
André Miguel Augusto Gonçalves

Licenciado em Engenharia Informática

Estimating Data Divergence in Cloud
Computing Storage Systems

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Orientador : Nuno Manuel Ribeiro Preguiça,
Professor Auxiliar,
Universidade Nova de Lisboa

Co-orientador : Rodrigo Seromenho Miragaia Rodrigues,
Professor Associado,
Universidade Nova de Lisboa

Júri:

Presidente: Prof. Doutor João Seco

Arguente: Prof. Doutor Luís Veiga

Vogal: Prof. Doutor Nuno Preguiça

Setembro, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/157627526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

Estimating Data Divergence in Cloud Computing Storage Systems

Copyright c© André Miguel Augusto Gonçalves, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

À Milu.

vi

Acknowledgements

I would like to thank my advisor, professor Nuno Preguiça, not only for the opportunity
to develop this thesis, but also for all the availability, help and support in seeing it to
good end. Thanks also to my co-advisor, professor Rodrigo Rodrigues, for the chance
for this work to become a part of the project “Towards the dependable cloud: Building
the foundations for tomorrow’s dependable cloud computing”. This work was partially
funded by project PTDC/EIA-EIA/108963/2008 and by an ERC Starting Grant, Agree-
ment Number 307732, to which I would like to thank. Many thanks also to Valter Balegas
for all the help and suggestions. Thanks to my college, Faculdade de Ciências e Tec-
nologia, especially Departamento de Informática, my department, which has become my
second home in these last five years. Thanks to my colleague friends who traveled this
path with me, particularly João Silva, Lara Luís, Helder Martins, Laura Oliveira, Joana
Roque and Diogo Sousa, for all the support, ideas, discussions, and most of all, compan-
ionship, during this last year.

I would also like to thank my “brother from another mother” Pedro Cardoso, for al-
ways believing in me and sticking with me through thick and thin since always. Thanks
also to my academic goddaughters, friends, and great listeners, Rita Pereira and Andreia
Santos, who supported me since the very beginning of this thesis. Special thanks to my
group of friends, Pedro Almeida, Tiago Chá, Ricardo Neto, Pedro Verdelho, Flávio Mor-
eira, Sasha Mojoodi, Gonçalo Homem, Sandro Nunes, Daniela Freire, Carlos Realista and
Diana Patacão, for the much needed breaks from work, support, patience, and friendship,
providing me a great deal of encouragement to proceed with my ordeals.

Last but not least, major thanks to my parents, without whom I would not have been
able to complete this journey and be the man I am today, I owe all of this to them both.

vii

viii

Abstract

Many internet services are provided through cloud computing infrastructures that
are composed of multiple data centers. To provide high availability and low latency, data
is replicated in machines in different data centers, which introduces the complexity of
guaranteeing that clients view data consistently. Data stores often opt for a relaxed ap-
proach to replication, guaranteeing only eventual consistency, since it improves latency
of operations. However, this may lead to replicas having different values for the same
data.

One solution to control the divergence of data in eventually consistent systems is
the usage of metrics that measure how stale data is for a replica. In the past, several
algorithms have been proposed to estimate the value of these metrics in a deterministic
way. An alternative solution is to rely on probabilistic metrics that estimate divergence
with a certain degree of certainty. This relaxes the need to contact all replicas while still
providing a relatively accurate measurement.

In this work we designed and implemented a solution to estimate the divergence of
data in eventually consistent data stores, that scale to many replicas by allowing client-
side caching. Measuring the divergence when there is a large number of clients calls for
the development of new algorithms that provide probabilistic guarantees. Additionally,
unlike previous works, we intend to focus on measuring the divergence relative to a state
that can lead to the violation of application invariants.

Keywords: cloud computing, geo-replication, eventual consistency, bounded diver-
gence, probabilistic metrics

ix

x

Resumo

Muitos serviços na internet são fornecidos através de infraestruturas de cloud compu-
ting, que são compostas por múltiplos centros de dados. Os serviços na internet depen-
dem de sistemas de armazenamento que são implantados nestas infraestruturas. Para
providenciar alta disponibilidade e baixa latência, os dados são replicados em máqui-
nas em diferentes centros de dados, o que introduz a complexidade de garantir que os
clientes veem os dados de forma consistente. Os sistemas de armazenamento optam fre-
quentemente por uma abordagem relaxada à replicação, garantindo consistência fraca, já
que esta melhora a latência das operações. No entando, isto pode fazer com que réplicas
fiquem com valores diferentes para os mesmos dados.

Uma solução para controlar a divergência dos dados em sistemas fracamente con-
sistentes é o uso de métricas que medem o quão desatualizados estão os dados numa
réplica. No passado, vários algoritmos foram propostos para estimar o valor destas mé-
tricas de forma determinista. Uma solução alternativa é usar métricas probabilísticas
que estimam a divergência com um certo grau de incerteza. Isto relaxa a necessidade
de contactar todas as réplicas, mas ainda providenciando uma medida de divergência
relativamente precisa.

Neste trabalho desenhou-se e implementou-se uma solução para estimar a divergên-
cia de dados em sistemas de armazenamento de consistência fraca, que escalam para
muitas réplicas por permitirem caching do lado do cliente. Medir a divergência quando
existe um elevado número de clientes exige o desenvolvimento de novos algoritmos que
forneçam garantias probabilísticas. Adicionalmente, e ao contrário de outros trabalhos,
nós queremos focar-nos em medir a divergência relativa a um estado que possa dar aso
a que invariantes da aplicação sejam quebradas.

Palavras-chave: cloud computing, geo-replicação, consistência eventual, divergência
limitada, métricas probabilísticas

xi

xii

Contents

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Proposed Solution . 3

1.4 Contributions . 4

1.5 Organization . 5

2 Related Work 7

2.1 Data Stores and Replication Basics . 7

2.2 Consistency Levels . 9

2.2.1 Strong . 9

2.2.2 Per-key Sequential . 10

2.2.3 Snapshot Isolation . 10

2.2.4 Causal . 11

2.2.5 Eventual . 12

2.3 Guarantees in Eventually Consistent Systems 12

2.3.1 Session Guarantees . 13

2.3.2 Bounded Divergence . 14

2.4 Systems that Enforce Consistency Levels . 16

2.4.1 PNUTS . 16

2.4.2 Megastore . 17

2.4.3 COPS . 17

2.4.4 Walter . 19

2.4.5 Spanner . 20

2.4.6 Gemini . 21

2.4.7 Comparison . 21

2.5 Bounded Divergence Systems . 22

2.5.1 TACT . 22

xiii

xiv CONTENTS

2.5.2 Mobisnap . 23
2.5.3 Exo-Leasing . 24
2.5.4 Mobihoc . 25
2.5.5 Probabilistically Bounded Staleness for Practical Partial Quorums . 26
2.5.6 Consistency Rationing . 27
2.5.7 Comparison . 28

3 Estimating and Bounding the Divergence 31
3.1 System Model . 31

3.1.1 Adding the Estimates . 32
3.2 The Metrics . 33
3.3 Estimating the Divergence . 35

3.3.1 Estimating With the Rhythmic Model 36
3.4 Bounding the Divergence . 38

3.4.1 Bounding With the Rhythmic Model 39
3.4.2 Preserving Integrity Constraints . 39

3.5 Architecture . 40
3.5.1 Generator Component . 41
3.5.2 Estimator Component . 42
3.5.3 Communication Between Components 42
3.5.4 The API . 42

4 Implementation 47
4.1 The Simulator . 47
4.2 The System . 49

4.2.1 Big Brother . 50
4.2.2 Messages . 50
4.2.3 Components . 52
4.2.4 Nodes . 54

5 Evaluation 61
5.1 The Benchmark . 61

5.1.1 TPC-W . 62
5.1.2 Benchmark Configuration . 64
5.1.3 Tests . 65

6 Conclusion 77
6.1 Future Work . 79

List of Figures

2.1 Snapshot isolation example. The writes of T1 are seen by T3, but not by T2,
since T2 reads from a snapshot prior to T1’s commit (Taken from [SPAL11]) 11

2.2 Graph showing the causal relationship between operations at a replica. An
edge from a to b indicates that a ; b, or b depends on a (Taken from [LFKA11]) 12

2.3 Megastore’s architecture (Taken from [BBCFKLLLLY11]) 18

2.4 Different views of the system for different replicas (Taken from [SVF07]) . 25

3.1 Distributed system model with client-side caching of data 32

3.2 Example of the metrics behavior. Represented are two replicas of an inte-
ger object, as well as the single-copy for the object 34

3.3 System architecture, composed by two components, a generator and an
estimator . 41

4.1 Diagram representing communication in the system 52

4.2 Simplified class diagram with the relations between nodes and components 55

5.1 TPC-W database schema (Taken from [Cou02]) 63

5.2 Extract of a simulation run, at a time when the client is making an opera-
tion that would break the invariant . 66

5.3 Evolution of the real value of the stock, in simulations with different num-
bers of clients . 67

5.4 Evolution of the real value of the stock, when using the forecasting library,
for 100 clients . 68

5.5 Percentage of operations executed locally, for different numbers of clients 69

5.6 Evolution of the real value of the stock, using batching to propagate updates 70

5.7 Percentage of operations executed locally, for different propagation tech-
niques . 71

5.8 Evolution of the real value of the stock with different times between coor-
dination of the components . 72

xv

xvi LIST OF FIGURES

5.9 Evolution of the real value of the stock, where each client performs an
operation every 2.5 seconds . 72

5.10 Percentage of operations executed locally, for different times between bench-
mark operations . 73

5.11 Evolution of the real value of the stock, with a restock amount of 100 . . . 74
5.12 Percentage of operations executed locally, for different restock amounts . 74

List of Tables

2.1 Comparison of features between systems 22
2.2 Comparison of features between bounded divergence systems 29

5.1 Description of TPC-W operations (Adapted from [Bal12]) 62
5.2 Complexities and message sizes for both models 75

xvii

xviii LIST OF TABLES

Listings

4.1 Task creation . 48
4.2 Periodic task creation . 48
4.3 udpSend example . 49
4.4 tcpSend example . 49
4.5 storePut method with the merging of CRDTs 56
4.6 Client-side storePut . 57
4.7 Method to make a synchronized request to the data center. 58
4.8 onReceive method that processes a RequestMessage sent by a client. . 59

xix

xx LISTINGS

1
Introduction

1.1 Context

The Internet has become a popular way to provide several services, from file storage and
sharing, to collaborative editing and social networking. These services are usually sup-
ported by global computing infrastructures, often called cloud computing infrastructures.
Many of these services have become a big part of people’s lives, being used in a daily ba-
sis in all kinds of devices, from desktop computers, to mobile phones, tablets and laptops,
and often at the same time.

An important component of cloud computing infrastructures is the storage system to
store application data. These systems take care of the complexity of storing and manag-
ing data in a large number of distributed computing resources. Applications only worry
about storing data and retrieving it.

As such, these cloud storage systems must guarantee that the data is accessible, that
the system can scale to many users/large amounts of data, and can keep working despite
software and hardware failures. Due to all of this, data in this kind of distributed sys-
tems is often replicated across several servers, which are often very far apart, in different
data centers, in different countries and even continents. This geo-replication, however, is
transparent to the user.

With data being replicated in several locations, when clients update data in one loca-
tion, other locations have to be updated with the new value, or else they become stale.
This propagation of updates may be done synchronously to all replicas when data is
changed, blocking the clients’ access to data, or it may be done lazily, with updates being
propagated asynchronously after the result is returned to the client. The first approach
guarantees that the client sees the same data independently of the contacted replica, but

1

1. INTRODUCTION 1.2. Motivation

needs more communication, and therefore, increases the latency of the system. The latter
approach eases the problem of latency, but may result in the client seeing data that is not
up to date, because replicas may have different values for the same data, or updates may
have not reached a certain replica yet. This problem is even more complex if the storage
system allows clients to concurrently modify different replicas of the same object. In this
case, concurrent updates need to be merged to guarantee that replicas evolve to the same
state.

As the well-known the CAP theorem states, a distributed system cannot provide con-
sistency, availability and partition tolerance at the same time, at most it can provide two
of those properties [Bre00; GL02]. As partition tolerance cannot be avoided in cloud com-
puting infrastructures, the choice in these storage systems is between consistency and
availability.

Many distributed storage systems, like Amazon’s Dynamo [DHJKLPSVV07] or Bayou
[TTPDSH95], opt for the approach of letting replicas converge eventually in order to favor
high availability. This allows users to access any replica for reads and writes without
coordination with other replicas, making the system highly available. High availability
is important because downtime decreases the usage and profitability of services [LM06;
GDCCSXDSLLL12].

The divergence among data replicas is a problem in many popular systems where
replicas converge only eventually. Replicas being updated with different values leads to
conflicts, and late propagation of updates may cause clients to have a stale view of the
system.

1.2 Motivation

Data management in cloud infrastructures is approached using different solutions. While
some systems provide a strictly synchronous approach, like Google’s Spanner [Cor+12],
others provide a completely asynchronous replication model where replicas can be up-
dated without coordination, like Sporc [FZFF10]. A number of systems lie in-between,
providing client views that exhibit some degree of guarantees, for example: guarantee-
ing that all causal dependencies are observed [LFKA11], showing a consistent view of
data at some given moment in time [SPAL11], or guaranteeing different synchronization
mechanisms for different operations [BBCFKLLLLY11; LPCGPR12].

All systems that provide some form of relaxed consistency experience the problem
of replica divergence. Several mechanisms have been proposed to provide guarantees
about the data clients access. Session guarantees [TDPSTW94] guarantee that the client’s
view of the system evolves in a systematic way, even if not always completely consistent.
Other techniques limit data divergence, by allowing clients to be able to make operations
that will not conflict with any others for sure [PMCD03; STT08], or by establishing certain
bounds in terms of the updates or staleness of observed data, by using metrics to measure
how different replicas are [YV02; SVF07].

2

1. INTRODUCTION 1.3. Proposed Solution

In the latter approach, it is necessary to define divergence metrics that can be used by
a node to estimate the divergence between its local replica and the state of other replicas.
The algorithms to bound these metrics are usually deterministic [YV02; SVF07], so if there
is a given threshold for a metric, it is guaranteed that the metric is kept under that value.
This often implies communication between many replicas. As such, it is unrealistic to
use such algorithms for systems that scale to many replicas. Recently, techniques have
been proposed to bound staleness in a probabilistic way, guaranteeing that probably the
value of the metric is less than a given threshold [BVFHS12]. This relaxes the previous
constraint of having to contact a large number of replicas.

Furthermore, these metrics are usually defined on the value of data maintained by
applications – either using absolute or relative values. Although this approach is impor-
tant, applications also need to know how close they are to break application invariants. In
this case, it would be interesting to define divergence metrics that could directly estimate
this situation. For instance, in an on-line shopping application where an account can
have several billing sources, it would be useful to guarantee that the total of purchases
does not go over a certain threshold. One system provides probabilistic guarantees that
these invariants are kept [KHAK09]. However, these guarantees are provided at the data
centers, by changing the consistency level of operations at runtime. There are no solu-
tions yet that measure and bound the divergence of replicas with respect to application
invariants.

1.3 Proposed Solution

The goal of this work was to design and implement a solution for estimating and bound-
ing the divergence of data in cloud computing storage systems. In a scenario where
a large number of clients can cache data and perform operations locally on that data,
known algorithms to measure and bound this divergence cannot be used, because of the
amount of communication required. With this in mind, we designed an approach where
clients can estimate how divergent they are from the actual state of the object. Clients
can also obtain probabilistic guarantees that no application invariants are broken when
executing an operation locally.

This approach is based on divergence metrics. We used metrics defined in previous
systems: a value metric, which measures how divergent in numeric value a replica is,
and an operations metric, which measures how many operations made by other replicas
have not been seen. In order to estimate the value of these metrics, statistics are gathered
about the evolution of objects’ values and number of operations executed. These statistics
are used to predict how divergent the client is for each metric. Statistics are generated on
the data centers, and propagated to the clients. The estimate has an associated certainty
degree. Bounds are placed on these metrics, and when the client estimates have low
confidence that the bounds are kept, coordination is started with the data center to obtain
the latest updates and reduce its divergence.

3

1. INTRODUCTION 1.4. Contributions

Our approach allows mapping application invariants to metrics’ bounds. In this way,
clients can represent application invariants as bounds for the metrics, and guarantee
probabilistically that invariants are kept, as long as the bounds are respected.

The approach is defined in generic terms, and can be realized in different ways. We
present a model that realizes this approach, which we call the rhythmic model. This
model gathers statistics as a simple rate of how the object grows, and uses it in combi-
nation with a Poisson distribution to obtain the certainty degree of the estimates, and
to estimate the probability that the bounds/invariants are kept. While simple to under-
stand, this model can be implemented with low time complexity, and provides accurate
estimates. Another possible way of realizing this approach is by using advanced fore-
casting models [MWH08] to predict the state of the objects.

We present a design of the system as a middleware composed of two components that
interact with one another: a generator component, on the data center’s side, and an esti-
mator component, on the clients. These components are placed between the application
and storage layers. On a new update in the server, the generator updates the statistics
about the object. Periodically, the generator component sends statistics to the estimator.
When the client performs operations, the estimator uses the statistics to check if bounds
are kept. If no coordination is needed, the operation is executed locally, otherwise the
estimator tells the client the operation cannot be done locally.

In order to access these components, we defined an API. The API allows several op-
erations, such as:

• setting the metric bounds or invariants for a certain object;

• check if an operation can cause an invariant to be broken;

• adding new statistics about an object;

To validate our approach, we implemented it in a simulator of a distributed system. A
simulator allows us to obtain the real divergence of a replica, which is not obtainable in a
real system. This is important to test the precision of our estimates. Besides precision, we
also wished to test how our approach avoids communication while allowing operations
to be executed at clients. We evaluated our rhythmic model, as well as an implementation
with the advanced forecasting techniques.

1.4 Contributions

The contributions of this work are:

• A metric-based approach for estimating and bounding the divergence of data in
eventually consistent storage systems;

• A method for probabilistically guaranteeing application invariants are kept;

4

1. INTRODUCTION 1.5. Organization

• A model that realizes this approach, representing the evolution of objects as growth
rates;

• A proof-of-concept implementation of this approach, with the defined model and
other forecasting techniques;

• An evaluation of the precision of the estimates using a standard benchmark, TPC-
W.

1.5 Organization

This report is organized as follows: chapter 2 presents the current work done in the
field, introducing replication techniques, consistency levels, eventually consistent sys-
tems’ guarantees and bounding divergence techniques, as well as providing an overview
of data store systems that enforce several levels of consistency or that bound divergence
in some way; in chapter 3 the full approach and system design are described; in chapter
4 the estimates’ system implementation is detailed, and in chapter 5 an analysis on its be-
havior is made; chapter 6 sums up the conclusions we took from this work, and discusses
future work.

5

1. INTRODUCTION 1.5. Organization

6

2
Related Work

2.1 Data Stores and Replication Basics

Cloud storage systems are data stores that are distributed, replicated through many stor-
age hosts (frequently called nodes). As such, many of the basic mechanisms and concepts
they employ come from data stores. This section introduces such concepts, as well as
some specifics from distributed stores and a brief overview of replication.

Data Stores

Types There are two main types of data stores: Relational Database Management Systems
(RDBMSs), and NoSQL (“not only SQL”). RDBMSs are database systems that are based
on the popular relational model [Cod70]. In this model, information is represented in
terms of tuples, which are related through relations. These systems commonly use the
Structured Query Language (SQL) [CB74] to manage data, or a language with similar se-
mantics. NoSQL data stores are stores that do not employ the relational model. The most
common model used by these stores is the key-value model, which is a simple model
where data has a key that identifies it, and is stored as a value [DHJKLPSVV07; LFKA11].
Data is managed with two simple operations that work with keys, one for accessing data,
and one to update it. RDBMSs are more expressive, but representing data is also more
complex, while NoSQL stores present a simple model, but less expressiveness. Some
systems present a hybrid between both approaches, in what is called a semi-relational
model [BBCFKLLLLY11; Cor+12].

7

2. RELATED WORK 2.1. Data Stores and Replication Basics

Operations There are two kinds of operations, independently of the store’s type: write
operations, that add or change data in the system, and read operations, that access stored
data. In key-value stores these are generally called put and get, respectively.

Transactions A transaction is a sequence of operations that is atomic (either all opera-
tions complete sequentially with success, or none of them have any effect on the data),
consistent (changes the data in a correct way), isolated (it must appear that a transaction
either happened before or after another) and durable (after a transaction completes, its
changes to the data are permanent). These properties are referred to as ACID semantics.
If a transaction completes, it is committed. If it failed, it is aborted.

Timestamps To order operations (or transactions) and detect concurrency, timestamps
are used. However, in a distributed system, clocks cannot be synchronized, so operations
cannot be stamped with the replica’s clock. A common solution to detect concurrency
between operations is the usage of a version vector for each object [PPRSWWCEKK83].
Each replica has a vector, with the last version of the object it saw from all other replicas.
When a replica updates the object, it increments its own version in the vector. When
replicas synchronize, the vectors are exchanged and compared. If more than one replica
changed its version, the operations made are concurrent.

Quorums Some distributed stores use quorum systems to serve reads and writes. For
each object, there is a quorum system, composed of N replicas [Vog09]. R replicas are the
read quorum, and W replicas are the write quorum. When a read is made, all replicas in the
read quorum are contacted, and the most recent value among replicas is returned. When
a write is made, the operation is sent to the replicas in the write quorum, and only when
allW acknowledge the write, is the write considered successful. In strict quorum systems,
W + R > N , which means the read and write quorums overlap, guaranteeing reads see
the most recent value [BVFHS12]. Systems where W + R ≤ N are called partial quorum
systems.

When operations are performed in a quorum system, the replicas in the quorum must
reach an agreement in what the operation returns to the client. Paxos is the most used
algorithm that solves this consensus problem [Lam98]. Paxos is frequently used to imple-
ment state-machines [BBCFKLLLLY11; Cor+12].

Replication

In a distributed data store, data is replicated among many nodes to guarantee fault-
tolerance. There are different replication models for each dimension of replication sys-
tems [SS05].

Coordination Replication can be synchronous or asynchronous. Synchronous (or pes-
simistic) replication makes replicas coordinate to get the same actual data, and implies

8

2. RELATED WORK 2.2. Consistency Levels

some communication overhead. In asynchronous (or optimistic) replication, updates are
propagated in the background, not needing a priori synchronization, relaxing the con-
straints of conflict handling.

Update types Data can be propagated to other replicas in two ways: either by sending
the state at which the object is, or by sending the last operations made to the object. If
the object is larger than the operations’ log, sending the state requires larger messages, or
more messages to send the whole object. However, propagating operations may be more
complex for the receiving replicas, that have to apply the operations to their local copy.

2.2 Consistency Levels

An important aspect in a replicated system is the level of consistency it provides to clients.
For supporting fault-tolerance and low latency, it is common that the replicas of the sys-
tem diverge temporarily. It is up to the system’s algorithms to determine how the state
of the replicas are updated and what is the state that can be observed by the clients.
Keeping this in mind, systems may provide different consistency levels, that is, a system
may provide stronger consistency guarantees, providing clients with a consistent view
of the object at all times, or may relax those guarantees, causing the view to be stale or
inconsistent at times. Stronger models of consistency require coordination for the execu-
tion of operations, which can lead to delays or aborted operations. Weaker models allow
replicas to diverge, but require the system to include a conflict-resolution mechanism to
guarantee the eventual convergence of all replicas.

This section presents the main consistency models usually provided by distributed
systems.

2.2.1 Strong

Strong consistency, also known as single-copy consistency, is the consistency level that
provides a semantic similar to a system with a single replica. A system is strongly con-
sistent if clients always see the current state of an object, as if there is only one server,
serializing the operations. Frequently, the access to an object is blocked until all replicas
are at the same state for that object.

There are two common strong consistency semantics: linearizability [Lam86] and se-
rializability (also referred to as sequential consistency) [Lam79]. Originally these concepts
were in regard to shared memory registers, but were generalized to arbitrary shared ob-
jects by Herlihy and Wing [HW90] and are explained next, as seen in [CDKB11].

Linearizability

A replicated system is linearizable if for any execution there is some interleaving of all
operations issued by clients that satisfies the following criteria:

9

2. RELATED WORK 2.2. Consistency Levels

• The interleaved sequence of operations meets the specification of a (single) correct
copy of the objects.

• The order of operations in the interleaving is consistent with the real times at which
the operations occurred in the actual execution.

The second part of the definition makes linearizability the ideal model in an ideal
world. The real-time guarantee makes operations made by clients consistent with the
single correct copy of the object as they occur. The problem with this is that clock syn-
chronization is often not as precise as desired, making this consistency level hard to pro-
vide.

Serializability

A replicated system is serializable (or sequentially consistent) if for any execution there
is some interleaving of all operations issued by clients that satisfies the following criteria:

• The interleaved sequence of operations meets the specification of a (single) correct
copy of the objects.

• The order of operations in the interleaving is consistent with the program order in
which each individual client executed them.

Sequential consistency grants a relaxation in terms of the interleaving. Lightening
the real-time property makes it a weaker model, but as the order of clients’ executions is
kept, the view the client obtains is always consistent with the idea of a single correct copy
of the objects.

2.2.2 Per-key Sequential

Per-key sequential consistency is a further relaxation of sequential consistency. This
model guarantees serializability at an object-level, that is, instead of a global ordering
of all operations, there is an order for the operations of each object. This means each
replica applies the same updates in the same order for that object [CRSSBJPWY08].

This level guarantees that a client always views an object at a consistent state, but the
global ordering of operations across all objects may not be consistent with the order in
which each individual client executed them, and the state observed across a set of objects
might not be consistent.

2.2.3 Snapshot Isolation

Snapshot isolation is a database isolation level. This level guarantees that a transaction
will read a consistent state, that corresponds to the values that were in the database up to
the start of the transaction [BBGMOO95]. Two transactions conflict if both write the same
data element. Figure 2.1 represents this in a simple way.

10

2. RELATED WORK 2.2. Consistency Levels

T1 T3
T2

storage stateT1 T2 T3

snapshot that
T3 reads from

time when all writes
of T3 are applied

Figure 2.1: Snapshot isolation example. The writes of T1 are seen by T3, but not by T2,
since T2 reads from a snapshot prior to T1’s commit (Taken from [SPAL11])

Many geo-replicated data stores provide the guarantee that a client may access a con-
sistent view of the system as it was in a specific time in the past, or for a certain ver-
sion of the object (sometimes called snapshot reads) [BBCFKLLLLY11; SPAL11; Cor+12].
Therefore, snapshot isolation (or consistency), is frequently regarded as a consistency
level [CRSSBJPWY08; LPCGPR12; BVFHS12] for this kind of systems. This consistency
level is used, because it is simple to implement in a system that allows access to multiple
versions of an object. Coupled with this advantage is the fact that read transactions never
block or abort.

2.2.4 Causal

Causal consistency is a consistency level that guarantees only that operations are exe-
cuted always after all operations on which they causally depend. This is achieved by
ensuring a partial ordering between dependent operations [ANBKH95]. The view of the
system clients have, when performing a read, is consistent with all the writes that were
made on that object prior to the execution of the read. This model is weaker than se-
quential consistency because different clients may disagree on the relative ordering of
concurrent writes.

To properly represent dependency relations between operations, Lamport defined the
happens-before relation that captures the potential causality relation that can be established
in a distributed system [Lam78]. The happens-before relation adapted to a storage system
can be defined using the following three rules:

1. Execution Thread. If a and b are two operations in a single thread of execution, then
a ; b if operation a happens before operation b.

2. Gets From. If a is a put operation and b is a get operation that returns the value
written by a, then a ; b.

3. Transitivity. For operations a, b, and c, if a ; b and b ; c, then a ; c.

At a replica, the order by which the operations are executed is called the execution
history. An execution history is causally consistent if any operation is executed always
after the operations on which it causally depends.

11

2. RELATED WORK 2.3. Guarantees in Eventually Consistent Systems

Figure 2.2 exemplifies how causal consistency works. For the client to have a causally
consistent view of the system, it must appear that put(y,2) happened before put(x,4),
that happened before put(z,5). If client 2 saw get(z)=5, and then get(x)=1, causal con-
sistency would be violated.

put(y,2) put(x,3) put(x,1)Client 1

put(x,4)get(y)=2Client 2

put(z,5)get(x)=4Client 3

Time

Figure 2.2: Graph showing the causal relationship between operations at a replica. An
edge from a to b indicates that a ; b, or b depends on a (Taken from [LFKA11])

2.2.5 Eventual

Eventual consistency is the weakest consistency level. There is no formal definition of
it in terms of operations, like the previously introduced levels. A system is eventually
consistent if it guarantees that the state of replicas will eventually converge. As such, a
client may have an inconsistent or stale view of data at times.

A big difference from stronger consistency levels, is that in those levels some replica
may be outdated in relation to other, because it has not got the most recent updates. In
eventual consistency, two replicas may have two different values written concurrently,
like in causal consistency. Because of this, causal consistency is sometimes considered a
sub-level of eventual consistency.

Eventually consistent systems are relaxed in terms of concurrency control. The main
mechanism associated with this kind of systems is optimistic replication, that does not
block clients’ access to data when it is inconsistent [SS05]. This allows for better avail-
ability and latency, since synchronization between replicas is not enforced a priori. This
results in updates being propagated when they can, and conflict detection and resolution
being handled afterwards.

2.3 Guarantees in Eventually Consistent Systems

It is possible to provide additional guarantees, other that the state of a replica will eventu-
ally converge, in eventual consistent systems. A system may guarantee certain properties
about the result of operations (session guarantees), or may impose different consistency
requirements for different objects, with the goal of limiting “how much” replicas can
diverge (bounded divergence). This section presents such techniques.

12

2. RELATED WORK 2.3. Guarantees in Eventually Consistent Systems

2.3.1 Session Guarantees

Session guarantees were created to alleviate the lack of guarantees in ordering the read
and write operations in a replicated database providing only eventual consistency, while
maintaining the main advantages of read-any/write-any replication [TDPSTW94].

A session is an abstraction for the sequence of read and write operations performed
during the execution of an application. The idea is to provide to each application a view
of the database that is consistent with its own actions, even when executing reads and
writes in possibly inconsistent servers.

With this in mind, guarantees are applied independently to the operations in a session.
Four types of guarantees are proposed: Read Your Writes, Monotonic Reads, Writes Follow
Reads, Monotonic Writes.

Read Your Writes

Read Your Writes guarantees that the effects of any writes made within a session are vis-
ible to reads that follow those writes in the same session. To implement this guarantee,
reads are restricted to copies of the database that include all writes in that session. More
formally, If read R follows write W in a session and R is performed at server S at time t, then W
is included in with DB(S,t), the state of the database in server S at moment t..

To provide this guarantee, each write’s assigned Write ID (WID) is added to the ses-
sion’s write-set. Before each read to server S, at time t, the session manager must check
that the write-set is a subset of DB(S,t). A more practical way to explain this, is that each
write has a timestamp, which the client knows. When accessing a server, if the server’s
version vector has that version or a more recent one, then this guarantee is provided.

Monotonic Reads

Monotonic Reads guarantees that read operations are made only to database copies con-
taining all writes whose effects were seen by previous reads within the session. More
formally, if: If read R1 occurs before R2 in a session and R1 accesses server S1 at time t1 and
R2 accesses server S2 at time t2, then RelevantWrites(S1,t1,R1) is a subset of DB(S2,t2). (Rele-
vantWrites is the smallest set that is enough to completely determine the result of R).

To provide this guarantee, before each read the server must ensure that the read-
set is a subset of DB(S,t), and after each read R to server S, the WIDs for each write in
RelevantWrites(S,t,R) should be added to the session’s read-set.

Writes Follow Reads

Writes Follow Reads guarantees that traditional write/read dependencies are preserved
in the ordering of writes at all servers. More formally, If read R1 precedes write W2 in a
session and R1 is performed at server S1 at time t1, then, for any server S2, if W2 is in DB(S2)

13

2. RELATED WORK 2.3. Guarantees in Eventually Consistent Systems

then any W1 in RelevantWrites(S1,t1,R1) is also in DB(S2), and WriteOrder(W1,W2). (Write-
Order(W1,W2) means W1 is ordered before W2 in DB(S) for any server S that has received
both W1 and W2).

Providing this guarantee requires servers to constrain their behaviours so that a write
is accepted only if is ordered after all other writes in the server, and that anti-entropy
is performed in a way that the write order is kept the same in both servers. To provide
this guarantee, each read R to server S results in RelevantWrites(S,t,R) being added to the
read-set, and before each write to server S at time t, the session manager checks that this
read-set is a subset of DB(S,t).

Monotonic Writes

Monotonic Writes guarantees that writes must follow previous writes within the session.
More formally, If write W1 precedes write W2 is in a session, then for any server S2, if W2 in
DB(S2) then W1 is also in DB(S2) and WriteOrder(W1,W2).

To provide this guarantee, DB(S,t) must include the session’s write-set, for the server
to accept a write at time t. Additionally, whenever a write is accepted by a server, its
assigned WID is added to the write-set.

2.3.2 Bounded Divergence

In systems that use eventual consistency, it may be interesting that some objects are more
up to date than others. Also, clients may perform operations on some objects, while
being disconnected from a server, which results in higher divergence between replicas.
In such systems, an interesting approach is to bound the divergence between replicas,
with regard to some property of the system.

There are two basic approaches in limiting divergence between replicas:

• Computing the divergence between replicas, through the use of metrics. The diver-
gence can then be bounded, by guaranteeing that the value for each metric does not
vary more than a certain threshold.

• Clients can obtain reservations that allow them to guarantee that certain conditions
will hold when all updates are merged. When connected, clients ask for a reser-
vation for a given object. They can then perform operations on the object when
disconnected with the guarantee that some constraints will hold.

Metrics

Systems that use this approach, rely typically on three metrics to measure divergence:
one for the order of operations, one for the value of data, and one for staleness [YV02;
SVF07]. For each metric, the application can specify the limits of divergence.

14

2. RELATED WORK 2.3. Guarantees in Eventually Consistent Systems

• Order of updates refers to the number of updates that were not applied to a replica.
The higher the value of this metric, the more updates from other replicas may be
seen out of order.

• Value refers to the difference in the contents of an object between replicas, or when
compared to a constant. The higher the value, the largest can be the difference from
the observed value and the correct value computed after merging all unreceived
updates.

• Staleness refers to the maximum time a replica may be without being refreshed with
the latest value. In other words, it limits the staleness of data.

Bounding each metric must be performed with a specific algorithm. Bounding these
metrics to 0 makes the system guarantee strong consistency, since no updates are lost,
objects are always at their freshest value at all replicas, and data is never stale, so clients
always get a consistent view of the system. Reversely, bounding them to infinity, grants
full relaxed consistency.

Reservations

Reservations are used in systems where clients have a need to perform operations while
disconnected from the server. Reservations are leased locks for some operations on a
given object that clients can obtain while connected to the server [PMCD03]. These reser-
vations guarantee a priori that the result of the operations made will be successful for the
client who obtained them, avoiding the need for conflict resolution. Reservations are typ-
ically used in systems with relational databases [PMCD03; STT08], hence some of them
being directly related to relational database elements (like rows and columns).

There are several types of reservations, each providing different guarantees:

• Value-change reservations provide the exclusive right to modify the state of an ex-
isting data item (i.e., a subset of columns in some row).

• Slot reservations provide the exclusive right to insert/remove/modify rows with
some given values.

• Value-use reservations provide the right to use a given value for some data item
(despite its current value).

• Escrow reservations provide the exclusive right to use a share of a partitionable
resource represented by a numerical data item (or fragmentable object [WC95]).

• Shared value-change reservations guarantee that it is possible to modify the state of
an existing data item (i.e., a subset of columns in some row).

• Shared slot reservation provide the guarantee that it is possible to insert/remove/-
modify rows with some given values.

15

2. RELATED WORK 2.4. Systems that Enforce Consistency Levels

When a client obtains a reservation, the server blocks accesses from other clients that
would conflict with the granted reservation. The client may then perform the operation
(while disconnected) on its cached copy of the database. When it reconnects, the opera-
tions are executed against the server database, with the guarantee that no conflicts will
arise with other clients’ operations.

2.4 Systems that Enforce Consistency Levels

This section presents some storage systems that provide one or more consistency levels
to the applications they support.

2.4.1 PNUTS

PNUTS is a massive-scale hosted database system to support Yahoo!’s web applications
[CRSSBJPWY08]. Its focus is on serving data to web applications, which require usually
only simple reads, rather than complex queries. It has a simple relational model, with
flexible schemas, provides a facility for bulk loading of updates, and supports a publish-
subscribe system to propagate updates asynchronously. Record-level mastering is used
since not all reads need the data at its most current version, which provides per-key se-
quential consistency. The API supports three levels of read operations (read any version;
read latest version; read a version that is equal or more recent than a given version) and
two levels of writes (blind write, where a write may overwrite a concurrent write; and test
and write, where a write fails if a concurrent write has been performed).

Architecture/Implementation

PNUTS is divided into regions, which contain a full set of system components and a com-
plete copy of each table. Regions are usually geographically distributed. Data tables
are partitioned into groups of records (tablets), that are scattered across servers. In the
event of a failure, information is recovered by copying from another tablet. The scatter-
gather engine receives a multi-record request, splits it into individual requests (by tablet
or record) and initiates them in parallel.

To implement record-level mastering, for each record there is a master replica, usu-
ally the replica getting the most requests for that record. All requests for that record
are forwarded to the master. Publish-subscribing is done through Yahoo! Message Bro-
ker (YMB). All data updates are published to YMB, then propagated asynchronously to
replicas.

Strong Aspects

PNUTS record level mastering allows to place the master replica of each object close to
the users that modify them, providing low latency for reads and writes. Additionally, the

16

2. RELATED WORK 2.4. Systems that Enforce Consistency Levels

support for different levels of consistency in read and write operations allows to trade
consistency by performance, depending on the specific requirements of each application.

2.4.2 Megastore

Megastore is a semi-relational database designed by Google [BBCFKLLLLY11]. It takes
the middle-ground between NoSQL and RDBMS to provide scalability while keeping
high availability and consistency. This is done by partitioning the data store and repli-
cating each partition, by providing full ACID semantics within partitions, but limited
consistency guarantees across them.

In terms of availability, a synchronous, fault-tolerant system to replicate logs was
modeled, that uses Paxos to replicate a write-ahead log over a group of symmetric peers.
To allow for better availability, several replicated logs are used, each governing its own
partition of the data set. For partition and locality, entity groups are used. An entity group
is a partition of the data, that is synchronously replicated over a wide area. The under-
lying data is stored in a NoSQL data store. Within the entity group, entities are mutated
with single-phase ACID transactions(stored in the replicated log). Across groups, com-
munication is done asynchronously through a queue. This architecture is shown in figure
2.3.

Architecture/Implementation

Megastore’s data model is relational, based on entities, and is backed by a NoSQL data
store. Reads are completed locally, there’s a coordinator server that checks if a replica has
committed all Paxos writes needed for that read in that entity group(that can be current,
snapshot or inconsistent). Writes begin by reading, to obtain the last timestamp and log
position. Then writes are gathered into a log entry, and Paxos is used to append that
entry to the replicated log.

There are 3 kinds of replicas: full, read-only (store entities and logs, but do not vote
in Paxos), and witnesses (only back up logs).

Strong Aspects

Megastore’s usage of replicas and partitioning of data and logs makes for a very reliable
system in terms of availability and fault-tolerance. It is also scalable due to providing
weak consistency across entity groups, but remains synchronous in its log-replication.
Fast reads and writes are also a performance plus.

2.4.3 COPS

COPS is a distributed key-value store that provides causal+ consistency [LFKA11]. Causal+
consistency is causal consistency, with convergent conflict handling. This means that con-
flicts are handled in the same way at all replicas.

17

2. RELATED WORK 2.4. Systems that Enforce Consistency Levels

(a) Replication in entity groups

(b) Operations across entity groups

Figure 2.3: Megastore’s architecture (Taken from [BBCFKLLLLY11])

In a key-value store such as COPS, two operations exist, a get and a put. Two con-
current put operations are in conflict if they write to the same key. COPS comes in two
versions, one that only supports regular get and put operations, and one with support
for get-transactions, which allow for several values to be retrieved at once, while guar-
anteeing a consistent view. This requires for dependencies being stored as metadata, so
that the returned snapshot of values is also causal+ consistent.

Architecture/Implementation

In COPS, each data center completely replicates all data in a set of nodes.. Each node
in a cluster is a multi-version key-value store. Each node is responsible for different
partitions of the keyspace. When keys are replicated remotely, dependency checks are
made at the destination before committing the incoming version. Every key stored in
COPS has a primary node in a cluster, and primary nodes on other clusters are equivalent
nodes. When a write completes locally, it is placed in a replication queue to be sent
asynchronously to remote equivalent nodes.

Gets are made to the node responsible for the key. Puts require dependency checking,

18

2. RELATED WORK 2.4. Systems that Enforce Consistency Levels

and when they are propagated, dependencies are checked at the remote replica before
committing. Each version of an object maintains its dependency set – the dependency
set contains all version of objects read before the given version was written. On a write,
when a conflict is detected, an appropriate conflict resolution function is called – by de-
fault: last-writer-wins. Old versions and no longer used dependencies can be garbage-
collected.

Strong Aspects

This system provides causal consistency. This guarantee is strong enough that data can
be asynchronously replicated, while being read fast. This provides latency scalability.

2.4.4 Walter

Walter is a geo-replicated key-value store that uses transactions to guarantee Parallel
Snapshot Isolation (PSI) [SPAL11]. PSI extends snapshot isolation to distributed envi-
ronments, by allowing different sites to have different commit orderings, but preserving
causal ordering at all sites.

There are two mechanisms in Walter to enforce PSI. First, each object in the system is
assigned to a preferred site. In this site, the object can be committed without checking
other sites for write-write conflicts. Second, there is a special kind of object, conflict-free
counting set (cset), that keeps elements, and a count for each element. An add increments
that element’s count, and a remove decrements it. Operations on these elements are
commutative, so there are no write-write conflicts.

Architecture/Implementation

Walter is logically organized in containers. All objects in a container have the same pre-
ferred site. This allows for organization in terms of what objects may benefit from being
seen consistently by other objects faster.

Walter supports transactions that include a sequence of read and write operations.
Transactions are propagated asynchronously.

Each transaction is assigned a version number, to order transactions in a site. A snap-
shot is implemented by a vector timestamp, that indicates for each site how many trans-
actions are reflected in the snapshot. Each time a transaction is executed, it is saved in a
history variable, per object, with the version of the transaction. Reading an object returns
the most recent version of that object at the site at which it is being read.

A commit can be fast, or slow. Fast commits are for objects in a local preferred site
or for transactions accessing only csets, that are not in a slow commit protocol. A fast
commit can complete without contacting other replicas. A slow commit is one to a non-
preferred site, and is performed using a two-phase commit protocol.

19

2. RELATED WORK 2.4. Systems that Enforce Consistency Levels

Strong Aspects

With Walter, applications do not have to deal with conflict-resolution logic, since there
are no write-write conflicts. PSI PSI is stronger than eventual consistency, providing the
guarantees of snapshot isolation for a single client, with no dirty reads, lost updates and
non-repeatable reads.

2.4.5 Spanner

Spanner is Google’s state of the art distributed database [Cor+12]. Spanner is scalable,
multi-version, globally-distributed and synchronously-replicated. Replication configu-
rations for data can be controlled at a fine grain by applications, and data can be dynam-
ically and transparently moved between data centers to balance data center usage. Data
is replicated using Paxos. It provides semi-relational tables, with an SQL-like language,
and data is versioned automatically with a commit timestamp. These timestamps reflect
serialization order and are globally-meaningful, which allows for externally-consistent
reads and writes, and globally-consistent reads.

To allow for these consistency properties, an API was developed called TrueTime.
This API exposes clock uncertainty, so timestamps are assigned accordingly to provide
the mentioned guarantees. The implementation of the API uses GPS and atomic clocks
as references, in order to keep uncertainty small.

Architecture/Implementation

Spanner is composed by spanservers, that replicate tablets (bags of mappings). For each
tablet, a Paxos state machine is implemented, with long-lived leaders. Writes initiate
the Paxos protocol, while reads access state directly from the replica if it is up-to-date.
Replicas keep a value that is the maximum timestamp at which a replica is up-to-date, so
any read with a timestamp older than that value can be satisfied.

The TrueTime API returns the current time. To achieve this, each data center has a
set of time masters, which have either GPS antennas or atomic clocks. Masters’ time
references are regularly compared to each other to synchronize, and each machine polls
several masters so that errors from one master are reduced.

Strong Aspects

The strong aspects of Spanner are that it is highly-scalable, has good performance de-
spite being synchronously-replicated, and that supports externally-consistent transac-
tions. The usage of globally-unique timestamps is the main point that permits all this,
both for usage in the Paxos protocol and to allow local reads.

20

2. RELATED WORK 2.4. Systems that Enforce Consistency Levels

2.4.6 Gemini

Gemini is a storage system that provides RedBlue consistency [LPCGPR12]. RedBlue (RB)
consistency defines two types of operations: red and blue. Red operations are operations
that must follow a serialization order, and require immediate cross-site coordination.
Blue operations are operations that can be propagated asynchronously, so their position
in the serialization order has no impact on the final result. Gemini can be applied on top
of any data store. Operations in application logic are divided in generator operations,
and shadow operations. Generator operations calculate the changes the original opera-
tion should make, but have no side effects, and shadow operations perform the changes
at the replicas. Shadow operations are colored red or blue, depending on their semantics.

Architecture/Implementation

The Gemini storage system was implemented to provide RB consistency. Each site is
composed by four components: a storage engine, a proxy server, a concurrency coor-
dinator, and a data writer. The proxy server is where requests are issued. A generator
operation is is executed in a temporary scratchpad, and operations are executed against
a temporary table. The proxy server then sends the generated shadow operation to the
concurrency coordinator, who accepts or rejects the operation, based on RB consistency.
The data writer then executes the operation against the storage.

Gemini uses timestamps (logical clocks) to determine if operations can complete suc-
cessfully. These are checked when a generator completes, to determine if the operation
reads a coherent system snapshot and obeys the ordering constraints.

As a performance optimization, some blue operations may be marked read-only.
These operations are not incorporated into the local serialization or global order, but the
proxy is notified of the acceptance.

Strong Aspects

The strongest aspect of Gemini and RedBlue consistency is that it allows for different
consistency levels. Red operations require strong consistency guarantees, while blue op-
erations can manage with eventual consistency. Gemini is flexible in the sense that it
can use any data store, and can support applications with different level of consistency
requirements.

2.4.7 Comparison

These systems provide different operations and replication mechanisms to guarantee
some consistency level. Table 2.1 presents an overview of the systems’ characteristics.

Many of these systems use optimistic replication, while providing consistency lev-
els that are stronger than eventual consistency. However, this does not guarantee that

21

2. RELATED WORK 2.5. Bounded Divergence Systems

replicas are always consistent. Most of them also provide some kind of read that ac-
cesses older versions of data. This allows clients to use the kind of read most adequate
to application’s latency requirements. This shows that it would be interesting to have a
mechanism to measure just how divergent replicas are.

System System Type Consistency
Level

Replication
Technique

Operation Types

PNUTS Relational
Database

Per-key
Serializability

Lazy Multi-record
updates,

Different level of
consistency reads

Megastore Semi-relational
Database

Serializability/
Snapshot/
Eventual

Paxos/Lazy Current,
Snapshot or
Inconsistent

reads
COPS Key-value Store Causal+ Lazy Puts, Gets,

Multi-value gets
Walter Key-value Store Parallel

Snapshot/
Eventual

Lazy Non-conflicting
writes, (Parallel)
Snapshot reads

Spanner Semi-relational
Database

Linearizability Paxos Globally-
consistent reads,

Writes
Gemini Relational

Database
RedBlue Cross-site/Lazy Reads, Writes

Table 2.1: Comparison of features between systems

2.5 Bounded Divergence Systems

As presented in the previous section, most cloud storage system do not provide strong
consistency to provide low latency of operations. In this case, clients may access data
values that do not reflect updates that have been performed in other replicas. Several
systems have been proposed to bound the divergence among replicas or to provide guar-
antees over the data that is accessed. Most of these systems have been proposed in the
context of mobile systems, where a replica could stay offline for long periods of time.
This section reviews the most important of these proposals.

2.5.1 TACT

TACT is a middleware system that bounds the rate of inconsistent accesses to an under-
lying data store [YV02]. TACT mediates read/write accesses to the data store, based on
consistency requirements, executing them locally if no constraints are violated, or waiting
to contact other remote replicas for synchronization.

TACT relies on a basic data abstraction, a conit, and on a set of metrics. Conits are used
to specify consistency requirements, and the metrics are bounded in order to achieve
those requirements.

22

2. RELATED WORK 2.5. Bounded Divergence Systems

Each application defines the granularity of its conits and what metrics to bound ac-
cording to the applications’ semantics and their consistency needs.

Architecture/Implementation

In TACT, a conit is a set or partition of the data, a unit whose consistency level is enforced
at each replica, instead of existing a system-wide policy. Each conit at a replica has a
logical time clock associated with the last updates seen from each replica.

The defined metrics are Numerical Error (NE), Order Error (OE), and Staleness. Numer-
ical error limits the total weight of writes that can be applied across all replicas before
being propagated to a given replica. Order error limits the number of tentative writes
(subject to reordering) that can be outstanding at any one replica, and staleness places
a real-time bound on the delay of write propagation among replicas. Bounding all met-
rics to 0 guarantees strong consistency, while bounding to infinity provides optimistic
replication only.

Bounding NE is achieved by pushing updates to other replicas and OE by pulling
updates from other replicas. The decision on what to push or pull is based only on the
state of the replica they are running on. Staleness is bound using real-time vectors.

Strong Aspects

TACT provides a “continuous” consistency model, by allowing applications to choose
the kind of consistency they need for certain sets of data. This is versatile in the sense
that different kinds of data (modeled by different conits) can be replicated in different
ways by bounding the metrics differently.

2.5.2 Mobisnap

Mobisnap is a middleware that extends a client/server SQL database system [PMCD03].
A single server maintains an official database state, and mobile clients cache and work
with snapshots of the database. They then submit small SQL programs, which are prop-
agated against the official state.

Besides having a conflict resolution strategy, Mobisnap prevents conflicts with reser-
vations. Clients obtain reservations for a certain period of time, and when any local trans-
action is executed, these are checked. If the client has enough reservations to guarantee
no conflict when re-executing in the server, the result of the transaction can be consid-
ered definite. When a client obtains a reservation, the server must guarantee that no
transaction from another client violates the promise made to the first one.

23

2. RELATED WORK 2.5. Bounded Divergence Systems

Architecture/Implementation

Each client maintains two copies of the state, a tentative and a committed one. The tenta-
tive version contains the state after executing all disconnected transactions. The commit-
ted one contains the state after executing transactions guaranteed by reservations.

There are several types of reservations: value-change, slot, value-use, escrow, shared
value-change and shared slot. When a reservation is requested, the server checks if it is
possible to grant the reservation. After granting it, triggers are added to the database to
prevent values being changed, or to prevent writes that would conflict with the reserva-
tion.

When a transaction is run, the client checks if it has reservations that guarantee some
(or all) of the operations. When it is ran against the server’s database, if it was not guar-
anteed on the client, traditional conflict detection/resolution is applied.

Strong Aspects

Mobisnap’s usage of reservations provides a strong way of limiting data divergence,
since clients that are expecting to update some partition of the data can guarantee a priori
that no other client’s transactions will interfere. As such, clients keep an updated view of
the partition/values of the store they have reservations for.

2.5.3 Exo-Leasing

Exo-leasing is a system that combines escrow with disconnected reservation transfer be-
tween clients [STT08]. This allows all the benefits of using fragmentable (escrow) objects
and reservations while reducing the need to communicate with a server to get the reser-
vations.

Escrow objects are stored in the server database instead of regular objects, and rep-
resent fragmentable objects. Clients have these objects cached, and operations are ap-
plied on top of them. These objects have two commutative operations, split and merge.
Split makes a reservation for a certain part of the object, while merge returns a certain
amount. They also have a reconciler log, which records operations made. Reservations are
requested and a lease is associated to them. If the client does not reconnect in time, the
reservation is not valid anymore.

Reservations can be split and transferred between clients. This means a disconnected
client may obtain reservations from another client, without server interaction.

Architecture/Implementation

Exo-leasing needs two kinds of transactions: top-level and base (open-nested). Top-level
transactions contain the latter, and execute operations on cached objects. These trans-
action effects become permanent when committed to the server. Base transactions are

24

2. RELATED WORK 2.5. Bounded Divergence Systems

revertible within the top-level ones, in the sense that they are tentative when there is in-
tention to commit, and are run on local copies of the objects at a server, after which they
become durable.

To obtain a reservation for a certain object, a client may ask the server for it, or another
client that has that reservation. To do this, both clients just change their reconciler logs,
noting a new merge operation for each of them, and the amount of the object each one
has. The server object’s reconciler log is updated when one of them connects, and both
reservations have the old one’s lease time.

Strong Aspects

The great advantage of this system is that it allows bounded divergence by using reser-
vations (like Mobisnap), with the property of reservations being transferable between
clients. Clients keep a consistent view of the part of the objects they have the reserva-
tions to update, while being able to get new reservations without server interaction.

2.5.4 Mobihoc

Mobihoc is a middleware implemented to support the design of multiplayer distributed
games for ad-hoc networks, and provides Vector-Field Consistency (VFC) [SVF07]. It has
a client-server architecture, when the network is established, one of the nodes becomes
the server. The server coordinates write-locks, propagation of updates and VFC enforce-
ment, and may also act as a client.

VFC is an optimistic consistency model that allows bounded divergence of the object
replicas. VFC selectively and dynamically strengthens or weakens replica consistency
based on the ongoing game state. Each object has a view of the system, and for that view,
it is a pivot object. The consistency degree is then stronger for objects in a certain range,
and grows weaker the “further” an object is from the pivot.

7

6

0

o2

o1

o3

o4

o5

PA

o6

(a) View for replica A

7

6

0

o2

o1

o3

o4

o6
PB

o5

(b) View for replica B

Figure 2.4: Different views of the system for different replicas (Taken from [SVF07])

25

2. RELATED WORK 2.5. Bounded Divergence Systems

Architecture/Implementation

In VFC, consistency degrees are defined as a vector. These vectors have three dimensions
(as in TACT): time, that specifies the maximum time a replica can be without being re-
freshed with the latest value, sequence, that specifies the maximum number of lost replica
updates, and value, which specifies the maximum relative difference between replica con-
tents, or against a constant. This vector is the maximum divergence allowed for objects
in that view.

In Mobihoc, each node keeps local replicas of all objects. The server has the primary
copy of objects. Reads are done locally without locking, writes need to acquire locks to
prevent loss of updates. Periodically, the server starts rounds. Updates are piggybacked
in round messages, and merged at the clients.

The Consistency Management Block (CMB) at the server enforces VFC. First, clients
register the objects to be shared, and send their consistency parameters, in a setup phase.
In an active phase, clients may access the objects, the server processes write requests that
were sent asynchronously, and round events. To support VFC, consistency views per
each client are maintained, meaning that updates from replicas that are close are propa-
gated to the client, while updates from replicas far away are not, saving communication.

Strong Aspects

Mobihoc presents an interesting consistency model to bound divergence. The idea of
dynamically changing consistency degrees for certain objects based on distance is useful
because it allows different objects to have different consistency degrees, while keeping
an up-to-date view (according to its requirements) for each client. The advantage of this
consistency model is that it lowers traffic in the network.

2.5.5 Probabilistically Bounded Staleness for Practical Partial Quorums

Probabilistically Bounded Staleness (PBS) describes the consistency provided by even-
tually consistent data stores, in partial quorum systems [BVFHS12]. PBS presents three
metrics: k-staleness, that bounds the staleness of versions returned by read quorums; t-
visibility, that bounds the time before a committed version appears to readers; and 〈k, t〉-
staleness, a combination of both k and t-staleness. These metrics are probabilistic, which
means that they do not guarantee that staleness is limited at some bounds, but instead
provide staleness bounds with varying degrees of certainty.

These metrics are defined mathematically in terms of the number of replicas in the
quorum system. They are defined non-mathematically as follows:

• An object is bounded with k-staleness if, with probability 1− psk, at least one value
in any read quorum has been committed within k versions of the latest committed
version when the read began.

26

2. RELATED WORK 2.5. Bounded Divergence Systems

• An object is bounded with t-visibility if, with probability 1− pst, any read quorum
started at least t units of time after a write commits, returns at least one value that
is at least as recent as that write.

Architecture/Implementation

Only the t-visibility metric was tested, by simulation with a latency model. The predicted
t-visibility was compared with the simulated latency. Then t-visibility was predicted
for production systems and compared with the observed latency. k-staleness was only
analyzed in closed-form.

Strong Aspects

The strongest aspect of this approach is that these metrics relax the need to guarantee
the bounds. Providing a degree of certainty to which staleness is within certain bounds
allows for a “close-enough” estimate of staleness in a system.

2.5.6 Consistency Rationing

Consistency rationing is a technique for adapting the consistency requirements of appli-
cations at runtime. The goal of the system is to reduce the total monetary cost of storage
requests. The price of a particular consistency level can be measured in terms of the
number of service calls needed to enforce it.

This system defines three data categories, with different consistency requirements.
Category A, serializable, is the strongest and the most expensive, requiring additional
services to assure data consistency. Category C provides session guarantees – read your
writes – within a session, and is used if the savings compensate the expected cost of
inconsistency. The B category comprises data that can be processed as C or A depending
on the context.

Five policies are presented to adapt the consistency of data. The general policy is
based on conflict probability, which is determined by the transactions’ arrival rate. The
cost of inconsistency is obtained with the probability of having conflicting updates. The
time policy changes the consistency when a timestamp is reached. The fixed threshold pol-
icy, allows setting a threshold which forces the system to handle the record with strong
consistency when the update exceeds that limit. This allows the invariant to be broken if
there is more than one update in different servers exceeding the threshold. The demarca-
tion policy prevents this by assigning a portion of the value to each replica and allowing
the replica to update it up to that value without synchronization, like escrow techniques.
If an update requires more than that portion, then the operation must be executed with
strong consistency or request the portion from other replica. Finally, the dynamic policy
for numeric objects adjusts the threshold according to the probability of updates exceed-
ing it.

27

2. RELATED WORK 2.5. Bounded Divergence Systems

Architecture/Implementation

The system architecture is composed by clients that communicate with the application
servers that run inside the cloud on top of Amazon’s Elastic Computing Cloud (EC2).
Application servers cache data and buffer updates before sending them to the storage sys-
tem. A statistical component gathers statistics about the objects. Evaluation has shown a
cost reduction and performance boost, with the dynamic policy being the most effective
in terms of cost and response time.

Strong Aspects

This system’s strongest aspect is that it can provide probabilistic guarantees about invari-
ants being kept and conflicts being avoided, by switching to different consistency levels
at runtime. This permits less communication between servers.

2.5.7 Comparison

These systems bound divergence in different ways. The reservation-based systems bound
divergence by providing a way for operations to complete without conflicts in discon-
nected operation. The metrics-based systems guarantee that divergence is never more
than a certain threshold, and PBS provides a way to estimate how divergent replicas
are. Consistency rationing enforces stronger consistency levels when invariants would
be broken by concurrent updates. Table 2.2 presents a comparison between these sys-
tems.

Reservations guarantee deterministically that invariants are not broken. However, as
the system requires clients to obtain reservation before being able to execute operations,
in a system with a large number of clients it might be impossible to assign reservations
to all clients, rendering the system unusable. The metrics presented in TACT and Mobi-
hoc are useful, however, as the algorithms used to estimate their value are deterministic,
they are not usable in a system with a large amount of replicas. The idea of PBS provides
a good solution, but the metrics must be adapted to different dimensions of the objects
besides staleness. Consistency rationing provides a good approach for changing the con-
sistency levels at runtime in order to probabilistically keep the invariants, but is focused
only on the server side of the applications.

28

2. RELATED WORK 2.5. Bounded Divergence Systems

System Technique Conflict
Avoidance

Client-side
Caching

Scalable

Mobisnap Reservations Yes Yes Yes
Exo-leasing Reservations/

Escrow
Yes Yes Yes

TACT Deterministic
Metrics

No No No

Mobihoc Deterministic
Metrics

No Yes No

PBS Probabilistic
Metrics

No N/A Yes

Consistency Rationing Probabilistic
Policies

Yes No Yes

Table 2.2: Comparison of features between bounded divergence systems

29

2. RELATED WORK 2.5. Bounded Divergence Systems

30

3
Estimating and Bounding the

Divergence

In this chapter, we explain in detail our method for estimating and bounding the diver-
gence in a cloud computing storage system, as well as our approach to these estimates,
the rhythmic model. We start off by detailing further the model of systems we took into
consideration for designing this approach, as well as how the estimates can be used in
such systems. We then describe the metrics used, and how their value is estimated and
used for bounding the divergence. Finally, the architecture of such a system is discussed.

3.1 System Model

In this work we consider a cloud storage system with two replication levels. At the first
level, there is a small number of data centers (less than ten), with a database fully repli-
cated in each data center. Data centers communicate periodically or asynchronously be-
tween them to exchange updates. We assume that client and server’s clocks are loosely
synchronized.

At a second level, a large number of clients (tens or hundreds) replicate only small
subsets of the data. Clients execute operations on their local copies of the objects, and
submit them to a data center. This submission may be done in batches of updates, when
the clients perform a series of operations offline and then synchronize with the server, or
asynchronously, when each operation completes on the client. This architecture is shown
in figure 3.1.

31

3. ESTIMATING AND BOUNDING THE DIVERGENCE 3.1. System Model

Figure 3.1: Distributed system model with client-side caching of data

The above mentioned database is assumed to be a key-value store, where stored ob-
jects are Conflict-free Replicated Data Types (CRDTs) [SPBZ11]. These data types guaran-
tee that replicas converge to the same state, independently of the order in which opera-
tions are applied at each replica. This mechanism relaxes the need for conflict-resolution
techniques when propagating to the server the operations made locally on a client replica.
Note that the approach for estimating divergence is the same for any kind of distributed
store and data types. We keep this assumption in mind because of the system implemen-
tation described in chapter 4.

3.1.1 Adding the Estimates

The developed approach estimates the divergence of client replicas, and the probabil-
ity of an operation violating application invariants. The base idea is to gather statistics
from the updates replicas have seen over the course of the application’s execution. These
statistics about the objects, combined with probabilistic methods, are used to predict an
object’s abstract state, the single-copy of the object. The single-copy (from “single-copy
consistency”, as seen in section 2.2.1) is the object’s state that reflects all updates from all
replicas applied in serialization order. In an eventually consistent system, this state is not
deterministically obtainable by a replica, that is why our system relies on predicting this
state.

Applications may have certain integrity constraints (also called application invariants

32

3. ESTIMATING AND BOUNDING THE DIVERGENCE 3.2. The Metrics

– in the text we use both terms as synonyms) that have to be kept.
Based on the single-copy estimate, the client-side of the application checks if an ap-

plication invariant is possibly violated when an operation is made. The client may then
choose to not execute the operation, to contact the server, or to execute it locally anyway.

By estimating how divergent from the single-copy a client is, that replica is able to
perform operations locally, with a certain degree of certainty that integrity constraints are
respected. This relaxes the need for synchronizing with the server on every operation.
To represent the estimates our approach relies on metrics, and to represent application
invariants, bounds are placed on those metrics’ values. These metrics, and how they are
used by the system, are explained in the following section.

To support the approach, we developed a model based on a simple rate of updates.
We call this the rhythmic model. Throughout this chapter, when we explain how the es-
timates and bounds are used, we will also detail how the calculations are made with this
rhythmic model, and what formulas are needed. Note that besides this model, clients
can also use more advanced forecasting techniques [MWH08], with the trade-off of extra
computing time and storage space. These forecasting models were used in our imple-
mentation and will be discussed later.

3.2 The Metrics

We are interested in estimating how divergent a replica is, and using that information to
limit communication, while keeping the divergence under certain limits to avoid break-
ing application invariants. To this end, like TACT and Mobihoc [YV02; SVF07], our sys-
tem uses metrics to measure how divergent a replica is from the single-copy. Different
metrics measure and bound divergence on different dimensions of the object. As such,
we are interested in the same metrics as these approaches: a value metric and an operations
metric.1

The Value Metric

The value metric measures how divergent the replica is in terms of the object’s value,
this is, the numerical difference between the value the replica has, and the real value of
the object, in the single-copy. This metric is semantically equal to TACT’s numeric error
metric.

To better understand the metric’s behaviour, consider the following example. An
integer, X, is replicated across several nodes. In these replicas, operations (increments
and decrements) are made on the local copies of X, and propagated asynchronously to

1In these systems, that have a deterministic approach to the calculation of metrics’ values, there is usually
a third metric. The staleness metric measures how long a replica has been without being updated with the
most actual state of the object. This metric is usually used to place a real-time bound on write propagation,
to guarantee that a replica does not go over a certain time limit without being updated. As such, from an
estimate point of view, there is no real contribution to make, so the system depicted in this dissertation does
not use this metric.

33

3. ESTIMATING AND BOUNDING THE DIVERGENCE 3.2. The Metrics

the other replicas. These operations are identified by the replica who made the operation,
and a timestamp of when the operation was made. Figure 3.2 represents the state of two
replicas, A and B, as well as the single-copy state for that object, with all operations
serialized and the real value of the object.

In this example, replica A has X=10, because it has not seen update (B,15), that decre-
ments X by 3. As such, its value is 3 units off the real value, 7. So the value metric
measures 3 for replica A. The same rationale is used for replica B, which has X=9, so the
metric measures 2.

Replica A

X = 10

(B, 9) : X -= 2

(A, 12) : X += 1

(C, 13) : X -= 1

Single-copy

X = 7

(B, 9) : X -= 2

(C, 13) : X -= 1

(A, 12) : X += 1

(B, 15) : X -= 3

Metrics’ values for A:
Value: 3
Operations: 1

Replica B

X = 9

(B, 9) : X -= 2

(C, 13) : X -= 1

Metrics’ values for B:
Value: 2
Operations: 1

(B, 15) : X -= 3

Figure 3.2: Example of the metrics behavior. Represented are two replicas of an integer
object, as well as the single-copy for the object

The Operations Metric

The operations metric measures how many operations made by other replicas are not
applied to the current one. Consider the previous example. Both replicas measure 1 on
the operations metric, because both of them are missing one operation. Update (B,15) has
not been applied on replica A, and update (A,13) has not been applied on replica B. Since
both replicas saw all other updates, they only miss one each.

Note that this metric is semantically different from TACT’s order error metric in the
sense that we do not consider a total ordering of updates in our system model. As such,
our metric does not measure the amount of pending, out of order operations, but the ones
that have not been seen by the replica.

34

3. ESTIMATING AND BOUNDING THE DIVERGENCE 3.3. Estimating the Divergence

3.3 Estimating the Divergence

Having defined the metrics, we must detail how their values are calculated. Other sys-
tems use deterministic algorithms that involve contacting all replicas in some way, to
measure accurately the value of a metric. In a cloud computing system, with up to tens
or hundreds of clients that cache data, these approaches are not feasible. The idea is to
collect statistics about the object’s evolution, from the updates made. For a large num-
ber of clients, the aggregation of operations leads to a steady rhythm of updates, which
allows predictions to be made about the state of the object.

To estimate how divergent the replicated object is from the single-copy, we need the
statistic of how the object changes as time passes. If a model representing the object’s
evolution is built, the replica can calculate how much the object would have grown in the
time interval where the client did not communicate with the server. With the last known
state of the object, and the estimate of how much it grew, a replica can then predict the
single-copy state of the object, and how divergent its own state is. As such, this model
is generated on the server-side, where all the operations are propagated to, and then
disseminated to the clients, along with the data center’s current object state.

As stated earlier, the divergence between a client’s copy and the ideal single-copy is
impossible to obtain deterministically on a large scale geo-replicated system, so our goal
is to attain an estimate of the divergence that is as close as possible to the real divergence.
Estimating the single-copy’s state is needed in order to know how divergent the client
replica is.

Estimating the single-copy’s state consists in calculating how much the object changed
in the time passed since the client last obtained a copy from the server. This change, ð
is the difference between the single-copy’s state and that last seen state, so it represents
how much the object diverged in that period, and is estimated with the evolution model
of the object. Adding this estimated divergence to the last seen state results in the esti-
mated single-copy state.

It must be noted, however, that the data center may not have the most updated state
of an object. In other words, the data center may have some divergence of its own, and
with this procedure that divergence is being overlooked, so the client assumes that the
state it obtains from the server is the single-copy’s state at that point in time. As such,
the data center must include a statistic about how divergent its copy itself may be in the
object’s state it sends to the client.

For an estimate to be useful, one must analyse how strong it is. In other words, we
must know just how much confidence we can have on the estimated state being close to
the actual single-copy state. For that, we calculate the certainty degree associated with
the estimate. In this case, the certainty degree is the probability that the state varied in ð.

35

3. ESTIMATING AND BOUNDING THE DIVERGENCE 3.3. Estimating the Divergence

3.3.1 Estimating With the Rhythmic Model

In our rhythmic model, the evolution of an object is seen simply as a rhythm of updates,
represented mathematically as a rate. This growth rate, represented in the following for-
mulas by the Greek symbol λobj , is calculated differently for each metric.

3.3.1.1 Value Metric

For the value metric, the growth rate expresses how much the value of the object varies by
unit of time. Having ∆V al as the numeric variation of the object, and ∆T ime the interval
of time where that numeric variation occurred, the growth rate for an object’s value is
calculated as follows:

λobjV al =
∆V al

∆T ime
=
Vf − Vi
Tf − Ti

(3.1)

where Ti and Tf are the timestamps of the beginning and end (respectively) of ∆T ime,
and Vx the object’s value at timestamp Tx.

Using these variations allows us to obtain an average variation of the value by time
unit.

3.3.1.2 Operations Metric

For the operations metric, the rate expresses how many operations are made by unit of
time, in the whole system. As such, its calculation is a simple mean:

λobjOps =
n

∆T ime
(3.2)

where n is the total number of operations made during the interval of time ∆T ime.
This provides an average of how many operations/updates were made to the object,

by unit of time, on all replicas.

3.3.1.3 The Growth Rate’s Role on the Estimate

As λobj is a time-based rate, ð is obtained by multiplying the rate for each unit of time
that passed since the client last obtained a fresh copy from the server: ð = λobj ×∆T ime.
Adding this growth to the last state seen from a data center, yields the estimated state of
the single-copy. Notice that this estimated state has different meanings for each dimen-
sion of the object. From a value’s perspective, this state is the object’s value, and ð is how
much it changed over time. For the operations metric, this state is the set of all operations
made on the object, and the ð is how many operations were made in that time period.

3.3.1.4 The Data Center’s Divergence

The rationale for obtaining the data center’s divergence is similar to the one to obtain ð:
a rate is obtained, and multiplied by a time value. The idea is to obtain a rate of how

36

3. ESTIMATING AND BOUNDING THE DIVERGENCE 3.3. Estimating the Divergence

divergent the data center replica is by time unit, and multiply it by the average time an
update takes to reach the data center.

For the value metric, this rate is obtained as follows: being T udiff the time an update u
takes to reach the data center after being made at a client, and ∆u

V al the change u causes
on the object, the rate is obtained by summing all of those changes, and dividing it by the
sum of all T udiff :

λDC =

∑n
u=1 ∆u

V al∑n
u=1 T

u
diff

(3.3)

For the operations metric, the equation is the same, but replacing ∆u
V al by 1, since it is

the change an update makes in the total number of operations. So, for both metrics, the
data center’s divergence is obtained by multiplying the rate by the average time the data
center takes to see updates, Tdiff :

ðDC = λDC × Tdiff (3.4)

3.3.1.5 The Certainty Degree

As explained earlier, the certainty degree of the estimate is the probability of the single-
copy’s state varying ð in a certain period of time. To obtain this probability, we resort to
the Poisson distribution [Hai67].

The Poisson distribution is exactly what is needed to obtain this certainty degree with
this approach, because it expresses the probability of a given number of events occur-
ring in a fixed interval of time, if these events occur with a known average rate and
independently of the time passed between each other. Operations on the objects happen
independently of one another, and we have an average rate of how the object grows, as
well as the time passed since the last time a fresh state was observed, which makes this
distribution useful.

Being the number of events that happen on a given time period represented by the
random variable X , that follows a Poisson distribution with an average of λ events per
time period, the probability of having k events trigger in that time period is:

P (X = k) =
λke−λ

k!
, k ∈ N+, λ > 0 (3.5)

In our case, the time period is the time since the replica last saw a fresh state, ∆T ime.
To get an average for that time period, we multiply the average growth rate by the time,
so: λ = λobj×∆T ime ⇔ λ = ð. Since we want to know the probability of the object having
a growth of ð, we want to calculate P (X = ð). So both parameters’ value is ð: λ = k = ð.

There are instantly two limitations with this formula. Its rate, λ, must be positive,
because a negative number of events cannot happen (and zero means no events ever
happen). Also, the Poisson distribution is a discrete distribution, so k must be a positive
integer.

37

3. ESTIMATING AND BOUNDING THE DIVERGENCE 3.4. Bounding the Divergence

There can be negative growth rates, which lead to negative growths (for example,
more decrements than increments to a value), which would mean λ being negative. How-
ever, having a negative growth or a positive one, in absolute terms, is the same for diver-
gence. For example, if a numeric item remotely suffers a decrement by 2, or an increment
by 2, either way it is divergent by 2 until that operations applies at the replica. Therefore,
the probability that the object has grown 2 or -2 is the same. So to tackle this, we simply
use the absolute value of the estimated growth as parameter: λ = k = |ð|.

The second limitation is trickier, because there may be non-integer numeric values
being stored in the system (for example, while the stock of an item of an online store is
an integer, its price may be a decimal number), but the factorial in the formula cannot be
used with non-integers. The literature usually solves this by making the Poisson distri-
bution continuous, by replacing the factorial in the formula by the Gamma function of
k − 1 [Ili13]:

P (X = k) =
λke−λ

Γ(k + 1)
, k ∈ R+, λ > 0 (3.6)

3.4 Bounding the Divergence

To limit how divergent a replica gets, bounds are placed on the values the metrics can
reach. When the metric’s value reaches that bound, coordination between that replica
and the server is started. While the data center’s copy’s state may not equal the single-
copy, all updates are eventually propagated to the data center, and contacting all other
clients to obtain all pending updates is not feasible. Also, the data center’s divergence
estimate allows the client to obtain a state that is closer to the single-copy.

As the estimate has an associated certainty degree, the bound itself may not be deter-
ministically guaranteed, since the estimate is used to enforce it. Because of this, when the
bound is set, the degree of confidence with which the bound is assured must also be set.
The higher this degree, the less probable it is that the bound has been broken, but there
will be forced coordination more often, especially for low divergence bounds, when coor-
dination already happens more frequently. In contrast, for higher bounds, coordination
will be scarcer, so a higher confidence degree will increase coordination mostly when the
bound is close to being broken.

Too bound the client’s divergence under a certain limit, lim, we resort to the estimated
divergence of the single-copy, ð. Put simply, if the single-copy’s state diverged more than
lim, then the bound is broken. As such, we want to guarantee that, with confidence ζlim,
the single-copy’s growth was less than or equal to lim.

The confidence level ζ, that ð is below or equal to lim, is the sum of the certainty
degrees of all values between 0 and lim. This is because the probability of ð ≤ lim is the
probability of the single-copy having not diverged at all (that is, having diverged 0), or

38

3. ESTIMATING AND BOUNDING THE DIVERGENCE 3.4. Bounding the Divergence

having diverged in any value up to, and including lim. Therefore:

ζ = P (X ≤ k) =

lim∑
k=0

P (X = k), k ∈ N+ (3.7)

If ζ ≥ ζlim, then the bound is estimated to be kept.

3.4.1 Bounding With the Rhythmic Model

With our model, to estimate if the bound is kept with confidence level ζ, one must only
calculate P (X ≤ k) using the Poisson distribution. This is made by simply using expres-
sion 3.5 to obtain P (X = k) inside the sum in equation 3.7.

This is valid for the value metric for integer objects, and for the operations metric,
since both of these metrics’ values are integers (there are no “half” operations). In the
case of the value metric for a non-integer number, there are infinite values of divergence
between 0 and lim. As such, instead of a summation, ζ is calculated using an integral.
This alters expression 3.7 to:

ζ = P (X ≤ k) =

∫ lim

0
P (X = k) dk, k ∈ R+ (3.8)

where P must be calculated using the Gamma-function-based expression, as seen in
equation 3.6.

3.4.2 Preserving Integrity Constraints

To guarantee that an integrity constraint is kept, we must assure that the single-copy
has not diverged to a state where the integrity constraint is not kept. To this end, it is
necessary to define the maximum possible growth the single-copy can achieve without
breaking the invariant, ðinv. Keeping this in mind, this problem is reduced to checking if
a divergence bound of ðinv is kept with a certain degree of confidence, ζinv, as seen in the
previous section. If that bound has not been broken, then the single-copy is preserving
that integrity constraint.

Assuming the rhythmic model is used, let’s consider the example of the online store,
adding the constraint that an item’s stock may not reach negative values. This constraint
is of utmost importance for the store, since a client cannot purchase an item that the store
cannot deliver, so the degree of confidence of this estimate must be high, let’s assume
95% (so ζinv = 0.95). A client saw 3 seconds ago that a certain item’s stock was 10, with
a growth rate of -1 per second (so λ = k = |ð| = | − 1 × 3| = 3). In this case, ðinv = 10,
since the maximum the stock could be decremented without breaking the invariant is
10, reaching a stock of 0, but not a negative one. To certify this, we must calculate the
degree of confidence, ζ, that assures ð ≤ ðinv. Using expression 3.7 with lim = 10 and
λ = k = 3, we obtain ζ = 0.9997. Since ζ ≥ ζinv, the integrity constraint is kept with the
desired degree of confidence.

39

3. ESTIMATING AND BOUNDING THE DIVERGENCE 3.5. Architecture

However the procedure just described only estimates if the constraint has been kept
since the last coordination. In a real system setting, the interesting estimate to make is if a
certain operation executed locally at a client will break the invariant. To estimate this, the
same method is used, but ðinv must take into consideration the effect the pending oper-
ation will have on the single-copy’s state. For this, ðinv becomes the maximum possible
growth the single-copy can achieve, minus the effect of the operation, because the client
wants the guarantee that the operation’s effect, coupled with what the single-copy has
already diverged, still keeps the constraint in check.

Assume the previous example, but this time, the client wants to make this estimate
when buying an amount of 2 of the item. ðinv is now 8, because that is the maximum
decrement that could have been made to the stock, so that a decrement of 2 still keeps it
non-negative. This changes lim to 8. Recalculating with expression 3.7, we get ζ = 0.9962.
Seeing that ζ ≥ ζinv is still true, the client may execute the operation locally, with the
desired degree of confidence that the integrity constraint is kept. If the decrement amount
were 5 instead (so lim = 5), the client would obtain ζ = 0.9161, which makes ζ < ζinv.
With this in mind, the client would not be able to execute the operation locally without
contacting the server first to check for re-stocks.

Some applications may have integrity constraints of the form upper ≥ X ≥ lower, as
opposed to the example we just saw, in the formX ≥ lower. These are treated in the same
way, however, the invariant must be checked to see what is the bound to keep. Take the
above example, before we introduced the operation that decremented the value. Given
the invariant, the bound, in terms of value, would be lim = 10, because that was the
difference between the last seen state, and the state that broke the invariant. Consider that
the invariant changed to “the stock must be positive, and less than 16”, so 15 ≥ stock ≥ 0.
Since the objects evolve in one direction, either the 15 ≥ stock or the stock ≥ 0 may be
at risk of being broken. Since the object had been evolving towards the value 0, the latter
would be the one at risk. If the object had been evolving in the opposite direction, the
bound to be kept would be lim = 5 (since the stock value was 10, we had to estimate the
probability of it increasing in 5 units). With the rhythmic model in particular, this check
is easily done, just by looking at the rate’s sign. If it is negative, then the stock has been
evolving towards 0, and the bound lim = 10 would have to be kept. If positive, then it
was evolving towards 15, so the bound lim = 5 would have to be kept.

3.5 Architecture

The proposed system if provided as a middleware, to allow an easy integration on ex-
isting cloud storage systems. However, the system provides an API for the client-side of
applications that may further customize how the system behaves.

The middleware is composed by two components. A generator component, on the
data center’s side, and an estimator component, on the client’s side. These components
are situated between the application and storage levels, and communicate with each

40

3. ESTIMATING AND BOUNDING THE DIVERGENCE 3.5. Architecture

other. The components provide the underlying storage’s interface to the application.
This allows that existing applications are not altered just to use the middleware. The ar-
chitecture described in this section is shown in figure 3.3, as well as the flow of execution
of an operation: The application makes a request to the component, that implements the
underlying database’s interface (1); the component communicates with the database (2)
and obtains a response (3); after executing its operations of generation/estimation/com-
munication, the component replies to the application (4).

Server Application

Generator
Component

Client Application

Estimator
Component

3)

4)

2)

1)

Database Local Cache

4)1)

3)2)

Data Center Client

Figure 3.3: System architecture, composed by two components, a generator and an esti-
mator

3.5.1 Generator Component

The generator component is responsible for generating the statistics about the objects,
and storing them. When the server application calls a store operation (intended for the
storage system, but the request is made on the generator component), the component
stores the relevant information to generate the evolution model. This information is com-
posed by the timestamps of the operations and their value (if the object is a number). The
generator keeps a total of operations made for that object, as well as the total time passed
since the object was introduced in the system. This information is stored as metadata in
the underlying storage system. This component estimates how divergent the state of the
object in the data center may be from the single-copy. In order to send statistics to the
clients, the generator keeps a list of all the clients that keep a local copy of a certain ob-
ject. If the generator component is gathering statistics about an object, we say the object
is being tracked.

41

3. ESTIMATING AND BOUNDING THE DIVERGENCE 3.5. Architecture

3.5.2 Estimator Component

The estimator component is responsible for using the data generated by the generator
(the statistics, the last state received from the data center, and that state’s divergence) to
estimate the divergence of objects, and to ensure that bounds are kept. This component
manages the different bounds for each object for that client, storing them in the under-
lying cache or database. The estimator component also keeps a list of operations made
locally that have not been propagated to the data center yet.

When the client application invokes a read or write operation, the component checks
if the bounds defined for that object’s metrics are all kept, and if the operation can be
performed locally.

3.5.3 Communication Between Components

Both components may at times communicate with each other, to update the statistics on
the estimator component, or to obtain a fresher state of the object. This happens in two
distinct occasions:

• Periodically, the generator component will broadcast the statistics, object state, and
data center divergence of an object, to all the clients that have that object in their
local cache. This allows the estimator component to update these statistics.

• On a possible bound violation. When this occurs, the estimator gets the statistics,
state and divergence for that object, and if the bound break was estimated while
performing an operation, that operation is executed (or aborted, if a bound is bro-
ken) after getting the most recent state, and its result sent to the estimator, which
replies to the client.

3.5.4 The API

Despite being designed to easily integrate existing storage systems, the components offer
an API so that applications (both clients and servers) may be written with this system’s
communication model in mind. This API allows choosing what objects should have their
divergence estimated, setting the bounds and invariants for each metric for a certain
object, which estimate model to use (rhythmic, forecasting, or a developer-defined one),
and getting the estimates for the current time.

3.5.4.1 Generator Component API:

startTracking(objectID) Starts gathering statistics for the object with key objectID.

setCoordinationPeriod(timeInSeconds) Changes the time between coordinations between
data centers and clients.

42

3. ESTIMATING AND BOUNDING THE DIVERGENCE 3.5. Architecture

putUpdate(objectID, timestamp, state) Adds a new update to the statistics about an object
in the generator, that was executed at the client at time timestamp, and merges the
state from that client with the data center’s. The pseudo-code for this function is
presented in algorithm 1.

getStatistics(objectID) Returns the statistics about the object with key objectID to be used
by the estimator, as well as the current object’s state from the data center’s store.
The pseudo-code for this function is presented in algorithm 2.

Algorithm 1 putUpdate pseudo-code
Require: evolutionModels: map with the evolution models of objects
Require: store: the data center’s underlying key-value storage

1: function PUTUPDATE(objectID,timestamp, state)
2: mergedState← store.put(state) . Merges the states
3: objectModel← evolutionModels.get(objectID)
4: objectModel.add(objectID, timestamp,mergedState)
5: evolutionModels.put(objectID, objectModel)
6: updateDataCenterDivergence(timestamp,mergedState)
7: return mergedState
8: end function

Algorithm 2 getStatistics pseudo-code
Require: evolutionModels: map with the evolution models of objects
Require: store: the data center’s underlying key-value storage

1: function GETSTATISTICS(objectID)
2: objectModel← evolutionModels.get(objectID)
3: data← objectModel.get(objectID)
4: statistics← generateStatistics(data) . Generates statistics according to some

estimate model (rhythmic, forecasting, etc...)
5: state← store.get(objectID)
6: return 〈statistics, state〉
7: end function

3.5.4.2 Estimator Component API:

startLocalUsage(objectID) Starts using statistics to decide when to coordinate for object
objectID. The client-side equivalent of startTracking.

setValueBound(objectID, newBound, confidenceDegree) Sets the bound for the value metric
for a certain object, along with desired the confidence degree. Overrides a previ-
ously set bound or invariant.

setOperationsBound(objectID, newBound, confidenceDegree) Same as the previous, for the
operations metric.

43

3. ESTIMATING AND BOUNDING THE DIVERGENCE 3.5. Architecture

setValueInvariant(objectID, lowerBound, upperBound, confidenceDegree) Sets or edits the in-
variant for an object. Overrides a previously set bound or invariant. In this case,
the bounds are not in terms of divergence, but rather the values between which the
single-copy’s value must be.

setOperationsInvariant(objectID, lowerBound, upperBound, confidenceDegree) Same as the
previous, but the bounds are divergence-wise, in terms of unseen operations.

newStatistics(objectID, statistics) Adds or replaces statistics about an object with key ob-
jectID, with more recent statistics obtained from the generator component. statistics.
The pseudo-code for this function is presented in algorithm 3.

getCoordination(objectID, update) Verifies, using the estimates, if the object with key ob-
jectID requires communication with the data center. If called in the context of an
operation, update indicates the change the operation is making on the object, to
check if that change will break the invariant. Otherwise, update defaults to 0. The
pseudo-code for this function is presented in algorithm 4.

A few notes about this pseudo-code: the auxiliary functions getV alueBound and
getOpsBound obtain the bounds to be kept, according to the defined invariants,
as seen in section 3.4.2. The shown auxiliary functions getV alueConfidence and
getOpsConfidence use the state (with the update being made, to check if the update
breaks the invariant) and the statistics to calculate the sum of certainty degrees of
the divergence for a bound, and return the confidence level, as seen in section 3.4.
These four functions’ implementation depends on the estimate model being used.
The return of this function is false (no coordination needed) if both confidence
levels are greater than or equal to the ones set by the application. Otherwise, true
is returned (coordination is needed).

Algorithm 3 newStatistics pseudo-code
Require: objectsStatistics: map with the objects’ statistics and the last seen state

1: function NEWSTATISTICS(objectID, statistics, state)
2: objectsStatistics.put(objectID, 〈statistics, state〉)
3: end function

44

3. ESTIMATING AND BOUNDING THE DIVERGENCE 3.5. Architecture

Algorithm 4 getCoordination pseudo-code
Require: objectsStatistics: map with the objects’ statistics and the last seen state
Require: vCLevel: confidence level to keep the value bound
Require: opCLevel: confidence level to keep the operations bound

1: function GETCOORDINATION(objectID, update)
2: 〈statistics, state〉 ← objectsStatistics.get(objectID)
3: valueBound← getV alueBound(objectID)
4: opsBound← getOpsBound(objectID)
5: stateUpdate← state+ update
6: estimatedV CLevel← getV alueConfidence(stateUpdate, statistics, valueBound)
7: estimatedOpCLevel← getOpsConfidence(stateUpdate, statistics, opsBound)
8: if estimatedV CLevel ≥ vCLevel ∧ estimatedOpClevel ≥ opClevel then
9: return false

10: else
11: return true
12: end if
13: end function

45

3. ESTIMATING AND BOUNDING THE DIVERGENCE 3.5. Architecture

46

4
Implementation

This chapter presents an implementation of the system described in the previous chapter.
This implementation had to be designed with two main goals in mind: to test the accu-
racy of the estimates, and to evaluate the approach’s impact on the communication be-
tween clients and data centers. While the latter can be measured in a distributed system,
the former cannot. This is because the actual single-copy state is needed to compare to the
estimate, and this state is not obtainable at a given moment in an eventually-consistent
system.

Taking this into consideration, our implementation is built on top of a simulator of
a distributed system, instead of a real system. This allows us to keep a single-copy of
the objects to compare with the estimates. As such, this chapter describes the simulator
basics, the architecture of the system built on top of the simulator, and how the nodes
communicate and make use of this work’s approach. The entire project has been imple-
mented in Java.

4.1 The Simulator

The simulator, named SimSim, is a Java project developed at FCT-UNL that simulates
a distributed system. It allows the creation of nodes that send and receive messages
between them. The nodes are created in the context of a simulation. A simulation uses
its own virtual time (called simulation time) to schedule operations, instead of real time,
and executes operations represented by tasks. A scheduler orders these tasks according
to simulation time. Because of this, the simulator is single-threaded, to guarantee total
ordering of tasks.

With this brief overview in mind, there are three main components to be used when

47

4. IMPLEMENTATION 4.1. The Simulator

creating a system in the simulator: tasks, messages, and nodes. In coding terms, each of
these components is a Java class.

Tasks Tasks are the main abstraction for running anything in the simulation. A task
may be created at any point in the simulation, by a node, by another task, or by any
other element (such as a static class). A task is created with a due parameter, which
indicates in how many seconds (in simulation time) it must execute. If no due parameter
is passed, the task is executed as soon as the current task ends. A second type of task,
called periodic task, allows a second parameter, period. This parameter makes the task
be executed repeatedly, every period seconds. Listings 4.1 and 4.2 exemplify the tasks’
creation.

When a task is created, it is placed in a queue, and its place in the queue is defined
according to when it is supposed to execute. The task’s behavior is defined overriding a
run method, that is executed automatically when due.

Listing 4.1: Task creation
1 new Task(0.5){

2 public void run(){

3 System.out.println("A task

that executes after half

a second has passed in

simulation time");

4 }

5 };

Listing 4.2: Periodic task creation
1 new PeriodicTask(0.5, 2){

2 public void run(){

3 System.out.println("A task

that executes after half

a second and that is

repeated every two

seconds");

4 }

5 };

Messages Messages are the abstraction for communication between nodes within the
simulation. Different message types may be introduced (by extending the abstract Mes-
sage class), so that each different type is processed in a different way by the nodes.
When defining a new message, the deliverTo method must be overridden for each
kind of node that is expected to receive messages of that type. This method is called
when the task that processes the message is executed, and is responsible for calling the
node’s methods necessary to process the message.

Nodes Nodes are the basic building block of the system. In essence, a node is a message
handler. Each node may have its own clock (running on simulation time). A node also
has an endpoint, with its own address, that other nodes use when sending messages to
it. Similarly to messages, different nodes are created by extending an abstract class –
AbstractNode.

Nodes have two methods for sending messages. They may send messages to other
nodes in a one-way fashion, using the udpSend method, not expecting a response from
the receiving node (simulating the UDP protocol). Nodes may also send a message and

48

4. IMPLEMENTATION 4.2. The System

wait for a reply (somewhat like TCP), with the tcpSend method. This method opens a
channel that the sending node uses to wait for the reply. The endpoint of the destina-
tion node is necessary for sending a message with these methods. Listings 4.3 and 4.4
exemplify how the udpSend and tcpSend are used, respectively.

Listing 4.3: udpSend example
1 void udpExample(EndPoint destination, Message message){
2 // no extra delay
3 udpSend(destination, message);
4

5 // extra delay of 75ms
6 udpSend(destination, message, 0.075);
7 }

Listing 4.4: tcpSend example
1 void tcpExample(EndPoint destination, Message request){
2 // sends the request and creates a channel for the reply
3 TcpChannel channel = tcpSend(destination, request);
4

5 // blocks waiting for reply
6 Message reply = channel.tcpRead();
7 }

These methods create a task to process the message. The delay in message sending
is introduced automatically by the simulator, but when sending a message, the node
may introduce additional delay (to simulate lag between clients and data centers, for
example). When the task to process the message is created, it takes this delay into account
by delaying the task’s due time. This extra delay is shown in listing 4.3, but is added in
the same way with the tcpSend method.

For each type of message that a node is supposed to process, the onReceive method
must be overridden at that node. This method has two parameters: the endpoint (or TCP
channel) of the sending node, and the type of message being received. The method is
called by the message being sent, when the respective task is processed.

After a node is created in the simulation, it must be initialized. This initialization
is made in the init method. The node can only send and receive messages after this
method is called. This method is also where the node defines the tasks that it will run.
Usually, there is a fixed number of nodes per simulation, that are all initialized when the
simulation starts.

4.2 The System

The system for simulation was built using the tools explained in the previous section.
The concept is simple: it simulates the execution of a cloud computing system, that has

49

4. IMPLEMENTATION 4.2. The System

data center nodes and client nodes. Each node has a storage unit and a statistics compo-
nent (estimator or generator), and sets up tasks to run operations. For communication, a
few different kinds of messages are used. In order to avoid the complexity of conflict res-
olution, our implementation relies on CRDTs, so every object stored is a CRDT. In order
to merge CRDTs, besides the CRDT object, a causality clock is also stored for each CRDT.
This is a logical clock that is used for concurrency checking on the CRDT operations. In
our implementation, we use a version vector [PPRSWWCEKK83] as the causality clock.
In practice, an object is stored as a CRDT-Causality clock pair. The estimates in the simu-
lation system may be done according to the approach detailed in chapter 3, or by using a
library that uses advanced forecasting techniques [MWH08]. In the latter case, the simu-
lation is referred to as a forecasting simulation.

In order to know the exact state of the single-copy, we introduced an important class
in the simulation: the Big Brother, which maintains a copy of the database where all
updates are immediately executed. A concrete replica will converge to this state when no
unknown updates exist in the system.

This section details how the nodes and Big Brother are composed, how they interact,
and how they keep and use estimates.

4.2.1 Big Brother

The Big Brother is a static class that has a list of references to all nodes in the system, and
can check the state of these replicas. Whereas nodes must communicate with each other
through messaging to obtain states, this class can directly call methods on any node’s
store. This allows it to work as an oracle that does not need to make use of communica-
tion to know the actual divergence between a node’s state and the copy of the Big Brother.
The copy of the Big Brother, or single-copy, would not be available in a real distributed
system.

To maintain the single-copy state, this class has a store of its own with all the objects
in the system, and offers a public static method, putSingleCopy, that is called when an
operation is executed at any node. This method applies the operation at the Big Brother’s
store and is called whenever an operation is executed at any node.

4.2.2 Messages

Before we detail the nodes’ structures, it is important to notice, as stated earlier, that
messages are the base of communication between nodes. In order to properly understand
the interactions in the following section, we must understand the composition of the
messages being exchanged.

All messages have two basic parameters: the key of the object the message is related
to, and a timestamp indicating when it was sent. Besides these parameters, a message
may have optional ones:

• the state of the object (a CRDT-Causality clock pair);

50

4. IMPLEMENTATION 4.2. The System

• information about an object at a certain timestamp, represented by the
ObjectInfoLog class;

• a list of ObjectInfoLogs.

An ObjectInfoLog is a simple structure that stores information about an object
at a certain timestamp. It contains a timestamp, a boolean that represents if the object
is a number or not, and may contain optional parameters: the value of the object at that
timestamp, if it is a number; the change an operation made to the object at that timestamp;
the growth rate of the object for each metric; and the object state’s forecasts for the next
time period, if the forecasting library is being used. Basically, this structure works as a
container for storing additional information about an object to be sent in a message.

Using these elements, the following messages are used in the system.

RequestMessage This message is used to propagate the state of an object from the
client nodes to the data center. This message contains the state of the object, and a list
of ObjectInfoLogs. Each log in that list has information about an update made in the
client that has not been propagated to the data center yet, namely the numeric change
applied to the object, or the kind of operation that was made on the object.

ReplyMessage This message represents the data center’s reply to the RequestMes-
sage. Besides the state of the object, this message also contains a single ObjectIn-

foLog, that carries the statistics information about the object, namely: the growth rate
for each metric, as well as the estimated data center divergence, if the simulation is us-
ing the rhythmic approach; the object state’s forecasts if the simulation is a forecasting
simulation.

CoordinationMessage This message is sent from the data center to notify the clients
that it is sending updated statistics about the object in a near future, so that clients can
propagate local changes to the data center before that happens. It has no extra informa-
tion besides the key of the object it is referring to.

RhythmMessage This message contains the same information as the ReplyMessage,
but is sent periodically. This message is sent a short time after clients are notified.

Figure 4.1 shows the overall communication in the system, using these messages. It
also shows the static accesses between the Big Brother and the nodes (being that the Big
Brother accesses the state of the nodes, and nodes call the putSingleCopy method to
update the single-copy state). The dashed lines represent messages that are sent peri-
odically. Notice that “messages” is used generally in the picture, because a data center
propagates to other data centers any messages it receives from clients.

51

4. IMPLEMENTATION 4.2. The System

BigBrother

ClientNode DataCenter
Node

static access

RequestMessage

ReplyMessage

DC
Node

DC
Node

static access

messages

CoordinationMessage

RhythmMessage

Figure 4.1: Diagram representing communication in the system

4.2.3 Components

At the heart of our system, two components are used in combination to allow nodes to
estimate data evolution: the generator and estimator components. Each of the compo-
nents has a few data structures to hold the necessary information for the statistics, and
provides methods to use them.

4.2.3.1 Generator Component

Data center nodes make use, primarily, of two methods from the generator component:
newUpdate, which is called to add an operation on an object to the list of updates; and ei-
ther getObjectInfo or getForecasts, depending on the simulation using the rhyth-
mic or forecasting approach, respectively. This component starts keeping statistics about
an object after the client calls the startTracking method for that object.

newUpdate gets two arguments besides the key of the updated object: the time at
which the update was made and the value of that update if it is a numeric object. How it
stores that information depends on the approach being used in the simulation. In prac-
tice, two different classes of generators exist, one for each approach. Both have a map,
but they store different objects as values. These classes are detailed next.

Rhythmic generator This generator uses a class, KVObjectLog, to organize the statis-
tics of an object. One instance of this class is stored for each object being tracked. This
class maintains a mapping of timestamps-value, that represents the updates, ordered by

52

4. IMPLEMENTATION 4.2. The System

time, and the value of the object at that timestamp. Besides that, a count of updates made
and the total sum of the updates’ values are kept. These are used with the timestamps
to calculate the growth rates. When newUpdate is called, a new entry is added to the
KVObjectLog’s map, with the timestamp and value passed as arguments. The compo-
nent also gets the time at which the update was seen by the data center. The difference
between this time, and the timestamp is calculated, and a sum of these differences is kept,
to calculate the average divergence per time unit of the data center’s replica.

The KVObjectLog class provides public methods to calculate the growth rates and
the local data center divergence with the formulas detailed in chapter 3. When getO-

bjectInfo is called at the generator, it makes use of these methods to obtain the rates
and data center divergence, and returns a ObjectInfoLog with that information.

When startTracking is called, the generator creates a new KVObjectLog for that
object, with the initial value of the object if it is numeric, and with a count of one update.

Forecasting generator This generator uses the OpenForecast1 library to predict the state
of the object. The library’s workings are simple, and follow the concepts presented on
chapter 3: a DataSet is a collection of Observations. A static method getBestFore-

cast is applied on a DataSet to decide on the best statistical model. The obtained
ForecastModel then calls the forecast method with the DataSet as parameter, and
returns an Observation with the prediction. In this case, the dependent variable in an
observation is either the value of the object, or the number of operations, and the only
independent variable is time.

This class keeps a DataSet for each object being tracked. When newUpdate is called,
a new Observation is inserted in the dataset. When the getForecast method is
called, a forecast is obtained for each 100ms remaining until the next coordination with
the clients. These forecasts are put into an array and returned. This array is for the esti-
mator component to use as a way of estimating the real state of the object. The state is
forecasted for every 100ms so that when the estimator is verifying if an invariant is kept
when performing an operation, it estimates the state os the single-copy at the closest
tenth of a second.

When startTracking is called, the generator creates a new DataSet for that ob-
ject, with one Observation.

4.2.3.2 Estimator Component

The estimator component has two main functions: to log the updates that have been
made locally at the client since the last coordination with the data center, and to check if
coordination is needed.

For the first function, this component keeps a linked list of ObjectInfoLogs for each
object the client has a copy of. Whenever a change is made to an object, that change is

1http://www.stevengould.org/software/openforecast/index.html

53

http://www.stevengould.org/software/openforecast/index.html

4. IMPLEMENTATION 4.2. The System

“logged” by inserting a new ObjectInfoLog in the list, with the timestamp at which
the change occurred and the value of the object (if it is a numeric object). This is done by
calling the addToSend method. When a RequestMessage is created by the client, this
list of changes is obtained with the getUpdatesList and put into the message, to be
used by the generator component at the data center.

For the second function, the component keeps for each object a ObjectInfoLogwith
the statistics received from the data center. This log is updated when the client receives a
ReplyMessage, by calling the estimator method addToStats passing the obtained log
as argument. In this implementation, the component keeps metrics’ bounds as simple
variables indicating the upper and lower bounds for that object, with another variable
representing the desired confidence level.

When the client calls the boolean-returning getCoordinate method for a certain
object, the component’s action depends on the approach to the estimates being used in
the simulation, as explained next.

Rhythmic approach If the simulation is using this approach, the component obtains
the growth rate and last seen state from the log, and calculates the estimates and con-
fidence degrees with the formulas presented in the previous chapter. A small helper
PoissonDist class is used for calculating the Poisson probabilities. According to the
desired confidence degree, the method returns if coordination is or is not needed.

Forecast approach For this approach, the solution is simpler. Since the OpenForecast
library provides no way of getting certainty degrees, the estimator component makes a
simple check if the forecasted value for that time slot violates an invariant. If it does, true
is returned.

Figure 4.2 summarizes the relations between these classes and the nodes. Note that
this class diagram is simplified, only showing the most important methods and attributes.
Its purpose is to help understanding the interaction between the pieces of the system.

4.2.4 Nodes

The basic node structure is the same for both clients and data centers. Both nodes have a
storage unit, and a statistics component.

The storage, to simulate a key-value store, is a hashtable. Since objects are stored as
CRDT-Causality clock pairs, the node’s hashtable is viewed as a key-CRDT store. Ap-
plications are expected to retrieve and store CRDT objects. Since the store follows the
key-value paradigm, nodes provide two operations to access the store, a storeGet and
a storePut. An abstract class is used to represent these basic functions of a node, the
KVReplicaNode class, as seen in figure 4.2.

It is in these methods that the nodes call the statistics components’s operations before
and/or after retrieving or storing the CRDT. At a basic level, the storePut operation

54

4. IMPLEMENTATION 4.2. The System

Figure 4.2: Simplified class diagram with the relations between nodes and components

55

4. IMPLEMENTATION 4.2. The System

merges the CRDT to be stored with the one in storage. Listing 4.5 shows the part of the
code for putting a CRDT into a store. As can be seen, the stored CRDT’s mergemethod is
used to merge the store’s state with the new one. Note that the clocks are also merged to
accommodate all operations from both CRDTs. It is in this method that the Big Brother’s
putSingleCopy method is called, to update the single-copy state of that object.

Listing 4.5: storePut method with the merging of CRDTs
1 public Pair<CvRDT, CausalityClock> storePut(CRDTIdentifier key,
2 Pair<CvRDT, CausalityClock> value)
3 // ... //
4

5 // If there is an object in storage, merge the CRDTs and clocks
6 CvRDT newCRDT = value.getFirst();
7 CausalityClock newClock = value.getSecond();
8 Pair<CvRDT, CausalityClock> ccPair;
9

10 ccPair = (Pair<CvRDT, CausalityClock>) store.get(key);
11

12 CvRDT storeCRDT = ccPair.getFirst();
13 CausalityClock storeClock = ccPair.getSecond();
14

15 storeCRDT.merge(newCRDT, storeClock, newClock);
16 storeClock.merge(newClock);
17

18 store.put(key, new Pair<CvRDT, CausalityClock>(storeCRDT, storeClock));
19

20 BigBrother.putSingleCopy(key, value.getFirst(), value.getSecond());
21

22 // ... //
23

24 return oldPair;
25 }

In order to simulate real-world latency, delay is added whenever the udpSend or
tcpSend methods are called. Between clients and data centers, the added delay is
somewhere between 20 and 50 milliseconds, calculated randomly in each method call.
Between data centers the added delay is between 150 and 175 milliseconds. This de-
lay was chosen based on latency measurements done between Amazon’s EC2 data cen-
ters [NAEA13; Bal12]

4.2.4.1 Client Nodes

Client nodes keep a partition of the data in the storage unit as a local copy. Initially, the
hashtable is empty, and when an operation is made on a key that has no value, the client
coordinates with the data center to obtain the object, if it is a storeGet operation, or to
create it at server-side, if it is a storePut operation.

The client keeps the information about the endpoint of the data center it must syn-
chronize with, which is defined when the client is created. A client node always coor-
dinates with the same data center for the remainder of the simulation. This data center

56

4. IMPLEMENTATION 4.2. The System

acts as a primary copy of the data for the client, and all operations made by the client are
propagated to that data center, which in turn propagates them to the other ones.

The core of the client nodes’ usage is the storeGet and storePut methods, since
these are the methods that applications use to store and retrieve data. In the client nodes,
besides getting and putting CRDT objects, these methods make use of methods from the
estimator component, to check if coordination is needed. storePut is used as an exam-
ple of code, as can be seen in listing 4.6 (the storeGet method is ommitted because it
is very similar, except nothing is added to the estimator). The first thing to note when
looking at this code, is that the operation is immediately logged calling the estimator’s
addToSend operation. Then, the need for communication is checked, and the operation
is made locally. Afterwards, if coordination is needed, a request to the data center is
made. If not, and if the system is propagating operations asynchronously with no deliv-
ery guarantees, such a request message is built and sent. The private method for making
a request to the data center, and treating the response is shown in listing 4.7. The most
relevant thing about that piece of code is the usage of the estimator methods to get the
updates when the request is built, and to add the new obtained statistics. The auxiliary
method for asynchronous propagating of operations is very similar to this one, except no
reply is obtained and treated.

Listing 4.6: Client-side storePut
1 @Override
2 public Pair<CvRDT, CausalityClock> storePut(CRDTIdentifier key,
3 Pair<CvRDT, CausalityClock> value) throws NullPointerException {
4 double currentTime = clock.currentTime();
5

6 estimator.addToSend(key, value);
7

8 boolean coordinate = estimator.getCoordinate(key, currentTime, true);
9

10 Pair<CvRDT, CausalityClock> tmpRes = super.storePut(key, value);
11

12 if (coordinate) {
13 ReplyMessage reply = requestToDC(key, super.storeGet(key));
14 return reply.value();
15 } else {
16 if(async)
17 asyncRequestToDC(key, super.storeGet(key));
18 }
19

20 return tmpRes;
21 }

57

4. IMPLEMENTATION 4.2. The System

Listing 4.7: Method to make a synchronized request to the data center.
1 private ReplyMessage requestToDC(CRDTIdentifier key,
2 Pair<CvRDT, CausalityClock> value) {
3 RequestMessage request = new RequestPutMessage(key, value,
4 clock.currentTime(), estimator.getUpdatesList(key));
5

6 ReplyMessage reply;
7

8 // Adds 20ms to 50ms delay on contacting DC
9 TcpChannel tc = endpoint.tcpSend(connectedDC.endpoint, request,

10 Simulation.rg.nextDouble() * 0.03 + 0.02);
11 reply = tc.tcpRead();
12

13 estimator.addToStats(key, reply.getInfo());
14 super.storePut(key, reply.value());
15

16 return reply;
17 }

4.2.4.2 Data Center Nodes

Data center nodes keep a hashtable with all objects in the system and send and receive
messages from the clients.

When the data center is initialized, two periodic tasks are started, with one second dif-
ference of each other. The period between two of these tasks’ executions is configurable
when the node is created. These tasks serve the purpose of propagating the growth rate
and the data center replica’s state to the clients. The second message, a RhythmMes-

sage, is the one that sends these objects. The first message, a CoordinateMessage,
serves only as a warning that the data center is going to coordinate with the clients, and
is important because it creates a periodic “checkpoint” where the data center receives all
updates that were made locally at the clients since the last coordination. Clients are sup-
posed to send their updates at this time, and the generator component re-calculates the
growth rate, so that when the second message is sent, the statistics are updated to reflect
all operations made locally at the clients.

To establish this coordination with the clients, the data center keeps a list of all the
clients that access that data center as a primary copy. This list is updated every time a
new client accesses the data center.

Whenever a RequestMessage is received from a client, the data center calls the gen-
erator component’s newUpdate method, for each ObjectInfoLog in the list contained
in the message, with the timestamp and value in that object. If the message was sent
using a TCP channel, then the data center builds a ReplyMessage to reply to the client,
with the state of the object in the store, and the statistics obtained from the generator
node. The data center then merges the CRDT in the message with the one in storage, and
the RequestMessage is propagated to the other data centers. The code that does this
for a TCP channel is contained in a onReceive method presented in listing 4.8.

58

4. IMPLEMENTATION 4.2. The System

Listing 4.8: onReceive method that processes a RequestMessage sent by a client.
1 public void onReceive(TcpChannel ch, RequestMessage m) {
2 // ... //
3

4 // Log the updates
5 for (ObjectInfoLog log : m.getLogUpdates())
6 generator.newUpdate(m.key(), log);
7

8 // Merge the state
9 Pair<CvRDT, CausalityClock> pair = super.storePut(m.key(),
10 m.value());
11

12 double ts = clock.currentTime();
13

14 // ReplyMessage with the statistics obtained from the generator
15 ReplyMessage reply = new ReplyMessage(m.key(), pair,
16 generator.getObjectLog(m.key()));
17

18 // Propagate message to other data centers
19 propagateMessageToDCs(ch.src, m);
20

21 // Reply to the client
22 ch.tcpReply(reply);
23 }

59

4. IMPLEMENTATION 4.2. The System

60

5
Evaluation

This chapter describes the evaluation done using the implementation of the system de-
scribed earlier. First, the adaptation of the standard TPC-W benchmark used for these
tests is detailed. Then, some tests on the estimates’ precision when several clients are
using them are presented, as well as demonstrating how the clients keep the invariants.
Afterwards, the impact of different properties (such as the rate of operations or the esti-
mate model used) is studied.

5.1 The Benchmark

For our evaluation, we used the TPC-W benchmark [Cou02; GG03]. This benchmark sim-
ulates an e-commerce platform that sells books, and provides the users with options such
as registration, browsing and purchasing items. TPC-W is frequently used to test the per-
formance of relational databases [CPW07; PA04], and has also been used previously with
CRDTs in a key-value store context [BP12]. Despite this, our usage of this benchmark is
not to get a performance measurement of our implementation, but rather to get a view of
how the estimates fare in a realistic scenario.

We adapted the benchmark implementation that uses CRDTs, to work with the sim-
ulated system. This implementation is based off a publicly-available implementation for
the Cassandra database1.

This section presents an overview of the benchmark, its operations and organization,
as well as the adaptations we made for our tests.

1https://github.com/PedroGomes/TPCw-benchmark

61

https://github.com/PedroGomes/TPCw-benchmark

5. EVALUATION 5.1. The Benchmark

5.1.1 TPC-W

TPC-W simulates an e-commerce platform. The original TPC-W specification includes
a set of operations that simulate the users’ interactions through a web application with
a graphical interface. Table 5.1 shows the operations defined by TPC-W that are imple-
mented in the version of the benchmark we adapted.

Operation Parameters Description

PRODUCT DETAIL item_id retrieves information about an item
with item_id

HOME item_id, customer_id
retrieves information about an item
with item_id and customer with cus-
tomer_id

SHOPPING CART item_id, cart_id, CRE-
ATE

adds a new item, with item_id, to an
existing shopping cart with cart_id, or
a new one if CREATE is set to true.

SHOPPING CART item_id, qty adds quantity qty of item_id items to
the shopping cart

BUY REQUEST cart_id computes the total cost of a shopping
cart and the billing information

BUY CONFIRM customer_id, cart_id
Creates a new order and a new pay-
ment for a shopping cart that was pre-
viously processed in BUY REQUEST

ORDER INQUIRY order_id checks the status of an order

BEST SELLER Computes the Best Seller information
for each category of items

ADMIN CHANGE item_id
Adds the item with item_id to its sub-
ject index, adds the five most sold
items to the related

CUSTOMER REGIS-
TRATION customer_id Registers a new customer

Table 5.1: Description of TPC-W operations (Adapted from [Bal12])

This set of operations, as well as the benchmark’s data-model, was designed taking
into account an underlying relational database. The schema for such a database is shown
in figure 5.1. The table ORDERS registers the clients’ orders, ORDER_LINE the items
from a particular order, and CC_XACTS represents the payment of an order. The other
tables store information for the customers, addresses, countries, items and authors.

5.1.1.1 Workloads

TPC-W proposes three workloads: shopping, browsing, and ordering. Each workload sim-
ulates a different usage pattern of the book store. Workloads use different amounts of
each operation, resulting in some workloads being more read-heavy than others. The
shopping workload has 95% of read-only operations, the browsing workload has 80%,
and the ordering workload has only 50%. The latter is the workload we use for all our
tests, to maximize write operations on an object.

62

5. EVALUATION 5.1. The Benchmark

Figure 5.1: TPC-W database schema (Taken from [Cou02])

63

5. EVALUATION 5.1. The Benchmark

5.1.2 Benchmark Configuration

In our tests, we focused on evaluating if the proposed approach meets the objective of
guaranteeing that application invariants are not broken. To this end, in the context of the
TPC-W benchmark, we have used only the value metric, to guarantee that the stock of
products remains positive despite concurrent orders. In the context of TPC-W, this was
the only constraint that seemed relevant to maintain (as also identified in [LPCGPR12]).
Interesting tests with other metrics could be possible with other applications or datasets,
as discussed in chapter 6.

According to the TPC-W specification, on a BUY CONFIRM operation, after the stock
is checked, if the sale would bring it under 10, then the stock is increased in 20 units.
This would make it fairly easy to guarantee the restriction. To test for the metric’s preci-
sion, our implementation changed this condition to only increase the stock when the sale
would bring it under 0 units. This causes repositions to be less common, and as clients
do not instantly see other operations, when the single-copy is close to 0, a client may see
a higher value and perform the sale without restocking. In this case, it would lead to the
stock becoming negative. In order to avoid this, we check if the metric tells the client it
should obtain more recent updates before doing that.

One thing to be noted is that the performance tests that use the TPC-W benchmark,
usually use populations of the database with thousands of different items and several
authors. For simplifying the evaluation, in our tests we use a population with only one
item and one author. With only one item, we guarantee that all BUY REQUEST and BUY
CONFIRM operations by all clients are always made on the same item.

A test consists in a simulation, with a given number of clients and data centers, that
runs for a certain amount of virtual time. Different parameters must be configured:

• whether the clients batch updates made locally, or propagate them asynchronously
to the data center after applying them;

• the time between components’ coordinations;

• whether the rhythmic model or forecasting library are be used for the estimates.

We study how changing these parameters influences the estimates. The default con-
figuration is: 100 clients, 3 data centers, asynchronous propagation of updates, inter-
operation time for each client of 5 seconds, a period of 15 seconds between consecutive
coordinations of the estimator and generator components, and estimates using our rhyth-
mic model. The restriction must be kept with 99% confidence.

Each client node runs a client instance of the benchmark. A periodic task that executes
every period seconds is started at each client node when it is initialized. That task
executes the next operation in the workload, and its start time is a random time between
0 and period seconds after the clients are initialized, to guarantee that operations from
clients do not occur only every period seconds.

64

5. EVALUATION 5.1. The Benchmark

All tests were run in a single machine, running Debian Linux 4.4.5-8, with 64 AMD
Opteron Processor 6272 1.4Ghz CPUs and 64 gigabytes of RAM. While all those CPUs do
not necessarily make the simulation run faster, since the simulator is single threaded,
they allow several simulations to be run simultaneously.

5.1.3 Tests

There are five points we wish to evaluate:

• if the estimates are precise – i.e. are invariants kept when the clients use the esti-
mates to decide when to contact the data center?

• if the estimates are scalable to a large number of clients – i.e. are invariants kept
successfully even with many clients performing operations locally on an object?;

• how the estimates fare with different communication models – i.e. if clients can rely
on the estimates regardless of how the updates are propagated to the data center;

• how different estimate models influence the results – in this case, our rhythmic
model vs. the forecast models;

• how other properties of the system or applications, such as time between coordina-
tions, or amount of repositioned stock, influence the estimates.

Before presenting our evaluation, we show the evolution of the system in the specific
situation we have been using as example, when the client wants to make a decrement
operation when the invariant is close to be broken. This allows a better understanding
of how the system works. Consider figure 5.2, where the evolution of the stock value
is represented, in its real value, and as seen by the client replica and the data center.
Represented by the purple line is the confidence degree, as computed by the client, that
the invariant stock ≥ 0 is kept, which uses the right axis as reference. A bit before the
116 second mark, the single-copy value of the stock decreased, and a bit later the data
center accommodated that change. The client maintained the value it had after the last
operation. Near the 116.5 mark, the client wanted to perform an operation. As can be
seen, the confidence degree of the estimate is way below the 99% limit. As such, the
client coordinated with the data center, and performed a restock.

Another interesting thing about this figure is how the confidence degree changes. One
may find it strange that right after the reposition, the confidence degree drops quickly
until the next contact with the data center. This happens because a BUY CONFIRM op-
eration retrieves the value of the stock, using the storeGet operation, and then stores
the new stock value using storePut. On the value retrieval, communication is made
with the data center, and that state is stored by the estimator as the last seen state. Since
the next operation, is an increment (because of the reposition), it executes locally without
a problem, because the restriction is preserved. This causes the confidence degree to be

65

5. EVALUATION 5.1. The Benchmark

-5

 0

 5

 10

 15

 20

 25

 115 116 117 118 119 120
0

0.2

0.4

0.6

0.8

0.99

S
to

ck
 (

u
n
it

s)

C
o
n
fi
d

e
n
ce

 D
e
g

re
e
 (

%
)

Time (seconds)

Single-copy
Client

Data center
Confidence degree

Figure 5.2: Extract of a simulation run, at a time when the client is making an operation
that would break the invariant

pessimistic until the next time the data center is contacted, because the stored state in the
estimator is a stock value that is still close to 0. However, after the next communication,
the client performs several operations without synchronizing with the data center, be-
cause the confidence degree remains over 99% for a while, since the restriction is far from
being broken. Opposed to this, before the reposition, the client communicates with the
data center more often, since the confidence degree drops quickly after every communi-
cation, as the invariant is closer to being broken.

5.1.3.1 Scalability

In this section, we evaluate how the increase in the number of clients impacts the system.
Figure 5.3 shows the evolution of the stock’s real value. Particularly, as can be seen in
subfigure 5.3a, for few clients, the stock’s value is always incremented as it should, when
the invariant is close to being broken. Sometimes this value peaks to the double of the
usual restock value (20). This happens when more than one client simultaneously sees
a state where a restock is in order. This is not a problem, since no upper bound on the
value is set.

As can be observed, in general, for larger number of clients, the stock evolves in the
same way. As expected, as more clients are in the system, the more times the value
approaches 0 and is restocked, since more clients means more operations on the object.
For the charts of 50 clients onward, very rarely, the invariant is broken. The estimates are
not perfect, but we can also observe that this situation does not scale as the number of

66

5. EVALUATION 5.1. The Benchmark

clients in the system increases.

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

S
to

ck
 (

u
n
it

s)

Time (seconds)

Single-copy

(a) 25 clients

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

S
to

ck
 (

u
n
it

s)

Time (seconds)

Single-copy

(b) 50 clients

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

S
to

ck
 (

u
n
it

s)

Time (seconds)

Single-copy

(c) 75 clients

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

S
to

ck
 (

u
n
it

s)

Time (seconds)

Single-copy

(d) 100 clients

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

S
to

ck
 (

u
n
it

s)

Time (seconds)

Single-copy

(e) 125 clients

Figure 5.3: Evolution of the real value of the stock, in simulations with different numbers
of clients

These results were all taken from simulations using the rhythmic model. Figure 5.4
shows that similar results are observed when using the OpenForecast library for many
clients.

67

5. EVALUATION 5.1. The Benchmark

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

S
to

ck
 (

u
n
it

s)

Time (seconds)

Single-copy

Figure 5.4: Evolution of the real value of the stock, when using the forecasting library, for
100 clients

For evaluating how our approach reduces the need for contacting the servers, we
have measured the number of operations that are performed locally at the clients without
requiring immediate coordination with the data center. Whereas the previous test results
evaluate how the accuracy of the estimates is kept, the results in figure 5.5 show how
the usage of the estimates prevents coordination between clients and data centers. These
results are from the same tests as figure 5.3. Note that the operations measured in this
chart are storeGets and storePuts, not benchmark operations.

We can observe that the percentage of operations executed without the need for co-
ordination is quite high, being over half of all the operations done in the system. As can
be seen, when the number of clients increases, the amount of operations done locally
decreases slightly, however, even for 125 clients, this amount is never less than 65.5%,
which we consider positive. Besides, for a higher number of clients, from 75 to 125, the
difference in percentage is not all that significant, even though the number of clients in-
creased noticeably. This occurs because since the the rate of updates increases and the
stock diminishes faster, it is more probable to estimate that an operation could lead to the
invariant being broken, since more concurrent updates may have happened.

5.1.3.2 Update Propagation

The previous tests were all made considering an asynchronous approach to the propa-
gation of updates to data centers. This means clients propagate operations in the back-
ground, with no delivery guarantees, each time an operation is made. However, some

68

5. EVALUATION 5.1. The Benchmark

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

25 50 75 100 125

O
p
e
ra

ti
o
n
s
 e

x
e
c
u

te
d
 l
o
c
a
lly

 (
%

)

Number of clients

Figure 5.5: Percentage of operations executed locally, for different numbers of clients

systems [CRSSBJPWY08; BBCFKLLLLY11] have batching mechanisms for propagating
updates. We tested to see how using this mechanism changes the metrics’ precision.

Figure 5.6 shows the evolution when using batching. As can be observed, the invari-
ant is broken more often than when propagating the updates asynchronously, especially
when using forecasting. The main reason for this, is that since updates come in batches,
the value of the data center itself is more divergent from the real value for longer periods,
and the generator does not update the statistics at a regular rate. Thus, besides the gen-
erated statistics probably being less accurate, the the data center’s divergence will play a
bigger role in the estimation. For the rhythmic model, this statistic is simply an average.
If the amount of pending operations varies greatly from batch to batch, then this statistic
may not provide an accurate estimate of how divergent the data center is at some points.
The estimator would be then using an optimistic statistic.

As to why the solution with forecasting behaves somewhat worse, this is because with
this library, we have no real way to estimate data center divergence. Observations are
used to generate forecasts of the actual single-copy state, which are sent to the estimators.
If several pending operations are being batched, and batches sizes vary, the forecasting
models may be lacking actual observations to generate a precise forecast of recent history.

The execution of operations locally when batching updates is also affected as shown
in figure 5.7. Using the rhythmic model with batching, as would be expected, yields less
operations executed locally, because higher divergence on the data center side causes the
estimate to be less certain, and still causes the restriction to be broken sometimes. On the
contrary, when using forecasts, the amount of operations done locally is similar to the
asynchronous propagation setting, however, as seen earlier, many of these operations

69

5. EVALUATION 5.1. The Benchmark

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

S
to

ck
 (

u
n
it

s)

Time (seconds)

Single-copy

(a) Using the rhythmic model

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

S
to

ck
 (

u
n
it

s)

Time (seconds)

Single-copy

(b) Using forecasting

Figure 5.6: Evolution of the real value of the stock, using batching to propagate updates

70

5. EVALUATION 5.1. The Benchmark

cause the invariant to be broken, because the forecasts are not accurate.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Batching Asynchronous

O
p
e
ra

ti
o
n
s
 e

x
e
c
tu

te
d
 l
o
c
a
lly

 (
%

)

Updates propagation mechanism

Rhythmic approach Forecasting library

Figure 5.7: Percentage of operations executed locally, for different propagation tech-
niques

5.1.3.3 Coordination Between Components and Application Configurations

An important detail of our approach is the coordination between components. Previously
shown tests have all been run with the components coordinating every 15 seconds, so the
generator gets the newest state and updates made during that time, and the estimator
gets updated statistics. Figure 5.8 exemplifies how the object’s evolution is affected if
we double (5.8a) or triple (5.8b) this time. The evolution of the object is not affected, the
estimates estimate correctly when coordination is needed with the data center in order
for the invariant to be preserved.

Another time-related parameter that may affect the estimates is the rate of updates.
Previous experiences assumed a regular rate of one operation every 5 seconds, at each
client. Testing with a rate twice as fast proved that the statistics accommodated this rate
naturally, and the object’s evolution behaved in the same way, though the value decreases
twice as fast (as expected). This behaviour can be observed in figure 5.9.

Finally, we combined both changes – twice the rate of operations, and more time be-
tween coordinations – and observed how they affect the amount of operations executed
without contacting the data center. This is presented in figure 5.10. As the time between
coordinations increases, slightly less operations are executed locally. This makes sense,
because as the components interact less, it is more likely that when estimating, the statis-
tics are stale and the confidence degree lowers. However, even for 4 times the original
period, the difference in percentage is less than 5%. It can also be seen that the rate of
operations has barely any effect on this result: for the three different periods, the amount

71

5. EVALUATION 5.1. The Benchmark

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

S
to

ck
 (

u
n
it

s)

Time (seconds)

Single-copy

(a) 30 seconds

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000
S

to
ck

 (
u
n
it

s)
Time (seconds)

Single-copy

(b) 60 seconds

Figure 5.8: Evolution of the real value of the stock with different times between coordi-
nation of the components

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

S
to

ck
 (

u
n
it

s)

Time (seconds)

Single-copy

Figure 5.9: Evolution of the real value of the stock, where each client performs an opera-
tion every 2.5 seconds

72

5. EVALUATION 5.1. The Benchmark

of operations remained close to or the same as the simulations that used the original rate.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

15 30 60

O
p
e
ra

ti
o
n
s
 e

x
e
c
u
te

d
 l
o
c
a
lly

 (
%

)

Time between coordinations (seconds)

2.5 seconds between TPC-W ops 5 seconds between TPC-W ops

Figure 5.10: Percentage of operations executed locally, for different times between bench-
mark operations

Another parameter that influences the amount of communication required is the num-
ber of units restocked. By default, the TPC-W specification defines 20 as the amount of
units to add when restocking an item. Is this amount is increased, with the same rate of
updates, it will take longer to reach a state where the invariant is close to be broken, as
demonstrated in figure 5.11. This means that the amount of operations that can be exe-
cuted locally increases, because the probability of the invariant being broken is lower for
a larger amount of time. This is confirmed by our tests, as seen in figure 5.12.

5.1.3.4 Complexity and Message Size Comparison Between Models

We end this section with a simple analysis of how the estimate models fare against each
other in terms of complexity and system overhead. For the rest of this section, we con-
sider the following: P – the number of updates at a client that have not been propagated
to the data center yet;N – the number of updates seen by the generator; L – the difference
between the upper and lower bound on a metric at a client, i.e., the size of the interval in
which the metric’s value must be; double – the size of a double; period – the time between
the coordinations of the components. Notice that this comparison is made for each object
that is being tracked, to simplify the expressions.

In terms of space complexity, for both models on the estimator side, the volume of
information that is kept is a constant number of parameters (bounds for the metrics, last
timestamp from when communication was made with the generator), and a list with the
P updates that have not been propagated to the data center, so they can be sent the next
time communication is established. Furthermore, for the forecasting models, a forecast

73

5. EVALUATION 5.1. The Benchmark

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

S
to

ck
 (

u
n
it

s)

Time (seconds)

Single-copy

Figure 5.11: Evolution of the real value of the stock, with a restock amount of 100

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

20 30 50 70 100

O
p
e
ra

ti
o
n
s
 e

x
e
c
u

te
d
 l
o
c
a
lly

 (
%

)

Restock quantity (units)

Figure 5.12: Percentage of operations executed locally, for different restock amounts

is stored for each 100 milliseconds in period. On the generator side, both models store a
list of updates, of size N . The rhythmic model also stores a constant number of values as
explained in the previous chapter.

For the time complexity, in the estimator component with the rhythmic model, the
process that causes the complexity is the computation of the confidence degree, which is
a summation or an integral as seen in chapter 3. This depends on the size of the interval,
L. For the forecasting models, the operation to check if coordination is needed is done is

74

5. EVALUATION 5.1. The Benchmark

constant time, it is only a check against a value. On the generator’s side, for the rhythmic
model, the calculations of the rates are done in constant time, using the constant values in
storage that are updated when a new operation is seen. With the forecasting models, the
documentation is not very clear, however, at least one passage on the whole collection of
observations is made to decide which model to use, and then again to forecast the value.

Finally, we analyze the messages’ sizes. For simplicity purposes, we will only describe
the extra information each model needs, and not the information the messages must al-
ready contain (the object’s key and value, etc). The messages sent from the generator to
the estimator, for the rhythmic model, contain two rates and the average divergence the
data center experiences. The forecasting models need much more: one forecast value for
each slice (in our implementation, 100 milliseconds) of period.

Table 5.2 summarizes these complexities and message sizes.

Rhythmic Forecast
Comparison Estimator Generator Estimator Generator

Space Complexity O(P) O(N) O(P + double×period
0.1) O(N)

Time Complexity O(L) O(1) O(1) O(N+)

Message Size P × 2 double 3 double P × 2 double double× period
0.1

Table 5.2: Complexities and message sizes for both models

The rhythmic model, performance-wise, is the lightest one. This is because the fore-
casting library, every time the statistics need to be computed, the best model must be
found (in linear time), and many values must be forecasted (in at least linear time) to be
sent to the estimator components. When the collection of observations becomes large, or
the time between coordinations is larger, this may require lots of computation time. As
opposed to this, the rhythmic model obtains the rates and average divergence in constant
time. As a rough comparison, the longer simulations would finish in minutes when using
the rhythmic model, while the forecasting library made them take several hours.

75

5. EVALUATION 5.1. The Benchmark

76

6
Conclusion

Internet applications rely on cloud computing storage systems to store application data.
Many of these systems rely on optimistic replication mechanisms to propagate updates
between replicas, guaranteeing weaker consistency models, but allowing better latency
for operations [CRSSBJPWY08; LFKA11; SPAL11]. These mechanisms cause replicas to
diverge, since not all replicas reflect the same updates.

If the divergence is known, bounds can be established on a per-replica basis to guar-
antee that a replica does not diverge more than a certain bound allows. Systems exist
where metrics are used to measure the divergence the replica presents relative to an ab-
stract state that reflects all the updates in the system, the single-copy [YV02; SVF07].
Each replica sets bounds for each metric, and communication is forced between replicas
to guarantee that bounds are kept. These systems do not scale to a geo-replicated sce-
nario, because communication between all replicas is needed. Furthermore, applications
may have integrity constraints that have to be kept (such as a stock being always positive
in an online store, for instance) even if the replica has an inconsistent view of the system.
One system aims to keep these invariants in a probabilistic manner, taking into account
the consistency level the storage provides versus the monetary cost of providing better
consistency for an operation [KHAK09]. This guarantee is provided for server accesses
though, not considering client-side updates.

This dissertation presents a metric-based approach to estimating and bounding the
divergence, offering probabilistic guarantees that application invariants are kept. While
the approach does not provide an exact measurement of the divergence, it allows an
estimate with a degree of confidence, which can be calculated locally without contacting
other replicas, as well as determining if an operation would break an invariant if executed
locally at the client.

77

6. CONCLUSION

To estimate the divergence, a model about the evolution of the object is built. This
evolution is generated on the data center side, by gathering statistics about the object
when updates are received from the clients. Some information about the data center’s
own divergence is also kept. These statistics are sent to the clients, and used to estimate
the divergence and the single-copy state of the object, and calculate the certainty degree
of the estimate.

To bound the divergence, bounds are placed on the metrics. A confidence level is
defined with which the bounds must be kept. To guarantee that these bounds are kept,
the estimates’ certainty degree is used to calculate the probability of the object having
diverged to a point that violates the bound. If this calculated probability is greater than
or equal to the desired level, then the bound is kept with that confidence level. If not, the
client may decide to coordinate with the data center to obtain the most recent updates
and reduce divergence. Keeping application invariants is achieved by representing the
invariants as metrics’ bounds, and using this procedure to check if the bounds are kept
with a certain confidence. If they are, the invariant is estimated to be kept.

To fulfill this approach, we developed a model, the rhythmic model. This model treats
the evolution of the objects as a simple rate. This growth rate is used with the last seen
state of the object to estimate the single-copy. To obtain the certainty degrees, the Poisson
distribution is used.

Architecture-wise, the approach is implemented as a middleware with two compo-
nents: an estimator component, on the clients, and a generator component, on the data
centers. The components are placed between the application and storage layers. The
generator component gathers statistics about the objects, and sends them to the estima-
tor component periodically. The estimator component uses these statistics to estimate the
divergence and to decide if coordination is needed to keep the divergence bounded.

To validate our idea, we implemented our approach in a simulated distributed sys-
tem, in order to compare the precision of the estimates with the actual divergence, which
is not obtainable in a real system. We implemented the approach with the rhythmic
model, and with the use of advanced forecasting models [MWH08]. Clients can propa-
gate updates asynchronously, with no delivery guarantees, or in batches of updates.

We evaluated our system with a standard benchmark, TPC-W, which we adapted to
the simulator, and to use the estimates. Evaluation shows that our approach can success-
fully keep the invariant that an item’s stock must be greater than 0, for a large number of
clients (tens or hundreds), and that most operations can be executed locally at the clients,
without the need to coordinate with the data center. The estimates are not as precise
when batching of updates is used, mostly due to the data center’s divergence used in the
estimate. A comparison shows that the rhythmic model fares as well as the advanced
forecasting techniques, and with better time complexity.

78

6. CONCLUSION 6.1. Future Work

Contributions: In summary, this work contributed with:

• A metric-based approach to probabilistically estimating and bounding the diver-
gence of data in eventually consistent storage systems;

• A method for representing application invariants as metric bounds, and to proba-
bilistically guarantee these invariants are kept while minimizing communication,
even when the system scales to many replicas;

• The rhythmic model, a model that fulfills this approach, relying on the growth rate
of objects to estimate the divergence of replicas, and if an operation breaks an in-
variant. The rate is also used to obtain a degree of certainty about the estimates;

• A proof-of-concept implementation of the approach, using a simulated cloud stor-
age system to compare the estimated divergence with the real divergence. This
implementation features the usage of the rhythmic model, as well as the usage of
advanced forecasting models.

• A comparison between the estimates obtained with the rhythmic model and the
ones obtained with the forecasting techniques, using a standard benchmark appli-
cation, TPC-W. Besides evaluating the accuracy of the estimates, this study also
showed how this approach permits offline operations by the clients while keeping
invariants.

6.1 Future Work

This work presents and tests an approach to estimating the divergence between repli-
cas in a distributed system and providing probabilistic guarantees about keeping the
integrity constraints of applications. The evaluation supports the concept, showing that
two models that use this approach succeed in doing this, making it useful for cloud stor-
age systems. With this in mind, the next step is implementing this approach on an ex-
isting system – SwiftCloud [BP12] is a perfect candidate. It uses Conflict-free Replicated
Data Types (CRDTs) to guarantee that states converge and is a geo-replicated system with
many clients that can easily cache data on the client-side and make use of the estimates.
This would allows us to verify that the estimates behave in a real system with the same
precision as in a simulation.

Although not possible to test in the simulator, one thing that may be a problem in a
real system with this approach, is that for many objects and many clients, a huge amount
of communication may exist in the network when coordination is necessary. An inter-
esting study to do if implemented in a real system, would be how this possible excess of
communication may influence latency between clients and data centers, and if so, how
to tweak the approach to deal with it.

79

6. CONCLUSION

In this work we only used the Poisson distribution as a way to obtain certainty de-
grees. This distribution is useful assuming an average rate of updates, however, an inter-
esting study could be made if some other distributions allow for a better representation
of the rate of updates, and if a model could be built with those distributions in mind.
Datasets exist taken from real-world applications that rely on large-scale distributed sys-
tems, such as twitter1. If such datasets represented operations that followed a certain
distribution, an interesting evaluation could be made taking the operations metric into
account, such as estimating how many tweets were not seen at a certain time, and com-
paring estimates made with different distributions against the real distribution of opera-
tions, for instance.

Another possible use of this approach would be in an epsilon serializability con-
text [RP95]. Epsilon serializability (ESR) differs from classic serializability in the sense
that it allows some execution orders that would typically violate serializability, assuring
that inconsistency is provided only within some bounds, taking into consideration precon-
ditions that operations must guarantee. ESR could be provided in a distributed system
by making use of our approach, mapping the operations’ preconditions to application
invariants, while relying on our metrics to estimate and bound inconsistency of accesses.

Useful in other contexts as it may be, our approach is not without its flaws. As noted
in the evaluation, the precision of the estimates when used with batching mechanisms
is not as good as with asynchronous propagation. The main failure point for this is the
data center’s divergence being considered as an average. In a future iteration we would
like to tackle this in a way that allows the data center’s estimate to be done with low time
complexity, but that can be more precise when updates come in batches of variable size.
Though not a flaw, it would also be interesting that the estimate took into account what
data centers got more activity on a certain object, allowing propagation of updates to be
relaxed for data centers with less activity.

1http://trec.nist.gov/data/tweets/

80

http://trec.nist.gov/data/tweets/

Bibliography

[ANBKH95] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto. “Causal
memory: Definitions, implementation, and programming”. In: Dis-
tributed Computing 9.1 (1995), pp. 37–49.

[BVFHS12] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein, and
I. Stoica. “Probabilistically bounded staleness for practical partial
quorums”. In: Proc. VLDB Endow. 5.8 (Apr. 2012), pp. 776–787. ISSN:
2150-8097.

[BBCFKLLLLY11] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin, J. Larson, J.
Léon, Y. Li, A. Lloyd, and V. Yushprakh. “Megastore: Providing
scalable, highly available storage for interactive services”. In: Proc.
of CIDR. 2011, pp. 223–234.

[Bal12] V. Balegas. “Key-CRDT Stores”. MA thesis. Faculdade de Ciências
e Tecnologia, Universidade Nova de Lisboa, 2012.

[BP12] V. Balegas and N. Preguiça. “SwiftCloud: replicação sem coorde-
nação”. In: INForum (2012).

[BBGMOO95] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil.
“A critique of ANSI SQL isolation levels”. In: SIGMOD Rec. 24.2
(May 1995), pp. 1–10. ISSN: 0163-5808.

[Bre00] E. A. Brewer. “Towards robust distributed systems (abstract)”. In:
Proceedings of the nineteenth annual ACM symposium on Principles
of distributed computing. PODC ’00. Portland, Oregon, USA: ACM,
2000, pp. 7–. ISBN: 1-58113-183-6.

[CPW07] L. Camargos, F. Pedone, and M. Wieloch. “Sprint: a middleware
for high-performance transaction processing”. In: SIGOPS Oper.
Syst. Rev. 41.3 (Mar. 2007), pp. 385–398. ISSN: 0163-5980.

81

BIBLIOGRAPHY

[CB74] D. D. Chamberlin and R. F. Boyce. “SEQUEL: A structured En-
glish query language”. In: Proceedings of the 1974 ACM SIGFIDET
(now SIGMOD) workshop on Data description, access and control. SIG-
FIDET ’74. Ann Arbor, Michigan: ACM, 1974, pp. 249–264.

[Cod70] E. F. Codd. “A relational model of data for large shared data banks”.
In: Commun. ACM 13.6 (June 1970), pp. 377–387. ISSN: 0001-0782.

[CRSSBJPWY08] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P.
Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni.
“PNUTS: Yahoo!’s hosted data serving platform”. In: Proc. VLDB
Endow. 1.2 (Aug. 2008), pp. 1277–1288. ISSN: 2150-8097.

[Cor+12] J. C. Corbett et al. “Spanner: Google’s globally-distributed database”.
In: Proceedings of the 10th USENIX conference on Operating Systems
Design and Implementation. OSDI’12. Hollywood, CA, USA: USENIX
Association, 2012, pp. 251–264. ISBN: 978-1-931971-96-6.

[CDKB11] G. F. Coulouris, J. Dollimore, T. Kindberg, and G. Blair. Distributed
Systems: Concepts and Design. Fifth. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2011. ISBN: 0132143011.

[Cou02] T. P. P. Council. TPC Benchmark W (Web Commerce) Specification.
2002.

[DHJKLPSVV07] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels.
“Dynamo: amazon’s highly available key-value store”. In: SIGOPS
Oper. Syst. Rev. 41.6 (Oct. 2007), pp. 205–220. ISSN: 0163-5980.

[FZFF10] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten. “SPORC:
group collaboration using untrusted cloud resources”. In: Proceed-
ings of the 9th USENIX conference on Operating systems design and
implementation. OSDI’10. Vancouver, BC, Canada: USENIX Associ-
ation, 2010, pp. 1–.

[GDCCSXDSLLL12] M. Gagnaire, F. Diaz, C. Coti, C. C’erin, K. Shiozaki, Y. Xu, P. De-
lort, J.-P. Smets, J. Le Lous, S. Lubiarz, and P. Leclerc. Downtime
statistics of current cloud solutions. Tech. rep. The International Work-
ing Group on Cloud Computing Resiliency, 2012, p. 2.

[GG03] D. F. García and J. García. “TPC-W e-commerce benchmark evalu-
ation”. In: Computer 36.2 (2003), pp. 42–48.

[GL02] S. Gilbert and N. Lynch. “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services”. In: SIGACT
News 33.2 (June 2002), pp. 51–59. ISSN: 0163-5700.

82

BIBLIOGRAPHY

[GPO11] P. Gomes, J. Pereira, and R. C. M. d. Oliveira. “An object mapping
for the Cassandra distributed database”. In: (2011).

[Hai67] F. A. Haight. Handbook of the Poisson distribution. Wiley New York,
1967.

[HW90] M. P. Herlihy and J. M. Wing. “Linearizability: a correctness con-
dition for concurrent objects”. In: ACM Trans. Program. Lang. Syst.
12.3 (July 1990), pp. 463–492. ISSN: 0164-0925.

[Ili13] A. Ilienko. “Continuous counterparts of Poisson and binomial dis-
tributions and their properties”. In: arXiv preprint arXiv:1303.5990
(2013).

[JGH07] C. Jay, M. Glencross, and R. Hubbold. “Modeling the effects of
delayed haptic and visual feedback in a collaborative virtual envi-
ronment”. In: ACM Trans. Comput.-Hum. Interact. 14.2 (Aug. 2007).
DOI: 10.1145/1275511.1275514. URL: http://doi.acm.
org/10.1145/1275511.1275514.

[Klo10] R. Klophaus. “Riak Core: building distributed applications with-
out shared state”. In: ACM SIGPLAN Commercial Users of Func-
tional Programming. CUFP ’10. Baltimore, Maryland: ACM, 2010,
14:1–14:1. ISBN: 978-1-4503-0516-7.

[KHAK09] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann. “Consis-
tency rationing in the cloud: pay only when it matters”. In: Proc.
VLDB Endow. 2.1 (Aug. 2009), pp. 253–264. ISSN: 2150-8097. URL:
http://dl.acm.org/citation.cfm?id=1687627.1687657.

[Lam79] L. Lamport. “How to Make a Multiprocessor Computer That Cor-
rectly Executes Multiprocess Programs”. In: IEEE Trans. Comput.
28.9 (Sept. 1979), pp. 690–691. ISSN: 0018-9340.

[Lam78] L. Lamport. “Time, clocks, and the ordering of events in a dis-
tributed system”. In: Commun. ACM 21.7 (July 1978), pp. 558–565.
ISSN: 0001-0782.

[Lam86] L. Lamport. “On interprocess communication”. English. In: Dis-
tributed Computing 1 (2 1986), pp. 86–101. ISSN: 0178-2770.

[Lam98] L. Lamport. “The part-time parliament”. In: ACM Trans. Comput.
Syst. 16.2 (May 1998), pp. 133–169. ISSN: 0734-2071.

83

http://dx.doi.org/10.1145/1275511.1275514
http://doi.acm.org/10.1145/1275511.1275514
http://doi.acm.org/10.1145/1275511.1275514
http://dl.acm.org/citation.cfm?id=1687627.1687657

BIBLIOGRAPHY

[LPCGPR12] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Ro-
drigues. “Making geo-replicated systems fast as possible, consis-
tent when necessary”. In: Proceedings of the 10th USENIX confer-
ence on Operating Systems Design and Implementation. OSDI’12. Hol-
lywood, CA, USA: USENIX Association, 2012, pp. 265–278. ISBN:
978-1-931971-96-6.

[LM06] G. Linden and M. Mayer. Marissa Mayer at Web 2.0. Nov. 2006.
URL: http://glinden.blogspot.pt/2006/11/marissa-
mayer-at-web-20.html.

[LFKA11] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
“Don’t settle for eventual: scalable causal consistency for wide-
area storage with COPS”. In: Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles. SOSP ’11. Cascais, Por-
tugal: ACM, 2011, pp. 401–416. ISBN: 978-1-4503-0977-6.

[LFKA13] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
“Stronger Semantics for Low-Latency Geo-Replicated Storage”. In:
Proc. 10th USENIX NSDI. Lombard, IL, Apr. 2013.

[MWH08] S. Makridakis, S. C. Wheelwright, and R. J. Hyndman. Forecasting
methods and applications. John Wiley & Sons, 2008.

[NAEA13] F. Nawab, D. Agrawal, and A. El Abbadi. “Message Futures: Fast
Commitment of Transactions in Multi-datacenter Environments.”
In: CIDR. 2013.

[O’N86] P. E. O’Neil. “The Escrow transactional method”. In: ACM Trans.
Database Syst. 11.4 (Dec. 1986), pp. 405–430. ISSN: 0362-5915. DOI:
10.1145/7239.7265. URL: http://doi.acm.org/10.
1145/7239.7265.

[PPRSWWCEKK83] J. Parker D.S., G. Popek, G. Rudisin, A. Stoughton, B. Walker, E.
Walton, J. Chow, D. Edwards, S. Kiser, and C. Kline. “Detection
of Mutual Inconsistency in Distributed Systems”. In: Software En-
gineering, IEEE Transactions on SE-9.3 (1983), pp. 240 –247. ISSN:
0098-5589.

[PA04] C. Plattner and G. Alonso. “Ganymed: scalable replication for trans-
actional web applications”. In: Proceedings of the 5th ACM/IFIP/USENIX
international conference on Middleware. Middleware ’04. Toronto, Canada:
Springer-Verlag New York, Inc., 2004, pp. 155–174. ISBN: 3-540-
23428-4.

84

http://glinden.blogspot.pt/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.pt/2006/11/marissa-mayer-at-web-20.html
http://dx.doi.org/10.1145/7239.7265
http://doi.acm.org/10.1145/7239.7265
http://doi.acm.org/10.1145/7239.7265

BIBLIOGRAPHY

[PMCD03] N. Preguiça, J. L. Martins, M. Cunha, and H. Domingos. “Reser-
vations for Conflict Avoidance in a Mobile Database System”. In:
Proceedings of the 1st international conference on Mobile systems, appli-
cations and services. MobiSys ’03. San Francisco, California: ACM,
2003, pp. 43–56.

[RP95] K. Ramamritham and C. Pu. “A Formal Characterization of Ep-
silon Serializability”. In: IEEE Trans. on Knowl. and Data Eng. 7.6
(Dec. 1995), pp. 997–1007. ISSN: 1041-4347.

[SS05] Y. Saito and M. Shapiro. “Optimistic replication”. In: ACM Com-
puting Surveys 37.1 (Mar. 2005), pp. 42–81. ISSN: 03600300.

[SVF07] N. Santos, L. Veiga, and P. Ferreira. “Vector-field consistency for
ad-hoc gaming”. In: Proceedings of the 8th ACM/IFIP/USENIX in-
ternational conference on Middleware. MIDDLEWARE2007. Newport
Beach, CA, USA: Springer-Verlag, 2007, pp. 80–100. ISBN: 3-540-
76777-0, 978-3-540-76777-0.

[SB] E. Schurman and J. Brutlag. Performance Related Changes and their
User Impact. Presented at Velocity Web Performance and Opera-
tions Conference, June 2009.

[SPBZ11] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. “Conflict-
free replicated data types”. In: Proceedings of the 13th international
conference on Stabilization, safety, and security of distributed systems.
SSS’11. Grenoble, France: Springer-Verlag, 2011, pp. 386–400. ISBN:
978-3-642-24549-7.

[STT08] L. Shrira, H. Tian, and D. Terry. “Exo-leasing: escrow synchroniza-
tion for mobile clients of commodity storage servers”. In: Proceed-
ings of the 9th ACM/IFIP/USENIX International Conference on Mid-
dleware. Middleware ’08. Leuven, Belgium: Springer-Verlag New
York, Inc., 2008, pp. 42–61. ISBN: 3-540-89855-7.

[SPAL11] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. “Transactional stor-
age for geo-replicated systems”. In: Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles. SOSP ’11. Cascais,
Portugal: ACM, 2011, pp. 385–400. ISBN: 978-1-4503-0977-6.

[TTPDSH95] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spre-
itzer, and C. H. Hauser. “Managing update conflicts in Bayou, a
weakly connected replicated storage system”. In: SIGOPS Oper.
Syst. Rev. 29.5 (Dec. 1995), pp. 172–182. ISSN: 0163-5980.

85

BIBLIOGRAPHY

[TDPSTW94] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M. Theimer,
and B. B. Welch. “Session guarantees for weakly consistent repli-
cated data”. In: Proceedings of the third international conference on on
Parallel and distributed information systems. PDIS ’94. Autin, Texas,
USA: IEEE Computer Society Press, 1994, pp. 140–150. ISBN: 0-
8186-6401-0.

[Vog09] W. Vogels. “Eventually consistent”. In: Commun. ACM 52.1 (Jan.
2009), pp. 40–44. ISSN: 0001-0782.

[WC95] G. Walborn and P. Chrysanthis. “Supporting semantics-based trans-
action processing in mobile database applications”. In: Reliable Dis-
tributed Systems, 1995. Proceedings., 14th Symposium on. 1995, pp. 31
–40.

[YV02] H. Yu and A. Vahdat. “Design and evaluation of a conit-based con-
tinuous consistency model for replicated services”. In: ACM Trans.
Comput. Syst. 20.3 (Aug. 2002), pp. 239–282. ISSN: 0734-2071.

86

	Introduction
	Context
	Motivation
	Proposed Solution
	Contributions
	Organization

	Related Work
	Data Stores and Replication Basics
	Consistency Levels
	Strong
	Per-key Sequential
	Snapshot Isolation
	Causal
	Eventual

	Guarantees in Eventually Consistent Systems
	Session Guarantees
	Bounded Divergence

	Systems that Enforce Consistency Levels
	PNUTS
	Megastore
	COPS
	Walter
	Spanner
	Gemini
	Comparison

	Bounded Divergence Systems
	TACT
	Mobisnap
	Exo-Leasing
	Mobihoc
	Probabilistically Bounded Staleness for Practical Partial Quorums
	Consistency Rationing
	Comparison

	Estimating and Bounding the Divergence
	System Model
	Adding the Estimates

	The Metrics
	Estimating the Divergence
	Estimating With the Rhythmic Model

	Bounding the Divergence
	Bounding With the Rhythmic Model
	Preserving Integrity Constraints

	Architecture
	Generator Component
	Estimator Component
	Communication Between Components
	The API

	Implementation
	The Simulator
	The System
	Big Brother
	Messages
	Components
	Nodes

	Evaluation
	The Benchmark
	TPC-W
	Benchmark Configuration
	Tests

	Conclusion
	Future Work

