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Abstract  

There is an increasing need for promoting neuroprotection against cerebral ischemia, which is the 

main cause of brain damage in adults. Astrocytes are the most abundant cells inboard the central 

nervous system (CNS), being known as key glial cell for promoting neuronal survival and 

homeostasis. It is more established in nowdays that astrocytic dysfunction contributes to 

neurodegenerative processes. Although, carbon monoxide is a well renown as a lethal and toxic gas 

due to its high affinity to hemoglobin, CO exerts anti-apoptotic, anti-inflammatory and anti-proliferative 

functions. Recent studies showed likewise that CO induces autophagy, promoting therefore 

cytoprotective and anti-inflammatory effects. Autophagy is a major catabolic pathway, known as an 

autodigestive process that degrades cellular organelles and proteins, playing an important role in 

cellular homeostasis during environmental stress.  

Due to the great interest on the signaling and cytoprotective actions of CO, novel strategies have been 

put forward to exploit the potential therapeutic effects of this gaseous molecule. One of these 

approaches consist on the development of CO-releasing molecules (CO-RMs), compounds that 

deliver small quantities of CO to tissues and first identified by the group of Motterlini and co-workers. 

The aim of this Master thesis was to study the action of CORM-A1, a boron-containing compound that 

spontaneously releases CO, against cell death in primary culture of astrocytes. In particular, we 

examined the role of CORM-A1 in autophagy, mitophagy and cell metabolism.  

Here, we demonstrated that CORM-A1 promotes the induction of autophagy in primary culture of 

astrocytes. Furthermore, autophagy is directly involved in the cytoprotective effect of CORM-A1 

against cell death. In some preliminary experiments we have shown that CORM-A1 also induced 

mitophagy, while autophagy and inhibition of cell death promoted by CORM-A1 seem to occur under 

hypoxia (5% of oxygen). This master thesis has addressed several important questions on the role of 

CO in astrocyte function but also opened to many other important questions on the mechanism of 

action of CO. For instance, future work must be undertaken in order to explore whether CO-mediated 

induction of reactive oxygen species (ROS), which play an important role in cell signaling, which  are 

the factors directly involved in mitophagy and the cross-talk between apoptosis and modulation of 

autophagy.  

 

 

Key words:  Astrocytes, neuroprotection, carbon monoxide, CORM’s, autophagy, mitophagy. 
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Resumo 

Isquemia cerebral é a principal causa de danos cerebrais em adultos, levantado assim uma 

necessidade crescente para a promoção da neuroprotecção. Os astrócitos são as células mais 

abundantes no interior do sistema nervoso central (SNC), estando envolvidas na homeostasia e 

sobrevivência neuronal. Um das causas já estabelecidas para patologias neurodegenerativas está 

relacionado com a disfunção destas células.  

O monóxido de carbono (CO) é geralmente conhecido como um gás tóxico letal devido à sua elevada 

afinidade com a hemoglobina, no entanto já se sabe que o CO apresenta propriedades benéficas 

para o organismo, entre elas anti-apoptóticos e anti-inflamatória e anti-proliferativa, para além destas 

propriedades, estudos recentes mostraram também que CO induz autofagia. Autofagia, é um 

processo degradação de organelos celulares e proteínas denaficadas, exercendo um papel 

importante na homeostase celular.  

Em linha com o conhecimento já existente, o objetivo deste trabalho foi estudar a acção de CO contra 

a morte celular em cultura primária de astrócitos, em particular o papel da CORM-A1 na indução de 

autofagia, mitophagy e metabolismo celular. CORM-A1 é uma nova fonte de CO, designada como 

“CO-releasing molecules”, desenvolvida por Motterlini e colegas. 

Neste trabalho demonstramos que CORM-A1 induz autofagia em astrócitos. Além disso, autofagia 

está directamente envolvida no efeito citoprotector de CORM-A1 contra a morte celular, bem como a 

indução de mitofagia. Para além disto, verificamos que efeito da CORM-A1 em hipoxia continua a ser 

citoprotector.  

Em suma, durante esta dissertação de mestrado muitas “janelas” de investigação foram abertas, 

deixando caminho para futuras abordagens. 

 

 

Palavras chave:  Astrócitos, neuroprotecção, monóxido de carbono, CORM’s, autofagia e mitofagia. 
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 Central nervous system  1

The nervous system coordinates the actions and transmits signals in the body and it consists of two 

main parts: the central nervous system (CNS) and the peripheral nervous system (PNS). The central 

nervous system is the processing center and consists of two main organs, spinal cord and brain. It 

collects, integrates and sends information to the peripheral nervous system. Both organs, brain and 

spinal cord, are protected by three layers of connective tissue named as meninges (Roberts et al. 

2004).  

At the cellular level, nervous system is defined by the presence of nerve cells, also known by neurons, 

and special types of supporting cells, known as glial cells (figure 1.1). The neurons are accountable for 

functions that are unique to the nervous system, while the glial cells are non-neuronal cells that 

primarily support and protect the neurons (Bordal et al. 2010). 

 

Figure 1.1 – Schematic representation of several bra in cell populations. Addapted from.(Halassa, Fellin et al. 
2007; Halassa, Fellin et al. 2009) 

 

Neurons are post-mitotic and highly polarized cells, meaning that they develop, in the course of 

maturation, distinct subcellular domains responsible for different functions. Morphologically three 

major regions compose neurons: cell body, dendrites and axon. The cell body, or soma, contains the 

nucleus and the major cytoplasmic organelles. Multiple short dendrites are extensions of the receiving 

surface and arise from perikaryon, ramifying over a certain volume of gray matter. Dendrites can differ 

in size and shape, depending on the neuronal type. Finally, the axon conducts nerve impulses to other 

neurons or to muscle cells, which is the most extended part of the neuron. Each neuron might have 

multiple dendrites, but just one axon (Roberts et al. 2004). 
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Neuronal cells are classified into two broad groups, projection neurons and interneurons. Projection 

neurons are characterized by their capacity to respond to stimuli with an electrical discharge, a nerve 

impulse, and, further, by their fast conduction of the nerve impulse over long distances. This capacity 

is allocated to axon that is particularly built to conduct the nerve impulse from cell body to other cells. 

Therefore a signal can be transmitted in millisecond along the body, the CNS or between them. 

Interneurons mediate cooperation among neurons that rely grouped together (Roberts et al. 2004).  

Between all the cell types in the body, neurons are the most dependent on oxygen and nutrient 

supply, since the specialization on the transmission of information does not allow the existence of 

energy reservoirs. In accordance, brain receives about 15% of the cardiac output at rest (Roberts et 

al. 2004; Bordal et al. 2010). Moreover, just few minutes of blood flow interruption may cause neuronal 

cell death, occurring during cerebral ischemic stroke, which is the third cause of death in west 

countries.  

The CNS is composed by three types of glial cells, oligodendrocytes, astrocytes and microglia. In 

1859, Rudolph Virchow, studied this set of cells and coined as neuroglia, or “nerve glue”. This name 

derives from the notion that glial cells served as a kind of glue, an inactive connective tissue holding 

neurons together in the CNS. Glial cells are the major cells present in the brain and indispensable for 

neuronal functioning (Roberts et al. 2004; Vilhardt et al. 2005). 

Oligodendrocytes are the main responsible for the formation of myelin sheath in the CNS and are 

involved in a short number of processes. The main one is during brain development as responsibles 

for myelin production. The other cell type that is present in CNS is microglia, which originates from 

mesoderm and is known as the macrophages of nervous tissue (Vilhardt et al. 2005). Some studies 

indicate that microglia constitute 5 to 20% of all the glial cells and are distributed throughout all parts 

of the CNS. These cells have a particularly function in CNS that is the role of cleaning the extracellular 

medium, by “scanning” the environment for foreign material and sick or dead cellular elements 

(Roberts et al. 2004; Bordal et al. 2010). Finally the third glial cells are astrocytes, which are discussed 

in the next section.  

 

 The role of astrocytes in central nervous system 1.1

Astrocytes are the most abundant cells inboard the CNS, outnumbering neurons in a ratio of 10:1, 

constituting about 20-50% of the total human brain volume (Sagduyu K. et al. 2002; Roberts et al. 

2004; Izhikevich et al. 2007). They are known for being a heterogeneous cell population based on 

their morphology, function and expression of different sets of receptors, transporters, ions channels 

and neurotransmitters (Son, Jeong et al. 2005; Sofroniew and Vinters et al. 2010; Allaman, Bélanger 

et al. 2011).  

In the beginning of Neurobiology field, they were the most poorly understood neural cells, thought for 

simply being the cells that occupy the spaces between neurons. However astrocytes revealed to be 
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involved in many important functions in the brain: modulation of metabolism, neurotransmitters and 

homeostatic functions, establishing and maintaining the essential nature of interactions between 

neurons (Sagduyu K. et al. 2002; Son, Jeong et al. 2005). Based on in vivo and in vitro approaches, it 

is already recognized that astrocytes produce and release growth factors for the modulation of distinct 

neuronal subpopulations at the level of: morphology, proliferation, differentiation and survival. 

Additionally, astrocytes also act on the control of development and function of astrocytes and 

oligodendrocytes. The ability of astrocytes in producing and responding to growth factor and cytokines 

is the major mechanism underlying the development and regenerative capacity of CNS (Roberts et al. 

2004).  

Since the last decade, astrocytes have been categorized in two subtypes, protoplasmic or fibrous, 

based on their unique cytoarchitectural and phenotypic features which allow them to respond to 

changes in the microenvironment (Sofroniew; Vinters et al. 2010). Protoplasmic astrocytes are found 

throughout all gray matter, whereas the fibrous astrocytes are only found in white matter. The 

protoplasmic astrocytes exhibit a morphology of several stem branches, while fibrous astrocytes have 

longer branches and 50 to 60 long fiber-like processes, but both make extensive contacts with 

intraparenchymal blood vessels via specialized processes called endfeets. These endfeets express 

glucose transporters of the Glut-1 type and are a possible site of glucose uptake (Sagduyu K. et al. 

2002). In this sense astrocytes have been shown to have an important role in neurovascular and 

neurometabolic coupling. Likewise, for enabling the dynamic coupling of cerebral blood flow with 

energy demand, the astrocytes release vasoactive substance (Allaman, Bélanger et al. 2011).  

At the metabolic level, astrocytes are the only cell types in the brain that comprise the energy storage 

molecule glycogen, and that respond to glutamatergic activation by increasing their rate of glucose 

utilization and releasing lactate in the extracellular space, which might, in turn, be used by neurons to 

sustain their energy demands (Sagduyu K. et al. 2002).  Other homeostatic functions have been 

demonstrated, including: (i) ion and water homeostasis, (ii) defense, against oxidative stress, (iii) scar 

formation and tissue repair, (iv) modulation of synaptic activity via the release of gliotransmitters, and 

(iv) synapse formation and remodeling (Sofroniew; Vinters et al. 2010; Allaman, Bélanger et al. 2011). 

Astrocytes are powerfully coupled together by gap junctions, containing aqueous pores, which are 

permeable to ions and other molecules with low molecular weight (Sagduyu K. et al. 2002). A set of 

biological important molecules, comprising nucleotides, small peptides, cAMP, sugars, amino acids, 

inositol triphosphate (IP3) and Ca2+ have accesses by gap junctions (Sofroniew; Vinters et al. 2010).  

Since the last years the role of astrocytes in the brain has raised a special interest for investigation, 

these star-shaped cells that lack axons not only supports neuronal activity, but can also modulate the 

neurotransmission by modulating synapses. This process is defined as the “tripartide synapse” and 

depending on intracellular levels of Ca+2, astrocytes release gliotransmitters (e.g. glutamate) – in a 

process termed gliotransmission - that have feedback actions on neurons (figure 1.2). The term 

“tripartite synapse” refers to a concept in synaptic physiology based on the demonstration of the 

existence of bidirectional communication between astrocytes and neurons (Halassa, Fellin et al. 2007; 

Halassa, Fellin et al. 2007; Halassa, Fellin et al. 2009). Glutamate is the most common amino acid 
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and neurotransmitter present in brain tissue, which is an excitatory neurotransmitter. Glutamate can 

be generated from neuronal metabolism of glucose and glutamine is its principal precursor of 

synaptically released glutamate. For instance, glutamate, which is uptaken by astrocytes, which 

convert glutamate into glutamine and then release it to the extracellular space, while glutamine is 

uptaken by neurons, restarting the cycle generating again glutamate and GABA, which are potent 

excitatory and inhibitory neurotransmitters, respectively (Sagduyu K. et al. 2002; Roberts et al. 2004). 

 

Figure 1.2 – Representative scheme of communication  between neurons and astrocytes- trypartide 
synaps. Adapted (Halassa, Fellin et al. 2007)  

 

Considering the pivotal role of astrocytes in the brain and the strong cooperation between neurons 

and astrocytes, direct evidences point to an important role of astrocytes in several pathologies, either 

through the loss of normal function or the gain of defective functions. A striking example of one 

disorder caused by a primary dysfunction of astrocytes is Alexander disease (AXD), the first identified 

human neurological pathology (Allaman, Bélanger et al. 2011). Consequently, in contrast to the 

classically accepted paradigm that brain function results exclusively from neuronal activity, there is an 

emerging view, in which brain function actually arises from the coordinated activity of a network 

comprising both neurons and glia cells (Sagduyu K. et al. 2002; Roberts et al. 2004). 

As stated above, the role of astrocytes in brain functioning is of extreme importance. Although many 

advances have been made in this area, the full understanding of astrocytic intracellular events is still 

unknown. Consequently in this master thesis we have a great interest in studying astrocytes due to 

their crucial role on brain homeostasis and neuronal functioning. 
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 Carbon monoxide  2

Carbon monoxide (CO) is a diatomic colorless small molecule, invisible, chemically inert, nonirritant, 

and odorless gas (Idriss, Blann et al. 2008). It is, commonly known as a lethal gas and toxic air 

pollutant, however, CO is an endogenously produced gaseoustrasmitter. The chemical composition of 

CO was identified in the 18th century. In 1857, Claude Bernard demonstrated that CO could cause 

asphyxia, by reversely moving oxygen from hemoglobin and forming carboxyhemoglobin (COHb). 

During the subsequent years, CO toxicity has been lengthily studied (Ozaki, Kimura et al. 2012). 

Only after almost one century, in 1949, it was demonstrated that CO is endogenously produced 

through its identification in exhaled human air (Sjöstrand et al. 1949). In 1968 heme oxygenase (HO) 

was identified as the enzyme that catalyzes heme and endogenously produces CO (Ozaki, Kimura et 

al. 2012). CO is generated by oxidation of the heme group, in particular the α-methene bridge carbon 

atom of the heme porphyrin ring, being a catabolic byproduct of hemoglobin in the body under 

abnormal conditions (figure 2.1) (Ozaki, Kimura et al. 2012; Ryter ; Choi et al. 2013).  

 

 

Figure 2.1- Endogenous pathway production of carbon monoxides (Ozaki, Kimura et al. 2012). Heme group 
is converted in biliverdin, ferriciron and carbon monoxide by the action of heme oxygenase. Biliverdin is after 
converted in bilirubin in the presence of biliverdin reductase.  

 

 Heme oxygenase (HO) 2.1

Heme oxygenase is the rate-limiting enzyme, responsible for metabolizing heme molecules into 

biliverdin, ferrous iron, and CO (figure 3). HO activity and expression is induced by several different 

stress stimuli, such as heavy metals or reactive oxygen species (ROS), and is involved in both 

physiological and pathological processes (Ozaki, Kimura et al. 2012). Tenhunen and colleagues were 

the first to propose the existence of three isozymes, HO-1, HO-2 and HO-3 (Idriss, Blann et al. 2008). 

HO-1 and HO-2 have a clear and significant biological role, while HO-3 has a substantially lower 

catalytic activity and is less studied (Ozaki, Kimura et al. 2012). Although HO-1 and HO-2 catalyze the 

same reaction, they differ in expression patterns, HO-1 expression is induced in response to a 

numerous stimulus, while HO-2 is constitutively expressed (Motterlini, Clark et al. 2002). The inducible 
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HO-1, is a ubiquitous heat shock protein (HSP32), which is particularly protective safeguarding the cell 

against diverse stress-related conditions (such as redox). HO-1 is upregulated in response to oxidative 

stress, hyperthermia, hypoxia and proinflammatory stimuli in different tissues and has been shown to 

exert potent cytoprotective and antiapoptotic properties. The common feature between these inducers 

is their ability to produce ROS at low levels, and thus with signaling functions, suggesting that HO-1 

provides potent cytoprotective effect (Idriss, Blann et al. 2008). While, HO-2 is abundant in brain, 

testis, and liver, and is responsible for particularly high HO activity in these organs during the steady 

conditions (Ryter;  Choi et al. 2013). 

One of the products originated by heme group degradation is biliverdin, which is rapidly converted in 

bilirubin by the action of biliverdin reductase. These two molecules are natural antioxidants, usually 

are present in serum in high levels and are also considered to be responsible for the HO-induced 

cytoprotection. (Idriss, Blann et al. 2008).  

It is well known that byproducts generated during the heme catabolism are described as having 

potential protective role. Nevertheless, in several types of injury the protection has been attributed 

mainly to CO.  

 

 Biological functions of carbon monoxide 2.2

Firstly, CO was described as a putative neural messenger and is now recognized as a signaling 

molecule exerting essential regulatory roles in a variety of physiological and pathological process in 

cardiovascular, nervous and immune systems. Some CO’s cytoprotective effects are: anti-

inflammatory, anti-apoptotic, anti-atherogenic and anti-proliferative (Motterlini et al. 2010).  

Motterlini and colleagues shown that in isolated aortic tissue CO induced vessel relaxation and 

prevent coronary vasoconstriction as well as acute hypertension in vivo (Motterlini, Clark et al. 2002; 

Clark, Naughton et al. 2003). The CO biological effects concerning the inflammatory processes seem 

to involve the stimulation of soluble guanylate cyclase (sGC) and cyclic guanosine monophosphate 

(cGMP) production, but it can also include modulation of MAPK activation and of calcium-dependent 

potassium channel activity, in smooth muscle models (Ryter, Alam et al. 2006).  

Some evidence suggests that endogenous CO is a neurotransmitter in CNS. In 1993, Verma and 

colleagues demonstrated, in primary olfactory neuron culture, the action of CO as endogenous 

neuronal transmitter regulating cyclic guanosine monophosphate (cGMP) and guanylate cyclase (GC) 

(Verma, Hirsch et al. 1993; Ozaki, Kimura et al. 2012). Brouard et al in 2000 demonstrated for the first 

time the anti-apoptotic property of the system HO-1/CO in endothelial cells. Since then, it has been 

shown that CO confers resistance against cell death following ischemia-reperfusion trauma, in many 

different models, namely lung, heart, kidney, liver and brain  (Ryter, Alam et al. 2006; Queiroga, 

Almeida et al. 2012). 
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 Carbon monoxide in the CNS 2.2.1
 

In 2007, Chora et al. described that CO reduced neuroinflammation in experimental autoimmune 

encephalomyelitis, a model of multiple sclerosis. Few years after, in 2009, Zeynalov showed that in 

mice brain CO reduced injury after transient middle cerebral artery occlusion. In 2012, Mahan et al. 

showed that CO prevented cerebral injury resulting from cardiac bypass procedures using deep 

hypothermic circulatory arrest. In the same year, Yabluchanskiy and colleagues demostrated that a 

CO-releasing molecule (CORM-3) promotes neuroprotection or neurotoxicity after intracerebral 

hemorrhage depending on the time of administration (Smith, Mann et al. 2011).  

However, in the brain environment, the CO cytoprotective-associated mechanisms have been poorly 

described. For that reason, along the last years our laboratory has developed a great interest for 

studying the effect of CO in the prevention of neuronal and astrocytic cell death and its role in 

mitochondria. Therefore, in 2008, Vieira and colleagues first showed that the preconditioning of murine 

primary cerebellar granule cells with exogenous CO prevented neuronal apoptosis induced by 

excitotoxicity and oxidative stress (Vieira, Queiroga et al. 2008). Likewise, CO prevents neuronal 

death in a perinatal model of cerebral ischemia, by increasing Bcl-2 expression, preventing the release 

of cytochrome c from the mitochondria and inhibiting caspase-3 activation (Queiroga, Tomasi et al. 

2012).  

Because astrocytes are crucial cell for cerebral homeostasis and correct functioning, our group has 

also focused on CO cytoprotection in this neural cell type. In 2010, Queiroga and colleagues 

demonstrated that CO prevented apoptosis in primary culture of astrocytes by directly inhibiting 

mitochondrial membrane permeabilization (MMP), with oxidized glutathione and ROS as signaling 

factor (Queiroga, Almeida et al. 2010). Likewise, CO also prevented astrocytic cell death by improving 

cell metabolism, namely by: increasing ATP production, increasing cytochrome c oxidase enzymatic 

specific activity and stimulating mitochondrial biogenesis, in a Bcl-2 dependent mode of action 

(Almeida, Queiroga et al. 2012). 

Up to the date all generated data in our lab was performed using CO gas or CO-saturated solutions. 

We are now interested in using CO releasing molecules (CORM) that will be described in the next 

section. 
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 CO Releasing molecules 2.3

Since the last decade, CO has received great attention as a biological regulator that can have an 

important role as a therapeutic tool. The main example is the development of CO-releasing molecules 

(CORMs) (figure 2.2), which are organic and organometallic compounds, with the capacity of 

delivering CO in a time and tissue-specific manner, allowing a significant reduction in 

carboxyhaemglobin toxicity (Queiroga, Almeida et al. 2012). It is already known the capacity of 

CORMs to mimic the effect of the gaseous CO, including vessel relaxation, protection against organ 

ischemia-reperfusion injury, prevention of organ rejection after transplantation, inhibition of 

inflammatory response and anti-apoptotic properties, highlighting the efficiency of CO transport by 

these molecules (Motterlini, Clark et al. 2002; Motterlini et al. 2010).  

 

Figure 2.2 - Chronologic discover of CORM'S. Schematic diagram showing the types of bioactive CORM’s 
identified until this moment, CORM’s are compounds that contain a heavy metal such as nickel, cobalt, or iron 
surrounded by carbonyl (CO) groups as coordinated ligands. Figure adapted from (Motterlini, Sawle et al. 2005).  

 

In 2003 the first water-soluble CORM, CORM-3 (tricarbonylchloro(glycinato) ruthenium (II)), was 

described, which was obtained by coordinating the amino acid glycine onto the metal center. CORM-3 

is fully soluble in water and presents in its structure a metal carbonyl complex with a half-time of about 

1minute in physiological buffers. One of the most recently described CORMs is CORM-A1 (sodium 

boranocarbonate), like CORM-3, it is fully soluble in water, but does not possess a transition metal in 

its structure and is able to release CO with a half-life of 21 minutes being slower releaser under 

physiological conditions, (37ºC and pH 7,4) (Motterlini, Sawle et al. 2005).  

The advantage of using this type of molecules is the capability of these small organic and 

organometallic compounds to deliver CO in a timely and tissue-specific manner, allowing a reduction 

in the carboxyhaemoglobin formation and toxicity. Opening therefore new windows of opportunity to 

use CO in clinical applications. 
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 Autophagy  3

Throughout a possible lethal stress, cells respond with rapid metabolic changes to protect themselves 

against potential damage. This is orchestrated by a multifaceted cellular program, which involves the 

action of various stress response pathways. One of the key pathways that arbitrates stress-induced 

metabolic adaptation and control of cell damage is macroautophagy, also known as autophagy 

(Kroemer, Mariño et al. 2010).  

More than 40 years ago Christian de Duve, described a catabolic processes conserved from lower to 

higher eukaryotes, which is named as autophagy, this word remotes from the Greek and means 

“selfeating” (Gomes; Scorrano ; Rabinowitz; White et al. 2010). Autophagy is an intracellular 

degradation system that carries cytoplasmic constituents to the lysosome. There are three types of 

autophagy; macroautophagy, microautophagy and chaperone mediated autophagy (Mizushima, 

Levine et al. 2008). 

Autophagy is a protective mechanisms that allows cells to survive in response to multiple stressors, 

such as; starvation, hypoxia, ROS and damaged organelles, strengthening organism defense (Levine; 

Kroemer et al. 2008; Mizushima et al. 2008). Autophagy is involved in diverse human processes, such 

as development, longevity, immunity, cancer and neurodegenerative diseases (Kroemer, Mariño et al. 

2010; Rabinowitz; White et al. 2010).  

Furthermore diverse studies suggest that the lifetime of Drosophila and Caenorhadditis elegans and 

even mice can be significantly increased by stimulation of autophagy. In the last years autophagy 

reveals as a protective process (Hansen; Johansen et al. 2011). 

 

 Autophagic Flux 3.1

Autophagic flux refers to all steps of the complete process of autophagy (figure 3.1). Autophagic 

process initiates with the formation of isolate membrane named phagophore (a and b). This 

phagophore sequesters and engulfs a portion of cytoplasm to form mature autophagosomes (c) the 

fusion of this structure with a lysosome forms the autolysosome (d), in which occurs the degradation of 

the engulfed content by the action of acidic lysosomal hydrolases (e) (Mizushima, Levine et al. 2008; 

Mizushima, Yoshimori et al. 2010). Thus, these three main steps (figure 5- steps a,c,d) allow cellular 

elimination of damaged or harmful components through catabolism and cellular recycling, which 

maintain nutrient and energy homeostasis (Xie; Klionsky et al. 2007; Hansen; Johansen et al. 2011).  

In the absence of stress, autophagy suits a housekeeping function, providing a routine “garbage 

disposal” to the cells. This function is particularly important to quiescent and terminally differentiated 

cells, in which the damaged organelles are not disposed by the cell moment of replication (Rabinowitz; 

White et al. 2010). 
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Autophagy is induced by an extensive range of stimulus (Rabinowitz; White et al. 2010). The most 

usual trigger of autophagy is nutrient deprivation also known as starvation, but other stimuli are 

involved including damaged organelles, misfolded proteins, DNA damaged, hypoxia, redox stress and 

mitochondrial damage (Mizushima et al. 2007; Kroemer, Mariño et al. 2010).   

 

Figure 3.1- Autophagic flux (Xie and Klionsky 2007).  a,b) Cytosolic material is sequestered by an expanding 
membrane named as phagophore. c) Resulting in the formation of double-membrane vesicle, autophagosome. d) 
The outer membrane fuse with a lysosome forming the autolysosome. e) The cargo containing membrane 
compartment is then lysed and the content is degraded; 

Although some of the proteins involved in autophagic process are already known, it is still necessary 

to disclose many of the cellular factors involved in autophagy. The autophagosome formation requires 

Beclin-1-class III phosphatidylinositol 3-kinase complex to generate phosphatidylinositol 3-phosphate, 

as well as generation and insertion of LC3 (Rabinowitz; White et al. 2010). This protein specifically 

associates with autophagosome membranes and usually is present in the cytosol as soluble form of 

LC3 (LC3-I). When autophagy is activated LC3-I conjugates with phosphatidylethanolamine (PE) and 

occurs its lipidation, leading to the conversion in autophagic vesicle-associated form, LC3-II (Yang and 

Klionsky 2010; Yang and Klionsky et al. 2010; Yen, Shintani et al. 2010; Hansen; Johansen et al. 

2011). Thus, LC3-II is widely used as a biomarker for autophagy activation. 

Many proteins that possess an LC3-interacting region (LIR) are considered as adaptors proteins to 

target autophagic degradation. The ubiquitinylation on modified proteins or in mitochondria, is 

recognized and bound by autophagy receptors, such as p62 (also known as sequestosome1, 

SQSTM1), Nbr1 (Kirkin, McEwan et al. 2009), as well as BNIP3L (also known as Nix). These 

receptors bind to mitochondrial membranes by the interaction with LC3 delivering cargo to 

autophagosome (Novak, Kirkin et al. 2009; Rabinowitz; White et al. 2010; Hansen; Johansen et al. 

2011). 

Since alterations in autophagy have a role in pathogeneses of several diseases, there is a great 

interest in identifying compounds that can be used for therapeutic purposes. 
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 Mitophagy 3.2

A billion years ago, aerobic bacteria colonized eukaryotic cells, and this symbiotic relationship resulted 

in bacteria evolution into mitochondria, while the host cells acquired the ability to metabolically use 

oxygen. In this moment mammalian cells rely on mitochondria for vital functions such as; pyruvate 

oxidation, the Krebs cycle, the metabolism of amino acids, fatty acids, calcium homeostasis, steroids 

and the generation of energy as ATP. Mitochondria also play a significant role in several mechanisms 

of cell death because they are sources of pro-apoptotic molecules, such as cytochrome c and are 

decked with proteins of the Bcl-2 family such as the pro-apoptotic protein Bax (Youle; Narendra et al. 

2010). On the other hand, mitochondria are an important source of ROS (reactive oxygen species). 

Mitochondria ROS production contributes to cellular redox signaling, as well as to cellular damage, 

depending on their concentration (Scherz-Shouval, Shvets et al. 2007; Scherz-Shouval; Elazar 2011; 

Vives-Bauza; Przedborski et al. 2011). Recent studies suggest that one major sensor of redox 

signaling in cellular response, between stress adaptation and cell death, is autophagy (Jisun, 

Samantha et al. 2012).  

Brain is rich in mitochondria and uses about 20% of oxygen, while 90% of the consumed oxygen is for 

generating energy, which makes brain cells particularly sensitive to oxidative stress. Oxidative stress 

is linked to mitochondrial dysfunction as at the same time mitochondria generate and are the target for 

ROS. In this way, mitochondria homeostasis is very important for avoiding cellular accumulation of 

ROS and a loop of damage, thus the number and quality of this organelle is critical to the good cellular 

functioning. The elimination of mitochondria leads to the renewing of mitochondria named as 

mitochondria turnover. Mitochondria turnover is dependent on autophagy, but the cross-talk between 

autophagy, redox signaling and mitochondrial dysfunction is not well understood (Jisun, Samantha et 

al. 2012).  

Mitophagy was discovered in 2004 in Sacchoromyces cerevisae as well as the first involved protein  

(Uth1p) (Bhatia-Kiššová; Camougrand et al.). The term mitophagy was suggested by Lamesters and 

colleges in 2005, to describe the engulfment of mitochondria into vesicles with autophagosome 

marker, therefore, mitophagy concerns to selective process of autophagy (Youle; Narendra et al. 

2010). Following the loss of mitochondria, cell might maintain the population of mitochondria (lengths 

and shape) by altering the balance between fission and fusion and by inducing mitochondrial 

biogenesis (Vives-Bauza; Przedborski et al. 2011). In the recent years some studies defend that 

fission or mitochondrial fragmentation is an event that occurs previously to mitophagy (Poole, Thomas 

et al. 2010). Recent evidences suggests that mitophagy from yeast to mammals is the primary 

mechanism for the elimination of malfunctioning mitochondria. Thus, mitochondrial remodeling through 

fission, fusion, mitophagy and mitochondrial biogenesis are important for mitochondrial homoeostasis 

and quality control (Kim, Rodriguez-Enriquez et al. 2007; Jisun, Samantha et al. 2012). 
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 BNIP3 3.2.1

The receptors of mitophagy are still a subject of discussion and speculation, since so far little is known 

about them. Recent studies suggested the role of a mitochondrial outer membrane protein, named Nix 

or BNIP3L, that is required for mitochondrial clearance during erythrocyte maturation and has a WXXL 

motif (Kanki, Wang et al. 2009). It may also be a mitochondrial receptor for mitophagy in mammalian 

cells (Kirkin, McEwan et al. 2009; Novak, Kirkin et al. 2009).  

Similarly, BNIP3 that was initially identified in yeast as Bcl-2 and adenovirus E1B 19-kDa interacting 

protein-3, is present in the membrane of mitochondria when it is overexpressed (Zhang; Ney et al. 

2009; Quinsay, Lee et al. 2010). Together with Nix, BNIP3 are mitochondrial proteins that have the 

ability to induce both cell destinies: survival or death. 

BNIP3 and Nix share certain features with the BH3-only subgroup of the Bcl-2 family, such as 

sequence homology in the BH3 domain, residence in the outer membrane and the ability to interact 

with Bcl-2 and Bcl-XL, which connects them with cell death modulation (Bellot, Garcia-Medina et al. 

2009).  

Furthermore these proteins are also related with autophagy by Beclin-1, an important autophagic 

protein, that interacts with Bcl2 and Bcl-XL, thus, BH3-only proteins may induce autophagy by 

competing with Bcl-2 for binding to Beclin-1 (Zhang, Meng et al. 2003; Zhang; Ney et al. 2009). 

 

 PINK1 and Parkin 3.2.2

The loss of function of the proteins: Parkin (an E3 ubiquitin ligase) or PINK-1 (PTEN-induced kinase 1, 

a mitochondrial localized serine/threonine kinase) results in a genotype of recessive familial forms of 

Parkinsonism (Poole, Thomas et al. 2010). The malfunction of these two proteins is responsible for 

male sterility in Drosophila, apoptotic muscle degeneration, defects in mitochondrial morphology and 

increased sensitivity to multiple stresses including  oxidative stress (Clark, Dodson et al. 2006). 

Additionally, Parkin and PINK-1 are also related to mitophagy modulation. 

PINK-1 and Parkin are mostly studied in dopaminergic neurons since it was thought that these two 

proteins are involved in the neurodegenerative Parkinson disease. PINK-1 a constitutively express 

protein, being proteolysed by mitochondria rhomboid protease PARL, at the mitochondria membrane 

of healthy mitochondria. This process results in processed forms of PINK-1, which are rapidly 

degraded by the proteasome. Whenever membrane potential (∆ψm) is reduced there is an 

accumulation and activation of PINK-1, recruiting Parkin from the cytosol to the mitochondria. 

Mitochondria accumulation of Parkin leads to their degradation via mitophagy (figure 3.2) (Shiba-

Fukushima, Imai et al. 2012).  

In 2011 Cui and colleagues found in dopaminergic MN9D mouse cells that the down-regulation of 

PINK-1 by RNA interference resulted in abnormal mitochondrial morphology, partial loss of 

mitochondrial membrane potential and increased production of ROS, leading to mitophagy. In these 

cells mitophagy was associated with up-regulation of Beclin-1 and the opening of mitochondrial 
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permeability transition (MPT) pore, suggesting that the mechanisms behind the activation of 

mitophagy are controlled by opening of MPT pore and by general autophagy regulators (Cui, Fan et al. 

2011). 

All of these processes involving PINK 1/Parkin are thought to be related with the capacity of the 

mitochondrial machinery regulation through ubiquitination, namely, the mitochondrial fusion-promoting 

factor mitofusion (dMfn). The steady-state abundance of dMfn is increased by the decrease of 

PINK1/Parkin complex (Poole, Thomas et al. 2010; Youle; Narendra et al. 2010; Imai; Lu et al. 2011).  

However, the exact stimuli and mechanism that activate autophagy by the loss of function of PINK-1 

and accumulation of Parkin is unclear (Cui, Fan et al. 2011).  

 

 Figure 3.2 - Mitophagy process by activation of PINK 1 and Parkin induction (Imai; Lu et al. 2011). 
Mitochondrial fusion and fission events are required for the maintenance of healthy mitochondrial population, in 
the case of mitochondrial fusion it is thought to facilitate the interchange of internal components. On other hand 
mitochondrial fusion seems to have an important role in the removal of damaged mitochondria and PINK1/Parkin 
are likely to be the trigger of this all process. In the case of damaged mitochondrias PINK1 accumulates in the 
mitochondrial membrane and recruits parkin from the cytosol signaling the mitochondria for degradation via a 
selective process of elimination – mytophagy; 

 

Mitochondrial depolarization, fission and ROS production (malfunctioning mitochondria) are 

associated with modulation of mitophagy, but how these potential signals are integrated is not clear, 

being a scientific subject with broad room for development and research.  

Therefore this thesis focuses on understanding CO mode of action in primary culture of astrocytes, 

namely its capability of cytoprotection against cell death via modulation of autophagy and/or 

mitophagy. 
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 Aim 4
 

The role of astrocytes in the CNS and their involvement with malfunction, such as in 

neurodegenerative diseases, has raised a great interest along the time, since astrocytic function is 

crucial for neuronal maintenance. The role of CO in the cytoprotection of astrocytes was already 

demonstrated in previous studies (Queiroga, Almeida et al. 2010; Almeida, Queiroga et al. 2012). 

Nevertheless, the CO-induced cellular pathways are still a matter of debate. In addition, studies 

carried out in the recent years, in brain and in other models, introduce a new cellular process of 

cytoprotection: autophagy, previously claimed as a cell death process (Boya, Reggiori et al. 2013). In 

summary, and based in all the existent knowledge, this thesis has as a general aim: 

The study of the cellular and biochemical pathways involved in CO-induced cytoprotection, in 

particular the role of autophagy, mitophagy and cel l metabolism. 

 For reaching this aim, three specific objectives will be followed: 

1) Understanding whether CO induces autophagy and in particularly mitophagy in astrocytes; 

2) The autophagy/mitophagy role in CO-induced cytoprotection in astrocytes; 

3) Identification of the main factors involved in CO-induced autophagy/mitophagy; 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. Material and methods 
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This section is reserved to describe the material and methods used to evaluate the experimental 

hypothesis. The description of the experimental work is divided in five main points.   

 Material, solutions and medium 4.1

 Medium and culture material 4.1.1

All plastic material was provided from Sarstedt (Germany) and is sterilized. Glass material and 

prepared solutions were sterilized by autoclaving at 121ºC for 20 minutes or by filtration using a pore 

size of 0.22 µM.  

Table 4.1- Reagents used culture cells, for the ext raction of astrocytes 
Reagent  Reference  Company  Final concentration  

DMEM low glucose  31885-0230 
Gibco – Life 
technologies  

Fetal Bovine Serum  
(heat inactivated) 

(FBS) 
41F3715K Gibco- Life 

technologies 
20, 15 and 10% in cell 

culture medium 

Penicillin -
streptomycin  1514022 Gibco- Life 

technologies 
1% (100U/mL) in cell 

culture medium 

Glucose   Sigma 1 g/mL in cell culture 
medium 

 

 Preparation of Buffer solutions 4.1.2

All the solutions presented in the table below were prepared in milli-Q water:  

Table 4.2 - Reagents utilized in the technique of W estern Bolt. 

Buffers  Composition  

Phosphate Buffer saline (PBS)  1,54M NaCl,34mM  Na2HPO4, 20mM 
KH2PO4. 

With a final pH of 9,4. 

Cell lysis Buffer  
2% (w/v) SDS 
50mM tris-HCL 

pH= 6.8 

Loading buffer (for samples in 
WB) 

10% (v/v) Glycerol 
10mM DTT 

0,005% (w/v) Blue Bromofenol 

T-TBS (WB)  
0,25M Tris-HCL; 0,75M NaCL 

Blocking  Buffer (for blocking 
WB membranes)  T-TBS with 5% (w/v) Milk 

Running Buffer (protein gel for 
WB) 0,25M Tris base,1,92M Glicine, SDS 

20%(v/v) 

Transfer Buffer (transferring 
protein from gel to membranes 

in WB)  
Runing buffer with 10% (v/v) of 

Methanol 

Permeabilization solution  
0,1% (w/v) SDS in PBS 

Blockin g solution  
10% (v/v) of FBS in PBS 
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 Preparation of CORM-A1  4.1.3

The solution of CORM-A1 was prepared in milli-Q water with a final concentration of 5mM. Then, the solution was 

filtrated with 0,22 µM filter, aliquoted and stored at -20ºC. For each use, an aliquot was thawed and rapidly added 

into the culture. 

 

 Antibodies 4.1.4

For Western Blot and Immunofluorescence techniques, we used the primary and secondary antibodies described 

below:  

Table 4.3 - Description of conditions and features of the used antibodies. 

 Indicated by the 
company  

Optimized   

Antibody  Reference Company Origin [] µg/ml 
WB 

[] µg/ml 
IF 

Dilution 
Factor 

WB 

Dilution 
factor 

IF 

Molecular 
Weight 
(kDa) 

Anti -Glial 
Fibrillary 

Acidic 
Proteins 
(GFAP) 

 Milipore Mouse 
Monoclonal 

1:1000  1:1000 1:500 50 

Anti 
SQSTM1 or 

P62 

157H000
08878-

M01 

Abnova 
Tebu-bio 

Mouse 
Monoclonal 

  1:500 
 

 62/64 

Anti-LC3B  ab48394 abcam Rabbit 
Policlonal 2µg/ml  1:500 1:400 18 LC3 I 

17 LC3II 

Anti-BNIP3  ab10433 abcam Mouse 
Monoclonal 5µg/ml  1:500  37 

Amersham 
ECL Anti-
rabbit IgG  

NA934VS GE 
Healthcare 

Donkey   1:1000 
 

 - 

Amersham 
ECL Anti-

mouse IgG  
NA931V GE 

Healthcare Sheep   1:1000 
  - 

Alexa Fluor 
488 A11001 Life 

technologies 
Goat ant-

rabbit 
   1:500  

Alexa Fluor 
594 1008648 Life 

technologies 
Goat ant-

rabbit    1:400 - 

Alexa Fluor 
647   Goat ant-

rabbit    1:400 - 
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 Primary Cultures of Astrocytes: isolation and maint enance 4.2

The animal manipulation was realized according to the recommendation of the Conveção Europeia for 

Protecção dos animais vertebratos used for experimental studies and scientific (Directiva do Conselho 

86/609/CEE). All efforts were done to minimize the number of used animals and to decrease animal 

suffering. 

Primary culture of astrocytes was obtained from 1-day-old mouse cortex, as described by Schousboe, 

A., et al. 2001. The animals were rapidly decapitated, brain cortex was removed and the meninges 

were carefully stripped off, then the cortex was washed in ice-cold phosphate-buffered saline (PBS), 

and mechanically disrupted. Single-cell suspensions were plated in T-flasks (four hemispheres/75 

cm2) in Dulbecco’s minimum essential medium supplemented with 20% (v/v) fetal bovine serum (heat-

inactivated), 100units/ml penicillin/streptomycin solution. Cells were maintained in a humidified 

atmosphere of 7%CO2 at 37 °C. 

With the aim of achieving a pure culture of primary astrocytes, after 7 days, when cells reach the 

confluence, the dark phase cells growing on the astrocytic cell layer were eliminated (such as 

oligodendrocytes) by vigorous shaking and removing the supernatant. The remaining astrocytes were 

detached by mild trypsinization using trypsin/EDTA (0.25%, w/v) and were subcultured in DMEM 

supplemented with 15% (v/v) fetal bovine serum, in a new t-flaks of 75cm2 with a final volume of 

15mL, for more two weeks , during this period culture medium was renewed twice a week . Finally at 

the third week, medium was replaced from 15% (v/v) of fetal bovine serum to 10%. Culture medium 

was renewed twice a week. All the experiments were performed with 3 to 5 week-old cultures. 

Depending on the used techniques; WB, IF or Q-PCR, cells were cultured in different culture plates 

with different cell concentration, according with the table 4.4, represented below. 

 

Table 4.4 - Description of cells cultured in differ ent plates with different concentrations, culture v olumes 
for the different techniques. 

Plates  Number of plated cells per well  Technique  Volume per well (ml)  

6 well  50*104 Western Blot 2,5 
100*104 Q-PCR 

24 well  35*104 Imunofluorence and flow 
Cytometry 0,5 
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 Role of CORM-A1 in primary culture of astrocytes  4.3

 Inducers and inhibitors of cell death and autophagy  4.3.1

Starvation was used as a positive control for autophagy stimulation. Medium without supplementation 

of amino acids, Earle´s Balanced Salt Solution (EBSS) (Gibco Invitrogen, Germany) was added to cell 

culture for promoting starvation, by blocking nutrient supply.  

In contrast, hydroxychloroquine (HCQ), which is an inhibitor of autophagy by blocking the autophagic 

flux, was used for evaluating it (figure 4.1). HCQ is attracted to the inside of organelles, preventing the 

fusion of lysosome with the autophagosome structure, by neutralizing the lysosomal pH, and at the 

same time inhibiting the action of lysossomal proteases. Thus, HCQ promotes the accumulation of the 

autophagy marker LC3I/II.  

The levels of LC3-II are tightly correlated with the amount of autophagosomes and for that reason it is 

considered as the most reliable marker of active autophagosomes and autophagolysosomes 

(Yorimitsu; Klionsky et al. 2005). An increase of cellular LC3-II levels occurs during activation of 

autophagy, nevertheless accumulation of LC3-II can also be obtained by interrupting the 

autophagosome-lysosome fusion step or by inhibiting lysosome-mediated proteolysis. Therefore, the 

use of LC3-II as an autophagic marker needs to be complemented by an assay to estimate the overall 

autophagic flux, using HCQ. Therefore, measurement of autophagy activity includes (i) the increased 

synthesis or lipidation of LC3 or an increase in the formation of autophagosomes, and (ii) most 

importantly, the assessment of autophagic flux through the entire system, including lysosomes or the 

vacuole, and the subsequent release of the breakdown products (Klionsky, Abdalla et al. 2012).  

Thus, autophagic substrates need to be monitored dynamically over time to verify that they have 

reached the lysosome/vacuole, and, when appropriate, are degraded. For measuring the autophagic 

flux, HCQ is added to the cell culture for blocking the flux and LC3II levels were carried out by 

Western Blot analysis. In summary, autophagy is stimulated whenever an accumulation of LC3-II is 

obtained in the presence of HCQ (Klionsky, Abdalla et al. 2012). 

 
Figure 4.1 - Autophagic Flux.  a) Phagofore formation, b) Formation of a double-membrane named by 
autophagosome, with incorporation of damaged components, c) incorporation of lysosome and elimination of 
cargo. Adapted from (Hansen; Johansen et al. 2011) 
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Another inhibitor of autophagy used along this study was Wortmannin. Wortmannin is a cell-

permeable, fungal metabolite that acts as a potent, selective and irreversible inhibitor of 

phosphatidylinositol 3-kinase (PI3K). PI3K is required for autophagy, thus inhibition of PI3K with 

wortmannin can prevent autophagic sequestration (at the beginning of the process) (Klionsky, Abdalla 

et al. 2012). 

Cell death is induced with tert-Butylhydroperoxide (t-BHP), which is an organic peroxide widely used in 

a variety of oxidation processes. It is a pro-oxidant molecule, causing oxidative stress and resulting in 

cell or organ injury. Exposure to t-BHP promotes cell death, increasing ROS production and 

mitochondrial dysfunction. Cell viability was measure by flow cytometry analysis (Queiroga, Almeida et 

al. 2010). 

Hence, for achieve this aim we used the following compounds described at table 4.5. 

Table 4.5 - Inducers and Inhibitors of autophagy an d cell death inducers; 

Compounds  Action  Final Concentration  
tert-Butyl hydroperoxide  

(T-TBS) 
Pro-oxidant agent – cell death 

inducer 0, 80, 160, 240, 280, 320µM 

EBSS Autophagy inducers starvation  
Hydroxych loroquine  

(HCQ) Autophagic flux blocker 3 mg/ml 

Wortman nin  
(WM) Autophagy inhibitor 100 nm 

 

 

 Induction of autophagy 4.3.2
 

Astrocytes, plated according to the table 4.4, were incubated with CORM-A1 at a final concentration of 

12,5 and 25 µM with and without hydroxyclochroquine (HCQ) at 30µg/ml for 30 minutes or 1 hour at 

37ºC, as described in figure 4.2 a). 

Cells were collected for posterior analysis through Western Blot, Immunochemistry and Q-PCR in 

order to evaluate autophagy induction, mitophagy and mitochondria population, respectively. These 

assays were prepared accordingly to figure 4.2. 
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Figure 4.2- Scheme of autophagy induction in primary  culture of astrocytes along time.  Cells were treated 
with CORM-A1 (a) for assessing autophagic flux HCQ were also added and LC3 analysis by Western Blot, b) for 
measuring specific mitophagy stimulation, a mitochondrial dye was also added for further analysis by 
imunofluorescence (IF), c) Mitochondrial population is followed along 24h after CORM-A1 treatment by 
mitochondrial DNA quantification via Q-PCR analysis. 

 

 Induction of cell death and assessment of cell viab ility 4.3.3

Astrocytes were incubated for 18h with t-BHP (80-320µM). Then, medium was collected, cells were 

washed once with PBS and trypsined. Supernatant medium, PBS and cell pellet were pulled together 

for incubating with the dyes: propidium iodide (PI) and 3,3’-dihexyloxacarbocyanine iodide (DiOC) for 

30 minutes at 37ºC, followed by cytofluorometric analysis with FACS scan (BD FACSCalibour). DiOC 

is used for measuring mitochondrial potential and PI for assessing plasmatic membrane integrity, an 

indirect way for assessing cell viability. 

For evaluating the cytoprotective role of CO, in particular CORM-A1, and the correlation with 

autophagy, astrocytes were pre-treated with wortmanin 100µM for 1 hour (for preventing autophagic 
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process), then astrocytes were treated with CORM-A1 at 12,5µM for 30 minutes and 1h, followed by 

cell death induction as described in figure 4.3: 

 

 
Figure 4.3 - Scheme of the primary culture of astroc ytes treatment for cell viability measurement; 

 

Results were assessed by FlowJo analysis, version 10.1. For the quantification of cell viability two 

gates were outlined limiting death cells and alive cells, for the death cells just cells marked with PI 

positive (PI+) and DiOC negative (DiOC-) were considered and for live cells just cells regarding to PI 

negative (PI-) and DiOC positive (DiOC +) was showed in figure 4.4.  

 

Figure 4.4 – Example of the gates used to evaluate the cell viability; Primary culture of astrocytes treated 
with and without CORM-A1 and pro-oxidante agent, t-BHP. 

 PI+;DiOC- 

 PI-,DiOC+ 
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 Western Blot 4.4

For measuring autophagy induction, astrocytes, previously treated with CORM-A1 in the presence or 

absence of HCQ, were washed in cold PBS at 4ºC and lysed in a lysis buffer, according to Patricia 

Boya (González-Polo, Boya et al. 2005). 

Protein concentration was quantified by Pierce BCA Protein Assay kit (ref). Standard curve (figure 4.5) 

was done in the range of concentration: 0.0625, 0.125, 0.25, 0.5, 1 and 2 mg/mL of BSA prepared in 

mill-Q water. Each sample was diluted for 1/5 to a final volume of 100µL and the final concentration 

was measure in spectrophotometer. Cellular extracts were prepared in Loading buffer (table 4.2).  

 

Figure 4.5 - Example of Standard curve, used for protein quantification, was prepared with BSA solution in a 
range of concentrations; 0.0625, 0.125, 0.25, 0.5, 1 and 2 mg/mL. 

Protein gel was prepared according to table 4.6 and the settings of the run and transference: 

Table 4.6 - Protocol for gel preparation at 12 and 1 5% of acrylamide. 

 Volume (mL)  

Reagents  

H2O 
mill-

Q 
 

30% 
Acrylamide 
(Bio-RAD, 

EUA) 

Tris-HCl 
(0,5M, 
pH 8,8) 
(Bio-
RAD, 
EUA) 

Tris -
HCl 

(0,5M, 
pH 6,8) 
(Bio-
RAD, 
EUA) 

SDS 
10% 

(Sigma, 
Japon) 

APS 
10% 

(Sigma, 
Japon) 

 

TEMED 
(Sigma, 
chine) 

 

Total 
Volume 

 
Settings 

Resolving  
15% 2,3 5 2,5 - 0,1 0,1 0,004 10 

135 - 150V 
(fixed), 

30 min for 
12% gels 

and 45min 
for 15% 

gels; 

Resolving 
12% 3,3 4 2,5 - 0,1 0,1 0,004 10 

Staking  2,77 0,83 - 1,26 0,05 0,05 0,005 5 
500 mA 

(fixed) for 
1h; 

 

y = 0,3901x + 0,016

R² = 0,9996

0

0,2

0,4

0,6

0,8

1

0 0,5 1 1,5 2 2,5

A
b

s 

[Protein] mg/ml
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30µg of protein from cellular extracts were loaded on a 15% or 12% SDS-PAGE (table 4.6) and 

transferred to a nitrocellulose membrane. These two types of gel concentrations were used since the 

molecular weight of proteins were very different. LC3 I/II is a low weight protein with approximately 16-

17kDA, using a 15% SDS-PAGE gel, while p62, GFAP, BNIP3, are higher weight proteins with, 64, 

50, 37kDA, respectively and 12% SDS-PAGE gel is sued. The membrane was incubated for 1h in milk 

solution for protein blocking. Primary antibodies (anti-SQSTM1, anti-LC3, anti-BNIP3) (table 4.3) were 

incubated for 1h30 at RT or overnight at 4ºC and detected with the appropriated peroxidase-labeled 

secondary antibodies (GE), which were incubated for 2h at RT. Rouge Ponceau was used as internal 

control for checking total protein loading. Blots were developed using ECL (enhanced 

chemiluminscence, GE-Healthcare, RPN 2232) detection system after incubation with HRP-labeled 

anti-mouse IgG antibody and anti-rabbit IgG antibody for 1h at 25ºC, followed by consecutive washes. 

Protein detection was performed by film (Amersham hyperfilm ECL 28-9068-36, GE Healthcare life 

science) development. The results obtained were analyzed by Fiji software, enabling the quantification 

of the intensity of the bands that correlate with the amount of proteins present in each sample. 

 

 Imunofluorescente Microscopy 4.5
  
In order to evaluate the autophagy, particularly the autophagy of mitochondria, mitophagy, astrocytes 

cultured in 24-well plate (table 4.4) with coverslips were exposed to CORM-A1 at 12,5 or 25µM during 

30 minutes or 1h. Then, astrocytes were rinsed with PBS, fixed with a solution of 4% PFA and 4% 

saccharose during 15 min at RT, incubated with methanol for 2 min at -20ºC and washed again with 

PBS twice. The cells were permeabilized with 0.1% SDS in PBS during 30 minutes at RT. Afterwards, 

cells were incubated with the rabbit polyclonal antibody anti-LC3B (table 4.3) and with the monoclonal 

antibody anti-Cyto-c, diluted in PBS containing 10% FBS during 2 hours at RT. Cells were then 

incubated with the secondary antibody Alexa Fluor 594/647 goat anti-rabbit (table 4.3), during 1h at 

RT. Finally, cultures were mounted in ProLong mounting media (with DAPI – Invitrogen) and images 

were captured using a Leica DM 5500B 710 fluorescent microscope (Leica, France) with a camara 

Andor Luca DL-604M#VP. 

 

 Quantitative PCR - Measure of mitochondrial DNA    4.6

Total cell DNA (containing mitochondrial DNA) was extracted from astrocytes using QIAGEN kit (ref. 

69504). Polymerase chain reaction (PCR) was performed using specific forward and reverse primers 

designed for the mitochondrial cytochrome b gene, (5’-TTCATGTCGGACGAGGCTT-3’), (3’-

TCCTCATGGAAGGACGTAGC-5’) and for the nuclear GAPDH gene (5’-

CCTTCATTGACCTCAACTACAT-3’), (3’-CCAAAGTTGTCATGGATGACC-5’) to be used for 

controlling the cellular amount in each sample. “Fast Strand DNA Master Plus SYBR Green I” (Roche) 

was used in the experimental run protocol, with the following conditions (table 4.7). 
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Table 4.7 - Representation of the experimental run protocol for DNA amplification. 

Steps  Cycles  Temper ature  (ºC) Time (s)  
Pré-incubation  1 95 600 

Amplification  45 
95 
60 
72 

10 
10 
10 

Melting  1 
95 
65 
97 

10 
60 
10 

Cooling  1 37 30 

The results were analyzed by relative quantification, with aid of the software light cycle 96 of ROCHE, 

reference 00 000000 0010225, software version 1.01.00.0045. Mitochondrial population was 

quantified by the amount of mitochondrial DNA relatively to nuclear DNA (internal control). All results 

were normalized relatively to the control cell sample without any treatment.  

 

 Statistical Analyses 4.7
 
The data concerning astrocytic culture were carried out at least in three independent preparations (cell 

isolation). For Western blotting, autophagy avaliation, a representative image of three independent 

assays is shown. All values are mean S.D. (n =3). Error bars, corresponding to S.D., are shown in the 

figures. 

Statistical comparisons were performed using ANOVA: single factor with replication, with p <0.05 (n 

≥3). p >0.05 means that samples are significantly different at a confidence level of 95%. 
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 Results 5

In the beginning of this Master thesis work many questions were without answers, since autophagy, 

mitophagy and the role of CO in these two cellular processes was unclear. Therefore, this section will 

be divided in three main parts, in order to uncover some of these issues; all parts were performed in 

primary culture of astrocytes. The first part (5.1.) concerns the role of CORM-A1 in cytoprotection and 

autophagy activation, as well as the cross-talk of these two processes. The second part (5.2.) focuses 

on specific process, namely the role of mitophagy and the potential involved proteins. Finally, the third 

part (5.3.) will be reserved to the role of CO in low levels of oxygen, describing some preliminary 

results that open new windows for future research development. 

5.1. CORM-A1 modulation cytoprotection and autophagy  

 CORM-A1 prevents cell death in primary culture of a strocytes 5.1.1

The role of CO as anti-apoptotic factor in astrocytes was already demonstrated by Queiroga, Almeida 

and colleagues (Queiroga, Almeida et al. 2010; Almeida, Queiroga et al. 2012). Herein, we were 

interested in evaluating the potential cytoprotective effect of a CO releasing molecule (CORM’s) 

developed by Motterlini et al. (Motterlini, Sawle et al. 2005), called CORM-A1, as described in the 

section 2.3, page 9. CORM-based CO delivery approaches present more potential for applications and 

mimic the endogenously produced CO molecule.  

We used primary cultured of astrocytes isolated from cortex to mimic better the physiologic conditions 

in the organism, since these cells are obtained by direct extraction from the organism. 

The evaluation of cell culture purity was obtained by fluorescent microscopy. Cells were incubated 

with GFAP antibody (developed with a secondary Alexa488 antibody - green) and DAPI (blue) that 

marks for astrocytic protein and nucleus, respectively (figure 5.1).  The correlation of the number of 

positive cells for DAPI and GFAP, allows the evaluation of astrocytic purity. Therefore the cell cultures 

used in all the assays had about 85% of purity.  
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Figure 5.1 – Purity of primary culture of astrocytes . In blue, DAPI-stained nuclei; in green, GFAP positive 
astrocytes cells. Fluorescent microscopic analysis of primary culture if astrocytes, with an amplification of 40x. 
Quantification of astrocytes per nuclei was obtained by image j.  

 

For evaluating the cytoprotective effect of CORM-A1 cells were cultured at a concentration of 

35*104cells/well in 24 well plates, with different conditions: control (no CORM-A1 treatment) and 

CORM-A1-treated at final concentration of 12,5µM for 1 hour. Cell death was induced with t-BHP, an 

oxidant agent, for 18 hours and measured by flow cytometry, using two different dyes, DiOC and PI.  

DiOC measures mitochondrial potential and PI quantifies plasmatic membrane integrity, which is an 

indirect way for assessing cell viability.  

As observed in figure 5.2, cells treated only with t-BHP (control group), particularly with high 

concentrations, 240 until 320 µM, have a decrease in cell viability of approximately 50-80%. Whereas 

cells pre-treated with CORM-A1 until the  concentration of 240 µM of t-BHP seem to maintain the cell 

viability close to the one observed in control cells (without any treatment), between 240-320 µM, there 

is a slight reduction of cell viability, approximately 40%. Nonetheless, at all concentrations of the pro-

oxidant, cell viability is higher in cells pre-treated with CORM-A1 whenever compared to control.   

In summary, CORM-A1 partially prevents astrocytic cell death, in particular at higher concentrations of 

the pro-oxidant t-BHP. This is in accordance with previously observed with CO gas (Queiroga, 

Almeida et al. 2010; Almeida, Queiroga et al. 2012). 
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Figure 5.2 – CORM-A1 confers protection against cel l death. Primary culture of astrocytes was pretreated 
with 12,5µM of CORM-A1 along 1h, following cell death induction with the pro-oxidant, t-BHP (from 0 to 320µM) 
for 18h. The measurement of cell viability was assessed by flow cytometry. Black bars- control; gray bars- cells 
treated with CORM-A1. Cells presenting high mitochondrial potential (detected by DiOC) and containing intact 
plasma membrane (assessed by propidium iodide) are considered viable cells. All values are mean±SD, n= 5 and 
*p<0,05 compared with control and CORM-A1-treated cells for each concentration of t-BHP. 

 

 CORM-A1 promotes autophagy induction. 5.1.2

Autophagy is an autodigestive process promoting cell survival through degradation and recycling of 

long-lived proteins, misfolded proteins, ubiquitinated proteins, and injured organelles, plays an 

important role in maintaining cellular homeostasis during environmental stress (Kroemer, Mariño et al. 

2010; Lee, Ryter et al. 2011).  In contrast to what was primarily thought about CO, a toxic molecule, 

over the last decade studies have revealed cyto- and tissue-protective effects against apoptosis when 

applied at low concentrations in several models, including our findings (Lee, Ryter et al. 2011; Lancel, 

Montaigne et al. 2012; Mahan et al. 2012). However, little is known about the effect of CO on the 

autophagy pathway (Lee, Ryter et al. 2011). Herein we were interested in studying the effect of CO in 

autophagy, using CORM’s as CO-source. Our experimental hypothesis is that CORM-A1 prevents cell 

death by autophagy induction. For the first time, at our knowledge, it is used CORM’s in brain and for 

autophagy modulation. For the assessment of autophagy in primary culture of astrocytes, western blot 

analysis was performed for the assessment of LC3 lipidation (LC3II), which is a key marker of 

autophagy, as well as the ratio between LC3II/I. The levels of LC3 II are tightly correlated with the 

amount of autophagosomes and for that reason it is considered the most reliable marker of active 

autophagosomes and autophagolysosomes (Yorimitsu; Klionsky et al. 2005; Klionsky, Abdalla et al. 

2012). Furthermore, LC3II levels must be quantified in the presence of HCQ for assessing autophagic 

flux, as described in Material and Methods (section 4.3.2, page 22).  

Cells were treated with CORM-A1 at a final concentration of 12.5 and 25 µM with and without 

hydroxyclochroquine (HCQ) at 30µg/ml for 1 hour. Rouge Ponceau was used for controlling the 

amount of charged protein. 
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Figure 5.3A is a representative example of western blot films obtained for the autophagy assessment, 

while (B) corresponds to the respective quantification of LC3I and II, CORM-A1 at 12.5 and 25 µM 

increased LC3II accumulation, in the presence or absence of HCQ, indicating that autophagy is 

stimulated. To confirm this result, we block autophagosome formation by the addition of HCQ, an 

inhibitor of autophagic flux. As observed in figure 5.3A and 5.3B, cells treated with CORM-A1 and 

HCQ have an increase of LC3 accumulation, when compared with cells just treated with HCQ, which 

represent the basal levels of autophagy. Another approach to evaluate autophagic induction is the 

quantification of the LC3II/LC3I ratio (figure 5.3C), which quantifies the conversion of LC3I into LC3II.  

The ratio LC3II/LC3I was calculated in HCQ-treated cells for confirming CO-induced autophagy in 

primary culture of astrocytes. Nevertheless, it is necessary to take into account that the quantification 

of this process is not straightforward and plenty of conditions need to be considered. Figure 5.3D, is 

the compilation of all the blots obtained for autophagy induction by measuring LC3II accumulation. As 

it was already observed in figure 5.3B, CORM-A1 at 12.5 or 25 µM promotes autophagy induction, and 

the result is confirmed whenever autophagic flux is blocked with HCQ.  

 

Figure 5.3 - CORM-A1 induces autophagy in astrocyte s. Primary culture of astrocytes were pretreated with 
12,5 or 25µM of CORM-A1 along 1h, with and without HCQ at 30µg/ml. The measurement of autophagy induction 
was assessed by western blot analysis. A) representative figure of immunodection of LC3I and II, Rouge Ponceau 
was used as internal control for checking total protein loading. B) Quantification of LC3II amount in CORM-A!-
treated cells for the immunoblot film represented in A; C) Ratio of LC3I/LC3II in the immunoblot film represented 
in A for cells treated with CORM-A1 with HCQ. D) Quantification of LC3II for control and CORM-A1-treated cells 
in the presence or absence of HCQ. All the values are mean±SD, n=3, * p<0,05 compared with control for each. 

Therefore treatment of CORM-A1 at 12,5 or 25µM for 1h increases autophagy above the basal level in 

astrocytes.  
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 Autophagy involvement in the cytoprotective role of  CORM-A1 5.1.3

In order to verify whether autophagy plays a role in the cytoprotective effect of CORM-A1, we used 

another experimental approach by testing the anti-apoptotic effect of CORM-A1 in the presence of an 

inhibitor of autophagy, Wortmannin (WM). Wortmannin is a selective and irreversible inhibitor of 

phosphatidylinositol 3-kinase (PI3K). PI3K is required for autophagy, therefore inhibition can inhibit 

autophagic sequestration (at the beginning of the process) (Klionsky, Abdalla et al. 2012), section 

4.3.1. in material and methods, page 23. Cell viability was assessed by flow cytometry by measuring 

membrane potential and plasmatic membrane integrity using two dyes, PI and DiOC, as previously 

described. The assay consisted in culturing astrocytes in the presence of WM at final concentration of 

100nM for 1h, followed by CORM-A1 treatment at 12,5µM for 1 hour, then challenging astrocytes to 

cell death through pro-oxidant stress, induced with t-BHP, for i18 hours.  

The figure 5.4, shows that WM reverts CORM-A1-induced cell death prevention at high concentration 

of the pro-oxidant (black stripes) when compared to CORM-A1-treated cells (gray bars). While 

astrocytes treated only with WM do not present any toxic effect when compared to control cells without 

any treatment.  

 

Figure 5.4 - CORM-A1 confers protection against apoptosis by inducing autophagy. Primary cultures of astrocytes were 

pretreated with 12,5µM of CORM-A1 along 1h, with or without wortmannin 100nM, following cell death induction by 18h 

of exposure to the pro-oxidant, t-BHP (from 0 to 320µM). The measurement of cell viability was assessed by flow 

cytometry. Cells presenting high mitochondrial potential (detected by DiOC) and containing intact plasma membrane 

(assessed by propidium iodide) are considered viable cells. All the values are mean±SD, n=3, * p<0,05 compared with 

control for each concentration of t-BHP and 
#
 p<0,05 compared with CORM-A1 treated cells without WM for each t-BHP 

concentration. 

Furthermore, when we correlate the results obtained so far it is possible to suggest that the protective 

effect of CORM-A1 observed against cell death in primary culture of astrocytes is related to autophagy 

induction, a cell process already known for being a protective process (Lee, Ryter et al. 2011). 

Nevertheless, future work must be done using genetic inhibition of autophagy. 
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 The action of CORM-A1 in mitophagy 5.2

Autophagy - general mechanism – is known as protective process under various stress conditions, 

including nutrient starvation and hypoxia (Levine; Kroemer et al. 2008; Kroemer, Mariño et al. 2010; 

Lee, Ryter et al. 2011; Lancel, Montaigne et al. 2012). The protective effects of CO on apoptotic cell 

death is already characterized in several cell types, including astrocytes. Nevertheless, in the results 

described in the previous section we showed that CORM-A1 mimic CO gas and promote autophagy 

activation. Based on our results and on the literature there is evidence showing CO gas involved in (i) 

the control of mitochondrial function, (ii) modulating oxidative metabolism and substrate utilization 

(Mahan et al. 2012), (iii) increasing mitochondrial population and (v) enhancing the anti-apoptotic 

protein Bcl-2 expression (iv) stimulating mitochondrial biogenesis and (v) enhanced Bcl-2 expression 

(Almeida, Queiroga et al. 2012), we hypothesize that CO is involved in the activation of the specific 

mitochondrial autophagy, namely mitophagy. Mitophagy is a mechanism of quality control of 

mitochondria, where damaged mitochondria are eliminated avoiding an increase of ROS, which can 

be very harmful due to their uncontrolled reactive oxygen species (ROS) generation (Klionsky, Abdalla 

et al. 2012). Mitochondrial network dynamics is a balance between biogenesis of new mitochondrial 

and autophagy of damaged organelles; this balance controls the quality of mitochondrial population. 

Hence, in this part of the work we have evaluated (in progress) the role of CORM-A1 in the activation 

of mitophagy, although these results are still preliminary results, requiring further development.  

 

 CORM-A1 apparently promotes mitophagy activation by  BNIP3 5.2.1
expression 

Mytophagy was assessed by western blot analysis of the total extract of cells, following the expression 

of BNIP3, in presence of CORM-A1 and HCQ. Moreover, BNIP3 (also known as BNIP3L) is a BH3-

only pro-apoptotic protein, known for being associated with mitophagy, as well as with hypoxia-

induced autophagy, by HIF-1 activation (Bellot, Garcia-Medina et al. 2009; Lee, Ryter et al. 2011). 

Nevertheless, the activation of mitophagy and its biochemical pathways are not yet well described, in 

particular in mammals. 

Therefore, for the evaluation of mitophagy in primary culture of astrocytes, cells were incubated with 

CORM-A1 at final concentration of 12,5 and 25µM along 30 minutes and 1hour, as described in the 

section of material and methods, for autophagy induction.   

According to the figure 5.5, CORM-A1 promotes the expression of BNIP3 in both concentrations and 

times. Although, the expression varies according to time, for 30 minutes the increase of expression is 

higher in cells treated with CORM-A1 at 25 µM, increasing with higher concentrations of CORM-A1, 

whereas for 1 hour treatment the expression increases is higher at 12,5 µM. 
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Figure 5.5 - CORM-A1 seem to be involved in mitophagy induction in astrocytes. Primary culture of astrocytes were 

pretreated with 12,5 and 25µM of CORM-A1 along 1h. The measurement of mitophagy induction was assessed western 

blot, n=2. 

 

In summary, CORM-A1 increased BNIP3 expression in astrocytes, which indicates that there might be 

involved mitophagy stimulation. Nevertheless, different approaches must be performed for confirming 

CORM-A1-induced mitophagy in astrocytes.  

 

 The role of CORM-A1 in mitophagy 5.2.2

The main experimental approach used for assessment of mitophagy is immunocytochemistry, by the 

detection of co-localization between mitochondrial markers (such anti-cytochrome c or MitoTracker 

dye) with autophagosomal markers (such as anti-LC3II labeling). In Figure 5.6 some preliminary 

pictures of astrocytes marked for mitochondria are represented, as well as autophagosomes. 
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Figure 5.6 – Optimization of the assay to measure c o-localization of autophagy/mitophagy in astrocyte 
primary cultures . A) Double immunostaining with LC3 and mitochondria (mitotracker) in astrocyte primary 
cultures. Astrocytes were immunostained with LC3-B (red) and mitotracker (green). B) Double immunostaining 
with LC3 and mitochondria (Cyto-c) in astrocyte primary cultures. Astrocytes were immunostained with LC3-B 
(red) and Cyto-c (green). Magnification 63x. 

Mitotacker for marking mitochondria was too weak, thus no conclusions were taken for co-localization 

between mitochodnria and autophagosomes. While the use of anti-cytochrome c (anti-COX) 

immunocytochemistry is under progress (Figure 5.6B). Further experiments are needed for confirming 

mitophagy involvement in CO-stimulated autophagy using anti-COX.  

B 

A 
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 The role of CORM-A1 in mitochondrial biogenesis 5.2.3

The main experimental approach used for assessment of mitochondrial population is Q-PCR. In 

Figure 5.7 some preliminary of quantification of mitochondria population are represented. 

 

Figure 5.7 – Effect of CORM-A1 on cytochrome c oxida se activity and mitochondria biogenesis. 
Preliminary assay. Primary culture of astrocytes were treated with CORM-A1 at 12,5µM along 0; 0,5; 1; 3; 24 
hours. 

Accordingly to previous data published by the lab (Almeida, Queiroga et al. 2012), showing that CO 

increases mitochondrial population after 3 and 24h of treatment, CORM-A1  seems to respond in the 

same way. However, at 30 min and 1h no signs of decrease on mitochondrial population was 

observed, which would be expected in the case an increase on mitophagy occurs. Likewise, more 

experiments are need for confirming this result, as well as other kinetics must be performed. 

 

 The role of oxygen in CORM-A1 action 5.3
 

This work was developed at Dr Motterlin’s lab (Univesité Paris-Est, France) under the scope of COST 

(COST-STSMECOST-STSM-BM1005-010413-024687) for 2 months, where we add as aim study the 

protective effect of CORM-A1, under hypoxia. 

Once CO competes with molecular oxygen in regulating mitochondrial bioenergetics and functioning, 

we were interested in studying the cytoprotective role of CO under hypoxia. In these conditions we 

were able to mimic the physiological oxygen concentration conditions, since the level of oxygen in the 

organism is between 3-8%, allowing working closely to the in vivo environment.  

In the previously points of study we verified that CORM-A1 promotes a protective effect against cell 

death by inducing autophagy. On the other hand, we have now some starting evidences that CORM-

A1 induces also mitophagy. Indeed, some studies postulate that BNIP3 expression is activated in 

response to hypoxia by the expression of HIF-1 (Boya, Reggiori et al. 2013). Also cells can maintain 

minimal levels of mitochondrial respiration to produce ATP under hypoxia, displaying an increase of 
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autophagy, mitophagy and intermediates resulting from protein and lipid catabolism (Boya, Reggiori et 

al. 2013). Therefore this point of work is a preliminary assay for future studies, where is very important 

to understand the interaction of CO and oxygen for heme group proteins and the pathway that is 

triggered in astrocytes, for promoting the protective effect. In summary, hypoxia might also play a role 

in the axis CO-autophagy-cytoprotection in astrocytes. 

 

 Cytoprotective effect of CORM-A1 in astrocytes is m aintained at low 5.3.1
concentration of oxygen, 5%O 2 

 

Our previous data showed that at 21% of oxygen, the CO’s cytoprotective role was related to 

autophagic pathways. Herein, we were interested in evaluating the potential cytoprotective effect of 

CORM-A1 at 5% of oxygen, and its potential dependence on autophagy. Therefore, we used primary 

culture of astrocytes, which was maintained at 5% of oxygen for one week before starting the assay. 

The assay consisted in culturing cells in 24 well plates at different conditions; control, CORM-A1-

treated cells and Wortmannin-treated cells for blocking autophagy (inhibitor of autophagy). After the 

treatment with CORM-A1 and Wortmannin, cell death was induced with t-BHP and the cell viability 

was measure after 18 hours in Flow Cytometry, with two different dyes, DiOC and PI, using the same 

protocol as for 21% of oxygen.  

The result observed at 5% of oxygen haves showed a partial protection conferred by CORM-A1. As it 

is possible to observe in the figure 5.8, for higher concentration for t-BHP there are less cell death 

when compared to normoxia values (section 5.1.1), meaning that astrocytes seem to be more 

resistant. 

What concerns to autophagy induction is observed lower levels of reversion for CO-induced 

prevention of cell death in the presence of WM, indicating that cytoprotection under hypoxia probably 

is less dependent on autophagy process. 

It is pure speculation since more experiments must be done for taking further conclusions and 

confirming these speculative observations. 
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Figure 5.8 – CORM-A1 confers protection against apo ptosis by inducing autophagy at low levels of 
0xygen. Preliminary data of primary culture of astrocytes were pretreated with 12,5µM of CORM-A1 along 1h, 
following cell death induction by 18h of exposure to the pro-oxidant, t-BHP (from 0 to 320µM). The measure of cell 
viability was assessed by flow cytometry. Percentage of cells presenting high mitochondrial potential (detected by 
DiOC6(3)) and containing intact plasma membrane (assessed by propidium iodide). All the values are mean±SD, 
n=2. 

Finally, taking all results together until this moment, i) cytoprotective effect of CORM-A1; ii) Reduce of 

cell viability with WM under both conditions of oxygen; iii) inducing of autophagy by CORM-A1; iii) 

inducing of mitophagy, we hypothesized that the signaling mechanism behind the protective role of 

CORM-A1 is ROS. 
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V.Discussion 

The window for the future, where the spirit raises the body… 
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Brain is a dynamic and interconnected network of cells and information. The most abundant 

cells inboard the CNS are astrocytes (Roberts et al. 2004; Halassa, Fellin et al. 2009). 

Currently, it is known that astrocytic dysfunction might cause neuronal irreversible loss 

contributing to neurodegenerative process. There are direct evidence that show that dysfunction 

of astrocytes triggers neurobiological disorders, as Alzheimer’s and Parkinson’s disease and 

epilepsy (Allaman, Bélanger et al. 2011). Therefore, there is a need of focusing the therapeutic 

strategies also into the astrocytic field, complementing the current therapies and research lines, 

which target mainly neuronal cell type.  

Carbon monoxide (CO) is emerging as a possible therapeutic molecule, based on the protective 

effects largely described, having mitochondria as one of the main targets.  Beyond that it is an 

endogenously produced gaseoustrasmitter. One of the novelties of the present work is the use 

of a CO-release molecule, CORM-A1. This study is the first to demonstrate that CORM-A1 

confers protection against cell death in primary culture of astrocytes, mimicking CO gas 

(Queiroga, Almeida et al. 2010; Almeida, Queiroga et al. 2012). 

Therefore, in vitro approaches –primary culture of astrocytes - were performed to address the 

role of CORM-A1 in autophagy and mitophagy induction. 

Autophagy is an autodigestive process, degrading cellular organelles and proteins, plays an 

important role in maintenance of cellular homeostasis during environmental stress. It is involved 

in many physiological processes, promoting the adaptation of cell to starvation, cell 

differentiation and development, tumor suppression, innate and adaptative immunity, lifespan 

extension and cell death (Boya, Reggiori et al. 2013). In 2011, Lee and colleagues, showed by 

the first time in epithelial cell culture of mice lung, that autophagy can be regulated by CO 

exposure (Lee, Ryter et al. 2011). After this, in 2013, the same group demonstrated in sepsis 

that CO is anti-inflammatory and this effect was dependent on Beclin 1, a protein involved in 

autophagy control and its cross-talk with apoptosis (Bcl-2-Benclin 1 complex). Taking these in 

consideration, we decide that autophagy is a point of interest in our model of study.  

The current study showed that CORM-A1 induces autophagy (figure 5.3, section 5.1.2)  and 

autophagy is involved in the anti-apoptotic effect of CORM-A1, (figure 5.4, section 5.1.3). 

These results bring relevant points for the utilization of CO-releasing molecules as a novel 

source of CO, namely, concerning the efficiency and safety of their utilization. Proving, that 

CORM’s are safe and efficient source of CO and producing similar effects to the ones already 

obtained with CO gas. Indeed, the cross-talk between autophagy and apoptosis is linked with 

the formation of the complex Bcl-2–Beclin1. Correlating this with the previous studies carried 

out by the group, where it was demonstrated that CO increasing Bcl-2 expression (Bellot, 

Garcia-Medina et al. 2009; Queiroga, Almeida et al. 2010; Almeida, Queiroga et al. 2012).  We 

postulate that CORM-A1 increases the expression of Bcl-2, increases the formation of the 

complex Bcl-2–Beclin1 and thus increases mitophagy. So, for the future prospects it will be 
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important to study Bcl-2 in CO-induced cytoprotection by autophagy stimulation. Furthermore, it 

is also crucial as future further experiment, the use of genetic inhibition of autophagy, such as 

knockout models for Atg5 protein, for confirming the role of autophagy in CO’s cytoprotection. 

Mitophagy is a specific process of autophagy, known as a quality control of mitochondria, which 

is important for removing damaged mitochondrias to prevent the accumulation of ROS (Levine; 

Kroemer et al. 2008; Kroemer, Mariño et al. 2010). As described in the section 3.2 of the 

introduction, the most known receptors of mitophagy are, BNIP3, BNI3L (NIX), PINK 1 and 

PARKIN. What concerns to this point, we showed the results corresponding to BNIP3 

expression under normoxia. The other proteins are still under optimization process. The 

preliminary results show that CORM-A1 seems to induce mitophagy by increasing the 

expression of BNIP3 (figure 5.5, section 5.2.1) .  Thus, for the future we have a great interest in 

assessing the other molecules, and in studying mitophagy under hypoxia conditions, for BNIP3 

and the others. Still, co-localization of mitochondrial and autophagosomes is another approach 

that must be optimized and finished for confirming mitophagy induction of CO (preliminary data - 

figure 5.6, section 5.2.2).  

Because i) CO competes with oxygen to bind to heme group (Motterlini et al. 2010); ii) The 

physiological levels of oxygen are lower that 21%, being approximately between 0,3 and 5%, 

known as hypoxia; the action of oxygen on CO effect is extremely important to study. Thus, we 

decide to test our hypothesis under physiological conditions, meaning under hypoxia, using a 

5% oxygen chamber. We have shown that CORM-A1 under hypoxia protects astrocytes against 

cell death in the same levels of at normoxia, figure 5.8, section 5.3.1 . In addition, hypoxia 

promotes the expression of HIF-1 (Bellot, Garcia-Medina et al. 2009; Kroemer, Mariño et al. 

2010) which in turn induce the expression of BNIP3 (Bellot, Garcia-Medina et al. 2009) and 

induce autophagy (Boya, Reggiori et al. 2013). Moreover, it is known that hypoxia promotes the 

generation of ROS at low levels. Likewise, the inhibition of ROS generation decreases anti-

apoptotic effect of CO, working as signaling molecule (involved in protective pathways) (Vieira, 

Queiroga et al. 2008; Queiroga, Almeida et al. 2010) and low levels of ROS also induce 

autophagy (Lee, Ryter et al. 2011). Therefore, we intend to test whether under hypoxia CORM-

A1 induces autophagy and in particular mitophagy One of the possible explanation, is that the 

signaling mechanism of CORM-A1-induced autophagy and cytoprotection in astrocytes is ROS-

signaling dependent; there are other models where this effect was demonstrated (Lee, Ryter et 

al. 2011). Thus as future work ROS generation will be measured in this model, as well as the 

use of anti-oxidants will permit understanding the importance of ROS signaling. 

It is known that the hypoxia-induced autophagy depends on hypoxia-inducible factor, HIF-1 α, 

which activates transcription of BNIP3 and BNIP3L (NIX), proteins that are responsible for 

disrupting Beclin-1-Bcl-2 interaction. Under normoxia BNIP3 seems to reduce the half-life of 

BNIP3L; however, co-expression of these two proteins triggers autophagy under normoxia. 

While, under hypoxia it is essential the expression of both proteins to activate autophagy. 
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Anyway, the process of autophagy regulation of these proteins: BNIP3 and BNIP3L is still a 

matter of debate (Bellot, Garcia-Medina et al. 2009). Therefore, as future work, it will be 

interesting to evaluate ROS generation and signaling in CORM-A1-induced 

autophagy/mitophagy under normoxia and hypoxia, and the role of BNIP3 and BNIP3L. 

This thesis presents several indications that CORM-A1 can be a potential therapeutic agent 

against astrocytic injury and cell death. In conclusion, here we proved that CORM-A1 is a 

cytoprotective agent against cell death in primary culture of astrocytes, under normoxia and 

hypoxia. Autophagy is involved in the anti-apoptotic effect of CORM-A1 under normoxia and 

under hypoxia. And last, this work has pointed out some clues about mitophagy induction in the 

anti-apoptotic role of CORM-A1. 

This master thesis has opened many research lines and questions for future work. 
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