beyond these modules, it were used other basic flowcharts and data modules that is not directly 

related to the input data and parameters of the simulation model, such as (Rockwell Automation 

Technologies Inc., 2007): 

 Assign – used for assigning new values to variables, entity attributes, entity types, 

entity pictures, or other system variables; 

 Batch – grouping mechanism within the simulation model, which can be permanent or 

temporary; 

 Dispose – ending point for entities in a simulation model; 
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 Record – used to collect statistics in the simulation model, like time between exits 

through the model, entity statistics (time, costing, etc.),general observations, interval 

statistics (from some time stamp to the current simulation time), and count statistics; 

 Separate – used to either copy an incoming entity into multiple entities or to split a 

previously batched entity. 

After the definition of input data and parameters required to the simulation model, it is 

necessary to classifying the interoperability of LARG practices according to their implementation 

degree. Based on interoperability degree classification proposed by Espadinha-Cruz (2012), 

each practice is classified from 0 to 1, indicating that the level of interactions between two 

entities of the automotive SC is null to very high. When the interoperability degree between two 

entities is 0, they cannot even interoperate. On the other hand, when the interoperability degree 

is 1, there are no barriers in the interaction between two entities and, consequently, the involved 

cost is minimum or does not exist. This classification helps to establish a link between the 

interoperability degree of LARG practices and SC performance, which is the main focus of this 

dissertation. Although there may be different ways to define this relation, the most rational is the 

use of math functions. Thus, it will be possible to define a logical link between the 

interoperability degree of LARG practices and SC performance and, consequently, eliminate 

this gap. 

One way to monitor interoperability throughout SC is based on the analysis of the effect of the 

interoperability degree of LARG practices in KPI’s such as cost, lead time and service level. 

Using the assign module in the Arena modelling environment, it is possible to attribute the 

interoperability degree of LARG practices when an entity executes the module. This assignment 

value of the attribute must be associated to the processes in which the LARG practices selected 

have a direct impact. 

From the perspective of Arena simulation, the analysis of the effect of the interoperability 

degree of LARG practices in the SC performance, through the three KPI’s above mentioned, 

can add more complexity to the model. Since the model simplification allows reducing the 

uncertainty, it was only considered the effect of the interoperability degree on the time variable. 

However, this variable has a direct influence on the SC performance, in terms of cost, delivery 

time and service level to customers. For instance, if the processing time of all logistics 

processes increases, the cost and lead time will increase and the service level will consequently 

be lower. 

The interaction between interoperability degree and time variable, associated with the delay 

time of each process, can be made using the “Build Expression...” option, which is present in 

the main modules used to build the automotive SC simulation model. Thus, the increasing of the 

interoperability degree of one LARG practice implemented, leads to the decreasing of the 

processing time of the correspondent activity.   
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Since some of the inputs are assumed, it is recommended to use quantitative techniques, like 

sensitivity analysis, to validate the output of the simulation model. In this case, the sensitivity 

analysis was based on six types of math expressions, which were created to study the system 

in terms of the effect of the interoperability degree of LARG practices in the SC performance. It 

should be noted that all math expressions used in the “Build Expression...” option, were created 

according to the same logic, i.e., the time associated to each process corresponds to the very 

high interoperability degree of LARG practices. 

The math functions depicted in Figures 4.6, 4.7, 4.8, 4.9, 4.10 and 4.11 were built according to 

the data associated with an example presented in Table 4.6 relating to the FF, namely the 

“Products quality control” module. Since the processing time considered is modelled by a 

triangular distribution, it was only used the modal (most likely) parameter at the math functions, 

in order to facilitate the visualisation process. However, in the simulation point of view, the 

Arena software generates random numbers for the triangular distribution, which represent the 

time variable at the math functions, i.e., the variable “T”. This variable corresponds to the delay 

time associated to each process of the automotive SC. As mentioned previously, the other 

variable considered is the interoperability degree of LARG practices, which is represented by 

the variable “ID”. From this point of view, the selection of the variable “ID” represents the main 

input of the simulation model, which is related with the implementation degree of LARG 

practices. On the other hand, the variable “T” corresponds to the output of the simulation model 

in terms of SC performance, since it has a direct influence on the cost, delivery time and service 

level. 

Figure 4.6 Graphic representation of math function T = ID  
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Figure 4.7 Graphic representation of math function T = 2 - ID 

Figure 4.8 Graphic representation of math function T = 1 / (2 – ID) 

 

Figure 4.9 Graphic representation of math function T = 2 / (1 + ID)  
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Figure 4.10 Graphic representation of math function T = 2 – [3 / (2 + ID)] 

 

Figure 4.11 Graphic representation of math function T = 3 – [2 / (2 - ID)] 

4.3.5. Simulation model 

The development of the automotive SC simulation model is based on the conversion of the 

model specifications previously made, in a computational model. As previously mentioned, two 

different scenarios are considered to assess practices and interoperability. However, the 

number of scenarios is not directly related with the main objective of this dissertation. Thus, it 

was only considered two scenarios to obtain different results, in order to evaluate if the Resilient 

practice should be associated to the remaining paradigms. 

In the first scenario, it will be considered one practice of each paradigm, namely Lean, Agile, 

Resilient and Green. By assigning different interoperability degree for each one of those four 

practices, it is possible to calculate the interoperability degree of LARG practices through the 

average of interoperability degree of the four practices considered. It should be noted that the 

four practices selected from the Tables 2.2, 2.3, 2.4 and 2.5, respectively, are associated with 

the logistics processes that are involved in placing orders and materials reception.   

0 

1 

2 

3 

4 

5 

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 

T 

ID 

T = 2 - [3 / (2 + ID)]  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 

T 

ID 

T = 3 - [2 / (2 - ID)]   



Chapter 4. Supply Chain simulation 

47 

Therefore, each practice was selected according to this principle, which represents the core of 

any interaction between two entities of the SC. 

The four practices selected for LARG paradigms, respectively, are: 

 L6: Supplier relationships/long-term business relationships; 

 A1: Ability to change delivery times of supplier’s order; 

 R4: Flexible transportation; 

 G1: Environmental collaboration with suppliers. 

In the second scenario, it will only be considered the practice R4 above mentioned, which can 

belong to the four paradigms. Before proving this affirmation, it is important to understand what 

means “flexible transportation”. This practice ensures and increases the flexibility on materials 

flow/transportation along the whole SC, being directly associated with the orders reception. The 

increase of flexibility can be ensured by: 

 Multiple routes; 

 Different means of transportation, for example, truck, train or airplane; 

 Transportation types that accommodate different materials types. 

Besides the flexible transportation being considered a Resilient practice, it can also be seen as 

a Lean practice if, for example, the used transportation type accommodate different materials 

types. Consequently, the number of means of transportation on the routes will decrease, which 

results not only in a reduction of fuel consumption, but also in a decrease of human resources 

necessary to ensure the materials transportation. This example shows that flexible 

transportation could be considered a Lean practice, since it contributes to waste elimination and 

cost reduction. 

On the other hand, flexible transportation can also belong to the Agile paradigm, since the 

ability to respond quickly to an order is strongly dependent on the number of means of 

transportation and existing routes. 

Relatively to the Resilient paradigm, flexible transportation is seen as the ability to change the 

transportation types or routes, in order to satisfy the customer orders without disturbances. 

As above mentioned, the decrease in the number of means of transportation on the routes, 

results in a reduction of fuel consumption and, consequently, in a decrease in the gas emissions 

into the atmosphere. Thus, flexible transportation can be considered a Green practice because 

it aims at the reduction of environment impact. 

Before starting the development of the automotive SC simulation model, it is important to 

understand what means a null or very high interoperability degree for each one of the four 

practices selected for LARG paradigms.   
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Looking for the Portuguese automotive SC that was described at the beginning of chapter 4, it is 

easy to obtain some practical examples that help understanding the level of interactions 

between two entities. For instance, an interoperability degree of 0 for the practices L6 and A1 

can be related with communication problems, i.e., different languages or cultures, or even with 

different rules and procedures. On the other hand, a very high interoperability degree 

corresponds to a customised and personalised support based on common experience form the 

co-operative environment. Regarding the practice R4, if entities cannot even interoperate, there 

is no real-time coordination. Therefore, the ability to respond quickly to an order when an 

unexpected event occurs will have impact on the transportation time and cost. However, the use 

of Information Systems (IS) allows rapid and inexpensive communication system integration. 

The real-time data processing can help, for example, in the definition of new transportation 

types or routes if there is an accident that precludes the satisfaction of the customer orders 

without disturbances. In this case, there are no barriers in the interaction between two entities 

and, consequently, the interoperability degree is very high, i.e., 1. Finally, looking at the practice 

G1, it is expectable that the existence of industry-specific, national or applicable international 

environmental regulation and standards, are not considered by entities whenever the 

interoperability degree is 0. On the other hand, a very high interoperability degree in 

environmental collaboration among entities, may result in a decrease in the gas emissions into 

the atmosphere and, consequently, in the reduction of environment impact. 

Considering the first scenario, it was used Rockwell Arena 9.0 simulation software to build the 

model represented in Figure 4.12, and the sub models represented in Figures 4.13, 4.14, 4.15, 

4.16 and 4.17. 

Figure 4.12 Automotive SC simulation model 

One can verify that customer demands are pulled through the SC, according to the JIT and 

Lean philosophies. It is necessary to coordinate the material flow along the whole SC since, in a 

virtual environment, the entities possess no stock. 
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Figure 4.13 Customer simulation sub model 

From Figure 4.13, despite it only be seen that the assign module was used to assign the 

interoperability degree for each practice associated with the logistics interactions between 

customer and 1tD, it is important to know that the same module was also used to attribute the 

product amount that composes each order. This module allow not only inserting the 

classification of the interoperability of LARG practices according to their implementation degree, 

which ranges from 0 to 1, but also creating an attribute with the customer needs, that will be 

required during the simulation run. 

The create and dispose modules, i.e., “Customer order receive” and “End of products life cycle” 

respectively, show that the information and material flow starts when customer places an order 

and ends when the customer needs is completely fulfilled. 

In 1tD simulation sub model depicted in Figure 4.14, the time associated to “Close order_ 

Maximum LARG practices interoperability degree” process corresponds to the very high 

interoperability degree of LARG practices, i.e., 1. Whenever it is considered the “True” condition 

of the decide module, the process “Close order” will be performed within the expected time. In 

this case, the product is delivered to the customer at the right time, and the order is closed. If 

the interoperability degree of each practice that was inserted on the assign module used in the 

customer simulation sub model is different from 1, the effect of the interoperability degree of 

LARG practices in the SC performance is based on the math expressions previously mentioned. 

Whenever it is considered the “False” condition, the time associated to the process “Close 

order” corresponds to the product between the expected time to perform this process and the 

six types of math expressions. Thus, it is possible to make a sensitivity analysis according to the 

different results that will be obtained based on the behaviour of each type of math expression. 

The assign module was used to attribute the product amount that 1tD needs which, in this case, 

is the same that composes customer order. This attribute includes the product amount that must 

integrate the FF backorder.  
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Figure 4.14 1tD simulation sub model 

Looking at Figure 4.15, one can verify that FF receives the 1tD order and places an order to the 

1tS, according to the vehicle BOM represented in Figure 4.4. The assign module was also used 

to attribute the interoperability degree for each practice associated with the logistics interactions 

between FF and 1tS.  

Figure 4.15 FF simulation sub model 

After the delivery of sub-assemblies and components to the FF, whose the time associated to 

“Sub-assemblies receive” and “Components receive” processes also corresponds to the very 

high interoperability degree of LARG practices, starts the production process. If FF adopts a 

quality control policy, the products need to be inspected and, in case of non conformity, they 

should be reworked. 

Note that the logic implied on decide modules “Maximum LARG practices interoperability 

degree between focal firm and supplier 1_1?” and “Maximum LARG practices interoperability 

degree between focal firm and supplier 1_2?”, is similar to the decide module used in 1tD 

simulation sub model (see Figure 4.14). 

The separate, batch and record modules were only used from the perspective of Arena 

modelling environment. 
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Figure 4.16 Supplier 1_1 simulation sub model 

The supplier 1_1 simulation sub model depicts that the information and material flow has the 

same logic as the FF simulation sub model. However, the supplier 1_1 places an order to the 

supplier 2_1, according to the vehicle BOM represented in Figure 4.4, and receives the material 

1 that is necessary to produce the sub-assemblies that FF demanded. 

Figure 4.17 Supplier 2_1 simulation sub model 

From Figure 4.17, it can be seen that the supplier 2_1 represents the end of information flow 

and, at the same time, the beginning of material flow. The supplier 2_1 receives an order from 

supplier 1_1 and starts the material 1 production process, using its own raw material. 

The suppliers 1_2 and 2_2 simulation sub models regarding the first scenario can be verified in 

Annex 1. 

The second scenario is a copy of first scenario from the perspective of Arena simulation, 

excepting the assign module which, in this case, was used to attribute the interoperability 

degree for practice R4 associated with the logistics interactions between two entities of the 

automotive SC. Considering the automotive SC simulation model represented in Figure 4.12, it 

were built the sub models presented in Annex 2. The 1tD, and suppliers 2_1 and 2_2 simulation 

sub models are equal to the simulation sub models represented in Figures 4.14, 4.17 and 

Annex 1.2, respectively. 



Chapter 4. Supply Chain simulation 

 

52 

Regarding the KPI’s, it is important to understand that cost and lead time were obtained based 

on internal variables that are automatically created and updated by Rockwell Arena 9.0 

simulation software. The internal variables selected for generate these two KPI’s allow storing 

the cost and total time accumulated during the simulation run. Relatively to the service level, it 

was necessary to calculate the ratio between the number of orders placed by the customer and 

the number of customer orders that were fulfilled. 

After the automotive SC simulation model building, considering both scenarios previously 

described, it must be determined the adequate warm-up period and the number of replications. 

These two external studies were performed in order to analyse the effect of the interoperability 

degree of LARG practices in the SC performance, when the system operates in steady-state for 

a long simulation length. In this simulation model, the desired simulation length is 365 days, i.e., 

1 year, which is believed to be long enough to eliminate or reduce the impact of initial conditions 

on the outputs. 

During the warm-up period in simulation, all statistics are cleared since the model outputs suffer 

transient effects until they reach the steady-state. After the warm-up period, KPI’s are to be 

adapted to the model input data and parameters, i.e., it must be verified a repeated pattern. 

The “Output Analyzer” application of Arena 9.0 is an approach that can be used to determine 

the adequate warm-up period for the automotive SC simulation model. This application provides 

a visual inspection of the simulation outputs that should be carefully analysed using a graphical 

method. In this case, it would be necessary to consider all scenarios to choose the ultimate 

warm-up period that corresponds to the worst time required to stabilize the model outputs. Once 

the combination between the interoperability degree of LARG practices and the math 

expressions depicted in Figures 4.6, 4.7, 4.8, 4.9, 4.10 and 4.11 allows generating a huge 

number of scenarios, it was assumed a warm-up period of 105 days, i.e., 3 months and a half. It 

should be noted that the simulation length must includes the warm-up period. Therefore, the 

time period of 470 days that was assumed for the simulation model, was obtained by adding the 

desired simulation length of 365 days with the warm-up period of 105 days. 

Finally, it must be determined the amount of times the simulation is repeated, i.e., the number of 

replications. Multiple replications were used to develop a statistical analysis with more precision. 

Each replication uses different sequences of random numbers, allowing the generation of 

different outputs. 

The confidence interval calculation is a statistic tool that can be used to determine the accurate 

number of replications for this simulation model. The objective is to achieve a confidence 

interval with a reduced range, in order to increase the precision. Using a specified level of 

significance, it is necessary to ensure that there is a minimum amount of data and also there is 

no correlation among them. The determination of the ultimate number of replications is similar to 

the warm-up period, i.e., it should be chosen the worst number of replications required to 

stabilize the model outputs.   
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As previously mentioned, it would be necessary to analyse a huge number of scenarios. Thus, it 

was assumed that the simulation model requires 100 replications. This consideration was 

obtained through trial and error. 

4.4. Results and discussion 

The presentation of the automotive SC simulation model results consists in two parts. Thus, in 

order to effectively answer the aim of this dissertation, the respective results were analysed and 

discussed in terms of KPI’s, namely cost, lead time and service level. Since some of the inputs 

used in the simulation model were assumed, the results are not as realistic as expected. 

However, this factor does not affect the credibility of results. 

In first instance, practices and interoperability were assessed for the first scenario. Considering 

the four practices selected for LARG paradigms, the interoperability degree classification and 

the six types of math expressions, several reports were extracted from Rockwell Arena 9.0 

simulation software. These reports, which are denominated by “Category Overview”, are a 

combination among each one of the math expressions and different interoperability degree for 

each one of the four practices associated with logistics interaction between two partners in the 

automotive SC. Therefore, it is possible to study the different effects of the interoperability 

degree of LARG practices in the SC performance, whenever are assumed different 

interoperability degree and/or math expressions. Note that these variations should be made 

simultaneously in all logistics interaction between two partners in the automotive SC, in order to 

simplify the results analysis and reduce consequently the variability. 

However, the six types of math expressions must be ignored on the results analysis since they 

were only created to establish a link between the interoperability degree of LARG practices and 

SC performance. It should be noted that it was only considered the effect of the interoperability 

degree on the time variable. Since these math expressions have a limited range, the KPI “lead 

time” will be not 0 or infinite whenever the interoperability degree of LARG practices is 0 or 1, 

respectively. Regarding the service level, one can deduce that an interoperability degree of 0 or 

1 may not correspond to a service level of 0 or 100%, because there are many processes in the 

SC in which the LARG practices selected have not a direct impact. Analysing the KIP “cost”, it 

will be impossible to obtain an infinite cost when it is assumed an interoperability degree of 0, 

since there is not a direct effect of the interoperability degree on the cost. If the interoperability 

degree is 1, the cost will be not 0 because some of the costs that are represented in Table 4.3 

are not associated to the processes in which the LARG practices selected have a direct impact. 

The results of the second scenario were based on the same logic, considering only one practice 

that can belong to the four paradigms.  
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Regarding the first part, the results presented in Tables 4.8, 4.9, 4.10, 4.11, 4.12 and 4.13 were 

obtained by varying the interoperability degree of practices L6, A1, R4 and G1 and the type of 

math expressions used in the logistics processes that are involved in placing orders and 

materials reception. 

Table 4.8 First scenario KPI’s comparison considering math function T = ID 

Interoperability degree Cost (MU) Lead time (Days) Service level (%) 

L6 = A1 = R4 = G1 = 0 30340.16 129.31 85.5309 

L6 = A1 = R4 = G1 = 0.2 30413.28 133.37 92.9129 

L6 = A1 = R4 = G1 = 0.4 30476.87 127.61 92.3562 

L6 = A1 = R4 = G1 = 0.6 30546.54 130.23 88.8768 

L6 = A1 = R4 = G1 = 0.8 30609.42 130.25 97.9803 

L6 = A1 = R4 = G1 = 1 30679.23 134.93 92.6112 

L6 = A1 = G1 = 1 

R4 = 0 
30593.85 133.43 93.3861 

L6 = A1 = G1 = 0 

R4 = 1 
30441.11 127.04 98.4438 

L6 = 0.2 

A1 = 0.4 

R4 = 0.6 

G1 = 0.8 

30519.29 130.96 94.8537 

Table 4.9 First scenario KPI’s comparison considering math function T = 2 - ID 

Interoperability degree Cost (MU) Lead time (Days) Service level (%) 

L6 = A1 = R4 = G1 = 0 31004.74 139.19 95.1081 

L6 = A1 = R4 = G1 = 0.2 30934.54 134.82 90.0058 

L6 = A1 = R4 = G1 = 0.4 30888.72 131.61 93.7623 

L6 = A1 = R4 = G1 = 0.6 30806.36 135.40 91.6401 

L6 = A1 = R4 = G1 = 0.8 30744.58 137.16 91.7543 

L6 = A1 = R4 = G1 = 1 30679.23 134.93 92.6112 

L6 = A1 = G1 = 1 

R4 = 0 
30756.79 131.78 90.8238 
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Interoperability degree Cost (MU) Lead time (Days) Service level (%) 

L6 = A1 = G1 = 0 

R4 = 1 
30930.95 133.96 90.1873 

L6 = 0.2 

A1 = 0.4 

R4 = 0.6 

G1 = 0.8 

30846.57 137.65 90.9622 

Table 4.10 First scenario KPI’s comparison considering math function T = 1 / (2 – ID) 

Interoperability degree Cost (MU) Lead time (Days) Service level (%) 

L6 = A1 = R4 = G1 = 0 30519.29 130.96 94.8537 

L6 = A1 = R4 = G1 = 0.2 30528.51 132.87 94.3860 

L6 = A1 = R4 = G1 = 0.4 30555.80 128.61 93.4580 

L6 = A1 = R4 = G1 = 0.6 30583.65 133.98 87.9313 

L6 = A1 = R4 = G1 = 0.8 30630.44 132.67 91.8360 

L6 = A1 = R4 = G1 = 1 30679.23 134.93 92.6112 

L6 = A1 = G1 = 1 

R4 = 0 
30609.42 130.25 97.9803 

L6 = A1 = G1 = 0 

R4 = 1 
30538.60 127.68 92.1717 

L6 = 0.2 

A1 = 0.4 

R4 = 0.6 

G1 = 0.8 

30571.70 129.89 91.1757 

Table 4.11 First scenario KPI’s comparison considering math function T = 2 / (1 + ID) 

Interoperability degree Cost (MU) Lead time (Days) Service level (%) 

L6 = A1 = R4 = G1 = 0 31004.74 139.19 95.1081 

L6 = A1 = R4 = G1 = 0.2 30901.72 136.06 91.3925 

L6 = A1 = R4 = G1 = 0.4 30828.43 132.72 87.1714 
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Interoperability degree Cost (MU) Lead time (Days) Service level (%) 

L6 = A1 = R4 = G1 = 0.6 30756.79 131.78 90.8238 

L6 = A1 = R4 = G1 = 0.8 30717.31 131.85 91.7778 

L6 = A1 = R4 = G1 = 1 30679.23 134.93 92.6112 

L6 = A1 = G1 = 1 

R4 = 0 
30727.73 134.33 95.1757 

L6 = A1 = G1 = 0 

R4 = 1 
30888.72 131.61 93.7623 

L6 = 0.2 

A1 = 0.4 

R4 = 0.6 

G1 = 0.8 

30791.11 134.21 96.0905 

Table 4.12 First scenario KPI’s comparison considering math function T = 2 – [3 / (2 + ID)] 

Interoperability degree Cost (MU) Lead time (Days) Service level (%) 

L6 = A1 = R4 = G1 = 0 30519.29 130.96 94.8537 

L6 = A1 = R4 = G1 = 0.2 30569.34 130.28 96.0623 

L6 = A1 = R4 = G1 = 0.4 30593.85 133.43 93.3861 

L6 = A1 = R4 = G1 = 0.6 30632.78 135.32 91.0241 

L6 = A1 = R4 = G1 = 0.8 30659.55 132.59 96.3040 

L6 = A1 = R4 = G1 = 1 30679.23 134.93 92.6112 

L6 = A1 = G1 = 1 

R4 = 0 
30649.80 135.35 90.3097 

L6 = A1 = G1 = 0 

R4 = 1 
30571.70 129.89 91.1757 

L6 = 0.2 

A1 = 0.4 

R4 = 0.6 

G1 = 0.8 

30609.42 130.25 97.9803 
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Table 4.13 First scenario KPI’s comparison considering math function T = 3 – [2 / (2 - ID)] 

Interoperability degree Cost (MU) Lead time (Days) Service level (%) 

L6 = A1 = R4 = G1 = 0 31004.74 139.19 95.1081 

L6 = A1 = R4 = G1 = 0.2 30976.71 136.82 90.3013 

L6 = A1 = R4 = G1 = 0.4 30930.95 133.96 90.1873 

L6 = A1 = R4 = G1 = 0.6 30873.47 134.84 88.5591 

L6 = A1 = R4 = G1 = 0.8 30791.11 134.21 96.0905 

L6 = A1 = R4 = G1 = 1 30679.23 134.93 92.6112 

L6 = A1 = G1 = 1 

R4 = 0 
30806.36 135.40 91.6401 

L6 = A1 = G1 = 0 

R4 = 1 
30953.08 138.33 88.7026 

L6 = 0.2 

A1 = 0.4 

R4 = 0.6 

G1 = 0.8 

30901.72 136.06 91.3925 

Looking at Tables 4.8, 4.9, 4.10, 4.11, 4.12 and 4.13, one can verify that the maximum cost of 

31004.47 MU corresponds to a null interoperability degree for all practices, which was 

expectable. In this case, the lack of coordination and cooperation in internal and external 

relationships, involves more costs for business support. 

If it is considered an interoperability degree of 0.4 for all practices, the cost is also very high. 

Therefore, it is more profitable to implement the four practices selected for LARG paradigms 

with a high level of logistics interaction between automotive SC entities. 

From Table 4.13, it can also be seen that practice R4 has not a significant impact on cost, i.e., if 

it has a maximum interoperability degree, the cost will remain high because the remaining 

practices have a null interoperability degree that contributes to the cost increasing. 

Regarding the lead time, it is expectable that a maximum interoperability degree for all practices 

corresponds to a maximum value of this KPI. For instance, the practice G1, which is related to 

environmental collaboration with suppliers, is responsible for the lead time increasing.   



Chapter 4. Supply Chain simulation 

 

58 

As previously mentioned, the reduction of environment impact is only possible with a decrease 

in the number of means of transportation on the routes, which results on a delivery time delay of 

customer orders. It should be noted that an interoperability degree of 1 for practices L6 and A1 

also contributes to the increasing of lead time and vice versa. Looking at Table 4.8, it is possible 

to prove that a low interoperability degree contributes to the decreasing of the lead time. For 

instance, if the interoperability degree for the practices L6, A1 and G1 is 0, the lead time will be 

minimum, i.e., 127.04 days. 

Besides this fact, it is possible to see that if practice R4 has a maximum interoperability degree 

and the remaining practices have a null interoperability degree, the lead time will be lower. 

Regarding the practice R4, for instance, entities should have the ability to change the 

transportation types or routes in order to satisfy the customer orders without disturbances. So, 

an interoperability degree of 1 for the practice R4, i.e., flexible transportation, also has an 

important contribution on the lead time decreasing. 

Analysing the KPI “service level”, one can verify that the minimum value of 85.53% corresponds 

to a null interoperability degree for all practices, which was expectable. However, the maximum 

service level of 98.4438% is also associated to a null interoperability for the practices L6, A1 

and G1. This means that the practice R4 is extremely important to the service level, considering 

that the maximum interoperability degree of this practice prevails over the null interoperability 

degree of the remaining practices. As above mentioned, entities should have a flexible 

transportation to satisfy the customer orders without disturbances, which implies having a great 

service level. 

From Table 4.8, it can be seen that an interoperability degree of 0.8 for all practices also 

contributes to the increasing of the service level. Therefore, it is better to implement only the 

practice R4 with a maximum interoperability degree, instead of implementing the four practices 

selected for LARG paradigms with a high level of logistics interaction between SC entities. 

Note that the minimum value of lead time present in Table 4.8 corresponds to the maximum 

service level of 98.4438%, as proved by Carvalho, et al. (2011) in Figure 2.1. 

In the second part, different interoperability degrees of practice R4 and math expressions used 

in the logistics interaction between two entities in the automotive SC were assumed. Tables 

4.14, 4.15, 4.16, 4.17, 4.18 and 4.19 present the results obtained for the second scenario. 

Table 4.14 Second scenario KPI’s comparison considering math function T = ID 

Interoperability degree Cost (MU) Lead time (Days) Service level (%) 

R4 = 0 30340.16 129.31 85.5309 

R4 = 0.2 30413.28 133.37 92.9129 

R4 = 0.4 30476.87 127.61 92.3562 
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Interoperability degree Cost (MU) Lead time (Days) Service level (%) 

R4 = 0.6 30546.54 130.23 88.8768 

R4 = 0.8 30609.42 130.25 97.9803 

R4 = 1 30679.23 134.93 92.6112 

Table 4.15 Second scenario KPI’s comparison considering math function T = 2 - ID 

Interoperability degree Cost (MU) Lead time (Days) Service level (%) 

R4 = 0 31004.74 139.19 95.1081 

R4 = 0.2 30934.54 134.82 94.0058 

R4 = 0.4 30888.72 131.61 93.7623 

R4 = 0.6 30806.36 135.40 91.6401 

R4 = 0.8 30744.58 137.16 91.7543 

R4 = 1 30679.23 134.93 92.6112 

Table 4.16 Second scenario KPI’s comparison considering math function T = 1 / (2 – ID) 

Interoperability degree Cost (MU) Lead time (Days) Service level (%) 

R4 = 0 30519.29 130.96 94.8537 

R4 = 0.2 30528.51 132.87 94.3860 

R4 = 0.4 30555.80 128.61 93.4580 

R4 = 0.6 30583.65 133.98 87.9313 

R4 = 0.8 30630.44 132.67 91.8360 

R4 = 1 30679.23 134.93 92.6112 

Table 4.17 Second scenario KPI’s comparison considering math function T = 2 / (1 + ID) 

Interoperability degree Cost (MU) Lead time (Days) Service level (%) 

R4 = 0 31004.74 139.19 95.1081 

R4 = 0.2 30901.72 136.06 91.3925 

R4 = 0.4 30828.43 132.72 87.1714 

R4 = 0.6 30756.79 131.78 90.8238 

R4 = 0.8 30717.31 131.85 91.7778 
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Interoperability degree Cost (MU) Lead time (Days) Service level (%) 

R4 = 1 30679.23 134.93 92.6112 

Table 4.18 Second scenario KPI’s comparison considering math function T = 2 – [3 / (2 + ID)] 

Interoperability degree Cost (MU) Lead time (Days) Service level (%) 

R4 = 0 30519.29 130.96 94.8537 

R4 = 0.2 30569.34 130.28 96.0623 

R4 = 0.4 30593.85 133.43 93.3861 

R4 = 0.6 30632.78 135.32 91.0241 

R4 = 0.8 30659.65 132.59 96.3040 

R4 = 1 30679.23 134.93 92.6112 

Table 4.19 Second scenario KPI’s comparison considering math function T = 3 – [2 / (2 - ID)] 

Interoperability degree Cost (MU) Lead time (Days) Service level (%) 

R4 = 0 31004.74 139.19 95.1081 

R4 = 0.2 30976.61 136.82 90.3013 

R4 = 0.4 30930.95 133.96 90.1873 

R4 = 0.6 30873.47 134.84 88.5591 

R4 = 0.8 30791.11 134.21 96.0905 

R4 = 1 30679.23 134.93 92.6112 

Looking at Tables 4.14, 4.15, 4.16, 4.17, 4.18 and 4.19, one can verify that the maximum cost 

of 31004.74 MU corresponds to a null interoperability degree for practice R4. If it is considered 

an interoperability degree of 0.2 or 0.4, the cost is also very high. However, the minimum cost of 

30340.16 MU also corresponds to a null interoperability degree for practice R4. This outlier 

must be ignored, as explained in the first scenario. 

Regarding the lead time, it is possible to see that the minimum value of 127.61 days 

corresponds to a low interoperability degree of 0.4. So it must be ignored this unexpected result. 

On the other hand, the maximum value of 139.19 days is associated to a null interoperability 

degree for practice R4. Tables 4.15, 4.17 and 4.19 show this relation among null interoperability 

degree and maximum lead time. In fact, entities should have a flexible transportation to satisfy 

the customer orders whenever an unexpected event occurs. 



Chapter 4. Supply Chain simulation 

61 

It should be noted that the maximum cost present in Tables 4.15, 4.17 and 4.19 corresponds to 

the maximum lead time of 139.19 days. This means that the increasing of the time between the 

reception and the delivery of a customer order contributes to the cost increasing. 

Looking at the KPI “service level”, one can verify that the minimum value of 85.5309% 

corresponds to a null interoperability degree for practice R4, as observed in the first scenario. 

On the other hand, it is not necessary to implement the practice R4 with a maximum 

interoperability degree to obtain a maximum service level of 97.9803%. From Table 4.14, it can 

be seen that it is more profitable to implement the practice R4 with an interoperability degree of 

0.8, instead of implementing it with an interoperability degree of 1. 
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5.1. Conclusions 

5.2. Future work 

Chapter 5. Overall conclusions 

5.1. Conclusions 

The present dissertation contributes to the interoperability assessment, making use of 

simulation applied to Lean, Agile, Resilient and Green Supply Chain Management (LARG 

SCM). 

From the literature review on Supply Chain Management (SCM) it was possible to analyse the 

synergies and divergences among Lean, Agile, Resilient and Green (LARG) paradigms. Also, it 

were identified the LARG practices that involve logistics interactions between Supply Chain 

(SC) entities, highlighting the Resilient practice “Flexible transportation”. To develop a fully 

integrated SC, it is necessary the evaluation of the paradigms practices contribution for SC 

performance. Thus, it was selected the following Key Performance Indicators (KPI’s): cost, lead 

time and service level. 

Every SC needs to be interoperable in order to have significant positive effects on their 

performance. Therefore, it was made a research on interoperability and business 

interoperability. The literature reveals that the problems of communication that affect complex 

networks involve three subjects: syntax, semantics and pragmatics. From the research, it was 

also addressed the interoperability measurement, which can be quantitative or qualitative. It 

should be noted that is not possible to assign an interoperability level valid for all types of 

business. 

After the literature review on SCM and interoperability, it is used the simulation tool to study the 

actual global business environment, applying these two concepts. In this work, an exploratory 

case study was conducted at some entities of a Portuguese automotive SC. 

The simulation model was developed with the help of Rockwell Arena 9.0 simulation software. 

Regarding the large number of simulation tools that have been developed for SC analysis, 

Arena software is considered a user-friendly and dynamic tool. Although it has many 

advantages that were not explored, such as animation, Arena has some limitations that should 

not be ignored. For instance, if the simulation model requires many replications with a long 

replication length, a sensitivity analysis will take too long. Furthermore, a large number of 

entities involved in the simulation model can also overload the results extraction contributing, 

consequently, to a sensitivity analysis more complex and lengthy. 

Another limitation of this study is related with the inputs of the simulation model.   
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Since was not possible to gather all data at entities of the Portuguese automotive SC, the 

simulation model was made considering a potential set of values, in order to assess the impact 

of input data changes on the model results. 

Therefore, the consistency between the simulation model and the conceptual model, which was 

designed based on the automotive SC characterisation, is not as good as expected. The 

remaining input data and parameters that were used in the simulation model were quantified 

based on interviews with logistics and operations managers of the SC entities. Note that to 

make an assessment in SCM and interoperability it is required a deep knowledge in these 

subjects not only from the interviewer, but also from the professionals interviewed. 

Despite all these limitations, it is possible to say that the objectives of this dissertation were 

achieved almost entirely. The development of a simulation model that accurately represents the 

real system depends on the confidence of the inputs. If the simulation model is built only using 

real input data, the uncertainty of the outputs will be lower. Since some of the inputs were 

assumed, this simulation model should be used as a basis to deepen the knowledge on SCM 

and interoperability concepts, using the simulation tool. SCM, interoperability and simulation 

subjects must be applied together to help organisations to achieve overall competitiveness, 

focusing their strategies on a co-operative environment. 

5.2. Future work 

Regarding future work, it could be interesting to continue studying SCM and interoperability 

using simulation software with a different simulation language, such as, for example, 

SIMSCRIPT or ProModel. An additional extension of this study may be the combination of the 

simulation tool Arena and the procedural programming language Visual Basic for Applications 

(VBA). Thus, it will be easier to program complex algorithms in VBA. 

The graphical animation is also a possible extension of the work developed. Animation is 

needed to visualise and analyse the process dynamics. Thus, it will be easier to entice others in 

the organisation to be interested in process improvement. 

Finally, it would be interesting to select more LARG practices and/or KPI’s, like quality, in order 

to monitor interoperability throughout SC. Since the automotive SC simulation model makes a 

virtual study of how to access interoperability in LARG practices using subjective information, it 

would also be interesting to apply this study to an enterprise of other sectors, such as, for 

example, Information Systems (IS) or pharmaceutical industry. 
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