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Abstract 

 

The brain derived neurotrophic factor holds neuroprotective and neurogenic roles. The 

presence of this factor is believed to present highly beneficial effects on injured cells within 

several neurological disorders, where the levels of this neurotrophin are usually drastically 

decreased. Neural stem cells are multipotent, self-renewing cells with the ability to differentiate 

into the three main type of cells within the central nervous system - neurons, astrocytes and 

oligodendrocytes. The combination of gene therapy, through the introduction of therapeutic 

genes into the desired cells, with cell therapy aiming for the replacement of damaged cells 

within a given disorder, hold great promise in modern regenerative medicine. 

The aim of this work was the overexpression of the brain derived neurotrophic factor in neural 

stem cells. For this, mouse and human neural stem cells were transfected with one of three 

non-viral techniques - microporation, lipid and cationic-polymer based strategies. Human NSC 

were efficiently transfected using the commercial lipid-based transfection reagent Lipofectamine 

2000 with an efficiency of 35%, maintaining their differentiation potential. Cells within the 

differentiation process were efficiently transfected with 13% efficiency. Cell viability has always 

remained above 70% after the lipofection process. The transfection with the BDNF gene 

resulted in neurons with longer primary neurites, and more secondary neurites than control 

cells, which hints at the promotion of neurite outgrowth and ramification of neurons by this 

neurotrophin. 

Finally, healthy cells were exposed to toxic concentrations of glutamate. Conditioned media 

containing secreted BDNF from transfected cells was able to protect these cells from glutamate-

induced neurotoxicity, as well as reducing the levels of expression of the pro-apoptotic protein 

caspase7 to near-control levels. 

Overall, this work provides the first evidences of the successful use of BDNF-overexpressing 

NSC, based on a non-viral gene delivery approach for decreasing neurotoxicity.  
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Resumo 

 

O trabalho proposto tinha por objectivo a sobre-expressão do “Brain derived neurotrophic 

factor” (BDNF) em células estaminais neurais. O BDNF é um factor neurotrófico com papéis 

neuroprotectores e neurogénicos. Este encontra-se drasticamente sub-expresso numa 

variedade de desordens neurológicas. Acredita-te que a sobre-expressão de BDNF seja 

benéfica para as células afectadas em determinado nicho in vivo. 

São consideradas células estaminais neurais, aquelas que apresentam multipotência; a 

capacidade de auto-renovação; e o potencial para diferenciar em um dos três grandes tipos de 

células presentes no sistema nervoso central - neurónios, astrócitos e oligodendrócitos. 

A simbiose entre terapia génica, através da introdução de genes em células de interesse, e a 

terapia celular, visando a substituição de células lesadas em consequência de determinada 

patologia, detém um enorme potencial e uma esperança renovada na área da medicina 

regenerativa moderna.  

Células estaminais neurais de ratinho e humanas foram transfectadas através de um de 3 

métodos não-virais - microporação, lipofeção e transfeção com base em polímeros catiónicos. 

A utilização do reagente de transfecção lipídico Lipofectamina 2000 permitiu notavelmente 

transfectar uma linha de células estaminais neurais humanas com uma eficiencia de 35%, 

mantendo o potencial de diferenciação da cultura intacto.  Ainda, células durante o processo de 

diferenciação foram transfectadas com cerca de 13% de eficiência. Em todos os casos foi 

mantida uma viabilidade celular superior a 70% após o processo de lipofeção.  

Um resultado promissor sugeriu que a presença de BDNF promoveu a ramificação de 

neurónios, potenciando ainda o crescimento de neuritos primários em relação ao controlo. 

Foi ainda possível fazer uma análise dos efeitos neuroprotectores do BDNF, pela exposição de 

uma cultura diferenciada a concentrações tóxicas de glutamato. A presença de BDNF 

secretada pelas células transfectadas, permitiu a proteção da cultura por parte de 

neurotoxicidade induzida pelo glutamato, mantendo uma actividade celular superior ao 

controlo, e sendo ainda responsável pela redução apreciável do nível de actividade da proteína 

pro-apoptótica caspase7 para níveis semelhantes aos do controlo, sugerindo uma prevenção 

de eventos de morte celular programada. 

Este trabalho fornece as primeiras evidências da utilização eficaz de células estaminais neurais 

a sobre-expressar BDNF, utilizando métodos não-virais de entrega de genes para a prevenção 

e redução dos mecanismos de neurotoxicidade induzidos pelo glutamato. 

Palavras-chave 

Células estaminais neurais; Brain Derived Neurotrophic Factor; Entrega não-viral de genes; 

Lipofeção; Plasmídeo; Neurotoxicidade 
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1. Introduction  

 

1.1 Stem Cells 

 

A stem cell is an undifferentiated cell with the ability to self-renew, i.e. of reproducing itself, as 

well as the ability to give rise to specialized and functional cells through differentiation
1,7

 (Figure 

1.1)  

This last property renders stem cells a great value in regenerative medicine, being the ultimate 

goal the possibility of providing sufficient specialized cells for the replacement of lost or 

damaged cells due to a certain injury or disease.  

 

 

Figure 1.1 - Schematic representation of self-renewal and differentiation potential of stem cells. Taken 

from 
1
.  

 

The self-renewal of stem cells can occur in two distinct ways: (1) through symmetric cell 

division, which is a proliferative type division in which one single cell originates two daughter 

cells genetically identical to the progenitor or (2) through assymetrical division where one cell 

originates an identical daughter cell and a cell of a different type with distinct genetic properties. 

The later cell division is a differentiative type division, giving rise to specialized cells as well as 

maintaining a pool of pluripotent cells
7,8

. 
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1.1.1 - Embryonic stem cells 

 

In humans, embryonic stem cells (ESC) can be found in the inner cell mass (ICM) of the pre-

implantation blastocyst (4-5 days)
7,9

. This ICM is responsible for the development of the three 

embryonic germ layers conducting to the formation of the human body - the endoderm 

(responsible for generating pancreatic and liver cells); the mesoderm (leading to 

cardiomyocytes, skeletal muscle and smooth muscle) and the ectoderm (neurons, epithelial 

cells and glial cells)
1,7

. Unlike adult stem cells (ASC), ESC are considered pluripotent cells since 

they are able to give rise to all tissues of the adult organism
10

. Cultivation of these cells in vitro 

is a common procedure nowadays, and can be achieved through well-established culture 

conditions. This makes ESC tremendously helpful in the creation of disease models, through 

the study of specific drug-targeting systems, and from a basic developmental stem cell biology 

standpoint.  

Some concerns still arise from the use of these cells for in vivo cell therapy, including that the 

proliferative properties required for proper expansion of these cells may trigger the formation of 

tumors, or give rise to cell types different than those required, or even triggering an immune 

response in the host
1
. Also, some drawbacks concerning the low efficiency and time required for 

cells to differentiate into the cell type required greatly hamper its broader use in cell therapy
10

. 

 

Immunogenic rejection of allogeneic cells led to extensive research aiming at fulfilling the need 

for successfully accepted cells by the host. In this sense, in 2005 adult fibroblasts were 

successfully reprogrammed to an ESC state, by fusion with ESC
11

.  On another approach, 

Yamanaka and colleagues successfully reprogrammed adult fibroblasts into a pluripotent state, 

by introducing only four factors - Oct3/4, Sox2, c-Myc and Klf4
12

. These cells, then termed 

induced pluripotent stem cells (iPSC), are similar to human ESC in terms of gene expression 

and capacity of specific differentiation
9
. 

Following this approach, somatic cells from a certain individual could be subjected to in vitro 

reprogramming to a prior pluripotent state, and proceed to differentiation to the proper cell type 

required, avoiding the organism´s rejection of those same cells
13

. 

 

 

1.1.2 - Adult stem cells 

 

Numerous types of stem cells exist in the adult organism. These are commonly referred to as 

adult stem cells. They comprise lineage committed cells residing in specific sites in the different 

tissues of the adult organism, and are able to give rise only to the cell type of the tissue or organ 

where they are localized, being responsible for the regeneration of those same tissues upon 

injury, or as the natural replacement of older cells, as reviewed elsewhere
1
. Mesenchymal stem 
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cells (MSC) are adult stem cells, which were first isolated from the bone marrow
14

, although it is 

now known that these can also be obtained from other niches such as adipose tissue
15

 and 

umbilical cord blood
16

 and matrix
17

. MSC can differentiate into fibroblasts, chondrocytes, 

osteoblasts and adipocytes, being responsible for the regeneration of bone and cartilaginous 

tissues such as tendons and ligaments. Hematopoietic stem cells (HSC) are found in the bone 

marrow and umbilical cord blood, being responsible for the development of blood lineage cells. 

Cardiac stem cells support myocardial regeneration, and have been shown to differentiate into 

functional myocardium when injected into an ischemic heart
18

. Also in the liver, stable amounts 

of hepatic stem cells remain throughout life, giving rise to mature hepatocytes
19

. Neural stem 

cells are localized in well defined zones of the adult brain and are responsible for the generation 

of neurons, astrocytes and oligodendrocytes. The latter type of stem cells is the focus of this 

thesis, so these will be addressed in more detail later (section 1.3).  

 

Adult stem cells present several clinical advantages regarding their lower potential of 

differentiation when compared to embryonic stem cells, originating a finite number of cell types, 

which ultimately decreases their malignant potential
20

. 

 

 

1.2 - Neural Stem Cells in the Central Nervous System 

 

A neural stem cell can be defined as an uncommitted cell able to give rise to all three major cell 

types of the Central Nervous System (CNS) - neurons, astrocytes and oligodendrocytes, and it 

must have the capacity for self-renewal
9
. The former property renders NSC the concept of 

multipotent cells, suggesting the potential they hold for generating more than one possible cell 

type. They are radial astrocyte-like, nestin-positive cells
9,21

. 

 

The development of the vertebrate CNS begins with a neural plate consisting of a single layer of 

neuroepithelial progenitor cells (NEPs)
5,22,23

. Upon folding, this layer gives rise to a neural tube 

containing also NEPs, which later on give rise to both radial glia (RG) and basal progenitors 

(BPs)
5
. A significant amount of RG is present in primary cell populations from CNS tissue, and 

they are believed to be a good source of neural stem cells. Basal progenitors are neuronal-

restricted cells, and can be generated both by RG and NEPs. In the mammalian brain, neural 

stem cells are believed to exist within two neurogenic niches - the subventricular zone (SVZ) of 

the lateral ventricle and the subgranular zone (SVG) of the dentate gyrus
5,24

. Besides neural 

stem cells, those neurogenic niches comprise glial cells, ependymal cells, extracellular matrix 

(ECM) components and proteoglycans
9
. 
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Oligodendrocytes are glial cells necessary to the proper development of the brain and neuronal 

functioning, through the myelin formation around the neurons axons
25

 (figure 1.2). They are 

produced throughout the entire CNS
9,26,27

. Myelin is a membranous structure rich in lipids with 

low water content, which isolates the nerve electrical signals transmitted through axons. This 

structure is implicated in many neurological disorders, as in Multiple Sclerosis, caused by the 

demyelinization of neurons
25

, i.e. loss of myelin in the neurons. 

Oligodendrocytes and other glial cells are established early at the time of neurogenesis, 

although their maturation occurs mainly in the early post-natal stage. 

 

 

Figure 1.2 - Interactions between the three cell types of the CNS - neurons, astrocytes and 

oligodendrocytes. Taken from 
2
. 

 

Astrocytes are the most abundant cells within the CNS, and are generated throughout the entire 

system
9,26,27

. These star-like cells are responsible for a wide variety of tasks including axonal 

guidance, synaptic support and regulation of the blood brain barrier and overall blood flow
28

. 

Through the secretion of growth factors important to proper axon growth and stable synaptic 

activity they modulate the microenvironment of adjacent neurons
28

. Glial cells, including 

astrocytes and oligodendrocytes constitute 90% of the total cells in the adult brain
25

. 

 

At last, the generation of new neurons is mainly restricted to the SVZ of the lateral ventricle and 

SVG of the dentate gyrus. Newly formed neuroblasts migrate through the rostral migratory 

stream (RMS) mainly composed of astrocytes, finally reaching the olfactory bulb (OB), where 

they migrate outwardly as isolated cells, later on maturating into differentiated neurons
8,24

. 

Neurons are highly differentiated cells responsible for the transmission of electrical signals 

throughout the entire nervous system that regulate every impulse and response in the 

organism. The brain contains a wide variety of neuronal cell types, such as motor neurons, 

responsible for making the connection between brain signals and muscle movement; sensory 
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neurons, which allow the body to perceive external stimuli from peripheral cells such as 

epithelial cells, and sending the signal to the spinal cord or the brain. Others tend to specialize 

in the generation and release of neurotransmitters for proper cell-cell communication. A cortical 

neuron makes up around 10,000 connections with other brain cells. This gives up the 

complexity of the neuronal network, and allows to realize the reason why the brain, especially 

the human cortex, is the core for the development of human learning, memory creation and 

overall rational thinking
29-31

. 

 

It is still unclear the extent to which multipotent stem cells exist in the CNS and what really 

defines them, so this renders the concept of neural stem cell quite an abstract meaning to it. 

Nonetheless, several stem/progenitor cells have been identified in the neurogenic niches in the 

brain, which, depending on the microenvironment signals, ultimately have the capacity to 

generate the supportive glial type of cells, or one of the neuronal lineages found in the adult 

intricate neuronal network
26

.  So, a neural stem cell can be considered the one capable of self-

renewal, although not necessarily for unlimited divisions, and of course, being able to give rise 

to neurons and glial cells as stated before
1,5

. 

 

1.2.1 - Sources of Neural Stem Cells 

Neural stem cells can be found in several tissues or can derived through differentiation of other 

cells (figure1.3).  

 

Figure 1.3  - Schematic representation of neural stem cell based therapy. Adapted from 
3
. 
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Since the work of Ramón y Cajal in 1928
32

, it was believed that the brain did not have the ability 

to generate new neurons. Nevertheless, this theory has been proven wrong since neurogenesis 

is an active process that occurs throughout life
27,33

. The two main regions responsible for this 

phenomenon, which are as well the main sources of adult percursors are the subgranular zone 

(SGZ) of the dentate gyrus in the hippocampus and in the subventricular zone (SVZ) of the 

lateral ventricles
26,27,33

. In 1992 the first adult and fetal NSC from the central nervous system of 

rodents were isolated
34

. A few years later, in 1998 the same was accomplished with human 

NSC
35,36

.  

 

The isolation procedure of NSC is based on the dissection and further dissociation of fetal 

tissue, following plating on the adequate conditions. Weiss and Reynolds managed to perform 

this by plating the cells from adult mice striata in culture-medium supplemented with epidermal 

growth factor (EGF)
34

. A few years later, the same was achieved with human cells. Flax and 

colleagues dissociated cells from the human fetal telencephalon, which were then cultured in 

medium containing fibroblast growth factor (FGF2) and/or EGF. This provided some insight 

about the nature of cells isolated from human fetal tissue, and the fact that in that case, those 

cells showed neural stem cell properties, being able to proliferate in vitro.  

 

NSC can also be obtained by differentiation from other cell types, as described in the section 

1.2.3 “Neural Stem Cells culture in vitro”.  

 

 

1.2.2 - Phenotype and morphology 

NSC are star-like cells with the ability to adhere to culture-grade plastic (figure 1.4). 

 

Figure 1.4 - Human immortalized neural progenitor cell population. Scale bar is 50μm. 

 

NSC characterization remains a topic with no consensus within the scientific community. 

According to literature, there is not yet a single marker that characterizes NSC exclusively and 

so can be used to selectively identify and isolate these cells
4
. Considering this, usually the 
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characterization is achieved by the combination of several cell-specific markers such as nestin, 

Sox1/2, Pax6 and CD133
4
 (figure 1.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 - Neural stem cells and lineage-commited cell markers. Taken from
4
. 

 

Nestin is an intermediate filament
8,34

 that distinguishes neuroepithelial stem cells from other 

differentiated cells in the neural tube
25

. Sox2 is expressed in a variety of cells within the SVZ, 

being in part responsible for the maintenance of an undifferentiated proliferative state during 

development
37

. Pax6 is a transcription factor that also maintains the stemness of the culture, 

promoting asymmetric divisions
8
. CD133 is a marker for the transmembrane protein prominin-1, 

found in the apical plasma membrane of NSC
8
. The assessment of the expression of these 

markers is usually achieved through several techniques such as flow cytometry and quantitative 

real time PCR.  

 

Upon assessment of differentiation capacity of NSC, usually cells which acquire neuron 

morphology are identified by the expression of several markers such as the microtubule 

associated protein 2 (MAP-2); β-tubulin III, a protein that is primarily expressed in neurons and 

is involved in axon guidance and maintenance
38

; substance P, a neurotransmitter that belongs 

to the small peptides group of neurokinins responsible for affective behavior, and the main 

inhibitory neurotransmitter GABA (gamma amino butyric acid) markers
34

. Cells with 

oligodendrocytic characteristics express cell-surface protein O4, and astrocytes are mainly 

distinguished through the expression of the glial fibrillary acidic protein
39

. 

 

1.2.3 - Neural Stem Cell culture in vitro 
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NSC can either proliferate in vitro, maintaining their multipotent state or differentiate into specific 

cell types. The maintenance of proliferative capacity and differentiative potential can be 

promoted by the addition of growth factors to the culture, such as EGF and fibroblast growth 

factor 2 (FGF2)
8,21,40

. The withdrawal of these growth factors leads to a mixed culture of 

neurons, astrocytes and oligodendrocytes
9
.  But like any other stem cell, neural stem cells need 

the appropriate conditions to differentiate into the proper cell-type required, which is usually 

achieved by the withdrawal of mithogens or by the exposure to differentiative factors. EGF is 

normally used for astrocytic lineage commitment, although it plays a major role in maintaining 

the stemness properties of a population
39

, with functions in the most important stages of the 

regulation of cell growth, proliferation and differentiation
41

. It is a proliferative factor not only for 

neural stem cells, but for mammalian cells in general, acting through binding to the EGF-

receptor. It is involved in several signaling pathways such as the Mithogen activated protein 

kinases/Extracellular signal regulated kinases (MAPK/ERK) which ultimately promotes cell 

survival
42

. FGF-2 is one of the major players in neural development. It is implicated in the 

induction and patterning of mesoderm and neural tissues in vertebrate embryos
41

. It is also 

responsible for the proliferation and survival of early forebrain neural precursors, also by playing 

a role in the MAPK signaling pathway
40,41,43

. 

 

A culture of NSC can be maintained in vitro through the supplementation of culture medium with 

both EGF and FGF-2, or EGF alone. The withdrawal of EGF from the medium, leads to 

neuronal differentiation and apoptotic events, mediated by FGF-2
37

. 

 

One can distinguish two major in vitro culture methods for NSC: neurosphere formation or 

adherent culture
44

. Neurospheres can be understood as spherical clusters of undifferentiated 

neural stem cells
44,45

 (figure 1.6). Weiss and Reynolds were the first to report culturing 

conditions to expand neural stem cells isolated from the adult mouse brain, using the 

neurosphere approach
46

. The cells from adult mice striata were dissociated enzymatically and 

plated in EGF containing medium without any other substrates or adhesive factors. After 6-8 

days, clusters of cells could be observed. On a parallel assessment, it was observed that no 

proliferation events occurred upon EGF withdrawal, once more reinforcing its role in multipotent 

state maintenance. The cells from the cluster were dissociated and replated on polyornithine 

coated dishes, in order to assess the ability of these cells to generate new neurospheres again 

in the presence of EGF. Secondary neuroshperes were indeed observed, and the majority of 

cells within it expressed nestin. The withdrawal of EGF once more inhibited the proper 

expansion of cells
46

. Meanwhile other works reported the generation of neurospheres on low-

attachment tissue culture plastic dishes
46

, with medium containing FGF2 besides EGF, and by 

6-8 days of culture, clusters of cells with 100-150μM are expected to form, although karyotypic 

instability is known to occur from the tenth passage and forth
5
. This approach has some 

advantages, as its tridimensional structure allows for relevant cell-cell and cell-matrix 

interactions, mimicking the in vivo niche where these cells are found, making it physiologically 
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interesting
44

. On the other hand, layers of cells are formed in a stratified manner, with 

differentiated cells at the core of the cluster under suboptimal conditions, leaving the precursors 

cells more exposed to the environment
5
, being limiting in terms of diffusion of essential nutrients 

and oxygen
47

. Alterations in differentiative and proliferative patterns have also been identified, 

as well as chromosomal instability
44

. The three-dimensional structure of the clusters also makes 

it hard to identify the different cells, as the highly heterogeneous population greatly hampers the 

study of multipotentiality of single-cells. Another major drawback resides in the fact that 

neurospheres differentiate preferentially into astrocytes rather than neurons, in vitro, making it 

less interesting from the therapeutical standpoint
44

.  

 

 

 

Figure 1.6 - Neural stem cell culture methods: neurosphere formation and adherent monolayer. Taken 

from
5
. 

 

Another method is based on the growth of cells on an adherent or monolayer culture, using 

ECM components
44

 and growth factors such as EGF and FGF-2
5
. The culture flasks are usually 

coated with fibronectin, a component of various types of ECM suitable for cell adhesion and 

proliferation
41

,  or laminin, another substrate commonly used in the coating of culture dishes
41,48

. 

The latter interacts with the β1 integrins receptors present in NSC surface, which in vivo is 

responsible for the activation of a signaling pathway that maintains these cells in the CNS
41,44

. 
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Conti and colleagues induced differentiation of neural precursors from ES-derived cells in an 

adherent monolayer. The precursors were plated in a basal medium containing supplementation 

with N2 (including insulin, which is known to promote differentiation of ESC as well as favoring 

differentiated cells survival), eliminating any commited or differentiating cell, with either FGF-2 

alone, or combining FGF-2 and EGF. It was observed that FGF-2 alone did not allow for cell 

growth, but the combination of both mitogens led to proliferation of precursor cells expressing 

nestin, without expressing any glial or neuronal lineage markers
21

. 

Withdrawal from EGF resulted in death of a great number of cells as well as initiating 

differentiation events, even though observing that laminin would ensure cell viability upon EGF 

withdrawal. Removal of FGF-2 from the medium led to differentiation of 30-40% of the 

population to neuronal commited cells expressing type III β-tubulin, MAP2 and NeuN, while 

maintaining self-renewing NSC
21

. 

This system minimizes spontaneous differentiation, and its niche independence makes the cells 

more responsive to the specific factors in the media, which may lead to more homogeneous and 

defined cell populations
5
. 

 

Nonetheless, it seems that the specific roles of EGF and FGF-2 still remain somewhat unclear.  

A  lot of evidence supports that long-term propagation of NSC requires both factors
5
. On the 

other hand, from the early work of Reynolds and Weiss, evidence suggests that EGF alone is 

capable of providing efficient renewal of this cells
34

. The more recent work of Conti and 

colleagues also supports this approach, stating that while both factors are required for 

derivation of NSC from ESC, only EGF is necessary to support the established ES-derived NSC 

line, playing the major roles mainly through the suppression of apoptosis
49

.  

 

Embryonic Stem Cell-derived NSC 

 

As mentioned before, apart from the direct isolation from tissues, neural stem cells can also be 

obtained through the differentiation of other cell types. 

For instance, NSC can be derived from ESC. As mentioned in section 1.2, embryonic stem cells 

are pluripotent cells derived from pre-implantation embryos, and can be maintained in that 

pluripotent state in vitro. ESC are prone to spontaneous differentiation upon withdrawal from the 

supportive pluripotency agents. However, withdrawal of these molecules often results in a 

heterogeneous culture of mixed cells
41

. For neural lineage restriction, the adequate growth 

factors must be provided. The neural differentiation of hESC can be achieved with 2 distinct 

models: as an embryoid body (EB) model, in which cells are allowed to grow freely on 

suspension promoting random differentiation, and then selecting required cells for plating on 

neural proliferation medium; or as an adherent culture, where cells are subjected to neural 

differentiation from the start, along with coating or co-culturing with feeder layers, which are 

later on removed and proliferation medium is added for continuous growth
50,51

. 
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Some well-established culture conditions are available nowadays. For instance, Pollard et al 

have shown that ESC can be propagated in vitro by the addition of the leukemia-inhibition factor 

(LIF) and the bone morphogenetic protein (BMP) (known to block neural differentiation of ESC). 

Upon removal of these factors, some of these cells readily give rise to NEPs expressing Sox1. 

Finally the generation of Sox2-positive neural stem cells can be achieved by the addition of the 

mitogens EGF and FGF-2
49,52

. 

 

Conti and colleagues were able to derive neural precursors from several embryonic stem cell 

lines, including the CGR8 cell line
21

, which has been first derived in the laboratory of Professor 

Austin Smith, Wellcome Trust Centre for Stem Cell Research (Cambridge, United Kingdom), 

deriving the CGR8-NS cell line also used in this work. Neural precursors were derived from ESC 

by culturing these cells in serum-free medium. After a week, cells were re-plated in basal 

medium in the presence of FGF-2 alone or FGF-2 plus EGF. This allowed for the selection of 

differentiating cells only. Clusters of cells were formed, which were then dissociated and re-

plated on fresh medium. Bipolar cells were generated, able to proliferate in EGF and FGF-2-

containing medium. These cells expressed immature neural marker nestin, among others, while 

lacking expression of astrocytic and neuronal specific markers and maintaining diploid 

chromosome content at late passages. This led the authors to suggest the generated cells 

present self-renewing neural stem cell behavior
21

. 

 

ESC can provide bigger quantities of fully defined populations of neural progenitors and 

differentiated cells. Hence, models of neurodegenerative diseases can be more readily created 

by the insertion of defined mutations on differentiated cells
50

. 

 

Induced-Pluripotent Stem Cell-derived NSC 

 

Besides ESC, iPSCs can be used to obtain NSC in vitro. The derivation of iPSCs may 

circumvent some of the issues related to the rejection of cells upon allogeneic transplants
9
. 

Being a relatively new field little is known about the specific mechanisms of action, although 

some studies have aroused interest in the scientific community. Some well-characterized 

protocols are available to guide the differentiation of iPS cells to neural progenitors, neurons, 

and other CNS cells
41

. 

 

Once the generation of iPSC is achieved, the neural differentiation of ESC can usually be 

applied to these cells as well. Tipically, the cells are initially treated with BMP inhibitors
53

 or they 

can be co-cultured with stromal cell lines. From this point, three possible methods are 

employed.  One of them consists in neural induction by Noggin treatment. This molecule is the 

antagonist of BMP, and is known to increase neurogenesis by blocking gliogenesis through a 

negative feedback mechanism
26

, being also responsible for the upregulation of expression of 

neural markers such as Pax6, Sox2 and Nestin
41

. Another method is based on co-culturing with 
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PA6 stromal cells. These are loose connective tissue cells found in several organs such as the 

bone marrow. They provide matrix-support for other cells
41

. The surface of these cells 

undergoes activities known to promote neural differentiation
54

. Another alternative carries out 

culturing of cells on a defined media with a laminin substrate
47,55,56

. All three methods are 

capable of generating early neural progenitors expressing neural stem cell markers, such as 

Pax6, Sox1 and/or Sox2. These progenitors can be maintained as neurospheres and then 

further differentiated to mature neurons or glia
41

. 

 

One of the well-characterized procedures for generation of iPSC-derived NSC has been 

described by Onorati and colleagues
57

. iPSC were first generated from mice fibroblasts as 

described elsewhere
13

. These cells were later on cultured on neural induction media 

supplemented with B27. After 12 days, mitogens EGF and FGF-2 were added. Aggregates 

were generated in the following days, from which were later on derived monolayers of the iPSC-

derived neural stem cells, expressing the appropriate markers for NSC, presenting stability for 

more than 60 passages. Furthermore, successful differentiation was achieved, demonstrating 

the ability of these iPSC-derived NSC to give rise to neurons, astrocytes and 

oligodendrocytes
57

. 

 

The design of robust and well-characterized protocols for neural differentiation from iPS cells is 

of the utmost importance to a successful cell therapy approach. With this, somatic cells from the 

patient can be retrieved, and through the adequate reprogramming to a pluripotent state, the 

desired cell lineage can be generated in order to provide the CNS cells lost during the disease. 

 

1.2.4 - Differentiation of Neural Stem Cells 

 

The basis for neural stem cell differentiation seems to be the withdrawal of the proliferative 

factors EGF and FGF-2. This renders a rather mixed culture of several cell types as stated 

before. This is possible by the intrinsic capacity of NSC, and all stem cells for that matter, to 

start differentiating in vitro when the proliferative agents are removed from the medium. That 

approach can be advantageous for different cell-cell interactions study and for providing a more 

similar model of the real and diversified in vivo environment. Nonetheless, for fundamental stem 

cell biology, a rather pure population of the desired cell type is preferred. 

 

For instance, Donato et al have described a differentiation protocol addressing the human 

neural stem cells used in this work (ReN cell VM)
58

. The differentiation is achieved by exposing 

a confluent population to medium without growth factors. Within as little as four days, rounded 

cell bodies possessing long neurites were achieved, reinforcing the belief that withdrawal of 

mitogens is the simplest method for generation of a differentiated neural stem cells culture
58

. 
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Another optimized protocol for differentiation of ES-derived NSC into a homogenous neuronal 

population has been designed by Spiliotopoulos and colleagues
59

, having used among others, 

the ES-derived NS cell line CGR8-NS, also used throughout this work. The approach is based 

on the culture of NSC in media containing FGF-2. The withdrawal of this factor causes 

widespread cell death, but promotes the survival of the differentiating cells. Later on, the cells 

are cultured in equal composition media with the addition of BDNF.  From that point, a gradual 

increase in BDNF and decrease in FGF-2 concentration renders a homogeneous mature 

neuronal population
59

. Other reports state that a neuronal fate can be achieved firstly by 

removal of the proliferative factors. Then, the addition of the platelet-derived growth factor 

(PDGF) generates neuronal-lineage restricted cells, by increasing the expression of neuron-

specific markers such as MAP2 and β3-tubulin
39

 and by activating the MEK-RSK-C/EBP 

pathway, that is believed to be essential for neurogenesis
55

. Finally, it has been suggested that 

FGF2 and the neurotrophin-3 (NT3) lead to cell cycle exit and neuronal differentiation. 

Concerning neurons in particular, and the high degree of variability of neuronal types within the 

CNS, one must consider that different types of neurons require different factors for proper 

differentiation. For example, cortical pyramidal neurons usually require sonic hedgehog (Shh) 

signaling
53

, a crucial molecule in the development and patterning of the nervous system
60

 

whereas interneurons (responsible for coordinating motor response
61

) seem to require 

retinoids
61

. The more suitable protocol will ultimately differ with the outcome pretended and 

overall work objectives. 

 

Astrocytes can be obtained by the exposure of NSC to the cilliary neurotrophic factor (CNTF) in 

the presence of EGF, which will act via the JAK– STAT (Janus-activated kinase–signal 

transducer and activator of transcription) gliogenic pathway
55,62

. 

 

Although oligodendrocyte differentiation protocols are not as well established as neuronal and 

astrocytic lineages, a relatively recent work has provided new insights about this matter. A 

population containing 20% of mature myelinating oligodendrocytes has been achieved firstly by 

culturing cells in media containing growth factors FGF-2 and PDGF, and forskolin, after which 

cells with small condensed bodies and short processes could be observed. Subsequent factor 

withdrawal and addition of 3,3,5-tri-iodothyronine (T3) and ascorbic acid  leads to a mixed 

population of oligodendrocytes (20%), astrocytes (40%) and neurons (10%). Functional 

validation of oligodendrocytes was performed, being these able to re-myelinate severely 

impaired mice models
63

. 

 

During differentiation, NSC reorganize their transcriptome, leading to the silencing of 

multipotency genes, while up-regulating genes involved in lineage-commitment
26

. However, this 

is not perfectly understood, and so, there seems not to be a singular approach in the 

differentiation of the desired type of cell. This may due to the high degree of uncertainty that still 
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exists regarding the specific roles of growth factors and differentiating agents, and the outcome 

resulting from their interaction.  

 

 

 

1.2.5 - Applications of Neural Stem Cells 

 

Neural stem cells find application in a wide variety of scientific areas ranging from the 

fundamentals of stem cell developmental biology, through its applications in the pharmaceutical 

industry as drug screening platforms, to the clinical applications where gene and cell therapy 

are used in modern regenerative medicine. Some relevant clinical applications in the field of 

neurological disorders therapy are described further in this section. 

 

Besides the obvious tragic impact neurological disorders have on patients and their families, 

taking away nearly 7 million people every year, an outstanding economic impact arises from 

these diseases. In Europe only, almost 140 billion euros were spent on this matter, states a 

2007 World Health Organization (WHO) report
64

. From this striking data, it is easy to 

acknowledge the imperative need to pursue more effective and accessible means to treat these 

types of illnesses, sparing millions from suffering and creating a healthier, well-informed 

community that will also save up great amounts of money in the long run. 

 

Although the brain has capacity to regenerate damaged tissue, this phenomenon is quite 

limited
33

. For that reason, bioprocessing is required in order to provide additional sources of 

cells and tissue capable of restoring the damage caused by innumerous diseases
65

. A 

successful stem cell-based therapy for neurological disorders must aim at the replacement of 

the lost cells in the disease process, and in the integration of these cells into the cortical 

circuitries
66

. A great deal of neurological disorders such as the ones described below has 

already been addressed by stem-cell therapy, with promising outcomes. 

 

Parkinson´s disease (PD) is responsible for the loss of dopaminergic neurons
66,67

. One of the 

therapeutical approaches involves the delivery and upregulation of neurotrophic factors, the 

generation of endogenous dopamine as well as implantation of supportive cells and 

dopaminergic neurons. An encouraging study provides proof of principle that nigrostriatal 

dopamine neurons can replace cells lost to this disease, and provide long-term recovery of 

motor function
68

. Amyotrophic Lateral Sclerosis (ALS) is a highly restrictive disease that results 

in the progressive disfunction and degeneration of motor neurons in cerebral cortex, brain stem 

and spinal cord. Stem cell therapy seems to have step into this disease with several good news. 

Transplanted NSC have reduced astrogliosis and inflammation events, ameliorating the overall 

symptoms of ALS
69

. This is believed to be due, in part, to the capacity of these cells to produce 
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and release trophic factors
69

.  Another finding suggests that fetal motor neurons grafted to the 

adult rat spinal cord migrate to the correct zone and generate functional connection with skeletal 

muscle 
70,71

. Some of the consequences of Alzheimer´s disease (AD) include decreased 

synaptic integrity  and widespread neuronal loss ultimately leading to cognitive and memory 

impairment
68

. A study from Esmaielzade and colleagues demonstrated that epidermal neural-

crest neural stem cells were capable of migrating to the host tissue and survive, generating both 

neuron and astrocyte-like cells in an in vivo rat model of AD
72

. Huntington´s disease (HT) is 

characterized by the loss of a specific class of neurons - projection neurons, which results in 

progressive dementia in the affected persons
73

. Nerve growth factor (NGF)-producing neural 

stem cells have been shown to protect striatal neurons against a induced excitotoxic damage, 

demonstrating that the supply of neurotrophic factors by genetically modified NSC may be a 

viable option in the treatment of these illnesses
74

. 

 

Also in brain tumors, NSC seem to play a promising role. It has been demonstrated that neural 

stem cells implanted into the brain migrate towards the tumoral region. These cells can then be 

used as delivery agents, whereas the localized secretion of numerous molecules such as anti-

tumoral drugs may provide a successful alternative to highly invasive treatments
75

. 
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1.3 - Neurotrophic factors 

 

The growth and survival of developing neurons in the CNS as well as the maintenance of 

mature neurons is dependent on the presence of the so-called neurotrophic factors, herein 

called neurotrophins (NTs). These molecules constitute a wide family of proteins with different 

signaling pathways with the ultimate goal of sustaining neurite outgrowth, neuronal cell 

differentiation and survival, and overall network construction
76

. There are 109 ongoing clinical 

trials with neurotrophic factors (as listed by clinicaltrials.gov on July 23
rd

 2013). 

 

The neurotrophin family is mainly composed by the nerve growth factor (NGF) which is the best 

characterized member of all, the brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-

3) and neurotrophin-4/5 (NT-4/5). Two more members have been identified, NT-6 and NT-7 

although only detected in fish and are believed not to have human homologues
77

. Moreover, a 

few polypeptides show neurotrophic properties, although not being considered members of the 

family for structural reasons
77

. These include ciliary neurotrophic factor (CNTF), glial cell line-

derived neurotrophic factor (GDNF), insulin-like growth factor (ILF) and basic fibroblast growth 

factor (bFGF2)
78,79

. 

 

NTs play their roles through the interaction with two main types of receptors. One is the tyrosine 

kinase receptor family (Trks), activated by the mature neurotrophin forms, responsible for 

mediating receptor dimerization and transphosphorylation of activation loop kinases
62

. The most 

relevant members of this family are TrkA/B/C. TrkA is responsible for binding NGF, while  BDNF 

and NT-4/5 bind tightly to TrkB and NT-3 interacts with TrkC
62,80

. Besides this, a lower-affinity 

receptor called p75 binds all neurotrophins and is implicated in neurotransmitter release and cell 

death
81,82

 as well as being responsible for deciding which neurons survive during development, 

through complex signaling
77

. 

Binding of NTs triggers the activation of the Trk receptors firstly by ligand-induced receptor 

dimerization, and then by autophosphorilation of tyrosine residues inside the cells. The 

activation of certain binding proteins leads to activation of the MAPK pathway and 

phosphorilation of extracellular signal-regulated kinases (ERKs) which results in the promotion 

of survival, proliferation and differentiation of NSC
62

. 

 

NTs present clear clinical advantages. In certain neuronal disorders there seems to be a 

diminished expression of some viability and neuronal functionality markers. Neurotrophic factors 

can be of extreme importance in these cases, holding great promise in the therapy of 

neurodegenerative disorders, owing to their neuroprotective properties
79

. Nevertheless, despite 

all the invaluable effects that these molecules present, the use of neurotrophins for the 

treatment of CNS disorders still presents major issues due to the restricted pharmacokinetics 
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and bioavailability properties of the proteins and also to their inability to cross the blood-brain-

barrier
83

. Cell-based therapy may provide a better route to deliver lower doses of neurotrophic 

factors, by maintaining a tight regulation of gene expression. Several successful cases are 

described in the next section, where genetically modified cells are able to migrate to injured 

sites and replace, regenerate or up-regulate certain genes in damaged cells. 

  

1.3.1 - The role of the Brain derived neurotrophic factor 

 

BDNF is a member of the NT family, and plays major roles in neuronal development through the 

interaction with TrkB as mentioned above. A total of 65 ongoing clinical trials regarding BDNF 

are listed (as in clinicaltrials.gov on July 23
rd

 2013), implicated in a wide variety of neurological 

disorders. 

 

Neuronal plasticity refers to the capacity of the brain to adapt when faced with environmental 

stress, through the formation of new synapses or the generation of new neurons
76

. BDNF is 

highly expressed in regions of the brain responsible for neuronal plasticity, and is a crucial 

mediator in this process, showing a regulated expression when altered neuronal function 

occurs
76

. Ma and colleagues showed that the induction of BDNF and activation of its 

intracellular receptors can produce neural regeneration, reconnection, and dendritic sprouting, 

improving synaptic efficacy in conditions of traumatic brain injury
84

. In fact, a study on the 

localization of TrkB receptor suggests that the synapses are the main site of action of BDNF in 

the CNS 
85

. However, BDNF alone has been shown to fail to act as a survival factor for neuronal 

precursors, and was not capable to prevent their death overtime
86

, suggesting that more factors 

may be needed in order to maintain a proper neural circuitry.  This is supported by the fact that 

BDNF along with NT-4/5 has been shown to influence the survival and differentiation of 

neurons, through a retrograde manner leading to the upregulation of Acetylcholine and 

neuregulin
82

. 

 

BDNF is regulated in multiple ways. Glial cells present truncated forms of TrkB receptors, 

modulating its availability through the regulated storage and release of the active protein
80

. 

Hormones also influence BDNF expression, where for example glutamate receptor agonists 

induce, whereas GABA receptor agonists inhibit its expression
80

. It exerts its neuroprotective 

properties through blocking of apoptosis. Lee and colleagues demonstrated that BDNF-

overexpressing cells down-regulate the expression of proapoptotic proteins such as p53, p21 

and caspase 3, as well as up-regulating the anti-apoptotic protein Bcl-2 and cell surviving-

promoting protein Akt1
87

. It mediates differentiation and survival of NSC in neuroshperes 

through the activation of its receptors in the cells, and activating several pathways such as 

ERK-1/2 neurogenic pathway; AKT, which supports neuronal survival and prevents apoptosis, 

and STAT-3, associated with proliferation of NSC as well as directing its differentiation into 
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glia
62

. BDNF-overexpressing NSC have been shown to stimulate synaptic protein expression 

and promote functional recovery following transplantation in rat model of traumatic brain injury
84

. 

In another study, it was shown they significantly improve neurological motor function compared 

to native NSC upon transplantation after traumatic brain injury, although 4 weeks after the 

transplantation that difference was no longer observed
84

. 

 

It has also been demonstrated that BDNF is crucial in the recovery of AD and PD. Under stress 

conditions, BDNF mRNA seems to have a diminished expression
80

. For instance, NSC have 

been shown to improve certain complex neuronal circuitry through the action of BDNF, that 

showed reduced activity due to AD
88

. Increased levels of hippocampal BDNF were reported as 

the main reason for the regain of cognitive function, providing solid negative controls 

demonstrating that BDNF knockdown in transplanted NSC failed to improve the condition and 

even reduced synaptic density after transplantation
88

. In PD as well, decreased levels of 

expression of this neurotrophin are observed
89

. Nevertheless, this is not true for all conditions, 

since after seizures, BDNF mRNA expression is greatly hampered, with the same profile being 

detected in cases of patients with temporal lobe epilepsy
90

. 

 

An interesting finding hypothesizes its implication in neurotransmitter communication, through 

autocrine loops and paracrine interactions between neighbor cells and communication from 

dendrites to axon terminals
85

. Through these interactions, it may promote survival and recovery 

upon injury, as well as regulate the function of synapses and dendritic arbor modeling
80

, which 

may be the basis of all of BDNF´s highly protective and regenerative properties. 

 

Summing up, BDNF exerts highly beneficial and constructive effects owing to its essential 

regulatory role in the survival and differentiation of various neural cell types during brain 

development and after injury, being arguably the most promising of all neurotrophic agents in 

the management of brain traumatic injury
84

. This encourages its use as a therapeutic agent in 

CNS disorders, either through the functional protein form, although direct infusion of the protein 

has some major limitations
84

, or by the ex-vivo modification of cells, which has shown to be a 

promising approach. 

 

http://www.ncbi.nlm.nih.gov/pubmed/21901549
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1.4 - Gene Therapy 

 

Gene therapy functions a lot like conventional drug therapy, except in this case the “drug” 

administered is a therapeutic gene to be taken up by the cells, which will then express it. The 

gene introduced will code for a protein whose production was either completely lost, or 

dramatically decreased as a consequence of a certain metabolic disorder. Or in other cases, the 

gene produces a totally new protein in the target cells envisaging the bypassing of a certain 

metabolic pathway.  The therapeutic molecule, such as the gene of interest is usually packaged 

into a bigger molecule generally called a vector, which presents properties that facilitate the 

modification of the target tissue or organ. There are numerous kinds of vectors, ranging from 

relatively simple plasmid vectors to complex macromolecular aggregates of polymers and 

nucleic acids. Those will be described in greater detail further in the text. 

 

There are two main types of gene based therapy. One consists in the direct delivery of the 

therapeutic gene packaged within a vector, into the target tissue or organ through a variety of 

methods. Another type of genetic therapy consists in the ex-vivo modification of cells by the 

vector containing the therapeutic agent
6
. When appropriate expansion of the required modified 

cells is reached, the administration to the patient can finally be accomplished (figure 1.7). 

 

 

Figure 1.7 - Schematic representation of the two main types of gene based therapy: Direct delivery, and 

cell-based delivery.  Adapted from
6
. 

 

A successful gene therapy approach must fulfill some fundamental criteria, circumventing 

several imposing barriers. Specifically, in cell-based delivery, intracellular barriers comprise the 
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overall mechanism of vector uptake by cells and gene expression, which includes the adequate 

interaction between the vector and the surface of the target cell, successful diffusion through the 

cytoplasm and finally entering the nucleus. The internalization into the target cell is a critical 

step, especially in the delivery of plasmid DNA (pDNA) since its negative overall charge will 

suffer electrostatic repulsion from the cell membrane
91

. In electroporation-based methods this is 

avoided, through the momentaneous depolarization of the membrane
92,93

. Upon internalization, 

the vectors that entered the cell by endocytosis must escape lysosomal degradation. 

Lysossomes are enclosed vesicles with a high nuclease content and low pH, being the cell 

compartment responsible for the degradation of internalized molecules
91

. Both liposomes and 

polymers have been shown to escape lysosomal degradation, through the disruption of the 

lysosome membrane
91

. The diffusion of pDNA through the cytosol may be troublesome due to 

the presence of nucleases that degrade unprotected DNA
92,93

. Finally, the nuclear envelope is 

interrupted by big proteic structures called nuclear pore complexes (NPC) that regulate the 

traffic of molecules into the nucleus. These allow ions to flow freely into the nucleus but will 

retain proteins larger than 60kDa and nucleic acids bigger than 300bp
92

. A relevant approach is 

based on the transfection of highly proliferative cells, taking advantage of the nuclear 

membrane reorganization events during mitosis. However, this can be particularly difficult in 

relatively quiescent tissues such as the brain, reason why transfection should be performed in 

more active cells such as NSC. 

 

Vector genome persistence is another relevant aspect that should be considered
92

. A proper 

gene therapy method must be able to express the transgene for long periods of time, which in 

certain cases means the whole lifetime of the patient. This is especially important in the case of 

plasmids, since they usually exist as episomes and are, therefore, lost upon cell division
4
. 

Nonetheless this may not represent such a relevant problem in the case of relatively quiescent 

tissues such as the brain, as mentioned before, since the cell turnover is relatively slow, 

allowing periods of gene expression that may be sufficient for therapeutic activity.  

Although the vector or gene may be sufficiently persistent, it must show sustained 

transcriptional expression. The overall level of transgene expression in the target cells tightly 

depends on the strength of the promoter (being the loss of its activity one of the main causes for 

gene silencing)
94

 and the amount of pDNA used for transfection. In non-viral gene delivery 

strategies, strong promoter/enhancers are used, such as the Cytomegalovirus (CMV) 

immediate-early promoter and SV40 early promoter
4,94

. It is still relevant to state that despite a 

vector containing a strong promoter, its activity can be attenuated in vivo
94

. 

 

Finally, a successful gene therapy approach should not trigger an immune response in the 

host
91,95

, except when DNA vaccines are being used for immunization. Specific immune 

response activating elements such as unmethylated CpG motifs are undesired, and can also 

decrease transgene expression
6,75

. This topic will be discussed in greater detail later.  
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There is not a one-fits-all approach to gene delivery in the CNS or any other kind of human 

health issues for that matter, considering the vast complexity of diseases. Rather, one must be 

able to realize the advantages of the different approaches available and refine them into their 

most suitable application. 

 

1.4.1 - Viral methods  

 

A viral vector is a modified viral particle, which takes advantage of the highly infectious capacity 

of viruses as a means to deliver genetic material of interest into mammalian cells
96

. The 

sequences needed to produce the actual viral particle are removed from the vector, so it won´t 

generate undesirable effects in the host. Through genetic engineering, transgenes can be 

expressed by heterologous plasmids, which when encapsulated by these modified viral particles 

are able to transduce the desired genetic information in target cells
96

.  

 

A variety of recombinant viral particles including adenovirus, retrovirus and lentivirus are 

available for gene delivery. Their powerful capacity for transfecting highly proliferative cells 

makes them very useful in such cases. However, they are unable to efficiently transduce mature 

cells of the CNS
4
. The biggest issue related to viral methods concerns their safety. These 

vectors can be toxic to cells, generating an immune response from the host and they have a 

limited transgene capacity in terms of the size allocated
89

, although recently, some adenovirus 

vectors have shown to be able of transferring up to 30kb of genetic material, while mediating 

long-term gene expression, without presenting immunological issues
97

. 

 

Although viral methods remain the most efficient method to deliver genes into mammalian cells, 

with around 70% of the gene therapy-related clinical trials accounting for viral methods, the 

triggering of immunological responses, along their relative toxicity and overall genetic instability 

due to random integration
91

,still remain serious issues that need further investigation in order to 

implement safer strategies. Besides, the inability to produce meaningful numbers of viral units 

through large-scale production holds back its broader use in gene therapy
68

. 

1.4.2 - Non-viral methods 

 

Virtually all macromolecules and chemicals of non-viral origin that are capable of allocating 

genetic material and delivering it into target cells can be considered non-viral vectors. 

 

Non-viral vectors usually show lower transfection efficiencies than their viral counterparts, but 

are perceived as much safer, and are more feasible in ex vivo applications
6
 reason why much 
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attention has been given to the development of non-viral strategies. A more specific targeting of 

tissues or organs can be accomplished by the superficial functionalization of non-viral particles, 

in order to interact solely with certain antigens. They usually present easier production than viral 

vectors, which makes them suitable for larger scale approaches
92

. 

 

One of the oldest methods for transfection, first described in 1973
98

 is based on precipitation 

with calcium phosphate, generating DNA-calcium phosphate complexes that are able to enter 

the cells through endocytosis. More recently, DNA has been complexed with a wide variety of 

chemicals including polymers such as polylysine, polyethylenimin, polysaccharides among 

others, although these pose some issues in the diffusion into cells and surviving endossomal 

degradation
6
. Lipossomes are spherical double-layer membranes enclosing the genetic material 

to be delivered
99

. These take advantage of its physico-chemical similarities to the cell 

membranes, being able to diffuse through them
99

. The transfection efficiencies achieved with 

this technique are relatively high, with authors reporting around approximately 74% 

mesenchymal stem cells being effectively transfected
100

. Electroporation uses an electric 

impulse capable of momentaneously disrupting the electric gradient between the two sides of 

the membrane, allowing the DNA (negatively charged as the phospholipids in the membrane) to 

freely pass through the membrane into the cell
92

. Up to 70% of transfection efficiencies have 

been achieved with this technique
101

. Microporation is a recent technology consisting of a 

modified type of electroporation, which uses a micropippete tip as a reaction chamber. A 

golden-coated electrode with a surface area of 0,33 mm
2
 is responsible for the depolarization of 

cell membrane
102

. In our laboratory, as high as 60% transfection efficiency was achieved with 

mouse neural stem cells
103

 and 40% with bone marrow-derived mesenchymal stem cells
104

. 

Some other recent technology has suggested the polyethylene glycol-polyethyleneimine (PEG-

PEI) is capable of condensing small interfering RNA (siRNA) into spherical nanoparticles, 

capable of transfecting as high as 86% of neural stem cells
105

. 

 

Plasmids 

 

Plasmids are circular or linear DNA molecules produced in bacteria. Often, the genes carried by 

plasmids confer bacteria some kind of genetic advantage, through the expression of antibiotic 

resistance markers
106

. A gene or set of genes of interest may be cloned into plasmids, and 

propagated by bacteria, in order to obtain a meaningful number of clones. 

 

Plasmid DNA finds application in a very large spectrum of gene delivery tools, being the basis 

for vaccine development. They can also be delivered directly into the target tissue or cells by 

microinjection. Some successful cases report that the process of microinjecting plasmid DNA to 

cattle zygotes did not alter their morphology, with more than 70% of the injected cells 

expressing the reporter eGFP gene
107

. Direct injection into target tissues is an approach that 
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reports some successful number as well. On the other hand, plasmids can be packaged into the 

variety of vectors previously described. 

 

There are some barriers that need to be surpassed in order to implement strong and reliable 

methods of gene delivery through plasmid vectors. Some of the issues are related to their weak 

transfection capacity of non-dividing cells; the silencing of transgene expression due to bacterial 

sequences; immunogenicity derived from unmethylated CpG motifs and insertional mutagenesis 

with potential for malign transformation and the overall toxicity of transfection agents
95

. The size 

of the molecule has also been proven a determining factor for efficient transfection. pDNA is 

greatly restricted by its size (usually no less than 2000 kDa), limiting its diffusion capacity and 

absorption by the tissue
94,108

. 

 

Unmethylated CpG dinucleotides are predominant in bacterial DNA but not in vertebrates
109

.  

These motifs trigger innate or acquired immune responses
103

. They are very important in the 

activation of plasmacytoid dendritic cells and B cells that protect the organism against a variety 

of pathogens. In fact, long and stable-expression viruses become resistant through the 

decrease in their CpG content
109

. The immunogenic response mechanism is achieved through 

the Toll-like receptor 9 (TLR9) which triggers a deregulation in redox balances of the cells, 

leading to the activation of MAPKs (Mithogen activated protein kinases) and NFkB
66,109

. The 

activation of NFkB and many other transcription factors, leads to upregulation of many cellular 

proto-oncogenes and proinflammatory cytokines. The pharmaceutical industry takes advantage 

of these unmethylated CpG motifs, in order to produce vaccines
109

. However, in gene therapy 

the opposite action is required. The elimination or drastic reduction of these motifs content from 

therapeutic plasmids must be achieved, in order to eliminate any inflammatory response from 

the host, and also to reduce transgene silencing
103

. 

 

Taking into the account the amount of vectors available, and the solid confirmation of the 

therapeutic value of cloning genes of interest into plasmids, creativity is the limiting step in the 

establishment of useful approaches that are able to surpass the abovementioned barriers. 

 

1.4.3 - Gene delivery to the Central Nervous System 

The brain´s access is highly limited due to the protection conferred by the cranium. Also, the 

blood-brain barrier (BBB) is impermeable to most of the molecules and proteins present in the 

blood stream which strongly restricts the brain´s access through the main circulatory system 

routes
83,110

.  This is the main reason why most of the gene delivery techniques to the CNS are 

based on the direct infusion of vectors into the brain´s parenchyma (the functional tissue of the 

brain)
68

. 
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Viral vectors remain the most prominent method to deliver genes into the CNS
68

. Namely, 

adeno-associated virus (AAV)-mediated transgene expression has been showed to hold a solid 

potential when applied into the brain parenchyma of Parkinson´s disease patients, showing 

considerable recovery while no relevant adverse effects were observed
111

. Still, besides some 

successful cases, viral vectors present major safety issues, reason why non-viral methods 

should be optimized for this purpose. An effective way to avoid BBB block is through PEGylated 

immunoliposomes (PILs), formulated with monoclonal antibodies that allow the crossing of the 

BBB, through the interaction with specific cell receptors
68

. Electroporation has also been used 

directly in the brain of a variety of adult animals, to deliver therapeutic plasmids, being stated as 

a safe and effective method to modify cells in the CNS, being arguably a robust method for 

treatment of Alzheimer´s and Parkinson´s diseases, as well as depression
92

. 

 

Another meaningful, relevant approach is the ex-vivo modification of cells such as NSC, HSC or 

MSC which are known to migrate to injured regions
68

. This approach is particularly interesting, 

and NSC have been shown to be great target-specific carriers of therapeutic agents to the CNS. 

NSC can be used as delivery agents, whereas the localized secretion of numerous molecules 

such as anti-tumoral drugs may provide a successful alternative to highly invasive treatments, 

with many of the approaches showing extended survival of animal subjects, and at times being 

responsible for total tumour regression
75

. For instance, ex-vivo genetically modified NSC have 

been shown to be able of delivering a cytosine deaminase to an intracranial tumor (clinical trial 

ID: NCT01172964). In the referring study, there was evidence of extensive migration of NSC, 

suggesting that even a systemic application of these cells preferentially repopulates an 

intracranial glioma
112

. Overexpressing neurotrophic factors in NSC has also been showing 

promising results from a clinical standpoint. Vascular endothelial growth factor (VEGF)-

overexpressing NSC were transplanted into a rat spinal cord injury model. The genetically 

modified cells were able to increase gliogenesis and angionesis, ameliorating the severe 

symptoms of this condition
113

. GDNF has been overepxressed in NSC, as well. These have 

resulted in a decrease of infarct, yielding overall better behavioural results while protecting 

ischemic brain in rats from apoptosis
114

.  

 

NSC hold a tremendous potential of applications, even in the adult brain. The combination of 

NSC-based therapy with other techniques may provide more specific, effective and safer 

strategies to deliver genes in the CNS. There is a wide variety of cell and gene therapy 

approaches to the CNS, considering the high amount of neurogenic and neuroprotective agents 

available and the potential of NSC. Nonetheless, one of the main hurdles in neurological tissue 

regeneration is discovering the right combination and amount of each growth and/or 

neurotrophic factor to be delivered to cells.  However, the ex-vivo modification of NSC can be of 

great value. It allows the control of gene expression, in a sense that both the timing and amount 

of transgene expression may be susceptible of control
115

. 
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2. Materials and Methods 

 

 

2.1 Bacterial strains and plasmid DNA 

 

Escherichia coli XL-Gold (Stratagene, Santa Clara, CA, USA) was the chosen bacterial strain to 

produce the desired plasmid. Bacterial cells were cultivated at 37ºC in luria-bertani (LB) medium 

(20 g/L, Sigma-Aldrich®, St. Louis, MO, USA) with orbital agitation (250 rpm). 

 

The parental plasmid MN530A-1, containing the BDNF gene (741 bp) was purchased from 

System Biosciences (SBI). The plasmid in which BDNF’s and GFP’s cloning was performed was 

the pcDNA3.1 plasmid (Invitrogen
TM

, Carlsbad, CA, USA). Throughout this work the plasmid 

containing the BDNF gene (741 bp) will be called pcDNA3.1-BDNF, and the one harboring GFP 

sequence (720 bp) will be referred to as pcDNA3.1-GFP.   

 

 

2.2 BDNF amplification by PCR 

 

BDNF gene was amplified from the parental plasmid by the polymerase chain reaction (PCR), 

using the forward primer with the sequence  5´- GGG AAG CTT ATG ACC ATC CTT TTC 3´ , 

containing a BamHI restriction site (in bold) and the reverse primer  5´- AAA GGA TCC TCA 

TCT TCC CCT TTT 3´ harboring a HindIII restriction sequence (in bold). 

The primers presented melting temperatures of 56ºC and 54ºC , and C+G contents of 46% and 

42%, respectively. A series of PCR reactions were performed, containing 10 ng of template 

DNA, 1.5 μL of each primer at a 10 μM concentration, and 25 μL of KOD Hot Start Mix 

(Novagen®, Milipore®, Darmstadt, Germany) and adding miliQ water to a 50μL total reaction 

volume. The initial PCR step consisted in heating the mixture at 95ºC for 2 min. Then, the 

second step consisted in heating the mixture at 95ºC for 20 sec. The third step occurred for 10 

sec at 51ºC for primers’ annealing. Fourth step was performed at 70ºC for 15 sec for fragment 

elongation. The steps 2 to 4 were repeated as a cycle 40 times. For the final elongation step, 

the mixture stayed at 70ºC for 10 min. When the PCR reaction ended, all the volume was 

loaded into a 1% agarose gel for BDNF bands confirmation. 
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2.3 BDNF cloning into pcDNA3.1 

 

After the right BDNF bands were confirmed, these were extracted from the gel, and the DNA 

was purified by NZYGelpure (NZYtech®, Lisbon, Portugal). This fragment was digested with 

both BamHI and HindIII as described earlier in section 2.2. The digested fragment was then 

again loaded into a 1% agarose gel and once more extracted into pure digested fragments. 

 

Both digested plasmid DNA and BDNF fragment samples were evaporated using Speed 

Vacuum (ThermoScientific
TM

, Waltham, MA, USA) for 75 min at 60ºC, at medium speed. For 

concentration assessment, 1μL of each concentrated sample was loaded into a 1% agarose gel, 

and band intensity was visually compared to the Ladder III (200-10000 bp) (NZYtech®).  

 

For plasmid cloning, a 1:1 and 3:1 ratio of insert/vector was used. 1μL of T4 DNA Ligase 

(Promega, Madison, WI, USA) was added to the mixtures, along with 1uL of T4 buffer 

(Promega), and either 1:1 ug of insert/vector or 3:1 μg of insert/vector. MiliQ water was added to 

a total 10 μL ligation reaction volume. The reaction occurred at room temperature overnight. 

The next day, competent cells were transformed as described earlier. A few colonies were 

picked and inoculated overnight in 5 mL LB containing 50 μg/mL ampicilin at 37ºC, 250 rpm. 

Purification of plasmid DNA and partial or double digestion was performed. The pcDNA3.1-GFP 

plasmid had been previously constructed. A confirmation on its correct construction was 

performed by digesting it with HindIII and ApaI restriction enzymes. The latter has a restriction 

recognition site in the sequence 5´ … GGGCCC … 3´. 

 

When correct plasmid construct were confirmed (see figure 2.3.1), transformed cell banks were 

created. For this, a single colony was grown as described previously, and the next day, a new 

culture was initiated at a OD600nm of 0.1. When OD600nm reached a value of approximately 0.8, 

800 µL of the cell suspension were loaded into cryovials containing 20% glycerol, and the 

aliquots were stored at -80ºC.
 

 

After the larger scale production, both pcDNA3.1-BDNF and pcDNA3.1-GFP were purified using 

Midiprep endotoxin free purification kit (Macherey-Nagel, Duren, Germany) following the high 

copy manufacturer’s protocol. Concentration of purified plasmids was assessed by NanoDrop 

(ThermoScientific™) bioanalyser, by measuring absorbance at 260nm. 
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A  B  

 

 

Figure 2.3.1  -  pcDNA3.1-BDNF (A) and pcDNA3.1-GFP (B) plasmid maps, containing the respective 

BDNF and GFP genes. The most important elements of the plasmid are displayed: the CMV promoter; T7 

promoter binding site; multiple cloning sites (MCS); BGH polyadenilation signals (BGH pA); SV40 promoter 

and origin; EM7 promoter; Zeocyn resistance marker; SV40 polyadenilation signal (SV40 pA) and ampicilin 

resistance marker. 

 

 

 

2.4 Transformation of bacterial strains 

 

Competent cells were transformed with the desired plasmid by the heat-shock protocol. In brief, 

5 µL of pcDNA3.1 was added to 100 µL of E.coli competent cells and incubated on ice for 30 

min. After that, the mixture was placed on a water bath at 42ºC for 45 sec to 1 min and then 

again on ice for 2 min. 900 µL of LB medium was added to the mixture and cells were incubated 

at 37ºC, 250 rpm for 1 hour. After that, cells were centrifuged at 4000 rpm for 5 min. 900 µL of 

the supernatant was discarded, and the pellet was ressuspended in the remaining 100 µL. The 

cellular suspension was afterwards spread on solid LB media with zeocyn (50 µg/mL) and 

incubated at 37ºC at 250 rpm overnight. Positive colonies were inoculated in 5 mL of LB media 

with zeocyn (50 µg/mL) and incubated at 37ºC with shaking at 250 rpm overnight. For large 

scale production of plasmids, selected colonies were grown as described, and when the desired 

OD600nm was reached, adequate volume of the cellular suspension was inoculated on 400 mL 

total volume of LB medium, and incubated 37ºC, 250 rpm, overnight.  Plasmids were purified by 

the DNA purification kit NZYMiniprep (NZYtech®). When the correct plasmid production was 

assessed by agarose gel electrophoresis, they were digested with BamHI and HindIII 

(Promega) restriction enzymes. For this, 10 μL of plasmid DNA is digested in 2 μL of Buffer E 
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(Promega) with 0.5 μL of each enzyme, and adding sterile water to the mix to a 20 μL total 

working volume and incubated at 37ºC for 1 hour. The whole sample was then loaded into an 

agarose gel, and then the correct bands were dissected from the gel and purified by 

NZYGelpure kit (NZYtech®). 

 

 

2.5 Neural Stem Cell culture 

 

2.5.1 Cell lines 

 

Two cell lines were used throughout this work: the CGR8-NS cell line, derived from the mouse 

embryonic stem cell line CGR8 in the laboratory of Professor Austin Smith, Welcome Trust 

Centre for Stem Cell Research, Cambridge, United Kingdom; and the ReNcell VM (Millipore®) 

(herein abbreviated to “ReN” cells), an immortalized human neural progenitor cell line with the 

ability to readily differentiate into neurons and glial cells. “VM” stands for ventral 

mesencephalon, region of the brain from which the cells were isolated
116

. 

 

2.5.2 Expansion of Neural Stem Cells 

 

The cells were thawed either from liquid nitrogen or -80ºC stock, containing cells ressuspended 

in 900 µL of Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F-12) – 

GlutaMAXTM medium (Life Technologies™, Carlsbad, USA) and 100 μL of dimethyl sulfoxide 

(DMSO (Sigma®, St. Louis, USA)). The frozen vials were thawed by submerging the mixture in 

a 37ºC water bath, and by resuspending in DMEM/F12. The mixture was centrifuged for 3 min 

at 1000 rpm, and the supernatant was discarded in order to remove DMSO from the mixture. 

The appropriate medium was then added to the cells. CGR8-NS cells were ressuspended in 

DMEM/F12 supplemented with 10 ng/mL EGF and FGF2-2 (Peprotech, London, UK), 1% N-2 

and 1 μl/mL  B27® supplement (both from Life Technologies™), 20 g/mL insulin (Sigma®) and 

1% penicillin/streptomycin (Life Technologies
TM

). The described medium composition will be 

herein termed expansion medium for this cell line. 

ReN cells were ressuspended in DMEM/F12 supplemented with 20 ng/mL EGF, 10 ng/mL 

FGF2-2 (Peprotech), 1% N-2 and 20 μl/mL  B27® supplement, 20 g/mL insulin and 1% 

penicillin/streptomycin. This will be shortened to expansion medium for this cell line throughout 

the text. 
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Trypan blue dye exclusion test (Gibco®, Invitrogen
TM

) was used to determine cell viability by 

counting cells in a hemocytometer under an optical microscope. Viability was described by 

equation (1): 

 

              
  

      
                                                                     

 

where VC is the viable cell number and NVC the non-viable cell number. 

 

An appropriate number of cells were then platted into either T-flasks, or tissue culture plates 

(Falcon®, BD Biosciences, San Jose, CA) under adherent conditions and incubated at 37ºC 

and 5% CO2-humidified atmosphere.  

CGR8-NS cells were expanded on untreated surfaces, although after transfection assays, 

fibronectin-coated surfaces were used. This was achieved by diluting the appropriate amount of 

fibronectin (3 μg of fibronectin/cm
2 

surface area) in sterile phosphate buffered saline (PBS, 

Gibco®, Invitrogen
TM

) and loading a sufficient amount of the solution to cover the culture plate 

surface. The plate was subsequently incubated at room temperature for 1 hour and the mixture 

was aspirated, just before cell inoculation. 

 

ReN cells were expanded on polyornithine and laminin-coated surfaces. Coating with 

polyornithine/laminin was performed by pre-coating the desired surface with polyornithine 

(diluted in PBS) and incubating the mixture at 37ºC for at least 30 min. Then this solution was 

aspirated and a mixture containing the appropriate amount of laminin (10 μg of laminin/cm
2 

surface area) was loaded to the surface and the mixture was incubated at 37ºC for at least 4h. 

 

When cells reached sub-confluency they were harvested using Stempro® Accutase® (Life 

Technologies
TM

) by incubation at 37ºC and 5% CO2-humidified atmosphere for 3-5 min. 

Afterwards, the cell suspension was diluted 1:1 with DMEM/F12 and centrifuged at 1000 rpm for 

3 min. The pellet was ressuspended in an appropriate volume of culture medium, and cell 

viability was assessed by trypan blue dye exclusion method, as described before in this section. 

 

2.5.3 Differentiation of Neural Stem Cells 

 

For differentiation purposes, only ReN cells were used throughout this work. For this, ReN cells 

were plated on polyortnithine/laminin-coated 24-well plates (Falcon®, BD Biosciences) at a 

density of 75,000 cells/cm
2
. A 1:1 mixture of DMEM/F12 medium (Gibco®, Invitrogen

TM
) and 

Neurobasal® Medium (1X) without Phenol Red (Gibco®, Invitrogen
TM

) was used, along with 20 

μl/mL B27® supplement (Gibco®, Invitrogen
TM

), being incubated at 37ºC and 5% CO2-

humidified atmosphere. This will be described further in the text as the differentiation medium. 
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For positive control on BDNF effect on cell culture, 50 ng/mL of BDNF (Gibco®, Invitrogen
TM

) 

was added to the mixture on selected cells. Culture conditions were maintained as described 

until differentiation was achieved. Differentiation was carried out for 12 days, adding fresh 

medium every 3 days. 

 

 

2.6 Neural Stem Cell transfection 

 

Neural stem cells were transfected using one of three different methods: an electro-physical 

method called microporation, and two chemical techniques - cationic polymer and lipid-based 

transfection reagents. 

 

2.6.1 Microporation 

 

CGR8-NS and ReN cells (150,000 – 200,000 CGR8-NS cells for each transfection) were 

resuspended in 10 L of a resuspension buffer (RB), provided by the equipment manufacturer 

(Life Technologies™), and incubated with the adequate amount of plasmid DNA.  The 

transfection reaction was carried out by the Microporator MP100 (Digital Bio/(Neon), Life 

Technologies
TM

). After microporation, the mixture was plated into 24-well plates containing 

adequate pre-warmed culture medium without antibiotics, and incubated at 37ºC and 5% CO2-

humidified atmosphere for 24 hours. After this, fresh medium containing antibiotics was added. 

Cells could be visualized under the fluorescence optical microscope Leica DMI 3000B (Leica 

Microsystems GMbH, Heerbrugg, Switzerland), where GFP transfected cells could be easily 

identified using the appropriate fluorescence filter, allowing for recognition of efficiently 

transfected cells. Cells were then harvested at specific times for the different assays performed. 

Cell viability (equation 1), and cell recovery was assessed for microporated samples (equation 

2): 

 

Recovery (%) = 
  

   
                                                   (2) 

 

 

where VCc is the total viable cell number in the control (non-transfected cells). For quantitative 

assessment of transfection efficiency, Fluorescence Activated Cell Sorting (FACS) was 

performed, as will be described later. 
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2.6.2 Cationic polymer-based transfection 

 

CGR8 cells were transfected with TurboFect (TF) (ThermoScientific™) at 150,000 – 200,000 

cells per reaction. The process involved complexation of a polymer-based reagent complexed 

with pcDNA3.1-GFP, either through the standard protocol or through reverse transfection. The 

first is achieved by the addition of a 2:1 TF:DNA ratio to cells expanded for 24 hours in 

expansion medium, and incubated at 37ºC and 5% CO2-humidified atmosphere on fibronectin-

coated dishes for 5 hours, time after which, fresh media is added, and cells are allowed to grow 

for 24 hours. 

In reverse transfection, the 2:1 TF:DNA ratio mix is added to the bottom of 2 cm
2
 surface area 

wells. 200,000 cells in suspension are then added on top of the mixture, and incubated at 37ºC 

and 5% CO2-humidified atmosphere on fibronectin-coated dishes. From this point, the cells 

receive the same treatment as mentioned above. Assessment of viability, recovery and 

percentage of GFP-expressing cells was performed as described earlier in section 2.6.1. 

 

2.6.3 Lipid-based transfection 

 

CGR8 and ReN cells (150,000 – 200,000 cells for each transfection) were transfected with 

Lipofectamine® 2000 (LF, Invitrogen™). The reaction involved complexation of the lipid-based 

reagent either with pcDNA3.1-GFP or pcDNA3.1-BDNF.  After optimization of the protocol, a 2:1 

LF/DNA ratio was chosen for the next experiments. Lipoplex formation was carried out by 

diluting the appropriate amount of LF in Opti-MEM® (Gibco®, Invitrogen™) medium, and mixing 

by vigorous vortex agitation for 15 sec. In parallel, the adequate amount of plasmid DNA was 

diluted in Opti-MEM® (Gibco®, Invitrogen™) medium, and mixed by pipetting up and down. The 

cationic-lipid was then mixed with plasmid DNA. The solution was mixed by pipetting up and 

down, and incubated for at least 20 min, at room temperature. Finally, the lipoplexes were 

added to cells expanded for 24 hours in appropriate expansion medium without antibiotics, and 

incubated at 37ºC and 5% CO2-humidified atmosphere on differently coated dishes depending 

on the cells used, for 5 hours. After that, fresh media containing 1% penicillin/streptomycin 

(Gibco®, Invitrogen
TM

) was added, and cells were allowed to grow for 24 hours. Assessment of 

viability, recovery and percentage of GFP-expressing cells was performed as described earlier 

in section 2.6.1. 
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2.7 Flow cytometry 

 

GFP-transfected cells were harvested and counted. Cell viability and recovery were assessed 

as described previously in section 2.6.1. Cells were centrifuged at 1000 rpm for 5 min, and the 

pellet was ressuspended in 500 µL of a 2% paraformaldehyde (PFA) solution for cell fixation 

and the mixture was transferred to FACS tubes. The percentage of GFP
+
 cells was then 

measured in the BD FACScalibur™ equipment (BD Biosciences). The results were analyzed 

with CellQuest software (BD Biosciences). Statistically significant results are considered when a 

minimum of 1000-gated cells are counted. Between one and three replicates were used for 

each assay. 

 

2.8 Immunocytochemistry  

 

For immunofluorescence analysis of cells, complete culture medium was removed from cells, 

and 4% PFA was added for 10 min at room temperature for cell fixation. The cells were then 

washed with PBS (Gibco®, Invitrogen
TM

) and incubated for 1 hour with blocking solution (10% 

normal goat serum (NGS, Gibco®, Invitrogen™) and 0.1% Triton X-100 (Sigma-Aldrich®) in 

PBS). Afterwards, blocking solution was removed and cells were incubated with adequate 

primary antibody diluted in a staining solution (5% NGS and 0.1% Triton X-100 in PBS) 

overnight at 4ºC. The primary antibodies used were neuronal Class III β-Tubulin (TuJ1) 

(Covance, dilution 1:2000), Nestin (1:200, R&D Systems®), GFAP(1:200, Milipore). The next 

day, after washing with PBS, the cells were incubated with the appropriate secondary 

antibodies for 1 hour at room temperature. After this step, cells were once more washed with 

PBS and incubated with DAPI solution (Sigma-Aldrich®) (15:10000 in PBS) for 5 min at room 

temperature. Two final washes with PBS were performed, and the cells were ready for analysis 

under a fluorescence optical microscope - Leica DMI 3000B (Leica Microsystems GMbH). 

Photographs of the culture were taken with a Nikon® digital camera DXM1200F (Nikon, Tokyo, 

Japan). 

 

2.9 Alamar blue assay 

 

Alamar blue assay is based on a fluorometric/colorimetric cell growth indicator that is produced 

according to the detection of metabolic activity from a certain cell culture. This indicator is the 

dye resazurin, which is by itself weakly fluorescent. It is then reduced to the resorufin form, a 

highly red fluorescent compound, by means of proliferative activity within a given culture or by 
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other test-agents added to the medium
117

. It is a widely used method to assess the proliferation 

of a large spectrum of cell lines, and the cytotoxicity of agents within various chemical classes. 

 

Briefly, selected cell populations were exposed to a certain test-agent, that will be highlighted 

later. After that, alamar blue was diluted 1:20 in differentiation medium, and cells were 

incubated with the agent for 1 hour. Then, fluorescence measurements were taken at pre-

determined time-points (in this work 1 hour, 3 hours and 24 hours after the exposure to the test-

agent), using the Plate Reader Tecan Infinite M200 Pro (Tecan®, Männedorf, Switzerland), by 

monitoring fluorescence excitation at 560nm and emission at 590nm. Absolute fluorescence 

intensity is returned by the equipment. Most of the time, relative fluorescence intensities are 

preferred since the purpose of the assay is to compare populations exposed to different test-

agents. So, the relative fluorescence intensity was calculated according to equation 3: 

 

                                       
                                 

                                 
          (3) 

 

 
In order to test glutamate toxicity in a differentiated neuronal cell culture, ReN cells maintained 

in differentiation medium for 12 days were exposed to 100 µM, 500 µM, 2 mM and 4 mM of 

Glutamate (Sigma-Aldrich®) for 2 hours. Adequate volume of a 100 mM glutamate stock 

solution was added to the differentiation medium and then added to cells. Following the 2 hours 

of incubation, 3-day old differentiation medium was added to the cells. Glutamate toxicity was 

then assessed by the Alamar blue assay, at 1 hour, 3 hours and 24 hours after glutamate 

exposure. 

 

To evaluate the potential protective activity from BDNF, the cells were exposed to 4 mM of 

glutamate for 2 hours. After that, 3-day old conditioned medium containing BDNF secreted by 

transfected cells was added to glutamate-exposed cells. 

 

2.10 Qualitative analysis of neuronal neurites by ImageJ® 

software 

 

Non-transfected ReN cells were differentiated using either the standard protocol, or by adding 

50ng/mL of exogenous BDNF (Life Technologies™) to the medium, for positive-control on 

BDNF. Transfected ReN cells with BDNF were differentiated using the standard protocol. Fresh 

differentiation medium was added every 3 days. Differentiation was induced for 12 days. At the 

end of the process, the cells were fixed for immunostaining as described on section 2.8. Tuj1-

stained cells were analyzed with ImageJ software. The plugin NeuronJ is a semi-quantitative 

method that allows the measurement of neurites of neurons as depicted on figure 2.10. Neurites 
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are herein understood as the processes that emerge from the soma (nucleus), which include 

axons and dendrites. First, the background fluorescence is subtracted with a rolling ball radius 

of 50 pixels. Then a color threshold is defined in order to enhance the contrast between neurites 

and other particles. The image is then binarized, rendering positively stained particles the 

maximum intensity (shown in dark) against zero intensity particles (in white). Through the 

NeuronJ plugin, tracings are created by placing the cursor at one end of the cell, stretching the 

tracing which is automatically calculated by the software, until the other end of the cell. The 

tracings are then automatically measured. From this, primary neurites and secondary neurites 

can be identified. The former are the neurites emerging directly from the soma. Secondary 

neurites emerge from primary neurites. 

 

 

 

 

 

Figure 2.10 - Sequence of operations performed on ImageJ® until a final binarized image is achieved, 

following neurite measurement of NeuronJ plugin. 

 

2.11 Quantification of mRNA extracts by real time PCR 

 

In order to estimate the expression of specific gene transcripts, cells exposed to different 

conditions were plated into 6-well plates, then being harvested at specific times and the pellet 

was kept at -80ºC. Later, total mRNA extracts were isolated using High Pure RNA Isolation kit 

(Roche®), according to the manufacturer´s protocol. Then, mRNA was converted to cDNA 

using the Trancriptor First Strand cDNA Synthesis kit (Roche®). For this, 1µg of mRNA was 

combined with anchored-oligo(dT)18 primers (final concentration 2.5 μM) and PCR-grade water 

until a volume of 13μL was reached. Then, Reverse Transcriptase Incubation Buffer was added, 

as well as Protector RNAse Inhibitor (final quantity of 20 units), deoxynucleotide mix (final 

concentration of 1mM of each) and Transcriptor Reverse Transcriptase (final quantity of 10 

units), to a final volume of 20μL. cDNA was obtained by heating the mixture at 55ºC for 30min, 

followed by reverse transcriptase inactivation by heating the mixture to 85ºC for 5min. After 

obtaining cDNA, RT-PCR was performed, using several primers for the analysis of different 

genes including Nestin, Sox2, GFAP, β3-tubulin, IL-6, BDNF, Caspase7 and the housekeeping 

gene GAPDH (StabVida®, Portugal) (table I). The RT-PCR was performed using the 

manufacturer´s protocol (LightCycler®FastStart DNA Master SYBR Green I, version 18) from 

Roche®. Briefly, a set of 20µL solutions were prepared, which included 4mM MgCl2, 2µL of 

template cDNA and a primer mix (final concentration was 0.5µM for each), filling the remaining 

volume with PCR-grade water. The control solutions contained 2µL of PCR-grade water 
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replacing cDNA. The reactions were performed using the equipment StepOnePlus™ (Life 

Technologies™). Between one and two replicates were used in the different assays. 

 

Gene expression was assessed through the 2-CT
 method described elsewhere

118
, in which 

expression of each gene is displayed related to the control, assuming that both target and 

reference genes are amplified with a near 100% efficiency (equation 4). 

 

                                                                                                             (4) 

 

Two RT-PCR programs were run depending on the samples. Program 1: pre-incubation step at  

95ºC for 10 min; denaturation step at 95ºC for 30 sec; annealing at 58ºC for 30 sec; elongation 

step at 72ºC for 30 sec. The last three cycles were repeated 40 times. Program 2: all steps were 

run at the same temperature for the same amount of time. The last three cycles were repeated 

35 times.  

 

For obtaining the melting curve, the temperature was increased to 95ºC for 15 min, then being 

decreased to 60ºC for 1 min, and then again increased to 95ºC through 0.2ºC increments, and 

remaining for 15 min at this last temperature. 

 

Table I - Primers used in mRNA quantification by real-time PCR. 

Gene Primers 5´ -> 3´ (fwd/rev) 
Tm 

(ºC) 

Number of 

bases 

Amplicon 

size (bp) 

GAPDH 
ACGACCCCTTCATTGACCTCAACT / 

ATATTTCTCGTGGTTCACACCCAT 

60.2 / 

56.4 
24 / 24 324 

Sox2 
GTATCAAGGAGTTGTCAAGGCAGAG / 

TCCTAGTTCTTAAAGAGGCAGCAAAC 

57.1 / 

56.7 
24 / 25 78 

Nestin 
GCCCTGACCACTCCAGTTTA / 

GGAGTCCTGGATTTCCTTCC 

56.8 / 

54.9 
20 / 20 200 

GFAP 
CTGTTGCCAGAGATGGAGGTT / 

GGAGAACAACCCTCTGAGCTG 

57.5 / 

56.4 
21 / 21 289 

β3-tubulin 
CCATCTTGCTGCCGACAC / 

CAATAAGACAGAGACAGGAG 

56.7 / 

49.6 
18 / 20 126 

IL-6 ATGAACTCCTTCTCCACAAGC / 
GTTTTCTGCCAGTGCCTCTTTG 

21 / 

22 
21 / 22 264 

BDNF 
CATCCGAGGACAAGGTGGCTTG /  

GCCGAACTTTCTGGTCCTCATC  

60.2 / 

57.9 
22 / 20 161 

Caspase7 
AAGAGCAGGGGGTTGAGGAT / 

TGAAGAGGGACGGTACAAACG 

58.4 / 

56.8 
20 / 21 84 

 

 

http://www.stabvida.net/clients.php
http://www.stabvida.net/clients.php
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2.12 Statistical analysis 

 

When appropriate, the Mann-Whitney-U test was used to evaluate the significance of the 

difference between two groups of independent samples that did not show a normal distribution 

and/or homogeneity of variances. Significant analyses (p <0.05) are displayed as * on selected 

data. 
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3. Results & Discussion 

 

3.1 - Amplification of BDNF by PCR 

 

In order to construct the desired plasmids (see section 2.1), the BDNF gene was amplified by 

PCR as described in section 2.3. Figure 3.1 shows a unique band with less than 800bp (BDNF 

gene is 741bp long - sequence in appendix), confirming that the gene was efficiently amplified, 

without rendering non-specific amplification products. 

 

 

Figure 3.1 - Confirmation of efficient BDNF gene (741bp) amplification by PCR on a 1% agarose gel. LIII 

is the DNA Ladder III (NZYtech®). 

 

 

3.2 - Cloning of BDNF into pcDNA3.1 

 

The BDNF gene was extracted from the gel and cloned into the plasmid pcDNA3.1 (see section 

2.3). In order to confirm the correct construction of the plasmid, a restriction analysis of the 

construct was performed (Figure 3.2.1). In parallel, another restriction analysis was performed in 

order to confirm the correct construction of the previously produced pcDNA3.1-GFP. 
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Figure 3.2.1 - Confirmation of the correct plasmid constructions on a 1% agarose gel. The samples are 

presented in their non-digested form (ND); single digestion with BamHI (BI) and HindIII (HI) and double 

digested with the pair BamHI/HindIII (BI/HIII) and HindIII/ApaI (HI/AI) for pcDNA3.1-BDNF and pcDNA3.1-

GFP, respectively. LIII corresponds to the DNA ladder III (NZYtech®). 

 

Supercoiled DNA migrates better through the agarose gel due its more compact structure, 

appearing further from the loading point in the gel, as it can been seen for both non-digested 

samples (ND) in Figure 3.2.1. A single cut in the double strand DNA leads to its linearization, 

which has a lower mobility than supercoiled DNA, reason why the single-digested bands appear 

slightly closer to the beginning of the gel (pcDNA3.1-BDNF restricted by BamHI (BI) and 

pcDNA3.1-GFP by HindIII). A double digestion by the enzymes previously used to achieve the 

construct, allows for the detection of the cloned gene. As it can be seen in Figure 3.2.1, double 

digestion of pcDNA3.1-BDNF by BamHI and HindIII results in two bands, one with 

approximately 5000bp corresponding to the linearized plasmid without the gene of interest, and 

another slightly shorter than 800bp, corresponding to the BDNF gene which is 760bp long. The 

same can be reasoned for pcDNA3.1-GFP, with the GFP gene band showing up below the 

800bp reference band (GFP gene is 720 bp long). 

 

The constructs were then produced in a larger scale, and purified by endotoxin-free purification 

kits (see section 2.4). The properties of the plasmids obtained are summarized in Table II. 

 

Table II - Concentration of plasmids obtained after purification with the Endotoxin-free NucleoBond® Xtra 

Midi EF kit, and purity assessment through ratios of absorbance at different wavelengths. Concentration 

and purity of plasmid DNA is presented as the mean value ± SD of three independent measurements. 

 Concentration (μg/μL) A260/A280 A260/A230 

pcDNA3.1-GFP 1.20 ± 0.01 1.88 ± 0.01 2.44 ± 0.17 

pcDNA3.1-BDNF 1.11 ± 0.03 1.85 ± 0.01 2.41 ± 0.42 
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Based on the information shown in Table II, the plasmid DNA presented very low contamination 

with proteins, since a A260/A280 ratio of 1.8 is usually related to pure DNA
119

. The ratio A260/A230 is 

used to evaluate eventual contamination of DNA with compounds such as phenol and guanidine 

commonly used in DNA extraction kits. This value should be between 2.0 and 2.2
119

. Slightly 

higher values were obtained, meaning that the sample if virtually free of such contamination.  

 

3.3 - Transfection of mouse Neural Stem Cells 

 

The purified plasmids were then ready to use on neural stem cells. The following results refer to 

the transfection of the mouse ES-derived NSC line CGR8-NS. 

 

3.3.1. Microporation 

 

Microporation is a novel type of electroporation, which carries out the transfection reaction in a 

10μL chamber, taking advantage of a 0,33mm
2
 electrode surface

102
. Recently, mouse NSC 

were successfully microporated with plasmid DNA, with 75% of the transfected cells expressing 

a transgene
103

. 

 

CGR8 cells were first microporated using previously optimized conditions - 1 pulse of 1500V for 

20ms (2 x 10
5
 cells/microporation), and then plated on untreated surfaces. This resulted in cell 

death of all the population, not allowing for further analysis (data not shown).  Surface coating 

with extracellular matrix components has been shown to provide a better support for cell 

attachment and to promote overall cell survival. Hence, the appropriate culture wells were 

coated with CELLStart™ (Gibco®, Invitrogen corporation, Carlsbad, CA), and microporation 

was carried out in the conditions stated before, using 0.5µg of pcDNA3.1-GFP.  Cells survived 

in these conditions, allowing for continuous analysis of the cell culture for 4 days (figure 3.3.1). 
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A  B  

 

Figure 3.3.1 - CGR8-NS cells microporated using 1 pulse of 1500V for 20ms, and 0.5μg of pcDNA3.1-

GFP. Cell viability for transfected and control cells (A), and cell recovery of transfected cells (B). Values 

were calculated based on mean ± SD of 4 to 6 countings of 2 replicates. 

 

 

Coating with CELLStart™ seems to have made a difference in cell survival. This is a xeno-free 

substrate, widely used in the attachment of hNSC, hMSC and hESC
120

. The transfection 

process reduced cell viability in approximately 20% compared to the non-microporated control. 

Cell viability values quickly stabilized and are similar in both conditions for the remaining days. 

Cell recovery, on the other hand, is very low, never reaching more than 25%, which suggests 

that these conditions may still be very harsh for cells. Cell recovery is lower on the 2
nd

 day than 

the day post-transfection. It is important to highlight that this is a value that represents the 

percentage of viable cells on a culture, in comparison to the percentage of viable cells on a 

control, reason why it is not directly related to the values of cell recovery on other days. This 

means the culture had a lower proliferative activity on that day, which could be related to their 

higher needs for nutrients while on a recovery state. One way to evaluate this would be provide 

fresh medium to the culture on the day after transfection. 

 

In order to evaluate the effect of BDNF on cell recovery, CGR8 cells were microporated with 

pcDNA3.1-GFP and pcDNA3.1-BDNF, using 1 pulse of 1500V for 20ms, and 0.5µg of plasmid 

DNA. Days 2 and 4 were analyzed (figure 3.3.2) 
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Figure 3.3.2 - CGR8-NS cells microporated using 1 pulse of 1500V for 20ms, and 0.5μg of pcDNA3.1-

GFP or pcDNA3.1-BDNF. Cell viability of transfected and control cells (A) and cell recovery of control cells 

(B) on days 2 and 4. Values were calculated based on the mean ± SD  of 4 to 6 cell countings of 2 

replicates. 

 

The transfection with a BDNF-containing plasmid did not improve cell recovery since no major 

differences were observed. Debilitated cells by the microporation process may be not so 

responsive to such signaling in a destabilizing environment. Higher values of cell recovery on 

the first few days post-transfection may be particularly important to address these questions, in 

order to draw conclusions on a healthy culture. These results may suggest that the transfection 

was performed under sub-optimal conditions. The parameters used were previously optimized 

for much smaller plasmids (as little as 2.2kb, as compared to 5.7kb in this work)
103

. The size of 

plasmids is an important factor that interferes with the efficiency of the transfection process. In 

fact, a reduction in plasmid size is directly related to an increased transfection efficiency of stem 

cells
108,121

. Unfortunately, in these assays, it was not possible to harvest enough number of cells 

to evaluate the transfection efficiency by flow cytometry. 

  

 

3.3.2. Cationic polymer-based transfection 

 

Cationic polymers are widely used transfection agents for gene delivery (forming polymer-DNA 

complexes usually called polyplexes
122

). Their versatility arises from the possibility to synthesize 

polymers with the desired properties, allowing for tunning of its length, geometry, ramification 

and functionalization
122

 among other parameters. 

 

CGR8 cells were transfected with the commercial cationic polymer-based reagent TurboFect 

(ThermoScientific®), complexed with pcDNA3.1-GFP.  
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Fig. 3.3.3 - CGR8 cells transfected with TurboFect, using a 2:1 TF:DNA ratio (μL/μg) for each reaction. 

Cell viability, recovery and transfection efficiency is presented for each protocol performed. Cell viability 

and recovery were calculated based on the mean value ± SD of 2 cell coutings from 3 replicates. 

Percentage of GFP+ cells is the mean value ± SD of 3 replicates. 

 

TurboFect (TF) is a polymer-based transfection reagent. Both normal and reverse transfection 

protocol yielded negligible percentage of transfected cells - around 3% and 2%, respectively. 

This can be explained by the use of polyplexes with incorrect TF/DNA ratio. An incorrect ratio 

can lead to the formation of an overall negatively charged complex, which is incapable of 

efficiently interacting with negatively charged cell membranes, and therefore incapable of 

penetrating cells. 

 

Cell viability is virtually the same for both transfection protocols and for the non-transfected 

control cells. This may be corroborated by the fact that such a low number of cells were 

successfully transfected, so the overall process did not affect most of the cells in culture. On the 

other hand, only around 10% of cells recovered from reverse transfection. In this approach, the 

TF/DNA mixture is placed on the bottom of the cell culture wells (see section 2.6.2), and the 

cellular suspension is then added to the mixture. Hypothesizing the formed complexes present 

an overall negative charge, the deposition of these particles in the bottom of the well may have 

resulted in electrostatic repulsions that prevented cells from reaching the fibronectin coating. 

This would lead to a critical decrease in cell adhesion causing extensive cell death. Overall 

polyplex charge is one of the parameters that highly influences the interaction with living 

cells
91,94

. A more detailed and time consuming optimization of this transfection protocol would 

be required , in order to evaluate the best TF/DNA ratio to use within NSC. However, as the 

goal of this work was not the optimization of novel transfection reagents we decided to proceed 

using a well-established method with higher number of cell lines, and both somatic and stem 

cells tested. 

 

 



46 

 

0 

20 

40 

60 

80 

100 

LF/DNA LF 

V
ia

b
ili

ty
 (

%
) 

LF/DNA ratio (μL/μg) 

1 2 2.5 3 

3.86 7.9 10.57 7.81 

0 

20 

40 

60 

80 

100 

1 2 2.5 3 

P
e

rc
e

n
ta

ge
 (

%
) 

μL LF/ μg DNA ratio 

% GFP+ Recovery 

3.3.3. Lipofection 

 

Lipofection is throughout this work referred to as the transfection process through the lipid-

based reagent Lipofectamine® 2000 (Invitrogen™). This reagent has been complexed with 

either the pcDNA3.1-GFP or pcDNA3.1-BDNF plasmids, forming lipoplexes.  

 

 

3.3.3 a. Assessment of the optimal LF/DNA ratio 

 

As in cationic polymer-based transfections, also in lipid-based reactions the overall charge of 

the lipoplex is important. In order to assess which Lipofectamine® 2000/DNA ratio (herein 

termed LF/DNA) provides the best transfection efficiency of CGR8 cells, four different ratios 

were tested - 1, 2, 2.5 and 3 (μL of LF/μg of DNA) (figure 3.3.4). 

 

 

A  B  

 

Fig 3.3.4 - CGR8-NS cells transfected with Lipofectamine® 2000 under different LF/DNA ratios. Cell 

viability is shown for each ratio and for LF quantities alone (A). Cell recovery and transfection efficiency 

(B). Cell viability and recovery were calculated based on the mean ± SD of 3 independent cell countings 

from 2 replicates each. Percentage of GFP
+
 cells is the value of one experiment.  

 

 

A decrease in total cell number (data not shown) and viability was observed with an increasing 

LF/DNA ratio, although with very slight differences between different ratios, achieving a cell 

viability of ~80%. A control test with no pDNA was performed in order to evaluate possible 

harmful effects from LF alone in cell viability. All LF quantities rendered more than 70% cell 

viability, which means that the transfection reagent per se, does not present significant toxicity 

to cells. This is in agreement with other reports, stating that LF provided less than 20% toxicity 

in MSC
123

, which is considered suitable for most applications
124

. 
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Brightfield Fluorescence Brightfield Fluorescence 

1 2 

    

2.5 3 

    

Figure 3.3.5 - Fluorescence images of CGR8 cells transfected with lipoplexes of several LF/DNA ratios. 

Brighfield images can be seen on the left. GFP-expressing cells can be seen (in green) on the right side of 

the panel. 

 

A good balance between both molecules charges must be achieved in order to get the best 

electrostatic interactions between complexes and cell surfaces
99

. Ratios of 2, 2.5 and 3 

provided the higher percentage of GFP-expressing cells, around 8%, 11% and 8% respectively. 

Nonetheless, a LF/DNA ratio of 2 was chosen for the upcoming assays, for resulting in more 

than 80% of cell recovery, contrasting with the 60% of the other ratios mentioned, while showing 

similar percentage of GFP expressing cells.  

 

 

3.4. Transfection of human neural progenitor cells 

 

Considering the low transfection efficiency achieved with mouse ES-derived NSC, the human 

ReN cell VM line was chosen for the remaining experiments. 

 

3.4.1. Microporation 

 

In order to optimize the microporation protocol for this type of cells, ReN cells were 

microporated with 0.5μg of pcDNA3.1-GFP (2x10
5
 cells/microporation) using several different 

conditions varying the number of pulses, length of the pulse(s) and voltage. The cells from each 
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condition were then plated on laminin-coated wells of a 24-well plate. The results are displayed 

on figure 3.4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.1 - ReN cells microporated using 0.5µg of pcDNA3.1-GFP under several conditions. Cell 

viability and recovery are calculated based on the mean ± SD of 3 cell countings from 2 replicates. 

Percentage of GFP
+
 are the value of one experiment for each condition. The conditions are characterized 

by the voltage (V), length of pulse(s) (ms) and number of pulses (p). 

 

 

Beyond the displayed settings, an additional condition was performed using 1 pulse of 1500V 

for 30ms which resulted in extensive cell death of the culture, not allowing for further analysis. 

Cell viability seems to increase when lower voltages are used, which may be due to the harmful 

effect of the electrical discharge during the process. In fact, microporation has exhibited 

cytotoxicity in human adipose tissue-derived stem cells, directly related to increase in voltage 

and pulse number
125

. Cell recovery is very low in all the conditions, with the best condition 

yielding only 40% of recovered cells, which may indicate that the microporation process may 

need further optimization. This value was obtained using what it seems to be the milder 

condition of all (1 pulse of 900V for 30ms). Comparing this condition with 2 pulses of 900 V for 

15ms, it is possible to observe that the latter presents lower cell recovery, while the overall 

voltage is the same, which again may support the fact that the microporation process itself is 

detrimental to these cells.  

 

Special attention must be given to the quantity of GFP
+
 cells. Only using 1 pulse of 900V for 

30ms or 2 pulses of 900V for 15ms, it was possible to obtain sufficient gated-cells to perform a 

statistically significative analysis (approximately 2800 and 2200 gated-cells were obtained, 

respectively). While this is below the recommended values (minimum of 10000 gated-cells), it 

suggests a tendency, in which the first condition may provide the best overall results. The 

remaining conditions resulted in less than one thousand gated-cells, not allowing for further 

analysis. 
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3.4.2. Lipofection 

 

3.4.2 a. Transfection of ReN cells with GFP and BDNF-gene carrying plasmids 

 

Considering that the chosen LF/DNA ratio of 2 was the most efficient condition on CGR8 cells 

lipofection, the same was attempted on ReN cells. In order to evaluate the validity of the 

assumption, ReN cells were plated at 75.000 cells/cm
2 

on laminin-coated wells, and transfected 

the next day with a 2:1 LF/DNA ratio. Cells were harvested either one or three days after the 

transfection (figure 3.4.2).  

 

A  B  

C  D  

 

Fig 3.4.2 - ReN cells transfected with Lipofectamine® 2000 complexed with either pcDNA3.1-GFP or 

pcDNA3.1-BDNF (2μL/1μg). Cell viability, recovery and percentage of GFP
+
 cells for day 1 (A) and day 3 

(C). Fluorescence images of transfected ReN cells, by day 1 (B) and day 3 (D).  Values are presented as 

the mean of 4 to 6 independent coutings from 2 replicates ± SD. Percentage of GFP+ cells is presented as 

the mean of 2 replicates ± SD. 
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On day 1, transfected cells present cell viabilities around 70% which is relatively lower than the 

90% achieved with control cells, although these represent sufficiently high values that allow 

further studies with these cultures.  On the other hand, cell recovery is very low, which may be 

caused by the high percentage of transfected cells (~35%). By the third day, cell viability was 

evened out in both transfected and control cells (approximately 80%). Cells transfected with 

BDNF gene-containing plasmid seem to have recovered significantly better than GFP reporter-

gene containing plasmids. BDNF is known for its pro-survival and proliferative effects on neural 

stem cells
62

, which may be the cause for this increase in cell recovery, although more data 

would be required in order to confirm this result, since the opposite was observed on CGR8 

cells (see 3.3.3), which greatly prevents any solid conclusion to be drawn from the specific 

impact of BDNF on cell recovery. Moreover, the fact that the human BDNF gene is being used 

on mouse derived NSC might have affected his biological expression and function despite the 

differences in only 11 amino acids (corresponding to a 95.6% homology according to 

sequences available at ncbi.nlm.nih.gov). 

 

Around 35% of the population expresses GFP on the first day. A relatively low amount of 

literature reporting the lipofection of neural stem cells does not allow for a more solid 

comparison on transfection efficiencies. Nonetheless, the results obtained report slightly higher 

values than the ones reported on other occasions. Falk and colleagues achieved around 4% of 

GFP
+
 cells with LF

126
, while around 20% transgene-expressing adult rat hippocampal cells were 

reported by Tinsley et al
89

. Plasmids exist within cells as episomes and are, therefore, lost upon 

division, leading to a decrease in GFP-expressing cells, consisting in 15% of the total cell 

population by day 3.  

 

A wide variety of new sophisticated commercial formulations are available nowadays, and 

several other transfection reagents have been used on NSC. Tinsley et al tested 6 different 

reagents, where FuGene and ExGen500 rendered 11% and 16% transgene-expressing adult 

hippocampal progenitors.  The later is a commercial cationic polymer while the former is a non-

lipossomal transfection reagent. Cationic polymers are relatively easily manipulated, being 

flexible in its structure
122

, allowing for protonation of the molecules making it easier to interact 

with other macromolecules such as nucleic acids. Non-liposomal reagents, may they be lipids or 

polymers, present an alternative to liposomes. They are capable of forming micelles or droplets, 

containing lipophilic surfaces that interact with cell membranes, forming an encapsulated 

complex that encloses the genetic material to be delivered. Electroporation has also been 

widely used on NSC. Richard et al, were able to successfully transfect 70% neural precursor 

cells
101

. In this method, the application of an electrical current momentaneously disrupts the 

charge gradient across the membrane. While there is not a consensus about the actual 

mechanism through which DNA enters the cell (either through pore or non-pore formation), the 
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relatively higher efficiency of this method may be due to the fact that it is relatively independent 

on the stage of the cell cycle.  

 

However, viral methods still remain the most effective transfection agents. This is logically highly 

dependent on the type of virus. Retroviruses have provided a landmark in viral gene therapy 

when in 1990, hematopoietic stem cells were retrovirally transduced in vitro, in order to provide 

a fundamental enzyme, usually lacking in cases of X-linked severe combined immunodeficiency 

(SCID-X1)
127

. Re-infusion of modified HSC into patients suffering from the disease provided full 

and sustained correction of the enzyme function. However, retroviruses are incapable of 

infecting non-replicating cells. Still, they have been used on adult NSC, achieving around 60% 

of transfection efficiency. Lentivirus is a type of retrovirus, which has been exploited for its ability 

to infect non-mitotic cells, offering long-term expression of the transgene with relatively low 

toxicity
4
. NSC have been transduced with lentiviral vectors, preserving differentiation potential 

and proliferation in vitro, as well as their migratory capacity with the CNS
77

. Adenoviruses are 

non-enveloped icosahedral particles capable of infecting both dividing and non-dividing cells
4
. 

Adenovirus-mediated transfection has achieved up to 68% efficiently modified mouse NSC in 

vitro
126

. 

 

3.4.2 b. Assessment of differentiation potential after transfection 

 

Neural stem cells have the ability to migrate to certain regions in the brain when transplanted, 

being able to express transgenes
128

. It is important to evaluate the differentiation capacity of 

transgene-expressing NSC, which would be the basis of a NSC-based therapy taking 

advantage of these cells as gene vehicles capable of expressing genes coding for clinically 

meaningful molecules. In order to evaluate the capacity of transfected cells to differentiate into 

either neurons or glial cells, ReN cells were lipofected as described before (section 2.6.3) and 

plated at 75000 cells/cm
2 

on laminin-coated wells. Differentiation was induced on the next day, 

following the manufacturer´s protocol, which consists in culturing cells in a 1:1 mix of 

DMEM/F12 and Neurobasal® Medium, supplemented with B27, without any growth factors. 

Differentiation was carried out for 12 days, adding fresh medium every 3 days. The results are 

summarized on figure 3.4.3: 
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Figure 3.4.3 - ReN cells transfected with Lipofectamine® 2000. One day after transfection, differentiation 

of the culture was induced. Cell viability, recovery and percentage of GFP+ cells on day 1 (A) and day 12 

(B) of differentiation.  Dot-plots of flow cytometry analysis of ReN cells transfected with GFP, acquired on 

day 1 and 12 of differentiation, using a wide gate (C). Histograms based on the previously presented dot-

plots (D). Cell viability and recovery was calculated based on the mean value ± SD of 3 independent 

countings from 3 replicates each. GFP+ cells is presented as the mean ± SD of 2 replicates. 

 

 

One day after transfection, around 35% of cells express GFP which is consistent with the 

previous results (see figure 3.4.2a). By the 12
th
 day of differentiation, a shift in the population 

morphology occurs (figure 3.4.3c). The x-axis is represented by the forward-scattered light 

(FCS), which is directly related to cell size, while the y-axis represents the side-scattered light 

(SSC), directly related to cell granularity or internal complexity
129

. Comparing the overall sizes 

and granularity of the populations along the differentiation process, it is possible to observe a 

shift into a population presumably consisting of differentiated cells, which present a decreased 

size as observed on the microscope, as well as cell debris and other particles of reduced size 
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and complexity, such as organelles. By the 12
th 

day, considering the gate showed in figure 

3.4.3c, approximately 23% of the cell population is expressing GFP. However, the real value of 

GFP expression is probably masked by the presence of cell debris showing autofluorescence. 

Since there is strong evidence that, during the process of differentiation cells appear to show a 

reduced size, a wide gate was considered in this case, in order to include both differentiated 

and differentiating cells (see figure 3.4.3c). By the 12
th
 day, the more evident peak on the 

histograms (identified by the red arrow) (figure 3.4.3d) probably corresponds to what was 

initially considered cell debris, and at this point, by differentiated cells as well. However, 

plasmids are known to be diluted away in the culture upon division, and considering the 

previous results, where only 15% of cells were expressing the transgene at day 3, it is expected 

that by the 12
th
 day of culture, a negligible number of cells still expresses GFP. For this reason, 

another analysis of the data was performed using a smaller gate, comprising the population 

regarding presumably the initial neural stem cell population at the first day of culture (figure 

3.4.4): 

 

 

A  B  

C  

D  
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Figure 3.4.4 - ReN cells transfected with Lipofectamine® 2000. One day after transfection, differentiation 

of the culture was induced. Cell viability, recovery and percentage of GFP+ cells on day 1 (A) and day 12 

(B) of differentiation.  Dot-plots of flow cytometry analysis of ReN cells transfected with GFP, acquired on 

day 1 and 12 of differentiation, using a small gate (C). Histograms based on the previously presented dot-

plots (D). Cell viability and recovery was calculated based on the mean value ± SD of 3 independent 

countings from 3 replicates each. GFP+ cells is presented as the mean ± SD of 2 replicates. 

 

 

On the day post-transfection, around 35% of the population is expressing GFP, according to this 

analysis, which is in agreement with the previous analysis (see figure 3.4.2). The use of a 

smaller gate does not change the value of GFP-expressing cells on day 1, since the 

composition of the gated population (3.4.4c) is virtually the same as the one considered before, 

taking into account not enough time has passed for the generation of differentiated cells. 

However, at the end of the differentiation protocol, not enough cells are gated, preventing a 

statistically significant analysis (less than 1000 gated cells). 

 

The smaller gate is neglecting important data, excluding differentiated cells from the analysis at 

the end of the differentiation protocol, while the wider gate is including too many events, most of 

which probably regard autofluorescent cell debris. It is believed the real number of GFP-

expressing cells may lie between the two analyses, showed on figures 3.4.3c and 3.4.4c. To 

confirm this, staining of dead cells with propidium iodide could be carried out in order to 

distinguish viable GFP-expressing cells from non-viable cells and debris, elucidating about the 

actual composition of the population highlighted by the red arrow (figure 3.4.3d). 

 

In a parallel assay, ReN cells were plated at 75000 cells/cm
2 

on laminin-coated wells, and 

differentiated for 4 days. Afterwards, the cells were lipofected as described before, in order to 

evaluate the potential of differentiating cells to take up complexes of cationic lipids and DNA 

(figure 3.4.5). 
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Figure 3.4.5 - ReN cells within 4
th

 of differentiation were transfected with Lipofectamine 2000. Cell viability, 

recovery and GFP+ cells (A). Cell viability and recovery was calculated based on the mean value ± SD of 

3 independent countings from 3 replicates each. GFP+ cells is presented as the mean ± SD of 2 

replicates. Fluorescence microscopy picture of differentiating transfected cells (B).  Dot-plots of flow 

cytometry analysis of differentiating ReN cells transfected with GFP, acquired  day 4 of differentiation, 

using a wide gate (C). Histograms based on the previously presented dot-plots (D). 

 

It is known that exogenous transgene expression steadily decreases for 1-2 weeks
130

. In order 

to attempt a still active and stronger gene expression at the end of the differentiation process, 

ReN cells were transfected during the differentiation induction. Fluorescence microscopy 

images showed GFP-expressing cells possessing long neurites (figure 3.4.5b), typical of 

neuronal committed cells, as opposed to a smaller star-like morphology observed on non-

differentiated cells, which hints at the differentiation ability of these cells. Around 13% of the 

population was able to take up the plasmid and express the transgene, according to flow 

cytometry results. Nevertheless, this value may as well be masked by the presence of auto-

fluorescent cell debris as described before. Performing the analysis with the smaller gate yields 

only about 3% of GFP-expressing cells (figure 3.4.6). Once more, the real value may lie 

between those two. 
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Figure 3.4.6 - ReN cells within 4
th

 of differentiation were transfected with Lipofectamine 2000. Cell viability, 

recovery and GFP+ cells (A). Cell viability and recovery was calculated based on the mean value ± SD of 

3 independent countings from 3 replicates each. GFP+ cells is presented as the mean ± SD of 2 

replicates. Fluorescence microscopy picture of differentiating transfected cells (B).  Dot-plots of flow 

cytometry analysis of differentiating ReN cells transfected with GFP, acquired  day 4 of differentiation, 

using a small gate (C). Histograms based on the previously presented dot-plots (D). 

 

While the actual mechanism of lipoplex-mediated transfection is not entirely understood, some 

authors support that besides the well accepted theory of lipoplex fusion with cells membranes, 

this might occur during membrane reorganization events that undergo during mitosis. In this 

stage, the cellular membrane is highly fragile, and so the freshly released DNA from the 

endosomes has a more direct access to the nuclei of newly formed cells
131

. During 

differentiation, proliferative events are highly restricted, preventing macromolecules such as 

lipoplexes to penetrate cells
131

, and in fact, lipid-based transfection usually shows poor 

efficiency in post-mitotic neurons
132

, which could explain these results. Although these cells 

have not reached their final stage of differentiation, the majoritiy of the population is probably in 

a post-mitotic phase, preventing the lipoplexes from reaching their destination. Neurons should, 

nonetheless, be able to take up lipoplexes through fusion with the cell membrane, even though 

they are post-mitotic. However, this seems not to occur naturally. This is presumably due to 

their high sensitiveness to changes in culture conditions such as pH, osmotic pressure and 

temperature
132

. Also, the nature of their in vivo environment is highly restrictive in the uptake of 

exogenous molecules as a protective mechanism against external aggressions. Neurons may, 
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in this way, present themselves cell membranes that engage poorly in interactions with external 

molecules, especially with the size of lipoplexes. This may be the reason why the most effective 

transfection techniques on neurons so far, have been more invasive methods such as 

nucleofection, electroporation and biolistic gene transfer
132,133

. 

 

3.5. BDNF effect on the differentiation of ReN cells 

 

Non-transfected ReN cells were cultured during several passages using the conditions 

described in the section 2.5.2. In parallel, some non-transfected and transfected ReN cells (with 

LF/pcDNA3.1-BDNF lipoplexes) were subjected to differentiation. A positive control for BDNF 

effect on the process was created by adding 50 ng/mL of exogenous BDNF to selected cultures. 

Immunostaining analysis of the cultures was performed as described in section 2.8. The neural 

stem/progenitor marker Nestin was used to evaluate the multipotency of the culture. Astrocytic 

marker GFAP and neuronal marker Tuj1 were also used to detect the presence of these cell 

linages. The nuclear counter-stain DAPI was used as well to identify nuclei (Figures 3.5.1 and 

3.5.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.1 - Immunostaining of non-differentiated ReN cells. Neuronal cell marker Tuj1 and neural 

stem/progenitor cells marker Nestin are shown in red. The nuclear counter-stain DAPI in blue. Merged 

images are shown at the right. Scale bar is 50μm. 
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Figure 3.5.2 - Immunostaining of ReN cells transfected with BDNF and differentiated under standard 

conditions (A-D, M-O); non-transfected ReN cells differentiated with supplemented exogenous BDNF (E-H) 

and non-transfected ReN cells differentiated under standard conditions (I-L, P-R). The markers Tuj1 and 

Nestin are shown in red, GFAP in green and the nuclear counter-stain DAPI in blue. Scale bar is 50μm. 

 
 

 

Tuj1 is an antibody against the neuron-specific class III β-tubulin marker. It is present in all 

differentiation conditions, while being absent in non-differentiated cells (Figure 3.5.1) indicating 

that whichever method was used, neuronal phenotype cells were developed. While this marker 

does not allow for identification of the specific neuron type produced, the manufacturer´s 

protocol suggests ReN cells are readily able to differentiate into dopaminergic neurons
116

. One 

way to address this would be to use antibodies against specific proteins present in this class of 
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neurons, such as the transcription factor Nurr1, a receptor involved in the development, 

maturation and survival of DA neurons
134

. GFAP is mainly expressed in astrocytes. It is not 

possible to observe any kind of positive staining of this marker, although on some occasions, 

green staining could be observed (data not shown). This does not mean that differentiation into 

astrocytes was not achieved. It probably suggests that the immunostaining protocol used for 

astrocytes was not optimal, not allowing for drawing of any solid conclusions. Nestin is a neural 

progenitor cell marker, that is widely expressed both in transfected and non-transfected cells, 

showing a similar profile to the expression of this marker on non-differentiated cells, suggesting 

once more that the differentiation efficiency was very low, as the vast majority of the population 

still presents multipotency at the end of differentiation. Still, the lipofection process seems not to 

interfere with the differentiation process, rendering similar immunostaining profiles as the other 

conditions, rendering Tuj1-positive neurons. 

 

 

3.6. Qualitative analysis of neurites by ImageJ® software 

 

BDNF promotes neurite outgrowth and number of neurons, which has been proven on several 

occasions
84,86

. To evaluate this, a library of fluorescence microscopy pictures were analyzed 

using ImageJ® software, and through the plugin NeuronJ, total neurite and respective lengths 

were measured in each condition (see 2.10): transfected cells with BDNF; cells exposed to 

exogenous BDNF; control cells. The results are summarized on figure 3.6.1. 

 

A  B 

 

    

Figure 3.6.1 - Differentiated ReN cells cultured in either normal differentiation conditions (control), with 

supplemented BDNF (exo-BDNF) or transfected ReN cells with BDNF (pcDNA-BDNF) were 

immunostained against neuronal-marker Tuj1. Fluorescence microscopy images were analyzed and mean 

length of primary neurites (A) and  secondary neurites (B) were measured in each condition.  Results are 



60 

 

displayed as the mean ± SD of 19 independent measurements (n=19). Statistical differences are indicated 

with * for p < 0.05. 

 

Transfected cells seemed to have rendered slightly longer neurites than control cells (215μm vs 

160μm, respectively), but shorter than those exposed to the exogenous factor (215μm vs 251μm 

respectively). It is important to keep in mind that the differentiation process requires the addition 

of fresh medium every 3 days, which in the case of exo-BDNF samples means that those cells 

were exposed to a fresh dose of this factor every 3 days. On the other hand, transfected cells 

were only provided with fresh differentiation medium without any other exogenous factors, 

which means the outcome observed was derived solely on the BDNF secreted by these cells 

throughout the entire lifetime of the culture. While it is not possible to know for sure what caused 

a slight decrease in neurite outgrowth from transfected cells in relation to exo-BDNF exposed 

cells, one can hypothesize that (1) either the amount of BDNF released by transfected cells was 

not high enough to provide a more evident increase in neurite outgrowth, or (2) a depletion of 

the factor has occurred due to its uptake by the cells or by loss of function of the neurotrophin 

due to the high amount of time it has been present in culture, considering the first 2 days 

represent the peak of expression of the transgene. 

On the other hand, transfected cells seem to have rendered longer secondary neurites than 

either control or exo-BDNF cells. This suggests that BDNF may promote ramification of cells, 

which could translate in the generation of more connections with the surrounding cells, creating 

more communication routes within the neuronal network. One possible explanation to the 

generation of longer secondary neurites in transfected cells when compared to exogenous 

BDNF-exposed cells could be related to a more localized effect of the neurotrophin. BDNF is 

known to present both autocrine and paracrine signaling
135

. When the exogenous factor is 

added, widespread mixing of the medium allows all the cells in the culture to have access to the 

neurotrophin. In the transfection process, the presence of the factor in the medium results only 

from its secretion by transfected cells. In this case, immediate neighbor cells may benefit from 

the release of this neurotrophin through paracrine signalling, as well as the transfected cells 

themselves through autocrine signaling, leaving further localized cells unaltered by the lack of 

access to the neurotrophin. This may have altered the transcriptome of the positively affected 

cells, leading to the formation of more and longer secondary neurites. 

 

Therefore, these results suggest that BDNF, in fact, promotes neuronal outgrowth, and that 

even transient expression of this factor enhances the total neurite (both primary and secondary) 

length, compared to non-treated cells, being the differences significant and noted as early as 12 

days in culture. 

 

This is especially relevant since many neurological disorders results in neuronal impairment and 

severe alterations in cell morphology. Neural stem cells, able to release stable amounts of 
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neurotrophins such as BDNF, could promote the survival of damaged cells and enhance neurite 

outgrowth, leading to functional recovery of those cells. 

 

3.7. Glutamate toxicity evaluation by the Alamar blue assay 

Glutamate is the main neurotransmitter in the CNS. Nevertheless, when present in high 

concentrations, it is toxic to neurons
73

, and has been shown to reduce cell viability in neuronal 

cultures
136

. In order to evaluate glutamate toxicity, ReN cells were exposed to three solutions of 

different glutamate concentrations, and then, cell viability was assessed by the alamar blue 

assay (Figure 3.7.1). A concentration of 4mM glutamate was chosen for the next experiment. 

ReN cells within 12 days of differentiation induction were exposed to 4mM of glutamate for 2 

hours. After that, the glutamate-containing medium was replaced with conditioned medium and 

the cells were incubated for 24h in normal conditions. Conditioned medium is herein termed as 

3-day old differentiation medium containing BDNF secreted from transfected cells (with 

LF/pcDNA3.1-BDNF) and supplemented with fresh B27® supplement. In these assays, the 

respective test-mediums were diluted 1:1 with fresh differentiation medium, after 3h. 

 

A 

 

B  

Figure 3.7.1 - Relative fluorescence intensity at different time-points of differentiated ReN cell cultures 

exposed to different glutamate concentrations (A), and to 4mM glutamate and 3-day old conditioned 

medium (B). Values are the mean ± SD of 2 replicates. 

 

At 3h and 24h after glutamate exposure, cell viability seems to decrease in a concentration 

dependent manner, with higher glutamate concentrations affecting more negatively the 

population, which hints at the presence of glutamate-induced neuronal death. At 24h there is an 

increase in the fluorescence intensity of all cultures which may be explained by the fact that the 

3-day old medium was diluted 1:1 with fresh differentiation medium, which provided fresh 

nutrients to the culture, improving its cellular activity. 

ReN cells were then exposed to 4mM of glutamate for 2 h. After that, cells were incubated with 

conditioned media. The control was subjected to 3 day-old medium from non-transfected cells. 
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A 10% increase in fluorescence intensity from BDNF-conditioned media-exposed cells is 

observed in the first 3 hours. After 24h, the fluorescence intensity is similar to the control. The 

amount of BDNF present in the medium may have not been sufficient to provide a longer 

protection from the eventual glutamate-induced neurotoxicity. Also, the concentration of 

glutamate used may have been too high for BDNF to exert a relevant action. Nonetheless, the 

increase in fluorescence intensity from conditioned medium-exposed cells occurred in all three 

time-points, which suggests consistency in the data, which ultimately may indicate that the 

existing BDNF in the medium has protected the cells, especially neurons, from the harmful 

effects of this concentration of glutamate. To our best knowledge, this is the first time that it is 

provided evidence on the effect of BDNF on a human NSC culture after glutamate exposure.  

 

 

3.8. mRNA quantification by RT-PCR 

 

ReN cells were lipofected with BDNF as described earlier and harvested on the next day (“day 

1”). One day post-transfection, differentiation was induced on other cultures, and two days after 

that (3 days post-transfection) these cells were harvested (“day 3”). The expression of six genes 

were evaluated by RT-PCR: BDNF, IL-6, GFAP, β3-tubulin, Nestin and Sox2. The results are 

displayed below and the fold increase was calculated in relation to the expression of the 

housekeeping gene GAPDH (figure 3.8.1): 

 

A  B  
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Figure 3.8.1 - Relative fold-increase in gene expression of several genes in BDNF-transfected cells 

(compared to non-transfected cells), on days 1 and 3. Results are displayed for cell markers Nestin, 

GFAP, β3-tubulin and Sox2 on day 1 (A) and day 3 (B), for BDNF (C) and IL-6 (D). Values are the mean 

relative gene expression normalized with respect to endogenous GAPDH. Duplicates were run on ♦ 

 marked samples. 

 

From figure 3.8.2 multiple amplification products for βIII-tubulin are observed, reason why the 

relative value of gene expression this gene is masked by other non-specific amplification 

products, so the conclusions drawn from this must be carefully taken. In order to minimize the 

occurrence of non-specific products of RT-PCR, the protocol was modified (program 2, see 

section 2.11), and by day 3 all genes presented a unique band, with the fragments appearing 

with the correct length. 

 

A  
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B  

 

                                                             

Figure 3.8.2 - RT-PCR reaction products on days 1 (A) and 3 (B). The DNA ladders used were the 500bp 

ladder (Lonza®) and the HyperLadder 50bp (Bioline®), respectively. 

 

Both neural stem/progenitor and differentiated cell markers are down-regulated in transfected 

cells (figure 3.8.1). One day after transfection, cells are still in a recovering state, and are 

maintained in proliferative conditions, reason why Nestin and Sox2 should be extensively 

expressed. One day post-transfection, cells were exposed to differentiation conditions. Neural 

stem/progenitor cell markers should be then down-regulated, and an increase in lineage-

specific markers should be detected. The opposite seem to have occurred though. Neuronal 

progenitors have been shown to proliferate for several days after withdrawal of both EGF and 

FGF-2 mithogens
137

. This was related to the possible existence of a latent period through which 

cells must undergo before they actually exit the cell cycle and initiate the molecular mechanisms 

that lead to a committed-fate
137

, which could account for the low levels of Nestin and Sox2 

expression. 

 

Meanwhile, BDNF shows a 1,5 x 10
5
 fold-increase in its expression by day 1. This confirms the 

successful expression of the transgene on transfected cells. Such a high value of gene 

expression can be explained by the regulation of its activity by the strong CMV promoter. This 

promoter has been widely used on neural cell types, enhancing strong transcription of the 

transgene
4,94

. By day 3, the correct value of BDNF expression could not be evaluated since the 

difference in the Ct values returned differed on 5 units (23.18 and 18.85) which would strongly 

undermine the validity of the outcome. The selection of only one of the values would mean that 

either its expression was increased to 3x10
5 
 fold or decreased to 7x10

4
 fold, when compared to 

day 1. Although it is not possible to draw any conclusions from this, it is known that the 

transgene expression starts to decay with time
92

. In particular, transgenes under the control of 

the CMV promoter, as used in this work, have their peak of expression 1 to 2 days after 

administration, and then steadily decay during 1 to 2 weeks
130

, reason why this value should in 

theory, be lower than one day post-transfection. The vector used is a regular plasmid containing 



65 

 

♦ 
 

♦ 

0 

10 

20 

30 

40 

50 

60 

70 

R
e

la
ti

ve
 f

o
ld

 in
cr

e
as

e
 in

 g
e

n
e

 
e

xp
re

ss
io

n
 

Caspase7 

♦ 
 

♦ 
 

0 

10 

20 

30 

40 

50 

60 

70 

R
e

la
ti

ve
 f

o
ld

 in
cr

e
as

e
 in

 g
e

n
e

 
e

xp
re

ss
io

n
 x 

1
0

0
0

0
 BDNF 

unmethylated CpG motifs, which are known to trigger immune responses in the host, through 

the activation of the TLR9 receptor
95,138

. This potentially led to the increased expression of the 

pro-inflammatory cytokine IL6, whose expression is potentiated by the presence of the referred 

motifs
139

. While also the correct value of expression of this cytokine is not known at day 1 (since 

the Ct values returned differed on 5 units), by day 3 around a 300 fold-increase in its expression 

compared to non-transfected cells is observed.  The degradation of the plasmid and its overall 

dilution due to proliferation
92

 may suggest that by the first day post-transfection, its expression 

should be highly increased. In fact, using one of the Ct values results in a fold-increase IL-6 

expression of approximately 5746. For a more accurate assessment of the actual value of gene 

expression, the experiments returning significantly different Ct values should be repeated. 

 

Glutamate shows neurotoxicity, mediated by the induction of a calcium influx via NMDA (N-

methyl-D-aspartate) receptors. This triggers an appropriate response that comes along with 

glutamate-induced neuronal death
136

. In order to provide some insight about the effect of 

glutamate and BDNF on a differentiated ReN cell culture, differentiation was induced on ReN 

cells for 12 days. By the end of the differentiation protocol, long neuronal processes extended 

throughout the entire culture. A 2 hour-long exposure to 4mM of glutamate was performed by 

adding the appropriate amount of glutamate to the differentiation medium. After that, fresh B27® 

supplement was added to 3-day old differentiation medium and the mixture was added to the 

cells (herein termed “Glu” samples) for 24 hours. To test the effect of BDNF on glutamate-

induced neurotoxicity, after the exposure to glutamate, cells were incubated with 3-day old 

conditioned medium supplement with fresh B27®. This conditioned medium contains BDNF 

secreted by lipofected cultures with pcDNA3.1-BDNF.  

 

The expression of three genes were evaluated - caspase7, a gene activated upon cell death 

and an inducer of apoptosis; BDNF and β3-tubulin. The results are displayed on figure 3.8.3: 

 

 

A  B  
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Figure 3.8.3 - Relative fold-increase in gene expression of several genes in glutamate-exposed cells (Glu) 

and cells incubated with conditioned-media after glutamate exposure (Glu+BDNF) (compared to non-

exposed  control cells), at the 12
th

 day of differentiation. Results are displayed for Caspase7 (A), BDNF (B) 

and β3-tubulin (C). Values are the mean relative gene expression normalized with respect to endogenous 

GAPDH. Duplicates were run on ♦ marked samples. 

 

 

 

Figure 3.8.4 - Agarose gel of the RT-PCR reaction products. The DNA ladder used was the HyperLadder 

50 bp (Bioline®). 

 

 

This exposure to glutamate led to a major fold-increase in caspase7 activity (~40 fold), 

confirming extensive apoptotic cell death. On the other hand, cells that were later incubated in 

BDNF secreted by transfected cells seem to have been spared from the harmful effects of 

glutamate, reducing the expression of this pro-apoptotic protein to near-control levels. There is 

extensive evidence of the protective activity of BDNF from glutamate-induced neurotoxicity in 

cortical neurons
140,141

. However, the mentioned studies have only addressed this question when 

cells are pre-treated with the neurotrophin. Here, some evidence indicates that even after the 

aggression has occurred, BDNF can actually rescue or revert this toxicity in some way. 
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The mechanism of glutamate-induced neurotoxicity has been proposed to occur through the 

activation of the NMDA receptor by glutamate, which leads to a calcium influx into neurons, 

which in turn leads to formation of free radicals triggering neurotoxicity
141

. BDNF is known to 

promote calcium homeostasis, through the activation of genes that regulate calcium and free 

radicals metabolism
141,142

 as well as increasing the expression of the anti-apoptotic protein Bcl-

2
143

. So, glutamate-induced neurotoxicity may actually occur, even in the presence of BDNF, 

although, this neurotrophin may be able to protect neurons from further aggression by the 

activation of those protective genes within 24 h. On the other hand, BDNF also regulates the 

degree of phosphorylation and expression of the NMDA receptor units
144

, which is in theory, a 

quicker way to prevent calcium-influx due to NMDA activation by glutamate, which would 

explain the difference in the results observed within only 24 h. 

 

The BDNF gene is itself up-regulated when cells are exposed to glutamate alone. Despite the 

real value of gene expression being masked by non-specific products of amplification (figure 

3.8.4), BDNF seems to have been, to some degree, up-regulated in this situation. One 

explanation resides in the fact that glutamate, being the main excitatory neurotransmitter in the 

CNS, is ultimately closely related to the direct release of neurotrophins. In fact, BDNF and 

glutamate are closely inter-related and co-regulate one another. During pre-synaptic activity, 

BDNF enhances the release of glutamate, while the latter increase the transcription and 

secretion of the neurotrophin
144

. A direct relationship between glutamate exposure and 

consequent BDNF release has been reported
145

. Its expression decreases when conditioned-

medium is added to cells. Possible explanations include (1) the assumption that BDNF indeed 

prevented glutamate-induced toxicity, and in this sense, this agent did not trigger the release of 

higher amounts of the neurotrophin, although still enhancing its expression in some degree, or 

(2) BDNF, enhancing the release of glutamate, which in turn promotes the expression and 

secretion of the neurotrophin, partially regulates its own expression on a indirect way. These 

explanations are not mutually exclusive and may have taken place simultaneously.  

 

The exposure to a BDNF-containing medium increases β3-tubulin expression (~70 fold), which 

confirms that neuronal differentiation is promoted by this neurotrophin, which has been proven 

on several occasions
84,86,143

. As stated before, the differentiation efficiency was very low 

throughout this work. The addition of BDNF to the differentiation medium might help to improve 

its efficiency and in effect, may induce neuronal commitment.  

 

This experiment pretended to simulate an inflammatory environment that is common in 

neurological disorders such as ischemic brain injury
146

, ALS
147

 and AD
148

, where high 

concentrations of glutamate have been reported. In AD, damaged cells release high amounts of 

glutamate as they die, which overstimulates surrounding healthy cells, leading to a 

phenomenon called excitotoxicity. This eventually leads to widespread cell damage
148

. Neural 
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stem cells have been proven efficient vehicles of genes, with homing capacity and correct 

migration in vivo
35

. The results presented here may suggest that not only transfected cells with 

BDNF would benefit from its highly protective properties, but also other cells within that micro-

environment, which could be rescued from glutamate-induced neurotoxicity, even preventing 

healthy cells from this aggression. BDNF alongside many other neurotrophins such as NGF and 

NT-3 have had their highly beneficial effects proven
142

. However, the delivery of the functional 

proteins in an attempt to treat neurological disorders is greatly prevented by the BBB
83,149

. Ex-

vivo modification of neural stem cells to overexpress neurotrophins and other molecules of 

proven therapeutical interest could be a promising alternative.  

 

Besides gene silencing and plasmid degradation, which have been suggested to occur in this 

work, the lifespan of transplanted cells is also an important factor to keep in mind. These can 

range from 1 week for intestinal epithelial cells to lifelong established nerve cells
94

, such as 

CNS cells. In this sense, even though considering the abovementioned barriers to gene 

therapy, the high amount of transgene expression that has been shown to occur hints that this 

approach could be helpful in the recovery of milder cases of neurological disorders that are 

caused by the knockdown of fundamental genes or loss of function of specific proteins.  

 

It is important to highlight that glutamate is the major excitatory neurotransmitter in the CNS, 

and BDNF, being able to modulate its activity into a positive outcome through the cooperative 

interactions described, it might also provoke undesired responses such as blocking important 

synaptic pathways. Therefore, one should be careful in the analysis of these results, and in its 

hypothetic translation into clinical solutions. In gene therapy, for regenerative medicine 

applications lower and more stable levels of transgene expression are preferred. In this sense, 

a range of concentration/levels of expression of this neurotrophin should be determined, within 

which its activity would result in a desired outcome. 

 

A fair comparison between the three transfection methods used throughout this work is not 

possible since not all of them were efficiently optimized. Lipofection was the only method whose 

conditions have been used on both mouse and human neural stem cells, providing significantly 

different percentages of GFP-expressing cells - 8% and 35%, respectively. The typical doubling 

time of these cells were investigated, in order to provide some insight about the differences in 

the results emerging from those two cell lines. ReN cells have an estimated doubling time of 20-

30h
116

, while CGR8 have around 14 hours
150

. This presumably suggests that the main route of 

entry of liposomes into cells was not through membrane reorganization events during mitosis. 

CGR8 cells, presenting higher proliferation rates, should in theory, present higher transfection 

efficiencies. Liposomes also bind with cell surfaces through electrostatic interactions. These are 

dependent on the surface components of cell membranes, such as cell matrix components, 

phospholipids and glycoproteins
92

. In order to better understand why ReN cells seem to be 

more prone to lipid-based transfection than CGR8 cells, the composition of the cell membranes 



69 

 

of these cell lines should be an interesting parameter to take into account. On the other hand, 

upon internalization, lipoplexes must release the DNA, and the remaining journey of the plasmid 

may be quite different in both cell lines. In this sense, cellular uptake may not be the limiting 

step in the whole process, and it may show similar kinetic profiles on both cell lines. Upon 

lipoplex destabilization, DNA must diffuse through the cytoplasm, avoiding degradation, reach 

the nuclear membrane, where it must be transported into the nucleus and finally the 

transcriptional machinery must be activated for the transgene to be expressed
99,122

. However, 

live tracking of lipid-DNA complexes would be required for a correct judgement on the actual 

mechanism of transfection, which is beyond the scope of this work.  
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4. Conclusion and future trends 

 

Neural stem cells have a tremendous potential as the object of study of neurological disorders, 

through the establishment of neurological disease models. They can be used from a 

developmental biology of stem cells standpoint, and in regenerative medicine through gene and 

cell therapy, either as delivery agents of therapeutic molecules and/or for cell replacement. The 

use of NSC as therapeutic molecule delivery agents has raised hope for the treatment of certain 

neurological disorders, considering their capacity to stably express transgenes
89

, and their 

homing capacity into the adult brain
151

. Viral vectors remain the most efficient transfection 

method for stem cells, and in particular, lentivirus in the case of neural stem cells
151

, being most 

of the clinical investigation based on them. However, serious safety concerns arise from viral-

vectors, namely due to immune responses triggered by the host against viral particles and 

insertional mutagenesis
138

. 

 

 

Non-viral vectors may be an alternative in gene delivery, showing increased safety, with low 

tumorogenic potential
93

 however presenting a decreased efficiency when compared to their viral 

counter-parts. A successful non-viral gene delivery-based therapy should aim at overcoming the 

limiting steps of this approach. Clearly understanding the mechanisms of vector uptake by the 

cells would lead to higher transfection efficiencies. Non-virally transfected neural stem cells 

have also been showing promising results. GDNF-overexpressing neural stem cells were 

transduced through calcium phosphate technique. These cells integrated into the host striatum, 

expressing the transgene for at least 4 months, resulting in protection of dopaminergic neurons 

from degeneration
152

. The in vivo administration of therapeutic molecules faces major issues 

such as non-specific targeting, loss of function through protein destabilization and decreased 

bioavailability as a result of poor interaction with the desired cells or tissues. Ex-vivo 

modification of cells, on the other hand, gives researchers a greater control of the system, 

allowing for the manipulation of the desired cells only. Furthermore, the timing and amount of 

transgene expression may be susceptible of tight control through the use of adequate 

systems
115

. 

 

The aim of this work was the overexpression of the brain-derived neurotrophic factor in neural 

stem cells, through non-viral gene delivery strategies. Human neural stem cells were 

successfully microporated (~20% GFP-expressing cells), while maintaining 70% cell viability. 

On the other hand, both mouse and human neural stem cells were effectively transfected with 

Lipofectamine® 2000 (8% and 35% GFP-expressing cells, respectively), while maintaining 70-

80% cell viability, which constitute promising results in comparison to the available literature. 

Furthermore, transfected cells were able to differentiate properly, while however, the efficiency 
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of the differentiation remained relatively poor. BDNF-transfected human neural stem cells were 

able to provide neurons with longer primary and secondary neurites, while also promoting 

neuron ramification, when compared to non-transfected cells.  

 

Neurotoxicity was induced in a differentiated human neural stem cell culture by the addition of 

glutamate. A slight, but consistent decrease in cellular activity was caused by the exposure to 

this agent. Secreted BDNF from transfected cells was able to prevent a decrease in cellular 

activity upon glutamate exposure for the first 3 hours. mRNA quantification by real-time PCR 

allowed for the observations that secreted BDNF was indeed, able to reduce drastically 

apoptotic cell death events on glutamate-exposed cells, as well as promoting neuronal 

differentiation through the up-regulation of neuronal cell-marker Tuj1. 

 

Interesting experiments to be performed would include the exposure of transfected cells to 

glutamate. This would provide insight about the behavior of these cells faced with glutamate-

induced toxicity, in comparison to non-transfected cells exposed to the neurotrophic factor upon 

the aggression. The evaluation of the paracrine effect of BDNF could be performed through 

NSC culture on plastic inserts containing permeable membranes. This would allow non-

transfected cells to co-exist in the same environment (i.e, media) as transfected cells, while not 

directly interacting with each other. Finally, important measurements would include protein 

quantity assessment in the media. This could be performed through ELISA kits using a specific 

antibody against the human-BDNF protein, or through western blotting. 

 

The conversion of neural stem cell potential into an effective cell-therapy reality must overcome 

fundamental issues. For one, the determination of the signaling pathways and the major 

molecules in the process that regulate proliferation, differentiation and migration of these cells is 

of the utmost importance. In order for the transplanted cells to reproduce known differentiation 

profiles and kinetics in vivo, the adequate chemical cues behind this mechanism should be 

known. Another problem relates to the immune rejection upon transplant. Overcoming this issue 

would require autologous transplants to be a viable option. However, the isolation of NSC from 

the adult brain and achieving meaningful cell numbers through in vitro culture still remains 

challenging. In addition to that, the use of genetically engineered stem cells is still in its infancy, 

mainly due to concerns about their safety. 

 

Regardless of the abovementioned imposed problems, there is no doubt that a tremendous 

progression in the mechanisms of neural developmental biology have been made. A quite vast 

repertoire of evidence has provided meaningful insight into the nature of NSC as clinically 

valuable products for cell and gene therapy, resulting in very promising outcomes in a wide 

variety of severe neurological disorders models. Neural stem cell biology can be considered 

nowadays a solid research field, which integrated within the gene delivery and regenerative 

medicine fields certainly withholds a promising future. 
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Appendix 

 

 

Supplementary figure S1 - Sequencing results, showing 738 matching nucleotides, confirming correct 

cloning of the desired gene into the pcDNA3.1 plasmid. BDNF nucleotide sequence is highlighted in blue. 

23 nucleotides are missing in the sequencing results due to incomplete sequencing. By using a reverse 
primer with a sequence downstream of BDNF we were able to confirm the correct type of the 
initial base pairs. Both primers were designed by the company StabVida® according to the type 



XXIII 

 

of plasmid in use (pcDNA3.1). The obtained sequence perfectly matched with the sequence 
showed below that was provided by the supplier company (Origene®). 
  
 

 

 

 

BDNF nucleotide sequence 

 

5´ATGACCATCCTTTTCCTTACTATGGTTATTTCATACTTTGGTTGCATGAAGGCTGCCCCCATGAAAGA

AGCAAACATCCGAGGACAAGGTGGCTTGGCCTACCCAGGTGTGCGGACCCATGGGACTCTGGAGAG

CGTGAATGGGCCCAAGGCAGGTTCAAGAGGCTTGACATCATTGGCTGACACTTTCGAACACGTGATA

GAAGAGCTGTTGGATGAGGACCAGAAAGTTCGGCCCAATGAAGAAAACAATAAGGACGCAGACTTGT

ACACGTCCAGGGTGATGCTCAGTAGTCAAGTGCCTTTGGAGCCTCCTCTTCTCTTTCTGCTGGAGGAA

TACAAAAATTACCTAGATGCTGCAAACATGTCCATGAGGGTCCGGCGCCACTCTGACCCTGCCCGCC

GAGGGGAGCTGAGCGTGTGTGACAGTATTAGTGAGTGGGTAACGGCGGCAGACAAAAAGACTGCAG

TGGACATGTCGGGCGGGACGGTCACAGTCCTTGAAAAGGTCCCTGTATCAAAAGGCCAACTGAAGCA

ATACTTCTACGAGACCAAGTGCAATCCCATGGGTTACACAAAAGAAGGCTGCAGGGGCATAGACAAA

AGGCATTGGAACTCCCAGTGCCGAACTACCCAGTCGTACGTGCGGGCCCTTACCATGGATAGCAAAA

AGAGAATTGGCTGGCGATTCATAAGGATAGACACTTCTTGTGTATGTACATTGACCATTAAAAGGGGA

AGA 3´ 
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Supplementary figure S2 - Flow cytometry profiles of the ReN cells transfected with GFP at different time 

points, using the wider gate.   

 
 

 

 

 

 

 

 

 

 

 

 

 

Supplementary figure S3 - Flow cytometry profiles of the ReN cells transfected with GFP at different time 

points, using the smaller gate.   
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Supplementary figure S4 - Fold-increase in BDNF expression at the 3
rd

 day of culture, using a Ct of 23.3 

(A) or a Ct of 18.8 (B). Both Ct values were returned in the same experiment within one sample, although 
none were used to prevent an inaccurate analysis. 

 

 

 

A  B  

 

Supplementary figure S5 - Fold-increase in IL-6 expression at the 1
st
 day of culture, using a Ct of 38.3 

(A) or a Ct of 32.6 (B). Both Ct values were returned in the same experiment within one sample, although 
none were used to prevent an inaccurate analysis. 
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