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ABSTRACT  

 

Ionic liquids (ILs) are promising materials which have been used in a wide range of applications. 

However, their major limitation is their physical state. In order to address this challenge, a self-

supported IL-based material was developed by combining gelatine with an IL, originating a quasi-solid 

material named Ion Jelly (IJ). This is a light flexible material, dimensionally stable, with promising 

properties to develop safe and highly conductive electrolytes. This thesis is focused on the 

characterization of IJ films based on different ILs. The conductive mechanisms of IJ materials were 

studied using dielectric relaxation spectroscopy (DRS) in the frequency range 10
-1

−10
6
 Hz. The study 

was complemented by differential scanning calorimetry (DSC) and pulsed field gradient nuclear 

magnetic resonance (PFG NMR) spectroscopy.  

A glass transition was detected by DSC for all materials allowing to classify them as glass 

formers. From dielectric measurements, transport properties such as mobility and diffusion coefficients 

were extracted. Moreover, it was found that the diffusion coefficients and mobility are similar for the IL 

and IJ, especially for the IL EMIMDCA. 

Since for BMIMDCA, those properties significantly change upon hydration, the influence of 

water content [0.4 - 30% (w/w)] was also studied for the ILs. In particular for BMPyrDCA with 30% 

water, it was analyzed the reorientational polarization by the complex permittivity and electric modulus, 

from which three different processes were identified: a secondary relaxation with Arrhenian 

temperature dependence, the process that is believed to be behind the dynamic glass transition and 

the mobility of charge carriers. 

An application of the IJs was successfully explored with a chemoresistive gas sensor made up 

by different IJs as active layer, which is an electronic nose formed by an array of such sensors. The 

performance of this e-nose revealed its ability to correctly detect eight common volatile solvents.  

 

 

Keywords: Ionic liquids, Ion Jelly, Dielectric Relaxation Spectroscopy, Differential Scanning 

Calorimetry, PFG – nuclear magnetic resonance.  
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RESUMO 

 

Os líquidos iónicos (LIs) são materiais promissores utilizados numa vasta gama de aplicações. 

No entanto, a sua maior limitação é o seu estado físico. A fim de enfrentar este desafio, foi 

desenvolvido um novo material baseado em LIs, o qual resultou da combinação de gelatina com um 

LI, originando um material quase sólido denominado Ion Jelly (IJ). Este é um dispositivo flexível, leve, 

dimensionalmente estável com propriedades promissores para desenvolver electrólitos seguros e 

condutores. Esta tese está focada na caracterização de IJs baseados em diferentes LIs. Para a 

caracterização dos IJs foi utilizada espectroscopia de relaxação dieléctrica (ERD) na gama de 

frequências 10
-1

-10
6
 Hz. O estudo foi complementado por calorimetria de varrimento diferencial (CVD) 

e gradiente de espectroscopia de ressonância nuclear magnética de campo pulsado (GE RMN).  

Por CVD detectou-se uma transição vítrea para todos os materiais, o que permite classificá-los 

como materiais formadores de vidro. Das medidas dieléctricas, foram obtidas propriedades de 

transporte como a mobilidade e coeficientes de difusão. Para além disso, verificou-se que os 

coeficientes de difusão e mobilidade são semelhantes para o LI e IJ, especialmente para o LI 

EMIMDCA. 

Uma vez que para o LI BMIMDCA essas propriedades alteraram significativamente após 

hidratação, a influência do teor em água [0.4-30% (w / w)] do LI foi também estudada. Em particular, 

para o LI BMPyrDCA com 30% de água, foi analisada a polarização de reorientação pela 

permitividade e módulo eléctrico, a partir do qual são identificados três processos diferentes: 

relaxamento com dependência Arrheniana da temperatura, o processo que acreditamos estar 

envolvido na origem da transição vítrea e a mobilidade dos portadores de carga. 

O IJ foi aplicado com sucesso num sensor de gases quimioresistivo, um nariz electrónico, 

composto por um conjunto de diferentes IJs que actuam como sensores. O desempenho deste nariz 

electrónico revelou grande capacidade para detectar correctamente oito solventes voláteis comuns. 

 

 

Palavra-chave: Líquidos iónicos, Ion Jelly, Espectroscopia de Relaxação Dieléctrica, Calorimetria de 

Varrimento Diferencial, gradiente de espectroscopia de ressonância nuclear magnética de campo 

pulsado.  
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1. INTRODUCTION 

 

1.1. Electrochemical Devices 

 

Electrochemistry was born as a science at the end of the 18
th
 century when, for  the first time, 

Alessandro Volta, an Italian Physicists, announced to the scientific community, based on Galvani’s 

experiments (Luigi Galvani, an Italian Physicists too, who had also studied medicine), the invention of 

the electric battery, a device which would later revolutionize the concept  of energy production having 

a large potential application [1-2]. This invention had such a huge impact in the scientific world, that 

currently it is considered as the birth of Electrochemistry [3].  Nonetheless, it is very interesting to note 

that, despite the fact that Galvani’s conclusions about his experiments were not exactly correct, the 

same experiments gave rise to an exhaustive work made by Alessandro Volta, who is considered the 

“Father of the Electrochemistry”. However, his work is based on Galvani´s observations and, for that 

reason, the importance of Luigi Galvani cannot be disregarded. It is noticeable that Galvani was the 

first to discover the current flow in an electrochemical system. However he did not realize it. The 

recognition of his notable work in this area is related to the battery name: galvanic cell [1].  

Nowadays, electrochemistry is one of the main pathways of chemistry giving rise to a wide 

range of technological advances due to the combination of many different materials in electrochemical 

cells. Consequently, new electroactive polymeric materials are produced every day, with very different 

properties, for instance, electroluminescence [4], semiconductor [5], electronic and ionic properties [6] 

or electrochromism [7]. From the arrangement between different polymers with several components, 

arises new opportunities of creating high performance electrochemical devices for commercial 

purposes. New polymers have been developed with multiple applications such as active electrodes in 

electronically conducting polymers, solid electrolytes in ionic conducting polymers and as transparent 

substrates (optically transparent plastic electrodes) [3]. 

The conductivity associated to a given material is based on the free mobility of ions which 

transport the current known as ionic conductors. The first ionic conductors were aqueous electrolytes. 

Later on, polymer and solid electrolytes appeared as a great innovation to fill some gaps related with 

liquid electrolytes. 

The main characteristics sought in electrolyte solutions are nonvolatility and high ion 

conductivity, i. e., the ability to perform ion transfer between two electrodes of an electrochemical 

device, e.g. thin films batteries (TFBs), lithium ion batteries, photoelectrochemical cells, fuel cells and 

double layer capacitors. These are the crucial properties of advanced and safe electrolyte solutions 

that are needed for this kind of energy devices put in outdoor use. Nowadays, for these types of 

applications, safety is more an issue than performance and has to be taken into account in future 

material developments.  

Electrolyte solutions are essential for electrochemical devices. Until recently, most of the 

batteries available in the market used liquid electrolytes. Nevertheless, these devices present crucial 

drawbacks, such as leakage of the (flammable) electrolyte, gas production upon charge/over-

discharge, thermal runway reactions and the volatility of the electrolyte. The use of solid electrolytes 
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can avoid many of these problems. Nevertheless, solid electrolytes still have low conductivity at room 

temperature, when compared with liquid electrolytes, low biodegradability and high cost. However, a 

new solid electrolyte, Ion Jelly (IJ), was developed showing, in some cases, very competitive 

conductivities when compared with the conductivity of the pure IL (see section 1.1.2 and chapter IV).  

There is a wide range of liquid electrolytes [8], ILs being a the suitable solution for 

electrochemical devices due to their unique properties.  

 

1.1.1. ILs 

ILs are also called molten salts; however, molten salts are normally solid salts whereas the IL 

can be liquid at room temperature. ILs are called room temperature ionic liquids (RTILs). The 

relationship between ILs and molten salts has been discussed for decades. 

 

Michael Faraday in the 1830s was the first to investigate systematically, the electrolysis of molten 

salts and used his results to assist and establishing the fundamental law of electrolysis which bears his 

name.  

It is now accepted that pure molten salts consist predominantly of ions. They differ, therefore, from 

all other classes of liquids in that they are the only group of pure liquids in which positively and negatively 

charged particles coexist and could therefore logically be called “liquid electrolytes” or “ionic liquids” (Harry 

Bloom, Liverpool 1961, from the Eleventh Spires Memorial Lecture in The Structure and Properties of Ionic 

Melts: A General Discussion of the Faraday Society). 

 

Molten salts imply a salt that is normally solid in a standard state of 298 K (25 ºC) and 1 bar, 

while a RTIL implies a liquid. Nevertheless, both are only composed of ions. Ideally, an IL should have 

a freezing point below 100 ºC.  However, this is not a rule without exception, otherwise, what should 

we call pyridinium chloride (mp 144 ºC) or pyridinium ethanoate (mp < 25 ºC)? Therefore a suitable 

description of an IL is a liquid composed of ions and ion pairs (or parent molecules), dominant forces 

being ion-ion interactions [8]. 

The earliest IL referred in the literature is believed to be ethylammonium nitrate [EtNH3][NO3], 

which was described by Paul Walden in 1914 [9]. Many ILs were discovered since then. For instance, 

in the late 40s, the first RTIL based on chloroaluminate anion was patented[10-11] and in the 60s a 

similar system was introduced, based on chlorocuprate anion, CuCl2
-
, and tetraalkylammonium cation 

[12], one of the most important families of ILs. In 1967 the application of tetra-n-hexylammonium 

benzoate as a solvent was published [13]. In the 90s, the major event in this area was the discovery of 

a new type of ILs based on the 1-ethyl-3-methylimidazolium cation and the tetrafluoroborate anion [14-

17]. Nevertheless, novel combinations of cations and anions have been proposed, giving rise to new 

ILs with very different and interesting properties and applications. One of the most remarkable 

properties for this work is undoubtedly their conductivity. A system containing both anions and cations 

that are free to move, will conduct electricity. 

In the table below we can see a selection of electric conductivities, σ, of some liquids, at 

different temperatures (T): 
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Table 1.1 -  A selection of Electrical Conductivities of Liquids[18] 

Electrolyte Solvent σ/S.cm
-1

 T/K 

H2SO4 (30 wt. %) H2O 0.730 298 

KOH (29.4 wt. %) H2O 0.540 298 

NH4Cl (25 wt. %) H2O 0.400 298 

[Et4N]
+
[BF4]

-
 ( 1 mol/dm

3
) AN 0.060 298 

LiN(CF3SO2)2  ( 1 mol/dm
3
) EC + DME (1:1) 0.0133 298 

LiN(CF3SO2)2 ( 1 mol/dm
3
) EC + DC (1:1) 6.5x10

-3 
298 

LiCF3SO3 ( 1 mol/dm
3
) EC + DME (1:1) 8.3x10

-3
 298 

LiPF6 ( 1 mol/dm
3
) EC + DME (1:1) 0.016 298 

[Et4N]
+
[BF4]

-
 ( 0.65 mol/dm

3
) PC 0.0106 298 

[EMim]
+
[BF4]

-
 ( 2 mol/dm

3
) AN 0.047 298 

[EMIm]
+
[BF4]

-
 ( 2 mol/dm

3
) PC 0.016 298 

 

 

In table 1.2 it is possible to observe the electrical conductivities of several ILs and compare 

them with the liquid electrolytes above. Some ILs show very promising conductivities.  

 

Table 1.2 - A selection of Electrical Conductivities of Ionic Liquids[18]. 

System σ/S.cm
-1

 T/K 

[Bu3HexN][CF3SO2)2N] 1.60x10
-4
 298 

[MPPip][CF3SO2)2N] 1.51x10
-3
 298 

[BPy][BF4] 1.94x10
-3
 298 

[BMPyr][PF6] 7.65x10
-3
 368 

[EMIM][(CF3SO2)2N] 7.73x10
-3
 298 

[EMIM][DCA] 9.53x10
-3
 298 

[BMIM][DCA] 9.54x10
-3
 298 

[BMPyr][DCA] 9.83x10
-3
 298 

[EMIM][BF4] 0.01305 298 

[EMPyr][(CF3SO2)2N] 0.0172 365 

[BMPy][DCA] 0.0174 298 

[P6,6,6,14][DCA ] 0.156 368 

[P6,6,6,14][C9H19CO2 ] 0.740 378 
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ILs have a broad range of conductivities from 0.1 – 740 mS/cm. Higher conductivities are 

associated to the cations 1-butyl-3-methylpyridinium [BMPy]
+
 and trihexyl (tetradecyl) phosphonium 

[P6,6,6,14]
+ 

whereas lower conductivities are associated to the ILs based on tributyl (hexyl) ammonium 

[Bu3HexN]
+
, 1-butyl-pyridinium [BPy]

+
 and piperidinium [PMPip]

+
 cations (0.1 to 2 mS/cm).  

Due to this essential property, the main application of ILs is as electrolytes [19-23]. Classical 

electrolytes are obtained by dissolution of salts in molecular solvents, which consist of solvated ions, 

their charged or neutral combinations, and solvent molecules. However, ILs, which are formed entirely 

by anions and cations, have a great advantage, since they are free of any solvent.  

ILs are probably one of the most studied chemical compounds in the past decade. In addition to 

conductivity, a very useful property of ILs is the negligible vapour pressure, which is probably their 

“greenest” property. It should also be mentioned high thermal, chemical, and electrochemical stability 

[18], [24-25]. But are ILs really green? In April 2002, Albrecht Salzer asked the scientific community 

this question (Chemical and Engineering News, 2002, 80 [April 29], 4-6). Different opinions arose and 

Robin Rogers, a Chemist and distinguished scientist, gave his important contribution:  

 

“Salzer has not fully realized the magnitude of the number of potential of ionic liquid solvents. 

However, by letting the principles of green chemistry drive this research field, we can ensure that the 

ionic liquids and ionic liquid processes developed are in fact green […] but there is a need for further 

work to demonstrate the credibility of ionic liquid-based processes as viable green technology. In 

particular, comprehensive toxicity studies, physical and chemical property collation and dissemination, 

and realistic comparisons to traditional systems are needed” [26].  

 

It is important to analyze those properties based on the twelve principles of Green Chemistry, 

proposed by Paul Anastas and John Warner in 1998 [27]. Table 1.3 shows those twelve principles in 

detail. 
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Table 1.3 - The twelve principles of Green Chemistry (retrieved from reference [27]) 

Prevention It is better to prevent waste than to treat or clean up waste after it is 

formed. 

Atom Economy Synthetic methods should be designed to maximize the incorporation of 

all materials used in the process into the final product. 

Less Hazardous Chemical 

Synthesis 

Whenever practicable, synthetic methodologies should be designed to 

use and generate substances that pose little or no toxicity to human 

health and the environment. 

Designing Safer Chemicals Chemical products should be designed to preserve efficacy of the 

function while reducing toxicity. 

Safer Solvents and Auxiliaries The use of auxiliary substances (e. g. solvents, separation solvents, etc.) 

should be made unnecessary whenever possible and, when used, 

innocuous.  

Design of Energy Efficiency Energy requirements of chemical processes should be recognized for 

their environmental and economic impacts and should be minimized. If 

possible, synthetic methods should be conducted at ambient 

temperature and pressure. 

Use of Renewable Feedstock A raw material or feedstock should be renewable rather than depleting 

whenever technically and economically practicable.    

Reduce Derivatives Unnecessary derivation (use of blocking groups, protection/deprotection, 

and temporary modification of physical/chemical processes) should be 

minimized or avoided if possible, because such steps require additional 

reagents and can generate waste.  

Catalysis Catalytic reagents (as selective as possible) are superior to 

stoichiometric reagents. 

Design for Degradation Chemical products should be designed so that at the end of their function 

they break down into innocuous degradation products and do not persist 

in the environment.  

Real-Time Analysis for Pollution 

Prevention 

Analytical methodologies need to be further developed to allow for real-

time, in-process monitoring and control prior to the formation of 

hazardous substances. 

Inherently Safer Chemistry for 

Accident Prevention 

Substances and the form of a substance used in a chemical process 

should be chosen to minimize the potential for chemical accidents, 

including releases, explosions, and fires. 
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When ILs are used as electrolytes, the principle Safer Solvents and Auxiliaries strongly applies, 

unlike what happens with common liquid electrolytes, ILs are free from solvents, which means that it is 

possible to achieve a substantial reduction of both environmental and economic impact. When thinking 

of liquid electrolytes in a battery, a main drawback is the possible leakage of the (flammable) liquid, as 

mentioned earlier. Since most ILs are non-flammable, the principle of Inherently Safer Chemistry for 

Accident Prevention applies. For that reason, ILs are one of the main pillars of Green Chemistry. 

Nevertheless, Green Chemistry is favoured not only by the use of ILs, but also by solvents such as 

super critical fluids [28-29].  

Nonetheless, it should be pointed out that some ILs have vapour pressure that allow to distil the 

previously believed “undistilled” [30-31].   Due to their negligible volatility, ILs were taken as non-toxic, 

but this common accepted notion as shown to be incorrect being proven that several ILs, commonly 

used to date are toxic to a wide range of organisms (Dongbin Zhao et al. Toxicity of Ionic Liquids). In 

fact, the tailor-made design of ILs to meet a particular application is probably the most fascinating and 

creative domain in IL research. The type of molecular interaction between cation and anion is 

determinant for physical-chemical properties such as melting temperature, glass transition 

temperature, Tg, or conductivity [32-33]. These are relevant parameters in applications of ILs as novel 

electrolytes for electrochemical devices, such as dye synthesized solar cells, double layer capacitors, 

fuel cells, electrochemical windows and lithium secondary batteries
 
[24-25]. 

The actual trend in electrochemical devices, point to ILs as the most promising approach to 

develop safe and highly conductive electrolytes. Nevertheless, the large scale production of the above 

electrochemical devices is following the printing trend due to large scale production impositions. To 

address this issue, different authors have tried to develop solid/polymeric/composite-based ILs [34-37] 

and some of these systems seem very competitive in terms of ionic conductivity [35-36]. 

One of the most simple and efficient approaches is based on gelation, which is a simple method 

that allows a good compromise between the retention of IL and its fluidity inside the polymeric 

network. This strategy is quite different from the traditional solid polymer electrolytes that results either 

from the doping of a given polymer matrix with an IL or from the introduction of polymerizable groups 

on IL structures. These so-called ion gels are in a way simpler than solid polymer electrolytes and 

exhibit improved conductivities. For instance, MacFarlane and co-workers [35] have shown the 

potential of an ion gel formed by gelation of poly(styrene-block-ethylene oxide-block-styrene) (SOS) 

triblock copolymer in 1-butyl-3-methylimidazolium hexafluorophosphate. This system has shown 

interesting conductivity values at room temperature (above 10
-3

 S cm
-1

). Such IL-based materials can 

work as electrolytes in different electrochemical devices and be used either as printer substrates or 

printable inks.  

 

1.1.2. IJ 

Aiming to obtain a material exhibiting such properties, the combination of an IL and a 

biopolymer was tested, which properties were recently reported [38].  The initial line of work focused 

on the immobilization of an enzyme using sol-gel procedure and an IL. The idea was to combine the 

ability that ILs have to modulate enzymatic properties with the advantages of enzyme immobilization. 
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Nevertheless, the IL did not have a positive impact on the activity of the enzyme tested. Therefore, the 

mentors of the idea, P. Vidinha and N. Lourenço, started to think of different approaches. Since ILs 

can be used as templates for sol-gel matrices, they tried to add different materials to accomplish the 

immobilization of the ILs. The materials they first used were alginate and gelatine, in order to create a 

polymeric bead containing the IL. Of the two polymers used, gelatine was the one that allowed to 

produce a material with the desired conductive properties, which synthesis and applications are 

register in a patent [39]. The attractive values of the conductivity of IJ materials led to their use as 

electrolyte. The vision was to seek new applications in the area of sensors [40-41], electrospinning 

[42] and electrochemistry  [38]. This thesis mainly results from the questions that arose from this 

article, namely: “Can we improve the IJ electrochemical window? Is it possible to increase IJ 

conductivity?”. “In what way does gelatine interact with the IL?”. The crucial question seemed to be, 

“Can we apply this simple combination of gelatine and IL to a battery? Can we solve the effective 

problems related to batteries? Can we produce an electrolyte that is conductive enough?”.  These 

topics will be discussed along this thesis.  

IJ is a light and flexible electrolyte.  It is an extremely versatile conductive material that can be 

molded into different shapes, using several techniques, and can be adapted to multiple surfaces. 

Moreover, on cooling, IJ can undergo a liquid-gel transition near room temperature (near 308 K), 

which could make it a promising solution to develop electrolyte inks for printed electrochemical 

devices (PED) [38]. 

Going back to Table 1.3, there are some features that apply to IJ. Safer solvents and auxiliaries, 

for example, since in the preparation of IJ the only solvent that is used, is water, an innocuous solvent; 

reduce derivatives, since there is no need for blocking groups or protection/deprotection groups; 

design of energy efficiency, due to the fact that IJ is produced at relatively low temperature (35ºC) and 

ambient pressure; and inherently safer chemistry for accident prevention, since IJ is a solid polymer, 

which contains water and an IL, non-hazardous substances,  and in its applications there is no danger 

of the occurrence of accidents such as  leakage, explosions or fires.  

Polymer electrolytes are an important component of many electrochemical devices, and due to 

this fact, the scientific community has made an extraordinary effort in the development of this kind of 

system. There is a wide range of polymer electrolytes using aqueous and nonaqueous-based natural 

polymers, such as, solid polymer electrolytes (SPEs) [44], which arises from the necessity to fill some 

gaps on the search for new architectures for electrochemical devices, given that more and more 

devices, such as solid-state batteries, sensors, and portable electrochemical units require increasingly 

smaller and safer electrolytes. In this regard, the best candidates for this type of applications can be 

materials such as ceramics, polymers, hybrids and gels. One of the most applied systems are SPEs 

due to their huge advantages when compared with liquid electrolytes, related to the possibility of 

higher temperatures of operation, no flowing and corrosion after damage, and ease of application to 

electrochemical devices. One of the major drawbacks of the majority of SPEs is their low ionic 

conductivity. In this respect, IJ has a very competitive conductivity. Any polymer that goes with an IL 

will form, in theory, an ion gel, as discussed by Hiroyuki Ohno, one of the most cited authors in this 

research field [45].  
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The evaluation of basic thermophysical properties is vital to the design of IJs and to conceive 

new applications. For that purpose, it is essential to understand the physicochemical behaviour of ILs 

in an IJ matrix. To accomplish this goal, we have performed a dielectric relaxation spectroscopy (DRS) 

characterization, whose basic principles are described in the next section. 

The main IJ system chosen for this study is based on 1-butyl-3-methyl imidazolium dicyanamide 

(BMIMDCA). The dicyanamide (DCA) compounds are liquid at room temperature and characterized by 

their low viscosity, water miscibility, and high thermo (over 373 K) and electrochemical stability (over 

3.5 V) [46-47]. Moreover, the DCA ion is an anionic bridge ligand that has Lewis base attributes, which 

makes it particularly attractive to synthesize ILs with very specific properties. Compared to common 

anions such PF6 or BF4, DCA has a permanent dipole and thus facilitates the research on IL dynamics 

through dielectric spectroscopy [47-48]. Other IJ systems were made based on different ILs. However, 

since dicyanamide was found to be the most suitable anion for the preparation of IJ films, the chosen 

ILs are composed by this anion, changing the type of cation. Three ILs were used, in addition to 

BMIMDCA: 1-ethyl-3-methyl imidazolium dicyanamide (EMIMDCA), 1-butyl-1-methyl pyrrolidinium 

dicyanamide (BMPyrDCA) and 1-butyl pyridinium dicyanamide (BPyDCA). The next figure shows the 

structure of each IL: 

 

 

Figure 1.1 – Ionic liquid structures: 1-butyl-3-methyl imidazolium dicyanamide (BMIMDCA), 1-ethyl-3-methyl 
imidazolium dicyanamide (EMIMDCA), 1-butyl-1-methyl pyrrolidinium dicyanamide (BMPyrDCA) and 1-butyl 
pyridinium dicyanamide (BPyDCA). 

 

On the basis of the analysis of the thermal behaviour, charge transporters, ion mobility, and 

conductivity, we are able to obtain useful information to clarify the impact of gelatine on IL 
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physicochemical properties, which are ultimately implicated on IJ conductivity and consequently on its 

application to PEDs.  

 

1.2. Polarization and Dielectric Relaxation Spectroscopy (DRS) 
 

DRS was used to gain a better insight into the mechanism of charge transport that determines 

conductivity in the IJ and it precursors, and also to better understand the polarization effects that 

manifest in these materials. Basically dielectric relaxation occurs when a material, which is the 

dielectric, is submitted to a periodically alternating electrical field between two electrodes. This is the 

main phenomenon of DRS, which is a very well established experimental method and highly used in 

order to study the structure and the molecular dynamics in manifold systems, providing a powerful tool 

for the molecular dynamical study in confined spaces at both mesoscopic and molecular level. 

The application of an oscillating electric field induces a polarization in the sample whose 

mechanisms will be next described.  

 

1.2.1. Polarization Mechanisms  

A pre-requisite for DRS is the presence of molecular dipoles in the material structure. 

Fundamentally, matter is composed by a distribution of electrical charges, positive (protons) and 

negative (electrons). Accordingly, when an electric field is applied to a certain material, the atomic and 

molecular charges present within the material will respond to the presence of this field through a 

modification or distortion of these charges, i.e., a displacement from their equilibrium positions. This 

phenomenon is called polarization and describes the dielectric displacement which originates from the 

response of a material to an external field only. There are two main polarization mechanisms in the 

different materials [49]: 

 

1) Induced Polarization that results from induced dipoles comprehending three different types 

of polarization: electronic polarization, which arises from the displacement of the electric cloud 

distribution with respect to the atomic nucleus, corresponding to electronic spectroscopy in ultra-

violet and visible region of the spectrum of electromagnetic waves (figure 1.2); atomic polarization, 

which is observed when the atomic nucleus is reoriented in response to the electric field, which is 

intrinsic to the nature of the atom in a polar covalent bond, corresponding to vibrational spectroscopy 

in the infra-red domain; and ionic polarization, which is due to relative displacements between 

cations and anions in ionic crystals, for example, sodium chloride. 

Both atomic and electronic polarizations are described as resonant mechanisms, where 

polarization build-up almost instantaneously being detected by optical spectroscopies. This kind of 

response to electromagnetic radiation is so fast that it could not be analyzed by dielectric relaxation, 

which is essentially studied in the radio and microwaves range of the electromagnetic spectrum (see 

figure 1.2).  
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Figure 1.2 – (a) - Electro Magnetic Spectrum; (b) – Time domain dielectric spectroscopy (adapted from: 
http://www.colourtherapyhealing.com/colour/electromagnetic_spectrum.php; Y. Feldman, “The Physics of 
dielectrics”, lecture 1, in http://aph.huji.ac.il/courses/2008_9/83887/index.html, accessed in March 2013). 

 

 

2) Orientational or Dipolar Polarization, due to alignment of permanent dipoles. This type of 

polarization is originated from permanent ionic or molecular dipoles only, resulting in the alignment of 

dipoles with the applied electric field giving rise to orientational polarization. The orientation of 

permanent dipoles is driven by molecular motions that can be very local in nature or by cooperative 

motions of molecular segments in a viscous medium with times scales measurable by dielectric 

spectroscopy.  However, there is a difference between ionic and molecular dipoles: in the later, the 

charge density is unequally shared by the covalently bounded nuclei of a molecule and therefore no 

significant differences on the dipolar moment are observed upon temperature changes, while the 

temperature increase highly shortens the lifetime of ionic dipoles which are maintained by electrostatic 

interactions. 

The orientational polarization occurs only at low frequencies, and therefore it is the slowest 

mechanism. 

It is important to note that both induced and orientational polarizations have very different times 

response: around 10
-17

 and 10
-14

 s for electronic polarization, 10
-13

 and 10
-12

 s for atomic polarization 

and between 10
-12

 and 10
-6

 s for orientational polarization (see Figure 1.2).  

Figure 1.3 shows the frequency dependent dielectric permittivity upon application of a time varying 

electric field. Here we can see different processes involved in the polarization and the respective 

differences in the intensity of each mechanism. While the atomic and electronic polarization may follow 

a)

b)

http://www.colourtherapyhealing.com/colour/electromagnetic_spectrum.php
http://aph.huji.ac.il/courses/2008_9/83887/index.html
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the changes in the electric field instantaneously, as already mentioned, orientational polarization 

response it is not immediate due to the resistance imposed to the dipole’s motion. The opposite is also 

true, whereas atomic and electronic polarizations disappear immediately upon removal the electric field, 

orientational polarization decreases slowly owing to the internal friction of the material which depends 

on viscosity [50]. The relaxation phenomenon is the delayed response to a variant stimulus; therefore, 

the time-dependent loss of orientation of dipoles upon removal the oscillating electric field is called 

dipolar relaxation.  

The parameter that describes the polarization loss upon electric field removal is designated by 

relaxation time, i. e., it describes the time required for the dipolar polarization to decay 1/e of its initial 

value, where e is the Neper number (see equation 1.8 later on text). At low frequencies the dipoles can 

follow the changes in the electric field and the permittivity value has its highest value.  With the 

frequency increase the dipoles do not have enough time to follow the changes in the field direction 

losing the ability to align with the applied electric field, resulting in a decrease in the dielectric 

permittivity, ɛ’ (see figure 1.3).  It should be noted that the figure illustrates the behaviour of a molten 

liquid, highly mobile, which is not the case of the materials studied in this thesis, in which the dipolar 

response is shifted to lower frequencies. Relaxation processes are characterized by a peak in the 

imaginary part of permittivity     and a marked decrease of the real part    of the complex dielectric 

function with increasing frequency. Above this range of frequencies, the dipolar polarization does not 

contribute to the total polarization, and only induced polarization remains. 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 - A dielectric permittivity spectrum over a wide range of frequencies. ε′ and ε″ denote the real and the 
imaginary part of the permittivity, respectively. Various processes are labelled on the image: ionic and dipolar 
relaxation, and atomic and electronic resonances at higher energies (Redrawn from reference [51]) 

The permittivity due to these induced dipoles is known as the unrelaxed or permittivity at 

infinite frequency,   . The difference between the permittivity at low frequencies,   , and at high 

 

 

 

 

 

 

 

 

 

 

 

 

Di

ele

ctr

ic 

Pe

rm

itti

vit

y/ 

ɛ 

Frequency / Hz 



Chapter 1: Introduction 

 

  
14 

 
  

frequencies is the dielectric strength, and establishes the relation between the applied electrical field, 

E, and the resulting orientational polarization, P, according to the following equation: 

 

               

 

                                                                          

 

where 0 is the vacuum permittivity. For the low frequencies, equation 1.1 reduces to 1.1 – a), while for 

high frequencies the equation reduces to 1.1 – b). 

Additionally to the two polarization mechanisms described above, conductivity can also 

contribute to the dielectric response of the material due to propagation of mobile charge carriers that is 

due to translational diffusion of the electrons, holes and ions.  

Migration of charges gives rise to conductivity that comes from this continuous movement of 

charges. Conductivity comprehends both types of intrinsic (e.g., proton transfer along hydrogen 

bonds) and extrinsic (e.g., ionic impurities) migrating charges.  The last one describes conductivity as 

inversely proportional to viscosity, according to the viscous model of charge transfer (Stokes law). This 

means that a material with zero conductivity is obtained, if the viscosity is infinitely high. Nevertheless, 

this is only a theoretical situation meaning that the conductivity exhibited by a cross-linked-polymer 

network could be partially explained in association with intrinsic migrating charge [52].   

The separation of charges at interfaces originates an additional polarization. This process arises 

from the build-up of charges at the inner dielectric boundary layers, or in the interphases between 

components in heterogeneous systems, known as interfacial, space charge, or Maxwell-Wagner-

Sillars polarization. The accumulation of ions at the material-electrode-interface gives rise to electrode 

polarization. The latter mechanism is observed in the systems tested in this thesis (see chapters 3, 4 

and 5). 

 

1.2.2. Dielectric Spectroscopy 

Since Debye, in 1927, established the relationship between dielectric relaxation and the 

molecular motions of molecular dipoles, the technique of dielectric spectroscopy has been gaining the 

attention of many research groups with around forty thousand articles published (according to search 

on IsiWeb visualized in March 2013). 

Current methods were used for very low frequencies (f < 1Hz), and alternating current (a. c) for 

higher frequencies (1 a 10
7
 Hz) in applications such as power, audio, ultra high frequency (UHF) and 

very high frequency (VHF). Methods for microwaves frequency (10
8 

to 10
11

 Hz) were developed in the 

decade of 1940s, and in the decade of 1970s new advances were made in order to improve the 

spectroscopic methods for infrared frequencies (3x10
11

 to 3x10
12

 Hz) [53].  

Nowadays, dielectric measurement techniques were developed in many different materials such 

as molecular liquids, solids and semi-conductors [54-59] giving very useful information about electrical 

conductivity and, hence, giving rise to knowledge about the effective mobility of charge carriers.  

(1.1) 
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Furthermore, depending on the particular polymer system, ranging from simple amorphous or semi-

crystalline polymers [60-62] to more complex systems such as miscible [63-66] and immiscible 

systems [66-69] polymer blends, liquid crystalline polymers [70-71], supramolecular polymers[72-73], 

nanocomposites [74] and ILs with low molecular weight materials [102], one or more characteristic 

dielectric relaxation processes are detected, which can be assigned to, e. g., the primary relaxation 

(usually designated as α-process) associated with the dynamic glass transition[69].  

In this work, Broadband Dielectric Spectroscopy (BDS) data were extracted from the range 

between 10
-1

 to 10
6
 Hz since the aim of our work is to study the conductive properties of some ILs and 

the respective IJs based on these ILs. 

Basically, DRS spectra reproduce the set of molecular motions of all dipolar species present in 

the media. In ILs, these motions are highly correlated with the multiplicity of interactions between the 

different charged species present in the media, which makes it impossible to address a specific motion 

to a well-defined dipole.  

In fact, in ILs, the molecular motions reflect the kinetics of the network rearrangement [46-47]. 

However, the IJ network is settled by the interaction between two polyelectrolyte molecules (gelatine 

and IL) creating in such way a complex network with multiple interaction sites that can lead to a great 

variety of dipolar aggregates. Moreover, since these materials have some degree of hydration, the role 

of water needs also to be evaluated (see chapter 5). Thus, a comprehensive and detailed analysis of 

IL relaxation behaviour inside a hydrated gelatine matrix can result in important data about the crucial 

mechanisms implicated in the IJ conductivity.  

 

1.2.3. Theoretical Principles of Dielectric Relaxation 

Since matter is composed by electrical charges, it becomes predictable to infer that there is an 

interaction between electric and magnetic fields with matter. 

The linear interaction of electromagnetic fields with matter is described by two Maxwell’s 

equations [53]: 

 

     
 

  
                                

 

      
 

  
                            

 

Where E (Vm
-1

) and H (Am
-1

) describe the electric field and magnetic field, respectively, B (Vs m
-2

) the 

magnetic induction, D (As m
-2

) the dielectric displacement and j (A m
-2

) the current density. For weak 

electric fields D can be expressed by: 

 

                                             

 

Where    is the dielectric permittivity of vacuum (  =8.854x10
-12

 Fm
-1

).    is the complex dielectric 

function or dielectric permittivity. In general, time dependent processes within a material lead to a 
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difference of the time dependencies of the outer electrical field E(t) and the resulting dielectric 

displacement D(t). For a periodic electrical field                    (ω is the angular frequency, in 

rad.s
-1

;       ) the complex dielectric function,    is defined by: 

 

                                      

 

Where       is the real part of permittivity which is related with the energy storage inside the material, 

and        is the imaginary part of the complex dielectric function related with the energy dissipation 

(loss) inside the material, due to the interaction between the applied field and dipoles.  

Equation 1.4 is similar to Ohms law: 

 

                                               

 

Giving the relationship between the electric field and the current density j where: 

 

                                                       

 

      is the complex electric conductivity.     and      are the corresponding real and imaginary 

parts.       and       are time dependent empirical functions of molecular properties that give 

information about both reorientational and translational movements of molecules and charge transport 

properties in solids and molecular liquids. The dielectric function and the conductivity are complex 

because the excitation due to the external electrical field and the response of the system under study 

are not in phase with each other. Because the current density and the time derivative of the dielectric 

displacement are equivalent quantities according to equations 1.3 and 1.4 it holds: 

 

                                                           

 

1.2.4. Debye Behaviour 

In the model of Debye to calculate the time dependence of dielectric behaviour it is assumed a 

change of the polarization where the time variation is proportional to the equilibrium value, following a 

first order differential equation [53], [75-76]: 

 

     

    
  

 

  
                    (1.9) 

 

Where    is the characteristic relaxation time. Therefore, upon removing the electric field at    , the 

orientation polarization will be given by                   , where    is the value of the polarization 

at the moment of electric field removal. Consequently, in the Debye model, the response material to 

external electric fields has an exponential nature, i. e.,                . 
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The model of dipole orientation is due to Debye [76] and assumes a single relaxation time for all 

molecular species. The Debye model for the frequency dependence of      , gives rise to the 

following equation (eq. 1.10), which can be decomposed by the real and imaginary components of 

permittivity (equations 1.10 – (a-b)), accounting for a new parameter, the ionic conductivity[77]: 

 

         
     

     
 

 

                         
     

                                               
 

   
 

     

         

 

Figure 1.4 illustrates the frequency dependence of          and           for equations 1.10 – (a) and 

(b), where f is the frequency in Hertz, whereas the frequency of the applied outer electric field is given 

by       . The corresponding plots for     are more complex owing to the relative contribution of 

conductivity and the dipole loss. The simplest case is shown in figure 1.4 by the symmetrical peak 

associated to    , when    . Here it is possible to see the characteristic dipolar loss peak which 

presents a maximum value that occurs at          and has an amplitude of                

 . The mean relaxation time of the process,  , is defined as             . However, when the 

conductivity is different from zero, this curve is distorted from ideal Debye peak, meaning that, as 

conductivity increases, it becomes more difficult to discern the dipole peak. Basically, for       

greater than about three times   , the observed     is completely dominated by the conductivity [77]. 

Ideally, even when the conductivity dominates the dipolar contribution to    , it should still be possible 

to observe the dipolar contribution to   . Nevertheless, when the conductivity contribution is large 

enough, there is another factor which will influence    measurements, which is the electrode 

polarization (see section 1.2.5).   

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.4 – Debye single relaxation time model for dipole orientation showing a (a) frequency dependence of the 
real,   , and imaginary,    , permittivities and (b) Imaginary part vs. real part of permittivity,    .  

 

(1.10) 

(1.10 – a) (1.10 – b) 
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(1.12) 

(1.11) 

(1.13) 

An alternative method to present the     and      frequency dependencies is in a Cole-Cole plot 

[78], where      is plotted against    . Figure 1.4 – (b) shows the Cole-Cole diagram for the ideal case 

when the Debye model is obeyed, yielding a symmetric semicircle, i. e., when    .  

In real systems, the Cole-Cole diagram differ from the one shown above in two distinct 

phenomena: i) electrode polarization and ii) some distribution of relaxation times, since the dipolar 

mechanisms are not characterized by one single relaxation time,  . This distribution of relaxation times 

has a probability density function of        [75]:  

 

        
 

 
  

  
             

 

In the frequency domain, the existence of this distribution, converts equation 1.11 (ԑ*) into a new 

equation: 

 

        

     
  

      

     

  

  

       

 

The calculation of         it is not an easy process to obtain from the experimental data. Accordingly, 

in order to fit the       data directly, several empirical models were developed enabling essential 

information to be extracted. The main equations obtained can be written in the following form: 

 

         
     

           
 

 

With: 

                Cole-Cole[79] 

                Cole-Davidson [80] 

                Havriliak-Negami [81] 

 

Where   is the value related to the broadness of the distribution of relaxation times and   describes its 

asymmetry, which means that when       the ideal Debye case is reached. Since the Havriliak-

Negami (HN) equation has two adjustable parameters it is relatively easy to describe a single 

relaxation process. However, when a system presents more than a relaxation process, the 

experimental data is fitted with a sum of HN equations, one for each relaxation process.  

No further development is given here for the different models since, in the majority of the 

materials tested in this work, the orientational polarization becomes submerged by conductivity. This 

impairs the analysis of relaxational processes through those models; only in one system - 

(BMPyrDCA) – was the HN equation fitted to the dielectric data (see chapter 5). An alternative process 
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to analyze the dielectric response due to reorientational motion of dipoles is through the modulus (see 

chapter 5 for a more detailed description). 

In the next section the charge transport mechanism is analyzed in more detail. 

 

1.2.5. Transport Properties 

As previously mentioned, in addition to reorientational dipolar motions, the propagation of 

mobile charge carriers also contributes to the dielectric response. In order to extract transport 

properties, the dielectric spectra are better analyzed through the complex conductivity, 

*()=´()+i´´(). The later is related with the complex permittivity by [82]:  *()=i0*().  

It is quite remarkable that the frequency dependence of the complex conductivity for a variety of 

disordered conductive systems obeys a common pattern. In all cases, it is observed a plateau at the 

lowest frequencies where the conductivity is frequency independent being identical to dc conductivity 

(0), bending off at higher frequencies into a dispersive regime, with a pronounced increase of the 

conductivity with increasing frequency [83]; the frequency at which the plateau bends off to the 

frequency dependent region separating the two regimes, is called the crossover frequency, cross. 

The ionic conductivity arises from ion transport which corresponds to “hopping movements of 

mobile ions between different positions in a solid or supercooled liquid matrix” [84]. Depending on 

whether measurements are being made over short or large time scales, the corresponding mean-

square displacement, <r
2
(t)> which is of the order of the distance that a particle can jump when 

diffusing in a time t*=1/cross [85], exhibits different time dependencies. At long times or low 

frequencies (and high temperatures), where         , (cross=2..cross) the mean square 

displacement of ions during charge transport, varies linearly with time (<r
2
(t)>   t) [86] and the 

conductivity is frequency independent, all ’ values falling in a plateau. Therefore, the conductivity 

properties are governed by diffusive movements of ions. On the other hand, for short time scales, i.e., 

at high frequencies where          , the movement of ions is sub-diffusive which means that the 

mean square displacement increases sublinearly with time [87] , (<r
2
(t)>   t

0.35  
[84]

 
and the 

conductivity increases with frequency.  

The overall conductivity behaviour follows a power law dependence (a. c. conductivity) against 

the angular frequency  as proposed by Jonscher [88]. 

 

            
 

      
 
 

             (1.14) 

 

Where   is a material and temperature dependent parameter, which allows to obtain       , and is 

used to take into account a low frequency tail that is influenced by both electrode or interfacial 

polarization. When the conductivity is not pure,    , normally,         [89]. 

For the description of the charge transport mechanism, the hopping of charge carriers is 

conceptualized in a random spatially varying potential landscape; unlike crystals, the potential-energy 



Chapter 1: Introduction 

 

  
20 

 
  

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-10

10
-9

10
-8

10
-7

10
-6

Sub-diffusive 

Regime

Diffusive 

Regime

 [Hz]


' [

s
/c

m
]

 

 

 


0


cross

landscape experienced by an ion in a disordered solid is irregular and contains a distribution of depths 

and barrier heights. Basically, the transport process is governed by the ability of charge carriers to 

overcome the randomly distributed barriers. On short time scales where the conduction regime is sub-

diffusive only the smallest barriers overcome, which is a fast process, the main event being the back-

and-forth jump between near energy minima. 

As time passes, higher and higher barriers are overcome, and eventually the highest barriers 

too, achieving an infinite cluster of hopping sites, that determines the onset of dc conductivity and 

thus, of the diffusive regime. The frequency, , which characterizes this onset of the dc conductivity, is 

related to it by the empirical relation known as the Barton–Nakajima–Namikawa (BNN) relation, 

0~1/e [83], where ,e, is the attempt rate of the charge carriers to overcome the highest energy 

barrier. Therefore similar temperature dependencies for 0 and e
-1

 are expected. To test this, the 

value of the attempt rate can be derived from the crossover frequency [90], 1/e=       =2      ; 

Figure 1.5 illustrates these features.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.5 - Illustrative representation of frequency dependence of real conductivity at 193 K for IJ3. 

 

 

The plot of   (T) versus –loge(T) gives a straight line with a slope equal to 1 being reported for 

a variety of ion conducting disordered systems [48], [91], confirming that the BNN relation is obeyed. 

If it is demonstrated that the BNN relationship is followed , it is possible to separate the mobility, 

µ, and the effective number density, n, of charge carriers from σ0 obtained from the dielectric 

measurements [48]: 

 

 nq0                                          
 

 

(1.15 - a) 
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This allows relating dc conductivity and the diffusion coefficient of migrating charges, D, considering 

the Nernst-Einstein equation 

Tk

qD

B



 

as 

D
Tk

nq

B

2

0 
 

Where q is the elementary charge of an electron and KB the Boltzman constant. 

By applying the fluctuation-dissipation theorem, Dyre et al. [92]
 

proposed the following 

expression to account for the relationship between σ0 and n: 

 

 
cross

B H

tr

Tk

nq








*

6

22

0  

 

Where <r
2
(t*)> is the mean-square displacement as previously defined assuming similar jump rates 

for all ions, γ ≈ 2 is a numerical factor reflecting the conductivity spectrum at the onset of ac 

conduction and H is an in principle time-scale-dependent Haven ratio [93], which accounts for cross 

correlations between the movements of different types of ions that for ILs can be approximated 1.5 

[94] (see details on the deduction of the equation in ref. 23). The value predicted for the BMIM cation 

is in very good agreement with the literature [95].  

The factor 6 in eq. 1.16 comes from 2d where d is the number of dimensions of the particle 

trajectory in the absence of electrical field; therefore, d = 3 since a tridimensional motion occurs in this 

type of disordered material. 

Equations 1.16 and 1.15 - c give: 

 

 
cross

tr
D 

6

*2 


 

Since the tested systems comprise both cations and anions, the overall diffusion coefficients, obtained 

from dielectric data, can be decomposed into their individual components, i.e., D+ and D_ diffusion 

coefficients, and therefore, eq. 1.15 - c can be rewritten as: 

 

)(
.6

2

0   DnDn
THk

q

B



 

 

(1.15 - b) 

(1.15 - c) 

(1.16) 

(1.17) 

    (1.18) 
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From equations 1.17 and 1.18 and considering that the number density of cations equals the number 

density of anions, i. e., n+ = n_ = n, it is possible to obtain: 

 

    )**(
6

.
22

2

0   trtr
HTk

nq cross

B 




 

 

meaning that 

 

       

 
cross

tr
D 

6

*
2


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

                                and                      

 
cross

tr
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6

*
2


 

  

 

where <r+
2
(t*)> and <r-

2
(t*)> are the mean-square displacements for the cation and anion, 

respectively.  

Equations 1.15 – a) to 1.20 – a) and 1.20 – b) will be used to extract the transport properties of 

the ILs under study. This data treatment will be presented in chapters 3, 4 and 5. 

 

1.3. Differential Scanning Calorimetry 

 
The technique of Differential Scanning Calorimetry, DSC, was described by Emmett S. Watson 

and Michael J. O´Neill in 1962 [96]. Many physical and chemical transformations occur with absorption 

or release of heat. This is relevant for many different materials used in a wide range of applications, 

covering  nanosciences [97], polymers [98], biomolecules [99], macromolecules [100] and the 

pharmaceutical field [101]. DSC will measure, as a function of temperature, the difference between the 

amount of heat required to increase the temperature of a sample and an inert reference material, 

which should have a well-defined heat capacity over the range of temperatures to which the samples 

are submitted to. Both sample and the reference material are maintained at nearly the same 

temperature during the control heating program. Depending on the amount of heat that must flow to 

the sample, the observed process can be energy-emitting (exothermic) or energy-absorbing 

(endothermic). For example, if a solid sample melts to the liquid state, which is an endothermic 

process, higher heat flow to the sample will be required in order to maintain its temperature constant 

during the transformation. On the other hand, in an exothermic process, such as crystallization, a 

lower heat flow is required in order to reach the sample temperature. DSC is a reliable technique to 

monitor phase changes and measure the amount of heat absorbed and released as those transitions 

take place.  

First order transitions, such as melting and crystallization, characterized by a melting 

temperature (Tm) and crystallization temperature (Tc), respectively, have associated latent heats, i.e. at 

the temperature of the transition there are two phases present, each with its enthalpy. These 

transitions occur at constant temperature and thus the heat capacity of the system goes to infinity at 

Tm or Tc. In DSC, they appear as peaks. On the other hand, a second order transition, such as a glass 

(1.19) 

(1.20 - b) (1.20 - a) 
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transition, characterized by a glass transition temperature (Tg), has no latent heat. In DSC, it appears 

as a step transition, as the sample structure changes from a glassy-like state to a rubber-like state, or 

vice-versa, reflecting a jump in the heat capacity of the sample at Tg. These phenomena and the way 

to obtain each one are presented in Figure 1.5.   

 

 

 

 

 

 

 

 

 

 

 
 

 
 
Figure 1.5 – A schematic DSC curve showing the crystallization temperature (Tc), the melting temperature 

(Tm) and the glass transition temperature (Tg) at the onset (Tg, on), midpoint (Tg, mid) and endset (Tg, end).  

 

 

In some cases, Tg is not very well defined. Despite the fact that DSC assumes that the heat flow 

effect happens over a narrow range of temperatures, if the interval temperature where Tg is located is 

very broad, it becomes difficult to measure its value. Nevertheless, in this work, a different method will 

be used to determine Tg, namely the DRS technique. The discussion on the combination of techniques 

is presented in chapters 3, 4 and 5.   
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2. EXPERIMENTAL SECTION 

 

2.1 Materials 

 

The RTILs BMIMDCA (IL-0010-HP), C10H15N5 (MW, 205.26; density298 K[1]=1.058 g cm
-3
, purity 

>98%), EMIMDCA (IL-0003-HP), C8H11N5 (MW, 177.21; density298 K=1.110 g cm
-3
, purity  >98%), 

BMPyrDCA (IL-0041-HP), C11H20N4 (MW, 208.30; density298 K=1.013 g cm
-3
, purity >98%) and 1-ethyl-

3-methyl imidazolium ethylsulfate (EMIMEtSO4) (IL-0033-HP), C8H16N2O4S (MW 236.29; density298 

K=1.240 g cm
-3

, purity  >98%) were provided by Iolitec. The RTIL 1-butyl-3-methyl imidazolium 

bromide (BMIMBr) (64133), C8H15BrN2 (MW, 219.12; density298 K=1.300 g cm
-3

, 97%) was provided by 

Sigma-Aldrich. The RTIL BPyDCA was kindly provided by Ângelo Rocha (Instituto Superior Técnico, 

Portugal). 

Ethyl acetate (109623), C4H8O2 (MW, 88.11; density293 K=0.900 g cm
-3

),  Acetone (100014), 

C3H6O (MW, 58.08; density293 K=0.790 g cm
-3

), Chloroform (102445), CHCl3 (MW, 119.38; density293 

K=1.480 g cm
-3

), Ethanol (100983), C2H6O (MW, 46.07; density293 K=0.790 – 0.793 g cm
-3
), Hexane 

(104374), C6H14 (MW, 86.18; density293 K=0.660 g cm
-3

), Methanol (106009), CH4O (MW, 32.04; 

density293 K=0.792 g cm
-3

) and Toluene (108325), C7H8 (MW, 92.14; density293 K=0.870 g cm
-3

) were 

provided by Merck. All materials were used as received. Gelatine (403 902) was purchased from 

Panreac. All materials were used as received.  

 

2.2. Ion Jelly preparation  

 

To prepare IJ1 (IJ3), 100 µL (300 µL) of IL was heated to 313 K under magnetic stirring, 

followed by the addition of 120 mg of gelatine; the designation 1 and 3 in the IJ materials gives the 

ratio of BMIMDCA/gelatine in the starting mixture. In order to obtain a homogeneous mixture, 206 µL 

(75 µL) of water was added dropwise. The mixtures were kept stirring at 313 K until the gelatine was 

completely solubilized (approximately 15 min). The solutions were then spread over a glass surface in 

order to form thin films. Jellification occurs at room temperature.  

 To have a blank for comparison on the influence of gelatine, a gelatine film was prepared by 

adding 120 mg of gelatine to 1012 µL of water at 313 K under magnetic stirring in order to obtain a 

homogeneous mixture. The solution was also spread over a glass surface at room temperature to 

form a film.  

 

2.3. Techniques 

 

2.3.1. Karl Fischer titration  

Karl Fischer titration was used to determine the water content in each final material, of chapters 

3, 4 and 5, as IJ1-12.2%, IJ3-6.6%, BMIMDCA-1.9% as received (w/w), ILs 0.4% as received (w/w), 

ILs 9%, ILs 12%, ILs 30% and IJs 9%; the water content in the gelatin film was determined to be 22% 
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(w/w). No lower water amounts were possible to achieve gelatine films; otherwise, no self-supported 

films are obtained. 

To evaluate the effluence of water in conductive and transport properties, water was added to 

the received IL until a final content of 6.6% (w/w) (chapter 3), 9% (w/w) (chapter 4) and 9%, 12% and 

30% (w/w) (chapter 5) was achieved (quantified by Karl Fischer titration) having the same water 

amount as IJ3; For the IJ materials it was achieved a final content of 6.6% (w/w) (chapter 3) and 9% 

(w/w) (chapter 4).  

The final composition of the IJ materials is thus IJ1-IL/gelatin/water=41.1/46.7/12.2% (w/w) and 

IJ3-IL/gelatin/water=67.8/25.6/6.6% (w/w).  

In chapter 4 the water content was determined for all the twelve systems, as we can see in table 

2.1. 

Table 2.1 – Water content on the neat IL, aqueous solutions and respective IJs (chapter 4). 
 

IL H2O % Average (%) 

BMIMDCA 
0.40% 0.35±0.09 

9% 8.72±0.05 

EMIMDCA 
0.40% 0.38±0.02 

9% 8.58 

BPyDCA 
0.40% 0.44±0.10 

9% 9.66±0.11 

BMPryDCA 
0.40% 0.39±0.08 

9% 9.65±0.12 

 

IJ H2O % Average (%) 

BMIMDCA 9% 8.88±0.18 

EMIMDCA 9% 10.4 

BPyDCA 9% 9.45±0.44 

BMPyrDCA 9% 9.54±0.07 

 

 

For chapter 5, the water content on the neat IL and the aqueous solutions, were also 

determined: 

Table 2.2 – Water content on the neat IL and the aqueous solutions (chapter 5). 

 

IL H2O % Average (%) 

BMIMDCA 

0.40% 0.50±0.10 

9% 9.25±0.32 

12% 12.66±0.58 

30% 29.70±0.61 

EMIMDCA 
0.40% 0.51±0.17 

9% 9.15±0.44 
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12% 12.58±0.62 

30% 29.90±0.97 

EMIMEtSO4 

  

0.40% 0.44±0.10 

9% 9.28±0.58 

12% 12.30±0.83 

30% 30.73±1.45 

BMPryDCA 

0.40% 0.39±0.08 

9% 9.48±0.16 

12% 12.43±0.51 

30% 30.67±2.70 

 

 

2.3.2 Van der Waals radii 

The van der Waals radii were estimated by the using an Hartree−Fock ab initio method 

provided by the Spartan Student (V4.1.2) commercially available software and molecular volumes 

were estimated (the following table presents the estimated values).  

 

Table 2.3 – Van de Waals radii and cation volumes for the ILs tested in the present work (chapters 4 

and 5). 

 

cation vdW radius
a)

 /Å Cation volume
b)

/Å
3 

Molecular volume
c)

 cm
3
.mol

-1 

EMIM 2.9 134.6 184.5 

BMIM 3.3 171.8 206.9 

BMPyr 3.7 169.5 205.5 

BPy 3.8 184.3 214.5 

 

a)
 estimated by

 
Spartan Student ( V4.1.2)

 

 

 

2.3.3 Dielectric Relaxation Spectroscopy  

This section describes the equipment used to perform the analysis used in DRS, DSC and 

NMR, being DRS the main technique employed in this work. The used impedance analyzer was the 

Alpha-N analyzer from Novocontrol GmbH, available in the laboratory 122 of Chemical Department of 

Faculdade de Ciências e Tecnologia from Universidade Nova de Lisboa. For the DSC measurements 

two devices were used: i) SETARAM DSC 131 available in the Chemical Department of the same 

university; ii) DSC Q2000 from TA Instruments Inc. (Tzero™ DSC  technology) available in the 

laboratory 122 of Chemical Department too.  
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Equivalent Circuits on DRS: 

 

In order to obtain the dielectric information of a given material, it is used an electric circuit with 

several components which simulate the response of the material. This model circuit is known as 

equivalent circuit.  The loss part of dielectric response is represented by a resistance     , while the 

introduction of a capacitance      plays the role of the storage material, i. e., the ability to store the 

electric field. In such a way, the overall admittance      and impedance      in a resistor - capacitor 

(RC) circuit is given by the sum of the contributions of both elements: 

 

     
 

    
 

 

     
         

 

      
 

       

 

 

Where sub index P and S correspond to parallel and series circuit respectively,   is     and   is the 

angular frequency (this equivalence does not apply to d.c. step function experiments[2]). The 

measured values will depend on the geometry of the sample. As that is localized between a parallel 

capacitor, the factors to be considered are the plate area    and separation   (with    ). In order to 

avoid this influence, the dielectric properties of the material are expressed in terms of dielectric 

permittivity (sometimes with conductivity) using the relation               . Here,          is 

the vacuum capacitance of the parallel plate capacitor and    is the complex capacitance of the same 

capacitor filled with the material under study. If a sinusoidal electric field is applied, the complex 

permittivity relates to the impedance through: 

 

      
 

        
 

 

When one is in the presence of a material with a Debye response, i. e. with a relaxation process with a 

single relation time, the simplest equivalent circuit consists in one resistance    associated in series 

with the capacitance   . For describing this instantaneous polarization due to atomic and electronic 

contributions, a capacitance,    associated in parallel with those components must be included[3] 

(see Figure 2.1). To describe this situation, equation 2.3 (for series elements) must be introduced in 

equation above: 

 

      
  

  
 

 

           
 

        
    

 

          
  

     

    

     
  

              
 

 

 

Equation 2.1 

Equation 2.2 

Equation 2.3 
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Figure 2.1– Circuit diagrams for a material exhibiting: (a) a relaxation process with a single relaxation time and 
induced polarization, (b) a relaxation process with a single relaxation time, conduction and induced polarization 
and (c) a distribution of relaxation times and induced polarization (reproduced from reference[4].  

 

where    denotes the quotient      . In the last expression the relaxation time of the equivalent RC 

circuit as          and       as the fraction       can be identified, rewriting equation 2.3, we 

obtain: 

 

         
      

       
 

 

which is a typical representation of complex permittivity for a material that responds according the 

Debye function. 

Additionally, if a translational diffusion of mobile charges occurs, i. e. if the material exhibits 

conductions, like the materials study in this work, the term      must be introduced in the overall 

impedance leading to a complex permittivity as: 

 

   
  

  
 

 

           
 

        
 
  

 
    

      

       
 

 

     
 

 

The conduction process appears as a low frequency tail in the plot of    , giving a value for      

     , being    the frequency independent specific conductivity. The equivalent circuit is presented in 

figure 2.1 (b). 

 

2.3.3.1 Impedance Analyzers  

Samples were prepared in parallel plate geometry between two gold and stainless steel-plated 

electrodes with diameter of 10 mm in the frequency range from 10
-1

 to 10
6
 Hz. 

 

(a)                                     (b)                                                        (c) 

Equation 2.3 

Equation 2.5 
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2.3.3.2 Alpha High Resolution Impedance Analyzer and Temperature Control  

The Alpha-N Analyzer measures the impedance or complex permittivity function of materials 

at frequencies between 3 µHz and 10 MHz with high precision.  

It is possible to distinguish two main parts in this analyzer: 

 

1. A frequency response analyzer with a sine wave and two a. c. voltage input channels. 

Each input channel measures the a. c. voltage amplitude of an applied sine wave, i. e. 

they measure the amplitude and phase angle of the harmonic base wave component of 

the signal. The phase shift between the sine waves applied to the both inputs is also 

detected.  

 

2. A dielectric (or impedance) converter with a wide dynamic range current to voltage 

converter and a set of precision reference capacitors. This dielectric converter is mounted 

inside the Alpha analyzer mainframe.  

 
For electric material measurements and additional dielectric sample cell is required. The 

BDS1200 sample cell from Novocontrol was employed for the measurements. It is suitable for low 

frequency DC to 10 MHz. It includes PT100 temperature sensor localized inside the inferior electrode. 

It can work in the temperature range from 113 K (-160 °C) to 723K (450 °C). This cell is connected to 

the Alpha-N analyzer by two wires BNC. These BNC cables have the disadvantage of limiting the 

performance at high frequencies (up to MHz).  

 

Principles of operation 

 

The Alpha-N analyzer is used with both frequency response analyzer (FRA) a dielectric 

converter. This component measures the response of a system to a harmonic (sinusoidal) excitation. 

Both excitation and the response signals are voltages. The response signal is analyzed by Fourier 

transform, being of special interest the amplitude and phase angle of the sinusoidal base wave with 

respect to the excitation signal. 

The basic principle of measurement of the internal Alpha current to voltage converter used for 

impedance measurements is show in Figure 2.2. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2– Principle of the impedance measurement (reproduced from reference [5]).
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The a. c. voltage from the generator is applied to the sample and measured in amplitude and 

phase as   . The resistor    (50 Ω) limits the sample current if the sample impedance becomes too 

low. The sample current    feeds in the inverting input of an operational amplifier which as the variable 

capacity    (100-470 pF) and the resistor    (it switches 30 Ω, 100 Ω and 1T Ω) in its feedback loop. 

The Alpha analyzer selects a combination of    and    in such a way that the output voltage     is in 

good measurable range of the voltage input channels (3 V – 30 mV). For ideal components,     is 

related to the sample current    by: 

    
  

  
 

 

Where               
    and      . For an ideal operational amplifier, the voltage at the 

input is 0 V with respect to ground and therefore     to the voltage over the sample capacitor. By this 

way, the sample impedance    

   
  

  
  

  

  
   

The impedance    relates to the complex dielectric permittivity through the equation 2.2.  

 

Temperature Control 

 

The temperature control was made by the QUATRO modulus from Novocontrol. This temperature 

controller is connected to the Alpha-N analyzer as schematized in Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 – Temperature control device and its connection to the sample cell (reproduced from reference [5]). 
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The QUATRO controller has four circuits controlling the sample temperature, the gas 

temperature, the temperature of the liquid nitrogen in the dewar and the pressure in the dewar. The 

sample temperature is reached by heating the nitrogen gas with a precision that can be of   0.01K. All 

the nitrogen passing circuit is isolated by a vacuum chamber whose pressure is measured.  

Both the acquisition data and temperature control are carried out by the software WinDETA also 

from Novocontrol.  

The data treatment was carried out by the software origin considering the VFT and Jonscher 

fitting functions [6].   

For the dielectric relaxation spectroscopy measurements, films were cut into disks of about 10 

10 mm in diameter. The films thickness was 0.5 and 0.7 mm, respectively, for IJ1 and IJ3; no thinner 

films were possible to obtain being the thickness limited by the formation of a self-supported gelatin 

film. For BMIMDCA samples, two silica spacers of 0.05 mm thickness were used. The samples were 

placed between two gold plated electrodes (10 mm diameter) in a parallel plate capacitor, BDS 1200. 

The sample cell was mounted on a cryostat, BDS 1100, and exposed to a heated gas stream being 

evaporated   from liquid nitrogen in a Dewar. The temperature control was assured by the Quatro 

Cryosystem and performed within ±0.5 K (all modules supplied by Novocontrol). Measurements were 

carried out using as Alpha N analyzer also from Novocontrol GmbH, covering a frequency range from 

10
-1

 Hz to 1 MHz. After a first cooling ramp from room temperature to 163 K, isothermal spectra were 

collected in steps of 5 K up to 248 K (IJ1) and 303 K (IJ3). Both BMIMDCA were isothermally 

measured from 143 K up to 213 K; from 143 K to 153 K in steps of 5 K and from 153 K to 213 K in 

steps of 2 K.  

The dielectric relaxation data obtained were deconvoluted using a sum of the model function 

introduced by Havriliak-Negami[7] 

 

  
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
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where j is the number of relaxation process,              is the dielectric strength, i. e., the 

difference between the real permittivity values at, respectively, the low and high frequency values, τHN 

is the relaxation time, and αHN and βHN are the shape parameters (0<αHN<1; 0<αHNβHN<1). Since date 

are strongly influenced by the low frequency conductivity contribution, an additional term i/
c
o was 

added to the dielectric loss, where Ԑ0 is the vacuum permittivity; σ and c are fitting parameters: σ is 

related to the dc conductivity of the sample, and the parameter c (0 < c ≤ 1) reflects conductivity of 

ions for c = 1 and for c < 1 interfacial polarizations, including electrode polarization. 

 

2.3.4 Differential Scanning Calorimetry 

 

The calorimetric experiments were carried out with a DSC Q2000 from TA Instruments Inc. 

(Tzero™ DSC  technology) operating in the Heat Flow T4P option (details can be found in reference 
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[8]. The melting heat of indium was used for calibrating heat flow. Sample 26 mg were placed in open 

aluminum pans; an empty aluminum pan was used as reference. Dry high purity N2 gas was purged 

through the samples during the measurements. The two IJ and gelatin were analyzed. Thermograms 

were collected, after a previous cooling run down to 123 K, upom heating to 363 K at a rate of 20 K 

min
-1

. This relatively high heating rate was chosen to enhance the heat capacity step in the IJ 

materials, mainly in IJ1 for which the jump is quite broad;  

Measurements were realized under dry high purity helium at flow rate of 50 mL·min
-1
; a liquid 

nitrogen cooling system (LNCS) was used in order to reach temperatures as low as 123 K. DSC Tzero 

calibration was carried out in the temperature range from 108 K to 573 K. It requires two experiments:  

the first run with the empty cell (baseline) and the second run with equal weight sapphire disks on the 

sample and reference platforms (without pans). This procedure allows for cell resistance and 

capacitance calibration which compensates for subtle differences in thermal resistance and 

capacitance between the reference and sample platforms in the DSC sensor. Enthalpy (cell constant) 

and temperature calibration were based on the melting peak of indium standard (Tm = 429.75 K) 

supplied by TA Instruments (Lot E10W029). Small amount of samples (less than 5 mg) were 

encapsulated in Tzero (aluminium) hermetic pans with a Tzero hermetic lid with a pinhole; 

The thermal stability of the samples during the measurement was a priori not considered as a 

problem, since the used ILs and the respective based Ion Jellies, are known to rather stable and the 

temperature range was limited to 40ºC. The samples were visually inspected after each measurement 

aiming the possibility to see some color change or other effect of degradation. The DSC apparatus is 

presented in Figure 2.4.  

 
 

 

Figure 2.4 – DSC apparatus. 
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2.3.5. Nuclear Magnetic Resonance 

NMR spectra were recorded on a Bruker Avance III 400 spectrometer, operating at 400.15 

MHz, equipped with pulse gradient units, capable of producing magnetic field pulsed gradients in the z 

direction of 0.54 T m
-1

. Diffusion measurements were performed using the stimulated echo sequence 

using bipolar sine gradient pulses and eddy current delay before the detection.[9] The signal 

attenuation is given by 



























23

2
exp 222

0

g
DgSS


  

where D denotes the self-diffusion coefficient, γ the gyromagnetic ratio, δ the gradient pulse width, ∆ 

the diffusion time, τg the gradient recovery delay, and g the gradient strength corrected according to 

the shape of the gradient pulse. 

Before all NMR experiments, the temperature was equilibrated and maintained constant within 

±0.1 K, as measured using the spectrometer thermocouple system. Experiments were performed at 

298.15 K, 288.15 K, 278.15 K, 273.15 K, 268.15 K, 258.15 K, 253.15 K, and 248.15 K.  

The spectra were recorded in 5 mm NMR tubes with an air flow of 535 L h
-1

. Typically, in each 

experiment, a number of 32 spectra of 32 K data points were collected, with values for the duration of 

the magnetic field pulse gradient (δ) of 2.5 to 3.5 ms, diffusion times (∆) of 400 to 200 ms, and an 

eddy current delay set to 5 ms, the gradient recovery time (τg) was 20 µs. The sine shaped pulse 

gradient (g) was incremented from 5 to 95% of the maximum gradient strength in a linear ramp. The 

spectra were first processed in the F2 dimension by standard Fourier transform and baseline 

correction with the Bruker Topspin software package (version 2.1). The diffusion coefficients are 

calculated by exponential fitting of the data belonging to individual columns of the 2D matrix. The 

diffusion coefficients (D) were obtained by measuring the signal intensity at more than one place in the 

spectra. At least two different measurements were done for the determination of each diffusion 

coefficient.  

 
2.3.6. Electronic Nose 

Preparation of the sensors: While still warm (40 ºC), 40 µL of an ion-jelly solution was spin-

coated (1000 rpm, 30 s) onto an interdigitated electrode, forming a uniform jellified transparent film. 

This procedure was repeated for all the IJs (Figure 2.5). 

 

 

 

 
 
 

Figure 2.5. Ion jelly gas sensor. 
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E-nose measurements: A pneumatic assembly for dynamic sampling, as show in Figure 6.4, 

was used for the measurements. Thus, the sensors were exposed to the headspace of each volatile 

sample, kept at 30 ºC, for 5 s (exposure period; valves 1 and 2 open, valve 3 closed), then to dry air 

for 65 s (recovery time; valves 1 and 2 closed, valve 3 open). The airflow was maintained constant at 

0.5 Lmin
-1

. The tests were repeated fifteen times for each of the eight samples. The conductance of 

the sensors was continuously monitored with accurate conductivity meters, operating with an 80 mV 

peak-to-peak 2 KHz triangle wave AC voltage connected via 10 bits analog to digital converter to a 

personal computer.  

Chemometrics. Principal component analysis (PCA) was performed using Statgraphics 

Centurion XV. Leave-one-out analysis was performed using DimReduction (GNU) [10]. The analyses 

were carried out using, separately, the relative responses              , where G1 is the 

maximum conductance and G1 the initial conductance of the sensors values (see Figure 2.6). 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 – Setup of the e-nose measuring systems.  
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3. UNDERSTANDING THE ION JELLY CONDUCTIVITY MECHANISM 

 

The results reported in this chapter were published in the Journal of Physical Chemistry B 

(DOI: 10.1021/jp2108768). 

 

3.1. Thermal Characterization  

 

To obtain a proper understanding of the transport properties of IJs and BMIMDCA, the thermal 

transitions were first investigated by DSC. The respective thermograms, recorded in heating mode, 

are represented in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 - DSC scans obtained in heating mode at 20 K.min
-1

 for BMIMDCA1.9%water, BMIMDCA6.6%water and both 
Ion Jelly showing the heat flow jump at the glass transition; in the studied temperature range no transitions are 
detected for gelatin. The inset shows the second heating scan for BMIMDCA6.6%water and IJ3, where cold 
crystallization and melt are observed for the IL and avoided for the Ion Jelly (see text). 

  

For BMIMDCA1.9%water, BMIMDCA6.6%water, and IJ3, it is clear the heat flow jump, which is the 

characteristic signature of the glass to supercooled liquid transition; although, not so clear, the same 

transition is also observed for IJ1. Therefore, all the materials tested in this work are classified as 

glass formers. In this temperature range, no transition was detected for gelatine (see dashed line in 

figure 3.1).  

The width of the transition is higher for both IJ materials, in particular for IJ1, which covers an 

extremely wide temperature range, relative to BMIMDCA either with 1.9 and 6.6% of water. As a 

result, the glass transition temperature determined from the onset (see Introduction) of the calorimetric 

signal will be taken for comparison being 174.2 K (-99.0 °C), 169.8K (-100.5 °C), 174.4 K (-98.8 °C), 

and 203.9 K (-69.2 °C) for respectively, BMIMDCA1.9%water, BMIMDCA6.6%water, IJ3 and IJ1 (see Table 

3.1).  
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The values extracted from the midpoint and endset are also included in Table 3.1, as well as the 

heat capacity jump. While the onset of the glass transition detected for IJ3 occurs near to the onset of 

the bulk ionic liquid, the temperature of the glass transition increases significantly in IJ1. This will be 

confirmed later by DRS. For the IL, it is observed a decrease of the glass transition with the water 

content. This is consistent with the data provided by Fredlake et al.[1] for BMIMDCA with lower water 

content (0.515%) for which a higher Tg value is reported: 183 K (-90 °C) taken at the midpoint; in this 

work, the Tg values taken at the midpoint were estimated as, respectively, 177.6 K (-95.6 °C) and 

172.5 K (-100.65 °C) for BMIMDCA1.9%water, BMIMDCA6.6%water. Therefore, a plasticizing effect of water 

at these relative low water contents can be inferred. The shift of the position of the glass transition 

tower lower temperatures was also observed for another IL, 1-ethl-3-methylimidazolium acetate, for 

water contents from 0 up to 40% w/w.[2] 

In addition to the glass transition, Fredlake et al.[1] report the occurrence of cold crystallization 

at 244 K (-29 °C) followed by melting at 267 K (-6 °C) for BMIMDCA. This was investigated here for 

both BMIMDCA, and indeed, cold crystallization of the supercooled liquid and subsequent melt are 

detected at temperatures close those reported in [1] but only in a second heating run (see the 

illustrative thermogram for BMIMDCA6.6%water in the inset of Figure 3.1). It is worth noting that prior to 

the second heating run during which crystallization was observed, the sample was heated up to 363 K 

in the first heating scan and kept 5 min at this temperature. This assures the water removal, which 

seems to be a condition to occur further crystallization. In the second heating scan, the glass transition 

temperature increased to 184.6 K for both BMIMDCA1.9%water and BMIMDCA6.6%water (taken at the 

midpoint), confirming the shift to higher temperatures upon dehydration, and the water content 

remaining in both samples is similar and probably negligible (at least below 0.5% according to the 

previous discussion). Moreover, no crystallization was observed in subsequent runs for both IJs (see 

the second heating scan for IJ3 in the inset of Figure 3.1). This can be taken as an indication that, 

upon thermal treatments, the supramolecular structure of gelatine stabilizes to some extent (i) the 

disordered amorphous state of the IL and (ii) the water retention. This can be seen as a plus 

concerning the potential applications and performance of these materials.  

The first scan is the one taken for all samples since it reproduces the conditions followed in the 

dielectric measurements. 

Table 3.1- Glass Transition Temperatures Taken at the Onset (on), Midpoint (mid) and Endset (end) of 
the Heat Flow Jump for both BMIMDCA and both IJs, Obtained during a First Heating Ramp at 20 
K/min, and Heat Capacity Associated with the Glass Transition 

System Tg,on/K Tg,mid/K Tg,end/K ΔCp(J.g
-1
.K

-1
) 

BMIMDCA1.9%water 174.2 177.6 179.7 0.68 

BMIMDCA6.6%water 169.8 172.5 177.8 0.72 

IJ3 174.4 181.8 193.3 0.47 

IJ1 203.9 220.6 256.0 0.30 
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3.2. Dielectric Characterization  

 

3.2.1. Conductivity 

Figure 3.2 shows the real (a-d) and imaginary (e-h) components of the complex conductivity, 

σ*(ω) = σ’(ω) + iσ’’(ω), from 10
-1

 to 10
-6

 Hz covering different temperatures ranges for each material: 

BMIMDCA1.9%water and BMIMDCA6.6%water, IJ3 and IJ1 from top to bottom. The insets shows the 

respective components of the dielectric complex function ɛ*(ω) = ɛ’(ω) + i ɛ’’(ω) associated with 

reorientational motions of dipoles. The relationship between both is given by[3] *() = i0.*(). As it 

becomes clear from the permittivity and loss curves, conductivity strongly affects the dipolar spectra 

mainly at the low frequency side and at the highest temperatures. This conductivity contribution can be 

analyzed to extract information on the charge transport mechanism for each material, which will be 

carried out in the next section.  

 To evaluate the influence of gelatin itself in the IJ conductivity, a film of gelatin with 22% of 

water was also measured at 298 K; this was the minimal water content that allowed preparing self-

supported gelatin films. Figure 3.2 shows the real conductivity for this material. It is evident that the 

dielectric response for gelatin22%water is significantly lower relative to any of the tested materials of 

either IL or IJ. Even at the highest frequencies, the real conductivity of gelatin22%water is around 4 

decades inferior to that of IJ3; at the lowest frequencies, the response differs around 8 decades! The 

role of water will be analyzed in the end of this section.  

It is worthy to mention that while the dielectric measurements for the IL (either with 1.9 and 

6.6% water) were affected by electrical anomalies at temperatures close to room temperature and at 

the highest frequencies (that persist even reducing the length of the BNC connecting cables), no such 

instabilities were felt while measuring the ion jelly materials. This can be taken as another advantage 

of the performance of these devices.  
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Figure 3.2 – (a-g) -  Complex conductivity measured at different temperatures of BMIMDCA1.9%water and 
BMIMDCA6.6%water (in steps of 2 K from 163 K to 213 K) and Ion Jelly (in steps of 5 K starting at 163K (IJ3) and 
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188K (IJ1)): (a-d) real, ´, and (d-g) imaginary, ´´, components; the onset of the calorimetric Tg occurs at a 
temperature in between the isotherms represented in filled symbols (indicated by the arrow). The insets display 

the respective real ´ (a-d) and imaginary ´´ (e-h) parts of the complex dielectric function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3. Frequency dependence of real conductivity at 298 K for IJ3 (which has 6.6% (w/w) water content) 
compared with a blank of a gelatine film with 22% (w/w) of water.  
 

The plot of the real part of the complex conductivity (Figure 3.2 – (a-d)) presents a profile similar 

to the one found for a variety of quite different materials[4–6]: a plateau at low frequencies that bends 

off at same critical frequency, crossover frequency, into a dispersive regime, with a strong increase of 

the conductivity with increasing frequency following a power law dependence (a.c. conductivity) as 

proposed by Jonscher [7] (see Introduction section 1.2.5). 

The emergence of a ωcross in the real conductivity spectrum provides a way to get a rough 

estimate of the glass transition temperature as found for both BMIMDCA materials and IJ3 from which 

unequivocal calorimetric determination of Tg was possible (the arrow in Figure 3.2 -  (a-d) indicates the 

two temperatures that lie immediately below and above the onset of the Tg detected by DSC). In the 

case of IJ1, an identical behaviour is observed between the isotherms collected at 203 K and 208 K 

giving further evidence that the glass transition temperature is closer to the value hardly estimated 

from DSC measurements (Tg, on = 204 K).  

The plateau region corresponds to a linear dependence of slope 1 in the plots of log(ɛ’’(ω)) and 

gives the value of σ0, the conductivity in the dc limit. At the highest temperatures in each collection of 

σ’(ω) spectra, instead of an extend plateau in the conductivity plot in the low frequency region, a 

decrease is observed, due to electrode polarization as found in similar materials[8]. This means that 

ionic conduction becomes blocked, i.e., ions accumulate in the sample/electrode interface without 

discharging. In the same frequency region, the loss curves (ɛ’’(ω)) present a linear dependence with a 

slope < 1, and the real permittivity (ɛ’(ω)) exhibits a tail with several orders of magnitude higher than 

the values measured at the lowest temperatures and highest frequencies. Additionally, when electrode 

polarization occurs, a peak is observed in the imaginary part of the conductivity, σ’’(ω), as depicted in 

Figure 3.2 – (e-h). A more detailed analysis will be provided in section 3.2.1. 
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Jonscher equation was fitted to the real part of conductivity to obtain ωcross and σ0; the later 

compares very well with values taken from the plateau region in each isotherm. Figure 3.4 shows for 

IJ3 the obtained fit as solid lines at temperatures for which data are not influenced by electrode 

polarization (an effect that in not taken into account in the proposed law). 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 3.4 – Real part of conductivity for IJ3 from 178 to 238 K in steps of 5K. The solid lines are the obtained fits 
by the Jonscher law (eq. (2)). Data collected at 208 K are plotted in full circles being the same spectrum 

presented in the inset together with the respective derivative d(log’())/d(log()) (open circles); the continuous 
increase of the derivative value with the frequency increasing, confirms the sub-diffusive dynamics (see text). 

 

The curve taken at 208 K is plotted in full symbols being the same presented in the inset that 

also includes its respective derivative plot d(log’())/d(log()) (open circles). This is a way to verify if 

ion transport at short times (high frequency side of the spectrum) is governed by subdiffusive 

dynamics. In fact, if dipolar relaxation dominates, a different profile for the a. c. contribution would be 

obtained.[9], [10] Moreover, subdiffusive bulk ion dynamics usually leads to an apparent slope 

d(log’())/d(log()), which increase continuously with increasing frequency. In contrast, 

reorientational motions of dipoles lead to a ɛ’’ peak, which implies that in the low-frequency   of the 

peak, the slope d(log’())/d(log()) is larger than unity, and in the high-frequency flank, it is smaller 

than unity. So, in the case of reorientational motions, one does not expect a continuous increase of 

the slope with increasing frequency as we obtained. Therefore, there is strong evidence that 

subdiffusive dynamics dominate at short times allowing to extract transport properties.  
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The temperature dependence of the σ0 values is plotted in Figure 3.5 for the four materials.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 – (a).Temperature dependence of the dc conductivity, 0, and of the relaxation time, e, taken from the 
crossover frequency. The correlation between both is displayed in the inset (BNN plot) for which a slope near 1 

and a r
2
=0.99 was found: log(0)=(1.060.02)log(e) –(12,950,09). (b) Temperature dependence of conductivity 

normalized for the value measured at the calorimetric glass transition temperature (Tg); the temperature axis is 
scaled to the glass transition temperature, Tg.  

 

The empirical Vogel Fülcher Tammann-Hesse (VFT) equation [11–13] was fitted to the 

conductivity data, which usually describes the temperature dependence of the dynamic glass 

transition relaxation time (eq. 3.1 – (a)) and the electrical conductivity (eq. 3.1 – (b)) of supercooled 

liquids including ionic liquids,[10], [14–18] quite well 
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where  and  are the values of the relaxation time and conductivity in the high temperature limit, B 

is an empirical parameter characteristic of the material accounting for the deviation of linearity (roughly 

B is lower with the more curve dependence), and T0 is the Vogel temperature interpreted as the glass 

transition temperature of an ideal glass, i. e., a glass obtained with an infinitely slow cooling rate[19]. 

The crossover frequency can be used[16] to derive the attempt rate, e=1/e=(2fe).  

The frequency fe, which characterizes the onset of the dc conductivity, is related to it by the 

empirical relationship known as the BNN relationship, 0 - 1/e (see Introduction section 1.2.5), that 

predicts similar temperature dependencies for σ0 and e
-1

. In Figure 3.5 – (a), the –log(e) plot against 

the reciprocal of temperature was included for all materials, running parallel to the VFT-like 

temperature dependence of σ0(T). Table 3.2 presents the estimated parameters of the VFT fit to the 

σ0(T) and e(T), where it can be seen the similarity between the B and T0 parameters obtained from 

both kind of representations, indicating the parallelism of σ0(T) and e(T) for all materials. To analyze 

better the origin of such dependence, the log σ0(T) is represented versus –log e(T) in the inset of 

Figure 3.5 – (a), this proves that the BNN relationship holds in the studied frequency/temperature 

range for the four materials as reported for a variety of ion conducting disordered systems.[16], [20–

22]. 

Figure 3.5 – (b) shows the plot of the normalized conductivity for the value measured at the 

glass transition temperature, σTg, of each system and scaled to Tg. From this plot, it is possible to 

conclude that relative similar temperature dependencies are observed for the different systems. 

However, the plots do not follow in a single chart as observed for a series of ionic liquids (inset of 

Figure 2a in ref 37). The temperature dependence of BMIMDCA1.9%water conductivity exhibits a 

relatively higher curvature, meaning that its conductivity changes more with the temperature while 

approaching Tg. This can be due to the temperature evolution of the type of motion to which the 

conductivity seems to be correlated with (as it will be analyzed in the last section of this chapter), and 

it is usually quantified by the fragility index; this quantity measures the degree of deviation from 

Arrhenius-type temperature dependence near Tg,[24];  its determination and analysis will be carried 

out in the next chapter. 

 

 

 

 

 

 

 

 

 
 

(3.1 – (b)) 
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a
The uncertainties are the statistical errors given by the fitting program. For each material, the similarity between 

B and T0 estimated through 0(T) and e(T) indicates a parallelism between these two quantities (see text for 
details). 

b
According to the VFT law for conductivity. 

c
According to the VFT law for relaxation time.

 

 

 

Since it was proved that no dipolar relaxation is affecting conductivity data and that the BNN 

relation holds, it is possible to go further on data treatment to estimating transport properties. For the 

determination of diffusion coefficients (equation 1.20(a) and 1.20(b) in Introduction) the mean square 

displacement <r
2
(t*)> is needed.  An good estimate is to take the square of the van der Waals (vdW) 

diameter.[25] The vdW value used for BMIM was the one reported in the literature, 0.66 nm.[26] This 

value is in reasonable agreement with the value of 0.76 nm estimated by using an Hartree-Fock ab 

initio method provided by a commercially available software;[27] therefore, the vdW diameter 

estimated by using Spartan[27] for the DCA anion (0.424 nm) was adopted since no value was 

provide in the literature, as far as we know.  

Taking the vdW diameter, the individual diffusion coefficients were estimated from equations 

1.20-a and 1.20-b  (se Introduction). The mobility, µ, was then readily determined (equation 1.15 – (b) 

by taking D=D+ + D_). In figure 6 the obtained D+ and D_ diffusion coefficients (Figure 3.6 – (a)) and µ 

(Figure 3.6 – (b)) are displayed for BMIMDCA1.9%water and BMIMDCA6.6%water and both IJs. The 

estimated self-diffusion coefficients of the cation are slightly higher than those of the anion as 

generally observed (see ref 39 and references therein), being a consequence of a higher vdW 

diameter of the former.  

Figure 3.6 – (c) includes the cation diffusion coefficient determined from Pulse Field Gradient 

(PFG) Nuclear Magnetic Ressonance (NMR) measurements for BMIMDCA6.6%water and IJ3, the IJ 

containing the water content; because of the absence of protons or high sensitive NMR nuclei in the 

anion structure, its diffusion coefficients were not able to be determined by NMR.   

Table 3.2. Fit Parameters Obtained According to the VFT Law for the Conductivity (eq. 3.1 – (b)) and 

the Relaxation Times (eq. 3.1 – (a))
a 

 VFT fit parameters of σ0
b) 

VFT fit parameters of  e
c) 

Sample σ∞/ S.cm
-1 

B/ K T0 / K τ∞/ s B / K T0 / K 

BMIMDCA1.9%water 3721 116791 1362 (2.20.3)X10-14
 

1048346 1369 

BMIMDCA6.6%water 229100 132858 1271 (1.31.2)x10
-16

 1610374 1204 

Ion Jelly (IJ3) 5915 137539 1281 (4.02.7)x10
-14

 1224156 1304 

Ion Jelly (IJ1) 376116 245376 1331 (1.20.6)x10
-15

 2508154 1303 
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For IJ3, it was possible to estimate the cation diffusion coefficients from DRS data over a large 

temperature range up to the temperature interval covered by PFG NMR measurements. From 213 to 

298 K, the crossover frequency was estimated from the dc conductivity values taken at the high 

frequency plateau through the BNN relationship (stars in Figure 3.6 – (c)). Interesting enough is the 

fact that the cation diffusion coefficients estimated for IJ3 from dielectric data agree so well with the 

values directly measured by PFG NMR. Since an average diffusion coefficient is extracted from DRS 

measurements, this offers a way to validate the deconvolution of this quantity in its individual D+ and 

D_ contributions. Concerning the BMIMDCA6.6%water it was not possible to obtain either crossover 

frequency or dc conductivity values in the high temperature range due to the influence of electrical 

anomalies affecting the measurements at the highest frequencies as mentioned before. However, a 

single VFT equation describes both DRS and PFG NMR data.  
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Figure 3.6 – (a-c) – Thermal activation plot for a) diffusion coefficients of BMIM (cation) and DCA (anion) 
(equations 1.20-a and 1.20-b), replacing the mean-square displacement by the vdW diameters, and b) 

mobilities,, (equation 1.15-b) by taking D=D++D- for the four materials. (c) Values of the cation diffusion 
coefficients (D+) determined from PFG NMR and the VFT fit (solid lines); data represented by stars for IJ3 were 
estimated also through equation 10a but using the BNN relationship to obtain the crossover frequency from σ0 
(see text).  
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From the diffusion coefficients and 0 values, the mobility is readily obtained through equation 

1.15-b (Introduction). The respective temperature dependence is included in figure 6, becoming clear 

that the nonlinear temperature dependence of conductivity is originated by a VFT behaviour of the 

mobility as found in related materials.[10], [16-17]
 

From the comparison of the transport properties of the IL with two different water contents, it 

becomes obvious that water enhances the mobility and increases the value of the ionic diffusion 

coefficients. The influence of water on the transport properties of several ILs was recently investigated 

by Spohr and Patey[28] by molecular dynamical simulations that conclude  that the dominant effect of 

water is dynamical in origin. For room temperature ionic liquid-water mixtures for which the ion size 

disparity is not to large (as in the actual IL), it was demonstrated that the lighter water molecules tend 

to displace much heavier counterions from the ion coordination shells, which reduces caging and 

increases the diffusivity, leading to higher conductivities and lower viscosities. The results here 

reported corroborate their conclusions as found also for another IL (N,N-diethyl-N-

methylammoniumtriflate), where it was observed that water facilitates the translational motion of both 

ions increasing mobility[29]. Moreover water molecules weaken the contact ion pair since it shields the 

electrostatic attractions between ions, promoting ion dissociation[29]. 

The diffusion coefficients and mobility of charge carriers in IJ3 are close to those of the bulk 

BMIMDCA. This means that the solid-like material retains a similar ability for charge transport as the 

IL. As observed earlier, the gelatine conductivity (even containing a large water amount, 22%) is rather 

low compared with IJ3 (remember Figure 3.3). Nevertheless, in IJ3, the gelatine matrix should 

promote charge separation in large charge clusters, which are known to exist in ILs[30–32].
 
Increasing 

the number of charge carriers resulting in a material with conductivity and mobility comparable to 

those of the pure. The same is not true in IJ1. This is probably due to a rather low ratio 

BMIMDCA/gelatine, pointing to the existence of a critical composition, which leads to those properties. 

The difference in the temperature range where these quantities are able to be estimated is determined 

by the glass transition temperature that, as above-reported, is nearly the same for IJ3 and BMIMDCA 

and ~ 30 K higher for IJ1. 

Moreover, it is relevant to observe that the diffusion coefficients at higher temperatures, 

including room temperature, as observed by PFG NMR, are the same for IJ3 and BMIMDCA6.6%water. 

Therefore, the presence of the gelatine matrix does not impair the diffusion of the IL ions.  

 

3.2.2. Analysis of Real Permittivity ɛ’ 

The effect of electrode and interfacial polarization can be also analysed trough the real 

permittivity spectra, ɛ’(ω), that, oppositely to the dielectric loss, is insensitive to pure dc conductivity; 

the extremely high values of conductivity made impossible the analysis of any relaxation process 

including the  cooperative motion behind the process associated with the dynamical glass transition.  

Through ɛ’’ data. ɛ’(ω) presents a multimodal character, and therefore, a sum of HN equations (see 

eq. 1.13 in Introduction) was used to fit the raw data.1 An adequate simulation of the experimental data 

                                                        
1
 The fitting of a sum of HN equations to the ´data was made by Professor Carlos Mariano Dias (Materials Science Department of FCT/UNL; 

nevertheless the analysis is kept on this chapter since the further data treatment was carried out by Tânia Carvalho. 
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was only possible considering four individual processes (designated from I to IV in decreasing order of 

frequency at the same T). Figure 3.7 – (a-d) shows the obtained results as solid lines illustrating how 

well data were described by the fit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 - (a-d) Real permittivity spectra, ´, of BMIMDCA1.9%water, BMIMDCA6.6%water, and both IJs; the solid 
lines are the overall fit of a sum of four individual HN functions to the raw data. (e-h) Respective relaxation maps 
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are presented (solid lines are the VFT fit). The asterisks in the relaxation maps are the relaxation times taken from 

the maximum of ´´() in excellent agreement for all systems with the values estimated from the fit to process IV. 
Note a different scale in the X-axis for IJ1 due to its higher glass transition temperature.  
 

 

In Figure 3.7 – (e-h), the relaxation maps for all considered processes are displayed. The 

temperature dependence of the maximum observed in σ’’ (ω) was included in each relaxation map 

revealing an excellent agreement with the activation plot of process IV for all systems. This is a way to 

confirm the accuracy of the fitting procedure and the assignment of this process to electrode 

polarization.  

It should be noted that in spite of expecting a multimodal nature of the dielectric processed due 

to the simultaneous contribution, in order of increasing frequency, (i) electrode polarization, (ii) 

interfacial polarization, and (iii) reorientational dipolar motions, it is not straightforward the reason why 

four processes were needed to simulate the raw data. This can have real physical meaning due to 

polarization processes usually found in inhomogeneous materials where internal phase boundaries 

develop at which charges can be blocked giving rise to different interfacial polarizations of the 

Maxwell-Wagner-Sillars type;[33] these interfaces in the here-tested materials could be ionic 

liquid/gelatine, water/ionic liquid, or gelatine/water. Even within the bulk ionic liquid, interfacial 

polarization can emerge. Indeed, for alkyl-MIM ILs, it was demonstrated by molecular simulation the 

existence of nanometer –scale structuring with aggregation of the alkyl chains in nonpolar domains, 

which permeate a tridimensional network of ionic channels formed by anions and by the imidazolium 

rings of the cations in such a way that microphase segregation exists between polar and nonpolar 

domains,[30], [31] strengthening the existence of interfacial polarization in the pure IL itself. However, 

the need of using four processes could alternatively arise from an inadequacy of a single HN 

relaxation function to describe the totality of the interfacial processes taking place inside the material. 

It is not clear up to now what is the actual cause of this behaviour.  

In Figure 3.7 - (e-h), it becomes obvious that all considered processes follow VFT dependencies 

of the respective relaxation times; the VFT parameters are presented in Table 3.3  
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Table 3.3 – VFT parameters estimated for each process used in the HN fit to the ´ data 

 

 

 

 

 

 

  

 I II 

 /s
 B /K T0 / K /s B /K T0 / K 

BMIMDCA1.9% 6.18x10
-17

 3078.8 107.2 2.32x10
-19

 3202.2 111.4 

BMIMDCA6.6% 3.45x10
-13

 2493.2 92.8 1.88x10
-14

 2349.4 101.7 

IonJelly 3 5.57x10
-15

 3942.0 85.5 1.53x10
-14

 3671.1 81.0 

IonJelly 1 3.69x10
-14

 4798.1 98.5 9.12x10
-14

 4447.9 86.9 

 III IV 

BMIMDCA1.9% /s B /K T0 / K /s B /K T0/ K 

BMIMDCA6.6% 9.60x10
-19

 2953.5 111.0 3.58x10
-23

 3118.7 116.3 

IonJelly 3 1.24x10
-15

 2285.5 106.4 2.06x10
-16

 2071.7 113.7 

IonJelly 1 7.40x10
-17

 3497.6 92.1 2.20x10
-18

 3031.4 105.7 

BMIMDCA1.9% 1.70x10
-14

 3932.5 102.3 9.69x10
-18

 3669.9 122.8 
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The relaxation process detected at the highest frequencies, i.e., process I, is related to the 

dipolar relaxation associated with the dynamic glass transition (impossible to analyze from the ɛ’’ data, 

as previous mentioned). From the VFT parameters obtained from process I, it is possible to estimate 

the glass transition temperature at τ = 100 s,[34] as 171.7 K (-101.5 °C), 164.6 K (-108.6 °C), 172.7 K 

(-101.0 °C), and 206.6 K (-66.6 °C), respectively, for BMIMDCA1.9%water, BMIMDCA6.6%water, IJ3, and 

IJ1. Having in mind that the estimated parameters are being taken from a process that is really weak 

compared with process II and III, the obtained Tg
 
values are in excellent agreement with those 

determined calorimetrically (see Table 3.1). Roughly, the magnitude of each process decrease a 

decade from IV to I, the first having values of the order of 10
6 

– 10
7
, while process I has a dielectric 

strength of the order of hundreds. This is the reason why the frequency dependent real conductivity 

can be taken as mostly due to subdiffusive transport. The low intensity of the cooperative motion 

associated with the dynamical glass transition compared with conductivity contribution leaves σ’ (ω) 

unaffected, and therefore, meaningful values of crossover frequency, and consequently of e, were 

estimated.  

3.3. Decoupling Index 

 

The VFT dependence obeyed by the relation times of process I was also observed for the dc 

conductivity. This could point to a correlation between the dynamics of the structural relaxation and the 

ion motion. To test this, the decoupling index, Rτ (Tg), was determined for each material, which is the 

ratio of the structural relaxation time to the conductivity relaxation time[35-36] giving a physical idea of 

the relationship between the conductivity and structural relaxation processes.[37] This factor 

conveniently describes the extent to which the ion conducting motions in a given glass can be 

considered decoupled from the viscous motions of the glassy matrix.[38] An approximate relationship 

between the logarithm of the decoupling index and the conductivity ( in S cm
-1

) measured at Tg was 

proposed by Angell[39] 

 

                               

 

giving the orders of magnitude of the mobility of the charge carriers relative to the mobility driven by 

the cooperative dynamics. The σ0 values obtained at the calorimetric Tg were σ0(Tg)BMIMDCA1.9%water = 2 

x 10
-12

, σ0(Tg)BMIMDCA6.6%water = 8 x 10
-12

, σ0(Tg)IJ3 = 8 x 10
-12

, and σ0(Tg)IJ1 = 3 x 10
-13

 S cm
-1

 given as log 

decoupling indexes, respectively, 3.3, 3.9, 3.9, and 2.5. In superionic conductors, this value is very 

large (~7[40] or 9[37]), meaning that the species responsible for conductivity are more mobile 10
7
 to 

10
9
 times than that of the species becoming jammed at the glass transition; it was proposed that the 

excess mobility was unlikely attributed to any ionic species, instead it should be probably due to the 

motion of protons themselves[37]. Also, in fast ion conducting AgI-Ag2O-V2O5 glasses, very large 

values of Rτ (Tg) were estimated (from 11 to 14) pointing to a decoupling between the motion of the 

Ag
+
 ion

 
and the matrix[41]. Also in ion gels, the ion transport is found to be decoupled from the 

Eq. 3.2 
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segmental motion of the polymers, leading to relatively high ionic conductivities even at their glass 

transition temperatures (~10
-7

 S cm
-1

) with Rτ (Tg) ≈ 7 in PMMA/[C2mim][NTf2] electrolytes[42]. 

In the present case, not so high decoupling indexes were estimated meaning by one side that 

no significant protonic conduction is involved and by other side the the cooperative motion associated 

with the dynamical glass transition and conductivity are correlated, which points to a dynamic glass 

transition assisted hopping mechanism of charge transport as found for related systems[23]. 

In a few words to finalize this section, the dc conductivity of IJ3 follows closely the behaviour of 

BMIMDCA. At a fixed temperature, the ionic liquid with the highest water amount, BMIMDCA6.6%water, 

exhibits the highest conductivity, while IJ1 presents the lowest values highly determined by its high 

glass transition temperature. 

Summarizing this section on transport properties, it was observed for the four systems here 

investigated that the mobility and diffusion coefficients follow a VFT like temperature dependence. 

Water enhances ion mobility in the bulk ionic liquid; however, in the ion jelly material, the gelatine 

amount is significant in determining the transport properties since the composite having the higher 

water content (IJ1) exhibits the lower diffusion coefficients and mobility. Therefore, a critical 

composition IL/gelatine should exist above which a self-supported material can exhibit ionic liquid-like 

properties as found here for IJ3.   
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4. IMPROVING AND UNDERSTANDING IJ CONDUCTIVE PROPERTIES USING DCA BASED ILS 

 

In the present chapter we have tried to evaluate the impact of different IL cations on IJ physical 

chemical properties, namely: BPyDCA, BMPyrDCA and EMIMDCA. 

Previously [1-2] we found that IJs based on ILs that contains DCA anion have led to stable and 

transparent materials. This result can be partially explained by the fact that DCA anion is a strong 

ligand [3-4].   

In this work we have also studied the impact of water on both IL and IJ physical chemical 

properties. In our previous study [2] we have observed that water plays an essential role on the ionic 

diffusion, mobility and conductivity. The idea here was to test if this effect could be correlated in any 

extension with the change on IL cation, since different cations establish different interactions with 

water, gelatine or even with the DCA anion.    

Moreover, the physical properties as conductivity are strongly temperature dependent. In such 

glass former systems, the glass transition temperature (Tg) gains a particular relevance since it can 

determine, when over passed, the onset of diffusive behaviour (see chapter 1)  as it was previously 

shown in chapter 3 and reported in reference  [2]. Therefore, the Tg determination and the evaluation 

of the conductivity and dynamical behaviour below in the glass region, and above Tg in the 

supercooled regime, is important for the understanding of the IJ performance, being the reason why  

the calorimetric and dielectric experiments were done covering a wide range of temperatures. Thus, 

besides the Tg estimate, it was also possible to evaluate the dynamic fragility, i.e., the temperature 

resistance of flow properties for the IJ systems and correlate both parameters with the obtained 

conductivity.   

To simplify the discussion, the materials characterization is presented in two parts according the 

used experimental technique, calorimetry and dielectric spectroscopy. 

  

4.1. Thermal Characterization  

 
A liquid below its melting point should crystallize, however, a pre-requisite is needed: the 

formation of a nucleus on which a crystal can subsequently grow. 

Thus crystallization is a two-step process:  nucleation and crystal growth, which are both 

dependent on  kinetic and thermodynamic factors [5]. For instance, nucleation is thermodynamically 

favored at low temperatures where molecules aggregate in the liquid phase forming structured 

clusters inside which crystalline nucleus start to appear. The nucleation of crystals inside such 

“metastable dense liquid clusters” [6]  was demonstrated for glucose isomerase in poly ethyleneglycol 

using confocal scanning laser fluorescence microscopy [6-7]. On the other hand an increase in 

temperature kinetically favors the nucleation step due to a viscosity decrease. Thus during the 

temperature decrease the nucleation rate slows down which led to a decrease on nucleus 

concentration which promotes the reduction of cluster volume  [6]; it is important to note that the 

authors go further sustaining that nucleation is also a two-step mechanism where the formation of 

mesoscopic clusters of dense liquid is the first step followed by nucleation, however a detailed 

discussion on nucleation theories is out of the scope of this thesis. 
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Basically, the crystallization exothermic process always occurs between the glass transition and 

melting, since at low temperature the nucleus diffusion is to low which makes the crystal growth 

“kinetically impractical” [5], [8]. 

 The displacement of crystallization processes between glass transition and melting  depends 

not only  on the material nature [5] but also on the temperature rate at which the processes takes 

place.  

In summary, crystallization results from the interplay between nucleation and crystal growth. 

Nevertheless nucleation cannot be followed by calorimetry since the heat effects produced during the 

process are below the DSC detection limit. On the other hand, the crystal growth can be clearly 

identified on the thermogram through the appearance of an exothermal peak. The use on DSC is 

extremely important to understand and characterize the crystallization process. Thus, through this 

technique, is possible to find the conditions where crystallization occurs. This is very useful on 

pharmaceutical industry to identify the occurrence of polymorphism, which is the formation of different 

crystalline forms on the same drug substance, meaning that the molecule will have different physical 

properties [9].    

Furthermore the crystallization process can also be avoided during the thermal treatment of the 

given sample. This can be attained by performing the thermal treatment using ultra fast temperature 

scan. A good example of this fact was given by Evgeny Zhuravlev et al [8] for the poly (-caprolactone) 

(PCL) thermal analysis. In this case the author shows that the PCL crystallization could be avoided 

using a cooling rate of 500 K/s. Moreover the same authors also showed that was also possible to 

suppress nucleation when a cooling rate of nearly 7000K/s was used.  

Crystallization and the characteristics of the formed crystals, as size, perfection and 

polymorphism, are largely determined by nucleation. But crystallization can depend also on the 

sample composition, namely the hydration level. In fact the impact of water content on both IJ and 

ILs physical properties was one of the majors issues studied on this chapter.  In this particular we 

have showed on BMIMDCA, BMPyrDCA and EMIMDCA ILs that the crystallization process could be 

only observed after water removal. This fact clarifies why Tc and Tm are present only in the second 

run of DSC measurement. This subject will be discussed below. 

Additionally, the liquid and further on, the supercooled liquid, could fail crystallization at all and 

vitrify in an out of equilibrium condition, becoming a glass. The temperature at which a liquid-like 

system changes to glass (solid-like material), is called glass transition temperature,   . The glass 

transition establishes a boundary below which the substance is no longer in a metastable equilibrium 

state [10-11]. The motion that allows the sample above its Tg to be pliable is a long range motion, 

which is frozen in the glass, below Tg. The glass lacks any structure; is a solid like material that 

arrested the disorder of the original supercooled liquid being only strewn around the space 

surrounded. As the glass transition is over passed by temperature increasing, the material changes 

from hard and brittle to soft and pliable. 

Although glasses form by avoiding crystallization upon cooling the liquid, it can also crystallize 

by a process designated by some authors as devitrification. The  mechanism that allows devitrification 

to occur, in this sense, was elucidated by Sanz et al. [12] through computer simulation studies for 
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monodisperse hard-sphere glasses. This process was observed for a anti-inflammatory drug, 

indomethacin [13].  

From the established above, it is clear that phase transformations are complex phenomena, 

where crystallization and vitrification could be either driven or avoided by different thermal treatments. 

We found that ILs are suitable models to understand these physical changes.   

The thermal transitions studied on the present work where performed through DSC analysis.  

The respective thermograms, recorded in the first heating scan, are presented in Figure 4.1 (a-d); the 

insets of figures 4.1 (b), 4.1 (c) and 4.1 (d) include the termograms collected in a second heating scan.  

In the present work we have studied twelve systems that includes neat ILs and their respective 

IJs, which the respective thermograms are presented in Figure 4.1: a) BPyDCA0.4%, BPyDCA9%, 

BPyDCAIJ, b) BMIMDCA0.4%, BMIMDCA9%, BMIMDCAIJ, c) BMPyrDCA0.4%, BMPyrDCA9%, 

BMPyrDCAIJ and d) EMIMDCA0.4%, EMIMDCA9% and EMIMDCAIJ. It is clear in the low temperature 

region of the thermograms, the heat flow jump. Nonetheless, this jump is not so pronounced on the IJs 

which exhibit a broader transition width.  

The presence in each system of a glass transition from which a    can be determined, allow us 

to classify all the tested materials as glass formers.  

The temperature values extracted from the onset, the midpoint, and the endset of the glass 

transition are presented in Table 4.1.  When we compare the Tg values, while the onset of the two ILs, 

either with 0.4% and 9% water, are quite similar, for IJs this value is always higher; this will be later 

confirmed by DRS. Since the IJ has 9% of water content, the higher Tg value may indicate that water 

in these composites is not interacting directly with the IL, instead is assuring the gelatine structure, 

otherwise a lower Tg should be determined since water has a plasticizing effect decreasing the glass 

transition temperature; this will be explored in more detail in chapter 5. 

In Figures 4.1 (a-d), at higher temperatures a broad and endothermic peak which onset is 

located around 300 K is detected for all systems, corresponding to water evaporation. The insets of 

Figure 4.1 (b), Figure 4.1 (c) and Figure 4.1 (d), present the thermograms of the indicated systems 

taken in a second heating scan after water removal. It is possible to see three distinct transitions: the 

glass transition, an exothermic peak indicating crystallization, and an endothermic peak corresponding 

to melting.  The arrows in each figure indicate the respective scale, in order to be noted more clearly 

the Tg in the sample.  

The temperatures of the minimum/maximum of melting and crystallization peaks, in the cases 

where it are observed, were also included in Table 4.1. 

For EMIMDCA0.4% and EMIMDCA9% the temperature values of melting and crystallization are 

264.5 K (-8.7 °C), 237.3 K (-35.9 °C), 263.2 K (-9.9 °C) and 225.7(-47.5 °C), respectively, which are in 

agreement with the values reported by Fletcher et al [14]. For BMIMDCA0.4% the temperature values of 

melting and crystallization are 268.2 K (-4.8 °C) and  247.8 K (-25.2 °C), respectively, which are in 

excellent agreement with the values reported by Fredlake et al [15].  For BMPyrDCA, to our 

knowledge, there are no reported values of melting or crystallization temperature. On each sample 

mentioned above, melting and crystallization are only possible on the second run, since it is needed 

the water removal for both phenomena take place. To ensure this, the sample was heated to 423 K in 
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the first heating and maintained 5 min at this temperature. Melting happens when the structure of the 

ILs is no longer a crystalline structure, but became a disordered liquid.  

The detection upon heating of a glass transition followed by crystallization in dry BMPyrDCA 

and EMIMDCA ILs, reveals that these materials are completely amorphous below Tg. Above Tg , they 

enter into a supercooled regime, crystallizing later at Tc exhibiting a three dimensional structure. 

However there are conditions and or/materials where amorphous regions coexist with a crystalline 

phase as is well known in semi-crystalline polymers and other  ILs  [15-17]. For the respective IJs, 

only the glass transition is detected, which means that these materials are completely amorphous.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 (a) - DSC scans obtained in heating mode at 20 K.min
−1

 for BPyDCA0.4%water, BPyDCA9%water, and 
BPyDCAIJ showing the heat flow jump at the glass transition.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.1 (b) - DSC scans obtained in heating mode at 20 K.min

−1
 for BMIMDCA0.4%water, BMIMDCA9%water, and 

BMIMDCAIJ showing the heat flow jump at the glass transition. The inset shows the second heating scan for 
BMIMDCA9%water and BMIMDCAIJ, where cold crystallization and melt are observed for the IL and avoided for the 

IJ (see text). 
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Figure 4.1 (c) - DSC scans obtained in heating mode at 20 K.min
−1

 for BMPyrDCA0.4%water, BMPyrDCA9%water, and 
BMPyrDCAIJ showing the heat flow jump at the glass transition. The inset shows the second heating scan for 
BMIPyrDCA9%water and BMPyrDCAIJ, where cold crystallization and melt are observed for the IL and avoided for 

the IJ (see text). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 (d) - DSC scans obtained in heating mode at 20 K.min
−1

 for EMIMDCA0.4%water, EMIMDCA9%water, and 
EMIMDCAIJ showing the heat flow jump at the glass transition. The inset shows the second heating scan for 
EMIMDCA9%water and EMIMDCAIJ, where cold crystallization and melt are observed for the IL and avoided for the 

IJ (see text). 
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Table 4.1 - Glass Transition Temperatures Taken at the Onset (on), Midpoint (mid) and Endset (end) of the Heat 
Flow Jump for both BPyDCA, BMIMDCA, BMPyrDCA, EMIMDCA and respective IJ, obtained during a First 
Heating Run at 20 K/min; melting and crystallization temperatures obtained from a second heating run. 

System  Tg,on/K Tg,mid/K Tg,end/K Tc/K Tm/K T0/Tg 

BPyDCA0.4%water 

1
st
 heating run 173.5 176.5 176.9 ---- ---- 

0.80 

2
nd 

 heating run 193.1 195.7 196.0 ---- ---- 

BPyDCA9%water 

1
st
 heating run 175.4 177.8 179.0 ---- ---- 

0.78 

2
nd 

 heating run 194.9 197.2 197.9 ---- ---- 

BPyDCAIJ 

1
st
 heating run 185.4 189.6 213.4 ---- ---- 

0.71 

2
nd 

 heating run 213.9 227.1 249.8 ---- ---- 

BMIMDCA0.4%water 

1
st
 heating run 170.6 173.4 173.7 ---- ---- 

0.76 

2
nd 

 heating run 183.5 186.2 186.4 247.8 268.2 

BMIMDCA9%water 

1
st
 heating run 169.0 171.5 172.3 ---- ---- 

0.76 

2
nd 

 heating run 185.4 187.4 188.1 ---- ---- 

BMIMDCAIJ 

1
st
 heating run 174.2 176.5 182.3 ---- ---- 

0.73 

2
nd 

 heating run 196.8 200.4 206.4 ---- ---- 

BMPyrDCA0.4%water 

1
st
 heating run 164.6 167.2 167.6 ---- ----  

0.82 

2
nd 

 heating run 171.1 173.9 174.2 ---- ---- 

BMPyrDCA9%water 

1
st
 heating run 164.4 167.5 168.2 ---- ---- 

0.74 

2
nd 

 heating run 171.7 174.6 171.5 247.9 260.0 

BMPyrDCAIJ 

1
st
 heating run 170.5 173.9 180.1 ---- ---- 

0.65 

2
nd 

 heating run 188.0 198.7 220.5 ---- ---- 

EMIMDCA0.4%water 

1
st
 heating run 161.6 164.1 164.6 ---- ----  

0.46 
2

nd 
 heating run 180.6 182.6 183.6 237.3 264.5 

EMIMDCA9%water 

1
st
 heating run 161.9 164.2 164.5 ---- ---- 

0.71 

2
nd 

 heating run 180.1 182.6 182.8 225.7 263.2 

EMIMDCAIJ 

1
st
 heating run 166.2 168.4 174.8 ---- ---- 

0.73 

2
nd 

 heating run 191.1 195.1 203.0 ---- ---- 
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In general, two types of behaviour are observed for the studied ILs and the respective IJs. The 

first group, which includes BPyDCA , Figure 4.1 – (a),  corresponds to materials which are 100% 

amorphous, since only the glass transition is detected upon thermal analysis; this behaviour accounts 

for the hydrated and dry ILs, and the respective IJs as well. However, the shape of the respective heat 

flux steps is much broader that the observed for the other systems. Here, it is very important the 

analysis of the DRS results, since we can predict a range of temperatures for the Tg value (see next 

section). 

The second group of ILs, include the ones presented in Figure 4.1 – (b), Figure 4.1 – (c) and 

Figure 4.1 – (d), BMIMDCA, BMPyrDCA and EMIMDCA. As observed for the previous group, a glass 

transition is detected for the hydrated materials. Nonetheless, in the second heating run after water 

removal, the samples undergo crystallization, i. e., the samples change from a glass to a supercooled 

liquid occurring subsequently crystallization, followed by melting. In other words, at temperatures 

above Tg, the supercooled liquid crystallizes, melting upon further heating at Tm.  

Under the tested conditions, BPyDCA IL and IJ are completely amorphous, while the other 

materials are crystallisable.  

 

4.2. Dielectric Characterization  

 

For dielectric characterization we have also studied  the twelve systems mentioned previously  

which include neat ILs and their respective IJs, BPyDCA0.4%, BPyDCA9%, BPyDCAIJ, BMIMDCA0.4%, 

BMIMDCA9%, BMIMDCAIJ, BMPyrDCA0.4%, BMPyrDCA9%, BMPyrDCAIJ, EMIMDCA0.4%, EMIMDCA9% 

and EMIMDCAIJ .Since the studied ILs presented  different physical chemical characteristics we have 

grouped according some common particularities.   

 

4.2.1. Conductivity 

4.2.1.1. BMIMDCA and BPyDCA 

Since BMIMDCA and BPyDCA present same similarities in terms of conductivity, their 

conductive properties will be discussed together.   

As previously mentioned, the different materials were also submitted to dielectric analysis. In 

Figure 4.2, the real ( ) and imaginary (  ) parts of the complex permittivity measured for BMIMDCA 

as a function of frequency () at 175.15 K are presented; the dependency for the conductivity is 

included in the inset. In the medium frequency range, the spectrum is dominated by the direct 

conductivity, also called pure conductivity,   , indicated in the figure, which is a frequency independent 

conductivity value. Some authors refer the pure conductivity as direct conductivity (   ). In this spectral 

region, the          vs log10  representation should give a straight line with a slope of -1; for 

BMIMDCA0.4%water at 175.15 K the obtained slope is -0.98. 

The real part is dominated by the blocking effect of the charge carriers at the electrodes at the 

lower frequencies. This phenomenon is called electrode polarization (EP). In BMIMDCA0.4%water at 

175.15 K EP is observed for frequencies below around 10 Hz which is a temperature dependent 
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phenomenon. The inset shows the frequency dependence of the real conductivity. In this 

representation three distinct regions are identified: the region corresponding to EP, the region where 

the pure conductivity should be extracted (  ), and the region of sub-diffusive conductivity (SD); the 

increase in  ’ is due to electrode polarization.  This behaviour is common for all studied materials, 

except for BMPyrDCA that will be analyzed separately. The extremely high values of conductivity 

masked any possible analysis of relaxation process for this system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 4.2 - Real (o) and imaginary (o) parts of the complex permittivity of BMIMDCA0.4%water, as a function of the 
frequency at 175.15 K. Inset: The conductivity as a function of frequency. See text for the meanings of the 
abbreviations.   

 

In order to study the transport mechanism of charge carriers the analysis was taken over the 

broadest accessible range of temperatures and frequencies. We determined the conductivity of the 

twelve materials, looking for tendencies in this property and in its temperature dependence. Figure 4.3 

(a-f), shows the real components of the complex conductivity,                   , from 10
-1

 Hz to 

10
6
 Hz covering a range of temperatures from 163 to 313K for each material: BPyDCA0.4%, BPyDCA9% 

and BPyDCAIJ; BMIMDCA0.4%, BMIMDCA9% and BMIMDCAIJ from top to bottom.  

An important feature in this spectral region is the plateau in    (corresponding to a linear 

dependence of slope -1 in the plots of     versus frequency as above mentioned), which gives   . At 

lower temperatures, or high frequencies, the      plot presents a pronounced increase. The overall 

conductivity behaviour follows a power law dependence (a. c. conductivity) against the angular 

frequency  according the equation proposed by Jonscher [18] (equation 1.14 in Introduction). 

The characteristic crossover frequency is the frequency at which the plateau bends off to the 

frequency dependent region, separating the two regimes. 

At very low temperatures, the regime is permanently sub-diffusive (see Introduction) and no 

crossover is observed.  
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It is interesting to observe that there is some correlation between the temperature at which 

occurs the emergence of a crossover frequency in the conductivity measurements and the glass 

transition temperature, as determined from DSC analysis (Tg,DSC), like we already observed on chapter 

3. In the real conductivity spectra collected for each system presented in figure 4.3 (a-f), the Tg,DSC 

value is indicated by an arrow; it always lies between two temperatures at which a plateau start to 

emerge.  

Therefore, it is possible for each system to go the other way around defining a range of 

temperatures within which a bending to a plateau occurs in the conductivity spectra and correlate it 

with the glass transition. For almost the studied systems, it is observed that the temperature range 

thus defined includes the Tg value extracted from the DSC measurements, providing a mean to 

roughly estimated the glass transition. The major error in this prediction was found for BPyDCAIJ and is 

in the order of 10%.  
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Figure 4.3 (a – f ) -  Complex conductivity measured at different temperatures of: (a) BPyDCA0.4%water, (b) 
BPyDCA9%water and (c) BPyDCAIon Jelly; (d) BMIMDCA0.4%water, (e) BMIMDCA9%water and (f), BMIMDCA Ion Jelly (in 

steps of 2 K from 163 K to 103 K): (a-f) real, ´, components; the estimated onset of the calorimetric Tg occurs at 
a temperature in between the isotherms represented in filled symbols (indicated by the arrow).  
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Figure 4.4 (a-f) below presents a comparison between the Tg extracted from the DSC 

measurements and the one predicted through the plot of conductivity versus frequency, showing a 

relatively good agreement.  

This behaviour leads to us to assume that some motional mechanism as the one underlying 

the process associated with the dynamical glass transition needs to be settled in order to enable the 

diffusive movement of ions.  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 4.4  – Correlation between the Tg extracted from DSC (in green) and predicted from the change in the 
profile of the conductivity plot taken by DRS (in blue), in which of the studied samples: 1-BPyDCA0.4%, 2-
BPyDCA9%, 3-BPyDCAIJ; 4-BMIMDCA0.4%, 5-BMIMDCA9%, 6-BMIMDCAIJ; 7-BMPyrDCA0.4%, 8-BMPyrDCA9%, 9-
BMPyrDCAIJ; 10-EMIMDCA0.4%, 11-EMIMDCA9%, 12-EMIMDCAIJ. 
 

4.2.1.2. 1-Buthyl-1-Methyl Pyrrolidinium Dicyanamide (BMPyrDCA) 

As mentioned previously in Introduction, for the dielectric response of a material not only charge 

transport processes contribute as mainly analyzed in this section, but also interfacial polarizations and 

reorientational motions of dipoles. The latter give rise to relaxational processes, which manifest 

spectrally as a peak in the imaginary part of permittivity     and a sigmoidal curve in the real part    of 

the complex dielectric function against frequency. This is quite different from the permittivity spectrum 

depicted earlier in figure 4.2 for BMIMDCA, from which no information of relaxation process was 

possible to extract due to the conductivity contribution. Oppositely, for BMPyrDCA as shown in Figure 

4.5, the conductivity contribution at lower temperatures is relatively small and the imaginary part of the 

complex permittivity, ´´, exhibit a well-defined peak, which shifts to higher frequencies with increasing 

temperatures, being this behaviour similar to another ones related in previous studies [19]. The ´´() 

curves were collected at low temperatures, even below the calorimetric glass transiton of BMPyrDCA. 

Therefore, the relaxation process is a secondary one, very local in nature probably due to intra-ionic 

motions. The low frequency tail that increases significantly with the tempeature increase, denounces 

the incoming of the relaxation process asscociated with the dynamical glass transition involving larger 

scale motions. The observation of dipolar relaxation in BMPyrDCA means that under the influence of 

the external electrical field this IL behaves mainly as a single dipole instead of behaving as an anion 
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plus a cation; the dipolar behavior was recently observed by NMR experiments for another IL [20]; we 

will return to this discussion later on this capter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.5 - Imaginary part of the complex dielectric function for a relaxation process in BMPyrDCA0.4%. 

 

The type of cooperative mobility that sets in with the temperature increase, which is behind the 

process associated with the dynamical glass transition, enables the translational motion of charge 

carriers, increasing conductivity which later on masks the relaxation processes; i.e., the number of 

species that behave as a separate cation-anion pair start to dominate over those that respond to the 

applied filed as a single dipole. The real conductivity plot in figure 4.6 – (a) for BMPyrDCA0.4% reflects 

the dipolar behaviour at the lowest temperatures making impossible to extract transport properties 

from the spectra. For BMPyrDCA9% and BMPyrDCAIJ the usual profile of conducting disordered 

systems is recovered. This should not be interpreted as an absence of the relaxation(s) process(es) in 

these systems, but simply that it are submerged by the conductivity response or, by other words, that 

the dielectric response in these ILs is dominated by the conductivity behaviour of two separate ions, 

anion and cation, rather than by dipolar reorientation. 
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Figure 4.6 - (a – c) - Complex conductivity measured at different temperatures of BMPyrDCA0.4%water, 

BMPyrDCA9%water and BMPyrDCAIon Jelly (in steps of 2 K from 163 K to 103 K): (a-c) real, ´, components; the 
estimated onset of the calorimetric Tg occurs at a temperature in between the isotherms represented in filled 
symbols (indicated by the arrow). 
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4.2.1.3. EMIMDCA 

In Figure 4.7 – (a-c), the isotherms behaviour follows the same trend as verified for the systems 

above, with exception for BMPyrDCA0.4%, like we already discuss.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 - (a-c) - Complex conductivity measured at different temperatures of EMIMDCA0.4%water, 

EMIMDCA9%water and EMIMDCA Ion Jelly (in steps of 2 K from 163 K to 313 K): (a-c) real, ´, components; the onset 
of the calorimetric Tg occurs at a temperature in between the isotherms represented in filled symbols (indicated by 
the arrow).  
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In Figure 4.8 (a-f) and Figure 4.9 (a-f), for each system, it is shown the isotherms fitted by 

Jonscher equation.  Figure 4.8 presents the conductivity spectra of non-crystallisable systems under 

the tested conditions, while figure 4.9 presents the corresponding spectra for the crystallisable ones. 

The complex conductivity,   , is similar to other materials in terms of frequency and 

temperature dependence, for example [21-25].  In all cases the real part of conductivity,   , has a 

plateau on the low frequency side. So, we choose these isotherms since they are not influenced by 

electrode polarization. The curve that is presented as full circles, was collected at 211K for 

BPyDCA0.4%, 197K for BPyDCA9%, 201K for BPyDCAIJ; 191K for BMIMDCA0.4%, 189K for BMIMDCA9% 

and 199K for BMIMDCAIJ; 187K for BMPyrDCA0.4%, 185K for BMPyrDCA9% and 195K for BMPyrDCAIJ; 

189K for EMIMDCA0.4%,  177K for EMIMDCA9% and 193 for EMIMDCAIJ, being the same presented in 

the inset that also includes its respective derivative plot d(log’())/d(log()) (open circles). From the 

analysis that was done in the previous chapter, we are able to conclude that there is strong evidence 

that sub-diffusive dynamics dominate at short times, in all the twelve systems; for BMPyrDCA0.4% the 

derivative analysis was performed in a isotherm taken well above the glass transition i.e. at a 

temperature at which the conductivity overwhelms the dipolar contribution.   
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Figure 4.8 (a-f) – Real part of conductivity for BPyDCA0.4%, BPyDCA9% and BPyDCAIJ from 189 to 213 K, 171to 
207K and 179 to 213K, respectively, in steps of 2K and for BMIMDCA0.4%, BMIMDCA9% and BMIMDCAIJ from 171 
to 203 K, 167to 201K and 175 to 208K, respectively. The solid lines are the obtained fits by the Jonscher law (eq. 
1.14, see Introduction). Data collected at 211 K for BPyDCA0.4% , 197K for BPyDCA9% , 201 K for BPyDCAIJ, 191 
K for BMIMDCA0.4%, 189K for both BMIMDCA9% and 199K for BMIMDCAIJ, are plotted in full circles being the 

same spectrum presented in the inset together with the respective derivative d(log’())/d(log()) (open circles); 
the continuous increase of the derivative value with the frequency increasing, confirms the sub-diffusive dynamics 
(see text). 
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Figure 4.9 (a-f) – Real part of conductivity for BMPyrDCA0.4%, BMPyrDCA9% and BMPyrDCAIJ from 169 to 197 K, 
163 to 199K and 169 to 209 K, respectively, in steps of 2 K and for EMIMDCA0.4%, EMIMDCA9% and EMIMDCAIJ 
from 169 to 195 K, 161 to 283 K and 167 to 203 K, respectively. The solid lines in the figures in the right side are 
the obtained fits by the Jonscher law (eq. 1.14) being the reason why the plots are in function of the angular 

frequency, . Data collected at 187 K for BMPyrDCA0.4%, 185K for BMPyrDCA9% , 195 K for BMPyrDCAIJ, 189 K 
for EMIMDCA0.4%, 177K for EMIMDCA9% and 193 K for EMIMDCAIJ, are plotted in full circles being the same 

spectrum presented in the inset together with the respective derivative d(log’())/d(log()) (open circles); the 
continuous increase of the derivative value with the frequency increasing, confirms the sub-diffusive dynamics 
(see text).  
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In Figure 4.10 (a-d), an overview of the conductivity values obtained for the twelve systems, is 

shown. The inset shows the BNN relationship,    -     , meaning that analogous temperature 

dependence for    and      is predictable. The values of    increase from the IJ to IL with lower 

amount of water and then, the higher value is achieved on ILs with higher amount of water. As the 

conductivity is related to the mobility of the charge carriers, this can be explained by the higher 

viscosity induced by gelatine in the case of the IJ film, and the lower water content in ILs with 0.4% 

water content. Like we had the possibility to observe through the DSC analysis, each material 

considered in this study, is a glass forming system. Therefore, the empirical VFT equation was fitted to 

the conductivity data, which usually describe the temperature dependence of the structural relaxation 

time and the conductivity of supercooled liquids quite well. The results of the fitting are summarized in 

table 4.2. The VFT law has been fitted through the data points in its linearized form: 

 

         
 

    
                                       (4.1) 

 

         
 

    
                                     (4.2) 

 

where B is an empirical parameter characteristic of the material accounting for the deviation of linearity 

(roughly the lower B the more curved is the 1/T plot ), the    is the high temperature limit of the 

conductivity and    is the Vogel temperature, interpreted as the glass transition temperature of an 

ideal glass, i. e., a glass obtained with an infinitely slow cooling rate [26]. The glass transition 

temperature is always higer than the ideal glass transition temperature (     ), according to an 

empirical approximation:           .    is adjusted arbitrarily by subtracting ca. 50 K from the 

experimental   value [27]. The relation between Tg and T0 for BMIMDCA0.4%water, BMIMDCA9%water and 

BMIMDCAIon Jelly, gives, respectively:           ,             and              All the other 

systems follow this trend with a break down for EMIMDCA0.4% for which         0.49; this arises from 

an overestimation of Tg due to a low curvature in the activation plot. 
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Vogel-Fulcher-Tammann (VFT) parameters have been extracted from these data. 
 
 

 

a)
The uncertainties are the statistical errors given by the fitting program. For each material, the similarity between 

B and T0 estimated through 0(T) and e(T) indicates a parallelism between these two quantities (see text for 
details). 

b)
According to the VFT law for conductivity. 

c)
According to the VFT law for relaxation time. 

  

  

Table 4.2 - Fit Parameters Obtained According to the VFT Law for the  Relaxation Times (eq. 4.1) and the  
Conductivity (eq. 4.2)

a) 

 VFT fit parameters of σ0
b) 

VFT fit parameters of τe
c) 

Sample σ∞/ S.cm
-1 

B/ K T0 / K   / s B / K T0 / K 

BPyDCA0.4%water 120.3±26.3 1294±26.7 140.7±0.5 (3.1±1.9)x10
-15 

1240.6±103.4 139.8±2.2 

BPyDCA9%water 14.7±2.8 1022.0±19.6 138.5±0.4 (5.8±2.4)x10
-14

 966.4±49.9 137.7±1.2 

BPyDCAIon Jelly 36.6±6.5 1307.3±23.2 134.0±0.5 (1.1±0.7)x10
-14

 1334.4±147.4 132.5±3.2 

 

 VFT fit parameters of σ0
b) 

VFT fit parameters of τe
c) 

Sample σ∞/ S.cm
-1 

B/ K T0 / K   / s B / K T0 / K 

BMIMDCA0.4%water 325115 141346 1311 (2.62.1)x10
-15 

1278170 1313 

BMIMDCA9%water 6813 117621 1310 (9.76.8)x10
-15

 1124124 1303 

BMIMDCAIon Jelly 676 146915 1280 (1.50.7)x10
-15

 135570 1302 

       

 VFT fit parameters of σ0
b) 

VFT fit parameters of τe
c) 

Sample σ∞/ S.cm
-1 

B/ K T0 / K   / s B / K T0 / K 

BMPyrDCA0.4%water 20.5±0.7 918.7±27.9 136.7±0.6 (4.1±1.9)x10
-13 

804.6±53.2 138.0±1.3 

BMPyrDCA9%water 24.7±7.7 1180.2±40.4 123.7±0.9 (6.7±4.8)x10
-15

 1269.3±147.9 120.0±3.2 

BMPyrDCAIon Jelly 276.3±75.0 1721.8±45.8 113.5±0.9 (9.9±8.7)x10
-17

 2265.3±357.2 101.9±6.5 

 

 VFT fit parameters of σ0
b) 

VFT fit parameters of τe
c) 

Sample σ∞/ S.cm
-1 

B/ K T0 / K   / s B / K T0 / K 

EMIMDCA0.4%water (7.9±7.8)x10
13 

5629.2±1018.2 76.0±9.3 (9.9±9.9)x10
-29

 6337.0±5444.3 67.4±48.2 

EMIMDCA9%water 47611.3±40162.8 1700.6±197.4 117.3±3.0 (2.1±2.1)x10
-17

 1668.4±860.4 114.6±14.1 

EMIMDCAIon Jelly 174.1±41.8 1338.5±32.5 122.6±0.7 (1.3 ±0.9)x10
-16

 1484.2±150.2 118.8±3.1 
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The figure below shows that all the four compounds have a relatively pronounced curvature, 

so called fragile behaviour, as seen in many glass forming substances[28-32].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.10 (a-d) - Temperature dependence of the dc conductivity, 0, and of the relaxation time, e, taken from 
the crossover frequency. The correlation between both is displayed in the inset (BNN plot) for which a slope near 
1 is found (the lowest correlation factor found is r

2
=0.994). 

 

 

Table 4.2 shows the similarity between B and    parameters obtained from equations 4.1 and 

4.2, indicating the parallelism between   (T) and   (T) for all systems, corroborating what was 

predicted in the analysis of the BNN relationship.  

Several authors have discussed the influence of different properties as the size of the IL cation 

and molecular volume on the VFT behaviour [33-37]: according to Leys et al. [38] and Rivera [39], Tg 

decreases with the increasing of anion radius while Sangoro et al. [37] reports a non-uniform 

dependence of T0 with the size of the cation alkyl chain; a non-universal behaviour is found in 

literature for    , while an increase with the species size, either anion [38] or cation [37] is reported, a 

decrease of both    and conductivity at room temperature with the cation size is observed for 

imidazolium ILs with BF4 anion [40]. 
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Nevertheless, the variation of factors as radius and volume is almost negligible in the tested ILs 

(see Table 2.1 in the Experimental section); for instance, from the smallest ionic cation, EMIM, to the 

largest, BPy, the radius changes less than 1 Å. In the following T0 and  calorimetric Tg (figure  4.11-a) 

and the conductivity and diffusion coefficient both at room temperature, respectively    and    (figure  

4.11- b) will be analyzed for the different cations using the respective van der Waals radii only with the 

purpose of getting a clearer picture of the different data. The change in these properties should be 

discussed based more on structural details of the cation rather than on dimensional ones, as 

mentioned before. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 

Figure 4.11 - To and calorimetric Tg (figure 4.11 – (a)); conductivity and diffusion coefficient both at 

room temperature, respectively rT and D rT, (figure 4.11 – (b)) versus van der Waals radii.  
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It is important to recall here the structure of the different cations, given that all the ILs under 

study have the same DCA anion (see scheme below). 

 

Scheme 4.1- ILs cations structures and respective van-der-Walls ratios 

 

Some considerations can be done regarding the different structures: while BMPyr has a 

saturated ring (pyrrolidinium), the other cations have an aromatic ring and consequently a greater 

extent of positive charge delocalization; in BMPyr the positive charge is more localized over the 

nitrogen atom making more important the electrostatic charge interaction with the DCA anion, which 

could originate a behaviour closer to a single dipole as observed from the dielectric measurements for 

the BMPyr sample containing less water.  

Two opposite effects are manifest in BMIM, by one side, the charge delocalization which dilutes 

the electrostatic interaction and by other, the directionality in the interaction due to the ability to form 

H-bonds. The latter could originate some peculiarities in the IL behaviour as reported for IL containing 

fluorinated anions, where the observed strong deviations of experimental conductivities, as compared 

to which is predicted by Nernst-Einstein equation, are attributed to a nanoscale organization of the 

anions due to the preferential orientation adopted by their perfluorinated moieties [41].  

This makes difficult the task to find a correlation between the transport properties and glass 

transition with structural details in the studied ILs that doesn’t vary monotonically. An alternative 

discussion could be done based in the dependence of the glass transition on the type of interionic 

interactions. Some authors [40], [42-43] associate this behaviour with the cohesive force between the 

ions, which is substantially determined by the molecular volume. Once, two possibilities emerge, i. e., 

when the molecular volume is low (or equivalent molar), the cohesive force is mainly determined by 

attractive Coulomb forces between ions, which decrease with increasing molar volume. Nevertheless, 

if the molar volume is to large (> 250 cm
3
/mol), the interactions are dominated by van der Waals 

forces, which lead to an increasing value of Tg with molar volume or cation radius [43] (see figure 4.12 

retrieved from ref [43]). The tested ILs have molecular volumes from 184.5 to 214.5 cm
3
.mol (see 

Experimental section), falling close to the critical molecular volume that corresponds to the lower Tg 

values of the proposed correlation, revealing relatively good agreement to which is predicted (see 

colored circles in figure 4.12). This is due to a counterbalance between Coulombic and van der Waals 

interactions in the ILs under study.   

EMIM BPyBMPyrBMIM

2.9 Å 3.8 Å3.7 Å3.3 Å
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 BPyDCA
0.4%

 BMIMDCA
0.4%

 BMPyrDCA
0.4%

 EMIMDCA
0.4%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 - Dependence of the cohesion of salts of weakly polarisable cations and anions, assessed by the Tg 
value, on the ambient-temperature molar volume, Vm, and, hence, on the interionic spacing [(r

+
 + r

-
) Vm1/3]. A 

broad minimum in the ionic liquid cohesive energy is seen at a molar volume of 250 cm
3
 mol

-1
, which corresponds 

to an interionic separation of ~0.6 nm, assuming a face-centered cubic packing of anions about the cations. The 
lowest Tg value in the plot should probably be excluded from consideration, because of the nonideal Walden 
behaviour for this IL (MOMNM2E

+
BF4

-
). The line through the points is a guide to the eye. (background figure 

retrieved from ref [43]) 

 

 

For the respective IJs and ILs with 9% water, the change in Tg is similar to the IL0.4%; it should 

be remember that for the IJs an higher Tg value is always found (discussed previously in the 

calorimetric section). If we look for the values of the parameter T0 (K), with the exception of the 

abnormally low value for EMIM0.4% (67 K) due to a close Arrhenian behaviour (the same doesn’t 

happen with 9% or IJ, presenting a value close to 117 K), no significant changes are found for the 

other IL’s; also, no general tendency is observed when we compare the ILs or the respective IJs. The 

value of B (not shown) doesn’t reveal also a clear tendency; this will be better discussed in the next 

section in terms of fragility.  

When we analyze the parameter   , a parallelism between the values of this parameter and the 

conductivity measured at room temperature (     is found, i. e., the higher the conductivity, the higher 

the value of   ; since a greater uncertainty affects     the  comparison in figure 4.11 b) is made 

through (    . Nevertheless, is worth to mention the uncommon and quite higher    value, and 

completely unrealistic error value, for EMIMDCA with both 0.4% and 9% water content due to its 

almost linear temperature dependence as mentioned above. It is observed in figure 4.11 b) that 

conductivity at room temperature decrease on going from EMIM to BMPyr; the value for BMPyr 

approaches close to the one of BMIM. The lowest conductivity value for BMPyr agrees with the dipolar 
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behaviour found for BMPyrDCA, which could meant that a significant fraction of ion pairs behave as 

dipoles decreasing the contribution to conductivity. 

If we analyse BMIMDCA0.4% and EMIMDCA0.4% separately, since that in terms of structure they 

are the most similar, we verify that BMIMDCA0.4% has higher volume and, consequently, higher van der 

Waals radius, due the fact that in this case is present a butyl group instead a ethyl group. Hence, the 

analysis of the conductivity values and their VFT fits shows a decreasing conductivity with the chain 

length increasing in agreement with which is reported by Leys et al [40]. This reflects in a decreasing 

in the diffusion and mobility of the ions, as it will be shown below. Thus, it is possible to conclude that 

the alkyl chain plays an important role in the mobility of charge carriers and, thus, in the conductivity, 

as previously studied by another groups [19]. Nevertheless, it is important to note, that the reported 

decrease with cation chain length [19] is only a general trend for the first members of the imidazolium 

series, going from C2 to C4, for C6 an increase is observed as also reported in [40] and [30]. 

In the same route as we did on our previous studies, we have performed fits of the conductivity 

data to the VFT equation, like we saw in Figure 4.10 – (a-d). This equation is used to describe data of 

glassforming systems since it can reproduce the curvature in the activation plot which is characteristic 

for many glass formers. Structural variation lead to differences which exceed  three orders of 

magnitude in both cases, BPyDCA and BMIMDCA, exceding twoorders of magnitude in the case of 

BMPyrDCA and five orders of magnitude regarding to EMIMDCA in    (between the sample with 0.4% 

and 9% water content). The Figure above shows a ilustrative compilation of these results. 

The experimental curves presented in Figure 4.6 and Figure 4.7 – (a-c) are normalized with 

respect to frequency and conductivity, when the last starts the plateau, i. e., when the subdiffusive and 

diffusive regimes are observed at the same time. All the curves fall into one chart, meaning that all the 

systems are governed by the same mechanism (Figure 4.13).  

The coefficient diffusion, D, is a property associated with the random motion of elementary 

constituents of matter, basically atoms, molecules and ions, owing to their thermal energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 – Normalized conductivity with pure conductivity in function of frequency. 
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Consequently, from previous equations, the mobility as well as their type of temperature 

dependence can be determined, as we can see in plot of Figure 4.14. The diffusion coefficients 

presented in Figure 4.14 are related with the mobilities, µ, through the Nernst-Einstein equation: 

 

  
  

   
              (4.3) 

 

where q and KB corresponds to elementary charge and Boltzmann constant, respectively. Like we say 

earlier, since the systems can be decomposed by their cations and anions, the overall coefficient 

diffusion, can be decomposed in the follow equations: 
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     (4.4  b) 

 

where <r+
2
(t*)> and <r-

2
(t*)> are the mean-square displacements for the cation and anion, 

respectively, and were estimate by taken the square of the van der Waals (vdW) diameter. 

 

Some authors [21] calculate the mean jump length by combining PFG NMR and DRS. 

However they need temperatures where the measurement windows of both techniques coincide. 

Since we do not have this pre-requisite, we calculate this feature by estimating the van der Waals 

diameter. The same authors also refer that the diffusion coefficients decrease with increasing 

molecular volume, Vm, of the IL, which is in reasonable agreement to our results. Nevertheless, this 

may be due the fact that both ILs have very similar Vm values.  

It becomes clear for all the twelve systems can be monitored by dielectric spectroscopy. 
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Figure 4.14 – (a-d) –Mobilities,, (equation 4.3) by taking D=D++D- for the four ILs. 
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Figure 4.15 -  (a – d) - Thermal activation plot for diffusion coefficients of  BPy, BMIM, BMPyr and EMIM (cation) 
and DCA (anion) (equations 4.4 – (a) and 4.4 – (b)), replacing the mean-square displacement by the vdW 
diameters. 
 

 

PFG NMR technique emerges as a good strategy to overcome the problem of electrode 

polarization that dramatically affects the IL’s conductivity measurements at high temperatures. The 

measurements performed by PFG NMR (which measures the diffusion coefficient directly), jointly with 

the diffusion coefficients measured by DRS, are shown in Figure 4.16.  

Through the equation 4.4 – (a-b) it is possible to access diffusion coefficients in a broad range 

comprising over 10 orders of magnitude by employing both techniques DRS and PG NMR, which 

shows the excellent agreement for each system, through the VFT fitting.  
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Figure 4.16 - (a-d) – Values of the cation diffusion coefficients (D+) determined from PFG NMR and the VFT fit 
(solid lines).  

 

The reason why the diffusion coefficient decreases with the temperature is related with the 

dramatic increase of viscosity with the temperature decrease making more and more difficult the 

motion of charge carriers; when the material is at a temperature below its Tg, large-scale molecular 

motion is not possible since the sample is essentially frozen. If it is at a temperature above its Tg, 

molecular motions take place, allowing the increasing of the free movements of the ions.  

Earlier the diffusion coefficients at room temperature of the different materials were compared in 

figure 4.11 b). Now, in figure 4.17 a-c) the diffusion coefficients are compared for the 4 ILs for each 

condition (water content and supported in IJ). At the lowest temperatures, the samples with a higher 

diffusion coefficient are those having a lower Tg, since the more easily a material can move, the less 

heat it takes for the structure to initiate wiggling and break out of the rigid glassy state  

So, comparing the Tg values, for the samples with 0.4% of water, we can see that this is the 

decreasing order of Tg: BPyDCA > BMIMDCA > EMIMDCA > BMPyrDCA. Which means that the 

inverse order give us the increasing order of the diffusion coefficient, i. e., BPyDCA is the IL with 

higher Tg and lower D, which it is possible to verify in the Figure 4.17a). Doing the same reasoning for 

the ILs with 9% water content, we conclude that: BPyDCA > BMIMDCA > BMPyrDCA > EMIMDCA, 

that is exactly the sequence of the IJ films, which means that, if the EMIMDCA9% and BMIMDCA9% 

have the lower Tg, they have the higher D, that it is possible to prove, one more time, through figure 

4.17b).   
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Figure 4.17 - (a-c)  - Thermal activation plot for diffusion coefficients of BPy, BMIM, BMPyr and EMIM (cation) 
(equation 5a) with 0.4% water content, b) with 9% water content and c) the IJ correspondent of each IL, replacing 
the mean-square displacement by the vdW diameters  
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Nevertheless, the comparison at room temperature does not give the same hierarchy as the 

one now obtained when D is compared at low temperatures. For instance, while BMPyr0.4% has a 

lower Tg relatively to BMIM0.4% having a higher D at low temperatures, at 298 K BMIM0.4% is the one 

that has the highest D between the two ILs. This has to do with the way how their properties vary with 

the temperature, which is analysed in the next section through fragility. 

 

4.3. Fragility 

 

Once the behaviour of all investigated systems could be fitted with a single VFT curve, all 

compounds could be characterized through a set of parameters,    , B and T0, like we had the 

opportunity to mention previously.  This allows the determination of fragility.  

In ILs there is the possibility to exist two types of glass formers: “fragile” or strong” liquid [44], 

with possibility of a fragile to strong transition. Both types of liquids shows qualitatively different 

temperature dependency of the viscosity: strong liquids nearly behave according to the Arrhenius law, 

while the fragile liquids show a non-Arrhenius dependence. In other words, fragility is a quantitative 

measure of the degree of deviation from Arrhenius-type temperature dependence near   , providing a 

useful classification of glass formers in terms of fragility. Materials are called "strong" if show a strong 

resistance against structural degradation when heated through their supercooled regime [45]revealing 

a     dependence close to an Arrhenius-type behavior and "fragile" if their      significantly deviates 

from linearity, induced by high cooperative molecular rearrangements[46]. Furthermore, from the VFT 

parameters and the glass transition temperature extracted from the DSC,   
   , it is possible also to 

estimate the fragility index, m, Fragility values typically range between m = 16 for strong systems and 

m = 200 for fragile ones, being estimated according to the following equation[19]:  

 

(4.5)     

 

 

The thus obtained values for BMIMDCA0.4%water, BMIMDCA9%water and BMIMDCAIon Jelly were, 

respectively, 56, 52 and 48, reflecting the deeper temperature dependence of relaxation times for the 

pure IL. Likewise, it was found experimentally that the fragility could be related to the interactions 

between the system elementary units like van der Waals forces and hydrogen-bonding [47]. Strong 

liquids (e.g., SiO2) typically have three-dimensional network structures of covalent bonds while fragile 

liquids (e.g., o-terphenyl) typically consist of molecules interacting through nondirectional, noncovalent 

interactions (e.g., dispersion forces)[47]. The three materials seem to fall closer in the first category. It 

is known for ILs that the fragility depends very strongly on local interionic Coulomb forces[19] and 

when these increase over van der Waals attractions, fragility decreases[31]. Therefore, the lower 

value of m estimated for IJ could be interpreted in terms of an increasing importance of Coulomb 

interactions occurring between the small DCA anion and the imidazolium part of the cation. Indeed 

gelatin helps to hold closer the ion-pairs promoting the Coulombic attractions of oppositely charged 

ions and decreasing the van der Waals repulsions of the alkyl chains on the imidazolium cation.  
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Comparing BMIM and EMIM, we observe a decreasing of fragility with chain length, which can 

be explained from the fact that the van der Waals forces between the molecules of the ILs increase 

with the chain length. 

By other side, in BMIMDCA, an additional effect influences its fragility: the ability of the 

hydrogen atoms of the imidazolium cation to form hydrogen bonds with the anion. This was evidenced 

by Fourier transform infrared spectroscopy (FTIR) for the homologous 1-ethyl-3-methylimidazolium 

cation[48] and by using ab initio and Density Functional Theory (DFT) methods for 1-methyl-3-methyl 

imidazolium  (MMIM), EMIM, 1-propyl-3-methyl imidazolium (PMIM) and BMIM[49].  

For single atomic anion dialkylimidazolium ILs as chlorides and bromides it was found that 

hydrogen-bonded networks exist in both solid and liquid phases and an effort is being carried to 

simulate H-Bonds in multiple atom anions[50]. Nevertheless it is important to note that some ambiguity 

exits in this matter: since each cation can display different conformers as in DCA, this gives rise to 

different co-conformations where the ion contact can be mediated via hydrogen bond or not. In 

[BMIM][DCA], the  ion contact in-plane co-conformers is mediated via the hydrogen atom while the on-

top co-conformation is not [49-50]; therefore it is important to know how strongly the different co-

conformations are contributing.   

Although the fragility for BMIMDCA either neat ionic liquid or ion jelly are relatively similar, the 

small difference could be originated by the ability to establish H-Bonds in neat BMIMDCA,  since it is 

known that liquids forming H-Bonds are moderately fragile[43]. If a hydrogen-bonded network is 

conceived in BMIMDCA, in the IJ’s composites its extent would be smaller due to the interference of 

gelatine impairing the establishment of a so extended HB network, and consequently decreasing the 

m parameter. Recalling the heat capacity determined calorimetrically, its higher value could be taken 

as an indication of higher extent in HBs in BMIMDCA given that the hydrogen bond-breaking is an 

additional source of degree’s of freedom, contributing to enlarge the Cp jump [51]. The fragility index 

of BMIMDCA is close to the value found for C9mimBF4 and C6mimTf2N (m=55 and m=57, respectively) 

[48]. IJ have m values of the order of those obtained by calorimetry from the influence of the heating 

rate on the temperature location of the glass transition signal for other ILs: C5O2ImCl (m=49) [52]. 

Nevertheless, some care must be done in this comparison because the values are too close. 
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Table 4.3 – Fragilities of the twelve samples, according to Eq. 4.5 

Samples Fragility 

BPyDCA0.4% 71.6 

BPyDCA9% 46.3 

BPyDCAIJ 33.4 

BMIMDCA0.4% 50.8 

BMIMDCA9% 48.4 

BMIMDCAIJ 47.6 

BMPyrDCA0.4% 69.0 

BMPyrDCA9% 41.0 

BMPyrDCAIJ 32.6 

EMIMDCA0.4% 48.4 

EMIMDCA9% 48.3 

EMIMDCAIJ 43.4 

 
 

It is possible to reanalyze now in terms of fragility the change in the coefficient diffusion 

observed for BMPyr and BMIM commented in the end of the previous section. If both ILs had the 

same m parameter, the respective D(1/T) plots should evolve in parallel. Since BMPyr is more fragile, 

its diffusion coefficient varies more with the temperature then BMIM, and the respective D plots cross 

at a given temperature varying the order expected for the D values based simply on the Tg values. 

In overall, the results presented in this chapter, suggest that EMIMDCA is an excellent 

candidate for the development of IJ films with high room temperature conductivity.  
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5. Understanding the impact of water on the glass transition temperature and transport 

properties of ionic liquids 

 

The present study has been initiated to present reliable data for the physic-chemical properties 

of a series of aqueous solutions of ILs, which includes thermal behaviour, diffusion coefficient of the 

cation and the anion, mobility of the ions and ionic conductivity over a wide range of temperature.  

It is known that water influences several properties of ILs. Aiming to understand the molecular 

interactions between the IL and water, this chapter focuses on the study of the impact of water on the 

transport properties and glass transition temperature of different ILs. In particular, seeks to establish a 

correlation between Tg and the amount of water in an IL, since sometimes in high hydrophilic 

materials, it is not easy to know the water content immediately before the start of the measurements 

due to the Karl Fischer uncertain.  

Since we aim to apply the IJ materials in electrochemical devices, the principal feature 

requested from the IL is high conductivity. Initially it was thought that the IL with the higher conductivity 

would lead to the IJ with higher conductivity also. This condition was observed for the IL EMIMDCA. 

Furthermore, it was realized that an EMIMDCA-based IJ with 9% water content had a higher 

conductivity than the IL EMIMDCA with the same water percentage. This led us to conclude on 

chapter 4 that EMIMDCA was a suitable IL for the development of IJ films with high room temperature 

conductivity.  

To extend our approach we set out to evaluate the impact of water on the physic - chemical 

properties of different ILs, namely: BMIMDCA, BMPyrDCA,  EMIMSO4, and complemented our data 

for EMIMDCA. For that purpose, three samples with different water contents, 9%, 12% and 30%, in 

addition to the neat IL were prepared: EMIMDCA0.4%, EMIMDCA9%, EMIMDCA12% and EMIMDCA30%; 

BMIMDCA0.4%, BMIMDCA9%, BMIMDCA12% and BMIMDCA30%; BMPyrDCA0.4%, BMPyrDCA9%, 

BMPyrDCA12% and BMPyrDCA30%; EMIMSO4, 0.4%, EMIMSO4, 9%, EMIMSO4, 12% and EMIMSO4, 30%; the 

water contents were determined by Karl-Fischer titration (see Experimental). 

Due to their unique and largely studied properties, ILs are very suitable to use as electrolytes[1]. 

In IL/water mixtures, ion solvation and ion association are very important aspects to consider when 

looking at ion-solvent interactions. The main idea in this chapter is to clarify these interactions by using 

DRS and DSC. In the case of ion association, it is possible to find in the literature case studies 

reporting very different situations. For instance, no ion associations are detected for most of the 

aqueous electrolytes [2]. Nonetheless, in the case of sodium chloride, all ions are in the form of 

hydrated clusters and “these clusters behave as strongly bound units where the cation and anion in 

each cluster are inseparable” [3]. Yet, this type of behaviours is not totally understood and same 

questions remain [4-5].  
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5.1. EMIMDCA  

 
5.1.1. Thermal Characterization 

As was done in the previous chapters, DSC was used to probe phase transformations and 

estimate Tg for the cases where the glass transition is detected. We initiated our study with the thermal 

characterization of EMIMDCA 9%, which has a considerable amount of water.  

To achieve the conditions of total water removal and observe the shift on the Tg, melting and 

crystallization, differential scanning calorimetry was carried out in eighteen successive scans, nine on 

cooling and the other nine on heating. The final temperature in each heating scan is progressively 

increased from an initial value of 50 ºC to a final value of 130ºC (illustrated in scheme 5.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 5.1 – Cyclic thermal treatment for water removal. 

 

 

No phase transitions were observed on cooling (not shown). Each cooling/heating scan was 

made at a scan rate of 20ºC min
-1

; the Tg was not detected since it lies at very low temperatures, in a 

temperature region where the linearity of the temperature change is lost.  
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Figure 5.1 - DSC thermograms obtained for EMIMDCA 9% showing the heat flow jump at the glass transition as 
well as the crystallization and melting phase transitions, from the fourth scan. The inset shows in more detail the 
evolution of the glass transition with sample dehydration. All the scans were obtained in successive sweeps with 
increasing final temperature.  

 

From Figure 5.1 it is possible to infer that all scans exhibits a heat flux change in the DSC 

thermogram, corresponding to the glass transition temperature, Tg. No endothermic peak, 

corresponding to a melting point, or an exothermic peak, corresponding to crystallization, are 

observed on the first four scans, which is due to the presence of a higher water quantity.  

As we showed in chapter 4, a two step-process for the crystallization process is needed: 

nucleation and crystal growth. It was also mentioned that a temperature increase favors the nucleation 

step due a decrease in viscosity. Thus, at higher temperatures relatively to the glass transition 

temperature range, and for a lower amount of water, it is possible to observe crystallization; at even 

higher temperatures the endothermic peak due to melting is detected.  

The crystallization and melting temperature are taken to be the maximum value on the observed 

exothermic and endothermic peak on heating, respectively. The glass transition temperature is taken 

from the onset (Tg, on), midpoint (Tg, mid) and endpoint (Tg, end) of a small heat capacity change on 

heating from the amorphous glass state to the liquid state. 

The inset of Figure 5.1 is a scale-up of the temperature region for which the glass transition is 

detected. It nicely illustrates the shift towards higher temperatures with dehydration upon thermal 

treatment. The estimated glass transition temperatures are presented in table 5.1 and shown in more 

detail in Figure 5.2. It is interesting to note that a shift of Tg close to 20 K is observed between the dry 

and hydrated sample, evidencing the strong plasticizing effect of water in this IL. This observed 

decrease is in agreement with the results of several authors [6-7].  
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Table 5.1 - Glass transition temperatures taken at the onset (on), midpoint (mid) and endset (end) of 
the heat flow jump for EMIMDCA9%, obtained during a first heating run at 20 K/min; melting and 
crystallization temperatures obtained from the fourth heating run. 

System  Tg,on/K Tg,mid/K Tg,end/K Tc/K Tm/K 

EMIMDCA9% 

1
st
 heating run 162.2 164.4 165.1 ---- ---- 

2
nd 

 heating run 164.3 166.3 167.5 ---- ---- 

3
rd

 heating run 168.6 169.8 171.7 ---- ---- 

4
th 

 heating run 174.6 176.0 177.7 240.2 259.5 

5
th
 heating run 179.0 180.7 181.9 235.3 263.4 

6
th 

 heating run 180.6 182.0 183.3 233.1 264.0 

7
th
 heating run 180.7 182.2 183.5 234.7 264.1 

8
th 

 heating run 181.0 182.7 183.5 233.8 264.2 

9
th
 heating run 180.9 182.2 183.6 235.4 264.1 

 

From Figure 5.2 it is possible to see that from the fifth scan (after heating up the sample to 

363.15 K), the changes in Tg, Tc and Tm are negligible. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2 – Plot of the glass transition temperatures for EMIMDCA9% for each cycle. The inset shows the two 
phase transformations, crystallization and melting. It was used a 20 K.min

-1
 rate scan. 

 
 
 

The EMIMDCA9% sample was also measured by DRS but only two scans were carried out. It is 

not possible to monitor melting or crystallization through DRS since these phenomena only occur after 

the fourth run and the DRS data are taken from the first run. Aiming to observe these phase 
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transformations through this technique, a second run was carried out. However, no conclusions could 

be reached.   

The sample with 0.4% water amount is the neat IL, used as received. From the plasticizing 

water effect illustrated in Figure 5.1 it was expected that the sample with lower water amount would 

show the highest Tg. The glass transition located at a higher temperature is the one relative to the 

sample containing 9% of water. For the other three samples, the temperature location remains almost 

unchanged. This may seem an unexpected result. However, some care should be taken when doing 

this comparison: the endothermic event centered around 373 K (100
o
C) in the thermograms depicted 

in Figure 5.3 is due to water evaporation. It is evident that this endothermic peak has a smaller area in 

the case of the sample labeled 9%; samples labeled 12 and 30% have almost the same water amount 

and therefore the glass transition occurs at the same temperature. Surprisingly, the “as received” 

EMIMDCA, which supposedly should contain 0.4% water, is the IL that exhibits water evaporation to a 

higher extent. This means that above critical water content value the glass transition remains 

unaltered.  Some discrepancies could also arise due to the fact that, initially, for equilibration, all the 

samples remain a few minutes at 40ºC, a temperature at which some water could evaporate (from the 

thermograms, it is clear that water evaporation starts just above ~10
o
C).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3- DSC scans obtained for EMIMDCA with 0.4%, 9%, 12% and 30% water content, showing the heat 
flow jump at the glass transition temperature during the first cycle. The curves were vertically shifted to allow a 
better comparison of both heat flux discontinuity in the glass transition region and endothermal water evaporation. 
The inset shows the second heating run in which crystallization and melting are observed. 
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Table 5.2 shows the estimated Tg values and the peak temperatures for crystallization and 

melting, which are present only in the second run. In the second cycle, the Tg for all systems is almost 

the same and therefore the value of 180.10.4 K could be taken as the Tg for dry EMIMDCA. 

 

Table 5.2 - Glass transition temperatures taken at the onset (on), midpoint (mid) and endset (end) of 
the heat flow jump for EMIMDCA0.4%, EMIMDCA9%, EMIMDCA12% and EMIMDCA30% obtained during a 
first and a second heating run at 20 K/min; melting and crystallization temperatures obtained from the 
minimum and  maximum of the peak, respectively. 

System  Tg,on/K Tg,mid/K Tg,end/K Tc/K Tm/K 

EMIMDCA0.4% 

1
st
 heating run 162.14 164.26 164.61 ------ ------ 

2
nd 

 heating run 180.59 182.95 183.09 235.41 265.06 

EMIMDCA9% 
1

st
 heating run 166.47 168.88 169.19 ------ ------ 

2
nd 

 heating run 179.79 181.49 182.03 234.00 264.85 

EMIMDCA12% 
1

st
 heating run 162.20 164.77 164.93 ------ ------ 

2
nd 

 heating run 180.10 182.30 182.41 233.78 265.24 

EMIMDCA30% 
1

st
 heating run 161.31 163.39 163.64 ------ ------ 

2
nd 

 heating run 179.78 181.27 181.76 240.68 264.23 

 

  



Development of Ion Jelly thin films for electrochemical devices 

 

  
119 

 
  

5.1.2. Dielectric Relaxation Spectroscopy Characterization 

5.1.2.1. Conductivity 

DRS is a very sensitive technique to polarization and conductivity changes when an oscillating 

electric field is applied to a wide range of substances. Given that in electrolyte solutions polarization 

arises from orientational fluctuations of permanent dipoles, both of solvent molecules and of ion pairs, 

from intramolecular polarizability and ion motion [8]. Therefore, it seemed advantageous to 

characterize our samples with this method.  

The electric response for the ILs with different water percentages was probed by DRS 

measurements covering 7 orders of magnitude (10
-1

 – 10
6
 Hz).  The IL aqueous solutions and the neat 

IL were cooled from room temperature to 153 K and 163 K, respectively, and then heated to 313 K. 

Measurements were taken isothermally every 2 K to 213 K and every 5 K in the remaining 

temperature range, as it is shown in Table 5.3. 

 

 

 

Figure 5.4 shows the conductivity,   , versus frequency plot, obtained previously for  all the 

studied systems. Conductivity spectra are characterized by a plateau, which is associated with the 

pure conductivity,   , and is quite visible at temperatures above 171 K (-102ºC). The electrode 

polarization effect starts to be evident at 187 K (-86
o
C) (decrease in conductivity at the lowest 

frequencies; see Introduction). 

Also, in Figure 5.4, in the inset a), a discontinuity is observed between 195 K (-78ºC) and 263 

K (-10ºC), which is illustrated by the isochronal plot of the conductivity measured at 4x10
5
 Hz. If we 

take into account the DSC results, this behaviour may be related with the crystallization (drop in   ) 

and at higher temperatures with melting (further increase in   ). This behaviour was already observed 

by Viciosa et al[9].  

Table 5.3 – Temperature range covered in the DRS measurements and temperature domain where 

electrical anomalies were registered for EMIMDCA with different water contents. 

IL Temperature range [ºC] 

 Measurements Electrical anomalies 

EMIMDCA 0.4% -110 to 40 -20 to -15 

EMIMDCA 9% -120 to 40 -55 to -40 

EMIMDCA 12% -120 to 40 -70 to -55 

EMIMDCA 30% -120 to 40 -70 to -55 
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In the temperature range 171 K (-102ºC) to 195 K (-78ºC), the pure conductivity was obtained 

from the fitting with Jonscher’s equation (see equation 1.14 from chapter I); red solid lines in the main 

figure.  From 263 K (-10ºC) to 313 K (40ºC) the values were estimated by directing extraction of the 

pure conductivity from the plateau. The dependence with the temperature reciprocal is shown in the 

inset of Figure 5.4; the lack of points in the intermediate temperature region is due to the occurrence 

of crystallization. The Vogel-Fulcher-Tamman-Hesse (VFTH) [10-12] equation, was fitted to the 

remaining data: 

 

            
  

    
                                 (Equation 5.1) 

 

It should be noted that in the lower temperature range the material is in the supercooled state 

and in the high temperature region is in the molten state. Therefore, the plotted relaxation times refer 

to equilibrium states. Clearly, the conductivity follows a non-Arrhenian temperature dependence, in 

agreement with the behaviour reported by Rivera et al [13]. An identical VFTH temperature 

dependence is observed for the relaxation process that is assumed to be responsible for dynamical 

glass transition (designated α-process) being cooperative in nature [14-15]. Therefore, for ILs based 

on imidazolium cations, for which the temperature dependence of the pure conductivity obeys a VFTH 

law, it is assumed that the conductivity mechanism is coupled with the  -process, i.e., to the 

dynamical behaviour of the cooperative molecular motions driving the glass transition [9].  

 

 

 

 

 

 

 

 

 

 
 
 
Figure 5.4 - Real part of conductivity of EMIMDCA IL_0.4%. The solid lines are the fits obtained by the Jonscher 
law (eq 1.14), for isotherms in steps of 4K between 169 K and 189 K for EMIMDCA IL_0.4%. The isotherms for the 
highest temperatures were taken between 258K and 268 K in steps of 5 K; the isotherms between 201 K and 211 
K in steps of 2 K, were included to illustrate the crystallization effect. The inset a) shows the isochronal plot of the 
conductivity at 4x10

5
 Hz, illustrating the effect of crystallization and melting. The inset b) displays the conductivity 

as a function of the inverse of temperature (1000/K). The blue symbols show the o values obtained from 
Jonscher’s fit to the data while the black circles represent the values directly extracted from the plateau; the lack 
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of points in the intermediate temperature region is due to the occurrence of crystallization. The solid line is the 
VFTH fitting curve. 
 

 

Figure 5.5 shows the frequency dependence of the conductivity of EMIMDCA, both neat and 

with different water contents at 175 K (-98ºC). This temperature was chosen since it was less affected 

by electrode polarization when compared with higher temperatures. From this figure it is possible to 

infer that conductivity increases with the water percentage increase. Hence, the conductivity of neat IL 

is affected by water addition. Differences in conductivity for different water contents are due to the 

dissociation of the IL into ions. It was expected that increasing the water percentage would lead to an 

increase in conductivity.  This means that somewhere between 9 and 12% a water amount that 

confers the highest conductivity is achieved, and beyond that critical value a plateau is reached.  

However, we see that EMIMDCA12% and EMIMDCA30% have the same conductivity, which could be 

related to the fact that above 12% of water probably the maximum extent of solvated ions is attained. 

This seems to be corroborated by the DSC results that show an invariance of the glass transition 

temperatures above 12%. Below this water percentage, not all the ions are saturated and the 

observed conductivity increase with hydration, maybe attributed to a disruption of IL-IL interactions, 

concomitant with the establishment of water-IL cation and water-IL anion interactions  and a 

consequent increase of charge transport. This could be explained by assuming that the water-anion 

and water-cation interactions are stronger than cation-anion interactions. This was demonstrated for 

several hydrophilic ILs, including EMIMEtSO4, whose water mixtures exhibit negative excess 

enthalpies up to 0.8 molar fraction of water [16]; for this IL, 12% and 30% of water correspond, 

respectively, to 0.64 and 0.85 mole fraction of water.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.5 - Real part of complex conductivity (σ’) of EMIMDCA with 0.4%, 9%, 12% and 30% water contents 
versus frequency (υ) (from 10

-1
 to 10

6
 Hz) at -98ºC.  
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5.1.2.2. Transport properties 

It is known that IL viscosity will decrease significantly with the addition of a few solvents, such 

as water [17], which will increase ion dissociation in more dilute solutions. Also, as reported by 

Tshibangu et al [16], viscosity strongly depends on the interaction between the cation and the anion, 

the possibilities to form hydrogen bonding and the symmetry of the ions, which will affect the diffusion 

of the ions. Furthermore, other author studied some factors that control the diffusion of ions in ILs, 

namely, the effects of ion size, shape of the ions, magnitude of interactions between the cation and 

the anion, effects of conformational flexibility, effects of molecular mass and nanostructure  of the IL 

mixtures with neutral molecules (for example, water) and salts [17].  

Figure 5.6 shows the temperature dependence of the diffusion coefficient of the anion EMIM 

and the cation DCA estimated by equations 1.20 (a) and 1.20 (b) in chapter 1. The sample 

corresponding to the neat IL shows an Arrhenian behaviour whereas the aqueous IL solutions show a 

non-Arrhenian behaviour.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.6 - Diffusion coefficient of EMIM (given as log D+) in EMIMDCA with 0.4%, 9%, 12% and 30% water 
content, as a function of inverse temperature. 

 

Some factors such as exchange-repulsion, dispersion, charge-charge interaction and the effect 

of polarization are considered as the main factors that contribute to the intermolecular interactions in 

ion pairs, which are composed by cations and anions. Studies show that the charge-charge interaction  

is the major source of the attraction between the cation and the anion of an IL [17-18]. Also, the 

polarization of the ions produced by the surrounding ions has a significant effect on the motion of ions 

in ILs. The strong attraction between the anion and the cation could be at the origin of the slow 

diffusion of ions in ILs [17]. In Figure 5.6 it is possible to observe that for the aqueous solutions the 

anion-cation interactions have the same impact since there are no significant discrepancies between 

the diffusion coefficients.  
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Figure 5.7 Mobility (given as µ) for EMIMDCA with 0.4%, 9%, 12% and 30% water content as a function of 
inverse temperature. 

 

Also, in Figure 5.7, no discrepancies are observed since the mobility depends directly from the 

diffusion coefficients (see equation 1.15 (b) in chapter I).   

A phenomena observed previously was the electrode polarization. This is  known to happen at 

lower frequencies (and high temperatures) due to the accumulation of mobile charges on the interface 

of the electrode. Since polarization depends on the geometry of the electrode and on the electrode 

material [19], we carried out measurements on both gold and stainless steel electrodes. In Figure 5.8, 

it is possible to see that no significant differences between the two electrodes were detected, except 

that for lower frequencies, electrode polarization is slightly smaller for the gold electrodes. However, 

since, unlike gold electrodes, stainless steel electrodes do not undergo oxidation, we chose to use the 

later.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.8 – Real part of conductivity, at -74ºC, as a function of frequency using two different electrode materials, 
keeping the same geometry.  
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5.2. BMPyrDCA 

 
5.2.1. Thermal Characterization 

The thermal behaviour of the neat IL and the IL with different water contents was investigated 

in the temperature range -150 to 200ºC, for which only the glass transition was detected.  

Figure 5.9 presents the first cycle of the DSC thermograms collected on heating at a rate of 20 

ºC min
-1
. The values of the glass transition temperature taken at the midpoint are very similar, and do 

not follow a monotonic trend with the water content. Therefore, BMPyrDCA is must less sensitive to 

water than EMIMDCA. The average value for the Tg of the hydrated IL is 167.50.5 K, taken at the 

midpoint of the first cycle, whereas Tg for the dry material is 175.10.1 K (Table 5.4).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.9 - DSC thermograms normalized by mass obtained for BMPyrDCA with 0.4%, 9%, 12% and 30% water 
content showing the heat flow jump at the glass transition during the first cycle. The inset displays the 
thermograms collected during a second heating run, after water removal, showing that the glass transition of all 
systems remains invariant.   
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Table 5.4 - Glass transition temperatures taken at the onset (on), midpoint (mid) and endset (end) of 
the heat flow jump for BMPyrDCA0.4%, BMPyrDCA9%, BMPyrDCA12% and BMPyrDCA30% obtained during 
a first and second heating run at 20 K/min; melting and crystallization temperatures were not 
observed. 

System  Tg,on/K Tg,mid/K Tg,end/K Tc/K Tm/K 

BMPyrDCA0.4% 

1st heating run 164.25 166.80 167.30 ___ ___ 

2nd  heating run 172.87 175.19 175.34 ___ ___ 

BMPyrDCA9% 
1st heating run 165.01 167.45 167.75 ___ ___ 

2nd  heating run 172.57 175.00 175.43 ___ ___ 

BMPyrDCA12% 
1st heating run 165.08 167.53 167.85 ___ ___ 

2nd  heating run 172.93 174.91 175.68 ___ ___ 

BMPyrDCA30% 
1st heating run 165.51 168.02 168.46 ___ ___ 

2nd  heating run 172.72 175.22 175.67 ___ ___ 

 

5.2.2. DRS Characterization 

5.2.2.1. Conductivity 

DRS has been demonstrated to be the suitable technique to show and characterize different 

type of relaxations processes due to different molecular motions. Both, main relaxation (  - process) 

and secondary relaxations [13], the main relaxation appearing at low frequencies than the secondary 

relaxations, are detected simultaneously for a variety of ILs. However, the origin of secondary 

relaxations is an issue that still raises many scientific discussions, mainly concern with whether they 

are inter or intramolecular in nature [4-7].  

As for the other systems studied, the dielectric response for BMPyrDCA was probed by DRS 

measurements covering 7 orders of magnitude (10
-1

 – 10
6
 Hz). In this frequency range the main 

relaxation (  – relaxation) is observed, as well as secondary relaxations at a temperature below Tg. 

This behaviour can also be observed through the electric modulus representation (Figure 5.10), which 

is frequently used to evaluate molecular mobility and conductivity in ILs. It is well known that from the 

mixture of an ionic substance with solvents capable to form H-bonds, such as ILs and water, 

respectively, there could result additional relaxation processes, due to ion solvations, i. e.,  direct ion -

solvent interactions [8].   

As mentioned in previous chapters, the complex dielectric function is dependent of both angular 

frequency and temperature, which leads to several relaxation processes such as microscopic 

fluctuations of molecular dipoles, translation of mobile charge carriers and electrode polarization. Each 

one of these processes will have a distinct impact on the frequency and temperature dependence of 

the real and imaginary part of the complex dielectric function [24].  
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As we can see from Figure 5.10, the conductivity of the BMPyrDCA sample with 30% water 

content shows a quite different behaviour. This atypical behaviour is related with the relaxations 

mentioned above which are not detected in either of the other systems. For this reason, the data 

analysis for this aqueous solution was carried out differently from the previous ones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Real part of complex conductivity (σ’) of BMPyrDCA with 0.4%, 9%, 12% and 30% water content 

versus frequency (υ) (from 10
-1

 to 10
6
 Hz) measured at temperatures from -120ºC to 40ºC. 

 

A relaxation process appears as a peak in the plot of     vs frequency, shown in Figure 5.11.  

This peak is shifting to higher frequencies (and higher temperatures), indicated by the pink arrows. At 

low frequencies (high temperatures), an increase in the imaginary part of the complex dielectric 

function is observed, showing a slope < -1, indicated by the yellow arrow, which is due to electrode 

polarization. This type of behavior is designated as non–ohmic conductivity [24]. 

In the mixture of the IL with water two types of interactions should be considered: ion – ion and 

ion – water interactions. Since the relaxation processes are present only in the sample with higher 

water content, it is possible to infer that the latter interactions are responsible for the peaks presented 

in the     plot. Another reason why the relaxation process appears only in the IL with 30% water is 

maybe an increase in the segmental mobility. It is known that pure water has some relaxation 

processes [25], although not at these temperatures. However, the relaxation processes present in this 

IL sample are not from the pure water, but the mixture, since the IL and the water are miscible. In 
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other words, for substances highly hydrophobic, the shielding effect is so pronounced that the 

characteristic relaxation processes of water are clearly evident. Nevertheless, because the IL is 

hydrophilic, this phenomenon is due to mixture as a whole [18 - 21].  

Some authors also showed that in aqueous solutions, the attractive forces between the cation 

and water are strongly dominated by electrostatic forces [8]. Depending on the surface-charge density 

of the cations they could align perfectly with the water molecule. In Figure 5.12 – a), the water 

molecule is very well aligned with the cation due to its high surface-charge density. However, with a 

decrease of the surface-charge density, a deviation from this alignment is observed (Figure 5.12- b). 

Keeping in mind the structure of BMPyrDCA, it is possible to know that this cation is the one with less 

polarizability due to the inexistence of   – bonds, contrarily to what happens with the other cations 

studied. In Figure 5.12 – c) it is observed the preference of the water molecules orientation towards 

the anion. However, as it was already mentioned in chapter 3, water can form H-bonds with the anion 

DCA and, since the anion is the same for all the ILs, except for the IL EMIMEtSO4 (see section 5.4), 

this argument does not apply.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 Imaginary part of complex permittivity of BMPyrDCA with water content as a function as frequency () 
(from 10

-1
 to 10

6
 Hz) for temperatures from -112ºC to -60 ºC. The -98 ºC and -86 ºC isotherms are in solid circles 

to emphasize the dielectric loss peak. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.12 – Preferred orientation of water molecules towards (a) a cation with high surface-charge density, (b) 
a cation with low surface-charge density and (c) an anion. The arrow indicates the direction of the water dipole 
moment. (Retrieved from [8]).  
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Some authors have been discussed how to best represent ac data, via the conductivity or the 

electric modulus [29-32]. We chose the latter one to represent dielectric properties due to the 

suppression of the electrode polarization effect, which facilitates the identification of dipolar relaxations 

[33] and its analysis.  

The electric modulus is related to the complex permittivity by the following equation: 

 

        ε         
   [24]      (Equation 5.2) 

 

In order to get an accurate understanding of dipolar polarization due to reorientational motions 

of permanent dipoles, the imaginary part of the complex electric modulus, M*()  

 

                       (Equation 5.3)  

 

will be analyzed based on the real and imaginary components of the complex dielectric permittivity, by 

the following expression: 

 

        
  

              
        (Equation 5.4) 

 

The relaxation time, determined from the modulus, is correlated to the Debye relaxation (which 

means that the x and y from equation 1.13 in chapter I are equal to unity, the peak showing a 

completely symmetrical form), through the following equation: 

 

     
  

  
             (Equation 5.5) 

 

 

     is smaller than      since         . As a consequence, a Debye-like relaxation process appears at 

a higher frequency in the modulus plot [34].  

In Figure 5.13 the imaginary part of the spectra of the electric modulus of the sample with 30% 

water, BMPyrDCA30%, is plotted. This electrical modulus plot shows a typical ionic conductor behaviour 

[35], where it is possible to see the ionic conduction as a relaxation process represented as a 

relaxation peak. In the case where conductivity,    , is frequency dependent, it was expected a peak 

with a symmetric Debye shape, corresponding to a normal diffusion. However, due to the dispersion of 

the conductivity curves of ionic conductors at high frequencies, where it is present a sub-diffusive 

diffusion,  the shape of the peak is distorted [13].  In the electric modulus the dipolar contribution 

emerges at the lower temperatures while conductivity is felt at the higher temperatures (corresponding 

to the lowest frequencies in the isothermal dielectric spectra).  At temperatures below Tg another peak 

in M’’ can be detected due to a secondary relaxation. 
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Figure 5.13 – 3-D Spectra of the imaginary part of the electric modulus spectra M’’ as a function of temperature 
and frequency for BMPyrDCA30% in the temperature range -110 ºC to -78 ºC.  
 

 

In figure 5.13 the peaks that are observed in the temperature range 163 K (-110 
0
C) to 195 K (-

78 
0
C) are due to dipolar relaxation, from which it is possible to infer about the molecular mobility that 

originates the dynamical glass transition, allowing to go further in the analysis compared to DSC. From 

Figure 5.14 it is possible to infer that multiple relaxation processes take place in BMPyrDCA30%. To 

gain insight into the mobility the electric modulus peak, associated with reorientational polarization, 

was analyzed and compared with the one observed in    , Figure 5.11. The characteristic relaxation 

time is extracted from the frequency dependence of     through the HN equation (equation 1.13 in 

chapter I). Identical data treatment was carried out for the electrical modulus peak. The temperature 

dependence of the respective relaxation times, is plotted in figure 5.14. 

While the main relaxation exhibits a non-Arrhenian behaviour, the secondary relaxation,  , 

shows an Arrhenian linear temperature dependence (Ea= 68.3 kJ.mol
-1

), although only a few spectra 

allowed to extract the respective relaxation times.  
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Figure 5.14 – Relaxation times,     , as a function of inverse temperature obtained by DRS for different 

processes: □ –  -relaxation obtained from M’’, ○ -  -relaxation obtained from    , ○ -    - relaxation process and 

○ - the relaxation process that results from conductivity, through the M’’; solid lines are the fitting by VFTH.  
 

 

Table 5.5 presents the VFTH parameters used to simulate the temperature dependence of the 

diferent non-linear processes. From the VFTH equation obtained from the ´´(1/K) fit, a glass transition 

temperature of 157.9 K (-115.3 
o
C) is estimated for = 100 s [36-37].  

The proximity to the value estimated by DSC for BMPyrDCA30%, 165.5 K (-107.6
0
C), seems to 

confirm that this process is associated with the dynamic glass transition (usually designated as  -

relaxation). Although the proposed criterion refers to ´´, if applied to M´´ it allows obtaining a Tg 

value of 156.9 K (-116.3
0
C), also close to the calorimetric value. The reason why this process was 

detected only in the mixture with 30% of water probably means that the water molecules take part in 

the process facilitating the underlying motions and enhancing its intensity due to the high dipolar 

moment of water. As previously mentioned, for the dilectric response both reorientational dipolar 

motions and charge transport contribute. If the conductivity higly dominates it is not possible to unravel 

relaxational processess. It seems that in this particular system, with so low glass transition 

temperature, the water molecules interact with the ion pair and only at higher temperatures will start to 

contribute more effctively for conductivity, which allows in this temperature region, near Tg, the 

detection and characterization of the relaxation processes.  Nevertheless more studies should be 

carry out to clarify this. 
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Table 5.5 – Summary of the VFTH parameters for the detected processes in the ´´ and M´´ 
representations. 

VFTH 

parameters 

 -process M´´Conductivity 

´´ M´´  

 / s 3.4x10
-15

 3.0 x10
-16

 4.4x10
-12

 

B / K 1434.7 1647.3 1416.0 

T0 / K 120.1 116.1 130.8 

Tg (τ=100s) / K 157.9 165.5 ---- 

 

 

5.2.2.2. Transport Properties 

As is possible to observe in section 5.2.2.1, due to the relaxations processes present in the 

sample BMPyrDCA30%, it is not possible to proceed with the fitting of the curves in the plot of 

conductivity versus frequency, i. e., the characterisc plateau is not observed, which prevents to 

extracting any information about pure conductivity or the crossover frequency. For these reasons, only 

the neat IL and the samples with 9% and 12% water content are shown in Figure 5.15. This plot was 

collected at a temperature of -104 ºC where no electrode polarization is observed. In the aqueous 

solutions (BMPyrDCA with 9% and 12% water content) the water effect appears to be “invisible”.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.15 Real part of complex conductivity (σ’) of BMPyrDCA with 0.4%, 9% and 12% water content as a 
function of frequency (υ) (from 10

-1
 to 10

6
 Hz) at -104ºC.  
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Figure 5.16 shows the temperature dependence of the diffusion coefficient of the anion BMPyr  

estimated by equation 1.20 (a) in chapter I, for the samples containing water from 0.4 to 12 %, all 

exhibiting a non-Arrhenius behaviour.  Identical behaviour is observed for the mobility as shown in 

figure 5.17 (estimated according to equation 1.15 b) in chapter I). 

 
Figure 5.16 Diffusion coefficient of BMPyr (given as log D+) in BMPyrDCA with 0.4%, 9% and 12%water content 
as a function of inverse temperature. 

 
Figure 5.17 Mobility (given as log  ) of BMPyrDCA with 0.4%, 9% and 12% water content as a function of inverse 
temperature. 

 
 

A summary of the glass transitions detected for 1-buthyl – 3 – methyl imidazolium  dicyanamide 

and 1-ethyl – 3 – methyl imidazolium ethylsulfate is presented in tables 5.6 and 5.7. Those systems 

were submitted to the same type of experimental measurements and data treatment as done for the 
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other two ILs. However no significant effects were observed between the different hydrated samples. 

This means that the estimated transport properties are similar to the ones presented in chapter IV. 

 

Table 5.6 - Glass transition temperatures taken at the onset (on), midpoint (mid) and endset (end) of 
the heat flow jump for BMIMDCA0.4%, BMIMDCA9%, BMIMDCA12% and BMIMDCA30% obtained during a 
first and second heating run at 20 K/min; melting and crystallization temperatures obtained from the 
minimum/maximum of the respectively peak. 

System  Tg,on/K Tg,mid/K Tg,end/K Tc/K Tm/K 

BMIMDCA0.4% 

1
st
 heating run 169.18 171.77 172.09 ___ ___ 

2
nd 

 heating run 185.29 187.73 187.85 257.57 271.15 

BMIMDCA9% 
1

st
 heating run 173.15 175.39 176.22 ___ ___ 

2
nd 

 heating run 185.48 187.77 187.99 ___ ___ 

BMIMDCA12% 
1

st
 heating run 168.13 170.40 170.58 ___ ___ 

2
nd 

 heating run 185.50 187.50 187.70 ___ ___ 

BMIMDCA30% 
1

st
 heating run 167.88 170.39 170.58 ___ ___ 

2
nd 

 heating run 185.24 187.64 187.74 ___ ___ 

 

Table 5.7 - Glass transition temperatures taken at the onset (on), midpoint (mid) and endset (end) of 
the heat flow jump for EMIMEtSO4_0.4%, EMIMEtSO4_9%, EMIMEtSO4_12% and EMIMEtSO4_30% obtained 
during a first and second heating run at 20 K/min; melting or crystallization temperatures were not 
observed. 

System  Tg,on/K Tg,mid/K Tg,end/K Tc/K Tm/K 

EMIMEtSO4_0.4% 

1
st
 heating run 164.48 166.80 167.21 ___ ___ 

2
nd 

 heating run 172.51 174.91 175.18 ___ ___ 

EMIMEtSO4_9% 
1

st
 heating run 166.95 169.88 170.44 ___ ___ 

2
nd 

 heating run 192.09 194.97 195.11 ___ ___ 

EMIMEtSO4_12% 
1

st
 heating run 167.63 170.02 170.31 ___ ___ 

2
nd 

 heating run 192.67 194.73 195.26 ___ ___ 

EMIMEtSO4_30% 
1

st
 heating run 167.17 169.88 169.91 ___ ___ 

2
nd 

 heating run 192.02 195.01 195.10 ___ ___ 
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5.3. Conclusion  

 

The thermal properties neat ILs and ILs with different amounts of water were evaluated.  

With the exception of BMPyrDCA which only undergoes a 7 K increase of Tg upon dehydration, 

the other tested ILs show a significant shift of the glass transition temperature to higher temperatures 

with the water removal: BMIMDCA – 18 K; EMIMDCA – 18 K and EMIMEtSO4 – 25 K. This illustrates 

the plasticizing effect of water in these materials and, at the same time, it shows the greater interaction 

of water with these ILs relatively to BMPyrDCA, the complete water removal being only assured after 

an heating treatment up to 473 K (200
o
C). 

The transport properties, conductivity, diffusion coefficients and mobility of charge carriers are 

also influenced by the presence of water, decreasing a few orders of magnitude upon dehydration. 

Almost all systems exhibit a temperature dependence of these properties following a VFTH law. This 

points to a correlation between the conductivity mechanism and the cooperative molecular motion that 

originates the glass transition. This can also be seen by the emergence of the plateau due to dc 

conductivity that only occurs at temperatures near the glass transition temperature, meaning that the 

translational motion of charge carriers does not occur at temperatures where the cooperative 

mechanism is frozen; this reinforces what was observed in chapters 3 and 4 for these ILs and for 

BPyDCA. 

Unfortunately, the expected correlation between both the glass transition temperature and the 

transport properties with the water added to the IL was not observed, preventing deeper conclusions. 

Interestingly, dipolar relaxation was observed for BMPyrDCA30%, allowing to go further in the 

data treatment. The electric modulus representation was used advantageously relative to the ´´(f) 

spectra since is not affected by electrode polarization Multiple processes were identified: a secondary 

relaxation process and two intense processes that only emerge at temperatures above the calorimetric 

glass transition. The Havriliak Negami equation was fitted to both ´´(f) and M´´(f) spectra allowing to 

estimate the respective relaxation times. An Arrhenian temperature dependence (although only over a 

very restricted temperature range) was observed for the secondary relaxation while for the other 

processes a VFTH law is obeyed. From the extrapolation to 100 s of the relaxation times, a glass 

transition temperature was estimated in good agreement with the calorimetric value, helping to assign 

the respective relaxation to the cooperative  -process observed for a variety of glass formers. Once 

again, the process located at the lower frequencies and higher temperatures in the modulus 

representation, which is associated with the conductivity, follows a VFTH dependence. It exhibits a 

curvature (quantified by the B parameter) very close to the  -process, corroborating, as previously 

found, a correlation between the charge carriers motion and the cooperative motion of the ionic liquid 

as a single dipole. 
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6. ELECTRONIC NOSE (E-NOSE) BASED ON ION JELLY MATERIALS 

 

6.1 Introduction 

 

This chapter describes chemiresistive gas sensors based on conductive polymer composites (IJ 

films) prepared from ILs and gelatine, as well as an electronic nose, formed by an array of four gas 

sensors, capable of detecting and identifying various polar and nonpolar volatile compounds. 

Gelatine is a low-cost widely available biopolymer, with excellent features as gelling agent and 

viscoelastic properties. Its different properties give rise to a wide range of applications such as in 

cosmetics, pharmacy, photography, food industries and in gelatine-based electrolyte [1-12]. It is 

prepared through partial hydrolysis of collagen, which is the main component of bones, cartilages and 

skin [13],  after undergoing acid or alkaline pre-treatment [14-18]. By this process, gelatine becomes 

water soluble once its hydrogen and covalent bonds were cleaved. Depending on the acid or alkaline 

pre-treatment, two different types of gelatine are produced, type A-gelatine and type B-gelatine, with 

isoelectric points at ~ 4-5 or ~ 8-9, respectively [13]. The gelatine used in this work was the type A-

gelatine. 

The component that confers conductivity to IJ films is the IL. Lately, ILs have attracted, 

enormously, the scientific community, due to their unique physical-chemical properties. The most 

important feature for this work are ionic conductivity, chemical and electrochemical stabilities[19-21]. 

However, their application as active layer in gas sensors is somehow limited due to their physical state 

(liquid). The combination of gelatine and an IL forms IJ. Since IJ is a solid matrix, does not flow along 

the electrode, has a higher dimensional stability, i. e., IJ is auto sustainable, and it can be applied in 

chemiresisitive sensors.    

The aim of this work is to use IJ films as active layers in gas sensors for e-noses. The mostly 

used commercial sensors are based on metal oxide semi conductors (MOS), which operate at high 

temperatures.  Composite conductive polymer based sensors have gained large importance since 

they work at room temperature, hence have lower power consumption. The use of different IJs, 

containing different ILs, makes it possible to form a wide range of highly selective sensor arrays.  

An e-nose is an array of gas sensors attached to a pattern recognition system that can detect 

and recognize odours [22]. The first gas sensor device was described in 1954 by Hartman, with the 

aim to detect flavours in vegetables [23]. These sensors were originally used for quality control 

applications in food, drinks and cosmetics industries. Nevertheless, current applications include 

detection of human body odours, classification of beverages, volatile halogenated organic compounds 

(VHOC), detection of methanol in sugar cane spirit and diagnosing respiratory diseases [24, 30], 

among many others.  

Thus, depending on the specific need, there are different types of sensors employed in e-nose 

systems, as shown in Figure 6.1, adapted from reference [31],  by adding a novel type of sensor, i.e., 

Composite Polymer (Ion Jelly), which will be focused in this thesis. The design of the first gas 

multisensor array was described by Persaud and Dodd in 1982 [32], aiming  to mimic the mammalian 

olfactory system .  
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Figure 6.1 – Types of sensors utilized in e-noses (adapted from [31]) 

 

Basically, a gas sensor is composed by a sensing material that eventually converts a chemical 

or physical interaction into an electrical signal that reflects an optical, thermal, electrochemical or 

gravimetric change. The great advantages of these devices are related with the fact that they are 

inexpensive and reusable. The above mentioned interaction can occur through four distinct pathways: 

adsorption, which is the adhesion from the gas sample constituents (atoms, molecules or ions) to the 

chemical surface; absorption, which is the passage of the constituents through the chemical layer; co-

ordination chemistry, which is related with the interactions between the organic and inorganic ligands 

with metal centers; and chemisorptions. All these mechanisms will influence the selectivity and 

reversibility of the system.  Chemisorption is a sub-class of adsorption. This phenomenon happens 

when a chemical reaction occurs in the layer deposited under the sensor, in which new chemical 

species are held (e. g. corrosion and metal oxidation). Depending on the chemical identity of the 

vapour and of the sensing material, different types of electronic bonds are created, such as ionic or 

covalent bonds. For this reason, chemisorption is the suitable mechanism when a high selective 

system in needed. However, it is not possible to have both features, selectivity and reversibility [31]. In 

order to overcame this drawback Persaud and Dodd [32] proceeded to the manufacture of an array of 

reversible and semi-selective sensors with different chemical properties.  

As said before, e-nose systems are based on arrays of sensors which give a unique response 

for a certain odour, i. e., a fingerprint for each sample, mimicking the mammalian nose. A schematic 

comparison between the human nose and an e-nose is shown Figure 6.2. 
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Figure 6.2 – Comparison of the mammalian olfactory system and the e-nose system (adapted from [33]) 

 

 

As shown above, the sample is vapourised over the sensors that are made of specific 

materials (as, for instance, IJ) which suffer reversible changes in a particular physical/chemical 

property, such as the electrical conductance [34]. Sensors that change their electrical conductance 

upon exposure to vapours are called chemoresistive sensors. These changes depend mainly on the 

nature of the sensing material, the nature of the analyte and its concentration. Since the array of 

sensors is formed by different sensing materials, a pattern is generated which is unique for this e-

nose-analyte set. 

A specific type of chemiresistive sensors are conductive polymer based whose performance 

could be enhanced adding, for example, ILs and gelatine. IL will increase the conductivity and gelatin 

will confer dimensional stability to the material. This combination leads to IJ films. A wide range of 

methods are applied on the fabrication of composite conductive polymers (CCP), such as hot pressing 

(compression molding) [35], simple dissolution followed by sonication and evaporation [36], polymer 

grafting by  -radiation [37], [38] and reactive polymers [39].  The great advantage of the composite 

conductive polymer is the ease of manufacture of the IJ films, since they are a direct mixture of an IL 

and gelatine (see Chapter 2). In general, the main advantage of CCP is the fact that they demonstrate 

a higher selectivity, more reproducibility and easier preparation procedure than CP [40].  

In a typical experiment, a reference gas (e.g. dry air) passes through the sensors in order to 

obtain a baseline. This step is a pre-treatment. Then, the sensors are exposed to the headspace of a 

volatile sample for a given period (exposure time) and finally to the reference gas again (recovery 

time) in order to recover and prepare the sensor array for the next cycle. Several such cycles can be 

performed for the same sample generating data to be statistically treated afterwards. In general, the 

response of the sensor is given as a first order time response, since it obey a first order differential 

equation. Figure 6.3 shows a typical conductance versus time plot for a single chemoresistive sensor 

during one complete analysis cycle. 
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Figure 6.3 – Typical chemoresistive gas sensor response. G1 is the conductance before the exposure period and 
G2 is the conductance at the end of the exposure period. 

 

 

Several methods for treating data have been described [33] as, for instance:  

1. Differential: where the baseline, G1, is subtracted from the sensor response, G2, in order to 

minimize the noise,   , present. The relative response, Ra, is given by: 

 

                                         Eq. 6.1 

 

2. Relative: this method is obtained by the quotient between the sensor response and the 

baseline, in order to reduce the multiplicative drift,   . The relative response is obtained 

through the follow equation: 

 

    
        

        
 

  

  
                           Eq. 6.2  

 

3. Fractional: the relative response is calculated by the quotient between the sensor response 

minus the baseline, divided by the baseline. Usually, from Figure 6.3, the relative response 

(Ra), defined in Equation 6.3, is calculated and then used as input variable for multivariate 

methods.  

 

   
     

  
                                         Eq. 6.3 

 

 In order to obtain a reliable pattern recognition it is essential to treat the data by  statistical 

methods as, for instance,  principal components analysis (PCA),  discriminant function analysis (DFA), 

partial least squares (PLS), multiple linear regression (MLR), and cluster analysis (CA). PCA is the 

most commonly used method in e-nose systems, because it is simple and reduces the variables to 

two or three (principal components), which can be plotted as bi or three-dimensional graphs.  
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6.2. Results and Discussion 

 

The electronic nose was formed by an array of four sensors (S1, S2, S3 and S4). Each sensor 

was formed by a distinct IJ film based on a different IL: BMIMDCA, EMIMDCA, BMPyrDCA and 1-

butyl-3-methyl imidazolium bromide (BMIMBr). Each sensor individually responds to vapours and 

produces a distinguishable response pattern for the eight separate types of solvents tested (Table 

6.1): ethyl acetate, acetone, chloroform, ethanol, hexane, methanol, toluene and water as can be seen 

in Figures 6.7-6.10. The changes in conductance of the sensors were monitored during fifteen 

reproducible cycles of exposure to the gas vapour samples inside the sample chamber (Figure 6.4), 

followed by exposure to atmospheric air in order to achieve the total recovery of the sensors. From 

Figure 6.4 we conclude that it was possible to achieve an excellent reproducibility for methanol. The 

same approach and the same results were verified for the others solvents.  

 

Table 6.1 – Chemical structures of the eight solvents used in this experiment 
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Figure 6.4 - Response of the sensors to a sequence of 15 exposures/recoveries. Exposure periods of 65 s to air 
saturated with methanol at 30º C and recovery periods of 65 were employed. Sensor 1 – BMIMDCAIJ; sensor 2 - 
EMIMDCAIJ; sensor 3 - BMPyrDCAIJ and sensor 4 – BMIMBr. 

 

 

As said before, the matrix used in the present work is a conducting polymer composite. This 

type of sensor is usually formed by conducting particles like polypyrrole, carbon black and an 

insulating polymer matrix [33]. Nevertheless, our material is composed by an IL which confers 

conductivity to the material and gelatine which confers the dimensional stability. Depending on the IL, 

the response of the system is different.  

 Conformational changes in the polymer chains, as recently observed by means of polarization-

modulation infrared reflection absorption spectroscopy (PM-IRRAS) [43], in conducting polymer gas 

sensors, after exposure to volatile organic compounds, may also play an important role on electrical 

conductivity. The choice of IJ films instead of the usual polypyrrole or carbon black is related with two 

main factors: the manufacture of IJ is quite easy and they are completely amorphous. This is a main 

advantage since, as it is known, the transport properties of polymers and composite polymers depend 

on the mobility. If a composite is crystalline, the mobility will decrease, since the crystalline domains 

are normally impermeable to vapours at room temperature and can lead to the crosslinking between 

the vapour molecules and the matrix.  

The transducer device is composed by two parallel interdigitated electrodes, where the IJ film is 

deposited onto the substrate surface as shown in Figure 6.5.  

 

 

 

 

 

 

 

 

 

Figure 6.5 – Typical structure of a conductive polymer composite sensor. 
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Such sensors show conductivity changes in response to the exposure to vapours. It could be 

observed that they respond to a wide range of volatile compounds as shown in Figures 6.6 – 6.9.  

The response time depends on the rate of diffusion of the vapour into the IJ composite polymer. 

As verified by George, S. C. et al. [44], the diffusion rate depends on many factors such as: the nature 

of the polymer and the gaseous material, the crosslinking between them, the concentration of the gas 

sample, the thickness of the polymer, the effect of fillers, plasticizers, and the temperature. As a result, 

the diffusion coefficient and, consequently, the conductance of the penetrating molecule depend on 

the rate of absorption of the vapour by the polymer. As higher the size of the molecule the lower is the 

diffusion coefficient. Also, compacted or elongated molecules have faster diffusion coefficients when 

compared with spherical-shaped molecules [44]. This explains the fact that the change in conductance 

achieved after exposure to toluene is much lower than after exposure to methanol.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 – Relative response for sensor 1: BMIMDCAIJ. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.7 – Relative response for sensor 2: EMIMDCAIJ. 
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Figure 6.8 – Relative response for sensor 3: BMPyrDCAIJ. 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.9 – Relative response for sensor 4: BMIMBrIJ. 

 

 

The relative responses (Ra) of the four gas sensors to the eight volatile compounds were used 

as input variables for a PCA. A three dimensional plot of the three first components, which accounted 

for 99.9 % of the variance, is shown in Figure 6.10. As can be seen, the data for each of the volatile 

compounds were grouped in separate clusters, indicating a perfect classification of the compounds 

according to their nature. Leave-one-out validation analysis gave a hit rate > 95 % for all the available 

data, showing the high reliability of this e-nose. 
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Figure 6.10 – PCA plot for the array of four IJ gas sensors. 
 

It is worth to mention that: (a) all the IJs show a good response to the eight volatile 

compounds  and have fast response and recovery times, i. e., all the compounds could be easily 

distinguished; (b)  IJ films show very good repeatability after several exposures; (c) IJ films offer 

numerous advantages over other materials since they have high sensibility, fast response and short 

recovery time; (d) IJ films are inexpensive and easy to prepare; (e) the four sensors have been studied 

along three months and still respond perfectly well to the volatile compounds. Hence they are not 

disposable; (f) since these materials work at room temperature, no heater is required and hence the 

power consumption is low, which is interesting if portability is desired; (g) the e-nose was tested with 

eight different solvents (volatile compounds) of different natures (organic and inorganic, polar and non-

polar) just to prove the concept, i.e. that IJs can be successfully applied to gas sensors and e-noses. 

Nevertheless, the system is not limited for solvent analysis but may be applied in countless other 

much more complex analyses as, for instance, food and beverage quality control, environmental 

analyses, etc. 

 

6.3 Conclusion 

 

Four IJs based on different ILs, BMIMDCA, EMIMDCA, BMPyrDCA and BMIMBr, were 

prepared and deposited onto interdigitated electrodes forming chemiresistive gas sensors. The three 

most sensitive sensors were grouped in an array assembling an electronic nose, which was able to 

detect and to perfectly classify eight distinct solvents: ethyl acetate, acetone, chloroform, ethanol, 

hexane, methanol, toluene and water. This is a spectacular result considering the small number of 

sensors and the nature of the tested volatile compounds. For instance, ethanol and methanol are very 

similar in their chemical structures and yet could be correctly identified. Furthermore, these IJ based 

sensors are very easy to prepare, fairly cheap, operate at room temperature, and show very good 

repeatability. They had been tested regularly during three months without any failure.  
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7. CONCLUSION 

 

In Chapter III, the ionic conductivity of BMIMDCA with 1.9 and 6.6% of water content (w/w) and 

ion jellies with two different ratios of BMIMDCA/gelatin/water, IJ1 (41.1/46.7/12.2) and IJ3 

(67.8/25.6/6.6) % (w/w), was characterized by using dielectric relation spectroscopy (DRS) 

complemented with differential scanning calorimetry and PFG NMR. Through this approach, it was 

possible to illustrate the impact of gelatin and water on IL physicochemical properties, which are 

ultimately implicated on IJ conductivity.  

The calorimetric analysis revealed that all materials undergo glass transition, so they are 

classified as glass formers. For the ionic liquid BMIMDCA, it was observed that upon hydration, it 

undergoes a shift of the glass transition toward lower temperatures. The glass transition temperatures 

for IJs were provided for the first time. Upon dehydration, BMIMDCA undergoes cold crystallization. 

Contrary, both IJ1 and IJ3, no crystallization was detected under thermal cycling, which can be seen 

as a structural advantage of these ion jelly materials.  

From dielectric data, it was possible to extract information on the transport properties since it 

was shown that subdiffusive dynamics govern the conductivity spectra at high frequencies. It was 

found that ion jelly having the higher IL/gelatin ratio (IJ3) exhibits identical conductive properties to 

BMIMDCA. In fact, the diffusion and mobility of ionic species are identical on IJ3 and BMIMDCA, 

meaning that the ionic conductivity is not significantly affected by the presence of gelatin. 

Nevertheless, an increase of the amount of gelatin lead to a decrease on the ion jelly conductivity 

showing that there is a critical ratio of IL/gelatin that leads to those properties. For bulk BMIMDCA, it 

was found that water increases the mobility and the diffusion coefficients, probably due to a 

weakening of ionic pairs interaction facilitating translational motions. Data treatment was carried out in 

order to deconvolute the average diffusion coefficient estimated from dielectric data in its individual 

contributions of cations (D+) and anions (D_). The D+ values thus obtained for BMIM
+
 and IJ3 with the 

same water content (6.6% w/w) revealed mainly for the latter excellent agreement with direct 

measurements from PFG NMR, obeying the same VFT equation.  

A non-Arrhenius temperature dependence of the dc conductivity was observed that its 

originated by a VFT dependence of mobility in all systems. The VFT dependence of both conductivity 

and relaxation processes associated with dipolar reorientation, together with low values of decoupling 

indexes, point to a correlation between the charge transport mechanism and the  cooperative motion 

behind the process associated with the dynamical glass transition. 

A multimodal nature was found in the dynamic behavior as probed by DRS due to simultaneous 

contributions of dipolar reorientations and interfacial and electrode polarizations. The slowest process 

was found to be compatible with the electrode polarization process, while the one located at higher 

frequencies was found to be compatible with the relaxation associated with the dynamic glass 

transition. From the temperature dependence of relaxation times of the latter process, the glass 

transition temperatures were estimated in very good agreement with calorimetric data.  

The ion jelly derived material with the higher amount of ionic liquid (IJ3) has a glass transition 

temperature (measured in the first heating run) not far from that of BMIMDCA with 1.9 or 6.6% water, 
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but closer to the less hydrated. Advantageously, both ion jellies did not undergo further crystallization 

after water removal contrary to which is observed for BMIMDCA with either 1.9 or 6.6% water content. 

The ion jelly with the lower IL content, although having the highest water amount (12%), presents the 

higher glass transition temperature, probably due to the high gelatin:BMIMDCA ratio. 

It was previously found that IJs based on ILs that contain dicyanamide (DCA) anion have led to 

stable and transparent materials. Therefore, in chapter IV, the impact of different cations on the 

physico-chemical properties of DCA based ionic liquids and respective IJs were evaluated by DRS, 

DSC and PFG-NMR. BPyDCA, BMPyrDCA and EMIMDCA besides BMIMDCA were studied with 

0.4% and 9% w/w water contents: the respective IJs with 9% of water were also investigated. As 

found previously for BMIMDCA, it was observed that the glass transition temperature decreases with 

the increase of water content. Crystallization was observed for BMIMDCA, BMPyrDCA and EMIMDCA 

with negligible water content; it was shown how DRS is a suitable tool to monitor crystallization 

through the ’ trace. Once more no crystallization was detected for any of the ion jelly materials upon 

thermal cycling. The real conductivity, ´, was measured for all systems. A correlation between the 

establishment of a plateau in the frequency dependence due to long-range motion of charge carriers 

(diffusive regime) and the onset of structural relaxation which is in the origin of the glass transition 

seems to exist. At the lowest frequencies of the conductivity spectra, electrode polarization highly 

dominates, but the remaining spectral response was able to be simulated by a Jonscher equation 

allowing deriving transport properties as mobility and diffusion coefficients. Data treatment was carried 

out as done in chapter III for the estimate of diffusion coefficients that, for all materials, showed a close 

agreement with PFG NMR data, following the same VFT equation.  

The influence of water on the ILs was studied in more detail in chapter V for BMIMDCA, 

EMIMDCA, BMPyrDCA and EMIMSO4 where IL/water mixtures were prepared with different hydration 

levels (0.4%,  9%, 12% and 30% w/w). A distinct behavior was observed for the BMPyrDCA with 30% 

water, that didn’t exhibit the usual conductivity vs frequency profile observed for a variety of disordered 

conductive systems. This allowed analyzing the reorientational polarization by the complex permittivity 

and electric modulus representation, from which three different processes were identified: a secondary 

relaxation with Arrhenian temperature dependence, and two other processes whose temperature 

dependence obeys to a VFT law. The agreement between the temperature found by extrapolating the 

VFT equation to to =100 s with the glass transition temperature calorimetrically determined, seem to 

confirm that one of these VFT processes, the one located at the lowest temperatures, is consistent 

with the attribution to the process whose mobility is behind the dynamic glass transition; the high-T  

VFT process is originated by the mobility of charge carriers. Both evolve more or less in parallel in the 

relaxation map indicating, once again, a correlation between the two mechanisms. 

For the e-nose measurements, in chapter VI it were prepared four IJs based on gelatin and 

different ILs: BMIMDCA, EMIMDCA, BMPyrDCA and BMIMBr, and deposited onto interdigitated 

electrodes forming chemiresistive gas sensors. These were grouped in an array assembling an 

electronic nose, which was able to detect and to perfectly classify eight distinct solvents: ethyl acetate, 

acetone, chloroform, ethanol, hexane, methanol, toluene and water. This is an interesting result 

considering the small number of sensors and the nature of the tested volatile compounds. For 
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instance, ethanol and methanol are very similar in their chemical structures and yet could be correctly 

identified. Furthermore, these IJ based sensors are very easy to prepare, fairly cheap, operate at room 

temperature, and show very good repeatability. They had been tested regularly during three months 

without any failure.  

Lastly, with the obtained results, it was shown that ion jelly could be in fact a very promising 

solution to design novel electrolytes for different electrochemical devices, being much more stable 

relative to the bulk ionic liquids concerning electrical anomalies that manifest mainly for the IL at high 

frequencies, attaining conductivities that are comparable to the ionic liquids from which they derive 

with the advantage of being self-supported materials. 

 
 

 

 

 

 


