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Abstract 

 

The main aim of this research was to explore MIL-53(Al) metal organic framework as a 

selective adsorbent for adsorption of the components of natural gas (CH4, C2H6, C3H8, 

C4H10) and possible storage unit according to the Department Of Energy (DOE) target.  

To achieve this purpose, the research was focused on the following objectives: 

1. Treatability studies of the metal organic framework MIL-53(Al) using 

advanced chemical-physical techniques.  

2. Treatability studies of the thermodynamics of the components of natural gas 

(CH4, C2H6, C3H8, C4H10) adsorption using gravimetric analytical approach in 

a temperature range 303-353K and pressure 0 - 5 MPa.  

3. Molecular simulation of the adsorption process using the Grand Canonical 

Monte Carlo (GCMC) method.  

4. The GCMC calculations of the gas storage on MIL-53(Al) according to the 

DOE target.  

In order to gain some insight into gas adsorption process the MIL-53(Al) material was 

characterize by elemental analyze, N2 adsorption, mercury porosimetry, solid state 13C-

NMR, X-ray diffraction, FTIR and thermogravimetric analysis.  

The gas-adsorption runs were performed using high-pressure magnetic-suspension 

balance measurements with automated online data acquisition of temperature, pressure, 

and sample weight. Adsorption experiments were done for C1-C4 alkanes in a wide range 

of temperature 303-353 K and pressure 0-5 MPa.  

The simulation work was done by the GCMC model using United Atom force field 

which shows good agreement between simulated and the experimental adsorption data.  

It was concluded that the MIL-53(Al) must operate with a charge pressure slightly 

above 10 MPa to deliver the DOE target of 150 volumes of methane per storage volume 

in an isothermal cycle operating at 298.15 K and depletion pressure of 0.136 MPa.  

 

Keywords: metal organic framework, adsorption, gas, molecular simulation, Grand 

Canonical Monte Carlo (GCMC). 
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Resumo 

 

O principal objetivo desta pesquisa foi explorar MIL-53 (Al) quadro orgânico de metal 

como um adsorvente seletivo para a adsorção dos componentes do gás natural (CH4, 

C2H6, C3H8, C4H10) e possível unidade de armazenamento de acordo com o 

Departamento de energia alvo (DOE). 

Para alcançar este objetivo, a pesquisa foi focada nos seguintes objetivos: 

1. Tratabilidade estudos de estrutura orgânica do metal MIL-53 (Al) através de 

técnicas físico-química avançada. 

2. Estudos de tratabilidade da termodinâmica dos componentes do gás natural 

(CH4, C2H6, C3H8, C4H10) adsorção usando gravimétrico abordagem analítica em 

uma ampla gama de temperaturas de 303-353 K e pressão 0-5 MPa. 

3. Simulação molecular do processo de adsorção, utilizando o método de Monte 

Carlo Grande canónica (GCMC). 

4. Os cálculos GCMC do armazenamento de gases na MIL-53 (Al) de acordo com 

a meta DOE. 

A fim de ganhar alguma introspecção em processo de adsorção gás-53 MIL (Al) 

material foi caracterizar por análise elementar, N2 adsorção, porosimetria de mercúrio, de 

estado sólido de 13C-RMN, difração de raios-X, FTIR e análise termogravimétrica. 

As corridas de gás de adsorção foram realizadas utilizando medições dos balanços 

de suspensão magnética de alta pressão, com a aquisição automática de dados on-line 

da temperatura, pressão, e o peso da amostra. Foram realizadas experiências de 

adsorção para C1-C4 alcanos em uma ampla gama de temperatura de 303-353 K e 

pressão de 0-5 MPa. 

O trabalho de simulação foi feito pelo modelo GCMC usando o campo de força Atom 

United, que mostra boa concordância entre simulação e os dados experimentais de 

adsorção. 

Concluiu-se que o MIL-53 (Al) deve ser operado a uma pressão ligeiramente acima 

da carga de 10 MPa para entregar o alvo DOE de 150 volumes de metano por volume de 

armazenamento de um ciclo de funcionamento isotérmico a 298.15 K e pressão de 

esgotamento de 0.136 MPa. 

 

Palavras-chave: estrutura metálica orgânicos, adsorção de gás, simulação molecular, o 

Grand Canonical Monte Carlo (GCMC). 
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1.1. Metal Organic Framework 

 

Porous materials are of scientific and technological interest because of their ability to interact 

with atoms, ions and molecules not only at their surfaces, but also in bulk. The pores sizes, shapes 

and volumes govern their ability for desired function in a particular application. The applications of 

porous materials involve storage, separation, ion exchange, catalysis and etc. Recently, an 

advanced approach to porous solid materials synthesis has gained renewed interest [1]. It involves 

coordination of the metal ions to the organic „linker‟ moieties, thus yielding open framework 

structures called the Metal-Organic Frameworks (MOFs).  

 

1.1.1. MOFs overview 

 

A metal-organic framework (MOF) is composed of two major components: a metal ion or 

cluster of metal ions and an organic molecule called a linker. The organic units are typically mono, 

di-, tri-, or tetravalent ligands. The combination of the two components of a MOF, the metal ion or 

cluster and the organic linker, provides endless possibilities (Fig. 1.1 and 1.2).  

Since the 1990s, this area of chemistry has experienced almost unparalleled growth, as 

evidenced by not only the sheer number of research papers published but also the ever-expanding 

scope of the research [1-3]. The MOF design via functionalization or incorporation of various 

building blocks ensures the unique physicochemical properties of the resulting materials, such as 

redox potentials, light absorption, magnetic moments, optics, electronic properties and etc. To date, 

there are tens of thousands of MOFs catalogued in the Cambridge Structural Database (CSD) (Fig. 

1.3, 1.4) [4]. Thus, discovered 15 years ago, MOFs represent one of today’s hottest fields of 

research. 

The sum of the physical properties of the inorganic and organic components and possible 

synergistic play between the two provide intriguing properties of MOFs. MOFs are known for their 

extraordinarily high surface areas, tunable pore size, and adjustable internal surface properties. 

Compared to other solid-state matters such as zeolites, carbons and oxides, a number of MOFs 

are known to exhibit high framework flexibility and shrinkage/expansion due to interaction with 

guest molecules [4]. One of the most striking differences to traditional inorganic materials is 

ultrahigh porosity (up to 90% free volume) and enormous internal surface areas, extending beyond 

6 000 m
2
/g. Therefore, owing to the increasingly rational approaches for the synthesis, MOFs can 

combine all the desired possibilities of the classical porous solids and have potentially unlimited 

pore sizes and surface areas. These properties, together with the extraordinary degree of variability 

of both the organic and inorganic components of their structures, make MOFs of interest for 

potential applications in clean energy. Therefore, MOFs are attracting considerable attention 

among scientists as well as recalling strong commercial interest in their application as storage 

media for gases such as hydrogen and methane, and as high-capacity adsorbents to meet various 

separation needs [4-9]. 

 

http://en.wikipedia.org/wiki/Valence_%28chemistry%29
http://en.wikipedia.org/wiki/Valence_%28chemistry%29
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Figure 1.1. The MOF-5 (or IRMOF-1) Structure [http://en.wikipedia.org/wiki/File:IRMOF-1_wiki.png]. Color 
scheme is as follows: Zn (blue polyhedra), O (red spheres), C (black spheres), Br (green spheres in 2), amino-
groups (blue spheres in 3). The large yellow spheres represent the largest Van der Waals spheres that would 

fit in the cavities without touching the frameworks. All hydrogen atoms have been omitted, and only one 
orientation of disordered atoms is shown for clarity 

 
 

 

 

Figure 1.2 Series of 16 highly crystalline MOFs from the prototype MOF-5 by functionalizing the organic 
linkers with different groups and expanding its pore size by longer linkers. Single crystal x-ray structures of 
IRMOF-n (n=1 to 16), labeled respectively [2]. Color scheme is the same as in Fig. 1.1.  

 

 

 

 

 

http://en.wikipedia.org/wiki/File:IRMOF-1_wiki.png
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Figure 1.3 Number of MOF structures reported in the Cambridge Structural Database (CSD) from 1978 
through 2006. The bar graph illustrates the recent dramatic increase in the number of reports, while the inset 
shows the natural log of the number of structures as a function of time, indicating the extraordinarily short 
doubling time for MOF structures compared to the total number of structures archived in the database [10].  

 

 

Figure 1.4 Graph of the number of MOFs published per year since 1970 (left) and the change in the 
percentage of MOFs in the overall CSD since 1970 (right)  

 

The MOFs with predetermined structures, compositions and properties can be conceptually 

designed using so called“reticular” synthesis [11], when the secondary building units (SBU) such as 

polygons or polyhedra (Fig. 1.5) are used to direct the ordered frameworks assembly, systematic 

variation of the pore metrics and materials functionalization. Eddaoudi et al. [12] described the 

secondary building unit (SBU) as metal complexes and cluster entities, in which the ligand 

coordination nodes and metal coordination environments could be utilized in a transformation of 

these fragments into various extended porous networks using polytopic linkers. This led to the 

design and synthesis of a new class of porous materials with robust structures and high porosity.  
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Figure 1.5 Schematic presentation of the reticular chemistry [http://en.wikipedia.org/wiki/File:Reticular_figure!.jpg] 
 

As metal sites play a central role in a vast majority of molecular recognition processes, Chen et 

al. reported a presence of open metal sites by single-crystal X-ray diffraction analysis in a 

crystalline MOF [17]. The 3D crystalline MOF named as MOF-11 was formed from 

copolymerization of inorganic square cluster with an organic adamantine tetrahedral cluster, 

consisting of 3-D channel filled with guest water molecules. Several chiral porous MOFs were 

synthesized based on chiral ligands for enantioselective applications. As most of the MOFs contain 

transition elements, new MOFs were developed based on lanthanide elements due to their high 

coordination number with specific magnetic and luminescence properties [14-16]. The structure of 

enclathrated water can be an important parameter in understanding the mechanism of formation of 

different MOFs. Bharadwaj and co-workers [7-9, 17-22] examined the stable conformation of 

different isomers of water cluster in various MOFs.  

The MOFs can be categorized into rigid and flexible/dynamic frameworks. Rigid MOFs are 

robust and stable porous frameworks with permanent porosity, similar to zeolites and other 

inorganic porous materials. In contrast, flexible MOFs possess dynamic frameworks that respond 

to external stimuli, such as pressure, temperature, and guest molecules [23-26]. Inclusion of guest 

molecules causes structural transformation in MOFs which is usually not observed in zeolite 

structure. Structural transformations may include stretching, rotational, breathing and scissoring 

mechanisms, which induce different effects in the structures. Kitaura et al. [27] observed hysteresis 

in a 3D pillared layer material, which undergoes contraction and expansion during adsorption, with 

a 27.9% reduction in a cell volume on contraction. Inclusion of guest molecules in a porous 

material can cause structural distortion, which is classified into two main categories. One is crystal-

to-amorphous transformation which occurs when the framework collapses upon guest removal but 

http://upload.wikimedia.org/wikipedia/commons/0/0c/Reticular_figure%21.jpg
http://upload.wikimedia.org/wikipedia/commons/0/0c/Reticular_figure%21.jpg
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regeneration is possible by guest resorption. The other is crystal-to-crystal transformation where 

guest exchange or removal causes structural change without loss of crystallinity, i.e., unit cell 

expansion/contraction or scissoring.  

In the MOFs, two processes may occur during adsorption of gas, namely gating and kinetic 

trapping. Gating occurs when the porous structure changes during adsorption process, going from 

non-porous to porous at a specific pressure. Physical adsorption of species on many porous 

materials produces adsorption isotherms that are virtually completely reversible. However, Zhao et 

al. [28] reported irreversibility in hydrogen uptake in a MOF at 77 K, whereby all or some of the H2 

is retained on pressure reduction referred to as “kinetic trapping”. This is due to a presence of 

narrow windows, which are considerably smaller than the cavities they connect resulting in a kinetic 

tapping of the H2 gas by windows. 

Ferey and co-workers first developed a series of 3D rare earth diphosphonates named as MIL-

n (Materials of the Institute Lavoisier) [29-31]. Later they extended to compounds containing 3D 

transition metals (M = V, Fe, Ti) and metallic dicarboxylates [32-34]. Ferey et al. [35] used 

combined targeted chemistry and computational design to create chromium terephthalate based 

MIL-101 with very large pore sizes of ~ 30-40 Ǻ and surface area of ~ 3900 m
2
/g. Serre et al. 

synthesized the first Cr (III) dicarboxylate MIL-53as (as-synthesized) under hydrothermal conditions 

[36]. MIL-53as exists in two forms, low-temperature form filled with water molecules and high 

temperature form, the dehydrated solid (Fig. 1.6). The transition between the hydrated form (MIL-

53lt) and the anhydrous solid (MIL-53ht) is fully reversible and followed by a very high breathing 

effect. The pores are clipped in a presence of water molecules (MIL-53lt) and reopened when the 

channels are empty (MIL-53ht). In addition, MIL-53as and MIL-53lt exhibit antiferromagnetic 

properties. Similar breathing occurs when they change the Cr atom with other elements such as Al, 

Fe and Ga and this is due to the presence of the OH groups in one-dimensional channel which 

strongly interact with water [37-39]. However, no such breathing occurs in vanadium kind of the 

MIL-47 material, where there are no OH groups in the skeleton [40].  

 

Figure 1.6 Structure MIL-53ht [http://commons.wikimedia.org/wiki/File:MIL-53ht.png]. 

http://upload.wikimedia.org/wikipedia/commons/e/e4/MIL-53ht.png
http://upload.wikimedia.org/wikipedia/commons/e/e4/MIL-53ht.png
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A major breakthrough in the MOFs development is an evolution of the covalent organic 

frameworks (COFs), which consist of light elements (B, C, N and O) resulting in various 2D and 3D 

porous framework. Côté et al. [41, 42] and El-Kaderi et al. [43] synthesized the crystalline, porous 

COFs solely from light elements such as B, C, O and H. Consisting of organic-linkers covalently 

bonded with boron-oxide clusters, the COF-1 has salient features such as high thermal stability, 

large surface area and porosity. These boron-oxide clusters can be regarded as analogous to the 

metal-oxide clusters in MOFs. With the light elements, COFs have even lower density than MOFs. 

The co-condensation of boronic acid with hexa-hydroxytriphenylene results in 2D COF-6, -8 and -

10 [42]. These 2D COF structures resemble the layered graphite composed of graphene sheets. 

The inter-layer distances in the COF-6, -8 and -10 are of 3.399, 3.630 and 3.526 Å, respectively. 

Alternatively, joining triangular and tetrahedral nodes leads to 3D the COF-102, 103, 105 and 108 

[43]. The COF-108 was reported to have the lowest density (as low as 0.17 g/cm
3
), even lower 

than the highly porous materials MOF-177 (0.42 g/cm
3
) and the lowest in any crystalline materials. 

Similar to carbon nanotube, armchair or zig-zig 1D the COF nanotube (COF_NT) could be 

constructed by rolling a COF layer in a particular direction. Mazzoni and coworkers [44] tested the 

stability of COF_NTs by examining the structural and electronic properties using the first principle 

calculations. Later, Hunt et al. [45] extended this approach by linking organic units with the strong 

covalent bonds found in the Pyrex (borosilicate glass, B-O and Si-O) to give a porous covalent 

organic borosilicate framework designated as the COF-202. Uribe-Romo et al. synthesized the first 

3D crystalline framework (COF-300) constructed solely from C-C and C-N covalent linkages and 

demonstrated its permanent porosity by studying Ar adsorption at 87 K [46]. Wan et al. reported the 

synthesis of a new COF, the TP-COF based on the condensation reaction of triphenylene and 

pyrene monomers [47]. The TP-COF is highly luminescent, electrically conductive and capable of 

repetitive on-off current switching at room temperature. 

 

Figure 1.7 Structure COF-1 [http://en.wikipedia.org/wiki/File:Boron_condensation.png] 

http://en.wikipedia.org/wiki/File:Boron_condensation.png
http://en.wikipedia.org/wiki/File:Boron_condensation.png
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Advanced design of the topological networks of zeolites (inorganic tetrahedral building units) 

resulted in a new generation of highly porous MOFs, such as the Zeolitic-Imidazolate Frameworks 

(ZIFs), Tetrahedral-Imidazolate Frameworks (TIFs), Boron-Imidazolate Frameworks (BIFs) and 

Zeolite like Metal-Organic Frameworks (ZMOFs). Those exhibit unique properties of extra-large 

cavities, chemical stability and ion-exchange capability. Tian et al. [48] reported a novel MOF with 

large pores and diamond-like topology from tetrahedral building block (TX4) with four connections, 

where T-X-T angle is of 145º, T is Co(II) and X is imidazole linker. Similarly, Tian et al. [49-52] 

synthesized several MOFs based on the Co (II) and Zn imidazolates with zeolite-like topology. 

Huang et al. [53] established a new strategy to develop the zeolite-type MOFs with large pores by 

using a simple imidazolate ligand with a smaller substituent such as a methyl or ethyl group at the 

2-position resulting in SOD and ANA topologies [54, 55]. Park et al. [56] synthesized a series of the 

ZIFs by copolymerization of either the Zn (II) or Co (II) with imidazolate-type linkers. Hayashi et al. 

[57] reported the ZIF-20, ZIF-21 and ZIF-22 based on the FAU or LTA topologies. Banerjee et al. 

[58] developed 25 different ZIFs structures, 10 of which have two different links and 5 of topology 

not yet observed in zeolites and ZIF-68, -69 and -70 are of high thermal and chemical stability in 

organic and aqueous media. Wang et al. [59] reported the ZIF-95 and ZIF-100 with topology non-

observed for the zeolites. Zhang et al. [60] demonstrated a new synthetic method based on the 

cross-linking of various pre-synthesized boron imidazolate complexes (BIFs). Wu et al. [61] 

synthesized five 4-connected zeolitic metal imidazolate frameworks (TIFs). Liu et al. [62] reported 

the 4-connected MOF (rho-ZMOF) which is anionic in nature with topology of rho-zeolite (Fig. 1.8). 

Similarly, Sava et al. [63] used the approach based on rigid and directional single-metal-ion 

tetrahedral building units (TBUs) to synthesize the pyridine - carboxylate ZMOFs. 

 

Figure 1.8 Single-crystal structure of rho-ZMOF (left) and sod-ZMOF (right). Hydrogen atoms and quest 
molecules are omitted for clarity. In - green, C - gray, N - blue, O - red. The yellow sphere represents the 
largest sphere that can be fit inside the cage, considering the van der Waals radii [63].  

 

Post-synthetic modification of MOFs opens up another dimension of structural possibilities that 

might not be achieved by conventional synthesis. A critical review on post-synthetic modification of 

the MOFs is given by Wang et al. [64]. 
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1.1.2. MOFs applications  

The MOFs have been explored for their interesting properties including optical [62, 65-67], 

magnetic [68-70] and electronic properties [71-74], as well as their potential applications such as in 

catalysis [75-78], ion-exchange [62, 63, 79-81], gas storage and separation [82-84], sensing [85-

87], polymerization [88, 89] and drug-delivery [90-92]. A brief discussion on the application of 

MOFs, particularly in gas adsorption, separation and catalysis is summarized below. 

 

Gas Storage 

Metal Organic Frameworks (MOFs) attract attention as materials for adsorptive gas storage 

because of their exceptionally high specific surface areas and chemically tunable structures. MOFs 

can be considered as a three-dimensional grid. Gas molecules are stored in a MOF by adsorbing 

to its surface without space-blocking by non-accessible volume. Also, MOFs have a fully reversible 

uptake-and-release behavior: since the storage mechanism is based primarily on physisorption, 

there are no large activation barriers to be overcome when liberating the adsorbed gases.  

Over past few years, numerous studies have been reported in MOFs toward the H2 storage for 

vehicular applications. Rowsell et al. [93] observed that the adsorption capacity in MOFs can be 

further increased by altering a chemical nature of the organic component. Chen et al. [94] 

highlighted the H2 adsorption in the MOF-505 based on NbO topology with two pores types, open 

metal sites, permanent porosity. Ferey et al. [95] studied the H2 storage capacity of the MIL-53 

(nanoporous metal-benzenedicarboxylate containing trivalent Cr or Al) and found it is of 3.8 wt% 

and 3.1 wt%, respectively, at 77 K and 1.6 MPa.  

Pan et al. [96] explored a new type of microporous metal coordination materials (MMOMs) with 

pore dimensions comparable to the molecular diameter of H2. The open channels in MMOMs are 

perfectly ordered, allowing the effective access of H2 to interior space. The structures of these 

materials, including the metal building unit, pore dimension, shape, size and volume, can be 

systematically tuned for modifying and improving H2 uptake and adsorption/desorption properties.  

Rowsell and Yaghi [97] reported comprehensive study on the strategies that enhance the H2 

storage in MOFs, included the optimization of pore size and adsorption energy by linker 

modification, impregnation, catenation, and inclusion of open metal sites and lighter metals. 

Following this, numerous experimental studies have been reported on the effect of catenation and 

inclusion of open metal sites on the H2 uptake [98-101]. Wang et al. [102] reported a new porous 

coordination network, the PCN-12 exhibiting the H2 uptake of 3.05 wt % at 77 K and 1 bar. Vitillo et 

al. [103] reported a MOF (CPO-27-Ni) with the highest heat of adsorption of -13.5 kJ/mol.  

Li and Yang [104] suggested a new technique, dissociation/spillover to enhance H2 storage in 

MOFs. By using this technique, they found an increase in H2 storage capacity in the IRMOF-8 to 

1.8 wt% at 298 K and 10 MPa with enhancement factor of 3.1, and totally reversible. The storage 

capacity of the IRMOF-8 was found to be 4 wt% at 298 K and 10 MPa, which is 8 times more than 

that of pure IRMOF-8 under the same conditions [105]. To date, the highest excess H2 uptake were 

found in the MOF-5 (7.1 wt %) [121], MOF-177 (7.0 wt %) [113], and NOTT-102 (7.1 wt%) [106] at 

77 K. Long and co-workers [107] reported a critical review on the H2 uptake in MOFs.  

http://en.wikipedia.org/wiki/Specific_surface_area
http://en.wikipedia.org/wiki/Physisorption
http://en.wikipedia.org/wiki/Activation_barrier
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Eddaoudi et al. [2] synthesized various MOFs and studied gas storage, particularly the CH4 

storage. They proposed a strategy based on reticulating metal ions and organic carboxylate links 

into extended networks in which pore size and functionality could be varied systematically. As a 

prototype of MOFs, the MOF-5 was constructed from Zn4O clusters and benzene links. The three-

dimensional structure of the MOF-5 can be functionalized with the groups -Br, -NH2, -OC3H7, -

OC5H11, -C2H4, -C4H4 and the pore size can be expanded with long molecular struts biphenyl, 

tetrahydropyrene, pyrene and tetraphenyl. They synthesized an isoreticular series of 16 highly 

crystalline materials with open space up to 91.1% of the crystal volume and pore size from 3.8 to 

28.8 Ǻ. One member of this series exhibited a high capacity for the CH4 storage of 240 cm
3
(STP)/g 

at 36 atm and ambient temperature. A correlation between efficient CH4 adsorption and large 

surface area, high free volume, low framework density was proven [108]. Ma et al. [109] reported a 

microporous MOF, PCN-14, based on anthracene derivative consisting of nanoscopic cages. High 

pressure CH4 adsorption study showed that PCN-14 exhibits an absolute CH4-adsorption capacity 

of 230 v/v, which is 28% higher than the DOE target of 180 v/v [110] at ambient temperature. 

 

Gas Removal  

In addition to gas storage for energy application, removal of gases from environment is also 

important. Yaghi and Millward [84] tested the storage capacity for CO2 at room temperature in nine 

MOFs, representing a cross section of framework characteristics such as square channels (MOF-

2), pores decorated with open metal sites (MOF-505 and Cu3(BTC)2), hexagonally packed 

cylindrical channels (MOF-74), interpenetration (the IRMOF-11), amino-and alkyl–functionalized 

pores (IRMOFs-3 and -6), and the extra-high porosity frameworks (IRMOF-1 and MOF-177). 

Llewellyn and Chowdhury et al. [111, 112] reported high uptake of the CO2, CH4 CO2, CH4, C3H8, 

SF6 and Ar in chromium-based MIL-101. For all gases considered in their study, the enthalpy of 

adsorption was found to be lower than those in purely siliceous zeolites such as silicalite indicating 

a weaker interaction between the adsorbates and MIL-101 framework. Furukawa and Yaghi [83] 

measured the CO2 storage capacity in various 1D, 2D and 3D structures of covalent organic 

frameworks (COFs) [42, 43] and showed that 3D COF structures outperform 1D and 2D COFs. For 

instance, CO2 uptake in COF-102 and COF-103 is around 1010 mg/g and 1200 mg/g at 55 bar and 

298 K and comparable to that in MOF-177 (1490 mg/g at 40 bar and 298 K) [84] and MIL-101(Cr) 

(1760 mg/g at 50 bar and 298 K) [111].  

 

Medical applications 

Xiao et al. [113] and Mickinlay et al. [114] showed an exceptionally high adsorption capacity 

and water-triggered delivery of biologically important gas NO in two porous MOFs. The MOFs are 

also tested for the storage and delivery of drug, for example MIL-101 exhibited a remarkably high 

dosage capacity of ibuprofen up to of 1.38 g/g MIL-101 [92], larger than that reported in MCM-41 

[90]. The sorption and in vitro delivery of ibuprofen were also examined in MIL-53 with loading of 

0.22 g/g MIL-53 independently of a metal type (Cr, Fe) [91].  
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Gas Separation 

Some MOFs have been demonstrated being potentially useful in gas separation. Chen et al. 

[115] designed the MOF-508 with pores that can be tuned to match alkane molecular sizes and 

found highly selective chromatographic separation of alkanes in this MOF. Separation of linear and 

branched isomers of pentane and hexane were examined in detail, because of their availability and 

industrial relevance in petroleum refining. Pan et al. [116] studied the separation of hydrocarbons in 

microporous MOFs (MMOFs). Compared to zeolites, the MMOF structures are typically composed 

of aromatic rings and other organic moieties. Their pore structures can be designed and modified 

to yield the desired shape, size, and surface characteristics. They designed and synthesized a 

group of MMOFs that have 3D or 2D structures built upon paddle-wheel metal clusters (nodes) and 

a V-shaped dicarboxylate ligand. These structures contain irregular-shaped micro channels with 

alternating large cages (or chambers) and small entrances (or necks) that connect these cages. 

One of the MMOFs developed has unique property to separate normal C2, C3 and n-C4 olefins and 

alkanes from all branched alkanes and all normal hydrocarbons above C4. Dybtsev et al. [117] 

reported a new MMOF from manganese formate with permanent porosity, high thermal stability 

and high selective gas sorption properties. It selectively adsorbs H2 and CO2 but not the gases of 

larger kinetic diameters due to a smaller aperture of the channels. The selective adsorption of H2 

over N2 was also reported on PCN-13 [118], Mg3(ndc)3 [119] and Cu (F-pymo)2 [120].  

The adsorption properties of different gases have been studied for the first robust MOFs, the 

Cu-BTC with a microporous structure [121, 122]. Ma et al. [123] reported a coordinatively linked 

interpenetrated MOF, the PCN-17, which has the porous structure containing large cages linked by 

relatively small apertures and retains its porosity at temperatures >480ºC. It selectively adsorbs H2 

and O2 over N2 and CO aiming at fuel-cell applications.  

Taking into account the guest-surface interaction, it is worth noting that the selectivity is related 

to adsorbate properties such as polarity, quadrupole moment and H-bonding. Matsuda et al. [124] 

reported the selective adsorption of C2H2 over CO2 at low pressures and room temperature in 

Cu2(pzdc)2(pyz), where pzdc is pyrazine-2,3-dicarboxylate and pyz is pyrazine. Selective 

adsorption based on the hydrophobic/hydrophilic properties of pores was observed in the Zn (tbip) 

[125], (tbip-5-tert-butyl isophthalic acid), Zn(bdc)(ted)0.5 [126], (bdc -1,4 benzene dicarboxylate, ted-

triethylenediamine) and CID-1 [127], (CID-coordination polymer with interdigitated structure). These 

MOFs selectively adsorb MeOH, EtOH and dimethyl ether over H2O. Several MOFs selectively 

adsorb CO2 over CH4 because CO2 has a large quadrupole moment whereas CH4 has none. For 

example, Mn(ndc) (napthalenedicarboxylate) [128] is a 3D microporous MOF with 1D channels 

which contain unsaturated metal sites. The adsorption measurements show that CO2 is more 

adsorbed than CH4 at ambient temperature. Similarly, Bae et al. [129] reported selective adsorption 

of CO2 over CH4 in a carborane based-MOF with coordinatively unsaturated metal sites. Recently, 

Mu et al. [130] synthesized a new 2D interpenetrating MOF with unsaturated metal sites and 

uncoordinated carboxylic group, exhibiting a high selectivity (~13) for CO2 over CH4.  

In recently developed ZIFs, high storage capacity for CO2 and selective adsorption of CO2 over 

CO were identified in ZIF-68, ZIF-69 and ZIF-70 [58]. In ZIF-95 and ZIF-100 with large cavities and 
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highly constricted pores, a higher affinity was found for CO2 over CH4, CO and N2 [131]. A high 

selectivity for CO2 is due to the combined effects of the aperture sizes, strong quadrupolar 

interactions of CO2 with the N surface atoms and higher condensability of CO2 than other gases.  

 

Catalytic applications  

MOFs have large potential in numerous catalytic applications. The study of MOFs as catalysts 

has only recently begun with the majority of the work achieved during the last few years. The mild 

synthetic conditions typically employed for MOF synthesis allow direct incorporation of a variety of 

delicate functionalities into the framework structures. The high surface area, tunable porosity, 

diversity in metal and functional groups of MOFs makes them especially suited for use as catalysts. 

Furthermore, the set geometry of the MOFs internal framework allows for their use as size 

selective catalysts.  

Fujita et al. first reported a MOF-based catalyst in a 2D square network material for the 

cyanosilylation of aldehydes and imines [131]. Evans et al. reported the catalytic properties of set 

of the homochiral porous lamellar lanthanide biphosphonates [132]. Seo et al. reported the 

homochiral MOF as the catalysis of trans-esterification in enantioselective manner [133]. 

Enantiopure chiral ligands or their metal complexes can be incorporated directly into the 

frameworks of MOFs to lead to efficient asymmetric catalysts. Wu et al. reported the synthesis of a 

highly porous homochiral MOF and its application in heterogeneous asymmetric catalysis and 

stereo selectivity rivaling its homogeneous counterparts [134]. Ravon et al. studied the Friedel-

Crafts tert-butylation of both toluene and biphenyl in the cubic compound MOF-5 [135]. They found 

that the MOF-5 catalytic activity is attributed to the encapsulated zinc-hydroxide clusters or to the 

hydrolytically degraded form of the parent materials. Kaskel and co-workers [136, 137] showed that 

the Lewis acid sites in HKUST-1 can catalyze cyanosilylation of benzaldehyde or acetone. They 

also found that MIL-101 is much more active than HKUST-1 as a catalyst for the cyanosilylation of 

benzaldehyde due to the greater Lewis acidity of Cr (III) vs Cu (II). Alaerts et al. [138] investigated 

behavior of HKUST-1 as acid catalyst. Eddaoudi and coworkers [139] encapsulated cationic 

porphyrins in the rho-ZMOF during synthesis and achieved more than 60% loading. They 

demonstrated that encapsulated free-base porphyrin could be metallated with the Mn, Co, Zn or Cu 

ions and showed a catalytic activity towards oxidation of cyclohexane in Mn-metallated porphyrin. 

Hasegawa et al. [140] synthesized a catalytic MOF which consists of the identical pairs of networks 

and two single cadmium ions, octahedrally ligated by pyridyl nitrogen. They found that the MOF is 

capable of base-catalyzing the Knoevenagel condensation of the benzaldehyde with malononitrile. 

Ferey and co-workers [141] modified interior of MIL-101 via Cr(III) coordination with the N atoms of 

ethylenediamine molecules. They tested the catalytic activity of MIL-101 for the Knoevenagel 

condensation of benzaldehyde with nitriles. According to the theoretical calculation MOFs might be 

also use in photocatalysis [141].  
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1.2. Gas Storage/Adsorption  

 

1.2.1. Single-component adsorption 

 

H2 Storage 

Considerable interest has been shown in the development of non-petroleum energy carriers for 

use in transportation. Hydrogen is an attractive option because it has a high energy content 

(120 MJ/kg compared to 44 MJ/kg for gasoline), produces clean exhaust product (water vapor 

without CO2 or NOx), and can be derived from a variety of primary energy sources. A key issue for 

a practical utilization of H2 is development of safe and high-capacity systems for the H2 storage. 

The U.S. Department of Energy (DOE) has set the targets for on-board H2 storage as of 6.0 wt% 

and 45 g/L by 2010, and 9.0 wt% and 81 g/L by 2015 [142]. Considerable research has been 

undertaken over the past two to three decades to determine the H2 storage capacity in different 

carbon nanostructures such as activated carbon, graphite, carbon nanofibres, carbon nanotubes, 

fullerenes and also in zeolites, metal hydrides and MOFs. Several techniques such as the Monte 

Carlo, molecular dynamics and first-principle approaches have been employed to examine the H2 

adsorption in different classes of materials and in turn guide to rational design of adsorbent 

materials that can meet storage targets.  

Ab initio calculations have been reported to investigate an interaction of H2 with MOFs and 

COFs. Hüber et al. [143] studied H2 interaction with MOFs using approximate resolution of the 

identity Møller-Plesset (MP2) [144-146] calculations and triple zeta valence basis set (TZVPP) 

[163]. They estimated the binding energies between H2 and various substituted benzenes such as 

C6H6, C6H5F, C6H5OH, C6H5NH2, C6H5CH3 and C6H5CN. The binding energies of H2 to benzene 

and naphthalene are of 3.91 and 4.28 kJ/mol, respectively, indicating that enlarging the aromatic 

systems increases the interaction energy. Sagara et al. [147,148] calculated the binding energy of 

H2 with organic linker and metal-oxide part in IRMOF-1 using MP2 with the quadrupole zeta 

QZVPP [149] basis set. In addition, they calculated H2 interaction with organic linkers in various 

MOFs (the IRMOF-1, IRMOF-3, IRMOF-1-4NH2, IRMOF-6, IRMOF-8, IRMOF-12, IRMOF-14, 

IRMOF-18 and IRMOF-993) and found that the larger linkers bind more H2 molecules and addition 

of NH2 or CH3 group to each linker increases a binding energy by up to 33%. Han et al. [166] 

performed the MP2/QZVPP calculation to find a binding energy of the H2 with different metal oxides 

and found that the substitution of metal sites from the Zn to Mg and Be does not change the 

configuration, with the Mg cluster showing the higher binding energy. 

The Grand Canonical Monte Carlo (GCMC) simulations are commonly used to predict gas 

adsorption in confined space. Sagara et al. [150] studied the uptake of H2 in MOF-5 using GCMC 

simulation and found that the experimental data are underestimated predicted results. Yang and 

Zhong [151] simulated the H2 adsorption isotherm in IRMOF-1, IRMOF-8 and IRMOF-18 by refitting 

the parameters using the OPLS-AA force field [152] and obtained better agreement with 

experimental results. Similarly, Yang and Zhong [153] simulated H2 isotherm in the IRMOF-1 and 

Cu-BTC at 298 K up to 70 bar and extended their simulations to MOF-508 with open metal sites. 

http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Exhaust_gas
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The presence of open metal sites was found to have a favorable impact on the H2 uptake, but an 

uptake was still low at room temperature. Garberoglio et al. [154] predicted the H2 adsorption 

isotherms in various MOFs namely, the MOF-2, MOF-3, IRMOF-1, IRMOF-5, IRMOF-8 and 

IRMOF-14 using the UFF [155] and the DREIDING force fields [156]. The simulation results agreed 

better with experiments considering the quantum effects, and without the quantum effects they are 

overestimated in the IRMOF-1 and underestimated in the IRMOF-8 at 1 bar and 77 K. Frost et al. 

[157] used the GCMC simulations to predict the adsorption isotherm of H2 in ten different non-

interpenetrating MOFs. The calculated results reveal existence of three different adsorption 

regimes: at low pressures, the H2 uptake correlates with the heat of adsorption; at intermediate and 

higher pressures, correlates with the uptake, the surface area and free volume. Jung et al. [158] 

studied the effect of catenation on the H2 adsorption in catenated MOFs using the GCMC and 

found that the small pores generated by catenation play a significant role in densely confining H2 

molecules; therefore, the capacity in catenated frameworks is higher than that of the non-catenated 

counterparts. Similarly, Ryan et al. [159] reported the effect of catenation on the H2 uptake in MOFs 

and found that catenation can be beneficial for improving the H2 storage in MOFs at a cryogenic 

temperature and low pressures, however not necessarily at a room temperature. 

To improve the H2 storage capacity in MOFs, Zhang et al. [160] designed new hypothetical 

MOFs by exchanging the organic linker in MOF-5 with oxalate and introducing –F, –Cl, –CF3 and –

CCl3 to tune the electronegativity of the linkers. They simulated H2 adsorption isotherm up to 1 bar 

and 77 K and found that the proposed MOFs show high H2 uptake at low pressures. Frost and 

Snurr [161] investigated how to improve H2 storage to meet the current DoE targets. They 

artificially increased H2 –MOF Lennard-Jones attraction and found that the gravimetric H2 uptake of 

6 wt % could be achieved in a MOF with a free volume between 1.6 and 2.4 cm
3
/g. In MOFs with 

free volumes less than 1.5 cm
3
/g the isosteric heat larger than 20 kJ/mol is required to achieve 6 

wt%. Garberoglio [162] simulated H2 uptake in different COFs consisting of lighter elements such 

as C, B, Si, O and H. The H2 adsorption isotherm in 3-dimensional COFs (COF-102, COF-10, 

COF-105 and COF-108) at 77 and 298 K showed a higher capacity in COF-105 at 77 K and the 

COF-108 at 298 K. Similar work was reported by Klontzas et al. [163] showing a gravimetric H2 

uptake of 21 wt% at 77 K and 100 bar in COF-108 and 4.5 wt % at room temperature and 100 bar. 

Most GCMC studies have used empirical force fields such as the UFF [155], the DREIDING [156] 

and the OPLS-AA [152] to predict the H2 adsorption in different MOFs and COFs. Goddard et al. 

[164-166] considered non-bonded interactions between H2 and MOFs (or COFs) and H2-H2 using 

high level ab initio calculations. Based on the ab initio force field, accurate H2 adsorption isotherms 

in the IRMOF-1 and MOF-177 and 2D- and 3D-COFs were shown. Namely, the IRMOF-1 

simulation indicated the H2 adsorption of 1.28 wt % at 77 K and 1 bar, 4.17 wt % and 4.89 wt % at 

pressures of 20 and 50 bar, which are comparable with experimental results under the same 

conditions. In COF-5 the simulation data are also in good agreement with the experimental results. 

As none of the studies reported for the H2 adsorption in MOFs and COFs meet the DOE targets, 

several strategies were proposed to improve the storage capacity of H2 in MOFs and COFs. 
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Rowsell and Yaghi [97] discussed six strategies for high H2 adsorption in MOFs, such as high 

porosity with appropriate pore size, impregnation, catenation, open metalsites, light metals and 

functionalized linkers. Using the GCMC simulation based on ab initio force field, Han et al. [166] 

found a large heat of adsorption for H2 of 8.8 kJ/mol in COF-1 due to appropriate pore size, 

showing a high uptake of 1.7 wt % at 0.1 bar which is higher than in other COFs, such as COF-5, 

COF-102, COF-103, COF-105 and COF-108. However, at 300 K COF-1 shows a low H2 storage of 

0.78 wt % at 100 bar. Yaghi and co-workers [97] suggested insertion another adsorbate molecule 

in large-pore MOFs to create appropriate pore size for high H2 adsorption. Using this approach, 

Han et al. [156] obtained the C60 loaded MOF-177 by the GCMC simulation at 300 and 1 bar and 

the standard DRIEDING force field. They found that at low pressures the H2 uptake increases by 

an inclusion of C60 into MOF-177 at 77 K and 300 K. However, at high pressures it decreases due 

to a reduction in pore volume. Another way to reducing MOFs pore size is a framework catenation. 

Jung et al. and Ryan et al. proved that catenation increases the H2 adsorption at 77 K, but not at 

300 K [167].  

Open metal sites can also be used to enhance the H2 binding energy (up to 10-50 kJ/mol) by 

using different transition metals in the MOF systems [167-169]. Doping alkali elements on the 

organic linker parts of MOFs and COFs was considered as another strategy to improve the H2 

uptake [170-175]. Recently, Cao et al. [176] simulated the H2 adsorption in Li-doped COFs using 

ab initio based force field and the GCMC simulations and reported exceptionally high uptake of H2 

at 298 K and 100 bar in COF-105 (6.84 wt %) and COF-108 (6.73 wt %).  

 

CH4 Storage 

Natural gas, which consists mainly of the CH4, is considered as an alternative fuel to traditional 

fossil fuels. The U.S. DOE has set a storage target of 180 v/v (the volume of gas adsorbed at 

standard temperature and pressure per volume of the storage vessel) at 35 bar [110]. Düren et al. 

investigated the CH4 storage in several IRMOFs, zeolites, MCM-41 and carbon nanotubes [108]. 

They found a correlation between the CH4 adsorption at 35 bar and 298 K and the surface area 

and suggested that an ideal adsorbent for the CH4 storage should have a large surface area, high 

free volume, low framework density and strong adsorbent-adsorbate interactions. Based on these 

criteria, they proposed a hypothetical structure with different linkers showing high uptake of CH4 

[108]. Wang simulated the CH4 adsorption in a series of IRMOFs namely IRMOF-1, -6, -8, -10 and -

14, Cu-BTC, CPL-28, CPL-522 and Cu(AF6)(bpy)2. Similar to Düren et al., conclusions the surface 

area was found to play a dominant role in CH4 adsorption at room temperature and moderate 

pressure. The heat of adsorption correlated well with a pore size at low loadings and with surface 

area and free volume at high loadings [177]. Jhon et al. [178] studied the CH4 adsorption in alkoxy-

functionalized variations of IRMOF-1. It was found that the pores constricted by the alkoxy-

functionalized linkers promoted the CH4 adsorption at low to moderate pressures along with 

decrease of the saturation capacities. The propoxy-functionalized IRMOF-1 showed the largest 

volumetric adsorption at low to moderate pressures due to a combination of long linkers and small 

pores. 
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CO2 Storage 

Kawakami et al. [179] simulated the CO2 adsorption in Zn3(bdc)3 at 78 K using ab initio. They 

found that the framework charge has a substantial effect on the CO2 saturation capacity. Walton et 

al. [180] calculated the CO2 adsorption isotherms in IRMOF-1 at different temperatures which 

match qualitatively with experimental results. They showed that an inclusion of electrostatic 

interaction between the CO2 molecules is required to capture an inflection in the adsorption 

isotherms. In addition, Walton et al. [180] predicted the CO2 adsorption isotherms in IRMOF-3 and 

MOF-177 at 298 K and found good agreement with experiments. It was concluded that inclusion of 

framework charges has negligible effect on the CO2 adsorption in different MOFs. 

Yang et al. [181] predicted the CO2 adsorption isotherms in various MOFs (Cu-BTC, IRMOF-1, -

8, -10, -11, -14, -16, MOF-177 and Mn-MOF) by fitting parameters to match experimental data. At 

moderate pressure of 30 bar, the CO2 uptake is related to both free volume and surface area. They 

also found that electrostatic interaction between CO2 and framework atoms enhances the 

adsorption by ~ 20-30 % at low pressures and decreases to ~ 3 % at high pressures compared 

with the neutral framework. Ramasahye et al. [182-184] calculated CO2 adsorption in MIL-53 (Al) 

and MIL-53 (V). They used the charges computed by the DFT method and a three site model for 

CO2. They predicted the adsorption isotherms and enthalpies of the adsorption in two different 

structures of MIL-53 (Al), namely narrow-pore MIL-53np (Al) and large-pore MIL-53lp (Al) forms, 

having the same chemical identity but different pore widths of 8.3 and 13.8 Ǻ, respectively. The 

simulated enthalpy in MIL-53np (Al) matches the experimental results at low pressures, while the 

enthalpy in MIL-53lp (Al) agrees with the experimental data at high pressures. This finding is 

consistent with a structural transition from narrow-pore form to large-pore form in MIL-53(Al) during 

the CO2 adsorption. They also calculated the CO2 adsorption isotherms at 303 K for pressure up to 

30 bar in the two MIL-53(Al) structural forms and concluded that the μ2-OH groups in MIL-53(Al) is 

the main factor for structural transition. The calculated adsorption isotherm for CO2 in MIL-53(V) 

overestimates responsible experimental results probably due to a presence of incomplete solvent 

molecules in the experimental samples. In addition, Ramasahye et al. [185] used the DFT to probe 

different adsorption sites for the CO2 adsorption in MIL-53 (Al, Cr) and MIL-53 (V). 

 

Other Gases 

Kawakami et al. [179] simulated the N2, O2 and Ar adsorption in Zn3(bdc)3 and compared 

predicted N2 adsorption with experimental data up to 1 atm. They found that the predictions were of 

1.7 -fold higher than the experimental data. They also observed the O2 magnetic chain formation 

due to a confinement of the O2 position and orientation by the Zn3(bdc)3 pores. Vishnyakov et al. 

[186] investigated the Ar adsorption in Cu-BTC using the GCMC simulations and experimental 

measurements at 87 K. The simulated isotherms using UFF [155] agree well with experiments over 

most loadings but over-predicted the saturation loading. The preferential adsorption sites were 

identified, first in the side pockets and followed by condensation in the main channels. Dubbeldam 

et al. [187] studied adsorption isotherms for Ar and N2 in IRMOF-1 at 78 K. They scaled down the 

simulated adsorption isotherms by a factor of 0.725 to match the experimental data and identified 
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the adsorption sites for Ar and N2 in IRMOF-1. The positions and occupations of the adsorption 

sites match well with experiments. The molecules are localized around their crystallographic sites 

at 30 K, however, at 300 K they are quite dispersed inside the pore. Preferential adsorption site 

were also identified for many gases such as Ar, N2, CO2, CH4, H2, C2H6 and C3H8, which are near 

to the ZnO4 cluster with the organic linkers pointing outward. 

Walton et al. [188] calculated the BET surface areas in various IRMOFs, IRMOF-1, -6, -10, -14, 

-16 and -18, using the N2 adsorption isotherms and found good agreement with the accessible 

surface areas estimated from crystal structures. They concluded that by careful choosing of 

pressure range, the BET method can be used to obtain the surface areas of MOF materials. Yang 

et al. [189] simulated the adsorption isotherms of N2 and O2 in the Cu-BTC and adjusted the 

potential parameters to match experimental adsorption isotherms at 295 K and pressure up to 1 

bar. Later they used these potentials to study multicomponent adsorption. Garberoglio et al. [154] 

predicted the Ar adsorption isotherms in Cu-BTC at 87 K and in manganese formate at 78 K. The 

simulated result agrees well with experiment at low pressure. However, it is overestimated at high 

pressure by a factor of ~ 30 % and ~ 50 %, respectively. Since the experiment was conducted at 

temperature lower than the triple point of Ar (83.8 K), a discrepancy may arise due to a formation of 

bulk, like the Ar clusters on the adsorbent surface. Similarly, Garberoglio et al. [162] simulated the 

Ar adsorption in the COF-102 and COF-103 at 87 K using the UFF and DRIEDING force fields and 

compared with experiments. The predicted adsorption overestimated experiments by ~ 25 % upon 

saturation and was worse at low pressures. The author mentioned that this discrepancy might be 

due to a number of effects, including the defects in a crystal structure, inaccurate solid-fluid 

interaction potentials and structure change upon adsorption at high loadings. 

 

1.2.2. Multi-component adsorption 

 

The potential of MOFs for separations of variety of gas mixtures such as CO2/N2, CO2/CH4, 

CO2/CO, CO2/C2H4, C2H6/C2H4, and hydrocarbons has been investigated both experimentally 

[190–198] and using molecular simulations [199–205].  

Düren and Snurr [206] reported the CH4/n-C4H10 multicomponent adsorption in the IRMOFs-1, -

8, -10, -14 and -16 at room temperature and pressure up to 40 bar. They simulated pure CH4, 

C4H10 and their multicomponent adsorption in MOFs aiming at investigation of the linker’s effects 

on the adsorption process. The CH4 shows a type-I isotherm, whereas the C4H10 isotherm is more 

complex and shows sharp jumps. Selectivity of the n-C4H10 adsorption over the CH4 increases 

upon pore size reduction and increase of carbon atom number in a linker. Based on these results, 

the authors proposed a hypothetical structure with the 9,10-anthracenedicarboxylate linker and 

named it IRMOF-993. The predicted selectivity in this structure is as high as 2500. Jiang et al. [207] 

examined multicomponent adsorption of the C1-nC5 linear alkanes and C5 isomers in IRMOF-1, 

silicalite and (10,10) carbon nanotubes. They found that an enthalpy effect dominates at low 

pressures, favoring long alkanes over short alkane and linear alkanes over branched alkanes, 
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while at high pressures entropy effects become important, favoring adsorption of short alkanes, 

explain.  

Yang et al. [189] predicted adsorption separation of CO2 from CO2/N2/O2 mixtures, a 

representative of the flue gas in Cu-BTC. They reported selectivity of 20 at room temperature and a 

total pressure of 5 MPa. Similarly, Wang et al. [208] performed simulation in Cu-BTC for separation 

of CO2 from CO and olefins from their mixtures with paraffins. For an equimolar mixture, a 

selectivity of CO2 over CO is of ~ 25 at a pressure of 5 MPa, whereas a selectivity of C2H4 from 

CO2 is ~ of 2 under the same conditions. Wang et al. [209] predicted mixture selectivity of the 

CO2/CH4/C2H6 mixture in the manganese-formate MOFs. They found that a selectivity of the 

CO2/CH4 mixture is higher than that in the IRMOF-1 and Cu-BTC materials [210]. Martin-Calvo et 

al. [216] studied the adsorption and separation of natural gases considering two- and five-

component mixtures, in IRMOF-1 and Cu-BTC. They found that the adsorption capacity is higher in 

IRMOF-1 and the adsorption selectivity of CO2 over CH4 and N2 is higher in Cu-BTC. Yang and 

Zhong [153] performed the GCMC simulations to investigate the separation features of Cu-BTC 

and IRMOF-1 for mixtures of CO2, CH4 and H2. Adsorption selectivity varies on the structure 

topology and interaction strength of framework with adsorbates. Selectivity of CH4 over H2 in an 

equimolar mixture at room temperature and pressure of 5 MPa was found to be ~ 6 and ~ 12 in 

IRMOF-1 and Cu-BTC, respectively. In IRMOF-1, selectivity of CH4 over H2 is nearly independent 

of pressure. On the other hand, selectivity of CO2 over H2 shows a different trend in Cu-BTC, which 

initially decreases and then increases, reaching a maximum and finally decreases at high 

pressures. At a pressure of 5 MPa, the selectivity of CO2/H2 is around 40 and 110 in IRMOF-1 and 

Cu-BTC. The ideal adsorbed solution theory (IAST) has been tested to compare multicomponent 

selectivity with simulation results. For the CH4/H2 mixture, IAST predicts the multicomponent 

selectivity quite accurately upon comparing with the simulation. However, for the CO2/H2 mixture a 

prediction from IAST is poor. This discrepancy can be attributed to a difference in size and 

interaction strength of adsorbates with the MOFs. 

The siting and segregation of complex alkane mixtures were simulated in MOFs. Suggested 

possibilities were new for the design of highly selective adsorption sites in MOF-1 towards 

separation of the alkanes according to their degree of branching and research octane number 

(RON) from mixed stream [211]. The alkanes in Cu-BTC were studied by infrared microscopy 

combined with molecular simulation. Both experiments and simulations show strong inflection 

characteristics due to the adsorption preference within, and in the regions close to the mouths of 

tetrahedral pockets [212]. Liu et al. [213] performed simulation to study the interpenetration effect 

on a mixture separation in MOFs. They chose different MOFs with and without interpenetration 

(IRMOFs -10, -12, -14 and IRMOFs -9, -11 and -13) to compare the adsorption selectivity of the 

CH4/H2 mixtures separation at room temperature. The results showed that the permeation 

selectivity in the interpenetrated frameworks is much higher than those in their non-interpenetrated 

counterparts due to the larger adsorption selectivity in the former. Recently, Liu et al. [214] 

performed a systematic simulation study to compare a separation of the CO2/N2 and CH4/N2 

mixtures in two classes of nanoporous materials, zeolites and MOFs.  
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1.3. THERMODYNAMICs of GAS ADSORPTION 

 

1.3.1. Supporting theory 

 

When the adsorbent and adsorptive are in contact, the equilibrium is established between the 

amounts of adsorptive adsorbed on the adsorbate surface and the amount of free adsorptive in the 

volume. The equilibrium relationship is described by isotherms.  

The adsorption isotherm for a pure gas is the relation between the specific amount adsorbed n 

(moles of gas per gram of solid) and P, the external pressure in the gas phase.  

In a typical adsorption process, species/materials in gaseous or liquid form (the adsorptive) 

become attached to a solid or liquid surface (the adsorbent) and form the adsorbate [Scheme 1.1].  

 

 

 
 

Monolayer adsorption 
 

Multilayer adsorption 

  
The heat of adsorption of the first monolayer is much 
stronger than the heat of adsorption of the second 
and all following layers. Typical for Chemisorption 
case 

The heat of adsorption of the first layer is comparable 
to the heat of condensation of the subsequent layers. 
Often observed during Physisorption 

 
Scheme 1.1. Presentation of a typical adsorption process (after [215]). Since the adsorptive and the 

adsorbent often undergo a chemical reactions, the chemical and physical properties of the adsorbate are not 
always just the sum of the individual properties of the adsorptive and the adsorbent, and often represent a 
phase with new properties ([215] Christmann, 2010). 

 

Knowledge of the adsorption equilibrium and heat of adsorption is essential for proper design 

and operation of any gas phase adsorption process. The latter is usually estimated from the 

temperature dependence of the adsorption isotherm. Therefore, correlations that capture the 

correct temperature dependence over a relatively wide range are essential for designing and 

operating gas-phase adsorption processes. However, the assumption of a constant heat of 

adsorption, over a relatively large temperature interval, introduces in practice only small errors in 

the pressure and loading estimations. This is why the assumption of a temperature-invariant heat 

of adsorption is frequently adopted.  
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1.3.1.1. Adsorption in microporous solids 

 

The thermodynamic treatment of adsorption phenomena is based on the Gibbs dividing 

surface, which is conceptually clear for a flat surface. On a flat surface, the primary extensive 

property is the area of the solid. As applications became more significant, necessitating 

microporous solids, early researchers such as McBain and Coolidge [216-218] implemented the 

Gibbs definition by invoking a reference state for microporous solids. The mass of solid is used as 

a primary extensive property because surface area loses its physical meaning for microporous 

solids. A reference state is used to fix the hypothetical hyperdividing surface typically using helium 

as a probe molecule, resulting in the commonly used excess adsorption (nex) [219]; 

experimentalists measure this reference state for each new sample. Molecular simulations, 

however, provide absolute adsorption (n). Theoreticians perform helium simulations to convert 

absolute to excess adsorption, mimicking experiments for comparison. This current structure of 

adsorption thermodynamics is rigorous (if the conditions for reference state helium measurements 

are completely disclosed) but laborious. In addition, many studies show that helium, or any other 

probe molecule for that matter, does adsorb, albeit to a small extent. 

An adsorbed phase cannot exist autonomously; it exists only at the interface between two bulk 

phases, a solid phase and a fluid phase. Therefore, any thermodynamic property (amount 

adsorbed, enthalpy, entropy, etc.) of an adsorbed phase is measured as its value for the two-phase 

system relative to its value in some reference state. 

Consider a nanoporous solid adsorbent in equilibrium with a bulk gas of density ρg at some T 

and P as shown in Fig. 1.9a. The container represented by the outer box in the Fig. 1.9 encloses 

the gas in the bulk phase along with the solid adsorbent and adsorbed gas molecules. The total 

volume of the container is V. The solid adsorbent is represented by small shaded squares (with a 

total volume of Vs for all squares); the pores are represented as channels between squares (with a 

total volume of Vp). The gas molecules are indicated by black dots. The density is higher in the 

channels (more black dots) than in the bulk phase away from the solid. Away from the solid, the 

gas occupies a volume of Vg. Although such a schematic simplifies the geometry of the 

nanoporous adsorbent, it correctly depicts the essential features. The known container volume is 

conceptually partitioned into three regions. 

 

  s p gV V V V  (1.1) 

 

Only the container volume, V, can be measured without any ambiguity. The reference state 

choice fixing the Gibbs dividing surface determines the partitioning among the three regions (i.e., 

Vs, Vp, and Vg). 

The following three definitions for reference states, which essentially differ in their definitions of 

the bulk phase volume, provide meaningful descriptions of the adsorption process [217]. These 

definitions are depicted in Fig 1.9 (b-d) 
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Figure1.9. Schematic illustrating various reference states for the definition of adsorption. (a) A typical scenario 
at equilibrium between a gas and a porous solid. (b-d) Reference states for absolute, excess, and net 
adsorption, respectively. 
 

The regions shaded black in this Fig. 1.9 refer to the volume that is not available to the bulk 

gas (impenetrable solid volume) and are considered to be on the “solid” side of the Gibbs dividing 

surface with ρ{x}=0. The gas occupies whatever is left over, the region defined as the bulk phase 

volume, at a density equivalent to its bulk density at the given T and P; ρ{x}= ρg by the Gibbs 

definition. The region shaded black in Fig. 1.9b is the volume occupied by the adsorbent, including 

its pores. The difference of the amount of gas present in parts (a) and (b) of Fig. 1.9 is equal to the 

amount of fluid present within the pores of the adsorbent as a result of adsorption, the so-called 

absolute adsorption. This definition (reference state A) fixes the Gibbs dividing surface at the 

“outer” surface of the adsorbent; the bulk phase extends only until this surface whereas the solid 

phase includes all of the pores. The reference volume for the gas to be experimentally measured 

for absolute adsorption is:  

 

  g s pV V V V  (1.2) 

 

The region shaded black in Fig. 1.9c is the so-called impenetrable solid volume of the 

adsorbent. The difference in the amount of gas present in parts (a) and (c) of Fig. 1.9 is equal to 

the so-called Gibbs surface excess adsorption in the literature. Note that the channels in Fig. 1.9c 

are occupied by gas molecules at a density equivalent to the bulk gas density, which in reality is 

not an achievable condition in experiments. This definition (reference state B) fixes the dividing 

surface at the “inner” surface of the adsorbent, but pores are included in the bulk phase. The 

reference volume for the gas to be experimentally measured for excess adsorption is: 
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 g sV V V  (1.3) 

 

A third definition (reference state C) of the Gibbs dividing surface extends the bulk phase all 

the way into the impenetrable solid as indicated in Fig. 1.9d. This definition of the reference state 

involves the amount of gas present in the empty container (i.e., with no adsorbent present in the 

container), as called the net adsorption (nnet). The net amount adsorbed is equal to the difference in 

the amount of gas present in parts (a) and (d) of Fig. 1.9. The reference volume for net adsorption 

does not need any additional experimental measurement; it is simply the volume of the container. 

 

gV V  (1.4) 

 

From a thermodynamic perspective, any reference state is acceptable as long as it is easily 

measurable without ambiguity. It is possible to convert and compare data based on different states 

through rigorous thermodynamic relations. Coolidge’s work [217] only identifies and highlights the 

differences in using various reference states and concludes that the choice of a reference state 

may be based on the “purpose at hand”. 

Later developments in this area were biased toward reference state B, excess adsorption. This 

development in history may be due to the proximity of the excess adsorption to adsorption on flat 

solid surfaces. Adsorption in micropores based on excess adsorption can readily be used with 

models (i.e., Langmuir and BET) developed for flat surfaces. However, some works advocate the 

use of absolute adsorption [220] on the basis of reference state A because it can be directly 

compared to simulation results. To the best of our knowledge, reference state C defining net 

adsorption was not investigated after the Coolidge works. Before elaborating on net adsorption, the 

following issues highlight difficulties in experimentally and theoretically determining the reference 

states for absolute and excess adsorption (reference states A and B), which require ambiguous 

measurements of the pore volume and the impenetrable solid volume. 

At low pressure, specific properties such as the amounts adsorbed according to the three 

definitions are essentially equivalent whereas differential properties such as the Henry constants 

differ substantially. At high pressure, the differences in all properties are profound. The absolute 

adsorption increases monotonously with pressure whereas excess and net adsorption exhibit 

maxima. The maximum in the amount adsorbed occurs at a pressure where the rates of change in 

density (with pressure) for both the adsorbed and the gas phases are equal. 

There are two of the most common methods used for measuring adsorption viz. the volumetric 

and gravimetric techniques [221]. A simple volumetric setup for the measurement of pure-gas 

adsorption equilibrium is shown in Fig. 1.10a. Initially, the solid adsorbent contained in the 

adsorption column is activated (to remove previously adsorbed species) under appropriate 

conditions, and the column is sealed under vacuum. Both the column and reservoir are maintained 

at the desired temperature T. The reservoir is then charged with gas to a predetermined pressure 

ρ0. The valve between the reservoir and column is opened, and adsorption equilibrium is 
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established between the solid and the gas; the final equilibrium pressure ρg is noted. The contents 

of the column (in both adsorbed and bulk phases) at equilibrium are equal to the moles exchanged 

between the reservoir and the column, ΔN, 

 

 

 

Figure 1.10. Common isotherm measurement systems 

 

   0 0( )gN V  (1.5) 

where V0 is the volume of the charge reservoir and ρ0 and ρg are the molar densities in the charge 

reservoir before and after the valve is opened. In general, the amount adsorbed n
ads

 per unit 

adsorbent mass ms is given by (1.6): 

 


ref

gads

s

N V
n

m
 (1.6) 

where V
ref

 is the volume assigned to the bulk phase on the basis of the chosen reference state.  

Apart from V
ref

, an experimental determination of adsorption requires independent knowledge of 

the reservoir volume V0 and sample mass ms, irrespective of the chosen reference state. As 

explained earlier, V
ref

 for net, excess, and absolute adsorption are (Vcol), (Vcol-Vs) and (Vcol-Vs-Vp,), 

respectively. In addition to other advantages of net adsorption outlined earlier, from a purely 

experimental perspective one needs to determine, V
ref 

(=Vcol) only once because it is fixed for a 

given experimental apparatus. Subsequent changes in the sample do not necessitate additional 

measurements. In contrast, reference states for both absolute and excess adsorption involve the 

solid adsorbent, and V
ref

 needs to be measured every time the adsorbent sample is changed (using 

helium as the probe gas). 

A simple gravimetric setup is shown in Fig. 1.10b. Initially, the adsorbent is placed in a bucket, 

activated under appropriate conditions, and sealed. The signal from the microbalance under 

vacuum m0 is due to the mass of the sample (ms) and the bucket (mbucket). The sample is then 

allowed to equilibrate with the gas of interest at equilibrium pressure Pg and temperature T (at a 

gas molar density of ρg). The signal from the microbalance mf is recorded under equilibrium 
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conditions. The change in the microbalance signal Δm is a result of adsorption occurring on the 

solid surface and the total buoyancy force. In general, the adsorbed amount per unit solid mass is 

given by (1.7): 


 

  
 
 

1ads ref

g

g

m
n V

m MW
 (1.7) 

where MWg is the molar mass of the gas and V
ref

 is the volume experiencing the buoyancy force. 

To determine the adsorbed amount in addition to V
ref

, knowledge of the mass of the clean 

adsorbent in vacuo (i.e., ms) is necessary. 

The buoyancy volume V
ref

 is fixed on the basis of the reference state. In the case of net 

adsorption, the buoyancy correction is needed only for forces acting on the bucket. For excess 

adsorption, the buoyancy correction for the impenetrable solid volume is also needed. Finally, for 

absolute adsorption, yet another correction for the buoyancy acting on the pore volume is also 

necessary. Thus, (V
ref

) is (Vbucket), (Vbucket+Vs), and (Vbucket+Vs+Vp) for net, excess, and absolute 

adsorption, respectively. 

The reference state correction for net adsorption depends only on the bucket volume Vbucket. It 

needs to be determined only once for the given experimental system, similar to the determination 

for the volumetric apparatus. However, the reference states for both excess and absolute 

adsorption involve the sample; separate measurements for each sample are necessary. 

 

1.3.1.2. Adsorption isotherm models 

 

The experimental data are analyzed using certain adsorption models (Scheme 1.2).  

 

 

Scheme 1.2. Models presentation of the adsorption process (after [215]), where symbol (θ) is the fraction of 
the surface sites occupied. 
 

Whether the adsorption isotherm has been determined experimentally or theoretically, the data 

points must be fitted with analytical equations for interpolation, extrapolation, and for the calculation 

of thermodynamic properties by numerical integration or differentiation. 
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Langmuir isotherm model.  

A model assumes monolayer coverage and constant binding energy between surface and 

adsorbate (1.8): 

 


1

L
s

L

K P
n n

K P
 (1.8) 

where ns is the maximum adsorption capacity (monolayer coverage), i.e. mmol of the adsorbate per 

(g) of adsorbent; KL is the constant of Langmuir isotherm if the enthalpy of adsorption is 

independent of coverage.  

As with all equilibrium constants, KL and, hence, the position of adsorption - desorption 

equilibrium, will depend on (i) the relative stabilities of the adsorbed and gas phase species 

involved, (ii) on the temperature of the system, and (iii) on the pressure of the gas above the 

surface. Factors (ii) and (iii) exert opposite effects on the concentration of adsorbed species - that 

is to say that the surface coverage may be increased by raising the gas pressure but will be 

reduced if - at constant pressure - the surface temperature is raised [215]. 

If the desorption energy is equal to the energy of adsorption, then the first-order processes 

have been assumed both for the adsorption and the desorption reaction. Whether the deviation 

exists, the second-order processes should be considered, when adsorption/desorption reactions 

involve rate-limiting dissociation. From the initial slope of a log - log plot of a Langmuir adsorption 

isotherm the order of adsorption can be easily determined: if a slope is of 1, that is 1
st
 order 

adsorption; if a slope is of 0.5, that is 2
nd

 order adsorption process [215]. 

 

BET (Brunauer, Emmett and Teller) isotherm model. 

This is a more general, multi-layer model. It assumes that a Langmuir isotherm applies to each 

layer and that no transmigration occurs between layers. It also assumes that there is equal energy 

of adsorption for each layer except for the first layer (1.9): 

 

 
   

  

1 1

( )s m m s

P C P

n P P n C n C P
 (1.9) 

where n is saturation adsorbed amount (in mmol/l) nm is saturation adsorbed amount of monolayer 

(in mmol/l) and C is a parameter related to the binding intensity for all layers; P and Ps are pressure 

and saturated pressure of the gas, respectively. 

Two limiting cases can be distinguished: (i) when C << 1 and Ps >> P, the BET isotherm 

approaches Langmuir isotherm; (ii) when the constant C >> 1, the heat of adsorption of the very 

first monolayer is large compared to the condensation enthalpy; and adsorption into the second 

layer only occurs once the first layer is completely filled. Conversely, if C is small, then a multilayer 

adsorption already occurs while the first layer is still incomplete [215].  
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Freundlich isotherm model. 

For the special case of heterogeneous surface energies in which the energy term (KF) varies as 

a function of surface coverage the Freundlich model is used (1.10): 

 

  1/

Fn K P  (1.10) 

where KF and 1/η are Freundlich constants related to adsorption capacity and adsorption efficiency, 

respectively. 

To determine which model describes the particular adsorbate/adsorbent systems better, the 

models linearization are used: for Freundlich isotherm - log-log plot (1.11); for the Langmuir model -

the plot of 1/qeql vs 1/Ceql  (1.12); For the BET model - Eq (1.13): 


 f

1
log log logn K P  (1.11) 

 
max max

1 1 1 1

Ln K n P n
 (1.12) 

 
   
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1 1

( )s m m s

P C P

n P P n C n C P
 

(1.13) 

 

Sips and Toth isotherm models.  

When only a subset of the adsorption data is correlated for later use in a specific gas separation 

application, without the need for extrapolation to other adsorbates or to a substantially different 

temperature range, it is more appropriate to obtain a less general but more accurate representation 

of the adsorption equilibria. The Sips and Toth isotherm models [222] are used here for that 

purpose.  

The Sips isotherm can be written as (1.14, 1.15): 

 




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where ns is the maximum adsorbed amount, γ = Q/RT0 is the heat coefficient, η0 and α are 

parameters, and Q is the isosteric heat of adsorption at half loading; η characterizes the adsorbate 

adsorbent, interaction it is usually greater than one, and its magnitude increases with the 

heterogeneity of the system, b and b0 are empirical parameters.  

The Toth isotherm is given by (1.16): 

 


 

    
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n t t
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(1.16) 

with b defined in the same way as for the Sips model. 
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1.3.2. Thermodynamic parameters 

 

Fundamental Gibbs equation 

 

Thermodynamics describes the behavior of matter as a function of state variables (P, T, 

chemical composition etc.). However, since it is just a continuum description of the chemical state 

of systems, it is unable to describe or predict microscopic details or elementary processes on the 

atomic scale, nor is it capable of predicting activation energies and, hence, provides hardly any 

information about kinetics (time dependences) of chemical reactions. 

Consider the differential change of Free Gibbs Energy (dG), the thermodynamic state of the 

system could be presented as:  

 
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(1.17) 

with P = pressure, T = temperature, A = surface area, σ = surface tension, V = system volume, μ = 

chemical potential and S = entropy. The third term becomes decisive, when the surface area is 

large in relation to the bulk volume (high degree of dispersion). 

The surface tension [N/m] is entirely equivalent to the surface energy (σ) [Nm/m
2
], which is the 

driving force for all surface phenomena. 

Chemical equilibrium between adsorbate and adsorptive leads to a constant surface 

concentration (Γ) [mmol/m
2
]. Constant (Γ) is maintained when the fluxes of adsorbing and 

desorbing particles are equal, thus the pressure and temperature dependence of this phase 

equilibrium are considered [215].  

A common procedure is to equate the chemical potentials and their derivatives of the phases 

involved, where the chemical potential (μ) is the derivative of the Gibbs energy (dG) with respect to 

the mole number (ηi): 


 

  
  ,

i

i P T other mole numbers

dG

dn
 (1.18) 

In the (dynamic) phase equilibrium, the chemical potentials μad and μgas are equal and remain 

equal (“persisting” or “ongoing” equilibrium): 
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(1.19) 

(*small letters denote partial molar quantities) 
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Rearranging and considering that the term of  




 
 

  ,

ad OF

p T

d  

 

gets zero for constant coverage (dΓ=0) yields the well-known Clausius - Clapeyron equation for the 

“ongoing” phase equilibrium between gas phase and adsorbate phase(s) is (1.20): 



 

  
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  
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s sdP S
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 (1.20) 

 

Setting Vad+OF << Vg and applying the ideal gas equation, i.e., Vg=RT/P yields the relation (1.21): 





 
 
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1 g ad OFs sdP

P dT RT
 (1.21) 

 

Recalling that the entropy is the “reduced” heat finally leads to the expression (1.22): 



 
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Isosteric heat of adsorption 

 

The decisive quantities when studying the adsorption process are the heat of adsorption and its 

coverage dependence on lateral particle–particle interactions, as well as the kind and number of 

binding states [215]. The most relevant thermodynamic variable to describe the heat effects during 

the adsorption process is the differential isosteric heat of adsorption Qst, (kJ mol
-1

), that represents 

the energy difference between the state of the system before and after the adsorption of a 

differential amount of adsorbate on the adsorbent surface [215]. The physical basis is the Clausius-

Clapeyron equation (1.23): 
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Applying Eq. (1.18) to the Sips isotherm model, defined by Eq. (1.14), gives: 
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 
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(1.24) 

where θ = n/ns is the fractional loading. The heat of adsorption, Q, equals Qst when n/ns is 0.5. 

The isosteric heat of adsorption for the temperature-dependent form of the Toth isotherm 

model, given by Eq. (1.16), is 
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in which the parameter Q equals Qst when the fractional loading is zero. 

Knowledge of the heats of sorption is very important for the characterization and optimization of 

an adsorption process [223–230]. The magnitude of (Qst) value gives information about the 

adsorption mechanism as chemical ion-exchange or physical sorption: for physical adsorption, (Qst) 

should be below 80 kJmol
-1

 and for chemical adsorption it ranges between 80 and 400 kJmol
-1

. It 

also gives some indication about the adsorbent surface heterogeneity. 

 

 

1.4. SIMULATION TOOLs 

 

1.4.1. Interaction Potential 

 

Interaction potential plays a central role in molecular simulations; therefore, it should be 

accurately modeled. In a simulation system, the total interaction energy U
total

 can be decomposed 

into two contributions, 

 

 total bonded non bondedU U U  (1.26) 

where U
bonded

 is the intramolecular energy within a molecule and U
non-bonded

 is the intermolecular 

energy arising between different molecules. 

The non-bonded intermolecular energy usually consists of three terms,  

  non bonded vdw ColoumbU U U  (1.27) 

where U
vdW 

is the Van der Waals interaction energy and U
Coulomb 

is the coulombic interaction 

energy. 

The bonded intramolecular energy is sum of the following terms, bonded stretching  

 

  bonded stretching bend torsionU U U U  (1.28) 

where U
stretching 

is the bond stretching energy, U
bend 

is the bond bending energy for the angle formed 

by two successive chemical bonds, and U
torsion 

is the torsional energy due to the dihedral angles 

formed by four successive atoms in a chain. 

The Van der Waals interaction is usually mimicked by Lennard-Jones (LJ) potential,  

 

 

    

     
     

12 6

( ) 4LJU r
r r

 (1.29) 

where σ is the collision diameter and ε is the well depth. 

For a system composed of different types of atoms, the total Lennard-Jones interaction energy is: 
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 (1.30) 

where εij and σij depend on the pair of atoms considered and are generally derived from εi and σi of 

pure components by appropriate combining rules, for instance, the most widely used Lorentz-

Berthelot rules 

 





2

i j

ij
 (1.31) 

  

  ij i j
 (1.32) 

The coulombic interaction is modeled by the Coulomb’s law, 





0

1

4

i jcoulomb

ij ij
i j

q q
U

r
 

(1.33) 

where qi and qj are the charges in atoms i and j. The atomic charges are usually estimated by 

quantum chemical methods. 

On the basis of different functional forms and various resources used to optimize potential 

parameters, numerous force fields have been developed over the years suitable for a particular 

class of molecules, e.g., the Universal Force Field [155] (for organics, main group elements and 

organometallic systems) the Dreiding II [156] (for organics, biological compounds, main group 

elements, and polymers), the CVFF class II force fields [231] (for proteins and organics), PCFF 

[231] (for polymers and materials science applications), Burchart and BKS [232] (for zeolites) and 

specialty force fields for sorption [233]. Other newly developed force fields include MM2 [234], MM3 

[235-238], MM4 [239-241], AMBER [242], CHARMM [243], Tripos [244]. A general force field 

should be able to cover a broad range of elements in the periodic table and used for various 

compounds. The UFF is one such a force field designed for simulating molecules containing any 

combination of elements. The parameters were defined by combining atomic parameters and 

empirical rules. They expected to yield reasonable predictions of molecular structures, whereas 

predicting other molecular properties such as vibration frequencies and conformation properties are 

limited. Many well parameterized force fields such as MM3, MM4, CHARMM, AMBER and MMFF 

(Merck Molecular Force Field) were designed primarily for biologically interesting molecules. 

However, these force fields give very poor results for adsorption in nanoporous materials. 

No matter which interaction potential and force field are used, simulation is always performed 

on a finite system. To minimize the subsequent surface or heterogeneous effect, periodic boundary 

conditions are commonly exerted. The minimum-image convention is used to calculate the 

interaction energy during simulation, with potential truncated at a cutoff distance smaller than half 

of the box length. For system where coulombic interaction is present, the potential decays with 

distance, the interaction is handled using Ewald summation in which the interactions from infinite 

periodic array of simulation cells are summed with the aid of Fourier transformation. 

1.4.2 Monte Carlo 
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The basic principles of Monte Carlo (MC) simulations used are presented in the thesis. The 

more in depth details are given in several books [245-247]. 

 

1.4.2.1 Canonical Ensemble 

 

Canonical ensemble or NVT ensemble is an assembly of systems, in which the number of 

particles, temperature and the volume are constant. Each system in the ensemble can share its 

energy with a heat reservoir or heat bath. The system is allowed to exchange energy with the 

reservoir, and the heat capacity of the reservoir is assumed to be so large as to maintain a fixed 

temperature for the coupled system.  

For MC simulation in canonical ensemble, sample distribution is performed according to the 

Metropolis scheme. The algorithm generates random trial moves from old state (o) to a new state 

(n). If PB (o) and PB (n) denote the probability of finding the system in the state (o) and (n), 

respectively, and α (o→n) and α (n→o) denotes the conditional probability to perform a trial move 

from (o→n) and (n→o) , respectively, then the probability Pacc (o→n) is related to Pacc (n→o) by 

 

     ( ) ( ) ( ) ( ) ( ) ( )B acc B accP o o n P o n P n n o P n o  (1.34) 

The probability of generating a particular configuration is constant and independent of the 

conformation of the system. 

 

     ( ) ( )o n n o  (1.35) 

Introducing this condition in the detailed balance, Eq. (1.34) gives the acceptance rule as 

 

 
   

 

( )
( ) min 1,

( )
b

acc

b

P n
P o n

P o
 (1.36) 

In adsorption studies, MC simulations are particularly convenient for computing equilibrium 

thermodynamic quantities such as the isosteric heat and Henry’s constant. In addition, MC 

simulations provide detailed structural information, in particular, the location and distribution of 

adsorbed molecules in the pores. Adsorption quantities are usually computed in the grand 

canonical ensemble as described below. 

 

1.4.2.2 Grand Canonical Ensemble 

 

In Grand Canonical Monte Carlo (GCMC) simulation, the chemical potential (µ), volume (V), and 

temperature (T) are fixed. At equilibrium, the chemical potentials of adsorbate in the bulk phase 

and adsorbed phase are equal. The pressure in the bulk phase can be calculated from an equation 

of state and it is thus directly related to the chemical potential in the adsorbed phase. The 

ensemble average number of molecules in the nanoporous material  N  is computed directly from 
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the simulation. By performing simulations at various chemical potentials, one obtains the 

adsorption isotherm at a given temperature. Experimental adsorption isotherm yields the excess 

number of molecules adsorbed in the porous media which is not, in principle, directly comparable 

to  N . 

 

Figure 1.11. Schematic representation of GCMC simulation. Adsorbent in contact with a reservoir that 
imposes constant chemical potential and temperature by exchanging particles and energy. Equation of state is 
used to calculate the pressure of gas. 

 

A schematic representation of GCMC simulation is illustrated in Figure 1.11. Three types of 

moves are usually performed. The first is a displacement and/or rotation, in which the new move is 

accepted with a probability  

 

      ( ) min 1,exp ( ) ( )accP o n U n U o  (1.37) 

where β is inverse temperature, 1/ Bk T  kB is Boltzmann’s constant. U is the potential energy, and 

‘o’ refers to old state and ‘n’ refers to a new state. In the second type, a new molecule is inserted 

in to the system at a randomly chosen position. The new configuration is accepted with a 

probability  

 

  



 

      
 

accP ( 1) min 1, exp ( 1) ( )
( 1)

fV
N N U N U N

N
 (1.38) 

where f is the gas fugacity, V is the volume of the simulation box, N is the number of molecules 

present before the attempted insertion.  

In the third type, a molecule is randomly chosen to be deleted with a probability  

 

  


 
      

 
accP ( 1) min 1, exp ( 1) ( )

N
N N U N U N

fV
 (1.39) 
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In normal GCMC, insertions are attempted throughout an entire volume of the simulation box. 

Nevertheless, part of the volume is occupied by adsorbent atoms and inaccessible to adsorbate 

molecules. Therefore a preferred region exists where the sorbate molecules could be inserted 

energetically favorable with increased acceptance rate. In this case, the acceptance rules for 

insertions and deletions must be altered to ensure that microscopic reversibility is satisfied and that 

the grand canonical ensemble is still correctly sampled. For the adsorption of long-chain molecules 

in a porous material, the configurational-bias (CB) scheme [248] is often used based upon the 

Rosenbluth sampling scheme [249]. The chain molecule is inserted bead by bead into the pore. 

First, a number of candidate positions are generated for the atom to be inserted. One of these 

positions is then selected according to the energy contributions from the external degrees of 

freedom of the molecule. When the molecule is constructed, a Rosenbluth weight is accumulated 

and used in the acceptance rule. This procedure was shown by Smit [250, 251] for the adsorption 

of united-atom (UA) linear alkanes and later extended to branched alkanes [252, 253] and to all-

atom (AA) alkanes [254]. The CB-GCMC scheme is primarily for flexible chain molecules, and 

other bias has to be used in the case of rigid molecules. For aromatic molecules, different biased 

schemes such as cavity-bias [255, 256], energy-bias, energy/cavity bias [257] and orientational-

bias [256-264] GCMC schemes have been used.  

 

1.4.2.3. Gibbs Ensemble 

 

Gibbs Ensemble Monte Carlo (GEMC) method was first introduced for the simulations of phase 

equilibria in bulk systems by Panagiotopoulos [265]. Considering a macroscopic system with two 

phases co-existing at equilibrium, Gibbs ensemble simulation is performed in two microscopic 

regions without the interface. The thermodynamic requirements for phase coexistence require the 

equality of temperature, pressure, chemical potentials of all components in the two phases. 

Temperature of the system is specified in advance in GEMC simulation. Three types of MC moves 

are performed in order to satisfy three conditions mentioned. Namely, the displacement of particle 

with in each region to satisfy internal equilibrium, the coupled volume change to satisfy equality of 

pressures, and the swap particles between regions to satisfy equality of chemical potential. The 

acceptance criteria for GEMC were originally derived from fluctuation theory. Detailed statistical 

mechanical definition of the ensemble can be found in Smit et al. [266] and Smit and Frenkel work 

[246]. GEMC methods were modified to study the equilibrium properties of adsorbed fluid in 

nanospace. The method includes the pore-bulk GEMC [267], the pore-pore GEMC [268], the 

constant pressure pore-bulk GEMC method [268] and the gauge cell method [269, 270]. 

In constant-pressure GEMC, two simulation cells are used one for the adsorbent and the other 

for bulk fluid. The total number of the particles, volume of the adsorbent and temperature are fixed. 

Rather than fixing the volume of the bulk fluid, the pressure is fixed. A schematic representation of 

constant-pressure GEMC simulation is illustrated in Fig. 1.12. Three types of trial moves are 

implemented randomly, namely the displacement in each phase, the swap between two phases, 

and the volume change of the bulk phase.  
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For displacement, the number of particle in each phase is fixed and the trial move is accepted 

using the Metropolis scheme: 

 

 

 

Figure 1.12. Three types of move attempted in constant pressure-GEMC. Volume changes only in the cell 
representing the bulk fluid. 

 

Creation of a particle in the adsorbed phase (A), corresponding to deletion in the bulk (B) 

phase, is accepted with a probability of: 

 

       min 1,exp ( ) / ( 1)A B B A A BP U U N N N V  (1.40) 

where  1/ bk T  , NA, NB refers to the number of particles in the adsorbed and bulk phase, VA, 

and VB refers to the volume of the adsorbent and bulk phase.  

 

Similarly, the probability of acceptance for deletion of a particle in the adsorbed phase and its 

creation in bulk phase is: 

 

       min 1,exp ( ) / ( 1)A B A B B AP U U N N N V  (1.41) 

 

The acceptance probability for the trial volume change in the bulk phase is: 

 

          min 1,exp ln(1 / )B B B B BP U P V N V V  (1.42) 
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1.5. RESEARCH STRATEGY & OBJECTIVES 

 

After analysis of the provided literature sources, a research strategy and the work objectives 

are elaborated. Namely, from analysis of the literature it can be concluded that: 

1. Porous metal organic framework materials (MOFs) have found increasing interest since the 

past few years in potential applications such as separation and storage. 

2. Encouraging results have been obtained recently in terms of hydrogen storage, adsorption of 

greenhouse gases, liquid phase separation and drug delivery. 

3. Increase of the demands to follow the DOE targets recommendations leads to enhance of 

the research interest for the MOF material screening. 

4. For gas storage application, current research interest is focused on MOFs that can 

demonstrate along with the rigid frameworks a significant structural distortion upon 

adsorption /desorption of guest molecules.  

5. An extreme aspect of this type of distortion is the “breathing” effect that is typically 

associated with a large change of the internal pore volume and has recently attracted 

significant research interest. 

6. For the gas storage application, investigations are based on a combination of experimental 

tools completed by a computational approach to deep analysis of the adsorption phenomena 

for the short linear alkanes, hydrogen and CO2 on flexible MOFs. 

Therefore, the overall research idea of the present work is aimed at studying of the flexible 

MIL-53(Al) metal organic framework as a selective adsorbent and possible storage unit for the 

natural gas components according to the target of the Department Of Energy (DOE). The major 

part of the work is aimed at treatability studies of the adsorption processes of CH4, C2H6, C3H8 and 

C4H10, on MIL-53(Al) accomplished by the GCMC molecular simulation.  

To achieve this purpose, the research is focused on the following objectives: 

1. Treatability studies of the metal organic framework MIL-53(Al) using advanced 

chemical-physical background: Elemental Analyze, Mercury Porosimetry, 

Thermogravimetry, X-ray Powder Diffraction, Solid State Nuclear Magnetic 

Resonance, Fourier Transformation Infrared Spectroscopy and Gas Adsorption 

techniques.  

2. Treatability studies of the thermodynamics of the components of natural gas (CH4, 

C2H6, C3H8, C4H10) adsorption using gravimetric analytical approach in a wide range 

of temperatures 303-353K and pressure 0 - 5 MPa.  

3. Molecular simulation of the adsorption process using the Grand Canonical Monte 

Carlo (GCMC) method.  

4. Theoretical calculations of the gas storage on MIL-53(Al) according to the DOE 

target.  

To achieve these objectives the work is planned as a combination of two different types of 

activities:  
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1. Experimental work. Studies of MIL-53(Al) aiming at its structural/properties characterization 

and analysis of the adsorption thermodynamics of the natural gas components.  

2. Theoretical work. Studies of the adsorption process using the Grand Canonical Monte Carlo 

(GCMC) approach and the MIL-53(Al) storage capacity evaluation.  

The thesis structure is given by six CHAPTERS. Chapter 1 and 6 correspond to the introduction 

and conclusions, respectively. The research, achievements and conclusions are divided in three 

major sections:  

 Characterization of the Metal Organic Framework MIL-53Al (Chapter 2);  

 Experimental studies of the thermodynamics of gas adsorption on MIL-53(Al) (Chapter 

3); 

 Theoretical studies of MIL-53(Al) as the adsorption/storage unit for the investigated 

gases (Chapters 4 and 5). 

The detailed characterization of the MIL-53(Al) material using advanced physical-chemicals 

methods (such as elemental analysis, N2 adsorption, mercury porosimetry, solid state 
13

C-NMR, X-

ray diffraction, FTIR and thermogravimetric analysis) constituted the starting points of the research. 

In order to gain insight into the adsorption processes of C1-C4 alkanes on MIL-53(Al); the gas-

adsorption experiment run were using high-pressure magnetic-suspension balance measurements 

with automated online of data acquisition of temperature, pressure, and sample weight in a wide 

range of temperatures 303-353 K and pressure 0-5 MPa. 

Aimed at analysis of the experimental adsorption isotherms several reference states (as called 

thermodynamic framework); net adsorption (nnet); excess adsorption (nex) and absolute adsorption 

(n), and their reproduction in graphic mode are used. The experimental data obtained are fitted by 

the Sips and Toth semi-empirical isotherm models. The isosteric heat of adsorption is also 

calculated using the Clayperon equation and evaluated from statistical mechanical considerations. 

Evaluation of the agreement between simulated and the experimental adsorption data (i.e. 

without needs for the re-parameterization of the cross-terms for the Lennard-Johnes solid–fluid 

interaction potential) was done by GCMC model using United Atom (UA) force field  

At a final stage of the work it was planned to provide an estimation of the MIL-53(Al) net storage 

capacity in an isothermal cycle operating conditions (such a pressure, temperature) to fulfill the 

demands of the Department Of Energy (DOE) for the methane. Also the analysis of the net 

adsorption parameters of MIL-53(Al) together with data on bulk gases compressed under identical 

conditions aiming at estimation of the total storage capacity, and a rough estimation of the MIL-

53(Al) role in storage capacity enhancement above simple gas compression for the C2-C4 gases 

was planned to perform using obtained experimental and theoretical results. 
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2.1. INTRODUCTION 

 

Over the past decade, a large number of hybrid organic–inorganic porous solids belonging to a 

new class of structured nanoporous materials — metal organic frameworks (MOFs) have been 

synthesized and structurally characterized [1, 2]. Due to their high porosity, high adsorption 

capacity, and thermal stability, these materials have shown great potential for applications in gas 

storage, gas separation, catalysis, and allied fields [3-7]. Some MOF materials are already 

produced at industrial scale.  

Ferey and co-workers first developed a series of 3D rare earth diphosphonates named as MIL 

(Materials of Institut Lavoisier) [8-10]. Later they extended to compounds containing 3D transition 

metals (M = V, Fe, Ti) and metallic dicarboxylates [11-13]. Serre et al. synthesized the first Cr (III) 

dicarboxylate MIL-53as (as-synthesized) under hydrothermal conditions [14]. MIL-53as exists in 

two forms, the low-temperature form filled with water molecules and the high temperature form, a 

dehydrated solid. The transition between the hydrated form (MIL-53lt) and the anhydrous solid 

(MIL-53ht) is fully reversible and followed by a very high breathing effect. The pores are clipped in 

the presence of water molecules (MIL-53lt) and reopened when the channels are empty (MIL-53ht). 

In addition, MIL-53as and MIL-53lt exhibit antiferromagnetic properties.  

Several isotypic (e.g., chromium, [15] aluminium, [16] and vanadium [17]) porous 

terephthalates (MIL-53), of which the aluminium analogue [MIL-53(Al)] is the primary focus of this 

work, form a very interesting class of MOF materials, because not only they adsorb large amounts 

of gases, such as H2, [18] CO2, [19] and light alkanes, [20, 21] but they also exhibit exceptional 

flexibility by undergoing a reversible structural transformation (or “breathing”) between two distinct 

conformations - a large-pore (lp) and a narrow-pore (np) structure that have a remarkable 

difference in unit cell volume of up to 40%.  

The MIL-53(Al) framework is built up by the interconnection of infinite trans chains of corner-

sharing (via OH groups) AlO4(OH)2 octahedra by 1,4-benzenedicarboxylate (BCD) ligands, giving 

rise to one-dimensional, diamond-shaped channels with pores of free diameter close to 0.85 nm, 

which are wide enough to accommodate small guest molecules [3, 16, 20, 22] The dehydrated 

structure of MIL-53(Al) is stable up to 773 K, which is remarkable since such a high decomposition 

temperature is unusual for this class of solids; in fact the chromium [8, 22] or vanadium [23, 24] 

analogues are only stable up to 623 K.  

The conditions at which the breathing of MIL-53 happens have been widely studied before, and 

it was shown that the structural transformation is triggered by adsorption of some gases (e.g., H2O 

and CO2) and fluid mixtures at room temperature, [3, 8, 25, 26], by mechanical compression, [12, 

19], and by changes in temperature [18]. When the structural breathing is triggered by host–guest 

interactions, the hydroxyl group of MIL-53 plays a major role during the structural transition [27, 28]. 

The reversible structural transitions triggered by changes in mechanical pressure or temperature 

are due to the intrinsic properties of MIL-53 without the aid of any guest molecules [29, 30, 31]; in 

these cases, the structural breathing shows an exceptionally large hysteresis behavior.  



METAL ORGANIC FRAMEWORKS MIL-53Al CHARACTERIZATION CHAPTER 2 

 

 

 
 

50 | 1 6 6  
 

The crystallographic unit framework of MIL-53lp(Al) is depicted in Figure 2.1., where, for clarity, 

the hydrogen atoms are not shown; the unit framework consists of six different types of pseudo-

atoms: Al, O(1), O(2), C(1), C(2), and C(3).  

 
Figure 2.1: Atomic structure of MIL-53lp(Al) unit framework (hydrogens not shown). 

 

2.2. EXPERIMENTAL 

 

MIL-53(Al) crystals synthesized by BASF (Sommerst, NJ) under the trademark BasoliteTM 

A100 were purchased through Sigma-Aldrich (product no. 688738-10G).  

 

2.2.1. Investigation techniques 

 

The following methods were used to characterize MIL-53(Al): elemental analysis (Elemental 

Analyser 1112, ThermoFinnigan), mercury porosimetry (Autopore IV 9500 porosimeter, 

Micromeritics, Norcross, Georgia), thermogravimetric analysis (model Q50 V6.7 Build 203, TA 

Instruments), X-ray powder diffraction (MiniFlex+ X-ray diffractometer, Rigaku, Japan), solid state 

nuclear magnetic resonance (Bruker MSL 300 P spectrometer), Fourier transform infrared 

spectroscopy (Perkin Elmer FT-IR spectrometer) and gas adsorption was done on Quantachrome 

Physi-Chemisorption instrument.  

The MIL-53(Al) powder sample was degassed and activated at 473 K over night in a muffle 

(Nabertherm B170 GmbH),  
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2.3.  RESULTS AND DISCUSSION 

 

2.3.1. Elemental Analysis 

 

The elemental analysis helped to ascertain the structure and purity of the adsorbent material. 

Before the analysis the MIL-53(Al) was pre-activated for sample purification. The analysis was 

replicated and averaged results are given (Table. 2.1).  

 

Table 2.1. Elemental analysis for anhydrous MIL-53(Al) sample 

 

 C N H O Al (wt-%) 

Predicted 46.17 – 2.42 38.44 12.97 

Experimental 43.38 0.31 2.25 – – 

 

 

2.3.2. Mercury porosimetry 

 

The MIL-53(Al) powder was subjected to an experimental mercury intrusion–extrusion cycle in 

an Autopore IV 9500 porosimeter ((Micromeritics, Norcross, Georgia). The experimental curves are 

shown in Figure 2.2. The hysteretic behavior of our results is in qualitative agreement with the 

experimental mercury intrusion–extrusion cycles reported by Neimark et al. [18].  

The particle size distribution of the MIL-53(Al) crystals was estimated using the conventional 

method of Mayer and Stowe [32] applied to low-pressure (0.2–10 MPa) mercury intrusion data. The 

Mayer–Stowe equation, P = kγ/Dp, postulates an inverse relation between the intrusion pressure, 

P, and the particle diameter, Dp, with scaling constant kγ, where γ is the surface tension of mercury 

(taken as 0.485 N/m); the Mayer-Stowe constant k, which typically varies in the range 6-13, was 

taken as 10 [33].  

The particle size distribution is well fitted by a log-normal distribution with mean diameter Dp = 

30.0 μm and standard deviation σDp = 1:7 μm (Figure. 2.3); our estimate of Dp is in good 

agreement with the mean value of 32 μm value reported by the manufacturer.  

The particle size of our MIL-53(Al) sample is larger than the 2–3 μm size range reported by 

other authors [25-27] for different batches of MIL-53(Al) particles synthesized by their own groups. 
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Figure 2.2: Experimental mercury intrusion–extrusion cycle. The curves give the volume of mercury (mL Hg/g 
of sample) penetrated at a given external pressure P into the measuring cell. The red curve (−+−+−) depicts 
the intrusion curve obtained by raising P from 0 to 138 MPa; the green curve (−O−O−) shows the extrusion 
curve, obtained by reverting the process at P = 138 MPa and reducing P to 0.14 MPa. 

 

 

2.3.3. Thermogravimetric Analysis 

 

The hydrated sample of MIL-53(Al) was analyzed by TGA (model Q50 V6.7 Build 203, TA 

Instruments) to determine the temperature interval over which the sample decomposes; this is 

done by recording the weight loss as a function of increasing temperature. The analysis was done 

under a nitrogen atmosphere at a heating rate of 5 deg/min. The experimental TGA profile 

reproduced in Figure 2.4. shows that the structure is stable up to ca. 773 K, after which it starts to 

collapse; the profile is in complete agreement with similar TGA results obtained in the literature for 

this material [16]. 

 

2.3.4. FT-IR 

 

Figure 2.5 shows the Fourier-transform infrared spectrum (FT-IR) of the hydrated MIL-53(Al) 

powder, obtained using a KBr (spectroscopic grade) pellet.  
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Figure 2.3. Particle size distribution of MIL-53(Al) powder (symbols) and fitting to a lognormal distribution (line) 
with mean Dp = 30:0 μm and standard deviation σDp = 1:7 μm. 

 

The IR spectrum was recorded on a Perkin Elmer FT-IR spectrometer with single beam, at 

room temperature, and over the wavelength range of 600–4000 cm
−1

. 

 

Figure 2.4. Representative TGA analysis of hydrated MIL-53(Al) powder. 
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Overall, three main groups of signals can be identified [16, 34], corresponding to: (i) H2O 

molecules and OH– ions (3400–3600 cm
−1

); (ii) out of plane bendings of the C–H bonds belonging 

to the aromatic rings (700–900 cm
−1

); and (iii) carboxylate functionalities as indicated by several 

signals in the range 1400–1700 cm
−1

. In spite of the rather broad H2O shoulder, the “free” OH– ion 

stretching, bridging the aluminium ions, can still be observed at ~3610 cm
−1

. The two observed 

vibrational bands at 1416 cm
−1

 and 1446 cm
−1

 can be assigned to the –CO2 groups symmetric 

stretchings, whilst the peaks at 1508 cm
−1

 and 1578 cm
−1

 mark the corresponding asymmetric 

vibrations; these four signals are consistent with −CO2 groups coordinated to aluminium. 

The small shoulder at 1698 cm
−1

 is ubiquitous. Loiseau et al. [16] identified a well-resolved and 

intense signal at 1669 cm
−1

 as corresponding to free protonated benzenedicarboxylate (BDC) 

molecules trapped in the pores. A direct comparison with our own data is not straightforward, for 

our peak at 1698 cm
−1

 is shifted to the red by ca. 30 cm
−1

. It is interesting to observe the rather 

weak signals at 2543 cm
−1

 and 2650 cm
−1

, which may indicate stretching modes of O−H bonds 

belonging to a minor amount of protonated carboxylic acids. 

 

 

 

Figure 2.5. FT-IR spectrum of hydrated MIL-53(Al) powder. 

 

2.3.5. MAS 13C-NMR 

 

The solid state 
13

C-NMR spectrum was obtained at 75.47 MHz, in a Bruker MSL 300 P 

spectrometer under magic angle spinning (MAS) mode at a spinning rate of 3.5 kHz, using the 

conventional cross-polarization/proton decoupling RF pulse sequence with 1 ms contact time and 
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3s relaxation delay. Prior to analysis, the sample was dried in a vacuum/N2 line at 423 K for at least 

6 h, then transferred and sealed in zirconia rotors of 3 mm diameter under a controlled atmosphere 

(P < 1 mbar, [H2O] < 100 ppm), after which it was immediately introduced into the spectrometer. 

The obtained spectrum is reproduced in Fig. 2.6, along with the corresponding chemical shifts. 

Overall, the 
13

C-NMR spectrum recorded in Fig. 2.6 agrees satisfactorily with the large pore form of 

MIL-53(Al) reported by Loiseau et al. [16], namely in the presence of two magnetically distinct 

carbon atoms in the aromatic ring, as evidenced by the two isotropic signals at d = 136:8 ppm and 

d = 128:9 ppm. The peak at d = 170:7 ppm, corresponding to the carboxylate group bridging the 

organic moiety with the inorganic octahedra, is split into a second and less intense contribution at 

174.9 ppm, due to the existence of protonated and unprotonated carboxylate functionalities. The 

signal at d = 182:6 ppm could not be unmistakably attributed. 

 

 

Figure 2.6 MAS 
13

C-NMR spectrum of the MIL-53(Al) sample. 

 

 

2.3.6. X-ray Powder Diffraction 

 

The powder X-ray diffraction spectrum of the hydrated MIL-53(Al) powder is shown on Fig. 2.7. 

The spectrum was obtained in a MiniFlex
+
 X-ray diffractometer (Rigaku, Japan) operating at room 

temperature, and using the Cu Kα line as radiation source (λ = 1:5418 Å). A continuous scan at 0.5
◦
 

(2θ) per minute over the range 5
○
 ≤ 2θ ≤ 50

○
 was performed, using a step size of 0:02

○
 (2θ). For 

comparison purposes, the diffraction pattern [16] of the narrow pore form of MIL-53(Al) is also 

recorded in Fig. 2.7. From the inspection of the former, one can essentially identify nine major 

contributions to the overall diffractogram, and all of them are remarkably consistent with the 
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narrow-pore form of MIL-53(Al). Considering the two most intense peaks recorded in Figure 2.7 

(2θ1 = 8:56
○
 and 2θ2 = 17:28

○
 ), a relative intensity of I2=I1 ≈ 0:38 is obtained, in good agreement 

with the corresponding result of Loiseau et al. [16] of I2=I1 ≈ 0:32. 

The X-ray powder diffraction pattern was indexed as monoclinic, space group Cc, using the 

software Chekcell [35]. The unit cell parameters thus obtained are indicated in Table 2.2, along 

with two independent results previously reported [16, 34] for the narrow-pore form of MIL-53 (Al). 
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Figure 2.7: Powder XRD spectrum of MIL-53(Al) sample: (blue line) present work, (red line) reference 

monoclinic unit cell with parameters given in Table 2.2 (obtained using Chekcell), and data from Ref. [1]. 

 

 

2.3.7. Low Temperature Gas Adsorption 

 

The porosity of the dehydrated MIL-53(Al) was measured by means of a gas adsorption 

isotherm in N2 at 77 K (Quantachrome Physi-Chemisorption). The analysis through density 

functional theory (DFT) shows experimental pores between 0.85 and 1.3 nm, which are in 

accordance with the theoretical value of 0.85 nm. The total BET surface area of the sample is 

831 m
2
/g (Micro: 608 m

2
/g) and the total pore volume is 0.579 cm

3
/g (Micro: 0.332 cm

3
/g). 

The BET surface area of 1100–1500 m
2
/g reported by the manufacturer is in agreement with 

the range of values 1140–1270 m
2
/g determined by other authors [16, 18]. 
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Table 2.2. Crystallographic unit cell parameters obtained for MIL-53(Al).  

 

Formula Al(OH)[O2C-C6H4-CO2]•H2O 

Crystal system Monoclinic 

Space group Cc 

a (Å) 20.262 (19.513) (20.756) 

b (Å) 7.455 (7.612) (7.055) 

c (Å) 6.787 (6.576) (6.609) 

α (deg.) 90.0 (90.0) (90.0) 

β (deg.) 105.65 (104.24) (113.58) 

γ (deg.) 90.0 (90.0) (90.0) 

V (Å
3
) 987.1 (946.8) (886.9) 

 
*First and second column of values in parenthesis correspond to a low-temperature form of the solid obtained, 
respectively, by Loiseau et al. [16] and Liu et al. [18]. 
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Figure 2.8. Adsorption-desorption of N2 on MIL-53(Al) The calculated from BET total surface area of the MIL-
53(Al) sample is 831 m

2
/g. 
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3.1 INTRODUCTION 

 

Any application of adsorption requires that the adsorbed amount be quantified accurately and 

unambiguously. The present work is aiming at the thermodynamic framework investigation for 

quantifying the adsorption equilibrium. In general, the most common methods used for measuring 

adsorption, are the volumetric and gravimetric techniques [1].  

In volumetric technique a given amount of sorptive gas is expanded into a vessel which 

includes a sorbent sample and which initially has been evacuated. Upon expansion the sorptive 

gas is partly adsorbed on the (external and internal) surface of the sorbent material, partly 

remaining as gas phase around the sorbent. By a mass balance, the amount of gas being 

adsorbed can be calculated if the void volume of the sorbent, i.e. the volume which cannot be 

penetrated by the sorptive gas molecules is known at least approximately.  

The line diagram of the volumetric setup is shown in (Fig. 3.1). 

 

Figure 3.1. Experimental setup for volumetric measurement of pure gas adsorption equilibria. 

 

In the gravimetric method, the weight change of the adsorbent sample in the gravity field due 

to adsorption from the gas phase is recorded (Fig. 3.2). Various types of sensitive microbalance 

have been developed for this purpose. A continuous-flow gravimetric technique coupled with 

wavelet rectification allows for higher precision, especially in the near-critical region. 

The gravimetric method measures excess adsorption as the apparent increase in weight of the 

sample corrected for the buoyancy force exerted by the bulk fluid. The gravimetric methods are 

typically more accurate for the following reasons: 

 Errors associated with volume measurement (loss in transfer, parallax, spillage, over-

titration, etc.) are reduced in gravimetric measurements.  

 Gravimetric methods are less sensitive to temperature than volumetric methods. 

 While both types of methods are subject to sample loss, gravimetric methods are less so.  

 A mass is easier to reproducibly determine than a concentration.  

  A mass is easier to standardize than a concentration. Again there are errors associated with 

both, but mass is generally easier to deal with. 
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Figure 3.2. Schematic diagram of gravimetric apparatus. 

 

The choice between the volumetric and gravimetric techniques is a matter of convenience but 

the gravimetric method is more suitable for automation. 

 

3.2. EXPERIMENTAL 

 

3.2.1 Gravimetric Technique for Adsorption Measurements  

 

In the present work, the single-component adsorption isotherm for studied gases was obtained 

using the standard static gravimetric technique [2, 3].  

Briefly, the method consists of progressive addition of gas to the measuring cell containing the 

MOF sample, followed by equilibration under isothermal conditions in order to generate data points 

along the adsorption isotherm. Pressure and weight changes are continuously monitored until 

equilibration, which is assumed to occur when the rate of change of the measured mass 

approaches zero. The procedure is repeated until enough data points are collected to generate a 

complete isotherm. The cell is then progressively depressurized and equilibrated to generate 

further points along the descending path of the isotherm and to check for possible hysteresis 

effects. 

Major advantages of gravimetric method include sensitivity, accuracy, and the possibility of 

checking the state of activation of an adsorbent sample. However, consideration must be given to 

buoyancy correction in gravimetric measurement. A counterpart is used for this purpose. The solid 

sample is placed in a sample holder on one arm of the microbalance while the counterpart is 

loaded on the other arm. Care must be taken to keep the volume of the sample and the counterpart 

as close as possible to reduce the buoyancy effect. The system is vacuumed and the balance is 

zeroed before starting experiments. Buoyancy is measured by introducing helium and pressurizing 

up to the highest pressure of the experiment. It is assumed that helium does not adsorb and any 

weight change (ΔW) is due to buoyancy. Knowing the density of helium (ρHe), one can determine 

the difference in the volume (ΔV) between the sample and the counterpart: 
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( , )He
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V

P T

 (3.1) 

The measured weight can be corrected for the buoyancy effect at a specified temperature and 

pressure: 

 

 exp ( , )bW W V P T  (3.2) 

where Wexp is the weight reading before correction. 

The gravimetric apparatus consists of the balance to measure the adsorption amount and 

pressure sensor to measure the equilibrium pressure. In the gravimetric method, the weight change 

of the adsorbent sample in the gravity field due to adsorption from the gas phase is recorded. 

Various types of sensitive microbalance have been developed for this purpose.  

The adsorption measurements of gases on MIL-53(Al) were performed in an ISOSORP 2000 

high-pressure magnetic-suspension balance (MSB) from Rubotherm GmbH (Bochum, Germany) 

with automated online data acquisition of temperature, pressure, and sample weight, by means of 

an in-house developed software interface (Fig. 3.3) [4]. The adsorption experiments were carried 

out using both open and closed-loop gravimetry. In the MSB the sample holder is coupled to a 

suspension magnet, instead of hanging directly at the balance.  

 

Figure 3.3. ISOSORP 2000 high-pressure magnetic-suspension balance (MSB) from Rubotherm GmbH 
(Bochum, Germany). 

Using this freely suspension coupling, the measuring force is transmitted contactlessly from the 

closed measuring cell to a Sartorius microbalance, located outside under ambient atmosphere. Our 

MSB apparatus has a resolution of 0.01 mg, an uncertainty ≤ 0.002%, and reproducibility ≤ 0.03mg 

for a maximum load of 25 g. A schematic diagram of the experimental setup is shown in Fig. 3.4. 
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The advantage of the MSB is the possibility of accurately weighing samples contactlessly under 

nearly all environments. Instead of hanging directly at the balance, the sample is coupled to a 

suspension magnet, achieving a constant vertical position in a closed measuring cell.. 

 

 
Figure 3.4. Schematic of the experimental set-up used for the adsorption measurements. Labeling is as 
follows: MSB, magnetic suspension balance; MSB CU, MSB control unit; BPR, back-pressure regulator; MFC, 
mass-flow controller; PCI, PC interface for data acquisition; PT, pressure transducer; Pt100, thermocouple. 

 

The conditions that can be imposed on the measuring chamber are limited to 100 
0
C and 150 

bar. A mass-flow meter/controller (MFC) from Hastings (0.1–10 slpm N2), with a 1%FS (full-scale) 

accuracy, is coupled to the feed line. A pressure generator is used whenever the desired pressure 

is higher than the available feed pressure. The temperature is measured and controlled using four-

wire Pt100 probes and two thermostatic baths from Selecta Ultratherm; the cell temperature is kept 

within (±0.1) K of the set-point. A Bronkhrost back-pressure regulator (BPR), with 0.5% FS 

accuracy, is coupled to the outlet line to control the pressure in the chamber for the continuous flow 

experiments; the controllable pressure range is 3–16 bar. Five transducers are employed to 

accurately measure different pressure ranges: Keller AG for 0–0.1MPa with 0.5% FS accuracy; 

Lukas Schaevitz for UHV—0.5MPa with 0.08% FS accuracy; Lukas Schaevitz for 0–3.5MPa with 

0.04% FS accuracy; Omegadyne for 0–20.7MPa with <0.01MPa of error; and Kistler Inst. AG for 

0–20MPa with < (±0.16) % of error. The range of thermodynamic conditions spanned in the 

experiments reported here is 0–9MPa and 273–325 K.  

Buoyancy forces are taken into account to correct the influence of gas density on the measured 

apparent weight of the sample. The displacements of gas by the sample holder, solid adsorbent, 

and adsorbed phase, are taken into consideration. The correction due to the sample holder is 

obtained with blank experiments performed at different pressures with the empty holder. The 

buoyancy due to the solid matrix of the adsorbent, which results in an apparent weight loss, is 

estimated as the product of the skeletal volume of the adsorbent and the gas density. Finally, the 

buoyancy effect exerted on the adsorbed phase is corrected to obtain the absolute adsorption 

isotherm, n(P, T ). 
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The weight, m, displayed by the balance, results from the net force exerted on the sample (3.3): 
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(3.3) 

where, mh and ρh are the mass and density of the sample holder, respectively, ms and ρs are the 

mass and density of the adsorbent sample, respectively, ρg is the density of the bulk gas at the 

equilibrium pressure and temperature, and nex is the specific excess adsorption (3.4): 
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(3.4) 

where ρa is the density of the adsorbed phase; nex gives the amount adsorbed in excess of the 

equilibrium gas occupying the same volume, and is the well-defined thermodynamic quantity 

known as excess adsorption [5]. 

 

The blank experiments with an empty holder give the mass and density of the holder from the 

intercept and slope of the linear decrease of apparent weight with gas density (3.5): 

 


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h g
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(3.5) 

 

The values of mh and ρh are estimated at different temperatures using N2 in order to check for 

the validity of the measurements. Adsorption experiments using a non-adsorbing gas, such as 

helium at high temperature, provide the mass (ms) and density (ρs) of the MIL-53(Al) sample: 
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(3.6) 

 

In this work, it is assumed that helium acts as an inert probe that penetrates into all the 

accessible pore volume of the MIL-53(Al) without being adsorbed. Finally, the experiments with the 

MIL-53(Al) sample provide the excess adsorption isotherm (3.7): 
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(3.7) 

 

which can then be converted into the total adsorption isotherm (3.8): 
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Alkanes C1-C4 and other ancillary gases (He and N2) were supplied by Air Liquide and Praxair 

(Portugal); all gases were research grade. Prior to the experiments, the sample was activated at 

473 K over night in an muffle (Nabertherm B170 GmbH), transported to the set-up under an inert 

(helium) atmosphere, and finally degassed in situ under vacuum, at 353.15 K for at least 8 hours; 

~0.73 g of MIL-53(Al) powder was employed in the measurements. The alkanes adsorption 

isotherms were measured at 303.15 K, 323.15 K, and 353.15 K, over a pressure range of ~0.01–

5.0 MPa.  

 

3.2.2 Adsorption Equilibrium Measurements 

 

In gravimetric adsorption equilibrium measurements for microporous solids, the thermodynamic 

property most readily determinable is that which Gumma and Talu [6] denote as net adsorption, 

nnet: it is the total amount of gas present in the measuring cell with the adsorbent minus the amount 

that would be present in the empty cell (without the adsorbent) at the same pressure and 

temperature. In the case of a gravimetric experiment, 

 

 


s h g

net

s

w m V
n

m
 

 
(3.9) 

where nnet is expressed per unit mass of adsorbent, W is the apparent weight of the sample 

measured by the balance, ms is the mass of sample (measured in vacuum after degassing and 

thermal pretreatment of the adsorbent), Vh is the volume of all moving parts present in the 

measuring cell (such as the holding basket) that are subject to the buoyancy force exerted by the 

gas, and ρg is the density of the gas at the pressure and temperature conditions of the experiment. 

The advantage of reporting adsorption results in terms of nnet is that it completely circumvents 

the use of probe molecules to fix the reference state of each sample, since the value of Vh is 

independent of the fluid–adsorbent system. In our apparatus, Vh was determined by calibration with 

nitrogen and helium at ambient temperature only once without any sample in the system. 

Adsorption measurements, however, are invariably reported in terms of excess adsorption, nex, 

which is the total amount of gas introduced into the measuring cell minus the amount that remains 

in the gas phase upon equilibration of the system [7]; in other words, nex is the amount of gas in 

excess of the amount that would be present in the same system, at the same pressure and 

temperature, if the gas did not adsorb. This quantity is related to nnet by (3.10): 

 

 ex net s gn n V  (3.10) 

where Vs is the specific adsorbent volume impenetrable to the adsorbate. In the case of MIL-53, 

Vs = 1/ρs where ρs is the skeletal (or structural) density of the adsorbent.  

 

The relations between absolute adsorption and the other two adsorption quantities are  
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     ( )ex p g net p s gn n V n V V  (3.11) 

where Vp is the specific pore volume of the adsorbent.  

 

3.3. CONCLUSIONS 

 

The adsorption of the C1-C4 light alkanes on MIL-53(Al) were studied using both open- and 

closed-loop gravimetry in the pressure and temperature ranges of 0.01–5 MPa and 303–353 K, 

respectively. The adsorption equilibrium of the components of the natural gas on MIL 53 (Al) have 

been measured and analyzed, within the scope of developing sustainable strategies for gas 

separation, recovery and storage. 
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4.1 INTRODUCTION 

 

Methane is an important hydrocarbon because it is the major component of natural gas (NG), 

which is commonly considered as a suitable and nonpolluting energy source for the future [1].  

In the present work, the energetics and confinement of supercritical methane in MIL-53lp(Al) 

are studied experimentally via gravimetric adsorption experiments and by Grand Canonical Monte 

Carlo (GCMC) simulations.  

A combined experimental and theoretical study of the adsorption equilibrium properties of 

supercritical methane in MIL-53(Al) over pressures in the range ~0.01–7 MPa and temperatures in 

the 303–353 K region is reported here. Overall, it spanned the largest P-T range over which 

experimental results on methane adsorption in MIL-53(Al) have been reported to date.  

Finally, we examine the potential use of MIL-53(Al) as a methane adsorptive storage medium, 

compare its performance with those of activated carbons, which are the prime contenders in this 

field, and explore the optimum operating temperature to use MIL-53(Al) in this type of application. 

 

4.2. EXPERIMENTAL 

 

4.2.2. Molecular Model and Simulation Method 

 

Monte Carlo (MC) and molecular dynamics (MD) simulations of adsorption in MOFs have been 

carried out mostly using classical force fields. The dispersion interactions of the framework atoms 

in those nanoporous materials have been usually modeled using the UFF [2] or DREIDING [3] 

force fields, or combinations thereof, with or without refinement of the interaction parameters. This 

is the case for Cu-BTC [4-7], various types of IRMOFs [8,9], MIL-47(V) [10,11], and several other 

types of MOFs [5,6,12,13]. In a study on the breathing effect of MIL-53(Al) upon CO2 adsorption, 

Ramsahye et al. [14] modeled the interaction between the sorbate and the organic ligand of MIL-

53(Al) framework using 12-6 Lennard–Jones (LJ) parameters derived by Shen et al. [15] for the 

benzene–CO2 system; the interactions with the inorganic part of MIL-53(Al) were adapted from 

previous work on aluminosilicalite materials [16]. A more recent work [11] of the same group on the 

adsorption of light hydrocarbons in MIL-53(Cr) and MIL-47(V) frameworks employed a combination 

of the UFF [2] or DREIDING [3] force fields. 

The porous framework of MIL-53(Al) is dominated by the organic ligand and, since the 

polarisability of the aluminium atoms is much lower than that of the oxygen atoms [14], as a first 

approximation the dispersive contribution of the inorganic part of MIL-53(Al) can be attributed only 

to the oxygens and hydroxyl groups. It is thus likely that a force field whose parameterization is 

determined from vapor–liquid equilibria, enthalpies of vaporization, and vapor pressures of organic 

compounds, namely alkylbenzenes with ether or hydroxyl functionalities requires minimum 
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adjustment of its parameters to provide a reasonably accurate quantitative description of the 

adsorption of a small, nonpolar molecule, like methane, into the porous framework of MIL-53(Al). 

In the present work, the parameterization of solid–fluid dispersive interactions in MIL-53(Al) is 

based on the TraPPE-UA [17-21] force field to take advantage of the transferability of the 

parameters built into it. We shall demonstrate that no reparameterization of the dispersive 

parameters for MIL-53(Al) is necessary if this force field is employed. In TraPPE-UA, non-bonded 

interactions are governed by a 12-6 LJ plus fixed point charge functional form: 
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where rij , εij , σij , qi, and qj are the bead–bead separation, the LJ well depth, the LJ diameter, and 

the partial charges on beads i and j, respectively. 

The unlike LJ interactions are computed with Lorentz–Berthelot combining rules: 
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 (4.3) 

 

In the TraPPE-UA force field, hydrogens are combined with the carbons they are bonded to, 

forming single pseudo-atoms; hydrogens bonded to heteroatoms, such as oxygen, are represented 

explicitly with a partial charge. Thus, groups such as CH4, CH3, CH2, CH, and so forth are treated 

as single interaction sites. 

In our molecular simulation work, MIL-53lp(Al) is modeled as a rigid lattice with its constituent 

atoms at the crystallographic positions reported by Liu et al. [9], which were obtained from the 

neutron diffraction pattern of the sample upon cooling from 450 K to 295 K; the lattice parameters 

at ambient temperature are very similar to those at 450 K. The lattice parameters for the MIL-

53lp(Al) unit cell are reported as [9] a = 6.6384(4) ˚A, b = 16.761(2) Å, and c = 12.839(2) Å in the 

Imma space group (orthorhombic); the unit cell volume is Vc = 1428.5(2) Å
3
.  

The crystallographic unit framework of MIL-53lp(Al) is depicted in Fig. 2.1, where, for clarity, the 

hydrogen atoms are not shown; the unit framework consists of six different types of pseudo-atoms: 

Al, O(1), O(2), C(1), C(2), and C(3). The crystallographic unit cell is obtained through a series of 

symmetry operations on the unit framework, resulting in a parallelepipedic box with a total number 

of pseudo-atoms (after eliminating replicas because of the periodic boundary conditions) [34]; the 

specific volume of the unit cell is vc = 1.033 cm
3
/g.  

In the parameterization of the solid–fluid dispersive interactions using TraPPE-UA, the LJ 

parameters for the aromatic CH(aro) and C(aro) pseudo-atoms [respectively, C(1) and C(2) in Fig. 2.1] 
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(the latter for the link to the side chains of the aromatic ring) and for the C(sp2) carbon [C(3) in Fig. 

2.1], which links the two oxygens and the C(aro), were taken from the parameter set for linear and 

branched alkenes and alkylbenzenes [18]; the values for the hydroxyl OH were adopted from the 

alcohol parameter set [19], and those for the secondary oxygen [O(2) in Fig. 2.1] were taken from 

the parameterization of ethers [20]. Methane is treated as a LJ pseudo-atom with parameters taken 

from the parameterization of linear alkanes [17].  

These parameters are listed in Table 4.1. It is worth noting that even though the TraPPE-UA 

force field assigns partial charges to some of the pseudo-atoms of MIL-53(Al), the charge 

distribution in the solid does not affect the adsorption of methane because the latter is modeled as 

a LJ pseudo-atom. Since in our modeling work the solid is assumed to have a rigid lattice, its 

intramolecular interactions contribute with a constant term to the total internal energy of the system 

and, hence, can be removed from the calculations. In practice, our MIL-53lp(Al)/CH4 system is 

modeled through dispersive interactions only. 

 

Table 4.1. Lennard-Jones parameters for dispersive interactions in the CH4/MIL-53lp(Al) system. 
 

Label Site σ(Å) ε/kB (K) Ref. 

Al Al 0.0 0.0 [14] 

O(1) OH 3.02 93.0 [19] 

O(2) O 2.80 55.0 [20] 

C(1) CH(aro) 3.695 50.5 [18] 

C(2) C(aro) 3.88 21.0 [18] 

C(3) C 3.85 20.0 [21] 

 CH4 3.73 148.0 [17] 

 

A spherical potential truncation for pairs of methane molecules separated by more than rff = 14 

Å was employed, to be consistent with the TraPPE-UA force field, but without analytic tail 

corrections. Some authors advocate the use of a cut-and-shifted LJ potential, since standard 

analytical tail corrections do not apply in inhomogeneous systems [22]. However, this would imply a 

reparameterization of the TraPPE-UA force field, as was done, e.g., by Dubbeldam et al. [23] for 

adsorption of linear and branched alkanes in zeolites. In the present work the influence of the 

potential truncation was reduced by extending to 16.5 Å the potential cutoff, rsf , for the solid–fluid 

interactions. 

The simulation boxes in our GCMC simulations were built by replicating the unit cell of MIL-

53lp(Al) along each of the coordinate directions until a box of the desired size was obtained. The 

simulation box size depended on the loading of methane molecules and was chosen so that the 

number of sorbate molecules remained fixed at a number that was computationally tractable and at 

the same time allowed relevant density fluctuations to occur.  

Under no circumstances did any of the simulation boxes fail to completely enclose the sphere 

for the fluid–fluid potential truncation; this was done for consistency with the minimum image 
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convention. The dimensions of the smallest simulation box that meets this criterium are (Lx)min = 5a 

= 33.192 Å, (Ly)min = 2b = 33.522 Å, and (Lz)min = 3c = 38.517 Å. 

The potential cutoff for solid–fluid interactions, rsf = 16.5 Å, also happens to satisfy 

rsf < min{(Lx)min, (Ly)min, (Lz)min}/2; this choice, however, was not dictated by the minimum image 

convention but rather by computational tractability. Since the pseudo-atoms of the MIL-53 

framework are fixed in space in an infinite lattice, rsf can assume any value. 

At the lowest methane loadings, one to three extra unit cells were added along each of the 

principal axes in order to increase the size of the simulation box. Each run was equilibrated for at 

least 5 × 10
5
 Monte Carlo steps followed by at least 10

6
 steps for the production period. On 

average, 80% of the steps were attempts to translate a randomly selected methane molecule; the 

remaining 20% of the steps were attempts to insert or remove a methane molecule from the 

simulation box. The maximum displacement for translation was adjusted during the equilibration 

phase to give a 50% acceptance rate. Finally, standard deviations of the ensemble averages were 

computed by breaking the production run into five blocks. 

In the grand canonical ensemble, the thermodynamic state of the system is defined by β = 

1/(kBT) (or temperature T), where kB is the Boltzmann’s constant, and by ν = βμ (or μ), where μ is 

the chemical potential; the extensive variable that is fixed is the volume Vbox of the simulation 

system. The imposed effective chemical potential, ν, of the coexisting bulk fluid is related to its 

fugacity, f, by (4.4)  

0 ln( )
ig

v v f   (4.4) 

where 0
igv  is the reference effective chemical potential for the ideal gas (noninteracting particles);  

For a structureless molecule, like methane,  

0 3lnigv    (4.5) 

where Λ is the thermal de Broglie wavelength [24]. 

 

For the P–T range considered in this study, the equation of state of bulk methane is well 

described by the Virial equation of state truncated at the second term [25]: 

 

 1 ( )Z B P  (4.6) 

where P is the pressure, Z is the compressibility factor, and B is the second Virial coefficient. For 

this equation of state the fugacity can be expressed as [26] 

 

exp

/
( 1) exp

1 1

g g

g g

f P Z
   

   

 
       

 (4.7) 

where ρg is the number density of the gas.  
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The value of B for each temperature was evaluated by nonlinear least-squares fitting of Eq 4.6 

to simulated values of (μ, ρg) obtained from a small series of inexpensive GCMC simulations of the 

bulk fluid. 

 

 

4.3 RESULTS AND DISCUSSION 

 

4.3.1 Adsorption Equilibrium Measurements 

 

As noted before, in volumetric or gravimetric adsorption equilibrium measurements of 

microporous solids, the thermodynamic property most readily determinable from net adsorption, 

nnet: it is the total amount of gas present in the measuring cell with the adsorbent minus the amount 

that would be present in the empty cell (without the adsorbent) at the same pressure and 

temperature.  

The advantage of using nnet is that simulation results can be converted into net adsorption for 

comparison with experiment using the volume of the simulation box [27], Vbox: 

 


 

  
 

1
net box g

s Av

N
n V

m N
 (4.8) 

 

This is because parameter Vc (the specific volume of the unit cell of MIL-53) is determined by 

simulation (4.9): 

 

Vp+Vs = Vbox/ms = Vc  (4.9) 

where Vc holds true regardless of the means by which Vs (or Vp) is determined by simulation.  

We estimated the value of Vp by molecular simulation of the capillary condensation of methane 

in the pore structure of MIL-53lp(Al) at 0.8Tc (152.5 K), where Tc is the critical temperature of 

methane, and chemical potential μ/kB = −1623 K (~1.37 MPa).  

Assuming that near the saturation pressure the entire system is filled with liquid adsorbate, then 

the amount adsorbed under those conditions, n
∞
 = 0.195(4) g/g, when expressed as a volume of 

liquid by use of the normal liquid density (ρl = 0.346(3) g/cm
3
), should provide an estimate of the 

specific pore volume [28]; the obtained value is Vp, cm
3
/g (4.10): 

 

Vp = n
∞
/ρl = 0.56(2)  (4.10) 

The specific skeletal volume (Vs, cm
3
/g) which is impenetrable to the adsorbate, is obtained by 

subtracting Vp from the specific volume of the unit cell of MIL-53lp(Al), Vc, determined by 

crystallography:  
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Vs = Vc -Vp= 0.47(2)  (4.11) 

where Vs is the specific adsorbent volume impenetrable to the adsorbate. In the case of MIL-53, 

Vs = 1/ρs where ρs is the skeletal (or structural) density of the adsorbent.  

Molecular simulations, on the other hand, provide absolute adsorption, n, which is directly 

obtained from 


1

s Av

N
n

m N
  (4.12) 

where N  is the ensemble average number of adsorbate molecules in the simulation box, ms is 

the mass of adsorbent in the simulation, and NAv is the Avogadro’s number.  

The relations between absolute adsorption and the other two adsorption quantities are: 

 

     ( )ex p g net p s gn n V n V V  (4.13) 

where Vp is the specific pore volume of the adsorbent.  

 

Figure 4.1 shows a front-view snapshot of the simulation box for the conditions of the numerical 

experiment described above. On average, there are 304 methane molecules in the system, which 

is nearly equivalent to 10 molecules per unit cell. Even though the channels are all alike, it is 

convenient to discriminate between even- and odd-index channels because the horizontal ab-plane 

(or xy-plane) that divides a channel into two halves is not a plane of reflection symmetry but of 

rotational symmetry with respect to a 180◦rotation. The vertical ac-plane (or xz-plane) that halves 

the channel through the central aluminium atoms, on the other hand, is a true plane of reflection 

symmetry. The lack of symmetry with respect to reflection around the middle ab-plane of a channel 

resides on the relative position of the hydroxyl OH groups that bridge the aluminium atoms: in 

even-index channels the z-coordinate (aligned with the c-axis) of the OH group is below the two 

bridged aluminium atoms; in odd-index channels the OH group is above. The relative position of 

the hydroxyl OH groups is best perceived by reference to Fig. 4.2, which is discussed below. Some 

authors have suggested different approaches based on molecular simulation to define the dividing 

surface for excess calculations. For example, Talu and Myers [29] suggest using the simulated 

slopes of the helium isotherm at zero pressure to determine Vp, whereas Do et al. [30] suggest 

using a zero-potential hypersurface for the adsorbing molecule to define the surface for excess 

calculations. 
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Figure 4.1. Snapshot of the GCMC simulation box with condensed methane molecules inside MIL-53lp(Al) at 
T = 152.5 K and μ/kB = −1623 K. The atomic structure of odd-index channels is the mirror image, obtained by 
reflection with respect to the ab plane, of the atomic structure of even-index channels, and vice versa. 

 

We determined by direct Monte Carlo integration the specific volume enclosed by the zero-

potential hypersurface: 

 

   


  

0, 0

1, 01 ( ( )) , ( )
box

xc
zs sf x

V
box

V
V H V r dV H x

V
 (4.14) 

where H(x) is the Heaviside step function, usf(r) is the solid–fluid interaction potential for a single 

molecule, and Vbox is the volume of the simulation box.  

The value of Vzs obtained using helium as probe molecule (σff = 3.11 Å, [31]) is He
zsV  = 0.2163(5) 

cm
3
/g; using methane (σff = 3.73 Å), the value reduces to 4CH

zsV  = 0.1676(6) cm
3
/g. 

Although the adoption of Vzs as specific pore volume renders excess adsorption always 

positive, such approach leads to a pore volume that is considerably smaller than that obtained by 

simulating the capillary condensation of the same adsorbate probe. However, if vzs is increased by 
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the volume displaced by a sphere of diameter σff/4 rolling over the outer surface of the zero-

potential hypersurface (or a sphere of diameter σff/2 moving its center along the hypersurface), 

then it approximately matches the value of Vp [32]. We have thus decided to adopt Vp = 0.56 cm
3
/g 

as the best estimate of the specific pore volume of MIL-53lp(Al). 

Figure 4.2 shows a 2-D projection of the number density field for condensed methane inside an 

even-index channel of MIL-53lp(Al); lighter colors represent larger values of the number density. 

For comparison, we have plotted over the density field the perimeter of the zero-potential 

hypersurface for different sections of the channel. 

 
Figure 4.2: Molecular density field (lighter colors represent larger values of ρ) for condensed methane at 152.5 
K and μ/kB = −1623 K inside an even-index, diamond-shaped channel of MIL-53lp(Al) and zero-potential 
hypersurface (ZPH). (a) Front view of the channel; the colored lines show the perimeter of the ZPH at different 
axial positions along the channel: x/a = 0 (yellow), x/a = 0.25 (red), x/a = 0.375 (green), and x/a = 0.5 (white). 
(b) Lateral view of the channel; the solid line represents the ZPH for y/b = 0.5 and the dashed line shows the 
hypersurface extended by a sphere of diameter σff/4. 
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Figure 4.2a shows a cross-sectional view of the diamond-shaped channel. The density field 

plotted in this figure, ρa(y, z), gives the number of methane molecules in a parallelepiped aligned 

with the x-coordinate, with length a and cross section dy dz centered at (y, z); ρa(y, z) is related to 

the true number density, ρ(r), by (4.14): 

 

  0( , ) ( , , )
a

a y z x y z dx  (4.15) 

The colored lines superposed over the density plot show the perimeter of the zero-potential 

hypersurface on the yz-plane at the following axial positions along the channel: x/a = 0 (yellow), x/a 

= 0.25 (red), x/a = 0.375 (green), and x/a = 0.5 (white). 

Figure 4.2b shows a lateral view of the channel extending over the length a of the unit cell. In 

this case, the contour plot represents a density distribution, ρb(x, z), which gives the number of 

methane molecules in a parallelepiped aligned with the y-coordinate and cross section dx dz 

centered at (x, z); ρb(x, z) is defined as: 

 

  0( , ) ( , , ) ( , )
b

b x z x y z y z dy  (4.16) 

where Θ(y, z) = 1 if (y, z) is inside the channel and Θ(y, z) = 0 if (y, z) is outside the channel. 

 

The white, solid line plotted over the density field is the perimeter of the zero-potential 

hypersurface on the xz-plane at y/b = 0.5; the dashed line represents the zero-potential 

hypersurface extended by a sphere of diameter σff/4.  

If ρa(y, z) and ρb(x, z) are integrated over corresponding perpendicular coordinate along the 

channel, they both give average number of adsorbate molecules ucN , in the unit cell of MIL-53: 

 

      0 0 0 0
( , ) ( , ) ( , )

b c a c

uc a bN y z y z dydz x z dxdz  (4.17) 

 

As discussed above, the solid–fluid interaction potential Usf is symmetric with respect to the 

vertical ac-plane (or xz-plane) that cuts the cross section of the channel into two halves; because of 

the position of the bridging OH groups, the symmetry with respect to reflection around the central 

ab-plane (or xy-plane) that halves the cross section of the channel is broken. This feature 

propagates to all quantities that depend on the local interaction potential, such as the number 

density field and the zero-potential hypersurface. In addition, the vertical bc-plane (or yz-plane) 

located at x = a/2 is also a symmetry plane with respect to horizonal reflection (Fig. 4.2b).  

Figure 4.3 compares the absolute, excess, and net adsorption isotherms for methane at 303.15 

K determined by GCMC simulation up to ~7 MPa. Whereas absolute adsorption is a monotonically 

increasing function of pressure (type I isotherm), the other two functions are concave with respect 
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to the pressure axis and their maximum value occurs at a pressure that increases with 

temperature. At pressures below ~0.2 MPa, the pore density is much higher than the bulk density 

of methane and thus the differences between n, nex, and nnet are negligible. At higher pressures, 

the bulk density increases more rapidly than the pore density and the three measures of adsorption 

start to deviate from each other. At ~7 MPa, the absolute adsorption continues to increase with 

pressure while the excess adsorption is close to its maximum value and the slope of net adsorption 

is already negative; the maximum value of nnet at 303.15 K occurs at ~4 MPa. The thermodynamics 

of high-pressure, supercritical adsorption is well explained by Myers and Monson [33]. The 

experimental and simulation equilibrium data of methane adsorption are listed in Tables A1–4 of 

Annex A 

 

 
 

Figure 4.3: Absolute (●), excess (○), and net adsorption (■) isotherms of methane in MIL-53lp(Al) at 303.15 K 
determined from GCMC simulations; lines are drawn as a guide to the eye. The reference state corrections 
used are Vp = 0.56 cm

3
/g and Vs = 0.47 cm

3
/g. 

 

Figure 4.4 compares the three experimental adsorption isotherms with the predictions of our 

molecular model. The adsorption data are reported in terms of excess isotherms using the 

reference value of 0.47 cm
3
/g for the specific skeletal volume (Vs) of MIL-53lp(Al); the reference 

state for the GCMC excess isotherms is Vp = 0.56 cm
3
/g. For reference, Figure 4.4 also includes 

the experimental adsorption data obtained by Bourrely et al. [34] in a volumetric apparatus at 304 

K; these values are expressed in terms of nex by subtracting Vpρg from the original, absolute values. 

The quantitative agreement shown in Fig. 4.4 between our adsorption measurements and GCMC 

simulations confirms previous observations [35] that for methane adsorption at or above ambient 

temperature the large-pore structure of MIL-53(Al) is thermodynamically favored over the whole 

pressure range. 
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Figure 4.4: Comparison of experimental (filled circles) and simulated (open circles) excess adsorption 
isotherms of methane in MIL-53lp(Al). The reference state corrections used are Vp = 0.56 cm

3
/g and Vs = 0.47 

cm
3
/g. The asterisks (*) represent the experimental data obtained by Bourrely et al. [36] in a volumetric 

apparatus at 304 K, expressed here in terms of nex by subtracting vpρg from the original, absolute values. For 

clarity, the adsorption data at 323 K and 303 K are displaced by 1 mol/kg and 2 mol/kg, respectively. 

 

The second observation regarding Fig. 4.4 is the good agreement between our GCMC 

predictions and the experimental adsorption data; the agreement is good enough to obviate the 

need for re-parameterization of the cross-terms of the LJ solid–fluid interaction potential. At 

pressures below ~2 MPa, the GCMC model predicts the experimental loadings with high accuracy 

at the three different temperatures. At pressures above 2 MPa, the GCMC simulations slightly 

overpredict the experimental loadings at the two lowest temperatures, but fall on top of the 
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experimental data obtained at the highest temperature (353.15 K). This suggests that the LJ 

parameters of the TraPPE-UA force field are indeed transferable to the organic ligand of MIL-53 

and possibly to those of other metal-organic frameworks. This corroborates previous claims [37,38] 

that the good balance between enthalpic and entropic contributions to the free energy in the 

TraPPE-UA force field makes it transferable to different physical conditions, including those where 

the “solvent” is a rigid lattice dominated by an organic ligand in which the metal atoms are shielded 

from the influence of the adsorbate molecules by organic or inorganic groups (in this case the 

oxygens and hydroxyl groups of the inorganic octahedra). This is a very encouraging result in view 

of our pursuing work on the adsorption of larger alkanes and alkenes in MIL-53(Al). 

The equilibrium data reported by Bourrely et al. [34] are in agreement with our measurements 

and GCMC results for pressures below ~0.6 MPa. At higher pressures the experimental values 

reported by these authors are consistently above our measurements; at 3.0 MPa the deviation 

between the experimental values is ~0.6 mol/kg. We do not have a clear explanation for this 

discrepancy. 

It is worth noting that although the adsorption equilibrium data shown in the comparison plot of 

Fig. 4.4 are expressed as excess values, the experimental and simulated isotherms could also be 

compared in terms of absolute or net values. More importantly, however, is that the comparison 

would be quantitatively the same even though the isotherms would be different. 

To see why this would be so, let us compute the error between an experimental excess data 

point, (nex)exp, of Fig. 4.4 and the corresponding simulated value, (nex) sim. from Eq 4.13,  

 

                exp exp exp( ) ( ) ( ) ( )ex ex ex sim net s g sim p g net sim c ge n n n v n v n n v    (4.18) 

 

where, as stated above, Vc = Vp + Vs is the specific volume of MIL-53’s unit cell. If the comparison 

is made in terms of net values, the result is 

 

          exp exp exp( ) ( ) ( ) ( )net net net sim net sim c g net sim c ge n n n n v n n v  (4.19) 

 

Finally, if the comparison is made in terms of absolute values, the error is  

 

          exp exp exp( ) ( )ex sim net c g sim net sim c ge n n n v n n n v   (4.20) 

 

Thus, the difference between an experimental isotherm data point and its simulated value is the 

same whether the isotherm is expressed in terms of absolute, excess, or net adsorption. 
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4.3.2. Data Fitting 

 

The experimental adsorption data were fitted with two commonly employed semi-empirical 

isotherm models: the Sips and Toth models [50]. The Sips isotherm can be written as 

 








1/

1/

( )

1 ( )
sn bP

n
bP

 (4.21) 

with 
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 
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exp 1 , 1

T TQ
b b
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 (4.22) 

where, n is the adsorbed phase concentration, ns is the saturation capacity at temperature T, η0 

and η are parameters, b0 is the adsorption affinity at the reference temperature T0, and Q is the 

isosteric heat of adsorption at half loading; η characterizes the adsorbate–adsorbent interaction, 

and its magnitude increases with the heterogeneity of the system. Note that if η = 1 then the 

Langmuir isotherm model is recovered. 

The isosteric heat of adsorption, Qst, obtained by applying the Clapeyron equation to the Sips 

isotherm model, is 

 






 
   
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2

0 ln
1

stQ Q RT  (4.23) 

where θ = n/ns is the fractional loading; Q equals Qst when θ = 1/2. 

 

The Toth isotherm model can be written as 
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(4.24) 

where parameter b is defined in the same way as for the Sips model; 1/t plays a role similar to 

parameter η of the Sips model. 

The isosteric heat of adsorption derived from the Toth isotherm model is given by 
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where the parameter Q equals Qst when the fractional loading is zero. 
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The fitted parameters of the Sips and Toth isotherm models are listed in Table 4.2. The 

goodness of the fittings was assessed using standard fitting statistics: standard deviation of 

measurements, determination coefficient (r
2
), regression sum of squares (RSS), fit standard error 

(FSE), and average relative error (ARE). As the fitting improves, the r
2
 values approach unity and 

the FSE decreases towards zero. The average relative error (ARE), expressed as a percentage, is 

defined as 

 


 

exp

exp

100 sim

p

n n
ARE

n n
 (4.26) 

where np is the number of data points, nexp is the set of experimental values, and nsim is the set of 

values predicted by the isotherm model. 

Table 4.2. Parameters obtained from the data fitting with the Sips and Toth models. The parameters listed in 
the last two columns are the result of fitting the models with α = 0, which make parameters η and t 
temperature independent. In every case r

2
 > 0:998; FSE is the standard error of the fitting and ARE is the 

average relative error. 
 

Parameter Sips Toth Sips Toth 

ns (mol/kg) 8.38 10.15 8.31 9.96 

b0 (bar−1) 0.054 0.098 0.056 0.097 

α 0.096 0.113 0.0 0.0 

η0 ot t0 1.21 0.60 1.2 0.61 

Q (kJ/mol) 19.7 20.9 19.9 19.9 

T0 (K) 303.2 303.2 303.2 303.2 

FSE 0.086 0.084 0.085 0.083 

ARE (%) 8.6 8.7 6.7 6.6 

 

Figure 4.5 compares the global fitting of the Sips isotherm model and the methane adsorption 

equilibrium data measured at the three temperatures. In the left plot the experimental data are 

compared to the global fitting of the Sips model in which parameter η is allowed to vary with 

temperature according to Eq. (4.21); in the right plot, the comparison is made against the global 

fitting obtained with a constant value of η. Similar plots were obtained for the Toth isotherm model 

and are not reproduced here. 

As observed in Fig. 4.5, the 3D-surfaces derived from the two global fittings of the Sips models 

are in very good agreement with the experimental data; the determination coefficient r
2
 is higher 

than 0.998 in both cases. Letting the parameter η change with temperature improves only slightly 

the quality of the fitting; parameter t of the Toth isotherm model follows a similar trend. The 

discrepancy in the estimated values of ns by the two isotherm models (Table 4.2) is probably due to 

the fact that the experimental adsorption data only spanned fractional loadings up of 0.6. 
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Figure 4.5. Global fitting of the experimental methane adsorption data by the Sips and Toth isotherm models. 
The fitted parameters are listed in Table 4.2. In the left plot, η is allowed to vary with temperature according to 
Eq. (4.22); in the right plot, η is a constant (α = 0). Symbols represent experimental data and the surface is the 
isotherm model. The global average relative error (ARE) is 8.6% for 52 experimental data points.  

 

4.3.3. Isosteric Heat of the adsorption 

 

The isosteric heat (or differential enthalpy) of adsorption, Qst, is the amount of heat released 

when an infinitesimal number of molecules is transferred at constant pressure from the bulk gas 

phase to the adsorbed phase. This quantity can be calculated from statistical mechanical 

considerations [31] as 






 1 ( , )

( , )
st

U N
Q

N N
 (4.27) 

where   ( , )u v uv u v is the covariance between two properties u and v,  denotes the 

ensemble average, N is the number of adsorbate molecules in the simulation box, U is the 

configurational energy of the system, and β = 1/(kBT).  

Figure 4.6a shows a plot of the isosteric heat of adsorption as a function of the amount 

adsorbed. The values of Qst calculated using eq 4.27, which are depicted as open symbols in Fig. 

4.6a, show a linear dependence of Qst on the amount adsorbed, but with a mild slope. The isosteric 

heat at zero loading is ~15 kJ/mol; at a loading of 6 mol/kg, Qst ~18 kJ/mol. The gentle increase of 

Qst with loading can be explained in terms of the lateral interaction of the adsorbed methane 

molecules as they become more tightly packed in the pore channels of MIL-53lp(Al). 

The GCMC results also show that the temperature range of 303–353 K is small enough to 

justify the assumption that Qst is independent of temperature. In this case it is possible to calculate 

Qst from the adsorption isotherms obtained experimentally at the three temperatures using the 

integrated form of the Clapeyron equation (4.28): 

 ln( ) constant st
n

Q
p

RT
 (4.28) 



EXPERIMENTAL AND THEORETICAL STUDIES OF SUPERCRITICAL METHANE 
ADSORPTION IN THE MIL-53(Al) METAL ORGANIC FRAMEWORK CHAPTER 4 

 

 

90 | 1 6 6  
 

 

A plot of ln(p) versus 1/T should yield a linear isostere of slope −Qst/R. 

 

Figure 4.6. (a) Isosteric heat as a function of loading and (b) adsorption isosteres for the CH4/MIL-53lp(Al) 
system at 303–353 K. The open symbols in the top plot are values of Qst obtained from the GCMC simulations 
by use of the standard fluctuation formula (Eq 4.27), whereas the Qst values represented by the closed circles 
were calculated from the slope of the linear fitting (lines in bottom graphic) of the isosteric data (closed circles 
in bottom graphic) derived from the experimental adsorption isotherms; asterisks (*) denote experimental 
values of Qst collected by microcalorimetry by Bourrely et al. [34] at 304 K. 

 

The experimental isotherms were fitted to third-order polynomials of the form lnp = Σkn
k
 and 

then transformed into linear isosteric plots of lnp against 1/T at different loadings and Qst 

determined from these using Eq (4.28). The isosteres are depicted in Fig. 4.6b; the degree of 

uncertainty in the Qst values calculated by this method is at least (±10) per cent. The values of Qst 

calculated from the isosteric plots are in fairly good agreement with the GCMC results. For the 

purposes of comparison with our data, we also plot in Fig. 4.6a the experimental values of Qst 

collected by microcalorimetry by Bourrely et al. [46] at 304 K. The Qst values reported by these 

authors are independent of loading and their average, ~17 kJ/mol, falls on the midrange of our 

results. The Qst values plotted in Fig. 4.6a are also within the range of isosteric heats reported [40] 

for methane adsorption on activated carbon at the same temperatures of our study and for 
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intratubular adsorption of the same adsorbate at room temperature on bundles of single-walled 

carbon nanotubes with tube diameter of ~15 Å [41]. 

We have also successfully fitted two commonly employed semi-empirical isotherm models the 

Sips and Toth isotherms models to the experimental methane adsorption data (Table 4.2 and Fig. 

4.5.). The isosteric heat of adsorption derived from the two isotherm models is ~20 kJ/mol (Fig. 4.7 

and Table 4.2.), which is roughly 2 kJ/mol higher than the values plotted in Fig. 4.6a. Overall, the 

Qst trends shown in Fig. 4.6a are consistent with a view that supercritical methane fills the pore 

channels of MIL-53lp(Al) through a mechanism in which surface heterogeneity plays only a minor 

role. 

Figure 4.7. shows the isosteric heats of adsorption determined from both isotherm models 

plotted against fractional loading.  

 

Figure 4.7. Isosteric heats of adsorption derived from the Sips and Toth isotherm models plotted against 
fractional loading, θ (or pressure, P). Each symbol corresponds to the value of Qst calculated for the pressure 
and temperature of a point on the experimental adsorption isotherms. The left-hand plots are derived from the 
Sips isotherm model; the right-hand plots are derived from the Toth isotherm model. In the top plots, η and t 
are temperature dependent; in the bottom plots, η and t are constants. 

 

The values derived from the two adsorption isotherm models are in close agreement, but the 

trend with loading goes against the trends of our molecular simulation data and of the values of Qst 

derived from the slope of the linear fitting of the experimental isosteres. At the higher loadings, the 

values of Qst derived from the Sips and Toth isotherm models are ~2 kJ/mol higher than the values 

plotted in Fig. 4.6. 
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4.3.4. DOE Target Calculations 

 

It is tempting to compare the methane adsorptive storage capacity of MIL-53(Al) with those of 

highly porous activated carbons. The comparison is best done on a volumetric basis, because for 

lightweight vehicles the limiting storage factor is the volume of the tank rather than its weight; for 

heavyweight vehicles, such as trucks, the limiting storage factor is less clear-cut. 

Assuming that MIL-53(Al) is compacted as a monolith or as a close-packed bed inside the 

storage tank, the isothermal methane storage density (i.e., the loading capacity per storage volume 

under isothermal conditions) can be expressed as 

 





 

1
( , ) ( , ) ( , )v g

c

n P T n P T P T
v

 (4.29) 

where ϵ is the inter-crystal void fraction, P and T are the charge pressure and system temperature, 

and ρg is the molar density of bulk methane at charge conditions.  

 

Usually, the methane storage density is expressed as volumes of stored gas, measured at 

standard conditions (1 atm and 298.15 K), per storage volume (v/v); the v/v performance indicator 

and nv are related by 

 

  3/ 23.64 10 vv v n  (4.30) 

where nv is assumed to be expressed in mol/m
3
. 

GCMC calculations carried out by us for T = 298.15 K predict that the amount of methane 

adsorbed in the porous framework of MIL-53lp(Al) at 298.15 K and 3.5 MPa is 5.79(6) mol/kg, 

which gives a performance indicator of 132.6 v/v for a monolithic block (ϵ = 0) and 107.2 v/v for the 

theoretical limit (ϵ = 0.26) of a close-packing of uniform spherical particles. 

A more realistic performance indicator is the net storage capacity, (v/v)net, which measures the 

volumes of methane delivered at standard conditions per storage volume; (v/v)net is more useful in 

engineering calculations since it measures the actual delivered gas under isothermal operation 

rather than the stored amount [42]. This performance indicator is given by (4.31): 

 

   3( / ) 23.64 10 ( ) ( )net v H v Lv v n P n P  (4.31) 

where PH and PL are the charge and exhaustion pressures, respectively; commonly accepted 

values for the operating pressure range are PH = 3.5 MPa and PL = 0.136 MPa [3,54].  

Since our Monte Carlo simulations predict that nv(PL) = 0.811(6) mol/kg at 298.15 K, the 

theoretical net storage capacity provided by MIL-53lp(Al) would be 114.0 (v/v)net for a monolith 

and 93.1 (v/v)net for a close-packed bed. 
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The theoretical maximum storage capacity for activated carbon predicted by Monte Carlo 

simulation [43] is 209 v/v for a monolith and 146 v/v for pelletized particles; the corresponding net 

storage values are 195 (v/v)net and 137 (v/v)net, respectively. Thus, the theoretical methane 

storage capacities obtained for activated carbon are considerably better than those for MIL-53(Al). 

The estimations for activated carbon, however, use a highly idealized model in which methane is 

intercalated between parallel planes of graphite at a slit width of 11.4 Å, optimized for ANG storage. 

It is highly questionable that a carbon with this particular pore structure can be manufactured. 

Experimentally, the highest volumetric methane uptakes obtained to date with activated carbons 

are around 166 v/v and 145 (v/v)net [44]. Based on either the Langmuir or Unilan isotherm models, 

Bhatia and Myers [45] have shown that the optimum Langmuirian equilibrium constant, K, for 

maximum isothermal delivery between PL and PH at a given temperature T is given by (4.32): 

 

 1/ 2( )opt L HK P P  (4.32) 

Further,   exp( / )exp( / ) /st oK S R Q RT P , where ΔS
O
 is the entropy change on adsorption 

relative to the standard pressure Po (1 bar), and Qst is the average heat of adsorption between PL 

and PH; for methane, ΔS
O
 ≈ −9.5R for a variety of adsorbents [45]. It then follows that the optimum 

value of Qst for maximum isothermal delivery between PL and PH at a given temperature T is given 

by (4.33): 

 

 
      

 
2

( ) ln
2

L H
st opt

o

P PRT
Q T S

P
 (4.33) 

 

For a delivery cycle at 298 K, insertion of PL = 0.136 MPa and PH = 3.5 MPa into eq 4.30 yields 

(Qst)opt = 18.8 kJ/mol, which happens to be in good agreement with the values shown in Fig. 4.6b 

for the highest loadings. Thus, the low net capacity for methane storage exhibited by MIL-53(Al) at 

ambient temperature cannot be attributed to an inappropriate value of the equilibrium constant, 

which is related to the heat of adsorption, but rather to a low adsorption capacity at the charge 

pressure. This is corroborated by further GCMC simulations performed by us for higher pressures 

at T = 298 K, which indicate that the charge pressure must be increased to PH ~10.9 MPa for MIL-

53(Al) to achieve the DOE target of 150 (v/v)net. 

On the other hand, our simulated experiment of methane condensation in MIL-53l(Al) at 152.5 

K gives a storage capacity of 279 v/v for a monolithic block and 213 v/v for a close packed bed. 

These values are well above the DOE target of 150 (v/v)net, which suggests that MIL-53(Al) may be 

an acceptable methane adsorptive storage medium if the system is operated at a suitably low 

temperature. In view of this, it is of practical interest to determine how low the operating 

temperature should be; we calculate this temperature by an extrapolation of the available 

adsorption data. 
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The partial derivatives of an average quantity X  with respect to the intensive variables that 

define the ensemble are related to fluctuation formulas that can be conveniently expressed in terms 

of the covariance φ between X and the intensive variables. For the grand canonical ensemble [46] 

we have (4.34): 

 
 

 
  

 
( , ), ( , )

X X
X N X U  (4.34) 

which allows the differential of N  to be expressed as (4.35): 

     
 

 
    

 
( , ) ( , )

N N
N d d N N d N U d  (4.35) 

 

The Gibbs–Duhem equation for a single-component system at constant pressure, applied to the 

bulk adsorptive, gives (4.36): 




 
   

 
( )g g

P

v
h d dv constP h  (4.36) 

where hg = (5/2)β
−1

 + hg
ex 

 is the molecular enthalpy of the bulk adsorptive. For the truncated Virial 

equation of state, eq 4.5, the excess molecular enthalpy is given by hg
ex

 = P[B + β(dB/dβ)] [26].  

From Eqs 4.35 and 4.36 it is possible to determine the slope of an adsorption isobar from the 

fluctuation formulas and the value of hg: 

 

 


 
  
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( , ) ( , )g

P

N
h N N N U  (4.37) 

 
Using this formula it is possible to interpolate the GCMC adsorption isotherms at a constant 

pressure value using cubic Hermite interpolation, which matches both N  and   /N P rather 

than by simple polynomial interpolation that matches just N the resulting polynomial provides the 

adsorption isobar at the selected pressure. Using this procedure it is possible to extrapolate more 

reliably the adsorption isobar to a temperature outside the range of temperatures of the isotherms 

that were interpolated to build the isobar. 

We have determined the isobars at PL = 0.136 MPa and PH = 3.5 MPa from the GCMC data at 

298.15 K, 303.15 K, 323.15 K, and 353.15 K, and extrapolated the isobars to get the temperature 

at which the net storage capacity of a monolithic block of MIL-53(Al) meets the DOE target of 150 

(v/v)net (see Fig. 4.8); the predicted temperature is ~253 K. This temperature happens to be a few 

degrees above the lowest temperature [47] at which there is no occurrence of structural breathing 

in MIL-53(Al) upon methane adsorption and the open-pore form remains the stable structure over 

the whole pressure range. The equilibrium loadings at PL = 0.136 MPa and PH = 3.5 MPa 

calculated by GCMC simulation for T = 253 K are 2.03(2) mol/kg and 8.44(7) mol/kg, respectively, 
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which give a net deliverable capacity of 147 (v/v)net. This value is only 2% less than the DOE target 

of 150 (v/v)net, which demonstrates the reliability of our extrapolation procedure. 

 

 

Figure 4.8. Cubic Hermite interpolation (solid lines) of the GCMC adsorption isotherms (open circles) at PL = 
0.136 MPa and PH = 3.5 MPa and extrapolation (dashed lines) of the two isobars to the temperature at which 
(v/v)net = 150. 
 

4.4. CONCLUSIONS 

 

We have reported a combined experimental and theoretical study of the adsorption equilibrium 

properties of supercritical methane in the large-pore form of MIL-53(Al) over pressures in the range 

~0.01–7 MPa and temperatures in the 303–353 K regions. We demonstrated that the use of the 

TraPPE-UA force-field for modeling the solid–fluid interaction potential of the MIL-53(Al)/CH4 

system provides a good description of the experimental adsorption isotherms and isosteric heats of 

adsorption. Furthermore, a previously unobserved anisotropic distribution of the confined fluid 

molecules was interpreted in terms of symmetry annihilation in the pseudo one-dimensional 

nanopores; this fact arises from anti-parallel alignments of the OH groups in the inorganic 

octahedra.  

Finally, we examined the potential use of MIL-53(Al) as a methane adsorptive storage medium, 

and compared its performance with those of activated carbons. Our simulations show that a MIL-

53(Al) monolith must operate with a charge pressure slightly above 10 MPa to deliver the DOE 

target of 150 volumes of methane per storage volume in an isothermal cycle operating at 298.15 K 

and depletion pressure of 0.136 MPa. To achieve the same net storage capacity for the DOE’s 

reference charge pressure of 3.5 MPa, the MIL-53(Al) monolith must operate isothermally at ~253 

K. 
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5.1 INTRODUCTION 

 

Natural gas is consists mainly of methane typically with up to 20% associated hydrocarbons 

primarily ethane, propane and butane that represent a large amount of most crude oils. Before 

natural gas can be used in any application either as fuel, either for fertilizer production or hydrogen 

production it must undergo processing to remove almost all substances other than methane. For 

that purpose, now using two different technologies, absorption method which does not allow for 

ethane recovery and cryogenic expansion process which based on condensation processes, [1] 

allows almost 100% ethane and heavier hydrocarbons recovery but is a very high energy costs 

technology. Design of new porous materials that are able to selective adsorption of the light 

hydrocarbons from different gas mixtures or for methane storage is important from an economical 

point of view [2]. The adsorption/separation of light hydrocarbons have been investigated in several 

different porous materials such as carbon nanotubes, activated carbons and it modified forms, 

pillared layered clays and zeolites [3-7].  

Over a past decade a new class of structured nanoporous (MOFs) materials gained much 

attention in adsorption/separation and storage of the light alkanes because of their crystal 

structures that exhibit unusual flexibility and tuneable host–guest properties [8-11].  

In this work, the equilibrium of the C2–C4 adsorption in MIL-53(Al) over pressures in the range 

0.01–4.5 MPa and temperatures in the 303–353 K regions was studied. Ones again, the chosen P-

T range over which experimental results on C2–C4 adsorption in MIL-53(Al) has been reported is 

the largest span investigated to date.  

The potential use of MIL-53(Al) as a C2-C4 n-alkanes adsorptive storage media was 

investigated both, experimentally via gravimetric adsorption experiments and theoretically by Grand 

Canonical Monte Carlo (GCMC) simulations. 

 

 

5.2. EXPERIMENTAL 

 

5.2.1. Molecular Model and Simulation Method 

 

In our molecular simulation work, MIL-53(Al) is modeled as a rigid lattice with its constituent 

atoms at the crystallographic positions and the parameterization of solid–fluid dispersive 

interactions in MIL-53(Al) is based on the TraPPE-UA [12-16] force field to take advantage of the 

transferability of the parameters built into it. Details of structural model used for MIL-53(Al) are 

described in Chapter 4.  

The parameterization of the solid-fluid dispersive interactions using TraPPE-UA was treated via 

the LJ potential only. The corresponding LJ parameters are summarized in Table 5.1, the location 

of each atom type on the framework being reported in Fig. 2.1.  

 

http://en.wikipedia.org/wiki/Methane
http://en.wikipedia.org/wiki/Ethane
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Table 5.1.Lennard-Jones parameters for dispersive interactions in the C2-C4/MIL-53lp(Al)system. 

 

Label Site σ(Å) ε/kB (K) Ref. 

Al Al 0.0 0.0 [25] 

O(1) OH 3.02 93.0 [26] 

O(2) O 2.80 55.0 [27] 

C(1) CH(aro) 3.695 50.5 [28] 

C(2) C(aro) 3.88 21.0 [28] 

C(3) C 3.85 20.0 [29] 

 C2H6 3.75 98 [30] 

 C
3
H

8 
(CH

3
 CH

2
) 3.84 (93, 60) [31] 

 C
4
H

10 
(CH

3
 CH

2
) 3.96 (85, 52) [32] 

 

 

5.3 RESULTS AND DISCUSSION 

 

5.3.1. Adsorption Equilibrium Measurements 

 

As it was noted in the literature review, adsorption of the alkanes in the MIL-53(Al) solid passes 

through the more complex mechanism comparing to some other MIL materials and zeolites [17,18].  

The analysis of the simulated results for ethane adsorption is given below. Figure 5.4 shows 

the unit cell of MIL-53(Al)lp along the three crystallographic coordinates (a, b, and c); these are 

aligned with the Cartesian coordinates x, y, and z. For the time being, ignore the slicing of the unit 

cell along the a-coordinate (top-right image). In the following, a, b, and c also denote the lengths of 

the three dimensions of the unit cell. From the left image of the Fig. 5.1 it is evident that viewing the 

cell along the a-axis (or x-axis), the bc cross section or yz cross-section of the unit cell contains the 

cross sections of two channels of MIL-53. Then, the bc plane, which is represented by the cyan 

dashed line in the top-right image and cuts the unit cell at x = a/2 into two halves, is a plane of 

reflection symmetry. There also is a rotational symmetry: if the box is rotated by 180
0
around the 

line parallel to the a-axis, located by the cyan circle, we get the same configuration (the left image 

Fig 5.1.). These findings are in agreement with our previous data for the methane simulations 

(Chapter 4). 

Figure 5.2 shows ayz view of the framework atoms in a simulation box with Ly= 2b and Lz= 2c. 
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Figure 5.1: Orthographic view of the unit cell along a axis (top-left), b axis (top-right),and c axis (bottom-right). 
 

 
 
Figure 5.2. Orthographic view of the unit cell along the a axis (top-left) and identification of the three types of 
sub-channel: type 1, type 2, and type 3. Sub-channel 3 is a mirror image of sub-channel 1. 
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Figure 5.3 shows molecular density profile, na(x), along the a-axis of each sub-channel of the 

unit cell of MIL-53(Al)lp for a loading of one  and three ethane molecules per unit cell. The jth 

profile, na
(j)

 (x), gives the statistical average of the number of ethane molecules in a slab of the jth 

sub-channel width dx centered at x. 

 

 

Figure 5.3. Molecular density profile, na(x), along the a-axis of each sub-channel of the unit cell of MIL-53(Al)lp 

for a loading of one (top) and three (bottom) ethane molecules per unit cell. 

 

Figures 5.4 and 5.5 show a 2-D projection of the number density field for condensed ethane 

inside an even-index channel of MIL-53lp(Al); ), at various positions along the a-axis of the unit cell 

of MIL-53(Al)lp for a loading: (i) Fig 5.4 of one ethane molecule per unit cell (0.5 ethane molecules 

per channel over a distance of length a); (ii) Fig. 5.5 for a loading of six ethane molecules per unit 

cell (3 ethane molecules per channel over a distance of length a). 
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Figure 5.4. Molecular density field, na(x; y), at various positions along the a-axis of the unit cell of MIL-53(Al)lp 
for a loading of one ethane molecule per unit cell (0.5 ethane molecules per channel over a distance of length 
a).  

 

The jth field, n(j) a (x; y), gives the statistical average of the number of ethane molecules in a 

slab of the unit cell of width dx = a=10 and cross-sectional area dx dy centered at (dx  j; x; y); index 

j runs from (a) j = 1 to (f) j = 6. 
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Figure 5.5. Molecular density field, na(x; y), at various positions along the a-axis of the unit cell of MIL-53(Al)lp 
for a loading of 6 ethane molecules per unit cell (3 ethane molecules per channel over a distance of length a).  

 

The jth field, na
(j)

(x; y), gives the statistical average of the number of ethane molecules in a slab 

of the unit cell of width dx = a=10 and cross- sectional area dx · dy centered at (dx · j; x; y); index j 

runs from (a) j = 1 to (f) j = 6. 

 

5.3.1.1. Adsorption Isotherms of C2-C4 n-alkanes 

 

Pure component adsorption isotherm of C2-C4 n-alkanes on MIL-53(Al) were measured 

gravimetrically from vacuum up to ~5 MPa under three temperatures 303.15 K, 323.15 K and 

353.15 K. In order to better understand the adsorption process results are given together with 
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methane adsorption data. A comparison of the absolute, excess and net adsorption isotherms for 

methane, ethane, propane and n-butane adsorption on MIL-53 (Al) are given in Figs. 5.6 -5.9.  

It appears that Langmuir isotherms (type I) are obtained. For all investigated gases absolute 

adsorption is a monotonously increasing function of pressure, the other two functions are concave 

with respect to the pressure axis and their maximum value occurs at a pressure that increases with 

temperature.  

Methane adsorption isotherms presented on Fig. 5.6. At pressures below ~0.15 MPa, the pore 

density is much higher than the bulk density of methane and thus the differences between n, nex, 

and nnet are negligible. At higher pressures, the bulk density increases more rapidly than the pore 

density and the three measures of adsorption start to deviate from each other. At ~5 MPa, the 

absolute adsorption continues to increase with pressure while the excess adsorption is close to its 

maximum value and the slope of net adsorption is already negative; the maximum value of nnet 

under the whole investigated temperatures occurs at ~4 MPa. These relationships corresponds to 

the whole investigated temperature range (Fig. 5.6 a, b and c) under methane adsorption.  

As shown on Fig. 5.7, relations between absolute, excess, and net adsorption isotherms for 

ethane are corresponds to that once described for methane. For ethane, at pressure below ~0.15 

MPa the differences between n, nex, and nnet are negligible. At ~3 MPa, the absolute adsorption 

continues to increase with pressure while the excess adsorption is close to its maximum value and 

the slope of net adsorption is already negative; the maximum value of nnet under all investigated 

temperatures occurs at ~1.5 MPa.  

With respect to the propane adsorption it is confined by critical conditions. The maximum 

applicable pressures for propane are ~0.9, ~1.4 and ~2.5 MPa at 303.15 K, 323.15 K and 353.15 K 

respectively. A comparison of the absolute, excess, and net adsorption isotherms of propane is 

presented in Fig. 5.8. There is no significant difference between n, nex, and nnet below ~0.15 MPa 

under all investigated temperature range. Adsorption isotherms at 353.15 K (Fig. 5.8c) shows the 

most similar behavior to methane and ethane adsorption isotherms. At pressures above ~0.15 MPa 

the three measures of adsorption start to deviate from each other. At ~2.5 MPa the absolute and 

excess adsorption continues to increase with pressure while the net adsorption is close to its 

maximum value. Meanwhile, the three measures of adsorption at 303.15 K and 323.15 K presented 

in Fig. 5.8a, b are increasing under the whole investigated pressure range. This is due to the fact 

that the increase of the bulk density relatively to the pore density is limited by critical pressure of 

propane. The same situation observed for butane adsorption isotherms (Fig. 5.9). The maximum 

applicable pressures are ~0.25, ~0.45 and ~0.7 MPa at 303.15 K, 323.15 K and 353.15 K 

respectively. The three measures of adsorption presented on Fig. 5.9a, b and c are monotonously 

increasing functions of pressure. 
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Figure 5.6. Absolute (◊), excess (□), and net (Δ) adsorption isotherms of methane in MIL-53lp(Al) at 303.15 K (a), 323.15 K (b) and 353.15 K (c) determined from gravimetric measurements. 

The reference state corrections (Vp = 0.56 cm
3
/g and Vs = 0.47 cm

3
/g) used for calculations of absolute adsorption values were determined by GCMC simulation.  
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Figure 5.7. Absolute (◊), excess (□), and net (Δ) adsorption isotherms of ethane in MIL-53lp(Al) at 303.15 K (a), 323.15 K (b) and 3535 k (c) determined from gravimetric measurements. The 

reference state corrections (Vp = 0.56 cm
3
/g and Vs = 0.47 cm

3
/g) used for calculations of absolute adsorption values were determined by GCMC simulation. 
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Figure 5.8. Absolute (◊), excess (□), and net (Δ) adsorption isotherms of propane in MIL-53lp(Al) at 303.15 K (a), 323.15 K (b) and 353.15 k (c) determined from gravimetric measurements. 

The reference state corrections (Vp = 0.56 cm
3
/g and Vs = 0.47 cm

3
/g) used for calculations of absolute adsorption values were determined by GCMC simulation. 
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Figure 5.9. Absolute (◊), excess (□), and net (Δ) adsorption isotherms of butane in MIL-53lp(Al) at 303.15 K (a), 323.15 K (b) and 353.15 k (c) determined from gravimetric measurements. 

The reference state corrections (Vp = 0.56 cm
3
/g and Vs = 0.47 cm

3
/g) used for calculations of absolute adsorption values were determined by GCMC simulation. 
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5.3.1.2. Analysis of the experimental adsorption isotherms 

 

The adsorption isotherms for C1-C4 n-alkanes on MIL-53(Al) were measured at 303.15 K, 

323.15 K and 353.15 K (Figs 5.10 – 5.12). The isotherms given in Figs 5.10a, 5.11a, 5.12a, are of 

Langmuir type presented in a standard form of amount adsorbed (mol/kg) versus pressure. As 

shown on Figs 5.11a–5.12a for the C1-C4 gases, the amount of adsorbed fluid increases rapidly 

with pressure, until reaching an approximately constant plateau and, thus, exhibiting Langmuir type 

isotherms. The exact location of that plateau depends on the molecular nature of the adsorbate, 

being reached earlier for the lighter molecules. 

However, when plotted as a function of the log of the pressure (Fig. 5.10b), one can 

distinguish a step in the C3 and C4 adsorption isotherms while a convex shape is obtained for the 

C2 adsorption. The only a very small concentration of the narrow pore form of MIL-53(Al) in the 

transition zone could explain such a shape of the isotherm. By contrast, only a concave profile is 

pointed out for methane which is commonly observed when plotting a Langmuir isotherm for a rigid 

microporous material. The steps in the propane and butane isotherms are the signature of the 

breathing of the MIL-53(Al) structure upon adsorption.  

 

 
 

Figure 5.10. Methane (◊), ethane (□), propane (Δ) and butane (○) adsorption isotherms on MIL-53(Al) at 
303.15K expressed here in terms of nex lines are drawn as a guide to the eye. Figure represents both standard 

form, amount adsorbed (mol/kg) versus pressure (a) and the semi-log scale (b) amount adsorbed (mol/kg) 
versus the log of pressure. The reference state corrections used are Vp = 0.56 cm

3
/g and Vs = 0.47 cm

3
/g. For 

clarity, the adsorption data for C4, C3 and C2 are displaced by 3 mol/kg, 2 mol/kg, and 1 mol/kg, respectively. 
The lines are drawn as a guide to the eye. 
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Figure 5.11. Methane (◊), ethane (□), propane (Δ) and butane (○) adsorption isotherms on MIL-53(Al) at 
323.15K expressed here in terms of nex lines are drawn as a guide to the eye. Figure represents both standard 
form, amount adsorbed (mol/kg) versus pressure (a) and the semi-log scale (b) amount adsorbed (mol/kg) 
versus the log of pressure. The reference state corrections used are Vp = 0.56 cm

3
/g and Vs = 0.47 cm

3
/g. For 

clarity, the adsorption data for C4, C3 and C2 are displaced by 3 mol/kg, 2 mol/kg, and 1 mol/kg, respectively. 
The lines are drawn as a guide to the eye. 

 
 

 

 
Figure 5.12. Methane (◊), ethane (□), propane (Δ) and butane (○) adsorption isotherms on MIL-53(Al) at 
353.15K expressed here in terms of nex lines are drawn as a guide to the eye. Figure represents both standard 

form, amount adsorbed (mol/kg) versus pressure (a) and the semi-log scale (b) amount adsorbed (mol/kg) 
versus the log of pressure. The reference state corrections used are Vp = 0.56 cm

3
/g and Vs = 0.47 cm

3
/g. 

For clarity, the adsorption data for C4, C3 and C2 are displaced by 3 mol/kg, 2 mol/kg, and 1 mol/kg, 
respectively. The lines are drawn as a guide to the eye. 
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Based on the analysis of the experimental data for the C2-C4 adsorption isotherms we can 

conclude the three main effects influent on the structural transitions of MIL-53(Al) (Figs. 5.13-5.15): 

There is size effect on the extent of breathing phenomena. The position of the step is a function 

of pressure. With increase of the alkyl chain length chain the adsorption sub-step appears at a 

much lower relative pressure (Fig. 5.13) and pressure steps for the lp-np and np-lp transitions 

become shorter.  

 
Figure 5.13 Semi-log scale of methane (◊), ethane (□), propane (Δ), and butane (O) adsorption isotherms in 

MIL-53lp(Al) at 303.15K. For clarity, the adsorption data for C4, C3 and C2 are displaced by 3mol/kg, 2mol/kg, 
and 1 mol/kg, respectively. The lines are drawn as a guide to the eye. 

 

There is temperature effect on the extent of breathing phenomena. Strongly depending on 

temperature, with temperature increase this effect becomes already evident for C2 (Fig. 5.13); and 

this tendency is even more pronounced for long-chain alkanes (Fig. 5.14). 

 
Figure 5.14. Comparison of the experimental isotherms presented in semi-log scale obtained at 303 K (◊), 323 
K(Δ) and 353 K (□) during the adsorption of ethane on MIL-53(Al). The green circles represent methane 
adsorption at 303 K and given as a reference isotherm (no transformation in MIL-53(Al)). For clarity, the 
adsorption data at 353 K 323 K and 303 K are displaced by 2 mol/kg, 3 mol/kg, and 4 mol/kg, respectively. 
The lines are drawn as a guide to the eye. 

0

1

2

3

4

5

6

7

8

0,00001 0,0001 0,001 0,01 0,1 1 10

n
e
x
 (

m
o
l/
k
g
) 

P (MPa) 

303 K 

0

1

2

3

4

5

6

7

8

9

10

0,001 0,01 0,1 1 10

n
 (

m
o
l/
k
g
) 

 

P (MPa) 



EXPERIMENTAL AND THEORETICAL STUDIES OF C2H6, C3H8, C4H10 ADSORPTION IN 
THE METAL ORGANIC FRAMEWORK MIL-53(Al) CHAPTER 5 

 

 

115 | 1 6 6  

There is size effect on temperature dependence of the breathing phenomena. With temperature 

increase, the breathing effect becomes to be more evident for the longer alkanes. For instance, 

example given in Fig. 5.15 for butane proves that with temperature breathing appears at lowest 

relative pressure and breathing magnitude becomes to be more evident.  

 

Figure 5.15. Experimental adsorption isotherms of butane on MIL-53(Al) at 303 K (◊) and 323 K (□) presented 

in semi-log scale. The lines are drawn as a guide to the eye. For clarity, the adsorption data for 303 K and 323 
K are displaced by 2mol/kg, and 1 mol/kg, respectively. The lines are drawn as a guide to the eye 

 

Summary of our findings is given in diagram (Scheme 5.1), which presents guest-induced 

structural transitions of the MIL-53 (Al) upon C1-C4 adsorption and the temperature influence. 

With increase of the temperature and chain lengths the magnitude of breathing increases. 

It should be noted, that our hypothesis is in full agreement with the literature findings known 

up to date on predicted pressures for the lp----np and np-----lp transitions for MIL-53 (Cr) [19] 

given in Table 5.2. 

 

Table 5.2. Predicted pressures for the lp-np and np-lp transitions for MIL-53 (Cr) 

Guest CO2 C2H6 C3H8 C4H10 

P (lp-np) 0.3 bar 0.17 bar 30 mbar 9.0 mbar 

P (np-lp) 5 bar 3.3 bar 0.45 bar 0.15 bar 

 

More in details the literature finding can be summarized as a followed: 

 Contrary to other porous materials, MOFs express, as so called host-guest properties.  

 The MOF´s guest-responsive behaviors, such a “breathing” and “gate opening”, (i.e. (i) 

progressive swelling or (ii) contraction or ((iii) pore deformation or (iv) amorphous-to-

crystal and (v) crystal to-crystal structural transitions) are the main results of such an 

exceptional guest-responding MOF´s behavior upon gas adsorption [20].  
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 The MIL-53 materials family [21], a particularly eye-catching case of the last category 

(i.e. (v) crystal to-crystal structural transitions), has attracted a lot of attention due to its 

large flexibility and the occurrence of a double structural transition upon adsorption of 

some gases (CO2, H2O, C2H6, C3H8, C4H10) but not others (H2, CH4) [22].  

 

Scheme 5.1. Diagram for the hypothesis of the temperature and chain size effects on “breathing” phenomena 
in MIL-53 (Al) upon C1-C4 adsorption.  

 

Although, both experimental and molecular simulation studies performed so far, mainly focused 

on MOF´s structural and energetic characterization, a current depiction of the guest-induced 

structural transitions is lacking a general thermodynamic interpretation of all the results obtained so 

far. Therefore, the necessity of understanding the thermodynamic conditions for the host-guest 

interactions which allow the breathing to happen is indeed highlighted in a literature [23]. 

Recently a generic thermodynamic framework for the understanding of guest-induced structural 

transitions in flexible nanoporous materials such as MOFs was developed [24], by using the 

osmotic pseudo-ensemble. For a material that has two possible framework structures and where 

gas adsorption follows type I isotherms [25], it was proposed a full taxonomy of possible guest-

induced structural transitions.  

This classification relies only on a few key parameters, namely: the free energy difference, ΔF, 
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between the (empty) host structures, their pore volumes, Vp(i), and the adsorption affinities for the 

guest, Ki.  

Indeed, all guest-responsive hybrid materials studied so far exhibit free energy differences 

between host structures in the range ΔF 2-5 kJ/mol [19]. In the case of materials such as MIL-53, 

where the large-pore (lp) form is intrinsically more stable than the narrow-pore (np) form at room 

temperature, our taxonomy predicts either the occurrence of two structural transitions upon gas 

adsorption or the absence of any transition. This is determined by a balance between intrinsic 

stability of the crystal structures, adsorption affinities, and accessible volume. In the case of 

alkanes adsorption in MIL-53, adsorption isotherms from ref [22] show that the variation of pore 

volume (and adsorbed quantities at saturation)for both phases is small and the main factor is the 

change in adsorption affinities for different guests.  

Within the limits of this model, the presence or absence of structural transitions for a given 

adsorbate is unambiguously determined by one factor only: the ratio Knp/Klp of adsorption affinities 

in the two structures. A double guest-induced structural transition happens if and only if Knp/Klp is 

large enough so that the following inequality holds [24]: 

 



   
   

  

( ) ( )

( ) ( )

( ) ( )

/
( )ln ln

lp np

np lp p p npnp lp lp

p p plp np

p p lp

K K V V K F
V V V

V V K RT
 (5.2) 

If, on the contrary, Knp/Klp is too small, there will be no structural transition at all.  

 

Figure 5.16.Upper panel: adsorption isotherms of CH4 (in red) and C4H10(in blue) in MIL-53 (Cr), in a Langmuir 
model. Lower panel: difference in osmotic potential between lp and np phases, as a function of pressure. 
Vertical dotted lines correspond to C4H10-induced structural transition. 

 

By way of illustration, difference in osmotic potential between lp and np phases, as a function 

of pressure is shown in Fig. 5.16. An example is given for the Langmuir isotherms fitted the C4H10 

and CH4 adsorption in MIL-53 (Cr) at 303 K [22].  

For C4H10, Knp/Klp ≈ 4 and there are two successive structural transitions; this leads to an 

isotherm where two steps can be clearly seen on a logarithmic pressure scale. Contrarily, for CH4, 
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Knp/Klp ≈ 1 (Fig.5.17) and the lp structure is thermodynamically favored throughout the pressure 

range; the isotherm, being simply that of CH4 in MIL-53 lp, has no step (Fig.5.16).  

 
Figure 5.17. Existence of guest-induced structural transitions upon gas adsorption as a function of ΔFhost, the 
free energy difference between empty structures, and the ratio of gas affinities, K1/K2. The orange line 
corresponds to the adsorption of alkanes in MIL-53(Cr) and the symbols indicate the points of the graph 
corresponding to CH4 (in blue) and C4H10 (in red). 

 
A phase diagram of MIL-53 (Cr) as a function of guest pressure and host-guest affinities, for a 

series of adsorbates with a constant Klp/Knp ratio is presented in Fig. 5.18. There are the points 

corresponding to the phase transitions induced by C2H6, C3H8, and C4H10. It is noteworthy that the 

pressure domain of the np phase, which has a constant width in the logarithmic scale of Fig. 5.18, 

actually gets smaller in a linear scale for adsorbates with larger affinities for the solid. Therefore, it 

was demonstrated that the existence of the breathing phenomena in MIL-53 (Cr) is determined by 

the relative affinities of the sorbate for the lp and np phases [22]. 

 

 

Figure 5.18. Existence domains of the lp and np phases of MIL-53 upon gas adsorption, with guests of 
different affinities (Klp and Knp). Symbols correspond to lp-np and np-lp (respectively, filled and open) 
transitions for the C2 to C4 alkanes. 
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5.3.2. Data Fitting 

 

We have compare of the experimental isotherms of the C2-C4 gases adsorbed on MIL-53(Al) 

for temperature range 303-353 K to the isotherms simulated by GCMC molecular model (Figure 

5.19 -5.20). The adsorption data are reported in terms of excess isotherms using the reference 

value of 0.47 cm
3
/g for the specific skeletal volume (Vs) of MIL-53lp(Al); the reference state for the 

GCMC excess isotherms is Vp = 0.56 cm
3
/g.  

 

 
 
Figure 5.19. Comparison of excess adsorption isotherms of ethane in MIL-53lp(Al): gravimetry (solid symbols) 
and simulation (open symbols). The rhombs, triangles and circles are corresponds to the 303K, 323K and 
353K respectively. The reference state corrections used are vp = 0.56 cm

3
/g and vs= 0.47 cm

3
/g. For clarity, 

the adsorption data at 323 K and 303 K are displaced by 1 mol/kg and 2 mol/kg, respectively. 

 

There are different tendencies between our GCMC predictions and the experimental adsorption 

data obtained. For the ethane adsorption at 303K and 323 K at pressures below ~2 MPa, the 

GCMC model predicts the experimental data with high accuracy. At pressures above 2 MPa, the 

GCMC simulation data slightly differ from the experimental ones. While for the 353 K for the ethane 

adsorption different profiles are observed. The GCMC simulation points are over the experimental 

values in the pressure range of ~0.02-0.5 MPa. That happens due to the fact that our simulation 

model is built for the adsorption process into large pore form of MIL-53(Al), thus cannot modeled 

the adsorption profile in the narrow pore form of MIL-53(Al). In accordance with the results 

discussed above the breathing magnitude of MIL-53(Al) transformation becomes more evident for 

the ethane adsorption at 353 K and influences the adsorption process, which is evident from 

experimental adsorption profile and cannot be seen from the simulated one. However, it should be 

noted that agreement between GCMC predictions and experimental data is good enough to obviate 

the need for re-parameterization of the cross-terms of the LJ solid–fluid interaction potential.  
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Figure 5.20. Comparison of excess adsorption isotherms of propane in MIL-53lp(Al): gravimetry (solid 
symbols) and simulation (open symbols). The rhombs, triangles and circles correspond to the 303K, 323K and 
353K respectively. The reference state corrections used are vp = 0.56 cm

3
/g and vs= 0.47 cm

3
/g. For clarity, 

the adsorption data at 323 K and 303 K are displaced by 1 mol/kg and 2 mol/kg, respectively. 

 

The differences between experimental and simulation data are more pronounced for the 

propane and butane adsorption. There is data presented for propane only (Fig. 5.20), as far as for 

the butane adsorption, the simulation does not fit the experimental profile.  

The reason for such a deviation is breathing phenomena observed for C3 and C4 adsorption on 

MIL-53(Al). Furthermore, the tendency of deviation between experimental and simulated adsorption 

profiles with temperature and increase of carbon chain follows the tendency described by diagram 

5.1 on the temperature and chain size effects on “breathing” phenomena in MIL-53(Al) upon C1-C4 

adsorption. Namely, with increase of the temperature and chain lengths the magnitude of breathing 

increases, and thus deviation between experimental and simulation profiles becomes to be more 

pronounced. 

 

The SIPS and TOTH models 

 

The experimental adsorption data were fitted with the Sips and Toth semi-empirical isotherm 

models (Table 5.3., Fig. 5.21-5.23.). 

As observed, the models derived from the two global fittings of the Sips and Toth are in very 

good agreement with the experimental data; the coefficient r
2
 is higher than 0.998 in all cases.  
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Figure 5.21. Global fitting of the experimental ethane adsorption data by the Sips and Toth isotherm models 
with the η and tis allowed to vary with temperature. The fitted parameters are listed in Table 5.3. Open 
symbols represent experimental data, the stars and bars are the Sips and Toth isotherm models. For clarity, 
the fittings data at 323 K and 303 K are displaced by 1 mol/kg and 2 mol/kg, respectively. The global average 
relative error (ARE) is 8.7% and 6.8% for 53 experimental data points.  
 

 
 
Figure 5.22. Global fitting of the experimental propane adsorption data by the Sips and Toth isotherm models 
with the η and t is allowed to vary with temperature. The fitted parameters are listed in Table 5.3. Open 
symbols represent experimental data, the stars and bars are the Sips and Toth isotherm models. For clarity, 
the fittings data at 323 K and 303 K are displaced by 1 mol/kg and 2 mol/kg, respectively. The global average 
relative error (ARE) is 7.5% and 6.4% for 48 experimental data points.  
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Figure 5.23. Global fitting of the experimental butane adsorption data by the Sips and Toth isotherm models 
with the η and tis allowed to vary with temperature. The fitted parameters are listed in Table 5.2. Open 
symbols represent experimental data, the stars and bars are the Sips and Toth isotherm models. For clarity, 
the fittings data at 323 K and 303 K are displaced by 1 mol/kg and 2 mol/kg, respectively. The global average 
relative error (ARE) is 7.5% and 6.4% for 48 experimental data points.  

 

According to our previous experience of using Sips and Toth isotherms model to the methane 

adsorption it was shown that models fit better the experimental data when parameters η and t are 

temperature depending. Thus, the experimental data of C2-C4 adsorption were fitted by the Sips 

and Toth models in which parameter η and t is allowed to vary with the temperature. 

The goodness of the fittings were assessed using standard fitting statistics (Table 5.3): 

standard deviation of measurements, determination coefficient (r
2
), regression sum of squares 

(RSS) and average relative error (ARE) in percentage are given.  

 

Table 5.3 Parameters obtained from the data fitting for the C1-C4 experimental adsorption with the Sips and 

Toth models. In every case r
2
>0.998. 
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From the analysis of the data obtained it is evident that the adsorption capacity (ns) decreases 

with the temperature for all studied gases and decreases with increase of the alkane chain (Table 

5.3). 

 

The Isosteric Heat  

 

The isosteric heat (or differential enthalpy) of adsorption, Qst, is the amount of heat released 

when an infinitesimal number of molecules is transferred at constant pressure from the bulk gas 

phase to the adsorbed phase. The isosteric heat of adsorption, Qst was estimated both as derived 

by GCMC molecular simulation using statistical mechanical considerations and from the adsorption 

isotherms obtained experimentally using the integrated form of the Clapeyron equation; and the 

Sips and the Toth isotherm models, the values are presented in Table 5.4. 

Figures 5.24a, 5.25a and 5.26a show a plot of the isosteric heat of adsorption as a function of 

the amount adsorbed. Values of Qst presented in these Figures are the comparison of the isosteric 

heat of adsorption calculated using GCMC simulation, which is depicted as open symbols and 

values obtained by linear isosteric plots of lnp against 1/T at different loadings and Qst using 

Clapeyron equation, depicted as solid symbols (isosteres are presented in the Figure 5.24b, 5.25b 

and 5.26b).  

Figures 5.27, 5.28 and 5.29 represent the isosteric heat of adsorption obtained by Sips and 

Toth isotherms model. The right side of the graph represents the data obtained by Sips model, left 

one the data obtained by applying Toth model. Top of the graph represents plots of Qst against 

pressure and the bottom against the fractional loading. One can distinguish that the values of Qst 

calculated from the isosteric plots are in fairly good agreement with the GCMC results and data 

obtained by Sips and Toth models but the trend with loading goes against the trends of our 

molecular simulation data and of the values of Qst derived from the slope of the linear fitting of the 

experimental isosteres.  
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Figure 5.24. (a) Isosteric heat as a function of loading and (b) adsorption isosteres for the C2H6/MIL-53lp(Al) 
system at 303–353 K. The open symbols in the top plot are values of Qst obtained from the GCMC simulations 
by use of the standard fluctuation formula (Eq4.27), whereas the Qst values represented by the closed circles 
were calculated from the slope of the linear fitting (lines in bottom graphic) of the isosteric data (closed circles 
in bottom graph) derived from the experimental adsorption isotherms. 

 

Figure 5.25. (a). Isosteric heat as a function of loading and (b) adsorption isosteres for the C3H8/MIL-53lp(Al) 
system at 303–353 K. The open symbols in the top plot are values of Qst obtained from the GCMC 
simulations, the Qst values represented by the solid circles were calculated from the slope of the linear fitting 
of the isosteric data (closed circles in bottom graph) derived from the experimental adsorption isotherms. 
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Figure 5.26 (a). Isosteric heat as a function of loading and (b) adsorption isosteres for the C4H10/MIL-53lp(Al) 
system at 303–353 K. Qst values represented by the solid circles were calculated from the slope of the linear 
fitting of the isosteric data (closed circles in bottom graph) derived from the experimental adsorption 
isotherms. 
 
 
Table 5.4 Isosteric Heat of adsorption determined by GCMC simulation method, integrated form of Clapeyron 
equation and Sips, Toth isotherms models. 
 

Qst kJ/mol CH4 C2H6 C3H8 C4H10 

 
303 K 

SIPS 19,7 24,3 24,8 26.5 

TOTH 19,9 25,9 53,5 28.6 

Simulation 16,3 25,5 32,2 - 

 
323 K 

SIPS 19,4 24,3 25,0 26.4 

TOTH 19,5 26,3 53,7 28,2 

Simulation 16,0 25,2 31,4 - 

 
353 K 

SIPS 19,6 24,8 25,0 26,4 

TOTH 19,6 27,0 54,0 28,3 

Simulation 15,9 24,9 31,6 - 

Temperature dependent 

Clapeyron 16,2 25,8 26,8 28,7 
 
 

For practical usage of the adsorbents for natural gas storage it should be taken into account 
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that adsorption is a process which evolves heat. 

In general, all the values calculated for heat of the adsorption for all of the gases are in a range 

of ca. 20-32 kJ/mol (Table 5.4). Overall the shown trend for the Qst values is consistent with a view 

that at the start of fill cycle there is already a layer of adsorbed gas on the adsorbent. Thus, 

adsorption at these initial sites tends to produce almost equal and the highest heat of adsorption for 

all studied gases on MIL-53 (Al). 

 

 

Figure 5.27. Isosteric heats of adsorption of ethane derived from the Sips and Toth isotherm models plotted 
against fractional loading, θ (or pressure, P). Each symbol corresponds to the value of Qst calculated for the 
pressure and temperature of a point on the experimental adsorption isotherms. The left-hand plots are derived 
from the Sips isotherm model; the right-hand plots are derived from the Toth isotherm model. The η and t are 

temperature dependent. 
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Figure 5.28. Isosteric heats of adsorption of propane derived from the Sips and Toth isotherm models plotted 
against fractional loading, θ (or pressure, P).  
Each symbol corresponds to the value of Qst calculated for the pressure and temperature of a point on the 
experimental adsorption isotherms. The left-hand plots are derived from the Sips isotherm model; the right-
hand plots are derived from the Toth isotherm model. The η and t are temperature dependent. 

 

According to the data presented in Table 5.4 for the methane and ethane the isosteric heat 

values obtained by four different methods are in a good agreement and varies within ~2 Kj/mol 

(around 10%). The values of the Qst obtained by Sips and integrated form of the Clapeyron 

equation for the propane adsorption is in a good agreement 25.0 and 26.8 kJ/mol respectively. 

However, deviation is observed for the simulated values of isosteric heat propane adsorption, they 

are 6-7 kJ/mol higher than experimental values calculated by Sips method and by using the 

integrated form of the Clapeyron equation. Most probably the deviation occurs due to the limit of 

chosen molecular simulation model. Moreover, it should be noted that Qst obtained by the Toth 

model for propane adsorption is about of 54.0 kJ/mol, which is disproportionately high and cannot 

be explained. Regarding the butane adsorption the values of Qst obtained by Sips, Toth models 

and Clapeyron equation are in a good agreement, the Qst values are of 26.5, 28.5 and 28.7 kJ/mol, 

respectively.  
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It is also known from literature that the double transition is dictated solely by the affinity for 

the large pore form with a proposed critical adsorption enthalpy of ∼20 kJ/mol [22]. 

 

 

 

 

 
Figure 5.29. Isosteric heats of adsorption derived from the Sips and Toth isotherm models plotted against 
fractional loading, θ (or pressure, P).  
Each symbol corresponds to the value of Qst calculated for the pressure and temperature of a point on the 
experimental adsorption isotherms. The left-hand plots are derived from the Sips isotherm model; the right-
hand plots are derived from the Toth isotherm model. The η and t are temperature dependent. 

 

It is worth noting that the overall trend of the isosteric heat of the adsorption for the C1-C4 gases 

adsorption is increasing with the increasing of the chain length. From C1 to C2 gases increase in Qst 

is about 5-8 kJ/mol, and for C2-C4 the increase is by 1-2 kJ/mol.  
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5.5.3. Evaluation of the MIL 53 (Al) storage capacity towards C2-C4 gases  

 

In this section, we provide data on usage of the general thermodynamic framework for the net 

adsorption reference state for an estimation of the storage capacity of MIL-53 (Al) towards C1-C4 

gases under investigated conditions.  

Because net adsorption is measured with a reference based on an empty container (with no 

solid), it is a direct measure of the additional amount that is stored in the container as a result of 

adsorption under identical conditions. Net adsorption is thus a direct measure of the density 

enhancement for storage applications. 

As it was discussed above, the net adsorption is concave function with respect to the pressure 

axis and it maximum value occurs at a pressure that increases with temperature. Decrease with net 

adsorption value indicates that the amount stored in the container is actually lower than what could 

be stored in the same container when there is no adsorbent at the same temperature and pressure. 

This does not indicate the decrease/absence of the adsorption but simply indicates that additional 

amount present in the container due to adsorption is less than the amount of gas that would be in 

the space occupied by the solid. For example, if the net adsorption goes to zero at certain 

pressure, it indicates that there is no advantage in usage of the adsorbent for natural gas storage 

above this pressure; Thus, it means, that above this pressure, storing the compressed gas in its 

bulk phase (without the adsorbent in the container) results in a larger storage capacity; while the 

maximum of the net adsorption indicates the maximal additional storage values.  

In practice, the methane and ethane are stored at higher pressure of 25 MPa (so called 

Compressed Natural Gas (CNG)) and the propane and butane at lower pressure of 1.5-2.0 MPa 

(so called Liquid Petroleum Gases (LPG)). In current work the adsorption of C1, C2 was studied up 

to 5 MPa, and it was up to 1 MPa for the C3 and C4 gases. The net adsorption data were analyzed 

together with the data on bulk gases compressed under identical conditions wich, allows us to 

estimate the total storage capacity, and gives us a possibility for rough estimation of the MIL 53 

role in storage capacity enhancement above critical pressure in the studied systems. The data are 

presented in Figures 5.32-5.34 and in Table 5.5. For the adsorbent/adsorbate systems, the MIL-

53(Al) loadings were fixed at ca. 25-35 vol% in order to disregard the heat release (the heat of the 

adsorption) influence on the initial experimental conditions [26].   

Figure 5.30 (a, b and c) shows the total storage capacity for methane under pressure up to 5 

MPa for three different temperatures. For the methane the maximum of net adsorption occurs at 

pressure close to 4 MPa and then it starts to decrease with pressure increasing. However, the 

maximum of the total storage capacity is observed at highest investigated pressure (~5 MPa), 

because of the high bulk density of stored methane. The same situation is observed for the ethane 

storage (Figure 5.31). The maximum net adsorption is observed at 2 MPa, but highest total storage 

capacity is at maximal investigated pressure. A bit different situation is observed for propane and 

butane (Figures 5.32 and 5.33). Since our experimental adsorption isotherms is limited by the 

critical pressure above which gas becomes liquid, we cannot be sure that the maximum value of 
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the net adsorption observed at highest values of the applied pressure is the real net adsorption 

maximum. Moreover, under investigated conditions the compression of butane and propane is 

negligible. Consequently, the total storage capacity of butane and propane under investigated 

conditions is almost equal to its net adsorptions.  

 

 

 

 
Fig. 5.30. Total storage capacity (black), net adsorption (red) and bulk gas compressed (blue) under identical 
conditions for the CH4 adsorption on MIL-53(Al) at 303, 323 and 353 K 
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Fig. 5.31. Total storage capacity (black), net adsorption (red) and bulk gas compressed (blue) under identical 
conditions for the C2H6 adsorption on MIL-53(Al) at 303, 323 and 353 K 
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Fig. 5.32. Total storage capacity (black), net adsorption (red) and bulk gas compressed (blue) under identical 
conditions for the C3H8 adsorption on MIL-53(Al) at 303, 323 and 353 K 
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Fig. 5.33 Total storage capacity (black), net adsorption (red) and bulk gas compressed (blue) under identical 
conditions for the C4H10 adsorption on MIL-53(Al) at 303, 323 and 353 K 
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 knowing that under critical pressures (for propane they are 1.07, 1.7 and 3.1 MPa, and 

for butane they are 0.28, 0.49 and 1 MPa at 303, 323 and 353 K, respectively) the 

density of the liquid gases is almost constant with pressure;  

 assuming that maximum of the obtained net adsorption (at pressures for the propane 

of 0.85, 1.28 and 2.3 MPa, and for the butane of 0.28, 0.4 and 0.71 MPa at 303, 323 

and 353 K, respectively) will be the same at critical pressure,  

we calculated the additional storage amount provided by the MIL-53(Al) to the liquid propane and 

butane. The results are also presented in Table 5.5. 

Thus, it can be concluded, that for the C1-C2 gases on the MIL-53(Al), the highest enhancement 

of 60-40% above simple gas compression is found at 4.9 and 3.7 MPa, respectively; and for the 

C3-C4 gases, the highest enhancement of the storage capacity due to the adsorption is of 27-20%.   

 

Table 5.5. Storage capacity of propane and butane under critical pressure. 

 
Pcrit 
MPa 

Density 
g/cm

3
 

Stored 
amount, mol 

nnet, 
mol 

Additional storage 
amount by nnet, % 

MIL-53(Al) 
loading, vol% 

Propane 
      

303 K 1,08 0,48 8,41 2,47 29,4 

35 323 K 1,71 0,45 7,79 2,12 27,2 

353 K 3,12 0,37 6,49 1,51 23,3 

Butane 
      

303 K 0,28 0,57 8,14 1,73 21,2 

25 323 K 0,49 0,54 7,79 1,68 21,5 

353 K 1,01 0,50 7,19 1,45 20,1 

 

Practical Benefits for Gas Storage 

On January 31, 2007, the European Commission proposed new standards for transport fuels 

to reduce full life cycle emissions by up to 10 percent between 2011 and 2020. The proposal aims 

to encourage the development of low-carbon fuels and biofuels, considering reductions in 

greenhouse gas emissions caused by the production, transport and use of the supplier’s fuels.  

A low-carbon fuel standard (LCFS) is a rule enacted to reduce carbon intensity in 

transportation fuels as compared to conventional petroleum fuels, such as gasoline and diesel. The 

main purpose of a low-carbon fuel standard is to decrease carbon dioxide emissions associated to 

fuel-powered vehicles considering the entire life cycle ("well to wheels"), in order to reduce the 

carbon footprint of transportation. 

A natural gas vehicle or NGV is an alternative fuel vehicle that uses the most common low-

carbon fuels, such a compressed natural gas (CNG) or liquefied natural gas (LNG) as a cleaner 

alternative to other fossil fuels. Natural gas vehicles should not be confused with vehicles powered 

by propane (LPG), which is a fuel with a fundamentally different composition. LPG, also known as 

autogas, still a petroleum based gas, is denser as it is a liquid at room temperature, and thus far 

cheaper tanks (consumer) and fuel compressors (provider), thus it requires far less compression 

(20% of CNG cost).  

http://en.wikipedia.org/wiki/European_Commission
http://en.wikipedia.org/wiki/Carbon_intensity
http://en.wikipedia.org/wiki/Petroleum_fuel
http://en.wikipedia.org/wiki/Gasoline
http://en.wikipedia.org/wiki/Diesel_fuel
http://en.wikipedia.org/wiki/Carbon_dioxide
http://en.wikipedia.org/wiki/Life_cycle_assessment
http://en.wikipedia.org/wiki/Carbon_footprint
http://en.wikipedia.org/wiki/Alternative_fuel_vehicle
http://en.wikipedia.org/wiki/Compressed_natural_gas
http://en.wikipedia.org/wiki/Liquefied_natural_gas
http://en.wikipedia.org/wiki/Fossil_fuel
http://en.wikipedia.org/wiki/Autogas
http://en.wikipedia.org/wiki/Autogas
http://en.wikipedia.org/wiki/Liquefied_petroleum_gas
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Despite its advantages, the use of natural gas vehicles faces several limitations, including fuel 

storage and infrastructure available for delivery and distribution at fueling stations. For example, 

CNG must be stored in high pressure cylinders (3000psi to 3600psi operation pressure), and LNG 

must be stored in cryogenic cylinders (-260F to -200F). These cylinders take up more space than 

gasoline or diesel tanks that can be molded in intricate shapes to store more fuel and use less on-

vehicle space. As with other alternative fuels, other barriers for widespread use of NGVs are 

natural gas distribution to and at fueling stations as well as the low number of CNG and LNG 

stations. 

In this connection the Adsorbed Natural Gas (ANG) storage technology has some promising 

advantages over existing gas storage methods, such as 

• Store a larger volume of natural gas in the same container, at the same pressure. 

• Store the same volume of natural gas in the container at a lower pressure. 

• Allows for using of different shapes of containers (not only cylinders) 

 
 

Fig. 5.34. Non Cylindrical ANG  and Cylindrical CNG, LNG, LPG tanks 

 

Despite that, the principles of NG adsorption have been around for the decades; however no 

one had succeeded to develop commercially viable technology until now. 

In this perspective, the accomplished research contributes to Adsorbed Natural Gas storage 

technology development. 

It should be also noted, that gas delivery is very important and it is different from storage 

capacity aspect which should be taken into consideration when speaking about the ANG. A gas 

delivery parameter can be estimated for the adsorbent by the desorption run. Experimental 

desorption run is shown in the Figures 5.35-5.36 for butane at 323 and 353 K and confirm the high 

gas delivery efficiency of the MIL-53(Al) (as compared to the storage capacity of this material). 
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Figure 5.34 Adsorption (blue rhombs) and desorption (red circled) runs for butane in MIL-53(Al) at 323 K and 
presented a) in a standard form amount adsorbed (mol/kg) versus pressure. b) in semi-logarithmic scale. 
 

 

Figure 5.35 Adsorption (blue rhombs) and desorption (red circled) runs for butane in MIL-53(Al) at 323 K and 

presented a) in a standard form amount adsorbed (mol/kg) versus pressure. b) in semi-logarithmic scale. 

 

 

5.4. CONCLUSION 

 

It is have been reported the experimental and simulated data on the adsorption equilibrium of 

C2-C4 light alkanes on the MIL-53(Al) over pressures range of ~0.01–5 MPa and temperatures of 

303–353 K. The obtained data are given in comparison with the data discussed for CH4 adsorption 

in Chapter 4. It has been confirmed that the adsorption of the light hydrocarbons on the MIL-53(Al) 

passed through more complex mechanism. Depending of the guest molecules, the MIL-53(Al) can 

switch between two structural transition (lp---np---lp forms) during the adsorption run for the C2-C4 

gases. It was conclude that the effects founded, namely size (the alkyl chain length) and 

temperature influence on breathing phenomena of the MIL-53 (Al) are in agreement with a generic 

thermodynamic framework concept of the guest-induced structural transitions in flexible 

nanoporous materials according to the osmotic pseudo-ensemble approach and with a view that 
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the double transition is dictated solely by the affinity for the lp form with a proposed critical 

(threshold) adsorption enthalpy of ∼20 kJ/mol.  

For useful descriptions of the adsorption equilibrium data at various temperatures, the 

temperature-dependent form of the Sips and Toth equations were used. It was shown, that the 

adsorption capacity decrease with the temperature and decrease with increase of the alkane chain. 

The isosteric heat of adsorption was estimated from statistical mechanical considerations, by 

applying the Sips and Toth models and integrated form of the Clapeyron equation. From the 

obtained data analysis, it was shown the trend for the Qst values, which is consistent with a view 

that at the start of fill cycle there is initial layer of adsorbed gas on the adsorbent which produces 

almost equal and the highest heat of adsorption of ca. 25-30 kJ/mol for the C2-C4 gases on the 

MIL-53 (Al), while these values are slightly less than 20 kJ/mol for the methane adsorption. 

Three reference states, the net, excess and absolute adsorption, were used to analyses the 

adsorption process of C1-C4 gases at three different temperatures. Without intending to add to the 

confusion, we believe that net adsorption is best suited by defining adsorption in micropores as the 

difference between the total amount of gas present in the container minus the amount that would 

be present if the adsorbent were completely absent.  

The net adsorption parameters were analyzed together with data on bulk gases compressed 

under identical conditions, allowing estimation of the total storage capacity, and like that giving us a 

possibility for rough estimation of the MIL-53(Al) role in storage capacity enhancement in the 

studied systems. Gas delivery efficiency for the ANG method using MIL-53(Al) is also discussed, 

based on analysis of the experimental desorption runs for the studied gases. In this perspective, 

the research accomplished contributes to the Adsorbed Natural Gas storage technology 

development. 
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6. CONCLUSIONS 

 

By analogy with the structure of this thesis, its achievements and conclusions can be divided 

in three major sections:  

 Treatability studies of the MIL-53(Al) using chemical-physical techniques;  

 Treatability studies of the thermodynamics of C1-C4, adsorption using gravimetric analysis; 

Theoretical calculations of the gas storage on MIL-53(Al) 

 Molecular simulation of the adsorption using the Grand Canonical Monte Carlo (GCMC) 

method. Theoretical calculations of the gas storage on MIL-53(Al) 

 

6.1 METAL ORGANIC FRAMEWORK MIL-53(Al) CHARACTERISTICS  

 

The detailed characterization of MIL-53(Al) material using advanced physical-chemicals 

methods constituted the starting point of the research. The characterization of MIL-53(Al) was 

performed in three different directions, namely 

 Structure identification using the elemental analysis, the solid state 
13

C-NMR and the 

Fourier-transform infrared spectroscopy (FT-IR). 

 Chemical-physical properties identification by the mercury porosimetry, the low 

temperature N2 adsorption with density functional theory, and the thermogravimetric 

analysis 

 Unit cell parameters Identification by the X-ray powder diffraction. 

Identification of MIL-53 (Al) structure.  

The elemental analysis was done to ascertain the structure and purity of the adsorbent 

material. The results are presented in table 2.1. By analysis of the results of the solid state 
13

C-

NMR and the Fourier-transform infrared spectroscopy (FT-IR) we have identifed the MIL-53(Al) 

structure.  

Identification of the chemical-physical properties of MIL-53 (Al).  

Mercury porosimetry was done to obtain the particle size distribution. The value was estimated 

using the conventional method of Mayer and Stowe [1] applied to low-pressure (0.2–10 MPa) 

mercury intrusion data. The particle size distribution is well fitted by a log-normal distribution with 

mean diameter Dp = 30.0 μm and standard deviation σDp = 1:7 μm; our estimate of Dp is in good 

agreement with the mean value of 32 μm value reported by the manufacturer [9]. By low (77 K) 

temperature N2 adsorption together with density functional theory the values of, total pore volume, 

volume of micropores, surface area, surface area of micropores and diameter of pores was 

estimated. These values are presented in Table 6.1.  

 

Table 6.1 Results of low temperature N2 adsorption 

  SBET, m
2
/g Smicro, m

2
/g Vtotal, cm

3
/g Vmicro, cm

3
/g Dpores, nm 

Experimental 830 610 0,58 0,33 0,85-1,3 
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According to the TGA analysis performed, the MIL-53(Al) structure is stable up to ca. 773 K, 

after that it starts to collapse; the profile is in full agreement with similar TGA observations known 

from the literature [11]. 

Identification of the unit cell parameters of MIL-53(Al)  

The powder X-ray diffraction of the hydrated MIL-53(Al) sample have been done to establish 

unit cell parameters of MIL-53(Al) in order to use obtained data in Grand Canonical Monte Carlo 

simulation. Also by X-ray powder diffraction the value of the specific volume of the MIL-53(Al) unit 

cell (V = 1.033 cm
3
/g) was obtained and used in our calculations. 

Overall assessment of the data obtained shows that they are in good agreement with the 

literature findings known up to date for the MIL-53(Al) materials characterization.  

 

6.2 THERMODYNAMICS OF GAS ADSORPTION ON MIL-53(Al). EXPERIMENTS 

AND MODELING 

 

Adsorption of C1-C4 n-alkanes on MIL-53(Al) was done using high-pressure magnetic-

suspension balance measurements with automated online data acquisition of temperature, 

pressure, and sample weight in a wide range of temperature 303-353 K and pressure 0-5 MPa. 

The maximum adsorption capacity of the C1-C4 n-alkanes on MIL-53(Al) was calculated using 

the Sips and Toth isotherms models. The results are presented in Table 6.2. 

 

Table 6.2 Maximal adsorption capacity obtained from the data fitting for the C1-C4 experimental adsorption by 
the Sips and Toth isotherms models 

 

Parameter 
SIPS TOTH SIPS TOTH SIPS TOTH SIPS TOTH 

CH
4
 C

2
H

6
 C

3
H

8
 C

4
H

10
 

T
0
 (K) 303 K 

n
s
 (mol/kg) 8.3 10.1 7.5 9.5 4.3 5.2 3.9 4.3 

T
0
 (K) 323 K 

n
s
 (mol/kg) 7.9 9.4 7.3 9.2 4.1 5.0 3.8 4.2 

T
0
 (K) 353 K 

n
s
 (mol/kg) 7.6 8.9 7.0 8.8 3.9 4.8 3.6 4.0 

 

It was also shown that the adsorption of the C2-C4 n-alkanes has a complex mechanism 

involving MIL-53(Al) structural transformation during the adsorption. The behavior of the structural 

transformation, so called “breathing” of MIL-53(Al), was analyzed and a hypothesis of the effect 

temperature and chain size effects on “breathing” phenomena in MIL-53(Al) upon C1-C4 adsorption 

was elaborated the results are presented in Scheme 6.1 and earlier in Scheme 5.1.  
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Scheme 6.1. Diagram for the hypothesis of the temperature and chain size effects on “breathing” phenomena 
in MIL-53 (Al) upon C1-C4 adsorption 

 

Therefore, upon the adsorption of the ethane, propane and butane, the MIL-53(Al) can switch 

between two structural transition (lp---np---lp forms) during the adsorption run. It was conclude, that 

founded effects, namely size (the alkyl chain length) and temperature influence on breathing 

phenomena of the MIL-53 (Al) are in agreement with a generic thermodynamic framework concept 

of the guest-induced structural transitions in flexible nanoporous materials according to the osmotic 

pseudo-ensemble approach and with a view that the double transition is dictated solely by the 

affinity for the lp form with a proposed critical (threshold) adsorption enthalpy of ∼20 kJ/mol.  

Overall, our findings can be summarized as following: 

 There is size effect on temperature dependence of the breathing phenomena. With 

temperature increase, the breathing effect becomes to be more evident for the longer 

alkanes;  

 There is temperature effect on the extent of breathing phenomena. Strongly depending 

on temperature, with temperature increase effect becomes to be already evident; 

 There is size effect on the extent of breathing phenomena. The position of the step is a 

function of pressure. With increase of the alkyl chain length chain the adsorption sub-

step appears at a much lower relative pressure. This finding is in full agreement with the 
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literature findings known up to date on predicted pressures for the lp----np and np-----lp 

transitions for MIL-53(Cr) [2] 

In this perspective, this research contributes to a broader interpretation of the generic 

thermodynamic framework concept, namely to understanding of guest-induced structural 

transitions in flexible nanoporous materials such as MOFs. 

Moreover, in this part of the work, the isosteric heat of the adsorption for the C1-C4 n-alkanes in 

MIL-53(Al) was evaluated using four different approaches, such as the GCMC simulation method, 

integrated form of Clapeyron equation and Sips, Toth isotherms models. Results are compared in 

Table 6.3.  

In general, the values calculated for heat of the adsorption for all the gases studied are in a 

range of ca. 20-32 kJ/mol. In principal, they are in good agreement whatever the calculation 

methods, and just slightly vary from each other (by 2 kJ/mol or ~10%) for methane, ethane and 

butane. For the propane they vary by 5-6 kJ/mol (i.e. ~20%) between the experimental and 

simulation values; and they are in a good agreement for the experimental and values from the Sips 

model.  

 

Table 6.3. Isosteric Heat of adsorption determined by GCMC simulation method, integrated form of Clapeyron 
equation and Sips, Toth isotherms models. 

 

Qst kJ/mol CH4 C2H6 C3H8 C4H10 

 
303 K 

SIPS 19,7 24,3 24,8 26.5 

TOTH 19,9 25,9 53,5 28.6 

Simulation 16,3 25,5 32,2 - 

 
323 K 

SIPS 19,4 24,3 25,0 26.4 

TOTH 19,5 26,3 53,7 28,2 

Simulation 16,0 25,2 31,4 - 

 
353 K 

SIPS 19,6 24,8 25,0 26,4 

TOTH 19,6 27,0 54,0 28,3 

Simulation 15,9 24,9 31,6 - 

Temperature dependent 

Clapeyron 16,2 25,8 26,8 28,7 

 

For the detailed analysis of the experimental data, adsorption was calculated using three 

different reference states; the net adsorption (nnet); the excess adsorption (nex) and the absolute 

adsorption (n).  

The net adsorption together with data on bulk gases compressed under identical conditions 

were used to estimate the storage capacity of MIL-53(Al). It was concluded, that for the C1-C2 

gases on MIL-53(Al), the highest enhancement of 60-40% above simple gas compression is found 

at 4.9 and 3.7 MPa, respectively; and for the liquid C3-C4, the highest enhancement of the storage 

capacity due to the adsorption is of 27-20%. 

Gas delivery efficiency for the ANG method using MIL-53(Al) was also discussed, based on 

analysis of the experimental desorption runs for the studied gases. In this perspective, the 
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accomplished research contributes to the Adsorbed Natural Gas storage technology development.  

 

6.3 MOLECULAR SIMULATION OF THE GAS STORAGE ON MIL-53(Al)  

 

The molecular simulation work was done using the Grand Canonical Monte Carlo simulation 

model. The parameterization of solid–fluid dispersive interactions in MIL-53(Al) was based on the 

TraPPE-UA force field. The specific pore volume of the unit cell of MIL-53(Al) of (Vp = 0.56 cm
3
/g) 

was estimated by molecular simulation of the capillary condensation of methane in the pore 

structure of MIL-53lp(Al) at 0.8Tc (152.5 K) and chemical potential μ/kB of −1623 K (~1.37 MPa). 

This value was used for the followed calculations of the total amount adsorbed. The molecular 

simulation was also used to calculate the adsorption isotherms of studied gases in MIL-53(Al) for 

three different reference states, and the values of the isosteric heat of the adsorption (Table 6.3). 

The simulation results show a very good agreement with our experimental data.   

Moreover, the simulation was used to calculate the DOE target of 150 (v/v) at loading pressure 

PH = 3.5 MPa, delivery pressure PL = 0.136 MPa and 298 K for the methane storage on the MIL-

53(Al). Calculations were done for two possible modes of the MIL-53(Al) packaging inside the 

storage tank as a monolith or as a close-packed bed. The theoretical net storage capacity provided 

by MIL-53lp(Al) was estimated as 114.0 (v/v)net for a monolith and 93.1 (v/v)net for a close-packed 

bed. It was concluded, that for a monolith block to achieve the goal of 150 (v/v)net storage capacity 

by methane in MIL-53(Al), the charge pressure must be either increased to PH ~10.9 MPa, or the 

monolith must operate isothermally at ~253 K. For a delivery cycle at 298 K, insertion of PL = 0.136 

MPa and PH = 3.5 MPa, the isosteric heat value (Qst)opt = 18.8 kJ/mol was also calculated, which 

happens to be in good agreement with the values shown in Table 6.3.  

Furthermore, methane condensation in MIL-53l(Al) at 152.5 K was also simulated, and gave the 

storage capacity values of 279 (v/v) for a monolithic block and of 213 (v/v) for a close packed bed. 

These values are well above the DOE target of 150 (v/v)net, thus suggesting that MIL-53(Al) could 

be an acceptable methane adsorptive storage medium if the system is operated at a suitably low 

temperature. 

 

6.4 SUGGESTIONS FOR FUTURE RESEARCH 

 

The adsorption of short linear alkanes has been explored in the highly flexible MIL-53(Al) 

porous metal–organic framework by means of molecular simulations based on Grand Canonical 

Monte Carlo and by gravimetric experiments. The unusual shape of the adsorption isotherms with 

the existence of steps has been successfully evaluated by creating a (narrow pore, large pore) 

phase mixture domain, the composition of which varies with pressure, size of the alkane chain and 

temperature.  

A further step consisted of combining our computational approach and gravimetry studies with 

several experimental tools including microcalorimetry and in situ X-ray diffraction, to fully 
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characterize the adsorption behavior of the rigid MIL-53(Al), i.e. the preferential arrangement of 

each type of alkane inside the pores and the resulting interaction energy. Finally, relationships 

should be established between the adsorption enthalpies and alkyl chain length that can be further 

utilized to predict the energetics of the adsorption process for longer alkane chains. 

Adsorption Microcalorimetry.  

The adsorption of the various alkanes should be carried out at 303 K using a manometric 

adsorption apparatus coupled with a Tian-Calvet type microcalorimeter. This experimental device 

measures the isotherm and the enthalpy of adsorption simultaneously using a point by point 

introduction of gas to the sample. 

Energetics Parameters Estimation  

The relationships should be evaluated between the adsorption enthalpies and carbon number of 

the alkanes that can further provide an estimation of the energetics of the adsorption process for 

longer alkane chains.  

In situ X-ray Diffraction.  

In situ synchrotron X-ray diffraction experiments should be performed using advanced experimental 

setup which allows the XR powder data collection under controlled gas pressure to estimate 

quantitative parameters for the breathing phenomena upon C2-C4 adsorption. 

Alkanes Mixture Adsorption  

While the adsorption of alkane mixtures is still under investigation, finally this type of studies will be 

extremely useful for the components of natural gas separation application.  
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The methane adsorption isotherms were measured both experimentally and theoretically. For 

the experimental work were used the standard static gravimetric technique. The adsorption 

isotherms were measured at 303.15 K, 323.15 K, and 353.15 K, over a pressure range of ~0.01–

5.0 MPa. For the theoretical work was used Grand Canonical Monte Carlo simulation method. The 

experimental and simulated adsorption (large pore form only) equilibrium data are listed in Tables 

A 1-12. Each data point is reported as net (nnet), excess (nex), and total adsorption (n); the 

reference state corrections for calculating nex and n are vp = 0:564 cm
3
/g and vs = 0:470 cm

3
/g. 

 

Table A.1: Experimental and Simulated methane adsorption equilibrium data at 303.15 K. The reference state 

corrections are vp = 0:564 cm
3
/g and vs = 0:470 cm

3
/g. 

 

Experimental data Simulated data 

P (MPa) 
nnet 

(mol/kg) 
nex 

(mol/kg) 
n (mol/kg) P (MPa) nnet (mol/kg) 

nex 
(mol/kg) 

n (mol/kg) 

0.00000 0.00000 0.00000 0.00000 0.00200 0.01227 0.01183 0.01146 

0.00021 0.01759 0.01754 0.01750 0.01497 0.09167 0.08835 0.08557 

0.01001 0.08578 0.08354 0.08167 0.04991 0.29482 0.28366 0.27436 

0.03996 0.27497 0.26602 0.25856 0.10002 0.56235 0.53987 0.52114 

0.07074 0.45839 0.44255 0.42934 0.15068 0.80964 0.77567 0.74735 

0.09432 0.59753 0.57640 0.55879 0.18902 0.98575 0.94304 0.90744 

0.18264 1.04306 1.00207 0.96792 0.30161 1.43470 1.36622 1.30914 

0.40220 1.84266 1.75208 1.67660 0.50464 2.09284 1.97758 1.88153 

0.79430 2.73476 2.55472 2.40469 0.75656 2.71237 2.53869 2.39396 

1.50666 3.73329 3.38778 3.09989 1.01255 3.20765 2.97430 2.77983 

3.02667 4.94690 4.23552 3.64276 1.26754 3.61489 3.32185 3.07764 

4.01606 5.46046 4.50151 3.70246 1.51924 3.91951 3.56735 3.27388 

4.68406 5.78804 4.65728 3.71507 2.03446 4.50300 4.02933 3.63460 

1.06106 3.35562 3.11406 2.91277 2.54794 4.93512 4.33981 3.84369 

1.72928 4.15817 3.76018 3.42854 2.79933 5.08958 4.43453 3.88864 

2.46220 4.75876 4.18530 3.70746 3.05499 5.28350 4.56761 3.97101 
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Table A.2: Experimental and Simulated methane adsorption equilibrium data at 323.15 K. The reference state 

corrections are vp = 0:564 cm
3
/g and vs = 0:470 cm

3
/g. 

 

Experimental data Simulated data 

P (MPa) 
nnet 

(mol/kg) 
nex 

(mol/kg) 
n (mol/kg) P (MPa) nnet (mol/kg) 

nex 
(mol/kg) 

n (mol/kg) 

0.00000 0.00331 0.00331 0.00331 0.00058 0.00248 0.00236 0.00226 

0.00019 0.00015 0.00011 0.00008 0.00269 0.01153 0.01097 0.01050 

0.00991 0.04617 0.04409 0.04236 0.00582 0.02496 0.02375 0.02274 

0.01991 0.08623 0.08205 0.07857 0.01261 0.05435 0.05173 0.04954 

0.04033 0.16909 0.16062 0.15357 0.02738 0.11555 0.10984 0.10508 

0.07043 0.29193 0.27714 0.26481 0.05958 0.24841 0.23595 0.22556 

0.09610 0.39367 0.37348 0.35666 0.12993 0.51289 0.48558 0.46282 

0.11525 0.47805 0.45381 0.43362 0.28399 1.01436 0.95427 0.90420 

0.18069 0.70356 0.66555 0.63389 0.62213 1.83816 1.70543 1.59480 

0.33812 1.17488 1.10360 1.04421 0.99700 2.51278 2.29880 2.12047 

0.50072 1.56927 1.46349 1.37536 1.36595 3.00806 2.71363 2.46827 

0.79690 2.12580 1.95688 1.81613 1.87212 3.53938 3.13400 2.79616 

1.38198 2.91018 2.61488 2.36883 2.56678 4.11601 3.55749 3.09205 

1.94577 3.43119 3.01263 2.66387 3.00591 4.39951 3.74379 3.19732 

2.42413 3.80871 3.28380 2.84642 3.52049 4.72215 3.95216 3.31048 

3.46965 4.41203 3.65169 3.01813 4.12352 5.01063 4.10633 3.35271 

4.11000 4.72335 3.81716 3.06208 4.83029 5.33070 4.26847 3.38324 

4.99567 5.07424 3.95986 3.03129 5.22806 5.50300 4.35168 3.39221 

0.00000 0.00000 0.00000 0.00000 5.65871 5.64046 4.39253 3.35255 

0.00012 0.00039 0.00037 0.00035     

2.99207 4.05821 3.40651 2.86348     

1.01872 2.44303 2.22642 2.04592     

0.03316 0.21056 0.20360 0.19780     
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Table A.3: Experimental and Simulated methane adsorption equilibrium data at 353.15 K. The reference state 

corrections are vp = 0:564 cm
3
/g and vs = 0:470 cm

3
/g.  

 

Experimental data Simulated data 

P (MPa) 
nnet 

(mol/kg) 
nex 

(mol/kg) 
n (mol/kg) P (MPa) nnet (mol/kg) 

nex 
(mol/kg) 

n (mol/kg) 

0.00000 0.00000 0.00000 0.00000 0.00401 0.01048 0.00971 0.00906 

0.02016 0.07799 0.07412 0.07089 0.01620 0.04362 0.04052 0.03793 

0.04048 0.14095 0.13317 0.12669 0.04872 0.12920 0.11987 0.11210 

0.07066 0.22211 0.20853 0.19721 0.09674 0.25215 0.23362 0.21817 

0.09599 0.29373 0.27527 0.25990 0.14448 0.36892 0.34120 0.31810 

0.11975 0.36162 0.33860 0.31942 0.19270 0.48121 0.44420 0.41336 

0.33195 0.83149 0.76753 0.71424 0.28835 0.69020 0.63472 0.58848 

0.50960 1.15717 1.05884 0.97690 0.48039 1.05869 0.96600 0.88875 

0.86149 1.68412 1.51737 1.37842 0.72276 1.45423 1.31439 1.19785 

0.00846 0.00600 0.00438 0.00303 0.96431 1.79166 1.60468 1.44885 

3.07568 3.21455 2.60844 2.10340 1.20799 2.07911 1.84446 1.64890 

1.91568 2.50950 2.13550 1.82387 1.45364 2.33516 2.05234 1.81665 

4.11340 3.76177 2.94468 2.26384 1.94212 2.76128 2.38244 2.06672 

4.90949 4.07676 3.09619 2.27912 2.43548 3.10571 2.62960 2.23281 

2.49706 2.98585 2.49603 2.08789 2.92480 3.41445 2.84162 2.36424 

1.11532 1.89893 1.68264 1.50242 3.42237 3.68628 3.01491 2.45540 

0.70332 1.40037 1.26446 1.15121 3.92438 3.92380 3.15281 2.51029 

0.21068 0.58511 0.54455 0.51075 4.42253 4.12750 3.25750 2.53247 

0.10089 0.34659 0.32718 0.31101 4.92655 4.32572 3.35539 2.54674 

0.08243 0.30204 0.28622 0.27303 5.42471 4.48223 3.41260 2.52120 

0.06065 0.25439 0.24273 0.23301 5.92147 4.67976 3.51098 2.53695 

0.02039 0.15370 0.14978 0.14652     

0.01007 0.12580 0.12386 0.12225     

0.00426 0.10622 0.10540 0.10472     

0.00120 0.09538 0.09515 0.09496     
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 Table A.4: Experimental and Simulated ethane adsorption equilibrium data at 303.15 K. The reference state 

corrections are vp = 0:564 cm
3
/g and vs = 0:470 cm

3
/g. 

 

Experimental data Simulated data 

P (MPa) 
nnet 

(mol/kg) 
nex 

(mol/kg) 
n (mol/kg) P (MPa) nnet (mol/kg) 

nex 
(mol/kg) 

n (mol/kg) 

0.00028 0.00023 0.00017 0.00012 3.54946 5.43572 4.44261 3.61497 

0.00947 0.63140 0.62928 0.62751 2.96534 5.33636 4.52074 3.84102 

0.04403 1.87908 1.86919 1.86095 2.47856 5.15822 4.48766 3.92882 

0.09524 2.53744 2.51598 2.49810 2.07270 5.01098 4.45908 3.99914 

0.40023 3.67651 3.58430 3.50748 1.45161 4.76059 4.38554 4.07299 

0.89702 4.39622 4.18111 4.00187 1.01863 4.46215 4.20620 3.99289 

1.46606 4.86554 4.49557 4.18728 0.60098 4.08769 3.94222 3.82099 

2.20948 5.34375 4.74072 4.23825 0.25188 3.37360 3.31565 3.26736 

2.98343 5.82108 4.91807 4.16564 0.10687 2.67547 2.65176 2.63200 

3.48518 6.17222 5.02060 4.06101 0.01996 1.09243 1.08813 1.08455 

1.19303 4.77985 4.48628 4.24167 0.00879 0.54386 0.54196 0.54037 

0.68634 4.29245 4.13069 3.99590 0.00391 0.25081 0.24995 0.24922 

0.23617 3.42371 3.36995 3.32516 0.00177 0.11387 0.11347 0.11313 

0.02475 1.63272 1.62718 1.62255     

0.00867 0.85214 0.85019 0.84858     

0.00380 0.10355 0.10270 0.10199         
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 Table A.5: Experimental and Simulated ethane adsorption equilibrium data at 323.15 K. The reference state 

corrections are vp = 0:564 cm
3
/g and vs = 0:470 cm

3
/g. 

 

Experimental data Simulated data 

P (MPa) 
nnet 

(mol/kg) 
nex 

(mol/kg) 
n (mol/kg) P (MPa) nnet (mol/kg) 

nex 
(mol/kg) 

n (mol/kg) 

0.00000 0.00000 0.00000 0.00000 4.07797 4.98918 3.94224 3.06976 

0.00021 0.02172 0.02167 0.02164 3.43965 4.90337 4.03555 3.31232 

0.01075 0.44185 0.43959 0.43771 2.90291 4.76008 4.03983 3.43959 

0.03686 1.22323 1.21548 1.20902 2.45133 4.61935 4.02084 3.52206 

0.07032 1.76863 1.75380 1.74145 1.75100 4.38905 3.97423 3.62853 

0.09732 2.02741 2.00686 1.98974 1.25362 4.11910 3.83017 3.58938 

0.33071 2.99088 2.92006 2.86105 0.76270 3.74498 3.57546 3.43419 

0.69825 3.56547 3.41246 3.28496 0.33701 3.11635 3.04490 2.98536 

1.21640 4.04875 3.77290 3.54305 0.15106 2.43247 2.40140 2.37552 

2.07292 4.54866 4.04752 3.62994 0.06869 1.69533 1.68140 1.66980 

2.75987 4.87099 4.16265 3.57242 0.03169 1.00810 1.00166 0.99629 

3.73304 5.28129 4.21733 3.33078 0.01483 0.52301 0.51994 0.51738 

4.33428 5.56898 4.24026 3.13311 0.00704 0.25629 0.25478 0.25352 

3.30686 5.15231 4.25708 3.51113     

1.61583 4.38728 4.00986 3.69538     

0.20362 2.71321 2.66994 2.63389     

0.05436 1.69214 1.68069 1.67115     

0.02542 1.10689 1.10155 1.09710     

0.00147 0.14851 0.14820 0.14795     
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Table A.6: Experimental and Simulated ethane adsorption equilibrium data at 353.15 K. The reference state 

corrections are vp = 0:564 cm
3
/g and vs = 0:470 cm

3
/g. 

 

Experimental data Simulated data 

P (MPa) 
nnet 

(mol/kg) 
nex 

(mol/kg) 
n (mol/kg) P (MPa) nnet (mol/kg) 

nex 
(mol/kg) 

n (mol/kg) 

0.00000 0.00000 0.00000 0.00000 4.55894 4.41547 3.39087 2.53699 

0.00024 0.00306 0.00301 0.00297 3.91007 4.30821 3.43979 2.71608 

0.01078 0.17574 0.17366 0.17190 3.35493 4.19649 3.45984 2.84594 

0.03832 0.55126 0.54389 0.53761 3.06103 4.14244 3.47478 2.91838 

0.07147 0.91133 0.89755 0.88581 2.47295 3.96533 3.43396 2.99114 

0.09493 1.15913 1.14083 1.12523 1.99946 3.82186 3.39828 3.04528 

0.43197 2.51296 2.42835 2.35623 1.56982 3.64750 3.31996 3.04700 

0.81328 2.99395 2.83190 2.69379 1.00021 3.29998 3.09658 2.92708 

1.53429 3.52999 3.21329 2.94336 0.74212 3.08220 2.93355 2.80966 

2.07596 3.81936 3.37824 3.00227 0.55153 2.86082 2.75181 2.66097 

2.52082 4.00451 3.45581 2.98814 0.35445 2.48635 2.41749 2.36010 

3.45898 4.35467 3.55825 2.87946 0.17104 1.83662 1.80406 1.77692 

4.50865 4.67047 3.55897 2.61162 0.08338 1.18766 1.17194 1.15884 

1.22899 3.37543 3.12543 2.91235 0.04107 0.69073 0.68299 0.67654 

0.24316 2.11848 2.07127 2.03104 0.02044 0.36854 0.36465 0.36140 

0.05210 0.94173 0.93170 0.92315 0.01028 0.18926 0.18726 0.18559 

0.14788 1.62594 1.59743 1.57312     

0.03173 0.61171 0.60563 0.60044     
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 Table A.7: Experimental and Simulated propane adsorption equilibrium data at 303.15 K. The reference state 

corrections are vp = 0:564 cm
3
/g and vs = 0:470 cm

3
/g. 

 

Experimental data Simulated data 

P (MPa) 
nnet 

(mol/kg) 
nex 

(mol/kg) 
n (mol/kg) P (MPa) nnet (mol/kg) 

nex 
(mol/kg) 

n (mol/kg) 

0.00000 0.00000 0.00000 0.00000 0.00126 0.75550 0.75522 0.75499 

0.00020 0.01786 0.01781 0.01778 0.00175 0.97961 0.97923 0.97890 

0.04109 2.51884 2.50960 2.50189 0.00244 1.23865 1.23811 1.23766 

0.09604 2.89275 2.87095 2.85278 0.00340 1.51251 1.51176 1.51113 

0.29761 3.02443 2.95458 2.89638 0.00474 1.80367 1.80262 1.80174 

0.49945 3.34151 3.22006 3.11887 0.00661 2.04256 2.04108 2.03985 

0.71021 3.66979 3.48944 3.33917 0.00923 2.26617 2.26410 2.26238 

0.84819 3.93235 3.71015 3.52500 0.01289 2.43573 2.43282 2.43041 

0.40763 3.23048 3.13299 3.05175 0.01801 2.58126 2.57718 2.57378 

0.20204 2.83320 2.78654 2.74767 0.02517 2.73262 2.72689 2.72211 

0.07202 2.25203 2.23574 2.22216 0.03519 2.84177 2.83371 2.82699 

0.02971 1.95406 1.94738 1.94181 0.04923 2.92963 2.91828 2.90882 

0.01687 1.79788 1.79410 1.79094 0.06889 3.04942 3.03342 3.02008 

0.01024 1.66036 1.65806 1.65615 0.09644 3.14038 3.11780 3.09899 

0.13411 2.50403 2.47339 2.44786 0.13506 3.21675 3.18487 3.15830 

0.59903 3.50923 3.36059 3.23673 0.18924 3.28162 3.23656 3.19901 

0.00149 0.96817 0.96784 0.96756 0.26525 3.32984 3.26610 3.21298 

0.00000 0.00000 0.00000 0.00000 0.37195 3.39969 3.30943 3.23422 

    0.52178 3.48824 3.36033 3.25373 

    0.73229 3.57542 3.39397 3.24276 

    1.02813 3.63789 3.38026 3.16557 
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Table A.8: Experimental and Simulated propane adsorption equilibrium data at 323.15 K. The reference state 

corrections are vp = 0:564 cm
3
/g and vs = 0:470 cm

3
/g. 

 

Experimental data Simulated data 

P (MPa) 
nnet 

(mol/kg) 
nex 

(mol/kg) 
n (mol/kg) P (MPa) nnet (mol/kg) 

nex 
(mol/kg) 

n (mol/kg) 

0.00010 0.00008 0.00006 0.00005 0.00099 0.31196 0.31176 0.31158 

0.05373 2.34345 2.33210 2.32264 0.00135 0.41733 0.41705 0.41682 

0.09359 2.52136 2.50149 2.48493 0.00184 0.55390 0.55352 0.55320 

0.30191 3.02280 2.95694 2.90206 0.00215 0.63614 0.63570 0.63532 

0.35591 3.17029 3.09199 3.02675 0.00468 1.15933 1.15835 1.15754 

0.65476 3.58081 3.43047 3.30520 0.00640 1.42260 1.42127 1.42015 

1.27610 4.24072 3.91241 3.63884 0.00874 1.66159 1.65976 1.65824 

0.88348 3.83469 3.62416 3.44873 0.01196 1.87935 1.87684 1.87475 

0.46494 3.39076 3.28696 3.20047 0.01636 2.11532 2.11187 2.10900 

0.20040 2.89911 2.85598 2.82005 0.02240 2.30787 2.30313 2.29918 

0.03494 2.31076 2.30339 2.29726 0.03069 2.46353 2.45700 2.45156 

0.01214 1.97348 1.97093 1.96880 0.04207 2.58967 2.58067 2.57318 

0.00010 0.00009 0.00007 0.00005 0.05770 2.73005 2.71764 2.70731 

0.49344 3.32566 3.21504 3.12287 0.07918 2.82907 2.81194 2.79767 

    0.10872 2.92963 2.90597 2.88624 

    0.14936 3.01510 2.98235 2.95507 

    0.20530 3.06881 3.02346 2.98567 

    0.28236 3.15222 3.08934 3.03695 

    0.38856 3.23202 3.14476 3.07204 

    0.53499 3.29929 3.17806 3.07703 

    0.73703 3.36090 3.19231 3.05180 

    1.19300 3.43573 3.15868 2.92780 
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Table A.9: Experimental and Simulated propane adsorption equilibrium data at 353.15 K. The reference state 

corrections are vp = 0:564 cm
3
/g and vs = 0:470 cm

3
/g. 

 

Experimental data Simulated data 

P (MPa) 
nnet 

(mol/kg) 
nex 

(mol/kg) 
n (mol/kg) P (MPa) nnet (mol/kg) 

nex 
(mol/kg) 

n (mol/kg) 

0.00022 0.00018 0.00014 0.00010 0.00623 0.69947 0.69830 0.69732 

0.03526 1.70246 1.69566 1.69000 0.00829 0.87318 0.87161 0.87031 

0.05367 1.91252 1.90216 1.89352 0.01103 1.07652 1.07444 1.07270 

0.00009 0.00008 0.00006 0.00005 0.01469 1.29543 1.29265 1.29033 

0.03118 1.74292 1.73692 1.73191 0.01958 1.50990 1.50618 1.50307 

0.05372 1.97113 1.96076 1.95212 0.02611 1.72267 1.71768 1.71352 

0.09516 2.15534 2.13690 2.12154 0.03484 1.92620 1.91951 1.91394 

0.37367 2.68133 2.60694 2.54496 0.04653 2.11858 2.10960 2.10211 

0.50157 2.80591 2.70474 2.62044 0.06217 2.28505 2.27297 2.26290 

0.81218 3.05713 2.88759 2.74632 0.08313 2.42577 2.40951 2.39595 

1.41075 3.44813 3.13063 2.86607 0.11122 2.55466 2.53273 2.51445 

2.32487 4.04016 3.42771 2.91738 0.14890 2.67376 2.64416 2.61949 

1.59706 3.57869 3.20965 2.90215 0.19947 2.77776 2.73775 2.70442 

0.98915 3.21849 3.00760 2.83187 0.26739 2.85515 2.80103 2.75592 

0.26337 2.60156 2.54970 2.50649 0.35867 2.95795 2.88462 2.82351 

0.02359 1.74906 1.74452 1.74074 0.48142 3.02866 2.92918 2.84629 

0.01127 1.37181 1.36964 1.36784 0.64660 3.10365 2.96855 2.85595 

0.00193 0.38842 0.38805 0.38774 0.86901 3.17624 2.99251 2.83940 

0.00010 0.00009 0.00007 0.00005 1.16868 3.20611 2.95593 2.74744 

    1.57269 3.30067 2.95959 2.67535 

    2.11774 3.34889 2.88331 2.49530 
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Table A.10: Experimental and Simulated butane adsorption equilibrium data at 303.15 K. The reference state 

corrections are vp = 0:564 cm
3
/g and vs = 0:470 cm

3
/g. 

Experimental data Simulated data 

P (MPa) 
nnet 

(mol/kg) 
nex 

(mol/kg) 
n (mol/kg) P (MPa) nnet (mol/kg) 

nex 
(mol/kg) 

n (mol/kg) 

0.00001 0.00001 0.00001 0.00001     

0.00026 0.97840 0.97834 0.97829     

0.00076 1.45544 1.45527 1.45513     

0.00167 1.74089 1.74052 1.74021     

0.00242 1.88995 1.88940 1.88895     

0.00000 0.00000 0.00000 0.00000     

0.00101 1.12723 1.12701 1.12682     

0.00142 1.53510 1.53478 1.53452     

0.00299 1.79805 1.79738 1.79682     

0.00396 1.87449 1.87361 1.87287     

0.00607 1.96249 1.96113 1.96000     

0.00839 2.02958 2.02770 2.02613     

0.01120 2.10377 2.10126 2.09916     

0.01605 2.17418 2.17057 2.16757     

0.02095 2.23461 2.22989 2.22597     

0.00000 0.00000 0.00000 0.00000     

0.00069 0.95498 0.95482 0.95470     

0.00123 1.52872 1.52845 1.52822     

0.00224 1.72342 1.72292 1.72250     

0.00321 1.84904 1.84832 1.84772     

0.00459 1.93606 1.93503 1.93417     

0.00618 2.00567 2.00429 2.00313     

0.02876 2.35596 2.34947 2.34406     

0.04121 2.46641 2.45709 2.44932     

0.05025 2.53118 2.51978 2.51028     

0.06014 2.60869 2.59499 2.58358     

0.08498 2.76927 2.74979 2.73355     

0.09821 2.85065 2.82803 2.80919     

0.12979 3.03249 3.00232 2.97718     

0.17032 3.24245 3.20237 3.16897     

0.21419 3.55061 3.49948 3.45687     

0.23764 3.82425 3.76705 3.71939     

0.15263 3.18720 3.15148 3.12172     

0.01658 2.29337 2.28964 2.28653     
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Table A.11: Experimental and Simulated butane adsorption equilibrium data at 323.15 K. The reference state 

corrections are vp = 0:564 cm
3
/g and vs = 0:470 cm

3
/g. 

 

Experimental data Simulated data 

P (MPa) 
nnet 

(mol/kg) 
nex 

(mol/kg) 
n (mol/kg) P (MPa) nnet (mol/kg) 

nex 
(mol/kg) 

n (mol/kg) 

0.00010 0.00011 0.00009 0.00007     

0.00113 0.65741 0.65717 0.65697     

0.00170 1.33893 1.33857 1.33827     

0.00306 1.70708 1.70644 1.70590     

0.00532 1.89079 1.88967 1.88874     

0.01032 2.05266 2.05049 2.04868     

0.02000 2.19421 2.19000 2.18649     

0.03001 2.29022 2.28388 2.27859     

0.04166 2.36535 2.35653 2.34917     

0.05031 2.41627 2.40559 2.39668     

0.06021 2.46143 2.44862 2.43794     

0.07498 2.52157 2.50556 2.49222     

0.09686 2.60006 2.57928 2.56196     

0.15657 2.76547 2.73139 2.70299     

0.20050 2.89664 2.85251 2.81574     

0.24860 3.05099 2.99555 2.94935     

0.27306 3.10608 3.04486 2.99385     

0.33657 3.32319 3.24633 3.18229     

0.41154 3.82673 3.73062 3.65053     

0.36063 3.50345 3.42056 3.35150     

0.26213 3.17069 3.11206 3.06322     

0.22608 3.06915 3.01907 2.97734     

0.12312 2.77521 2.74864 2.72649     

0.08428 2.64319 2.62516 2.61013     

0.03511 2.42612 2.41867 2.41246     

0.00004 0.00004 0.00003 0.00002     

0.00086 0.87398 0.87380 0.87365     

0.02046 2.11227 2.10795 2.10434     

0.01483 2.05591 2.05279 2.05018     

0.00133 1.61249 1.61221 1.61198     
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Table A.12: Experimental and Simulated butane adsorption equilibrium data at 353.15 K. The reference state 

corrections are vp = 0:564 cm
3
/g and vs = 0:470 cm

3
/g. 

 

Experimental data Simulated data 

P (MPa) 
nnet 

(mol/kg) 
nex 

(mol/kg) 
n (mol/kg) P (MPa) nnet (mol/kg) 

nex 
(mol/kg) 

n (mol/kg) 

0.00009 0.00009 0.00007 0.00006     

0.00094 0.99536 0.99518 0.99503     

0.00381 1.80857 1.80784 1.80722     

0.00981 2.11686 2.11498 2.11340     

0.02044 2.30910 2.30516 2.30188     

0.03193 2.41805 2.41189 2.40675     

0.04123 2.47854 2.47057 2.46393     

0.05053 2.53249 2.52270 2.51455     

0.09668 2.69406 2.67520 2.65949     

0.09661 2.70137 2.68251 2.66680     

0.14836 2.81708 2.78786 2.76350     

0.20166 2.91301 2.87292 2.83951     

0.37852 3.18241 3.10459 3.03974     

0.71412 3.64525 3.48697 3.35508     

0.57877 3.45816 3.33394 3.23044     

0.26865 3.06199 3.00790 2.96283     

0.07809 2.73381 2.71862 2.70596     

0.01545 2.35255 2.34957 2.34709     

0.00972 2.23148 2.22961 2.22805     

0.00437 1.99829 1.99745 1.99675     

0.00242 1.77322 1.77276 1.77237     

0.00143 1.45187 1.45160 1.45137     

0.00008 0.17578 0.17576 0.17575     

0.00009 0.14499 0.14497 0.14496     

0.00147 1.51234 1.51205 1.51182     
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