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Abstract  

This paper investigates the mechanical and mineralogical characteristics of natural 

hydraulic lime NHL3.5 (NHL) mortars with different % of lime replacement by 

metakaolin (MK) under different laboratory and natural marine curing conditions. 

Tests were conducted at different curing ages, using compressive and flexural 

strength tests and thermogravimetric and X-ray diffraction techniques. 

NHL mortars cured at high humidity levels in natural and artificial environments 

present interesting results and some could be used in old masonries repair. 

The incorporation of MK improves the NHL mortars strength, being this increase 

mostly associated to the pozzolanic reaction. 
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1. Introduction 

Early civilizations, namely the Greeks and Romans, produced limes to employ in 

mortars for construction. The durability of these mortars is recognized worldwide, even 

in buildings exposed to water and is mainly attributed to the use of natural earth-

materials of volcanic origin (pozzolans), or to artificial reactive materials, as an addition 

or as a partial substitution for air lime or sand [1-3]. This knowledge was lost for 

centuries, only to be revived in the 18th century with Smeaton’s rediscovery of the 

hydraulic properties of a limestone from Portland in England. This material was the 

base of new types of inorganic binders, known as hydraulic binders, of which artificial 

Portland cement (PC) was a successor, becoming the binder most used worldwide 

today. The properties of the PC were the reason for the decline of the lime technology 

[4-8]. 

Nowadays, it is well known that PC mortars present several problems regarding 

their use in restoration of historical structures containing lime mortars. Some of the 

main problems are associated to their incompatibility in terms of mechanical, physical 

and chemical properties [8,9]. To prevent the damage and deterioration of these 

historic structures it is recommended that repairs be carried out by lime-based mortars, 

which encompasses the use of hydraulic mortars with low strength capacity and 

without soluble salt contamination problems.  

The recent version of European standard for lime binders defines three classes 

of limes with hydraulic properties: natural hydraulic (NHL), formulated (FL) and 

hydraulic (HL), according to the constitutive raw materials and the presence or absence 

of additions. The NHL limes are divided in three classes according to the compressive 

strength developed after 28 days curing and to the Ca(OH)2 content: NHL2, NHL3,5 

and NHL5 [10,11]. 

The use of hydraulic lime, that also goes back to antiquity with the use of limes 

with various levels of hydraulicity, has been revived in the past few years, especially 

when the conservation of historical buildings is pursued. In particular, the natural 
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hydraulic limes seem to have the possibility to be an adequate choice due to their 

improved compatibility with old masonry, by having low shrinkage, resistance to salt 

and frost damage, in comparison with PC or other hydraulic lime mortars, as well as 

higher deformability and water vapour permeability [5,9,12].  

NHL are obtained by calcining mixtures of clayish or siliceous limestones at 

temperatures below the clinkering point, before being reduced to a powder by adding 

controlled amounts of water. A fundamental characteristic of these lime mortars is the 

fact that they have two hardening phases: a hydraulic phase, based on its hydration, 

resulting in the formation of calcium and calcium-aluminum silicate hydrates, and 

another developed during the CO2 contact, and designated as carbonation [11,13,14].  

These recent NHL, defined and formulated in accordance to the actual version 

of standard EN 459–1 [10], are relatively new in the market and their properties are not 

yet well studied, namely in terms of their use with pozzolanic materials. At this respect, 

MK is known by improving the durability characteristics of lime and cement mortars 

[15,16]. 

Pozzolans are composed by siliceous and silico-aluminous substances, which 

when hydrated do not harden with water; however, when they are powdered and in 

presence of calcium hydroxide they react to form new compounds, such as silicates 

and calcium aluminate hydrates, with hydraulic properties [1,17,18].  

Besides the influence of the addition of pozzolanic materials the mortars’ curing 

conditions are also important, namely the definition of their use once it is known that 

the curing of lime-pozzolan mortars benefits from a humid long lasting curing [15]. A 

dry or a humid curing condition propitiates the development of different setting and 

hardening reactions, which will influence the mortars porosity, strength and 

microstructure properties. As reported elsewhere, not so humid curing conditions (dry 

but not too much) favors the carbonation reaction, while humid curing favors hydration 

reaction [19-21].  
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The results that will be presented are part of a wide study aiming at the 

characterization of an NHL3.5 of Portuguese production, with and without MK 

incorporation, as lime substitution, in three different curing conditions [22]. The curing 

conditions used include the exposition in an experimental site at Atlantic Ocean west 

coast (Cabo Raso near Cascais Village), in order to compare it with laboratory 

controlled conditions at two different relative humidity (RH) testing conditions (65% and 

95%) at the same temperature (20 ºC). 

This paper focuses on the mechanical and mineralogical characterization 

regarding the influence of the MK incorporation and curing conditions on the behaviour 

of NHL-based mortars. These results will be particularly useful in the establishment of 

both adequate curing conditions and metakaolin content proportions regarding NHL3.5 

mortars to optimize their formulation to use in new masonry renders or in mortars 

designed for historical conservation purposes. 

 

2. Materials 

The mortars were prepared with a commercial Portuguese natural hydraulic lime 

NHL3.5 [10] (NHL) and a washed and well graded siliceous river sand. The NHL 

content was maintained (NHL mortar with a volumetric binder:aggregate ratio of 1:3) or 

replaced by 10% (NHL_10MK mortar) or 20% (NHL_20MK mortar) (wt.%) of a 

commercial metakaolin (ARGICAL M1200S - MK). Table 1 presents the loose bulk 

density of the materials employed in the mortars formulation determined according to 

the European Standard EN 1097–3:2002 [23].   

The chemical compositions (major elements) of NHL and MK was carried out by X-

ray fluorescence analysis (XRF) using a Panalytical Axios X-ray fluorescence 

spectrometer with CrKα radiation, being these results presented in Table 2. The 

pozzolanic reactivity of the MK is also presented. The pozzolanic activity was 

determined by Chapelle test method [24], and comparing the value obtained with other 
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artificial pozzolanic materials, like rice husk ash, biomass fly ash or coal fly ash [25], it 

is expected a high reactivity wit NHL. 

The identification of mortar mixes, percentage of lime weight substitution by MK, 

weight ratios and water/binder ratio are shown in Table 3. 

Table 1 – Loose bulk density of materials used in mortar preparation. 

Loose bulk density (kg/m3) 

MK 0.294 

NHL3,5 0.846 

Sand mixture 1.463 

 

 

Table 2 – Chemical composition (in wt. %) of materials used as binder in mortar 

preparation and pozzolanic reactivity. 

Material SiO2 Al2O3 Fe2O3 MnO MgO Na2O K2O TiO2 P2O5 SO3 CaO LOI* 
Pozzolanic 

activity 
(mgCH/gMK) 

MK 54.39 39.36 1.75 0.01 0.14 – 1.03 1.55 0.06 - - 1.90 1320 

NHL 5.70 1.84 1.22 0.02 1.00 0.08 0.49 0.14 0.03 1.00 62.00 26.00 - 

*LOI. – Loss on ignition 

 

Table 3 – Mortar mixes identification, composition and flow table consistency. 

Sample 
identification 

MK 
substitution 

[%] 

Weight ratio Consistency 
[mm] 

NHL:MK:Aggregate NHL+MK:Aggregate Water/binder 

NHL 0 1:0:5 1:5 1.1 152 ± 1 

NHL_10MK 10 1:0.1:5.5 1:5 1.1 149 ± 2 

NHL_20MK 20 1:0.2:6 1:5 1.1 143 ± 1 

 

The mineralogical compositions of the raw materials (Figure 1) were obtained on 

a Philips PW3710 X-ray diffractometer, with 35 kV and 45 mA, using Fe-filtered CoKα 

radiation of wavelength λ = 1.7903 Å. Diffractograms were recorded from 3◦ to 74◦ 2θ, 

at an angular speed of 0.05◦ 2θ s−1. The crystalline phases were identified by 

comparison with the International Centre for Diffraction Data Powder Diffraction Files 

(ICDD PDF). 
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In the NHL the main mineralogical phases present are calcite (C ̅), portlandite 

(CH) and larnite (C2S). Other minor phases are also present which include quartz 

(SiO2), tricalcium aluminate (C3A) and bassanite (CaSO4.0,5H2O). The MK 

diffractogram is characterized by a broad band between 20 and 40 °2θ, which is 

correlated to the existence of amorphous compounds that are responsible for the high 

MK pozzolanic character. Some minerals phases are also present in MK, which include 

quartz, muscovite (KAl3Si3O10(OH)2) and anatase (TiO2). The aggregate used is of 

quartz-siliceous nature, mainly composed by quartz and some potassium feldspar 

(KAlSi3O8). 

 

 

Fig. 1 – XRD patterns of the materials employed in the mortars manufacture.  

Notation: P – CH; C – C ̅; L – C2S; Mu – Muscovite; B – Bassanite; D – C3A;  

Q – Quartz; A – Anatase; 

 

In order to determine the portlandite and calcite contents of NHL, the TG–DTA 

analysis (Figure 2) was performed in a TG–DTA analyser, under argon atmosphere, 

with heating rate of 10ºC/min, from room temperature to 1000ºC. Free portlandite 

content was determined from the mass loss in the range of 380–500ºC (ML(380-500ºC)), 

corresponding to portlandite dehydroxilation region (DH), while the calcite content 
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present in the lime sample was attained from the mass loss in the range of 550–850ºC 

ML(500-850ºC), which corresponds to the CO2 release of carbonates (DC) (Figure 2). 

Taking into account the TG results, the contents of free portlandite (CHflime) and 

calcite (CClime) were determined by equations 1 and 2: 

CHflime = ML(380-500ºC) x k1     [Equation 1] 

CClime = ML(500-850ºC) x k2     [Equation 2] 

being, the constants k1 and k2 the molar masses quotients of CO2, Ca(OH)2, CaCO3 

and H2O in accordance of: k1 = MM (Ca(OH)2) / MM (H2O) and k2 = MM (CaCO3) / MM 

(CO2);  

 

Fig. 2 – dTG and DTA curves for NHL, showing the characteristic regions for 

portlandite dehydration - PDH - and the carbonates decomposition - CDC. 

 

According to the TG results obtained, the NHL presents a relatively high calcite 

content which is attributed to lime carbonation.  

 

3. Mortars’ mixture and curing conditions 

The mixing method was used for all mortars and based but including some 

adjustments to the EN 1015–2:1998/A1:2006 [26] procedure. The amount of water to 

achieve a comparable consistency, corresponding to a workability of approximately 

150±10 mm, was added in the first seconds of mixing; mechanical mixing went on for 

150 seconds; the borders were scraped and the mixing continued for another 30 
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seconds. The flow table consistency was determined based on EN 1015–

3:1999/A2:2006 [27] and the average value and standard deviation for each mortar is 

presented in Table 3. 

Mortars were cast in metallic prismatic moulds of 40 x 40 x 160 (mm3) and 

conditioned inside polyethylene bags for initial curing with high RH. At the 2nd day of 

curing, mortar samples were demoulded and continued inside the bags until completing 

7 days. After this period they were placed in three different curing conditions:  

- a natural exposure marine site (M), close to the Atlantic ocean coast (Guincho, 

close to Cascais village, Portugal), where prisms are exposed since February to 

natural salt water spray and to salt fog conditions. In terms of Portuguese 

climate, this was the best testing period since coincided with the end of winter 

(Table 4); 

- curing in high humidity test conditions (H), in a climatic chamber with a relative 

humidity (RH) of 95±5% and temperature (T) of 20±3⁰C; 

- standard curing conditions (S) normally used for lime mortars. This condition 

was made in a laboratory conditioned room with RH of 65±5% and T=20±3⁰C.  

All mortars were tested at 28, 90 and 180 days of curing age.  

 

Table 4 – Average temperatures and relative humidity values of curing period in M 

curing condition. 

  February March April May June July 

T [°C] 10.3 ± 3.9 14.6 ± 4.1 13.3 ± 2.4 16.7 ± 2.9 19.2 ± 3.8 18.5 ± 2.1 

RH [%] 60.0 ± 16.7 62.0 ± 19.5 73.2 ± 12.3 75.4 ± 13.4 69.0 ± 18.5 75.2 ± 11.0 

 

 

4. Experimental  

4.1 Flexural and compressive strength tests 

One day before testing, the samples were placed during 24h in the standard 

curing condition in order to stabilize their internal humidity. The strength tests were 
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done according the European standard EN 1015–11:1999/A1:2006 [28]. Flexural (FS) 

and compressive strengths (CS) were obtained using a universal forces Zwick Z050 

with a 2kN load cell and velocity of 0.2 mm/min for flexural test and a load cell of 50kN 

and a velocity of 0.7 mm/min for compressive test. The compressive strength test was 

made on the half prisms obtained after the flexural tests. 

4.2 XRD and TG–DTA tests 

In order to avoid the influence of different humidity levels in the mineralogical 

composition, the samples were previously dried in oven at 40ºC during 24 hours.  

 

4.2.1 X-ray diffraction analysis (XRD) 

The samples for XRD analysis were disaggregated with a rubber hammer in 

order to avoid breaking the sand grains, being the material afterwards sieved in a 

106μm mesh in order to obtain a binder enriched fraction.  

X-ray diffractograms were collected by the same process described in section 2.  

 

4.2.2 Thermogravimetric and differential thermal analysis (TG–DTA) 

The mortar samples to be analysed by TG–DTA were ground up to 106μm grain 

size. The procedure adopted for mortars samples analysis was the same that was 

previously described in section 2. 

 

5. Results and discussion 

5.1 Mechanical results 

Figure 2 shows the flexural and compressive strength results obtained in the 

different curing conditions employed. A global analysis reveals that mortars in humid 

curing conditions present the highest values of FS. The mortars evolution with ageing 

did not present a regular pattern, except for the case of NHL mortars without MK that 

showed an increase in their FS values from 28 to 180 days.  
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Relatively to CS values the NHL mortars cured in marine or humid condition 

present the highest values. This observation can be justified by the high humidity 

access in these conditions that promotes the NHL hydration reaction, and the 

mechanical strength. 

MK incorporation results in a clear improvement of mortars strength. Again, the 

curing conditions with humidity access (humid and marine) present the highest CS and 

generally also FS values, independently of the testing age. An obvious explanation for 

this behavior is the less favorable hydration conditions in the standard curing compared 

to the other two conditions.  

 

Fig. 3 – Mechanical results of all mortars in each curing; (a) flexural strength (FS) and 

(b) compressive strength (CS). 
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5.2 XRD results 

Table 5 presents the mineralogical composition of the different NHL mortars 

cured in marine, humid and standard curing conditions. For representative purposes, 

Figures 4 present the diffractograms of the samples tested in marine curing condition. 

In all curing conditions the main crystalline phase present is calcite, which seems 

to indicate that carbonation was the dominant reaction. Besides calcite the other 

phases present are portlandite, larnite, ettringite (Ca6Al2(SO4)3(OH)12(H2O)26), 

tetracalcium monocarboaluminate (C4A ̅H11), tetracalcium aluminate hydrate (C4AH13), 

vaterite (CaCO3) and quartz (SiO2). With exception of portlandite and ettringite, the 

other hydrated phases detected are mainly related with the pozzolanic reaction 

between NHL and MK.  

One of the main differences between mortars with and without MK is the 

presence of vaterite in mortars with MK, a polymorph of CaCO3, which seems to be 

formed due to the dissolution-precipitation of carbonates, its formation being higher 

with MK increase. Some authors refer that vaterite could be a precursor phase of 

calcite formation, which is hampered due to lower CO2 diffusion in MK mortars [29]. 

Contrary to what was expected in the marine curing, chlorides, free or combined, 

normally associated to natural marine environment, are not present. This fact, in view 

of the sea water proximity, indicates that it could be removed by rain washing over it. 

Carbonation reaction develops over time, which is confirmed by portlandite and 

calcite proportions. This evolution is also followed by hydration reaction development, 

since at 180 days larnite is not present anymore (Figure 4 and Table 5). 

Tetracalcium monocarboaluminate and C4AH13 present an unstable behaviour over 

time in mortars with MK, a fact which is attributed to the free portlandite in the system 

[30]. In de Silva and Glasser study [31] this behaviour was justified due to the reduction 

of the concentrations of Ca2+ and OH- ions in the pore solution at longer curing ages. 
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Qualitatively a great similarity in mineralogical composition can be observed 

between the mortars in humid and marine curing. The main difference to the standard 

curing condition is the slower larnite hydration kinetics in the driest curing, which can 

justify the lower mechanical resistances observed in this curing condition. 

In terms of the MK addition a fast development of the pozzolanic reaction was 

observed, clearly evident in the decrease and subsequent disappearance of portlandite 

with MK increment and with ageing.   

In humid and marine curing conditions, the higher RH contact (95±5% in humid 

curing and for marine curing in Table 4) and the moisture from the Atlantic ocean water 

spray benefits the hydration and pozzolanic reactions and the hydrated compounds 

formed, such as tetracalcium monocarboaluminate, tetracalcium aluminate hydrate and 

ettringite, which are relevant compounds for the development of mechanical 

resistances [32]. Another interesting feature with ageing is the increment of vaterite 

formation, which is related to dissolution/crystallization phenomenon as a result of the 

water action.  

The MK addition increases the mechanical resistances as shown in Figure 3. 

This fact may be explained due to the appearance of hydrated compounds formed by 

pozzolanic reaction (Figures 4 and Table 5). In general a decrease in the CS values 

from 90 to 180 days can be observed, that can be justified by the instability of calcium-

aluminium hydrated compounds formed in the pozzolanic reaction. 
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Fig. 4 – XRD patterns of (a) NHL, (b) NHL_10MK and (c) NHL_20MK mortars in marine 

curing. Notation: P – CH; C – C ̅; L – C2S; E – Ettringite;  

M – Tetracalcium monocarboaluminate; Hc – Tetracalcium aluminate hydrate; V – 

Vaterite; Ar – Aragonite; Q – Quartz. 
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Table 5 – XRD composition of NHL mortars in all curing conditions at 28, 90 and 180 

days. 

Mineral phases 

Marine curing condition 

NHL NHL_10MK NHL_20MK 

28 days 90 days 180 days 28 days 90 days 180 days 28 days 90 days 180 days 

Calcite +++ +++/++++ +++/++++ +++ +++/++++ +++/++++ +++ +++/++++ ++/+++ 

Vaterite - - - + tr ? + +/++ +/++ 

Aragonite  - -   -  -  - -   -  - -  

Portlandite ++ + - + - - - - - 

Tetracalcium 
monocarboaluminate 

tr - - +/++ + tr +/++ tr tr 

Ettringite tr tr - ? ? tr ? ? ? 

Hidrocalumite tr tr tr + tr tr + + + 

Larnite + tr - tr ? - tr - - 

Quartz tr + + +/++ +/++ + + ++ + 

Feldspar - - tr + + - + + + 

Humid curing condition 

Calcite +++ +++ +++/++++ +++ +++/++++ +++/++++ +++ +++/++++ ++/+++ 

Vaterite - - - + +/++ ++ + +/++ ++ 

Aragonite - - - - - - - tr tr 

Portlandite ++/+++ ++ + + tr tr ? - - 

Tetracalcium 
monocarboaluminate 

tr tr tr +/++ + + +/++ +/++ + 

Ettringite tr tr tr tr tr tr ? ? tr 

Hidrocalumite tr tr tr tr/+ tr tr + ? ? 

Larnite + tr/+ tr tr/+ tr tr + tr ? 

Quartz + +/++ + + +/++ + + +/++ + 

Feldspar tr + tr tr + tr + + tr 

Standard curing condition 

Calcite +++ +++/++++ +++/++++ +++ +++ +++/++++ +++ +++/++++ ++/+++ 

Vaterite - - - tr/+ tr/+ + + + + 

Aragonite  - -  -  -  -  -  - tr tr 

Portlandite ++ tr/+ tr/+ + ? - - - - 

Tetracalcium 
monocarboaluminate 

tr ? - + tr/+ tr +/++ + + 

Ettringite tr ? - - tr ? ? ? tr 

Hidrocalumite tr ? - tr/+ ? - + tr ? 

Larnite + tr/+ tr/+ + tr/+ tr/+ + tr tr 

Quartz tr + tr + ++ ++ +/++ +/++ + 

Feldspar - tr - tr tr +/++ tr tr tr 

Notation: – = undetected; ? = doubts in presence; tr = traces; + = low proportion;  

++ = medium proportion; +++ = high proportion; ++++ = predominant compound. 
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5.3 TG–DTA results 

Table 6 presents the TG–DTA results obtained for all mortars in three different 

curing conditions. For a representative purpose, Figure 5 presents the dTG pattern of 

mortars cured in marine curing condition. The dTG patterns were chosen since the 

start point and end of the mass losses are more perceptible. These patterns showed 3 

main mass losses, respectively from Tambient-380ºC, 380-500ºC and 500-850ºC, which 

correspond, according to the XRD analysis, to the pozzolanic and hydration products 

dehydration (HPDH), portlandite dehydration (PDH) and the carbonates decomposition 

(CDC), respectively. In the first mass loss region the CSH dehydration must be also 

considered [30,33,34].  

In general, the dTG results corroborate the XRD analysis. 

 

Table 6 – Mass losses (wt %) obtained by TG–DTA analysis. 

Samples 
identification 

Temperature range 

Tamb-380°C 380-500°C 500-850°C 

28 days 90 days 180 days 28 days 90 days 180 days 28 days 90 days 180 days 

NHL_M 1.07 0.80 1.00 0.57 0.31 0.00 3.63 5.40 6.10 

NHL_H 1.01 1.20 1.00 0.44 0.51 0.00 4.23 5.50 6.30 

NHL_S 0.81 0.92 0.80 0.28 0.30 0.00 4.05 5.80 5.40 

NHL_10MK_M 1.67 1.60 1.40 0.28 0.00 0.00 3.00 4.60 5.50 

NHL_10MK_H 1.87 1.80 1.50 0.42 0.00 0.00 2.67 4.80 4.52 

NHL_10MK_S 1.85 1.70 1.30 0.18 0.00 0.00 2.51 5.60 4.90 

NHL_20MK_M 2.19 1.50 1.70 0.00 0.00 0.00 2.80 4.41 4.91 

NHL_20MK_H 2.28 2.20 1.60 0.00 0.00 0.00 1.88 2.81 4.80 

NHL_20MK_S 1.71 2.11 1.60 0.00 0.00 0.00 2.07 4.50 4.31 
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Fig. 5 – dTG charts of (a) NHL, (b) NHL_10MK and (c) NHL_20MK mortars in the 

marine curing, showing the characteristic regions for pozzolanic and hydration products 

dehydration - HPDH -, portlandite dehydration - PDH - and the carbonates decompostion 

- CDC. 
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The main difference between all mortars is the inexistence of the portlandite 

peak in NHL_20MK mortars, which implies that portlandite was totally consumed in 

pozzolanic and carbonation reactions. 

With ageing it is observed that in mortars with MK, there is a decrease with time 

(28 to 180 d) in pozzolanic dehydration region, which can be attributed to the instability 

of calcium-aluminum hydrated compounds, as seen in section 5.2. 

To evaluate the hardening reactions with ageing and curing type, the portlandite 

consumption in carbonation reaction and in pozzolanic reactions was determined using 

the mass losses (ML) obtained by TG–DTA analysis. The portlandite and carbonate 

contents present in the lime (CHflime and CClime) were both computed in the hydration 

and carbonation mortars’ evolution. The following equations explain the different steps 

considered in the calculations at a certain curing age, bearing in mind that the 

hydration kinetics are the same in all mortars with identical curing conditions: 

1) Mortars without MK: 

CHfree = ML(380-500ºC) x k1    [Equation 3] 

CCmortar = ML(500-850ºC) x k2 – (CClime x %Lime) [Equation 4] 

CHcarb = CCmortar x k3      [Equation 5] 

CHmortar = CHcarb + CHfree    [Equation 6] 

Τcarb = (CHcarb /  CHmortar) x 100   [Equation 7] 

Τfree = (CHfree /  CHmortar) x 100   [Equation 8] 

CHhidr NHL = CHmortar – (CHflime x %Lime)  [Equation 9] 

Τhidr NHL = (CHhidr NHL / CHmortar) x 100   [Equation 10] 

2) For mortars with MK equations 3 to 9 and: 

CHhidr MK = CHhidr NHL x %MK    [Equation 11] 

CHpoz = [(CHflime x %Lime) + CHhidr NHL] – CHmortar [Equation 12] 

Τpoz = (CHpoz /  CHmortar) x 100   [Equation 13] 

Τhidr MK= (CHhidr MK / CHmortar) x 100   [Equation 14] 
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The meaning of abbreviation used is as follows: 

k1, k2 (same as previously described in section 2.) and k3, the molar masses quotients,  

k1 = MM (Ca(OH)2) / MM (H2O);  

k2 = MM (CaCO3) / MM (CO2); 

k3 = MM(Ca(OH)2) / MM(CaCO3);  

CHfree – free portlandite content of the mortar; 

CCmortar – calcite content of the mortar; 

%Lime – lime content (wt. %) in mortars; 

CHcarb – portlandite consumed in carbonation reaction; 

CHmortar  – total portlandite present of the mortar; 

CHhidr NHL – portlandite content produced in hydration of NHL;  

CHhidr MK – portlandite content produced in hydration reaction in mortars with MK 

content;  

CHpoz – lime consumed in pozzolanic reaction;  

Tfree – relative free portlandite content; 

Tcarb – relative portlandite content consumed in carbonation reaction. 

Tpoz – relative portlandite content consumed in pozzolanic reaction. 

Thidr NHL – relative portlandite content produced in hydration reaction in NHL mortars. 

Thidr MK – relative portlandite content produced in hydration reaction in NHL-MK mortars. 

 

Figures 6 and 7 present the portlandite consumption and free portlandite 

available to react with ageing in the different curing conditions. 

From the analysis of results, it is possible to verify that portlandite is mainly 

consumed in the carbonation reaction. This reaction increases with curing time, being 

almost completed at 180 days in all curing conditions and its rate is higher in the 

standard curing condition. However, in the first 90 days some portlandite was also 

consumed in the pozzolanic reaction, being this consumption higher in humid and 

standard curing conditions. According to Table 4, during the first two months the mean 
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RH at marine humid conditions was not high (lower than at humid curing conditions), 

maybe explaining the absence of not so high consumption.  

From figure 7 it can be noticed that the content of free portlandite is higher in 

mortars placed in marine and humid curing regimes. This result can be explained by a 

higher hydration (Figure 8) and lower carbonation rates in these two curing conditions. 

 

 

 

Fig. 6 – Relative portlandite consumed (in %) in (a) the carbonation reaction (Tcarb) and 

in (b) the pozzolanic reaction (Tpoz). 
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Fig. 7 – Relative free portlandite content (Tfree, in %). 

 

 

Fig. 8 – Relative portlandite content (Thidr NHL and Thidr MK in %) produced in 

hydration reaction. 

5.4 Global discussion 

According to these findings, and comparing to the mechanical results, it can be 

observed that the pozzolanic reaction is the main factor in terms of influencing 

strengths improvements, especially those obtained at 28 days. 
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In terms of curing conditions it can be noticed that humid and marine curing 

present the higher mechanical test results, being this observation mainly related to the 

kinetics of hydration and pozzolanic reactions in both humid environments. 

The decrease of mechanical results with ageing in mortars with MK, which was 

related to the instability of the pozzolanic calcium-aluminum hydrated compounds 

formed, can also be justified by the kinetics of the NHL-MK reaction, that is mainly 

developed at very early ages [30]. 

 

6. Conclusions 

From mineralogical and mechanical strength results obtained, the main conclusions 

extracted are: 

 NHL mortars cured in controlled humidity conditions or in natural marine 

environment present similar behaviour in terms of mechanical and mineralogical 

results, and differ from the same mortars cured in standard RH conditions. It 

must be reminded that the natural exterior exposure of the mortar samples went 

on in Portugal from February to July, having a degree of moisture in average 

higher than in standard curing condition, fact that might have created similar 

conditions to those of laboratory humid curing and favoured hydration and 

carbonation of NHL mortars. 

 The addition of MK to NHL mortars improves its strength characteristics, being 

these improvements higher with controlled humid curing conditions. These 

improvements may be unnecessary for mortars to be applied as renders or 

plasters on old masonry but may be adequate for mortars with higher strength 

requirements.  

 NHL mortars with and without MK present different strength rates with curing 

age. Contrary to NHL mortars, NHL-MK mortars sometimes present a decrease 

of strength with ageing, being this decrease related to the instability of the 

pozzolanic compounds formed. 
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 The main hardening reaction in NHL mortars, with or without MK, is 

carbonation. However, hydraulic compounds are also formed, especially in 

mortars with MK and in early ages (28 days), which increase the mechanical 

strength and should improve the resistance to water action.  

 The mechanical results of the mortars in marine curing suggest that these 

mortars should be suitable and adequate to be applied in building masonries 

placed near marine environments. 
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