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Resumo 

A doença hepática gordurosa não alcoólica (DHGNA) é uma das doenças crónicas do fígado 

mais comuns no mundo ocidental. Está normalmente associada a distúrbios de saúde como a 

obesidade, diabetes e a hipertrigliceridemia. Actualmente a biópsia do fígado é a técnica mais 

utilizada para diagnosticar a DHGNA. No entanto é extremamente invasiva e está associada a 

uma elevada morbidade e erros de amostragem. 

Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) consegue distinguir a 

difusão puramente molecular do movimento pseudo-aleatório das moléculas de água dentro dos 

microvasos. A IVIM-DWI tem emergido como uma alternativa possível para a identificação de 

alterações nos tecidos na DHGNA. No entanto, existem poucos estudos que estudem a 

dependência dos parâmetros IVIM-DWI dos parâmetros das sequências de aquisição. 

Por forma a estudar esta dependência, dois estudos foram feitos: 1) estudo simulativo, onde 

estudámos a influência dos parametros de aquisição no erro e bias associados aos parâmetros 

IVIM-DWI; 2) Um estudo In-Vivo que serve de teste à viabilidade das sequências de b-values 

obtidas através do estudo simulativo. 

Os resultados mostraram que o parâmetro mais afectado pelos parâmetros de aquisição é a 

pseudo-difusão (D*). Além disso, foi também demonstrado que quanto maior o número de b-

values usado, melhor será a estimativa dos parâmetros IVIM-DWI. No entanto, a partir de um 

determinado número de b-values e para baixa razão sinal-ruído (SNR), o efeito do ruído nos 

extra b-values contraria o efeito de usar mais b-values. Também foi demonstrado que a 

sequência de b-values usada para a amostragem, influência bastante as estimativas IVIM-DWI. 

Concluímos que a sequência de b-values convencionalmente utilizada não fornece estimativas 

óptimas relativamente ao IVIM-DWI. Além disso, os resultados demonstram que devem ser 

atribuídos pesos diferentes a cada parâmetro IVIM-DWI para obter uma melhor estimativa. 

Também foi observado que a influência do relaxamento T2 deveria ser tomada em conta no 

modelo Intravoxel Incoherent Motion – Diffusion Weighted Image (IVIM-DWI). Finalmente, o 

nosso estudo mostrou que na presença de Esteatose, o valor D* decresce significativamente 

enquanto que D descresce pouco. No entanto, as diferenças entre pacientes com esteatose e 

saudáveis é extremamente influenciada pelo número de b-values usados, levando a diferentes 

diagnósticos dependendo desse mesmo número. 

 

 

 

 

Palavras-chave:  doença hepatica gordurosa não alcoólica, intravoxel incoherent motion 

imaging, imagem por difusão, distribuição b-values. 
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Abstract 

Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver conditions 

in the Western world. It is normally associated with health disorders such as obesity, diabetes 

and hypertriglyceridemia. The gold standard for the diagnosis and staging of NAFLD is liver 

biopsy, which is highly invasive and is associated with high morbidity and inherent sampling 

error. 

Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) is able to distinguish 

between true molecular diffusion and the pseudo-random motion of water molecules inside 

micro vessels. IVIM-DWI has emerged in the recent years as a possible alternative to probe 

tissue changes in NAFLD. However few studies have addressed the problem of the dependence 

of IVIM-DWI parameters on pulse sequence parameters. 

In order to study this dependence, two studies were carried-out: 1) A simulation study, where 

we studied the influence of acquisition parameters on the error and bias associated with IVIM-

DWI parameters; 2) In-vivo study in order to test the performance of the b-value sequences 

derived from the simulation studies. 

Results showed that the parameter which is more affected by the acquisition parameters is D*. 

Furthermore, it was also shown that the higher the number of b-values used to sample the data, 

the better the estimation of IVIM-DWI parameters is. However, after a certain number of points 

and for low SNRs, the effect of noise in extra b-values counteracts the effect of having more 

data points. It was also shown that the b-value sequence that is used to sample the data greatly 

influences IVIM-DWI estimations. 

We concluded that the conventionally used b-value sequence does not provide optimum IVIM-

DWI estimations. Furthermore, results show that different weights should be attributed to each 

IVIM-DWI parameter in order to obtain a better performance of the optimized b-value 

sequence. Also, it was seen that the influence of T2 relation effects should be accounted for in 

the IVIM-DWI model. Lastly, our study showed that in the presence of steatosis, the value D* 

significantly decreased while D only slightly decreased. However, the differences between 

patients with steatosis and healthy controls were extremely influenced by the number of b-

values used, leading to different diagnosis depending on the number of b-values used in the 

acquisition. 

 

 

 

Keywords:  nonalcoholic fatty liver disease, intravoxel incoherent motion imaging, diffusion 

imaging, b-value distribution.  
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Abbreviations and Symbols 

 
ADC Apparent Diffusion Coefficient 

CE-MRI Contrast-Enhanced Magnetic Resonance Imaging 

CHB Chronic Hepatitis B 

CHC Chronic Hepatitis C 

CT Computed Tomography 

D Molecular Diffusion 

D* Pseudo-diffusion 

DTI Diffusion Tensor Imaging 

DWI Diffusion Weighted Imaging 

EPI Echo-Planar Imaging 

ETL Echo Train Length 

fMRI Functional Magnetic Resonance Imaging 

fp Fraction of Perfusion 

HFF Hepatic Fat Fraction 

IVIM Intravoxel Incoherent Motion 

MRE Magnetic Resonance Elastography 

MRI Magnetic Resonance Imaging 

MRS Magnetic Resonance Spectroscopy 

NAFLD Nonalcoholic fatty liver disease 

NASH Nonalcoholic Steatohepatitis 

Nb Number of b-values 
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PR Perfusion Rate 

RARE Rapid Acquisition with Relaxation Enhancement 

S Signal Intensity 

SE Single-Echo 

SNR Signal-to-Noise Ratio 

ss Single-Shot 

T2 Spin-Spin Relaxation time 

TE Echo Time 

EU Ultrasound Elastography 
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1. Introduction 

Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver 

conditions in the Western world [1], progressively becoming a relevant health problem due to 

the increasing predominance of obesity in the world [2]. NAFLD is normally associated with 

health disorders such as obesity, diabetes and hypertriglyceridemia, and it is often coupled 

with increased production of hepatic enzymes [2]. 

NAFLD has four main stages of increasing severity: simple fatty liver, also known as 

Steatosis, Non-Alcoholic Steatohepatitis (NASH), Fibrosis and Cirrhosis [3]. Steatosis is the first 

stage of NAFLD and it is characterized by the excessive accumulation of fat inside the 

hepatocytes. It is a condition that is generally considered to be harmless, and though it does 

not normally have associated symptoms, it can be detected with blood tests. NASH is the 

second stage in NAFLD, being more aggressive than simple steatosis. Only a minor percentage 

of people [4] with steatosis develop NASH, which contrary to steatosis shows liver tissue 

inflammation in addition to fat accumulation. Fibrosis is characterized by a persistent 

inflammation of liver parenchyma, which results in the generation of fibrotic scar tissue 

around the liver cells and blood vessels. Cirrhosis is the most severe stage when scar tissue and 

liver cells start to develop, causing liver irregularities as well as a decrease in its size. The 

damage caused by Cirrhosis is permanent and cannot be reversed; it progresses slowly and 

may lead to liver failure. Being actually possible to diagnose NAFLD, an important step to take 

is to determine its stage, which would provide relevant information on prognosis [3].  

Percutaneous liver biopsy is considered to be the gold standard for the diagnosis and 

staging [5] of NAFLD. However, liver biopsy is an invasive technique with potential risks [5], 

expensive, inherently prone to bias due to limited tissue sampling, and difficult to repeat [6]. 

This implies that the use of an alternative, non-invasive and reproducible technique for NAFLD 

diagnosis and staging is essential [5]. Imaging methods such as Transient Elastography [TE] 

using ultra-sound or dynamic Computed Tomography (CT) have been used as possible 

alternatives to liver biopsy in the diagnosis and staging of NAFLD. With TE, it is possible to 

quantify the elastic properties of tissues [7] and it has been used to evaluate liver stiffness [6, 

7, 8]. Results show that the latter has a large correlation with the stages of liver fibrosis in 

patients with chronic hepatitis B or C [7, 8] (CHB, CHC). Dynamic CT in association with 

compartmental models has been used to quantify liver perfusion [10]. 

Magnetic resonance imaging (MRI) is a promising non-invasive method for the 

assessment of NAFLD, since it has the potential to generate multi-parametric information [6]. 

It can provide several modalities such as functional imaging (fMRI), spectroscopy (MRS), 

dynamic contrast-enhanced MRI (CE-MRI) or diffusion-weighted imaging (DWI), to name just a 

few. In fMRI the variations in the homogeneous magnetic field (B0) homogeneity due to 

variations of the concentration of deoxyhemoglobin [11] are measured. MRS is based on the 
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frequency variations of spins related to the chemical environment where they are inserted. It 

is used to non-invasively quantify the amount of several biological molecules that are involved 

in both pathological and non-pathological processes. In CE-MRI, a contrast agent is injected in 

the blood and the temporal variation of its uptake by the tissues is studied [12] using fast 

imaging pulse sequences whereas in DW-MRI, image contrast is sensitive to the diffusion of 

water molecules [13]. Recent studies [14] have shown that both CE-MRI and DWI provide 

potential markers for fibrosis and cirrhosis. Magnetic Resonance Elastography (MRE) is another 

non-invasive imaging method that can be used to stage NAFLD [15]. It measures the stiffness 

of soft tissues by introducing shear waves and imaging their propagation using MRI. Huwart et 

al. [15] showed that MRE is superior to Ultrasound Elastography (UE) and is a reproducible 

method that has been applied in NAFLD [14]. 

1.1 Diffusion-weighted imaging 

1.1.1 Molecular Diffusion  

Diffusion is essentially the thermal random motion of molecules in a medium at 

temperatures above absolute zero and it is a function of temperature, viscosity and particle 

size. The Einstein equation [13] describes the behaviour of unrestricted diffusion according to: 

     √            

Where rrms is the one dimensional root-mean-squared particle displacement, t is the diffusion 

time and D is the diffusion coefficient (mm2/s).  

In tissues, the diffusion of water molecules is not unrestricted, but it is rather affected by the 

constraining presence of macromolecules and other cellular (subcellular) structures. Generally, 

diffusion in tissues is anisotropic, since the existent restrictions do not have spherical 

symmetry. The directional dependence of the diffusion coefficient can be described by a 33 

matrix, known as diffusion tensor: 

  [

         

         

         

]         

 

Matrix elements Dii on the diagonal correspond to the diffusion coefficients along each 

axis; the non-diagonal elements Dij represent the degree of correlation between random 

motion in two different directions i and j. The tensor formulation of diffusion is the basis for 

imaging techniques such as Diffusion Tensor Imaging (DTI), which is often used for fiber 

tracking in the brain [16]. 
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1.1.2 Imaging 

Carr and Purcell [17] observed that in the presence of a magnetic field gradient, the 

diffusion of water molecules causes phase dispersion of the average transverse magnetization 

of the sample, which causes MR signal attenuation. In DWI, image contrast is sensitized to 

diffusion through the introduction of strong diffusion-weighting gradients prior to the imaging 

acquisition module. These gradients are used to increase the sensitivity of pulse sequences to 

molecular motion due to diffusion. An inherent problem to DWI is that by introducing diffusion 

gradients, the pulse sequence also becomes more sensitive to other types of motion (e.g. bulk 

motion), which can cause severe image artifacts that are difficult to correct. In order to 

prevent this, single-shot pulse sequences, such as single-shot echo-planar imaging (ss-EPI), 

RARE (Rapid acquisition with relaxation enhancement), or spirals are commonly used [13]. 

Single-shot SE-EPI (ssSE-EPI) (fig. 1.2) is the most commonly used sequence for 

diffusion imaging because it is very fast and insensitive to motion. In the conventional 

implementation of this pulse sequence, the EPI readout follows the diffusion SE preparation 

module which consists of a 90 excitation pulse followed by a 180 refocusing pulse. The 

diffusion gradients are positioned on both sides of the 180 pulse and are usually played at the 

maximum amplitude that is allowed by the hardware. 

 

Figure 1.1 - A diffusion-weighted single-shot spin-echo EPI pulse sequence, where PM is the 

preparation module and ER is the EPI readout; adapted from [13].  

Despite its common use, EPI has several disadvantages such as geometric distortion 

due to B0 inhomogeneities, low spatial resolution and limitation to 2D acquisition [13]. Parallel 

imaging can reduce artifacts due to B0 inhomogeneities, by reducing the echo train length 
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(ETL) in the EPI readout. A smaller ETL reduces the amount of time that off-resonance spins 

have to accumulate phase errors, thus minimizing image geometric distortions. 

The fact that SE-EPI combines atypically large Eddy currents, caused by the large 

amplitude diffusion-weighting gradients, with an eddy current-sensitive EPI readout, also 

contributes to image spatial distortion, which is dependent on the direction of the applied 

diffusion gradient [18]. A commonly used method to overcome this problem is the one 

introduced by Reese et al [18], which is based on employing twice-refocused RF spin echoes 

with two bipolar diffusion gradient pairs to more efficiently cancel the Eddy currents (fig. 1.3). 

 

Figure 1.2 - Twice Refocused SE sequence shown as a timing diagram. This sequence allows any 

diffusion gradient lengths such that the rephasing and dephasing due to the diffusion gradients are 

equal and TE/2 is the time between the two refocusing pulses. The graph below shows the buildup 

and decay of eddy currents due to the gradient switching; adapted from [18]. 

In an ideal sequence, where the RF pulse durations and gradient ramping times are 

infinitely short, the timing constants in fig. 1.2 are related according to: 

            

                
  

 
                 

      
  

 
     

where TE is the echo time, δ1+ δ2 and δ3+ δ4 are the lengths of the two bipolar field gradients, 

tpr is the sum of the preparation time following the excitation pulse and the readout time 

preceding the SE. As we have four unknowns and three equations, one of the gradient lengths 

δi can be chosen. This design allows for timing flexibility which is introduced by the second 
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refocusing pulse. Furthermore, if the Eddy current decay time constant is known, gradient 

lengths can be calculated so that Eddy current build-up is nulled prior to readout. 

Diffusion weighting in DWI increases with b-value, which depends not only on the 

amplitude and shape of the diffusion gradients but also on their duration and timing. The b-

value is related to the diffusion-weighting gradient waveform  ⃗     by: 

    ∫ [∫     

 

 

   ]

 

  

  

 

         

where  is the gyromagnetic ratio and t is time 

Figure 1.3 shows the explicit dependence of b on gradient parameters for commonly 

used diffusion-gradient waveforms in SE-EPI sequences. 

 

Figure 1.3 - b-values for commonly used diffusion-gradient waveforms in SE pulse sequences; 

adapted from [13]. 

In order to achieve b-values on the order of 1000 s/mm2, the diffusion-weighting 

gradient lobe is typically several tens of milliseconds in length, which leads to a long TE. On the 

other hand, a long TE reduces the SNR and introduces T2-weighting in the diffusion-weighted 

image (T2 shine-through [13]). The TE can be reduced by playing-out the diffusion gradients at 

their maximum slew rate. However, the use of maximum gradient slew rate can cause the 

pulse sequence to exceed the limits for peripheral nerve stimulation and increase the 

problems caused by eddy-currents induced by the diffusion-weighting gradient. For this 

reason, the common practice to shorten TE is to use the maximum possible gradient amplitude 

to achieve the desired b-value. 
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1.1.3 Signal modelling 

In the presence of a gradient, molecular diffusion attenuates the MR signal according 

to: 

     
            

where S and S0 are the voxel signal intensities with and without diffusion weighting 

respectively, D is the diffusion coefficient and b is the b-value. 

Contrary to what happens in DTI, the approach in (1.3) does not take the directional 

dependence of D into account. However, the contrast of a DW image can change due to 

patient orientation. In order to remove this spatial dependence from the image contrast, three 

DW images, corresponding to diffusion gradients applied along three orthogonal directions, 

can be used. If Sx, Sy and Sz are signal intensities measured in each of the three images, then 

the following relations hold: 

      
           

                
                

      
            

Where bxx, byy, and bzz are the b-values associated with each of the diffusion gradient 

directions. If the same b-value is used in all three directions, the geometric mean of the signals 

is: 

     √      
 

    
               

 
⁄     

        
 ⁄          

Where Dtrace is the sum of the diagonal elements of the matrix in Eq. (1.2). The trace is 

rotationally invariant, i.e. it has exactly the same value independently of the rotation applied 

to the coordinate system, which implies that Sxyz is independent of the patient orientation. 

In practice, signal attenuation in DWI is due to molecular diffusion and perfusion. The 

origin of the perfusion effect in signal attenuation lies in the movement of spins within 

randomly oriented capillaries, which mimics a pseudo-diffusion motion. The mathematical 

formalism describing both effects in signal attenuation is explained in section 2.1.  

1.2 The clinical application of Intravoxel Incoherent Motion – 

Diffusion Weighted Imaging (IVIM-DWI) in NAFLD – 

Literature review 

In conventional DWI, it is assumed that the signal decay has a mono-exponential 

behaviour as a function of b-value and that it is controlled by the value of the Apparent 
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Diffusion Coefficient (ADC). This coefficient is said to be apparent because it does not only 

measure the effect of molecular diffusion in tissues, but also the effect of the pseudo-diffusion 

in the capillary network within these tissues. Therefore, the signal variation that is measured 

from tissues with DWI as a function of b is better described by a bi-exponential model, which 

contains both the contributions from molecular diffusion (D) and pseudo-diffusion (D*) due to 

perfusion [19]. If for brain tissues, where the fraction of perfusion is low (<4%) [20], the mono-

exponential model is a good approximation, that is not the case for e.g. the liver, where the 

fraction of perfusion in the tissue is approximately 30% [21]. 

Intravoxel incoherent motion (IVIM) imaging is a method to quantitatively evaluate the 

microscopic translational motion that occurs in each image voxel [22]. In IVIM-DWI, images are 

acquired at multiple b-values and it has been shown [22] that it is capable of distinguishing D 

from D*. The relation between signal variation and b-values in the context of IVIM was 

described by Le Bihan [19] as: 

  

  
                                           

where Sb is the signal intensity for a given b-value, S0 is the signal intensity for b equal 

to zero, fp is the fraction of perfusion, D is the pure molecular diffusion (slow component), and 

D* is the pseudo-diffusion, or fast component [22]. 

Several studies have tried to show the clinical application of IVIM-DWI to liver imaging 

[4, 19, 20]. In [22] IVIM-DWI using 10 b-values was applied in the calculation of diffusion 

parameters in patients with cirrhosis. It was concluded that both D* and ADC are significantly 

reduced in cirrhotic patients when compared to healthy controls, while fp and D were similar 

in both groups. This appears to imply that in cirrhotic livers changes in liver architecture are of 

less importance when compared to changes in liver perfusion. However, the conclusions in [5] 

point in a slightly different direction. Here IVIM-DWI analysis was applied to an animal model 

of cirrhosis and results showed that in cirrhotic livers, both D* and D were decreased when 

compared to healthy liver. Contrary to [22], this suggests that both molecular diffusion and 

perfusion contribute to the changes in ADC observed in cirrhotic livers. 

Patel et al. [6] studied the use of IVIM DW-MRI and DCE-MRI alone and in combination 

for the diagnosis of liver cirrhosis. Their study suggested that all diffusion parameters (ADC, 

D*, D, f) were significantly reduced in the cirrhotic group when compared to the non-cirrhotic 

group. Although DCE-MRI results showed that both portal venous flow and total liver flow 

were decreased in cirrhosis, a significant correlation between CE-MRI and IVIM-DWI 

parameters was not found. 

Poyraz et al. [2] have studied the use of diffusion-weighted MRI on fatty liver. Their 

study indicated that liver fat content affected the ADC, and found a significant inverse 

correlation between hepatic fat fraction (HFF) measured by chemical shift GRE imaging and the 



 Gonçalo da Silva Brissos Chimelas Cachola  2013 

 

 

 Page 8  

 

ADC on DWI. The inverse correlation between HFF and ADC could be explained by the fact that 

increasing fat content of liver cells and extracellular fat accumulation would lead to reduced 

interstitial space and consequent increased restriction to water diffusion, resulting in lower 

ADCs. Guiu et al. [23], used IVIM DWI to study the difference between D, D* and fp in patients 

with type 2 diabetes with and without liver steatosis. Results showed that while D and D* are 

significantly decreased in steatotic when compared to non-steatotic livers, fp shows the 

opposite behaviour. It is suggested that the presence of large fat droplets in the cytoplasm of 

hepatocytes causes the displacement of the remaining contents of the cell peripherally, which 

leads to the decreased mobility of water molecules in the extra-cellular environment. In 

addition, the decrease in D* indicates that this structural change is associated with decreased 

parenchymal perfusion. Finally, the increase in fp is probably due to the shorter T2 of the 

tissue compartment signal, when compared to that of the vascular compartment, which 

causes an overestimation of the signal fraction of the vascular compartment [17, 20]. 

1.3 Optimal b-value distribution 

The importance of the choice of b-value distribution for IVIM-DWI data acquisition on 

parameter estimation has been stressed by several authors. In [20], Lemke et al. suggested 

that for an optimal estimation of the diffusion coefficient, additional higher b-values should be 

used, since their study only had one b-value higher than 200 s/mm2. In [6], Patel et al. 

attributed the absence of differences between normal and cirrhotic livers using IVIM 

parameters, obtained in previous studies, to the limited number of b-values used, especially 

below 200 s/mm2. Chandarana et al. [21], stated that there is no actual consensus about which 

b-values are optimal for liver imaging, and that their choice was completely arbitrary and 

based on the investigator’s experience and type of protocol. Zhang et al. [24], pointed that one 

of the key points of the IVIM model was the selection of proper b-values in order to provide 

maximum precision of diffusion parameters. Finally, Lemke et al. [20] evaluated the extent to 

which the bi-exponential signal decay could be attributed to the vascular compartment. Their 

study verified that the signal decay in IVIM-DWI of the pancreas in human in-vivo experiments 

was strongly influenced by the vascular component (fraction of perfusion>11%). Furthermore, 

it was observed that there was a significant increase of the fraction of perfusion with TE 

whereas the same type of dependence could not be observed in D and D*. It is suggested that 

this dependence is artificially created by the large difference between the T2 relaxation times 

of blood (T2=290 ms @ 1.5T) and (pancreatic) tissue (T2=46 ms @ 1.5T). In this situation, the 

signal drop in the lower b-value range is larger for the short than for the long T2 species, which 

leads to an overestimation of the fraction of perfusion. This dependence disappears when the 

T2 relaxation effects are taken into account in the computation of fp, D and D*. 

Although the calculation of diffusion parameters using IVIM-DWI is potentially very 

dependent on image acquisition parameters (e.g. TE, b-values) and T2 relaxation effects [17, 

20], the truth remains that most clinical applications of IVIM-DWI rely on an empirical choice 

of b-values and few studies have so far tackled the problem of systematically studying the 
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effects of b-value distribution on IVIM parameter estimation. In the studies of Lemke et al. [25] 

and Zhang et al. [24], two different methods have been respectively proposed to tackle the 

problem of selecting the optimal b-value distribution to decrease the errors of IVIM-DWI 

estimations. In [25], the optimal b-value distribution is obtained through Monte Carlo 

Simulations. In this method, optimum b-value distribution is searched by consecutively adding 

new b-values to the b-value sequence, performing Monte Carlo Simulations in each iteration in 

order to compute the relative errors of each IVIM parameter as: 
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And the relative overall error is: 

                    

where, fpi, Di and Di* are the fitted results of the ith repetition and fp, D and D* the values of 

the selected parameter set. The values, fp, D and D* are used to calculate the individual 

relatives errors instead. The optimal b-value distribution is selected by choosing the one that 

minimizes the overall error in 1.10. The main limitation of this method is that it is not certain 

that the obtained b-values are optimal for any number of b-values. 

In [24], the optimal b-value distribution is calculated through the minimization, in a 

least squares sense, of an error propagation factor. This study considered that in the process 

of model fitting, random noise in the DWI signal would propagate into the estimate of the 

model parameters. It assumes that given a set of biexponential parameters and a set of b-

values, an error propagation factor for each IVIM model parameter could be predicted 

(mathematically explained in section 2.1.2). Furthermore, it assumes that each parameter may 

contribute differently to the total propagated error. 

In this work, the effects of chosen b-value sequences and T2 relaxation effects on the 

error and bias associated with S0, fp, D, and D*, using the method presented in [24], will be 

systematically studied in both simulation studies and in-vivo experiments. 
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2. Materials and Methods
1
 

2.1 Optimization of b-value distribution through the minimization 

of an error propagation factor 

Considering equation (1.8), since D* is approximately two orders of magnitude greater 

than D, its influence can be neglected for b-values higher than 200 sec/mm2 [5] and D can be 

straightforwardly computed by a linear fit to the following expression: 

                          

Once D is known, fp and D* can be computed by performing a non-linear fit of the data 

to (1.8), in a least-squares sense, using the Levenberg-Marquardt method [24] and the cost 

function R’(fp, D, D*): 

             ∑(  
                     

 )
 
      

 

 

Where S’i and S’i,Data are the normalized signal intensities, computed as in (1.8) and 

measured experimentally (for b=bi) respectively. 

The calculation of D, D* and fp in two-steps greatly simplifies the computations, in 

particular because the number of non-linear parameters to be calculated from (1.8) reduces 

from three to two. 

In [24], it is noted that given a set of DWI measurements at multiple b-values bi, 

parameters, fp, D*, D, can be determined, in a least-squares sense by minimizing the sum of 

squared residues between the data and the model fit R(S0, fp, D, D*): 

              ∑                     
  

  

   

       

where Nb is the total number of b-values and Sbi is the signal measured at bi. In order to 

minimize (2.3), partial derivatives with respect to S0, fp, D, and D* have to be nulled: 
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1 The algorithms that are presented in this chapter were implemented in Matlab (The 

Mathworks Inc., Natick, MA). 
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where x(m) (m = 1, 2, 3, 4) represent S0, fp, D, and D*, respectively.  

After mathematical manipulations (see Appendix A), an error propagation factor ξ can be 

defined as the ratio of the relative error in a model parameter to the relative input noise δ/S0: 

     
         ⁄

   ⁄
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Where  is the noise standard deviation, x(n) represent S0, fp, D, and D* and x(n) is the 

column vector of estimation errors for each parameter and n runs over the number of 

parameters, four in this case. The elements of A-1 and the partial derivatives S/x are defined 

as in Appendix A. 

In order to calculate the total error        that is propagated into IVIM-DWI 

parameters, the errors of D, D* and fp are summed: 

                                

Where Wfp, WD* and WD are the weights associated with the error propagated into fp, D* and 

D respectively. The calculation of the optimum b-value distribution to estimate a given set of 

parameters D, D* and fp is performed by means of minimizing (2.5) with respect to bi using the 

Levenberg-Marquardt method. 

In practice, the IVIM-DWI signal consists of the contribution of tissues with different 

native D, D* and fp values. Therefore, a natural extension of (2.6) is to consider the 

contribution of various tissues to the total error -   ̅      

  ̅     ∫ ∫ ∫     

    

    

     

     

    

    
                               

where Xmax and Xmin are the expected range values of each parameter. 

2.2 Simulation studies 

The influence of b-value sequence and T2 relaxation effects on IVIM-DWI estimations 

was investigated in simulation studies that were divided in two categories. First, the 

dependence of the propagated error on parameters such as the number of b-values used to 

sample the signal (Nb), echo time (TE), spin-spin relaxation time (T2) fraction of perfusion (fp), 

perfusion related diffusion (D*) and perfusion rate (PR= fp × D*) was investigated. In a second 
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phase, the performance of each of the b-value distributions in estimating IVIM-DWI 

parameters was tested against the presence of noise through Monte Carlo simulations. 

In all simulations, the Levenberg-Marquardt [24] minimization algorithm was used to 

minimize the total propagated error (detailed in section 2.1.2) into IVIM-DWI parameters. The 

minimization would stop if the number of iterations exceeded 800 or if the variation of the 

cost function from iteration to iteration would be smaller than 1e-6. In order to avoid local 

minima of the cost function, the Levenberg-Marquardt algorithm was always applied to a set 

of twelve or thirteen different starting b-value sequences, finding then the distribution with 

the minimum overall propagated error, considering this the optimal b value distribution. 

In the first phase of the study, the dependence of the propagated error on Nb, TE, T2, 

fp, D* and PR was investigated in three steps: 

1) The influence of D*, fp and Nb on the propagated error of IVIM-DWI estimations was 

investigated. For that, the optimal b-value sequence with equal weights was used to 

calculate the total and partial errors propagated to D, D* and fp. The number of b-

values Nb, fp and D* were varied according to Nb=5, 8, 10 and 16, fp=0.1, 0.2, 0.3 and 

0.4 and D*=0.01, 0.03, 0.08, 0.10 and 0.15. Further simulation parameters were T2=34 

ms [22], D=0.00123 mm2/s [22], S0 =100, and considering no transverse relaxation 

effects. 

2) The influence of b-value distribution on the propagated error of IVIM-DWI estimations 

was investigated. The same simulation parameters of the previous step were used, 

using optimum b-value sequence with equal weights and conventional sequence and 

comparing results obtained with each. 

3) The influence of PR variation on the propagated error of IVIM-DWI estimations was 

investigated. For that, the same simulation parameters were used and PR was varied in 

a fixed interval in two different ways. In the first situation, PR was varied by changing 

D*, while keeping fp fixed (=0.3), whereas in the second situation the reciprocal was 

considered (D*=0.08 mm2/s). Parameter PR was varied according to PR=0.003, 0.006, 

0.009, 0.012, 0.015, 0.018, 0.021, 0.024, 0.027, 0.030, 0.033, 0.036, 0.039, 0.042 and 

0.045. 

In a second phase, the performance of each of the b-value distributions in estimating 

IVIM-DWI parameters was tested against the presence of noise through the performance of 

Monte Carlo simulations (detailed in section 1.3), using three types of b-value combinations, 

derived from the first set of simulations: 

- Conventional sequence: the b-values are chosen as used in conventional clinical 

applications (e.g. 0 5 15 30 40 80 100 200 400 800 s/mm2); 

- Optimum b-value sequence with equal weights: the b-values are obtained by the 

minimization of 2.1 with respect to b and considering Wf=WD*=WD= 0.25; 
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- Optimum b-value sequence with different weights: the b-values are obtained as in 

Optimum b-value sequence with equal weights, but considering that Wf≠WD*≠WD.  

Here, the propagated error was calculated not for one specific D* but for a range of D* 

values in the interval ranging from 0.01 to 0.15 using 2.7. The weights WD, WD* and Wf were 

extracted from step three of the first phase of the study by fitting the lowest (possible) order 

polynomial to the data. Bias and Error presented in all results were calculated as explained in 

section 1.3. This phase was performed in two steps: 

1) The influence of b-value distribution, noise and T2 relaxation effects on Bias and Error 

of IVIM-DWI estimations was investigated. For that, the three types of b-value 

sequences were used to calculate the Error and Bias of D, D* and fp. The number of b-

values Nb and fp were 10 and 0.3, respectively. Further simulation parameters were 

T2=34 ms, D=0.00123 mm2/s (liver parameters) measured at 3T [22], S0 =100. Firstly, 

in order to study noise influence, SNR was varied according to SNR=200, 100, 50, 40, 

30 and 20 and relaxation effects were not included. Secondly, to study the influence of 

T2 relaxation effects, TE was varied according to TE=50, 60, 70, 80, 90 and 100ms and 

SNR was kept constant at 50. 

2) The influence of the number of b-values on Bias and Error of IVIM-DWI estimations 

was investigated. For that, Nb=8, 10 and 16 were used to calculate the Error and Bias of 

D, D* and fp. Optimal b-value sequence with different weights and considering fp=0.3 

were used. Further simulation parameters were the same as before and relaxation 

effects were not included. 

2.3 In-vivo studies 

The influence of TE and b-value sequence on IVIM-DWI estimations was 

investigated in in-vivo studies that were divided in two phases. First, the dependence 

of IVIM-DWI estimations on the number of b-values used to sample the signal (Nb) was 

investigated in data that had been previously acquired in the framework of a running 

project. The clinical population consisted of 34 diabetes type II patients (21 females 

and 13 males with mean age 60±8) and 40 controls (25 females and 15 males with 

mean age 49±7) and all gave written informed consent. The patient group consisted of 

men and women with type II diabetes, diagnosed at least 1 year prior, age 40-74 years. 

The control group was age matched to the patient group and without a history of 

neuropsychiatric, renal, liver, heart, ocular or any other severe non-age related 

disease, not related to diabetes. A sub-group of 10 patients having Steatosis was 

created. 

Magnetic resonance liver imaging was performed on a whole body 3T imaging 

system (Magnetom Trio Tim, Siemens Medical Solutions, Erlangen, Germany) using a 

4-channel or a 16-channel body coil. Respiratory triggered IVIM imaging was acquired 

using conventional SE-EPI with acquisition parameters: FOV=400×400 mm, 3.12×3.12 
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mm in-plane resolution, 1 slice 10 mm thick, TR/TE=3800/67 ms, parallel imaging 

factor 2, 3 or 5 averages using the 4- or 16-channel coil respectively, 16 b-values (0, 5, 

10, 15, 20, 25, 30, 35, 40, 50, 70, 90, 100, 200, 400, 800). IVIM-DWI estimations using 

these data were recomputed with 8 (0, 20, 40, 80, 100, 200, 400, 800) and 10 (0, 5, 15, 

30, 40, 80, 100, 200, 400, 800) b-values, and compared with the original estimations 

that were obtained with 16 b-values. 

In a second phase, the performance of each of the b-value distributions, 

conventional sequence, optimum b-value sequence with equal weights and optimum 

b-value sequence with different weights, as well as the influence of T2 relaxation 

effects in estimating IVIM-DWI parameters was tested in healthy volunteers. Eight 

healthy volunteers (4 females and 4 males, mean age 22±1) were enrolled and gave 

written informed consent. This volunteers were separated in two groups, one to study 

the influence of T2 relaxation effects with 2 volunteers (2 females, with 22 and 24 

years old), and the other one to study the performance of each b-value distribution (2 

females, 4 males, mean age of 22±1). 

On the first group, magnetic resonance liver imaging was performed on a 

whole body 3T imaging system (Magnetom Trio Tim, Siemens Medical Solutions, 

Erlangen, Germany) using a 16-channel body coil. Respiratory triggered IVIM imaging 

was acquired using conventional SE-EPI with acquisition parameters: FOV= 300×300 

mm, 3.12×3.12 mm in-plane resolution, 1 slice 10 mm thick, TR/TE=3800/67(80) ms, 

parallel imaging factor 2, allowing the study of the influence of T2 relaxation effects by 

varying TE (67 and 80ms). 

On the second group, respiratory triggered IVIM imaging was acquired using 

conventional SE-EPI with acquisition parameters: FOV=390×390 mm (male patients) 

and 300×300 mm (female patients), 3.12×3.12 mm in-plane resolution, 1 slice 10 mm 

thick, TR/TE=3800/67 ms, parallel imaging factor 2, 3 , 10 b-values: conventional 

sequence (0, 5, 15, 30, 40, 80, 100, 200, 400, 800), optimum b-value equal weighted 

sequence (0, 0, 15, 65, 112, 133, 208, 243, 340, 800) and optimum b-value different 

weighted sequence (0, 0, 9, 13, 38, 70, 90, 153, 220, 800). 
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3. Results 

3.1 Simulation studies 

3.1.1 Influence of D*, fp and number of b-values on the relative and total 

propagated error of IVIM-DWI estimations 

The influence of D*, fp and Nb on the relative and total propagated error of IVIM-DWI 

estimation was studied. In figs 3.1 and 3.2, it is possible to notice the differences in the total 

error, while varying PR by fixing D* or fp, as well as the differences using various Nb values. 

Figure 3.3 shows the influence of varying PR with fixed D* on the relative error of each IVIM-

DWI estimated parameter. 

 

Figure 3.1 – Influence of the number of b-values and fraction of perfusion (fp) in the total error for 

D*=0,08mm
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Figure 3.2 - Influence of number of b-values and pseudo diffusion (D*) in total error for fp=0,3. 

 

Figure 3.3 - Influence of fraction of perfusion (fp) in the relative propagated parameter error for 

D*=0,08 mm
2
/s, considering 10 b-values. 

Results show that the total error that is propagated into D, D* and fp strongly depends 

on the way by which the perfusion rate is varied and less so on Nb. Figures 3.1 and 3.2 show 

that increasing the perfusion rate (PR) by increasing fp while keeping D* fixed at the value that 

is currently assumed for healthy liver parenchyma [26], the error tends to decrease with both 

fp and Nb. On the other hand, if PR is increased by keeping fp fixed at the value that is 

currently assumed for healthy liver parenchyma [26], and by increasing D*, then the error still 
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with Nb depends on the value of D*. If for larger values of D*(>0.08), the error decreases with 

Nb, that is not so for smaller D* values. It is worth mentioning that beyond Nb=10, the error 

decreases only slightly. Finally, in fig. 3.3 it can be seen that D* is the parameter that most 

contributes to the total error, contrary to what has been assumed, and that this behaviour is 

independent of fp and D* (results shown in Appendix B.1). 

3.1.2 Comparison between conventional b-value distribution and optimal b-

value distribution with equal weights 

In these simulations, the influence of the type of b-value distribution on the error 

propagated to IVIM-DWI parameters was studied. Figs 3.4 and 3.5 show the variation of the 

total error as a function of PR by respectively fixing D* or fp, for both conventional b-value 

distribution and optimal b-value distribution with equal weights. 

 
Figure 3.4 – Influence of fp in total error for conventional distribution (eq) and optimum b-value 

distribution equal weighted (op), considering 10 b-values in both. 
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Figure 3.5 – Influence of D* in total error for conventional distribution (eq) and optimum b-value 

distribution equal weighted (op), considering 10 b-values in both. 
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Figure 3.6 – Variation of the relative error of IVIM parameters as a function of PR : A) Constant 

D*and B) Constant fp, considering 10 b-values in both. 

Results show that the relative errors of D, D* and fp strongly depend on the way by 

which PR is varied. Fig 3.6 A) shows that for increasing values of PR, by increasing fp while 

keeping D* fixed at the value that is currently assumed for healthy liver parenchyma [26], the 

relative error of D* tends to decrease, the relative error of D tends to increase and the relative 

error of fp remains approximately the same. On the other hand, if PR is increased by keeping 

fp fixed, and by increasing D*, the relative error of D* tends to increase while both relative 

errors of D and fp tend to decrease. However it is important to note that the D* relative error 

is almost always larger than 50%, thus consistently giving the largest contribution to the total 

error. This suggests that the error contributions from different IVIM parameters to the total 

error are considerably different, contrary to what has been assumed. 

3.1.4 Evaluation of the number of b-values used in the optimal different 

weighted b-value sequence. 

Results of the error and bias associated with IVIM-DWI parameters in the presence of 

noise are presented for the case where the sequence of b-values was optimized to minimize 

the errors propagated to IVIM parameters, but considering different weights for D, D* and fp. 

A 

B 



 Gonçalo da Silva Brissos Chimelas Cachola  2013 

 

 

 Page 22  

 

Figs 3.7 and 3.8 respectively show the error and bias, of each IVIM-DWI parameter as a 

function of SNR, for different numbers of b-values and varying SNR. 

 

Figure 3.7 - Error percentage for: A) fp, B) D, C) D* ; with 8 (blue), 10 (red) and 16 (green) b-

values, for optimum different weighted b-value sequence, fp=0.3 (note: the points not visible in the 

plot are considered outliers). 
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Figure 3.8 – Estimation bias for: A) fp, B) D, C) D*; with 8 (blue), 10 (red) and 16 (green) b-values, 

for optimum different weighted b-value sequence, fp=0.3 (note: the points not visible in the plot are 

considered outliers). 

 Results show (fig. 3.7) that independently of the SNR, the errors of D, D* and fp 

decrease with the number of b-values in the b-value sequence. However the same thing did 

not happen with respect to bias (fig. 3.8). Here, if with respect to fp and D, the number of b-

values did not have a significant influence on parameter bias, the same did not hold for D*. 

The bias for D* is in general lower for 10 b-values except for SNR smaller than 30, where the 

lowest bias was obtained with 16 b-values. 
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3.1.5 Evaluation of the conventional distribution, optimum b-value equal-

weighted distribution and optimum b-value different-weighted 

distribution for 10 b-values. 

Simulations were carried-out in order to investigate the performance of conventional, 

optimal equal-weighted and optimal different-weighted b-value sequences in estimating IVIM 

parameters in the presence of noise. Figures 3.9 and 3.10 respectively show the variation of 

bias and error of fp, D and D* as a function of SNR. 

 

Figure 3.9 - Error for: A) fp, B) D, C) D*, with optimum different-weighted (blue), optimum equal-

weighted (red) and conventional (green) b-value sequences, considering 10 b-values and fp=0.3. 
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Figure 3.10 – Estimation bias for: A) fp, B) D, C) D*, with optimum different-weighted (blue), 

optimum equal-weighted (red) and conventional (green) b-value sequences, considering 10 b-values 

and fp=0.3. 

Results showed that independently of the number of b-values (results not shown), the 

estimation error and bias for fp and D are almost equal for all sequences. However, in terms of 

D* this is not the case, as it can be observed from figs 3.9 and 3.10. For D*, the error and bias 

are generally lower for optimum b-value sequence with different weights except for SNR<30. 

However, in clinical practice an SNR smaller than 30 is not desirable since the estimation 
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significantly increases beyond this point. Therefore, in the lowest error and bias are obtained 

with the optimum different-weighted b-value sequence. 

In the next set of simulations, the effect of T2 relaxation on IVIM-DWI parameter 

estimation was investigated. Figures 3.11 and 3.12 respectively show the error and bias of fp, 

D and D* as a function of TE for conventional, optimal equal-weighted and optimal different-

weighted b-value sequences. 

 

Figure 3.11 – Estimation error for: A) fp, B) D, C) D*, with optimum different-weighted (blue), 

optimum equal-weighted (red) and conventional (green) b-value sequences, considering 10 b-values 

and fp=0.3. 
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Figure 3.12 – Estimation bias for : A) fp, B) D, C) D* with optimum different-weighted (blue), 

optimum equal-weighted (red) and conventional (green) b-value sequences, for 10 b-values, fp=0.3 

and SNR=50. 

Similarly to previous results, simulations showed that independently of the number of 

b-values (results not shown), the estimation error and bias for fp and D are almost equal for all 

b-value sequences. However, in terms of D* this is not the case, as it can be observed from figs 

3.11 and 3.12. The estimation error and bias of D* are generally lower for optimum b-value 
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sequence with different weights for TE smaller than 70. However, when SNR becomes very low 

due to T2 relaxation effects, i.e. for TE>70ms, the conventional distribution is actually better 

since it yields smaller bias and error. 

3.2 In Vivo Studies 

3.2.1 Evaluation of the number of b-values that is used with the conventional 

b-value sequence in IVIM-DWI liver studies 

IVIM-DWI liver data from the clinical population that was described in “Materials and 

Methods” was retrospectively analysed and parameters were estimated considering b-value 

sequences with varying Nb values. The goal was to investigate whether the statistical 

significance of differences in parameters of patients and controls were independent of Nb. 

Figure 3.13 shows a typical example of the original IVIM-DWI data (16 data points 

corresponding to the total number of b-values that were considered in the acquisition) and 

corresponding data fit. 

 

Figure 3.13 – Example of the acquired plot for a 16 b-value conventional sequence, for a Control 

subject. 

Table 3.1 shows the mean estimation (and associated standard deviation) of D, D* and 

fp for patients and controls, in three different situations: 1) Considering all points in the data 

fit (16 b-values); 2) Selecting 10 out of 16 b-values (10 b-values); 3) Selecting 8 out of 16 b-

values (8 b-values). 
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Table 3.1 - Influence of the number of b-values in in-vivo IVIM-DWI parameter estimation. 

  

Fp D(*10-3mm2/s) D*(*10-3mm2/s) 

  

Mean StdDev Mean StdDev Mean StdDev 

Patients 

8 b-

values 0,28 0,10 1,13 0,29 45,60 23,79 

10 b-

values 0,27 0,10 1,13 0,29 71,00 40,10 

16 b-

values 0,26 0,09 1,13 0,29 62,23 24,85 

Controls 

8 b-

values 0,30 0,12 1,15 0,31 47,32 22,08 

10 b-

values 0,29 0,12 1,15 0,31 77,15 55,27 

16 b-

values 0,28 0,12 1,15 0,31 70,61 46,71 

 Results show that the estimated value for D remained the same for both patients and 

controls, independently of Nb. This is to be expected since the decrease in Nb only affected the 

lower b-value range (<200 s/mm2), thus not influencing the calculation of D. However, the 

dependence of the estimated values for fp and D* are much larger, especially in the case of D* 

where the value estimated for Nb=8 is approximately half of that calculated for Nb=16. 

 Considering the differences between patients and controls, it is possible to say that 

they were very similar for the sequences with 10 and 16 b-values, however the same thing did 

not happen with 8 b-values, where the difference between D* of Patients and Controls is not 

significant, suggesting a dependence of Nb for the diagnosis of liver diseases. 

3.2.2 Comparison between Controls and Patients with Steatosis 

The differences in IVIM-DWI estimated parameters between controls and the sub-

group of patients with Steatosis was investigated as a function of Nb. Table 3.2 shows the 

mean and standard deviation for each IVIM-DWI estimated parameter, for both patients with 

Steatosis and controls, and similarly to what was previously described, considering b-value 

sequences with Nb=8, 10 and 16. 



 Gonçalo da Silva Brissos Chimelas Cachola  2013 

 

 

 Page 30  

 

Table 3.2 - Comparison between the Control group and the Patient with Pathology group, 

regarding IVIM-DWI parameters estimation. 

  

Fp D(*10-3mm2/s) D*(*10-3mm2/s) 

  

Mean StdDev Mean StdDev Mean StdDev 

Patients 

with 

Steatosis 

8 b-values 0,31 0,11 1,06 0,13 40,25 24,15 

10 b-

values 0,28 0,11 1,06 0,13 73,37 39,60 

16 b-

values 0,28 0,10 1,06 0,13 56,56 11,82 

Controls 

8 b-values 0,30 0,12 1,15 0,31 47,32 22,08 

10 b-

values 0,29 0,12 1,15 0,31 77,15 55,27 

16 b-

values 0,28 0,12 1,15 0,31 70,61 46,71 

Results show that, again, the estimated value for D remained the same for both 

patients and controls, independently of Nb. Like in the previous section, this is to be expected 

since the decrease in Nb only affected the lower b-value range (<200 s/mm2), thus not 

influencing the calculation of D. However, the dependence of the estimated values for fp and 

D* are much larger, especially in the case of D* in the Steatosis group, where the estimations 

were completely different depending on the number of b-values used. 

 Considering the differences between patients with pathologies and controls, it is 

possible to say that they were very similar for the sequences with 8 and 10 b-values, however 

the same thing didn’t happen with 16 b-values, where the difference between D* of Patients 

with pathologies and Controls, especially for D* is much higher than the differences obtained 

with other Nb. 

3.2.3 Evaluation of the influence of TE on IVIM-DWI parameter estimation 

Here the influence of the echo time (TE) in IVIM-DWI parameter estimation is studied 

in-vivo for two subjects with the conventional b-value sequence. Figure 3.16 respectively 

shows the plots of data and model fit for TE=67ms and 80ms. 
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Figure 3.14 – Plot of data and model fit for TE= (A) 67ms and (B) 80ms, for subject 1. 

Table 3.3 - Influence of TE in IVIM-DWI parameter estimation, for a 10 b-value conventional 

sequence. 

Subject TE (ms) Fp D(*10-3mm2/s) D*(*10-3mm2/s) 

Patient 1 
67 0,23 1,49 45,69 

80 0,54 0,68 12,78 

Patient 2 
67 0,25 1,24 42,72 

80 0,27 1,09 156,37 

B
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Table 3.3 shows IVIM-DWI parameter estimation from data obtained with both values 

of TE. Results show that all the parameters tend to vary with TE, especially D* and fp which 

have a much larger variation. Also for higher TE, it is possible to note that some of estimations, 

especially D* and fp have values that are divergent from the known values for healthy liver 

parenchyma [26]. 

3.2.4 Evaluation of the conventional distribution, optimum b-value equal-

weighted distribution and optimum b-value different-weighted 

distribution for 10 b-values 

Data was acquired from six healthy volunteers (details in “Materials and Methods”) 

with 3 b-value sequences: (A) Conventional, (B) Optimal equal-weighted, (C) Optimal different-

weighted. Subsequently, IVIM parameter estimation was carried-out with the three data-sets, 

for each subject. Table 3.4 shows the mean and standard deviation of each IVIM-DWI 

parameter, for each b-value sequence and for each subject. 

Table 3.4 - Influence of the type of b-value sequence used for IVIM-DWI parameter estimation. 

 

Fp D(*10-3mm2/s) D*(*10-3mm2/s) 

 

Mean StdDev Mean StdDev Mean StdDev 

Conventional 0,42 0,10 1,46 0,56 52,85 29,61 

Eq. Weights 0,45 0,13 1,33 0,26 59,41 26,83 

Dif. Weights 0,40 0,17 1,51 0,42 93,37 47,17 

 Results show that the type of b-value sequence that is used in the acquisition has a 

large influence on IVIM parameter estimation, as it was previously shown with simulation 

studies. While fp and D remained approximately the same, independently of the b-value 

sequence that was used, D* is completely different when using the optimum different-

weighted sequence and when compared with both conventional and optimal equal-weighted 

b-values sequences, having a value that is much closer to the reference for healthy liver 

parenchyma [26]. 
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4. Discussion 

4.1 Influence of b-value sequence 

The existence of an optimum sequence for NAFLD detection and staging was studied. 

This subject does not have an actual consensus [21], and Zhang et al [24] pointed out that one 

of the most important key points of the IVIM model was actually the selection of b-values, the 

so called optimum b-values. This has been the object of study of few groups, with e.g. Lemke 

et al. [25] actually showing that the optimum b-value distribution in their study had in some 

cases a relative overall error two times smaller than the normally used b-value distribution. 

Our simulation studies agreed with Lemke et al. [25], showing that the optimum b-

value sequence considering different weighting for each IVIM-DWI parameters had the smaller 

error and bias of all three types of sequence. Another important point to mention is that the 

conventional distribution is actually better, for SNR smaller than 50, than the optimum 

distribution with equal weights, showing that considering equal weights for all the parameters 

is not a good approximation. 

Our in Vivo studies were in agreement with the simulation studies since our different 

weighted sequence showed IVIM parameter values closer to the referenced ones for healthy 

liver parenchyma [26]. 

Thus, the b-value sequence (conventional) that is currently used in clinical practice, 

will lead in general to larger error and bias, thus being unreliable. In addition, the use of an 

optimal b-value sequence where each parameter is considered to contribute equally to the 

total error in the estimated parameter is inaccurate because it relies on the wrong assumption 

that each parameter contributes indeed equally to the total error. Therefore we can conclude 

that, even when using an optimum b-value sequence, considering different weights for each 

parameter is extremely important, since each parameter will have different contributions for 

the total error. 

4.2 Influence of Nb 

Our study is consistent with what has been referred by Patel el al. [6] and Lemke et al. 

[20]. Patel [6], said that the largest limitation of previous studies was the limited number of b-

values used which implied an absence of differences between normal and cirrhotic livers using 

IVIM parameters. Lemke et al [20] also suggested that additional b-values should be used in 

their study for an optimal estimation of the diffusion coefficient.  

In our simulation studies, especially in section 3.1.4, we could notice a great difference 

between using 8, 10 or 16 b-values. We noticed that bias and error behave differently, with 

bias remaining approximately constant for D and fp, while decreasing SNR, while larger errors 

were found at low SNRs. We also noticed that increasing the number of b-values that was used 
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to sample the signal led to a decrease in the error of each parameter. However a 10 b-value 

sequence had, generally, a smaller bias than a 16 b-value sequence with exception for SNR 

smaller than 30.We have hypothesized that these incongruities may be explained by the effect 

of noise in the extra b-values which would counteract the effect of having more data sampling, 

which lead us to think that the fact that for SNR=20, the bias for 16 b-values is smaller than for 

10 b-values, may be explained by the fact that the effect of having more data sampling 

overcomes the effect of noise in extra b-values for low SNRs. 

4.3 Influence of TE 

Lemke et al [20] and Cho et al [27] observed that there was a significant increase of 

the fraction of perfusion with TE whereas the same type of dependence was not observed in D 

and D*. 

Our study lacked a significant number of patients to make a truly valuable statement 

regarding this subject. In simulation studies, section 3.1.5, we have noticed that increasing the 

TE would lead to larger error and bias of all parameter estimations. This could be shown in in-

vivo studies where, for longer TEs, the values of the parameter estimations deviate from the 

known assumed values for healthy liver parenchyma [26]. However for both subjects, fp 

increased with TE as in [17, 21]. 

This may prove the point defended for both studies which says that this fp 

dependence is artificially created by the large difference between the T2 relaxation time of 

blood and tissue, since in this situation (longer TEs) the signal drop in the lower b-value range 

is larger for the short (liver parenchyma) than for the long (blood) T2 species, which leads to an 

over estimation of fp. It is therefore extremely important that T2 relaxation effects are 

included in the model, thus allowing the possibility to obtain more accurate estimations, 

especially regarding fp. 

4.4 Influence of Steatosis 

There are various studies with different results considering the influence of NAFLD on 

IVIM-DWI parameters. However, they all agreed that D* always decreases significantly in a 

liver showing signs of fibrosis [5, 6, 22] or Steatosis [2, 23], leading, consequently, to a 

decrease in ADC. With respect to fp and D, the influence of the hepatic tissue changes in 

NAFLD on the variation of these parameters is still controversial [5, 22]. 

Our study reveals that the parameter which is more affected by changes in acquisition 

parameters is D*. A decrease in D is also observed, as stated by Chow et al. [5] and only a slight 

decrease in fp, thus in opposition to Patel et al [6] and Guiu et al [23].  

However, an important thing to mention is that the differences between patients with 

Steatosis and controls were extremely influenced by the number of b-values that were used to 
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sample the data, especially regarding D* estimation. Firstly with 16 b-values, we noticed a 

drop of almost 20%, in D* estimation from Controls to Patients with Steatosis group, opposing 

to the, approximately, 5 and 15% for 10 and 8 b-values respectively. Also, the values for D* 

with 8 b-values in the Control group, were much smaller when compared with 10 and 16 b-

values with values approximately 39% and 33% smaller, respectively. This would lead to 

different diagnosis depending on the number of b-values used in the acquisition, which would 

make this method unreliable. It is believed that this aspect needs a closer analysis, with the 

performance of more studies in the future. 

It is important to note that the influence of each variable was always largest for D*. 

This allows us to hypothesize that when we are calculating an optimum b-value sequence, we 

are actually trying to reduce the relative error of D* since it has the largest contribution for the 

total propagated error. 
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5. Conclusion and future work 

We studied the dependence of IVIM-DWI estimations on acquisition parameters. For 

that we proposed a new way of choosing which b-value distribution should be used to stage 

NAFLD. To find this distribution we firstly performed a simulation study and lastly an in vivo 

study, to confirm its effectiveness. 

During our study we found that there are a huge number of factors which influence the 

effectiveness of each b-value sequence to estimate IVIM-DWI parameters, namely, the number 

of b-values, TE, T2, perfusion rate and type of b-value sequence. This implies that, depending 

on the type of tissue being studies, the optimum b-value sequence will always be different. 

Also, we could conclude that the sequences normally used in clinical applications 

nowadays are not the best ones and that this should be revised since it can have a huge influence 

on patient diagnosis. 

For future work we advise adding T2 relaxation effects to the IVIM fitting model to 

obtain more accurate parameter estimations. Another important conclusion is that the use of 

more b-values in the data acquisition does not necessarily imply smaller error and bias in 

parameter estimation 

Finally, we noticed that in the presence of Steatosis, D and D* decreased suggesting 

that both molecular diffusion and perfusion change with the presence of fat in the liver, being 

possible to eventually use D and D* as markers of the existence of NAFLD, making IVIM-DWI 

a usable and, more importantly, non-invasive method to diagnose NAFLD. However its ability 

to distinguish pathological from healthy liver, in the context of NAFLD, is extremely dependent 

of the number of b-values used. This requires further research in order to determine the best 

methodology to find the optimum number of b-values that should be used in IVIM-DWI to 

diagnose NAFLD. 
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7. Appendix 

A. b-value optimization through the minimization of an error 

propagation factor 

 

In [24], considering IVIM-DWI model equation A.1, 

  

  
                                        

it is noted that given a set of DWI measurements at multiple b-values bi, parameters, fp, D*, D, 

can be determined in a least-squares sense by minimizing the sum of squared residue between 

the data and the model fit R(S0, fp, D, D*), 

             ∑                    
  

  

   

       

where Nb is the total number of b-values and Sbi is the signal measured at bi. In order to 

minimize (2.5), partial derivatives with respect to S0, fp, D, and D* have to be nulled:, 

  

     
 ∑{  [           

]  
        

     
}                 

  

   

       

where x(m) (m = 1, 2, 3, 4) represent S0, fp, D, and D*, respectively. By the Taylor’s theorem, in 

the limit of increasing SNR, the term in square brackets of the last equation can be 

approximated to: 

∑ (     
        

     
)

 

   

       

Where    is the column vector of estimation errors for each parameter. Replacing this 

approximation in the first equation we get, 

∑{[∑ (     
        

     
)

 

   

     ]  
        

     
}                 

  

   

       

Where Ɛ is the noise in the measured signals, the equation, if rearranged and expressed in 

matrix form, can be re-written as: 
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Where B(m)= ∑ (     
        

     
)

  
   , A=JTJ and J is the Jacobian matrix of S(x). The variance of 

model parameters, assuming the identical distribution and independency of the signal noise, 

can be obtain as, 

         [  ∑ ∑                   ∑(
        

     
 
        

     
)

  

   

 

   

 

   

]       

Where    is the variance of noise. An error propagation factor ξ is defined as the ratio of the 

relative error in a model parameter to the relative input noise δ/S0, 

     
         ⁄

   ⁄
  

 
  

    
√∑ ∑ [                  ∑(

        

     
 
        

     
)

  

   

] 

 

   

 

   

       

The partial derivatives are 

  

   
                               

  

   
     

                                   

  

   
                                       

  

   
                                              

 

Thus, if we keep each parameter over their expected ranges for the type of tissue we 

are interested in, we can obtain the error propagation factor for each on of them, and adjust 

the b values in order to minimize this error. Since we are normally interested in differentiating 

tissues, a generalization of equation 2.6 can be re-written as: 

 ̅  ∫ ∫ ∫    

    

    

     

     

    

    
                              

where Wx are positive weighting factor specified by the user and Xmax and Xmin are the expected 

range values of each parameter. 
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B. Simulation Studies additional images 

B.1 

 

Figure B.1 - Study of influence of D* in parameters relative propagated error for a fp=0.3, considering 10 b-values. 
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