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Abstract  

 

The following work aims to contribute to a better understanding of systems involved in resistance 

to oxidative stress species, namely hydrogen peroxide. The work is focused in one protein from the 

pathogen Campylobacter jejuni: desulforubrerythrin. Desulforubrerythrin is a non-heme iron protein in 

which the catalytic centre harbours a diiron cluster. Besides, the protein has a desulforedoxin domain 

at the N-terminal and a rubredoxin domain at the C-terminal. With the objective of understanding the 

protein catalytic mechanism three site-directed mutants, as well the wild type protein, were over 

expressed in Escherichia coli, purified and studied through biochemical and spectroscopic techniques. 

The amino acid residues selected for mutations are two tyrosines near the catalytic centre (residues 

59 and 127). These residues are strictly conserved in rubrerythrins; moreover in diiron centres 

containing proteins tyrosines play a role in dissipating oxidizing species of iron (IV) by forming a tyrosil 

radical. The selected residues were replaced by a phenalanine residue which gave rise to three 

mutants: Y59F, Y127F and Y59F Y127F. These were characterized having as reference the wild type 

protein. All proteins have a molecular mass of 24 kDa and are tetramers in solution. The EPR and UV-

visible techniques confirmed the presence of the three metallic domains in the wild type and Y59F 

mutant. The Y127F mutant was successfully used to test a protocol for diiron centre reconstitution in 

desulforubrerythrin.  

Finally, crystals of the wild type and, for the first time, of the Y59F and double mutants were 

obtained. The X-ray data for the mutants were collected with a resolution of 1.9 Å and its structure will 

be determined.  

 

 

Keywords: Campylobacter jejuni, desulforubrerythrin, hydrogen peroxide, crystallization, EPR. 
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Resumo   

 

O trabalho aqui apresentado pretende contribuir para alargar o conhecimento sobre sistemas 

envolvidos na resistência ao stress oxidativo, nomeadamente na resistência ao peróxido de 

hidrogénio. O trabalho foi dirigido para o estudo de uma proteína do patogénio Campylobacter jejuni: 

desulforubreritrina. A desulforubreritrina é uma proteína com ferro não hémico cujo centro catalítico 

comporta dois átomos de ferro. Além disso, a proteína possui no N-terminal um dominio do tipo 

desulforedoxina e no C-terminal um domínio semelhante a uma rubredoxina 

Com o objectivo de compreender o mecanismo catalítico da proteína três mutantes dirigidos, 

assim como a proteína selvagem, foram sobre expressos em Escherichia coli, purificados e 

caracterizados utilizando técnicas bioquímicas e espectroscópicas. Os resíduos de aminoácidos 

seleccionados para efectuar as mutações são duas tirosinas que se encontram junto do centro 

catalítico (resíduos 59 e127). Estes resíduos são estritamente conservados em rubreritrinas; além 

disso, em proteínas que contêm centros binucleares de ferro as tirosinas desempenham um papel 

importante na dissipação de espécies oxidantes de ferro (IV) à custa da formação de um radical 

tirosil. Os resíduos seleccionados foram substituídos por uma fenilalanina dando origem a três 

mutantes: Y59F, Y127F e Y59F Y127F. Os mutantes foram caracterizados tendo como referência a 

proteína selvagem. Todas as proteínas têm uma massa molecular de 24 kDa e são tetrâmeros em 

solução. As técnicas de Ressonância Paramagnética Electrónica (RPE) e de espectroscopia de UV-

Vis confirmaram a presença dos três domínios metálicos na proteína selvagem e no mutante Y59F. A 

proteína com a mutação no resíduo 127 foi utilizada com sucesso para testar um protocolo de 

reconstituição de centros binucleares de ferro na desulforubreritrina. 

Finalmente, cristais da proteína selvagem e, pela primeira vez, dos mutantes Y59F e Y59F 

Y127F foram obtidos. Os dados de difracção de raios-X para os mutantes foram recolhidos com uma 

resolução de 1.9 Å 

 

 

Termos-chave: Campylobacter jejuni, desulforubreritrina, peróxido de hidrogénio, cristalização, RPE.  
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1. INTRODUCTION 

 

1.1. Reactive oxygen species (ROS) and oxidative stress 

 

1.1.1. Oxygen 

 

 Molecular oxygen (O2) is essential to all aerobic organisms but at the same time it can cause 

serious cellular damage. O2 has a strong oxidizing potential, which makes this molecule very suitable 

for accepting electrons in reduction-oxidation reactions (Bartz and Piantadosi, 2010). The complete 

reduction of O2 to water has a reduction potential of 0.815 V at pH 7.0 (Wood, 1988) (eq 1.1). 

 

O2 + 4 H
+
 + 4 e

-
   2 H2O2       (eq 1.1) 

  

 Oxygen has two unpaired electrons with the same spin, what limits its reactivity due to spin 

restriction rules (Fridovich, 2013).  

 

1.1.2. Reactive oxygen species 

 

Reactive oxygen species are molecules derived from oxygen reduction that can cause serious cell 

damaging.  The most common ROS in living organisms are superoxide anion (O2
.
), hydrogen peroxide 

(H2O2), hydroxyl radical (HO
.
) and singlet oxygen (

1
O2) (Birben et al, 2012; Dröge, 2002).  

These molecules can be free radicals on non-radicals with unstable bonds. In the first the high 

reactivity is due to the presence of unpaired electrons (Burton and Jauniaux, 2011). 

Superoxide anion is formed by one electron reduction of oxygen (eq 1.2). It can react with another 

molecule of superoxide and form again oxygen and hydrogen peroxide in an autodismutation process 

(eq 1.3) (Jena, 2012).  

O2 + 1e
-
   O2

.-
            (eq 1.2) 

2O2
.-
 + 2H

+
   O2 + H2O2           (eq 1.3) 

 

Hydrogen peroxide can also be formed by the reduction of oxygen by two electrons (eq 1.4) or 

dimerization of two hydroxyl radicals (eq 1.5). In the case of hydrogen peroxide its reactivity is due to 

its low energy bonds when compared with O2 and O2
.-
 (Brieger et al, 2012). 

 

O2 + 2H
+
 + 2e

-
   H2O2         (eq 1.4) 

2HO
.
   H2O2            (eq 1.5) 

 

The hydroxyl radical, the most dangerous ROS for in vivo systems, can be formed by reacting 

superoxide and hydrogen peroxide, through the Haber-Weiss reaction (eq 1.6). 

 

O2
.-
 + H2O2   HO

. 
+ OH

-
 + O2        (eq 1.6) 
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Singlet oxygen is very reactive and highly toxic in biological systems. This species corresponds to 

an excited form of molecular oxygen in which one of the electrons underwent a spin inversion, in an 

endothermic process (Fridovich, 2013). One of its sources is enzymatic reactions of photo-oxidation of 

biological compounds. Singlet oxygen reacts with DNA, particularly with guanine bases due to their 

lower redox potential (Agnez-Lima et al., 2012).  

 

1.1.3. Sources of ROS in living organisms 

 

ROS are produced by all living organisms as a result of the normal aerobic metabolism and can 

be produced by external agents, such as ionizing radiation and transition metal ions (Birben et al., 

2012). 

The production of ROS assumes particular importance in organisms in which O2 is the final 

electron acceptor in the respiratory chain due to the leakage of electrons from respiratory enzymes. 

These electrons can lead to one electron reduction of O2 and the subsequent formation of O2
.-
, the 

most common radical in living organisms.  The main source of hydrogen peroxide is the dismutation of 

O2
.-
 by superoxide dismutase (SOD). This is readily converted to water by several enzymatic systems, 

such as catalase and glutathione reductase. When these systems fail, H2O2 becomes available to 

react with O2
.-
 and yield the dangerous HO

.
. This radical has no known scavenger and reacts very 

rapidly with biological molecules.  Besides, H2O2 can diffuse freely through biological membranes and 

cells have to cope with H2O2 produced in the outside of the cell (Brieger et al., 2012).  

Singlet oxygen can be formed by photo-oxidation of molecular compounds or by enzymatic 

reactions.  

 

1.1.4. Iron and ROS 

 

Iron is essential for all organisms. The couple Fe
2+

/Fe
3+

 in biological systems has a redox potential 

that varies from -500 mV and +300 mV. This characteristic and its ability to exist in different redox 

states make iron a perfect co-factor for electron transfer reactions (van Vliet et al., 2002). Iron can 

present oxidation numbers between -2 and +6, but in biological systems is only found Fe (II), Fe (III) 

and Fe (IV), respectively ferrous, ferric and ferryl forms (Cornelis and Andrews, 2010).  

In biological systems iron is present in heme containing proteins and non-heme containing 

proteins, such as iron-sulfur proteins and non iron-sulfur proteins. These proteins have a wide diversity 

of functions, such as transcriptional regulation, electron transference, respiration or ROS detoxifying 

proteins (van Vliet et al., 2002).  

In spite of its importance, iron can cause serious injury when allowed to remain free in the cell, for 

its reaction with oxygen is one of the sources of ROS in the cell. This is mainly due to the Fenton 

reaction (eq 1.7) In the presence of iron (II) hydrogen peroxide is reduced and HO
.
 is formed. The 

cycle is completed by the regeneration of ferrous iron at the expense of one electron from superoxide 

radical (eq 1.8) (Birben et al., 2012). 
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Fe
2+

 + H2O2 + H
+    Fe

3+
 + HO

.
 + H2O     (eq 1.7) 

Fe
3+ 

+ O2
.-
    Fe

2+
 + O2         (eq 1.8) 

 

To prevent these nefarious effects organisms have several proteins to capture free iron in a 

controlled way through sensor and regulatory systems. In more complex organisms this restriction is 

per se a defence against microbial colonization, given that all (pathogenic) organisms need iron 

(Holmes et al., 2005), a process called nutritional immunity (Damo et al., 2012). Also it is not 

surprising that iron and oxidative stress response genes are regulated by common mechanisms. 

 

1.1.5. Toxicity of H2O2 

 

The toxic effects of ROS, especially H2O2, for the bacterial cells can be used for human benefit. 

The immune system already takes advantage of ROS to kill invading pathogens and also to initiate the 

adaptive immune response. The great advantage of these substances is their non specific mode of 

action, thus they can be use against several bacteria (Linley et al., 2012). But these compounds can 

also be use as disinfectant agents in industry or medical services. Its cellular targets are also very 

distinct. Hydrogen peroxide can react with co-factors from metallic proteins; can damage the DNA via 

Fenton reaction and lipids peroxidation which will lead to unstable cellular membranes (Finnegan et 

al., 2010). 

 

1.1.6. ROS detoxifying systems 

 

Antioxidants keep ROS levels balanced by competing with other oxidizing substrates (Droge, 

2002). Antioxidants can be enzymes, such as superoxide dismutase, catalase, or glutathione 

peroxidase, or small molecules as glutathione, vitamin C and vitamin E (Birben et al., 2012).  

When an organism reaches a state in which the amount of antioxidants and oxidative species is 

unbalanced favouring the later, we can say to have a situation of oxidative stress (Birben et al., 2012).  

Superoxide dismutases are enzymes responsible by dismutation of superoxide anion to hydrogen 

peroxide and oxygen. They can be separated in three families depending on the co-factor utilized. 

FeSOD/MnSOD can utilize iron or manganese as co-factor; the Cu, Zn SOD family in which the 

protein uses an atom of copper as co-factor and a zinc atom as structural element; and finally a family 

of SOD that uses nickel as co-factor (NiSOD) (Aguirre and Culotta, 2012).  

Peroxidases are the mainly responsible enzymes for H2O2 reduction, being catalase a specific 

enzyme within this family. The first reduce hydrogen peroxide to water by oxidizing other substrates, 

while catalase catalyses the dismutation to water and oxygen (eq 1,9). This family includes gluthatione 

peroxidases and peroxiredoxins (Prx). Contrary to what is observed in many ROS destoxifying 

enzymes, Prx does not possess any metal co-factor. The reduction of hydrogen peroxide is performed 

by active cysteine residues and the resultant disulfide bond is reduced by thioredoxin (Rhee et al., 

2012).  

 

2 H2O2   2 H2O + O2           (eq 1.9) 
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1.2. Rubrerythrins 

 

Rubrerythrins (Rbr) are non-heme iron containing proteins. The first rubrerythrin was identified in 

Desulfovibrio vulgaris (Figure 1.1) (Legall et al., 1988), but other rubrerythrins were lately found in 

organisms from all life domains, mainly anaerobic and microaerophilic ones (e.g. Pütz et al., 2005; 

Wakagi, 2003). They belong to the ferritin-like super family mainly by their four-helix bundle domain 

(Andrews, 1998; Cooley et al., 2011). 

Most rubrerythrins are composed by two domains: a diiron oxo-bridged centre incorporated in a 

four-helix bundle and a rubredoxin domain at the N-terminal which contains an iron atom coordinated 

by four cysteines. Rubrerythrins are usually purified as homodimeric proteins with a “head to tail” 

arrangement (Coulter et al., 2000; Lumpio et al., 2001; Weinberg et al., 2004).  
 

 

 

 

 

 

  

 

Figure 1.1: Structure of Desulfovibrio vulgaris rubrerythrin (PDB codes: A. 1RYT. B. 1LKM and C. 1LKO). The 

green area corresponds to the four-helix bundle domain and the red area is the rubredoxin domain. The iron 
atoms are represented in black. (A) Protein in a monomeric conformation. (B) Diiron centre all ferric. (C) Diiron 
centre all ferrous. Pictures created with Chimera. 

 
1.2.1. Structural domains 

 

The family of rubrerythrins is large and diverse due to the occurrence of several domains addition 

at the C and N-terminals (Figure 1.2).   

A B 

C 

Fe1 Fe2 

Fe1 Fe2 
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Figure 1.2: Dendogram of proteins from the rubrerythrin family (Pinto, 2012). 

 

The simplest rubrerythrin contains only the four helix-bundle domain, like simerythrin from 

Cyanophora paradoxa or sulerythrin from the archeon Sulfolobus tokodaii (Cooley et al., 2011; 

Wakagi, 2003). The four-helix bundle carries a diiron centre responsible for the catalytic activity of the 

protein. The iron ligands are two histidines, four carboxylates and one glutamate, depending upon its 

oxidation state. When oxidized the Fe1 is coordinated by four glutamate residues and Fe2 is 

coordinated by three glutamates and one histidine. The two iron atoms are connected by two of the 

glutamate residues ligands and one molecule of solvent. In the reduced form the molecule of solvent 

disappears and each iron is coordinated by one histidine, three glutamates and one molecule of water 

(Figure 1.1) (Pinto, 2012).  

Given the high similarity of helix A/B and helix C/D it is proposed that rubrerythrins ancestors 

were homodimeric proteins containing only replicas of helix A and B (Figure 1.3) and the appearance 

of the actual rubrerythrins was probably due to a gene duplication event (Andrews, 2010). 
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Figure 1.3: Four-helix bundle of D. vulgaris rubrerythrin. Image coloured from blue (N-terminal) to red (C-
terminal). PDB code: 1ryt. The helixes are designated by the letters (A-D). Picture created with Chimera. 

The C-terminal of rubrerythrins usually has a rubredoxin domain. Rubredoxins are iron-sulfur 

proteins harbouring an iron atom coordinated by four cysteine residues (Bentrop et al., 2001).  

Two types of rubredoxin proteins are so far described in literature. The difference between type I 

and type II rubredoxins is based on the distance between the cysteine ligands to the iron. Type I 

rubredoxins have a binding motif of the type CX2CXnCX2C and are the most common rubredoxins. 

Type II rubredoxins have two extra residues between the first pair of cysteines. In rubrerythrins the 

rubredoxin like domain resembles a type I rubredoxin. Desulforedoxin is a rubrerythrin-like protein in 

which the amino acids between the first pair of cysteines are absent, that causes a distortion in the 

protein structure (Figure 1.4) (Archer et al., 1995). 

 

 

Figure 1.4: Comparison between rubredoxin and desulforedoxin. (A) Three-dimensional structure of 
Desulfovibrio vulgaris rubredoxin. Structure 1RB9 from PDB. (B) Three-dimensional structure of D. vulgaris 
desulforedoxin. Structure 1DXG from PDB. Iron atoms are coloured in black. Figures created with Chimera. 

 

1.2.2. Physiological activity 

 

Considering the structural domains present in rubrerythrins it was initially thought that they can be 

involved in iron storage or in protection against oxidative stress. The diiron centre of rubrerythrins has 

a three-dimensional structure similar with that of ferritins and is able to oxidize ferrous iron (eq 1.10 

A 

B 

C 

D 

A B 
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and 1.11) (Coulter et al., 2000), however rubrerythrins do not form a hollow sphere that could store 

iron. 

Fe
2+

 + Rbrox   Fe
3+

 + Rbrred     (eq 1.10) 

Rbrred + O2   Rbrox + [O2]red           (eq 1.11) 

 

To study the possible role of rubrerythrin, Lumppio and collaborators transformed an Escherichia 

coli strain (QC774) deficient in sodA and sodB that requires supplementation of the minimal medium in 

order to grow in aerobic conditions. This observed phenotype is probably due to the accumulation of 

superoxide anion and free iron. They transformed this strain with a plasmid coding for rubrerythrin and 

compared the growth rates of the non-transformed strain versus the transformed strain and found no 

significant differences, excluding the hypothesis of this protein acting as a superoxide dismutase. On 

the other hand they also transformed an E. coli strain (NC202) deficient in katG and katE (genes that 

encode catalase) and observed that the strain expressing the rubrerythrin had a higher survival rate 

when aerobically exposed to 2.5 mM H2O2 than that of the wild type strain. Similar results were obtain 

for nigerythrin, a Rbr-like protein also identified in D. vulgaris, thus indicating a role in hydrogen 

peroxide detoxification for these proteins (eq 1.12 and eq 1.13) (Lumpio et al., 2001).  

 

NADH + Rbrox   Rbrred + NAD
+
 + H

+      
(eq 1.12)

 

2 H
+
 + Rbrred + H2O2   Rbrox + 2 H2O    (eq 1.13) 

 

 In another work the authors studied the ability of wild type and mutant rubrerythrins from D. 

vulgaris to perform the referred functions attributed to rubrerythrins (peroxidase and ferroxidase). The 

work was performed with wild type and rubrerythrin mutants. The results obtained for Rbr Y27F and 

hydrogen peroxide are of particular importance, given the subject under study in this work. Observing 

the results obtained for the wild type protein the NADH peroxidase activity (251   3.2 M min
-1

) seems 

to be more likely to occur in vivo than the ferroxidase activity (2   0.3 M min
-1

). Furthermore, the 

Y27F mutant showed only 30% of the wild type peroxidase activity, thus indicating the residue in 

position 27 as being important to this activity. (Coulter et al., 2000). 

In Pseudomonas gingivalis W83 was detected the presence of a Rbr. Initial studies done by M. 

Sztukowsaka and collaborators showed the impact of Rbr gene disruption. They showed an increase 

in Rbr gene transcription upon exposure to oxygen or hydrogen peroxide and also the P. gingivalis rbr
-
 

mutant is more sensitive to oxygen and hydrogen peroxide (Sztukowsaka et al., 2002). Later, Mydel 

and collaborators studied the importance of Rbr for P. gingivalis infection using a murine model. 

Although they showed the importance of Rbr in P. gingivalis proliferation in vivo through protection 

against reactive nitrogen species (RNS) (Mydel et al., 2006). Having in mind the previous results this 

is a little intriguing and the physiological role of rubrerythrins as well their physiological electron donors 

needs further investigation. 
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1.2.3. Desulforubrerythrin  

 

Desulforubrerythrin (Figure 1.5) was identified in Campylobacter jejuni NCTC11168. After 

exposing cells to H2O2, it was observed that a protein of approximately 27 kDa started to degrade. 

After N-terminal sequencing it was identified as the product of the gene cj0012c (Yamasaki et al., 

2004).   

 

Figure 1.5: Desulforubrerythrin in a tetrameric conformation. Each monomer is represented with a different 

colour. (Unpublished data under refinement). 

 

The sequence analysis of the protein revealed the presence of a desulforedoxin like domain at 

the N-terminal, wrongly labelled by the authors as rubredoxin oxidoreductase (Rbo) and a rubrerythrin 

like domain at the C-terminal, leading to the first designation of the protein: Rrc (Rbo/Rbr like protein 

from C. jejuni). Lately the domain at the N-terminal was identified as a desulforedoxin domain, leading 

to the actual denomination of the protein: desulforubrerythrin - DRbr (Pinto et al., 2011). This similarity 

with rubrerythrins leaded the authors to speculate about the protein function as being related with 

oxidative stress protection. Although the levels of protein decrease upon cells exposure to hydrogen 

peroxide, no significant alterations were detected in the mRNA levels (Yamasaki et al., 2004).    

In case the protein is involved in hydrogen peroxide reduction its degradation at higher levels of 

its substrate may be an auto-regulation mechanism. It is clear that the protein needs to be reduced by 

some enzymatic system which in last instance should lead to NAD(P)H consumption. Thus, in 

elevated concentrations of hydrogen peroxide exists the serious possibility of depletion the cell of its 

reducing equivalents.  

Lately, A.F. Pinto and collaborators showed that the protein has NADH-linked hydrogen 

peroxidase activity. They showed that the protein is able to reduce hydrogen peroxide to water in the 

presence of NADH, flavorubredoxin oxidoreductase and rubredoxin domain of flavorubredoxin, both 

from Escherichia coli (Pinto et al., 2011). The same work also showed that the protein is isolated as a 

tetramer and has an isoelectric point of 5.37. 

To better understand the catalytic mechanisms of the reaction with hydrogen peroxide, three 

mutant proteins were here studied. Two single mutant proteins and one double mutant comprising 

both mutations. The residues chosen were tyrosine 59 and 127. These residues are strictly conserved 
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in rubrerythrins and are hydrogen bounded to iron ligands (Figure 1.6). Besides, tyrosines surrounding 

diiron centres are known for being important in dissipation of oxidizing species such as Fe (IV) by 

formation of a tyrosil radical (Pinto, 2012). The residues were replaced by a phenylalanine, a 

structuraly similar amino acid but lacking the hydroxyl group. This difference should be enough to 

induce changes in protein activity (in case the residues are important for its activity) but should not be 

enough to change the three-dimensional structure around the catalytic centre.    

The work here presented was based in expression, purification and characterization of the mutant 

proteins having as reference the wild type protein.  

 

 

Figure 1.6: Depiction of the diiron centre evidencing its surrounding tyrosines. Iron atoms are represented in red; 
tyrosine 59 is represented in red; tyrosine 127 is represented in yellow. The dashed black lines represent 
hydrogen bonds between the tyrosines and glutamates. (Unpublished data under refinement).  

 

1.3. Campylobacter jejuni: an overview   

 

Campylobacter jejuni is a microaerophilic Gram-negative bacterium. It belongs to the delta-epsilon 

class of proteobacteria (Figure 1.7) and is a flagellate spiral bacterium (Figure 1.8). This species is the 

main cause of foodborne gastroenteritis in the world. The infection is acquired by consumption of 

contaminated meat, especially poultry. In developing countries contaminated water can also be a 

source of infection. The symptoms include fever, abdominal pain and diarrhoea (Dasti et al., 2010; 

Young at al., 2007). The disease can cause different symptoms apparently depending on the socio-

economic level of the country. In developed countries the infection causes bloody diarrhoea with 

mucus while in developing countries the infection is more common in children and causes watery 

diarrhoea (Young et al., 2007). This could be due to the fact that in developing countries people are 

exposed to the pathogen at early stages of life and this could confer a certain immunity against 

subsequent infections. In any case the infection in self-limiting, but in more severe cases antibiotic 

therapy may be required, generally erythromycin but also quinolones. Initially erythromycin was the 

chosen antibiotic to treat campylobacteriosis, being replaced nowadays by fluroquinolones. Although 

initially these drugs were efficient in treating the infection, soon cases o antibiotic resistance started to 

emerge due to the indiscriminate use of antibiotics in animals (Engberg et al., 2001), making urgent 

the identification of alternative targets to other drugs. 
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The infection can cause serious sequelae, such as reactive arthritis and Guillian-Barre syndrome 

(GBS), a muscular neuropathy (Altekruse et al., 1999; Kassem et al., 2012; Young et al, 2007). The 

GBS seems to be an auto-immune response to the infection to the lipooligosacharides (LOS) of C. 

jejuni that are similar to human gangliosides. This results in temporary paralysis of the peripheral 

nerves and more rarely it can lead to death (Bingham-Ramos and Hendrixson, 2008; Kaakoush et al., 

2007). 

  

 

 

Figure 1.8: Campylobacter jejuni scanning microscopy image (Altekruse et al.,1999) 

 
The genome of C. jejuni NCTC11168 has 164 148 base pairs, from which 94.3% encodes proteins 

making it one of the densest genomes sequenced. The analysis of the genome revealed 

homopolymeric tracts with great variability, probably coding for LOS, flagellar systems or other 

extracellular components (Parkhill et al, 2000). This diversity in extracellular surface structures may be 

one way to escape the immune system.   

C. jejuni requires low O2 concentrations (5-10%) and 5-10% of carbon dioxide to grow, which 

makes this microorganism microaerophilic and capnophilic, respectively. Its optimum growth 

temperature is 42ºC, just the same temperature of the chicken gut: its commensal host. In vitro growth 

of this microorganism requires media supplemented with blood or fetal bovine serum (Atack and Kelly, 

2009). This makes one wonder how C. jejuni survives in the environment while travelling between 

hosts (see section 3.1). 

Campylobacter members have a full tricarboxylic acid cycle (TCA) but are unable to utilize 

carbohydrates as energy source; they rely on intermediates of the TCA cycle (Brenner et al., 2005).  

C. jejuni possesses a highly branched respiratory chain allowing the organism the use of a wide 

range of substrates, including formate, malate, succinate and lactate, amongst others (Hoffman and 

Goodman, 1982; Kassem et al., 2012).   

 

1.3.1. C. jejuni, oxidative stress and iron 

 

Although C. jejuni requires specific conditions for optimal growth it has the ability to colonize 

different hosts and to survive in different environments, where may face different type of stresses: 

nutrients depletion (namely iron), atmospheric concentrations of O2, ROS produced by the host, 

amongst others. To be able to survive these stressful conditions C. jejuni needs oxygen consuming 

enzymes and reactive oxygen species scavengers. 
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The respiratory chain of C. jejuni possesses a cbb3 type oxygen reductase and a bd-type quinol: 

O2 oxidoreductase, which are important for O2 consumption (Smith et al., 2000). 

C. jejuni is a catalase-positive organism. Its genome analysis shows the presence of only one 

catalase coding gene named katA. W. A. Day and collaborators  showed that a C. jejuni catalase 

deficient strain loses its viability after 15 minutes exposure to H2O2, while the wild type bacteria 

maintains a viability of approximately 60% after 1 hour in the same conditions. They also showed that 

the wild type strain could survive upon uptake by murine and porcine macrophages, while the mutant 

bacteria were not able to recover. Moreover, in macrophages treated with an oxidative burst inhibitor 

no differences were detected between the wild type and catalase deficient strains. Altogether these 

results show the importance of catalase in H2O2 resistance for C. jejuni (Day et al., 2000).  

The superoxide dismutation is performed by an iron superoxide dismutase (Fe-SOD). A mutant 

strain lacking the sodB gene was less able to survive inside human embryonic intestinal cells when 

compared with the wild type strain (Pesci et al., 1994).  

Proteins belonging to the family of peroxiredoxins were also identified in C. jejuni. These are alkyl 

hydroperoxide reductase (AhpC), thiol peroxidase (Tpx) and bacteoferritin comigratory protein (Bcp). 

The AhpC protein was showed to increase the aerotolerance under normal atmospheric conditions of 

C. jejuni but showed no detected effects in H2O2 resistance (Baillon et al., 1999). Studies with Tpx and 

Bcp suggest that these two proteins may have a redundant role by comparing the phenotype of a wild 

type C. jejuni strain with tpx and bcp single mutants and with a double mutant. When growing the 

strains microaerobically the single mutants showed growth profiles very similar with the wild type 

strain. The double mutant reached the same cellular density than the wild type strain, but took more 

than twice as long. This was also verified when the cells were exposed to 1 or 2 mM of H2O2. The 

same study shows that Tpx and Bcp have substrate specificity. Both enzymes can reduce H2O2 in the 

presence of thioredoxin, thioredoxin reductase and NADH but only Bcp was able to reduce cumene 

hydroperoxide and tert-butyl-hydroperoxide, common artificial substrates to measure peroxidase 

activity  (Atack et al., 2008).   

C. jejuni also contains a DNA binding protein from starved cells (Dps). Dps are DNA binding 

proteins, that also bind iron, thus preventing the production of HO
. 
(Miyamoto, et al., 2011).  It was 

observed that the Dps confers H2O2 resistance by binding iron in the cell, because bacteria lacking the 

Dps showed the same H2O2 resistance than the wild type bacteria when an iron chelator was added to 

the growth medium (Ishikawa et al., 2003). Just recently was shown that the C. jejuni Dps has DNA 

binding ability in the presence of H2O2 and Fe
2+

, thus protecting DNA from the nefarious effects of 

H2O2 (Huergo et al. 2013). 

A truncated globin (Ctb) was identified in C. jejuni as important to bacteria survival even under 

microaerophilic conditions, the ctb mutant showed a slower growth when compared with the wild type 

protein (Wainwrigh et al., 2005).  

Although C. jeujuni seems to be lacking siderophores (iron chelators exported by microorganisms 

(Pi et al., 2012)) it is able to use siderophores from other bacteria present in the bowel and iron is then 

transported to the cell by a ferric-enterobactin (CfrA). Furthermore, C.jejuni is able to use the heme 

group from exogenous proteins through the heme uptake system ChuABCD (Butcher et al., 2010).  
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All these ROS detoxifying systems need to be tightly regulated. Contrarily to other bacteria C. 

jejuni lacks the regulators OxyR and SoxR, respectively involved in hydrogen peroxide and superoxide 

sensing. Instead, this bacterium possesses the PerR protein, usually found in Gram-positive bacteria, 

which is an hydrogen peroxide regulator (Butcher et al., 2010) The iron uptake also needs to be 

carefully controlled since it is involved in the generation of the dangerous hydroxyl radical. This is 

regulated by the ferric uptake regulator (Fur), a member of the PerR family. Fur is a repressor that in 

the presence of ferrous iron Fur binds itself to the promoter of iron uptake genes and inhibits their 

transcription (Palyada et al., 2004). Fur also represses genes involved in ROS detoxifications (katA, 

ahpC) (Table 1.1) (Butcher et al., 2010). This last result seems contradictory given that iron is tightly 

connected to the formation and elimination of ROS via the Fenton reaction and by its role in 

detoxifying enzymes, respectively. So under iron rich conditions an over expression in iron-containing 

proteins would be expected to avoid the dangers of free iron in the cell. 

PerR works by inhibiting the transcription of genes involved in oxidative stress response. Its own 

expression is iron-dependent but not H2O2 dependent and is auto regulated by binding to the perR 

promoter (Kim, et al., 2011). In the absence of iron Apo-PerR is unable to bind to the promoter region 

in the DNA resulting in induction of oxidative stress resistance genes, even in the absence of ROS 

(Butcher et al., 2010) 

The implication of PerR in H2O2 resistance is corroborated by studies where a strain lacking perR 

is more resistant to H2O2, due to continuous transcription of katA and ahpC (Palyada et al., 2009).  

Due to the close relation between iron and oxidative stress several genes are co-repressed by 

PerR and Fur (Figure 1.9).   

In a fur mutant cj0012c transcription is activated under iron rich conditions and is repressed in the 

absence of iron. In the wild type strain its transcription is also decreased when iron is not available 

(Butcher et al., 2012; Holmes et al., 2005). Furthermore cj0012c is also repressed by PerR (Palyada 

et al., 2009), which is in agreement with the results shown by Yamazaki et al. that observed 

unchanged levels of cj0012c transcripts in the presence of hydrogen peroxide. 
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Figure 1.9: Simplified representation of oxidative stress regulation in Campylobacter jejuni. Anti-oxidant systems 

are in blue coloured boxes; oxidants species are coloured in red; Fur is coloured in the green box; Per-R is in the 
yellow coloured box. Full trace lines represent primary repression and dashed lines represent secondary 
repression. Adapted from Palyada et al., 2009. 

 
 

Table 1.1: Example of genes up and down regulated by Fur, PerR and iron. The signals 
“-” and “+” stand for repression or activation, respectively. Adapted from Butcher et al., 

2010. 

Gene name and 
category 

Fur-Fe Fur+Fe Fe PerR-Fe PerR+Fe 

Iron transport      

cfrA  - -   

chuABCD  - - -  

Oxidative stress 
defense 

     

ahpC  - - -  

cft   -   

katA  - - - - 

rrc - + +  - 

 

1.3.2. Pathogenesis mechanisms  

 

Approximately 90% of the campylobacteriosis cases are due to Campylobacter jejuni and the 

other cases are almost entirely attributed to Campylobacter coli.  

ChuABCD

PerR-Oxi

PerR-Fe

Fur-Fe

CfrA

SodB

Fe2+

Heme

[4Fe-4S]

KatA

AhpC

H2O2

H2O2

Fe2+ Fe2+

H2O2O2
.-

Fe2+

ROOH

ROOH

Fe3+ +OH- + RO.

Fe3+ +OH- + HO.

ROH + H2O

H2O + O2
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Based on the symptoms two disease mechanisms are hypothesised: adherence of the bacteria to 

the intestine and production of toxins or invasion and replication inside the host cells which will initiate 

an inflammatory disease. In the first case the symptoms include watery diarrhea, while in the second 

bloody diarrhea (Janssen et al., 2008).   

Colonization of the host occurs in the small bowel and in the colon (Altekruse et al.,1999). The 

first barrier that the bacteria should overcome is the acidic environment of the stomach, followed by 

the barrier of the gastrointestinal tract, namely the mucus layer. The bacteria overpass the mucus 

layer thanks to their corkscrew shape, motility and chemotaxis (Altekruse et al., 1999; Young et al., 

2007; Kassem et al., 2012). To fulfil the colonization process the bacteria must adhere to the epithelial 

cells through membrane proteins. Several proteins are involved in cell adherence: CadF, CapA, PEB1 

and JlpA (Dasti et al., 2010). CadF is also required for cell invasion in a fibronectin dependent way. 

Mutants in CadF and JlpA have shown impaired ability to invade several cell lines in vitro and are also 

less prone to colonize chicken gut (Dasti et al., 2010; Young et al., 2007). 

 More than being involved in motility the flagella also seem to be important for cell invasion and 

toxicity. The flagellar filament is composed by two proteins: FlaA and FlaB. Deletion studies in a 

human clinical strain showed that deletion of flaA results in impaired motility and invasion, but the 

adherence ability of the bacteria was enhanced. The double mutant in flaA and flab showed even a 

greater adherence improvement but the invasion was poorer than in the flaA mutant. (Konkel et al., 

2004).  

The secretion mechanisms are not yet clear, but no type III secretion system was identified. It is 

believed that secretion is dependent on the flagellar machinery due to homology of secreted proteins 

with flagellins. These secreted proteins are named Campylobacter invasion antigens (Cia) and their 

functions are still unknown. The secretion pathway via flagellum is corroborated by mutagenesis 

studies. In the mutant flaAflaB no secretion of this CiaB was detected although the protein was 

expressed (Konkel et al., 2004). This highlights the importance of the flagellar apparatus in secretion 

and consequently on the disease. 

The only toxin identified so far in C. jejuni is the cytolethal distending toxin (CDT) which is also 

found in other species in the same genus and in Escherichia coli. CDT is a holotoxin composed of 

smaller proteins: CdtA, CdtB and CdtC. This toxin arrests the cellular cycle at G2 phase and causes 

cell distension. CdtB is responsible for the protein activity, while CdtA and CdtC probably play a role in 

the uptake by the host cells but there is no evidence if these subunits enter the cell or not. The 

sequence of the CdtB subunit showed similarity with DNase-I like proteins, and CdtB was showed to 

have DNase activity in plasmidic DNA (Ohara et al., 2004).  

The mechanism by which CDT is exported from the bacterial cell is unknown but one study 

suggests that outer membrane vesicles (OMV) may be a vehicle for toxin export (Lindmark et al., 

2009).  CdtB is probably translocated to the nucleus of the host cell via via retrogade transport (Young 

et al., 2007). 
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1.4. Campylobacter jejuni, ROS and the immune system response 

 

The role of ROS in the immune system concerns both the innate and acquired immunity.  

After ingestion of microorganisms by 

phagocytic cells a “respiratory burst” takes place 

inside the phagolysosome. This process starts 

with the production of O2
.-

 by the NADPH oxidase 

enzyme present in the phagossome membrane 

(NOX2) that transfers electrons from NADPH to 

two O2. As seen in section 1.1, O2
.- 

production will 

lead to production of several oxidant molecules, 

namely H2O2 and HO
.
. The hydrogen peroxide can 

also be converted in hypoclorous acid, a strong 

oxidant, by mieloperoxidase or eosinophil 

peroxidase (Winterbourn, 2008) (Figure 1.10). 

These molecules will hopefully cause serious 

damage in the pathogenic bacteria. The 

importance of NOX is corroborated by a reduced 

resistance to infections in mice lacking NOX 

subunits (Alfadda and Sallam, 2012;, Droge, 

2002). Besides, NOX1 is present at the cellular 

membrane and transfers electrons to O2 present 

at the outside of the cell (Winterbourn, 2008), 

allowing to fight bacteria that resist phagocitosis.  

 The role of ROS goes beyond this non-selective response. The production of ROS at the infection 

local decreases the threshold activation of T -lymphocytes due to amplification in signalling cascades 

(Figure 1.11) (Kaakoush et al., 2007).  

 

 

Figure 1.11: Importance of ROS in the immune system. ROS production by activated macrophages is a non-

specific defence against invading pathogens. ROS also play an important role in activation of T-lymphocytes 
along with pathogen determinants presented by Major Complex of Histocompatibility (MHC) molecules. 
(Adapted from Droge, 2002) 
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Figure 1.10: NOX role in generation of ROS in 

phagosomes. NOX generates O2
-.
 that dismutes into 

H2O2. Myeloperoxidase converts hydrogen peroxide 
in hypochlorous acid. Image from Winterbourn, 2008. 
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After interaction of C. jejuni with epithelial cells cytokine production is induced, namely IL-8. IL-8 

secretion leads to recruitment of dendritic cells (DCs), macrophages and neutrophils (Zheng et al., 

2008).  

Dendritic cells (DC) seem to play a fundamental role in the immune response to C. jejuni 

activation. Based on in vitro results C. jejuni is rapidly internalized by DC promoting the DCs 

maturation verified by expression of coestimulatory molecules (CD40, CD80 and CD86) (Hu et al., 

2006). In the same study production of cytokines by infected DC was also observed, especially IL-8 

and TNF- (Tumor Necrosis Factor ) as well NF-B (Nuclear Factor-B) activation. The activation of 

DCs is extremely important to stimulate naive T cells through antigen presenting. The same study also 

points LOS as one important feature in cytokine production (Young et al., 2007).  

The production of IL-8 by epithelial cells seems to be dependent of the flagellum and the CDT 

given that mutants in one of these features are less efficient in promoting IL-8 secretion. Furthermore 

this secretion also seems to be dependent of NF-B activation (Figure 1.12) (Zheng et al., 2008).  

 

 

 

Figure 1.12: Representative scheme of pathological inflammation. This response of the immune system is 

triggered by “pathogen-associated molecular motifs (PAMP)”.  Bacterial cells interact with the epithelium 
inducing realising of pro-inflamatory cytokines (CXCL20, IL-8). This leads to the recruitment of dendritic cells 
(DCs), macrophages and neutrophils. The internalization of the bacteria by DCs will initiated the activation of the 

NF-B via. Image from Sansonetti and Santo, 2007.  
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2. MATERIALS AND METHODS 

 

 Unless stated otherwise all procedures were performed with wild type and DRbr mutants.  

 

2.1 Strains and resistances 

 

Competent Escherichia coli strain BL21DE3GOLD cells were used to over express the proteins 

under study. In the expression assays BL21DE3 and STAR strains from E. coli were also used. 

 

2.2 Gene cloning 

 

The pMAL system from New England Biolabs was used for cloning the gene cj0012c from C. 

jejuni NTTC11168 with and without the desired mutations. The clone for the wild type protein was 

provided by Yamazaki M.
1,2

, Amano F.
2
 and Ignimi S

3
. 

The clones for the mutant proteins were done by Pinto, A. using the Quick Change Multi-Site 

Directed Mutagenesis Kit from Agilent Technologies. The residues chosen for mutation were tyrosines 

59 and 127. In two mutants one of the residues was replaced by a phenylalanine and in a third both 

tyrosines were replaced, also by two phenylalanines.  

 

2.3 Cells transformation 

 

Competent E. coli BL21DE3 GOLD cells were transformed with plasmids containing the gene for 

the wild type or mutant proteins. To 100 L of competent cells were added 2 L of plasmid at c.a. 83 

ng/L. The mixture was incubated in ice for 30 minutes. Afterwards cells were heated at 42ºC during 

20 seconds and then immediately put in ice for 2 more minutes. To the cells were added 900 L of 

lysogeny broth (LB) medium (Table 2.1) and the mixture was incubated for 1 hour at 37ºC with 

shaking. Cells were harvested by centrifugation and resuspended in 100 L of supernant before 

plating in LB agar (LA) medium (Table 2.1) supplemented with 100 g/mL ampicilin. The plates were 

incubated at 37ºC overnight. 

Table 2.1:  Instructions for LB and LA media preparation. 

Components LB medium (Adjust pH to 7.0) LA medium 

Tryptone 10 % (w/v) 10 % (w/v) 

Yeast extract 10 % (w/v) 5 % (w/v) 

NaCl 10 % (w/v) 10 % (w/v) 

Agar - 5% (w/v) 

                                                     
1
 Faculty of Agriculture, Tokyo University of Agriculture and Technology, Japan 

2
 Department of Hygienic Chemistry, Osaka University of Pharmaceutical Sciences, Japan 

3
 Division of Biomedical Food Research, National Institute of Health Sciences, Japan 
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2.4 Protein expression tests for DRbr mutants 

  

A few colonies from the LA plates were used to inoculate 25 mL of LB medium with 100 g/mL 

ampicilin. Cells were grown at 37ºC until the optical density (OD) at 600 nm reached 0.6. Then 250 M 

of isopropyl-1-thio--D-galactopyranoside (IPTG) was added. After 4 hours cells were harvested by 

centrifugation at 5000 g during 10 minutes at 4ºC. Two samples were analyzed, corresponding to the 

cells before and after induction. Both samples were disrupted by freezing/thawing cycles with liquid 

nitrogen. The levels of protein in the soluble fraction were evaluated by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE).  

 

2.5 Expression of the recombinant DRbr and DRbr mutants 

 

A pre-inoculum of 100 mL with 100 g/mL of ampicilin was prepared overnight at 37ºC, from fresh 

colonies (prepared plate). 

Over-expression of DRbr and mutants was achieved by growing the cells aerobically at 37ºC in 

M9 minimal medium supplemented with 20 mM glucose, 400 M FeSO4 and 100 g/mL ampicilin. The 

medium was inoculated with 1% from the pre-inoculum.  At OD600 of 0.3 it was added 250 M IPTG. 

Cells were grown overnight and then the cells were harvested by centrifugation at 7000 g during 10 

minutes and 4ºC and then stored at -20ºC.  

Minimal medium M9 was prepared accordingly the following instructions: for 1 litre of medium 5 

times concentrated the following quantities were dissolved in deionized water: 64 g of Na2HPO4.7H2O, 

15 g of KH2PO4, 2.5 g of NaCl and 5 g of NH4Cl.  

 

2.6 Recombinant proteins purification 

 

The purification process was performed in anaerobic conditions in a Coy glove box under an 

atmosphere of approximately 95% argon and 5% hydrogen at room temperature. All buffers were 

previously degassed and the atmosphere was replaced with nitrogen, prior to their introduction in the 

glove box  

The cells were unfrozen and washed in a buffer containing 10 mM Tris-HCl H 7.2 for three times, 

then were harvested by centrifugation and resuspended in a buffer containing 50 mM Tris HCl pH 8, 

100 mM NaCl, 1 mM MgCl2, 0.1 mg/mL lysozyme and 20 g/mL DNase I. The cellular extract 

(supernatant) was obtained by passing the cells three times through a French Press at 35 000 psi. 

Soluble fraction was collected after ultracentrifugation the cellular extract at 125 000 g for 1 hour at 

4ºC. The atmosphere of the soluble extract was replaced with nitrogen and applied in a Q-Sepharose 

Fast Flow column XK 26 (XK26/20, GE Healthcare) equilibrated with 20 mM Tris-HCl pH 7.2. The 

protein was eluted with a linear gradient from 0 to 1 M NaCl at 2 mL/min. The DRbr and its mutants 

eluted between 0.2 M and 0.3 M NaCl and were then dialyzed overnight against 10 mM KPi pH 7.2. 

This fraction was subsequently applied in a Bio-gel hydroxyapatite (HTP) type II (XK 16/20 GE 

Healthcare) column previously equilibrated with 10 mM KPi pH 7.2. The protein was eluted with a 
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linear gradient from 10 mM to 1M of KPi pH 7.2. Fractions containing the protein were collected at 

approximately 0.3 M of KPi pH 7.2 and concentrated to a maximum volume of 2 mL in a Diaflo 

(Amicon) using a YM30 membrane. Finally the protein was applied to a Superdex-200 (XK 16/170, GE 

Healthcare) column equilibrated with 20 mM Tris-HCl pH 7.2 and 150 mM NaCl and eluted with the 

same buffer. The final fraction was concentrated using a Diaflo (Amicon) and stored at -20ºC in 

anaerobic conditions.   

The purity of the final fractions was accessed by 15% SDS-PAGE. 

 

2.7 Electrophoretic analysis 

 

All SDS-PAGE analysis were performed in a 15 % gel with 1 mm thickness. The solution 

components and volumes are listed in Table 2.2 

 

Table 2.2:  Instructions for preparation of SDS-PAGE gels. Components and volumes for preparing one 
resolving 15% SDS-PAGE gel and one stacking 5% SDS-PAGE gel. 

Solution components Stacking gel (mL) Resolving gel (mL) 

30% Acrylamide mix  0.67 5 

1.5 M Tris-HCl pH 8.8 - 2.5 

1 M Tris-HCl pH 6.8 500 - 

Deionised Water 2.7 2.3 

10% SDS 0.04 0.1 

10% Ammonium persulfate (APS) 0.04 0.1 

N, N, N', N'-tetramethylethylenediamine 

(TEMED) 0.004 0.004 

 

The electrophoresis were performed with a BioRad MiniProtean system and a power supply from 

Amershan Biosciences at 180 V during approximately one hour. The running buffer contained 0.6 % 

(w/v) Tris-(hydroxymethyl) aminomethane (Tris), 4 % (w/v) glycine and 0.2 % (w/v) SDS. The pH was 

adjusted to 8.3 with HCl.  

The molecular weight of the samples was inferred from the low molecular mass markers from GE 

Healthcare.  

Sample visualization was achieved by staining the gel in a solution containing 0.1% Coomassie 

G, 50% methanol and 10 % acetic acid for approximately 30 minutes. Next the gel was submersed in 

a destaining solution with 40 % acetic acid and 10 % methanol for 30 minutes. The gels were left in 

water overnight.  

 

Depending upon the origin of the sample to analyze, its pre-treatment was different.  
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Induced versus non-induced cells: 1 mL of culture media before and after induction was centrifuged to 

collect the cells. Next, 30 µL of Loading Buffer with urea (Table 2.3Table 2.4) was added to resuspend 

the pellet and the mixture was heated at 100 ºC during 5 minutes. Finally the mixture was centrifuged 

for 2 minutes at 14 000 g and 15 µL of the supernatant were applied in the gel.  

 

Soluble versus non-soluble fraction: 2 mL of culture media was collected after finishing the protein 

expression tests or the growths and centrifuged to collect the cells. Cells were lysed by adding 500 µL 

of lysis buffer (Table 2.4) and by doing freezing/ thawing cycles with liquid nitrogen. The mixture was 

centrifuged and the supernatant was collect and once more centrifuged. The supernatant and the 

pellet were both collected corresponding to the soluble and non-soluble fractions respectively; to both 

were added 30 µL of Loading Buffer with urea and applied in the gel after heating at 100 ºC for 5 

minutes and centrifuged at 14 000 g.  

 

Table 2.3: Solution components for preparing loading buffer with and without urea. 

Solution components Loading buffer with urea (2x) Loading buffer (2x) 

500 mM Tris-HCl pH 8.0 4 mL - 

500 mM Tris-HCl pH 6.8 - 1.5 mL 

SDS 0.8 g 0.8 g 

Glycerol (88%) 4.6 mL 2.5 mL 

β-mercaptoethanol 400 L 500 L 

Bromophenol blue 0.04 g 0.04 g 

Urea 4.8 g - 

Water - 4.25 mL 

 

 

Table 2.4: Components and respective concentrations 

of the lysis buffer. 

Lysis buffer 

50 mM Tris-HCl pH 8.0 

20 % (w/v) sucrose 

100 mM NaCl 

1mM MgCl2 

0.1 mg/mL lysozyme 

20 µg/ mL DNase I 
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Protein samples: To 15 µL of sample 15 µL of Loading Buffer were added (Table 2.3). The mixture 

was heated at 100º C during 5 minutes, centrifuged at 14 000 g and applied in the gel.  

 

2.8 Determination of protein and iron concentration  

 

Protein concentration was determined using the bicinchoninic acid (BCA) (Pierce) method and 

the iron content was assayed using 2, 4, 6-tripyridyl - 1, 2, 3-triazine (TPTZ) method and by Inductevily 

Coupled Plasma Atomic Emission spectroscopy (ICP). The zinc content was also determined by ICP. 

The ICP was performed at REQUIMTE Analysis Laboratory at Faculdade de Ciências e Tecnologia da 

Universidade Nova de Lisboa.  

For the BCA method were prepared 8 tubes with BSA (Bovine Serum Albumin) concentrations 

between 0 and 1 mg/mL, plus the samples tubes. To each tube was added 1 mL of BCA solution 

previously prepared by mixing 50 parts of reagent A (Bicinchonic acid and tartrate in an alkaline 

carbonate buffer) with one part of reagent B (4% copper sulfate pentahydrate). This method is based 

in the chelation of Cu
1+

 with protein in an alkaline buffer, the biuret reaction, which forms a light blue 

complex. The second step is the reaction of the BCA reagent with the Cu
1+

 to yield a purple product, 

which increases the sensitivity of the method 100 times when compared with the traditional 

biuredtmethod. After 30 minutes incubation on the dark the absorbance at 562 nm was registered. The 

calibration and the samples were prepared in triplicates.  

For the TPTZ method a calibration was performed by preparing tubes with iron concentrations 

between 0 and 25 M. The tubes with the samples were also prepared by diluting a small amount (5 

L) with water. To all tubes was added 100 L of 8 M HCl followed by mixing in the vortex to remove 

the iron from the protein. Next, 100 L of a solution of TCA (Trichloroacetic acid) 80% was added to 

precipitate the protein and the mixture was again homogenised in the vortex. The standards and the 

samples were centrifuged during 10 minutes at 14 000 g and 800 L of supernatant were transferred 

to a new vial. To each tube was added 200 L of 75% of ammonium acetate to set the pH around 4.5 

and 80 L of 10% ammonium hydroxide which reduces the iron to ferrous. The solutions were mixed 

and finally 80 L of 4 mM of TPTZ was added. After incubation for 10 minutes in the dark, the 

absorbance was measured at 593 nm (Fischer and Price, 1964).  

 

2.9 Molecular mass determination 

 

The molecular mass in solution was determined by size exclusion chromatography with an 

analytical Superdex 200 column (10/300 GE Healthcare). The column was equilibrated with 50 mM 

KPi pH 7.2 with 150 mM NaCl. A calibration was performed in which the following commercial proteins 

were used: aprotinin (Mm = 6500 Da), myoglobin (Mm = 17600 Da), chymotrypsinogen (Mm = 25 000 

Da), albumin (Mm = 66 000 Da), canalbumin (Mm = 76 600), aldolase (Mm = 158 000 Da), catalase 

(Mm = 240000 Da) and ferritin (Mm = 440 000 Da). Dextran blue (Mm = 2 000 000 Da) was used in all 

standards and samples as internal control.  

 

http://www.medpeel.eu/Trichloroacetic+Acid
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2.10 N-terminal sequencing 

 

All solutions used in the protocol for N-terminal sequencing were prepared with ultra pure MiliQ 

water except TEMED. 

To perform the N-terminal sequencing a sample of protein was applied in 15% SDS - acrylamide 

gel. The running buffer was prepared with 1.5 % (w/v) Tris, 7.2 % (w/v) glycine, 25 mL 0.5 % (w/v) 

SDS and the pH was set to 8.3. All solutions were prepared following the instructions in section 2.7. 

A pre-run with 40 M glutathione added in the cathode was performed at 100 V during 2 hours. 

Subsequently the buffer inside the cathode was removed and new buffer was added, alongside 6 µL 

of thioglycolic acid. The sample was applied and the run was performed at 150 V during approximately 

one and a half hour. The run was tracked by the addition of molecular mass marker pre-coloured from 

Bio-Rad.  

The transference to a PVDF membrane with 0.2 m pore was performed using a Trans-Blot SD 

semi-dry transfer cell at 15 Volts for 20 minutes at room temperature. The transference buffer was 1 x 

CAPS (Cyclohexylamino propanesulphonic acid) (w/v) and 10 % methanol (v/v). Before the 

transference the membrane was activated in 100 % methanol for 15 seconds followed by washing with 

water for 5 minutes and finally was submersed in transference buffer. The gel and the filter paper were 

also submersed in transference buffer immediately before the assembly of the system. 

To visualize the bands corresponding to the samples the membrane was submersed in a solution 

of Coomassie R followed by alternate washing with water and a solution of 50 % methanol.  

The sequencing was performed at the Analytical Laboratory, Analytical Services Unit, Instituto de 

Tecnologia Química e Biológica, Universidade Nova de Lisboa. 

 

2.11 Spectroscopies 

 

UV-Vis spectra, as well all spectrophotometric data, were collected with a Shimadzu UV-1603 or 

Shimadzu UV-1700 spectrophotometers.  

EPR spectra were acquired with a Bruker EMX spectrometer, equipped with an ESR 900 

continuous-flow helium cryostat from Oxford Instruments. 

 

2.12 Redox titrations 

 

Redox titrations were analysed by EPR spectroscopy and performed under argon at room 

temperature. At appropriate potentials a sample was collected into an EPR tube and immediately 

frozen in liquid nitrogen. The assays were performed in 50 mM Tris-HCl pH 7.2 by stepwise addition of 

sodium dithionite as a reducing agent. The protein final concentration was 80 M as well the following 

redox mediators: potassium ferricyanide (E’0 = +430 mV), N,N dimethyl-pphenylenediamine (E’0 = 

+340 mV), tetramethyl-p-phenylenediamine (E’0 = +260 mV), 1,2-naphtoquinone-4-sulphonic acid (E’0 

= +215 mV), 1,2-naphtoquinone (E’0 = +180 mV), trimethylhydroquinone (E’0 = +115mV), 1,4-

naphtoquinone (E’0 = +60 mV), menadione (E’0 = 0 mV), plumbagin (E’0 = -40 mV), indigo 

trisulphonate (E’0 = -70 mV), phenazine (E’0 = -125 mV), 2-hydroxy-1,4-naphtoquinone (E’0 = -152 
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mV) and anthraquinone-2-sulphonate (E’0 = -225 mV). The electrodes were previously calibrated with 

a saturated quinhydrone solution at pH 7.0. All data were analyzed using the Nernst equation and the 

reduction potential values are reported in relation to the standard hydrogen electrode. 

 

2.13 Reconstitution of the binuclear centre 

 

The procedures were performed in an anaerobic chamber under an atmosphere of argon.  

To 100 µM of DRbr Y127F sample in 20 mM Tis-HCl with 150 mM NaCl were added 2 M of 

dithiothreitol (DTT) and 300 µM of Fe
2+

 (Ammonium iron (II) sulfate hexahydrate). The mixture was 

incubated during 30 minutes and then 50 µL of sample were applied in a desalting column (Micro Spin 

6 from Bio-Rad) and eluted in the sample buffer by centrifugation at 1000 g during 4 minutes. The 

binuclear centre reconstitution was assessed by EPR.  

 

2.14 Protein crystallization 

 

Proteins were dialyzed against 100 mM MES pH 6.2 with 500 mM NaCl and then concentrated to 

c.a. 25 mg/mL using a Vivaspin of 10 kDa from Startorius.  

The first trials were done using a Cartesian Crystallization Robot Dispensing System (Genomics 

Solutions) and round-bottom Greiner 96-well CrystalQuick
TM

 plates. This allowed the use of protein 

quantities at the nanolitre scale. Structure Screen 1 & 2 HT-96 from Molecular Dimensions was used 

and the plate remained at 20ºC as well all the plates that would follow. 

Crystals appeared when the crystallization solutions included 0.1 M Hepes pH 7.5, 0.1 M, Bicine pH 9 

or 0.1 M Tris-HCl pH 8.5. To improve the crystals quality the hanging-drop vapor diffusion technique 

was used. In these trials crystals appeared only when the buffer was Hepes, so the optimization 

proceeded only with this buffer. The optimization followed varying the type and concentration of 

precipitant agents (several PEGs - Polyethylene glycol, isopropanol and glycerol) and also with the 

additive TCEP (Tris-(2-Carboxyethyl)phosphine hydrochloride), but the later did not improve the 

results.  

The selected crystals were frozen in liquid nitrogen in the reservoir solution plus 20% glycerol as 

cryo-protectant. Some crystals were also incubated with 10 mM H2O2 or 50 mM sodium dithionite as 

reductant or oxidant, respectively. The crystals were tested at the ALBA synchrotron in Barcelona, 

Spain.  

 

 

  

http://en.wikipedia.org/wiki/Polyethylene_glycol
http://www.lifetechnologies.com/order/catalog/product/T2556
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3 RESULTS 

 

3.1 Protein expression tests for the Desulforubrerythrin mutants 

 

The expression tests were performed in LB medium at 37ºC. The cells were induced with IPTG 

and harvested after 4 hours. The samples corresponding to non-induced and induced cells were 

analyzed by a 15% SDS-PAGE gel. The location of the protein in the induced samples was also 

analyzed (soluble fraction and pellet that includes membranes and inclusion bodies) (Figure 3.1.)  

 

 

Figure 3.1: SDS-PAGE of non-induced and induced cell samples of the protein expression tests for DRbr 
mutants. (A) Mutant proteins expressed in E. coli BL21DE3 Gold. (B) Mutant proteins expressed in E. coli 
BL21DE3 Star (C) Mutant proteins expressed in E. coli BL21DE3. NI: Non-induced cells; I: Induced cells; S: 

Soluble fraction; P: Pellet (non-soluble fraction); ctr: DRbr WT previously purified.  

 
As can been seen in Figure 3.1 all proteins were successfully over expressed in all cellular strains 

tested. Given that the wild type protein had already been over expressed in E. coli BL21DE3 Gold 

cells this was the strain chosen to express the mutant proteins.  
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3.2 Proteins expression 

 

The cells were grown in minimal medium supplemented with iron and induced with IPTG when the 

O.D. at 600 nm reached 0.3. Each growth was performed in erlenmeyers of 2 litres capacity filled with 

1 Litre of medium and 1% of pre-inoculum. Cells were grown overnight and were harvested by 

centrifugation. Samples of the non induced and induced cells were analyzed by 15% SDS-PAGE 

(Figure 3.2). For each protein were performed two independent growths. Given that all procedures 

were the same and the results were very similar, here will be presented only one example of one 

growth for each protein.  

 

Figure 3.2: SDS-PAGE of samples from protein expression. (A) DRbr WT and (B) DRbr mutants in non-induced 

(NI) and induced (I) cells: soluble fraction (S) and pellet (P). ctr: Wild type protein previously purified. 

 

As can be seen in Figure 3.2, all proteins were over expressed and are present in both soluble 

and non soluble fraction. 
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3.3 Biochemical characterization 

 

3.3.1 Protein purification 

 

After harvesting the cells and collecting the soluble fraction all proteins were purified in an O2 free 

atmosphere. Since the protocol was always the same and the results were also very similar next will 

be presented one example for each protein. 

 

Wild type desulforubrerythrin  

 

After ultracentrifugation the soluble fraction was applied to a Q-Sepharose FF column and eluted 

with 20 mM Tris-HCl pH 7.2 plus a linear gradient from 0 to 1 M NaCl. The selection of fraction was 

based on the chromatogram and on the colour of the protein eluted. The oxidized protein is pink or red 

depending on its concentration, but when reduced it is colourless. After eluting the Q-Sepharose 

column the protein is in the reduced state. To ascertain its localization 2 L of sample corresponding 

to the chromatograms peaks were removed from the glove chamber. After exposure to O2 the protein 

reoxidizes and its identification was made by analyzing the colour of the sample. The protein eluted 

between 0.2 and 0.3 M NaCl. This fraction was dialyzed overnight at 4ºC against 10 mM KPi pH 7.2 

and was applied in a HTP column. After this step the protein was oxidized making possible its prompt 

identification by the colour of the fractions. The protein was eluted with a linear gradient from 10 mM to 

1 M KPi pH 7.2 and the fraction containing the protein eluted at approximately 0.3 M KPi. This fraction 

was concentrated to a maximum volume of 2 mL using a Diaflo and was applied in a size exclusion 

column and eluted with 20 mM Tris-HCl pH 7.2 with 150 mM NaCl; the retention time of the protein 

was around 150 minutes. After this step the protein was considered pure and was stored at -20 ºC in 

aliquots of 500 L. 

During the purification, samples from the eluted fractions containing protein were stored and 

afterwards were applied in a 15% SDS-PAGE gel to evaluate the efficiency of the process. The 

chromatograms and the gel can be seen in Figure 3.3 
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A 

 

B 

 

C 

 

D 

  

Figure 3.3: Resume of WT DRbr purification. (A) Chromatogram of the elution of the soluble fraction from the 

Q-Sepharose FF column. The solid black line corresponds to the absorbance at 280 nm and the dashed line is 
the percentage of 20 mM Tris-HCl pH 7.2 with 1 M NaCl. (B) Elution of the sample from the Q-Sepharose FF 
column in the HTP column. The solid black line corresponds to the absorbance at 280 nm and the dashed line 
is the percentage of 1 M KPi pH 7.2. (C) Chromatogram showing the DRbr WT elution profile in the size 

exclusion column. The solid black line corresponds to the absorbance at 280 nm. The red line corresponds to 
the elution of DRbr WT. (D) SDS-PAGE with samples of each eluted fraction containing DRbr WT. In the last 
step of the purification were obtained three fractions containing the protein. The peak line coloured in red in 
panel C corresponds to the elution of the sample shown in the last lane of the gel presented in panel D. 

 

Desulforubrerythrin mutants 

 

The procedure to purify the DRbr mutants was equal to that of the DRbr WT procedure. The 

elution profiles were also very similar. The chromatograms and the gels are shown in Figures 3.4, 3.5 

and 3.6, respectively for DRbr Y59F, DRbr Y127F and the double mutant. 
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A 

 

B 

C D 

 

Figure 3.4: Resume of the DRbr Y59F purification. (A) Chromatogram of the elution of the soluble fraction from 

the Q-Sepharose FF column. The solid black line corresponds to the absorbance at 280 nm and the dashed 
line is the percentage of 20 mM Tris-HCl pH 7.2 with 1 M NaCl. (B) Elution of the sample from the Q-
Sepharose FF column in the HTP column. The solid black line corresponds to the absorbance at 280 nm and 
the dashed line is the percentage of 1 M KPi pH 7.2. (C) Chromatogram representing the DRbr Y59F elution 

profile in the size exclusion column. The solid black line corresponds to the absorbance at 280 nm. The red line 
corresponds to the elution of DRbr Y59F. (D) SDS-PAGE with samples of each eluted fraction containing DRbr 
Y59F. In the last step of the purification were obtained two fractions containing the protein. The peak line 
coloured in red in panel C corresponds to the elution of the sample shown in the last lane of the gel presented 
in panel D. 
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 D 

 

Figure 3.5: Resume of the DRbr Y12F purification. (A) Chromatogram of the elution of the soluble fraction from 

the Q-Sepharose FF column. The solid black line corresponds to the absorbance at 280 nm and the dashed 
line is the percentage of 20 mM Tris-HCl pH 7.2 with 1 M NaCl. (B) Elution of the sample from the Q-

Sepharose FF column in the HTP column. The solid black line corresponds to the absorbance at 280 nm and 
the dashed line is the percentage of 1 M KPi pH 7.2. (C) Chromatogram representing the DRbr Y127F elution 

profile in the size exclusion column. The solid black line corresponds to the absorbance at 280 nm. The red line 
corresponds to the elution of DRbr Y127F. (D) SDS-PAGE with samples of each eluted fraction containing 

DRbr Y127F. 
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3.3.2 Quantifications 

 

The concentrations of the final fractions were determined through the BCA method. The iron was 

quantified by the TPTZ method and also by ICP. The content of zinc was also determined by ICP. 

 

A B 

 

C  D 

 

Figure 3.6:  Resume of the DRbr Y59F Y127F purification. (A) Chromatogram of the elution of the soluble 

fraction from the Q-Sepharose FF column. The solid black line corresponds to the absorbance at 280 nm and 
the dashed line is the percentage of 20 mM Tris-HCl pH 7.2 with 1 M NaCl. (B) Elution of the sample from the 

Q-Sepharose FF column in the HTP column. The solid black line corresponds to the absorbance at 280 nm 
and the dashed line is the percentage of 1 M KPi pH 7.2. (C) Chromatogram representing the DRbr Y59F 

Y127F elution profile in the size exclusion column. The solid black line corresponds to the absorbance at 280 
nm. The red line corresponds to the elution of DRbr Y59F T127F. (D) SDS-PAGE with samples of each eluted 

fraction containing DRbr Y59F Y127F. 
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Figure 3.7: Calibration curve to determine the protein concentration through the BCA method. The results are 

the median calculated from three replicas. The curve was adjusted by the mean root square method.  

 
  

 

Figure 3.8: Calibration curve to determine the iron concentration through the TPTZ method. The 

experimental results are the median calculated from three replicas. The curve was adjusted to the results by 
the mean root square method. 

 

 

The expected result of 4 atoms of iron per monomer of protein was observed for some fractions 

of WT, DRbr Y59F and DRbr Y59F Y127F. For the mutant Y127F none of the purified fractions had 

the expected amount of iron. The results of the TPTZ method are corroborated by the ICP results and 

also by the ERP experiments (see section 3.5). 

 

Table 3.1: Quantifications performed for all final fractions from the protein purifications. 

 

Protein 
Cellular yield  

(g of cells/Litre of growth) 

Protein yield  

(mg/Litre of growth) 

Iron  

(Atoms/Monomer of protein) 

DRbr WT 6.4 23 4.19 

DRbr Y59F 6.5 25 4.22 

DRbr Y127F 6 47 1.17 

DRbr Y59F Y127F 6.9 22 2.89 
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3.3.3 UV-Visible spectra 

 

Immediately after the purification UV-Visible spectra of all the final fractions were acquired. The 

spectra are in Figure 3.9 and Figure 3.10 shows the overlap of all spectra for an easier comparison 

between the different proteins. 

 

A 

Abs280nm Abs370nm Abs490nm Abs560nm 

0.336 0.135 0.081 0.046 

B 

 

Abs280nm Abs370nm Abs490nm Abs560nm 

0.635 0.275 0.176 0.105 

C 

 

Abs280nm Abs370nm Abs490nm Abs560nm 

0.944 0.397 0.283 0.169 

D 

 

Abs280nm Abs370nm Abs490nm Abs560nm 

0.771 0.343 0.243 0.146 

Figure 3.9: UV-Visible spectra from final fractions of DRbr proteins. Protein was in 20 mM Tris-HCl pH 7.2 with 
150 mM NaCl (A) DRbr Wt (B) DRbr Y59F (C) DRbr Y127F (D) DRbr Y59F Y127F. 
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Figure 3.10: Overlap of the UV-Visible absorption spectra of wild type and desulforubrerythrin mutants. 

 

To compare the fractions of the different purified proteins the ratios between the absorbance 

peaks were calculated and are summarized in Table 3.2. 

 

Table 3.2: Absorbance ratios between the different absorbance bands. 

Protein Abs280/Abs490 Abs370/Abs560 Abs490/Abs560 Abs370/Abs490 

DRbr WT 4.2 2.9 1.8 1.7 

DRbr Y59F 3.6 2.6 1.7 1.6 

DRbr Y127F 3.5 2.4 1.7 1.4 

DRbr Y59F Y127F 3.2 2.4 1.7 1.4 

    
 

3.3.4 Oligomerization state in solution 

 

In order to determine the oligomerization state of the proteins in solution the samples were 

applied in an analytical S-200 column. A calibration was previously performed with adequate 

molecular mass standards. The elution volumes are listed in Table 3.3. 
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Table 3.3: Elution volumes of the molecular mass standards of the S-200 

calibration. V0 corresponds to the elution volume of blue dextran and is the 
dead volume of the column. Vt is the column volume. Ve is the elution 
volume for each protein. Kav is the partition coefficient and is obtained by 
the equation Kav = (ve-v0) / (vt-v0). For proteins with a similar shape the 
formula can bbe linearized and Kav = - A log Mm + B, where A is the slope 
of the curve and be is the interception of the y-axis. 

Standard Mm log (Mm) Ve (mL) Kav 

Aprotinin 6600 3.820 18.530 0.630 

Myoglobin 17600 4.246 16.950 0.539 

Chimiotripsogen 25000 4.398 16.800 0.529 

Albumin 66000 4.820 15.318 0.441 

Canalbumin 76600 4.884 14.330 0.383 

Aldolase 158000 5.199 13.386 0.327 

Catalase 240000 5.380 12.973 0.305 

Ferritin 440000 5.643 11.156 0.194 

 

 

y = -0.2315x + 1.5292
R² = 0.98

0.000

0.200

0.400

0.600

0.800
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K
a
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Figure 3.11: Calibration curve of the size exclusion column. The theoretical curve was adjusted to the 

experimental points via the mean root square method. 

 

After the standards, the samples were applied in the column and the chromatograms and the 

retention volumes were recorded. The chromatogram of each protein is Figure 3.12.  
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Figure 3.12: Elution profiles of DRbr proteins from the analytical size exclusion column. The y-axis 
corresponds to absorbance at 280 nm. (A) DRbr WT. (B) DRbr Y59F. (C) DRbr Y127F. (D) DRbr Y59F Y127F. 

The mean dead volume of the column is 7.836 mL ( 0.025) and was calculated from the dextran 

blue elution volume obtained in each experiment and the column had a volume of 24.742 mL 

In all samples the protein is mainly in a tetrameric state, but for the wild type protein the 

tetrameric form exists in a smaller proportion when compared with the mutants.  In all samples also is 

possible to identify the presence of a cluster of elevate molecular mass ( 370 kDa) composed 

approximately of 14 to 16 subunits. The monomeric form of the protein was only detected for the 

double mutant and in a very small amount. In all chromatograms was possible to detect the presence 

of peaks with molecular masses inferior to the monomer, probably originate by protein degradation or 

contaminants. The results obtained are summarized in Tables 3.4 and 3.5.  
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Table 3.4: Elution volumes and molecular masses of WT and DRbr mutants and its degradation 

products.  The molecular masses were calculated using the elution volumes from the size 
exclusion column and the calibration curve obtained for the standard proteins.  

DRbr  Ve (mL) Mm (kDa) Subunits Ve (mL) Mm (kDa) Subunits 

WT 

12 37 15 14 108 4 

Y59F 

Y127F 

Y59F Y127F 

 

Table 3.5: Elution volumes and molecular masses of WT and DRbr mutants and its degradation products 

(continued from Table 3.4) 
 

DRbr  Ve (mL) Mm (kDa) Subunits Ve (mL) Mm (kDa) Ve (mL) Mm (kDa) Ve (mL) Mm 

WT 

- - - 19 7 

20 2.3 

22 790 Y59F 

- - Y127F 

Y59F Y127F 16 28 1 - - - - 

 

3.3.5 N-terminal sequencing 

 

To determine the origin of the bands detected in the SDS-PAGE gel of the mutant proteins one 

sample of the mutant Y59F was sent to N-terminal sequencing. In order to do that the sample was 

applied in a 15% SDS-PAGE gel and was transferred to a PVDF membrane. The bands ranging from 

10 to 40 kDa were isolated and its N-terminal sequencing was performed (Figure 3.13). The results 

obtained for each band are in Table 3.6. 

         

Figure 3.13: PVDF membrane after the protein transference and before the bands were cut. 
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3.4 Crystallization experiments  

 

The mutant DRbr Y127F previously dialyzed into 100 mM MES pH 6.2 with 500 mM NaCl and 

concentrated to approximately 20 mg/mL was submitted to crystallization trials. An initial screen was 

performed, using a 96 well plate in the nanorobot. The crystallization assays started by performing a 

screen using the Structure Screen 1 and 2 (Molecular Dimension).  The set up method was the vapour 

diffusion sitting drop technique and the plate remained at 20ºC. For each condition were tested three 

proportions of protein (P) and reservoir solution (R): 1:2, 1:1, 2:1 (P:R). Small needle-shaped crystals 

appeared in the following conditions: 100 mM Hepes pH 7.5, 10% Isopropanol, 20% PEG 4K (1:1); 

100 mM Tris-HCl pH 8.5, 10 mM NiCl2 , 20% PEG 2K (1:1, 1:2, 2:1); 100 mM Bicine pH 9.0, 100 mM 

NaCl, 30% PEG 550 (1:1); 100 mM Hepes pH 7.5, 10% PEG 6K, 5% MPD (1:1) (Figure 3.14). 

 

 

Figure 3.14: Examples of some DRbr Y127F crystals obtained using the Structure Screen 1 & 2. (A) 100 mM 
Bicine pH 9, 30 % PEG 550. (B) 100 mM Tris-HCl pH 8.5, 10 mM NiCl2, 10% PEG 6K. (C) 100 mM Hepes pH 
7.5, 10% isopropanol, 20% PEG 4K.  

 
These conditions were reproduced in a 24 well plate using the hanging drop technique. Some 

variations were done, namely in the concentration of the precipitant agents. In none of the conditions 

appeared crystals suitable for X-ray diffraction. The work proceeded by doing drastic alterations in the 

crystallization solutions, namely in the pH value, the buffer and the precipitant reagents. Still no 

improvement on the crystals was achieved. The conditions tested are resumed in the schemes of 

Figures 3.15, 3.16, 3.17, 3.18 and 3.19.  

 

Table 3.6: Results of the N-terminal sequencing 

Band 
Molecular mass 

(kDa) (approximate) 
N-terminal sequence 

A 40 DIQVG 

B 24 MRQYETY 

C 20 - 

D 14 MRQYE 

E 10 MRQYE 
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Figure 3.15: Crystallizations conditions tested for the protein DRbr Y127F with 100 mM Hepes pH 7.5 and 10% 

isopropanol with different concentrations of PEG 4K. 

 

 

Figure 3.16: Crystallizations conditions tested for the protein DRbr Y127F with 100 mM Hepes pH 7.5 and 10% 

glycerol with different concentrations of PEG 8K. 

 

 

 

 

Figure 3.17: Crystallizations conditions tested for the protein DRbr Y127F with 100 Bicine pH 9.0 and 100 mM 

NaCl with different concentrations of PEG 550. 
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Figure 3.19: Crystallizations conditions tested for the protein DRbr Y127F with 100 mM Hepes pH 7.5 and 10 % 

PEG 8K with different concentrations of glycerol.  

 

The work continued with the other proteins. The conditions tested were based on the results 

obtained for the Y127F mutant and on previous results obtained for the wild type protein. This time no 

screen was performed and the experiments begun using a 24 well plate. The conditions that produced 

better crystals were: 100 mM Hepes pH 7.5, 14% PEG 8K, 10% glycerol; 100 mM Hepes pH 7.5, 5% 

isopropanol, 10 % PEG 4K; 100 mM Hepes pH 7.5, 5% isopropanol, 10 % PEG 4K; 100 mM Hepes 

pH 7.5, 10% isopropanol, 10 % PEG 4K; 100 mM Hepes pH 7.5, 14% PEG 8K, 10% glycerol; 100 mM 

Hepes pH 7.5, 5% isopropanol, 10 % PEG 4K. In some assays was used 100 mM TCEP as additive 

but it did not produce any improvement in the crystals. All the conditions tested are described in the 

schemes of Figures 3.20 and 3.22. 

100 mM Hepes pH 7.5
10% PEG 8K

5% Glycerol

8% Glycerol

10% Glycerol

 

Figure 3.18: Crystallizations conditions tested for the protein DRbr Y127F with 100 mM Tris-HCl pH 8.5 and 10 

mM NiCl2 with different concentrations of PEG 2K. 
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10 mM NiCl2
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Figure 3.20: Resume of all crystallization conditions tested for the wild type protein. 

 
 

For the wild type protein the following conditions produced crystals suitable for X-ray diffraction: 

100 mM Hepes pH 7.5, 5% isopropanol. 10% PEG 4K; 100 mM Hepes pH 7.5, 14% PEG 8K, 10% 

glycerol (Figure 3.21). The crystals were cryoprotected in the respective reservoir solution plus 20 % 

glycerol before flash-cooling in liquid nitrogen.  

 

 

 

100 mM Hepes

pH 7.5
10% Isopropanol

5 % Isopropanol

10% PEG 8K

14% PEG 8K

10% PEG 4K8% PEG 4K

10% PEG 4K

8% Glycerol

10% Glycerol

  
 

Figure 3.21: Example of crystals obtained for the wild type protein. (A) 100 mM Hepes pH 7.5, 14% PEG 8K, 
10% glycerol (1:1). (B) 100 mM Hepes pH 7.5, 5% isopropanol, 10 % PEG 4K (1:2). 

A B
I 
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For the mutant Y59F crystals were obtained using the following conditions: 100 mM Hepes pH 

7.5, 5% isopropanol, 10 % PEG 4K; 100 mM Hepes pH 7.5, 10 % isopropanol, 10 % PEG 4K (Figure 

3.23). The crystals were cryoprotected in the liquid reservoir plus 20% glycerol prior to flash-cooling in 

liquid nitrogen and X-ray diffraction data were collected.  

 

 

The double mutant crystals appeared in the following conditions:  100 mM Hepes pH 7.5, 5% 

isopropanol, 10 % PEG 4K; 100 mM Hepes pH 7.5, 14 % PEG 8K, 10 % glycerol (Figure 3.24). The 

crystals were flash-cooled in liquid nitrogen after being immersed in a cryoprotectant solution with 

liquid reservoir and 20 % glycerol. X-ray diffraction data were collected.  

 

 

 

 

 

 

Figure 3.22: Resume of all crystallization conditions tested for DRbr Y59F and DRbr Y59F Y127F. 

 
 

Figure 3.23: Crystals obtained for DRbr Y59F (A) 100 mM Hepes pH 7.5, 5% isopropanol, 10 % PEG 4K 
(1:2) (B) 100 mM Hepes pH 7.5, 10% isopropanol, 10 % PEG 4K. 
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pH 7.5
10% Isopropanol

5 % Isopropanol

14% PEG 8K

10% PEG 4K
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Figure 3.24: Crystals obtained for DRbr Y59F Y127F. (A) 100 mM Hepes pH 7.5, 14% PEG 8K, 10% 
glycerol (B) 100 mM Hepes pH 7.5, 5% isopropanol, 10 % PEG 4K (1:1). 

 
 

3.5 EPR studies 

 

3.5.1 EPR spectra 

 

The EPR spectra were collected at a temperature of 7 K, with a microwave power of 2 mW and at 

a frequency of 9.4 GHz. Unless otherwise stated the protein concentration was 100 M in 50 mM Tris-

HCl pH 7.2. When necessary a solution of sodium ascorbate was used to substoichiometricly reduce 

the proteins. 

The first spectrum to be acquired concerns the as isolated wild type protein (Figure 3.25, green 

line).  The spectrum presents the g-signals expected for the protein metallic centres: rubredoxin 

domain (9.3, 4.85, and 3.65), diiron centre (1.98, 1.76, and 1.66) and desulforedoxin domain (8.0 and 

5.6). 

The spectra of the mutant proteins were also collected in the same conditions. The DRbr Y59F 

spectra are also shown in Figure 3.25 (red and pink lines). The spectrum of the as isolated protein 

shows the g-signals of all metallic centres. After reduction with sodium ascorbate the resonances 

attributed to the diiron centre and the Dx domain disappear. Only the resonances from the Rd domain 

still remain visible in the spectrum.  

The procedure described for DRbr Y59F was done for DRbr Y127F: spectra of the as isolated 

and reduced protein were acquired and are represented by the black and grey lines, respectively, in 

Figure 3.25. The as isolated protein shows only resonances with g-values from the Rd and Dx 

domains. The absence of signal of the diiron centre could be due to its absence in the protein or it 

could be fully oxidized or fully reduced (less probable, since the protein is oxidized by oxygen). To 

verify if the diiron centre was fully oxidized, sodium ascorbate was added to the protein, but no 

changes were observed in the spectrum around g-values typical for diiron centres. 

 Finally, the spectra of the double mutant were acquired just like previously was done for the other 

proteins (blue lines inFigure 3.26). The results obtained are very similar to those obtained for the 

Y127F mutant. Once again the resonances which would originate from the diiron centre are absent 

from both spectra. 

A B
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Figure 3.25: EPR spectra of DRbr proteins. When indicated proteins were reduced with sodium ascorbate. 

Proteins concentration was 100 M in 50 mM Tris-HCl pH 7.2. The experimental conditions were: T:  7K; 
microwave power: 2 mW; microwave frequency: 9.4 GHZ. 

 

 

3.5.2 Diiron centre reconstitution 

 

Apparently the mutant Y127F and the double mutant were lacking the diiron site. This was taken 

as an advantage to try a process for the reconstitution of the diiron centre. The reconstitution was 

done by incubating 100 M of DRbr Y127F with 2 M of DTT and 300 M of Fe
2+

 for half an hour, in 

anaerobic conditions. After removing the excess of iron the success of the process was confirmed by 

the EPR spectrum (Figure 3.26). The spectrum acquired immediately after the reconstitution lacks the 

resonances usually attributed to the diiron centre, but after addition of sodium ascorbate a signal 

appears around g values 1.7, thus an indication that the process was successful.  
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Figure 3.26: EPR spectra of the DRbr Y127F before (A) and after (B) the diiron centre reconstitution. Protein 

concentration was 100 M in 20 mM Tris-HCl pH 7.2 with 150 mM NaCl. 

 

 
 

3.5.3 Redox titration of the wild type protein 

 

Due to limitations in the amount of protein purified with the correct amount of iron this experiment 

was only done for the wild type protein.  

The redox titration was performed under argon in 50 mM Tris-HCl pH 7.2. To the protein at a 

concentration of 80 M were added redox mediators from -225 mV to + 430 mV each at a 

concentration of 80 M. The spectra are shown in Figure 3.27.   

1.98

1.66

1.76

0.01              0.108             0.206              0.304              0.402               0.5

B (T)

A

B



48 
 

 
 

Figure 3.27: Redox titration of desulforubrerythrin wild type. The protein concentration was 80 M. 

 

The data were analysed using the Nernst equation [E = E0 – RT/nF ln Q; R: Universal gas 

constant, F: Faraday constant, n: number of electrons involved in the transition, Q: quotient between 

the concentrations of the species involved in the reaction]. In this case the coefficient of the reaction is 

expressed by the amplitude of the signal correspondent for each transition. Given that the amplitude of 

the signal is not necessarily dependent on the concentration of the species all amplitudes were 

normalized considering the maximum signal for each g-value.  

For the diiron centre were considered two consecutive single electron transitions. The first 

transition corresponds to the reduction of the first atom of iron, given rise to the mixed-valence state 

(Fe
3+ 

/Fe
3+  Fe

3+
/F

2+
) – which gives the EPR signal. The second transition corresponds to the fully 

reduction of the diiron centre (Fe
3+ 

/Fe
2+  Fe

2+
/Fe

2+
). This process was followed by the resonances at 

g-values of 1.76 and 1.66. The concentration of the mixed-valence state can be calculated by the 

following Nernst equation: [Fe
3+

/Fe
2+

] = 10
[(E1 – E) /(RT/nF)] 

/ (1+10
[(E1-E)/(RT/nF)] 

+ 10
[(E1+E2-2E)/(RT/nF)]

). The 

potential of each transition is noted by E1 and E2, respectively for the first and second transitions and E 

is the redox potential of the solution at a certain moment. The equation fits the experimental data for 

potentials of 270 and 235 mV, for the first and second transitions (Figure 3.28). 
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Figure 3.28: Redox titration of DRBr WT followed by EPR spectroscopy. The redox changes of the diiron centre 

were monitored by the changes in the amplitudes at g-values 1.66 and 1.76.  

 

For the rubredoxin and desulforedoxin domains the same approach was used but considering 

only one electronic transition. In these cases the Nernst equation assumes a simpler form: [Fe
3+

]=10
[(E-

E1)/(RT/nF)]
 / (1+10

[(E-E1)/(RT/nF)]
). The theoretical data fit the experimental values for potentials of 170 and 

200 mV for the rubredoxin and desulforedoxin domain, respectively (Figure 3.29 and Figure 3.30).  
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Figure 3.29: Redox titration of DRBr WT followed by EPR spectroscopy. The redox changes of the rubredoxin 

domain were monitored by the changes in the amplitudes at g-values 9.3 and 4.85. 
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Figure 3.30: Redox titration of DRbr WT followed by EPR spectroscopy. The redox changes of the 

rdesulforedoxin domain were monitored by the changes in the amplitudes at g-values 8 and 5.6. 
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4 DISCUSSION 

 

4.1 Diiron proteins 

 

Diiron proteins are widespread among the three life domains. Rubrerythrins and ribonucleotide 

reductases (RNR) are examples of two families of proteins with this feature. RNR are proteins 

responsible to reduce ribonucleotides making deoxyribonucleotides available to DNA synthesis. They 

are usually divided in three classes. Class I RNR are composed of two subunits: the small subunit 

contains a diiron centre and its mechanism relies in the formation of a tyrosil radical that is transported 

to the large subunit of the protein where the reduction reaction takes place (Zhang et al., 2011). 

To try to find other common features between the two families of proteins a sequence alignment 

was performed between several rubrerythrins and the small subunit of four RNR. The RNR proteins 

chosen are representative from organisms with different levels of complexity: a virus (Epstain-Barr), a 

bacterium (E. coli), a fungus (Saccharomyces cerevisiae) and a mammal (Homo sapiens). 

As can be seen in Figure 4.1, in all rubrerythrins analysed the iron ligands are aligned in positions 

174 (E), 209 (E), 212 (H), 266 (E), 269 (E), 300 (E) and 303 (H). In erythrin only one ligand (the first 

glutamate) is aligned with the other rubrerythrins, due to the small size of the protein. The tyrosines 

hydrogen bonded to glutamate involved in iron coordination (positions 182 and 274) are conserved in 

all rubrerythrins, supporting the idea that these residues should be important for protein function.  

Three iron ligands (positions 266, 300 and 303) are highly conserved in all proteins analysed, 

including the RNR. In the eukaryotic RNR the glutamate in the position 174 is also conserved. The 

tyrosine responsible for radical formation in E.coli RNR is aligned with the first tyrosine hydrogen 

bonded to glutamate in rubrerythrins (position 182) that corresponds to amino acid 122 in the protein 

sequence. In the other RNR the tyrosine is the position 199 (Zhou et al., 2005).  Curiously, the other 

tyrosine locate immediately after the highly conserved glutamate is replaced by a phenylalanine in all 

RNR (position 274), thus eliminating the possibility of another radical at this site. 
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4.2 Protein expression tests for desulforubrerythrin mutants 

 

The protein expression tests were performed in three E. coli strains: BL21DE3 GOLD, STAR and 

BL21DE3. Analyzing the gel images in Figure 3.1 it is possible to observe that all strains successfully 

expressed the mutant proteins. The E.coli BL21DE3 GOLD cells apparently expressed more DRbr 

proteins but also more contaminants, although this perception may be due to an excess of sample 

applied on the gel. It also seems that a great amount of protein is not in the soluble fraction, but this 

may be caused by incomplete cellular lysis or the protein may be localized in inclusion bodies.  

A closer look into the gels, particularly the results obtained for E. coli STAR and E. coli BL21DE3, 

reveals that the mutants have a slightly different migration pattern when compared with the wild type 

protein (Figure 3.1 B and C).  

Considering the obtained results and having in mind that the wild type protein had already been 

successfully over expressed in E. coli BL21DE3 GOLD this cellular strain was chosen to over express 

the mutant proteins. 

 

4.3 Proteins expression 

 

The cells over expressing the proteins were grown in M9 medium supplemented with iron. This is 

fundamental given that iron is an essential prosthetic group. The M9 medium was chosen instead of 

LB medium because the last contains zinc in its composition that would be incorporated in the protein 

instead of iron. Transformed cells were selected due to ampicilin resistance conferred by the pMAL 

plasmid. 

After harvesting the cells by centrifugation their weight was registered and the cellular yield was 

determined. Although only two growths of each protein were performed the expression of the different 

proteins does not seem to influence the cellular yield.    

Similarly to what had been done to the expression tests samples of the non-induced and induced 

cells were analyzed in a 15% SDS-PAGE (Figure 3.2). In spite of the contaminants it is possible to 

observe the systematic over expression of other proteins along with the DRbr mutants, particularly in 

non-soluble fraction (Figure 3.2). Once again a considerable amount of the protein appears in the non-

soluble fraction. Considering the high levels of protein obtained it is probably due to the formation of 

inclusion bodies. Anyway, given the high amount of protein in the soluble fraction there was no need 

to solubilise the protein from the inclusion bodies. 

 

4.4 Biochemical characterization  

 

The first step to study each protein was its purification. All protein containing samples obtained 

from the last purification step were analysed by UV-Vis spectroscopy and by SDS-PAGE. 

 

4.4.1 Proteins purification 

 

All proteins were successfully purified in three steps: anionic exchange, adsorption and size 

exclusion.  During the purification is crucial that all steps are anaerobically performed to avoid protein 
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degradation. For the wild type protein this strategy seems efficient, given that the gels performed 

immediately after the purification showed no degradation of the protein (Figure 3.3). For the mutant 

proteins some degradation is observed in the gels, but this degradation is visible in the gels performed 

right after the growths (Figure 3.2), so that was not due to the purification process.  

 

4.4.2 UV-Vis spectra 

 

The UV-Vis spectra of all as isolated proteins are very similar (Figure 3.10). That means the 

mutations did not induce alterations in the UV-Vis spectra. UV-Vis spectra of diiron protein usually 

have a band between 300 and 400 nm (Makris et al., 2010) (Figure 4.2), but in this case this is not 

visible due to the large molar absorptivity of the rubredoxin-like domains in that area of the spectrum. 

Given that the mutations under study are located near the diiron centre changes in the UV-Vis spectra 

were not expected.  
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Figure 4.2: UV-Visible spectra of erythrin and desulforubrerythrin. The black line represents the UV-Vis 
spectrum of as isolated erythrin from A. ambivalens in 200 mM KPi pH 7.2. 

4
 The green line is the spectrum of 

as isolated wild type desulforubrerythrin in 20 mM Tris-HCl pH 7.2 plus 150 mM NaCl. 

 

The absorption at 490 and 560 nm are typical features from rubredoxin-like domains (e.g.: 

Auchere et al., 2004; Bruschi et al., 1977; Shimizu et al., 1989; Yoon, et al., 1999) and are due to the 

ferric iron coordinated by four cysteines. The absorption at 370 is due to the Fe(Cys)4 but also to the 

diiron centres in the ferric state (Coulter et al., 1999; Coulter et al., 2000). 

Previously was determined a characteristic absorbance ratio of 3.7 between Abs280/Abs490 for the 

wild type desulforubrerythrin (Pinto, 2012). For the mutant Y59F and Y127F proteins was possible to 

have, at least, one fraction with a ratio very close to 3.7 but for the wild type protein and for the double 

mutant this ratio was more distant from the reference value (Table 3.2). This could indicate the 

presence of contaminants or, given that the absorbance at 490 nm is dependent of the iron occupancy 

of Rd and Dx domains, another explanation could be the absence of iron in some protein monomers. 

                                                     
4
 Work performed by Joana Carrilho from the Metalloenzymes and Molecular Bioenergetics Group, ITQB-UNL. 
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In the case of the wild type protein neither option seems viable given that the sample in the SDS-

PAGE gel is apparently free of contaminants and the TPTZ quantification yielded a result of 4 atoms of 

iron per monomer of protein. For the double mutant an explanation could be the absence of iron, but 

this hypothesis does not seem viable for two reasons: first, all the other absorbance ratios are very 

similar in all proteins; second, the EPR spectra of this protein show resonances characteristic from Rd 

and Dx domains.  

The remainder ratios have some differences between the wild type protein and the Y59F mutant 

(both with 4 atoms of iron per monomer) and the Y127F mutant and the double mutant (with less than 

4 atoms of iron per monomer). These small differences could be due to the absence of iron in some 

Dx or Rd domains.  

 

4.4.3 Quantifications 

 

The protein in the fractions resulting from the S-200 column was quantified through the BCA 

method. This allowed to evaluate the yield of each protein. The values obtained are around 23 mg of 

protein per litre of growth, except for the Y127F mutant which yield was 47 mg of protein per litre of 

growth (Table 3.1). In both set of growths the mutant Y127F always rendered more protein. 

 

4.4.4 Oligomerization state in solution 

 

The oligomerization state of the protein was determined by size exclusion chromatography. All 

proteins are present in a large cluster with a molecular mass between 353 kDa and 368 kDa. For the 

mutants the protein is in a tetrameric conformation with a molecular mass ranging between 106 and 

109 kDa; accordingly with the monomeric molecular mass of the protein the tetramer should have 

approximately 97 kDa. The wild type protein is also present in this tetrameric form but the intensity of 

this peak much more reduced (Figure 3.12). Previous work performed with other rubrerythrins showed 

that rubrerythrins are isolate in solution as dimers, although they crystallize as tetramers (e.g.: Coulter 

et al., 1999; Fushinobu et al., 2003: Jin et al., 2002; Li et al., 2003), suggesting that the tetramer 

results from the dimerization of a dimer. 

 

4.4.5 N-terminal sequencing 

 

As seen in panel D from Figure 3.4, 3.5 and 3.6 the SDS-PAGE gels of the mutant proteins 

present several bands besides the 24 kDa one. To determine if these bands are the result of protein 

degradation or are contaminants a sample of the Y59F mutant was separated by electrophoresis and 

transferred to a PVDF membrane. The N-terminal sequences of each band were determined (Figure 

3.13 and Table 3.6). The results for the N-terminal sequencing confirmed the 24 kDa band as being 

desulforubrerythrin. For all the other bands the results obtained are not so simple to interpret. The 

band with nearly 40 kDa is probably a contaminant, given that the determined sequence does not 

match the protein sequence. The band with 20 kDa presented an inconclusive result given the 

possibility of several different amino acids for each position. Given that none of the possibilities match 
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the sequence of the protein this should be a contaminant instead of a degradation product. All the 

bands with inferior molecular match the beginning of the protein. Their origin should be due to protein 

degradation, but the bands corresponding to the other product(s) of degradation are not visible in the 

SDS-PAGE gel, possibly due to their small size. 

 

4.5 Into desulforubrerythrin metallic sites: EPR studies 

 

EPR studies were performed to study the metallic centres of DRbr. This technique allows one to 

study the metallic centres, its composition and the redox state of each centre.  

 

The spectrum of the as isolated wild type protein shows resonances characteristic of all iron 

centres proposed for the protein. The attribution of the resonances to each domain is made by 

comparison with spectra from other proteins known by sharing metallic sites with DRbr. The 

resonances at g-values lower than 2 are characteristic of diiron centres in the mixed-reduced state 

with S=1/2 (Kao et al., Legall et al., 1988; 2008; Pierik et al., 1993; Yamasaki et al., 2004). The 

resonances at higher g-values are typical for systems with S= 5/2. The assignment of the rubredoxin 

and desulforedoxin resonances is possible by comparing the spectrum with rubredoxins, 

desulfoferrodoxins, desulforedoxin from D.  gigas and rubrerythrin from D. vulgaris. The resonances at 

g-values 3.65, 4.85 and 9.3 are due to the rubredoxin domain (Auchere et al., 2004; Legall et al., 

1988; Zeng et al., 1996). The desulforedoxin domain has resonances at g-values 8, 5.6 and 3.6 

(Moura et al., 1980). The resonance with g-value 4.3 is attributed to heterogeneous ferric sites (Pinto 

et al., 2011). 

 

The reduction potential of each metallic centre was determined by redox titration followed by EPR 

analysis. The rubredoxin centre has the lowest potential: 170 mV making this centre the entrance 

point for electrons. The diiron centre has potentials of 270 and 235 mV, respectively for the first and 

second transitions. This means that the rubredoxin domains receives the first electron and then 

transfers it to the diiron centre. After that another electron reduces the rubredoxin domain that, again, 

transfers the electron to the diiron domain. Just after the complete reduction of the diiron centre the 

rubredoxin will be reduced. The desulforedoxin domain was a potential of 200 mV and its function is 

still unknown. Accordingly with the redox potentials this domain should be reduced after the complete 

reduction of the diiron centre. 

The only reduction potentials within the range of previously calculated values to rubrerythrins 

belong to the diiron centre (Gupta et al., 1995). The reduction potential calculated for the rubredoxin is 

higher than its usual value in rubredoxins but lower than its value for rubredoxin domains in 

rubrerythrins.  Rubredoxins usually have potentials between – 100 mV to 50 mV (Luo et al., 2010; 

Moura et al., 1979; Lee et al., 1995) and between 230 and 281 mV in rubrerythrins (Legall et al., 1988; 

Pierik et al., 1993). The desulforedoxin domain has a potential much higher than desulforedoxin 

domains in desulfoferrodoxin that usually have values around 0 mV (Moura et al., 1994; Verhagen et 

al., 1993). Desulforedoxin from D. gigas has a potential of -35 mV (Archer et al., 1999).  
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To try to find an explanation for the great diversity of values for rubredoxins and rubredoxin 

domains a multiple sequence alignment was performed. The proteins chosen have potentials ranging 

from -87 mV to +230 mV and belong to organisms from all life domains. Accordingly to some authors 

the reduction potential of rubredoxins may be influenced by the residues charge around the active site 

and also by hydrogen bonds (Bönisch et al., 2007; Lin et al., 2005).  

To test the effect of hydrogen bonds strength in the reduction potential Lin and collaborators 

made studies on Clostridium pasteurianum rubredoxin. As they observed that rubredoxins with lower 

potential have a valine in the second position after the last cysteine ligand while rubredoxins with 

higher reduction potentials usually have an alanine. C. pasteurianum rubredoxin has a reduction 

potential of -77 mV and has a valine in position 44. In this study the authors constructed several 

mutants where the valine has replaced by a glycine, an alanine, an isoleucine and valine. For each 

protein they determined the reduction potential and the hydrogen bond length between residue 44 and 

the sulphur from cysteine 42 (Table 4.1). They also did the same considering valine in position 8 and 

cysteine in position 6. Their work showed a relation in the length of the hydrogen bond and in the 

reduction potential: amino acids in position 44 that establish a short hydrogen bond will increase the 

reduction potential. For the substitutions in position 8 the changes in the reduction potential are not so 

pronounced (Lin et al., 2005). 

 

Table 4.1: Reduction potentials of WT C.pasteurianum 
and its mutants (Adapted from Lin et al., 2005). 

Protein Reduction potential (mV) 

V44G 0 

V44A -24 

V44I -53 

WT -77 

V44L -87 

 

 

Analysing the protein alignment in Figure 4.3 is possible to observe that all proteins with a valine 

two residues after the last cysteine that is involved in iron coordination have a negative reduction 

potential. In proteins with positive potential that position is mainly occupied by an alanine, but in some 

cases a tyrosine, a lysine or a serine replace the alanine. The rubredoxin domain of C. jejuni DRbr has 

an alanine and a potential of +170 mV, which is in agreement with the observed results for C. 

pasteurianum rubredoxin. Although this analysis helps to understand the different reduction potentials 

in rubredoxins this is not sufficient to explain the large range of values observed in these proteins, 

especially the high reduction potentials observed in rubrerythrins.   
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4.6 Final remarks 

 

 The work here described pretends to be a step in the comprehension of resistance to reactive 

oxygen species in microorganisms. In this particular case the protein under study belongs to a 

pathogenic bacterium responsible for a high number of gastroenteritis all over the world. As with other 

bacteria the resistance to antibiotics is a serious problem, which makes unviable the use of these 

substances to control the presence of C. jejuni in chicken and poultry, in which it inhabits as a 

commensal. The resistance to antibiotics can also become a problem in the treatment of infected 

humans. This makes urgent to identify new targets with anti-microbial function. To accomplish that 

objective is important to understand the metabolism of the microorganism, mainly the pathways 

involved with survival inside the host. One of the defences of the innate immune system against 

pathogens is the production of reactive oxygen species, so pathogen bacteria must be well equipped 

to fight these species. A profound knowledge of how bacteria overcome that barrier may help to 

provide new drugs to combat bacterial infections.  

 To verify the existence of the DRbr in other C. jejuni strains, and eventually in other bacteria of 

the same genus a search was performedat the Uniprot website. The results showed that 19 strains of 

C. jejuni have a protein with 100% of identity with the protein under study. Moreover, 42 strains of C. 

jejuni also have a protein 99 % identical with C. jejuni NCTC 11168 DRbr. Finally, proteins with 97 % 

of identity are present in several strains of Campylobacter coli. So, this protein is present in all strains 

of Campylobacter. 

 As seen before, detoxification of hydrogen peroxide is performed by a great diversity of proteins, 

so at first sight studying another protein with the same function may seem redundant. It is important to 

refute that idea. Although all proteins have the same function they are active under different 

circumstances that depend on substrate concentration, co-factors availability (iron, manganese), 

availability of reduction potential in the cell (NAD(P)H) and of other electron donor proteins 

(Winterbourn, 2008). Hydrogen peroxide is able to penetrate membranes and gives rise to the 

hydroxyl radical, so cells cannot rely on one single type of molecule to reduce hydrogen peroxide to 

water.  

 With this work was possible to biochemically characterize three proteins expressed for the first 

time. It was shown that the mutations did not affect the biochemical properties of the protein. Also, the 

metallic domains were found in all proteins.  

 It was possible to obtain crystals suitable for Xray diffraction for the wild type, Y59F and double 

mutants and solve their structures.  

 The next step in this work would be the determination of the NADH:peroxidase activities for the 

mutant proteins and compare with the values previously determined to the wild type protein. One 

intriguing aspect that remains is the function of the desulforedoxin domain. Given the reduction 

potentials of the domains and the spatial localization, it is not likely to transfer electrons to the catalytic 

one. One possibility is that this domain function as a sensor of hydrogen peroxide, leading to protein 

degradation upon exposure to high concentrations of hydrogen peroxide. In a more advanced phase 

of the work would be important to perform complementation assays using a broad range of 
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concentrations of H2O2 in E. coli strains lacking some hydrogen peroxide detoxifying proteins to 

confirm the in vivo function of the protein and also to determine the range of substrate concentrations 

in which it is active. Finally would be desirable to perform that complementation tests in C. jejuni and 

try to identify the physiological electron donors of the protein.  
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6 APPENDIX 

 

6.1 Electronic Paramagnetic Resonance 

 

Electronic Paramagnetic Resonance (EPR) is a technique used to study species with unpaired 

electrons, which limits the use of this technique but also increases its specificity.  Each electron has an 

associated spin number (S) with a value of 1/2 and can exist with a quantum state 1/2. In the 

absence of a magnetic field those states are degenerate (have the same energy), but when a 

magnetic field is applied the energy of the negative state decreases and the energy of the positive 

state increases. The energy between the two levels is gβeB0, where g is a characteristic of the 

electron, βe is the electron Bohr magneton and B0 is the magnetic affecting the electron (that results 

both from the external magnetic field applied and the field generate by the molecule nucleus). In an 

EPR experiment the frequency of the radiation is constant and the field varies within a determined 

range. When the microwave radiation energy equals the energy difference between the two levels 

there is absorption of energy that is converted into a spectrum. Usually the result is shown as the 

derivative of the signal and not the signal itself. At this point is possible to determine the g-value of the 

system, which allows characterize the system.  

In biology EPR is particularly useful in the study of molecules with transition metals (e.g.: Fe, Co, 

Mn) or molecules harbouring radicals (Hagen 2006; Sahu et al.,2013) 

  



76 
 

6.2 List of reagents and proteins used to perform the experimental work 

 

Product Brand/Seller  

Acetic acid glacial Panreac 

Acrylamide 30% Roth 

Agar Fragon 

Aldolase 
  

Sigma Aldrich 

 Albumin, from chicken egg Sigma Aldrich 

Ammonium acetate Fisher Chemicals 

Ammonium hydroxide Fluka  

Ammonium chloride Panreac 

Ammonium Persulfate (APS) Roth 

Ampicilin sodium salt Sigma Aldrich 

Anthraquinone-2-sulfonic Sigma Aldrich 

Aprotinin Sigma Aldrich 

BCA Reagents A and B Pierce 

BSA, protein standard for BCA Sigma Aldrich 

Bicine Sigma Aldrich 

Blue Dextran Sigma Aldrich 

Brilliant Blue G ACROS 

Bromophenol Blue Sigma Aldrich 

Calcium chloride dihydrate Merck 

Cyclohexylamino propanesulphonic acid (CAPS) Roth 

Catalase Sigma Aldrich 

Conalbumin Sigma Aldrich 

di-Sodium Hydrogen Phospate (Na2HPO4) Panreac 

di-Potassium Hydrogen Phosphate anhydrous (K2HPO4)   

Panreac 

D-Glucose Roth 

DNAse I Applichem 

Ethanol (Absolute) Scharlau 

Ferritin, type I from horse spleen Sigma Aldrich 
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javascript:%20popUpWindow('seller_popup.php?chem_seller=2',350,240)
javascript:%20popUpWindow('seller_popup.php?chem_seller=2',350,240)
javascript:%20popUpWindow('seller_popup.php?chem_seller=60',350,240)
javascript:%20popUpWindow('seller_popup.php?chem_seller=8',350,240)
javascript:%20popUpWindow('seller_popup.php?chem_seller=9',350,240)
javascript:%20popUpWindow('seller_popup.php?chem_seller=2',350,240)
javascript:%20popUpWindow('seller_popup.php?chem_seller=2',350,240)
javascript:%20popUpWindow('seller_popup.php?chem_seller=2',350,240)
javascript:%20popUpWindow('seller_popup.php?chem_seller=48',350,240)
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Glutathione reduced form GSH Sigma Aldrich 

Glycerol  86-88% Scharlau 

Glycerol 99.5% Sigma Aldrich 

Glycine Roth 

Hepes Roth 

Hydrochloric acid (HCl) 37% Panreac 

Hydrogen peroxide Sigma Aldrich 

Iron Standard for ICP Fluka  

Iron (II) sulfate heptahydrate Merck 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) Apollo Scientific 

Lysozyme Sigma Aldrich 

LMW calibration kit for SDS electrophoresis (14.4-97kDa) GE Healthcare 

Magnesium sulphate anhydrous (MgSO4) Fluka  

MES hydrate  Sigma 

Menadione Sigma Aldrich 

Methanol 99.8% Sigma Aldrich 

Myoglobin Sigma Aldrich 

Nickel (II) chloride hexahydrate (NiCl2) Merck 

n,n-dimethyl-p-phenylendiamine sulfate Sigma Aldrich 

N, N,N’,N’-Tetrametyldiamine 99% (TEMED) ACROS Organics 

N,N,N,N-tetramethyl-1,4- phenylenodiamine ACROS 

Phenazine Sigma Aldrich 

Potassium dihydrogen phosphate (KH2PO4) Panreac 

Potassium Indigotrisulfonate Sigma Aldrich 

plumbagin Sigma Aldrich 

Polyethylene glycol methyl ether 550 (PEG 550) Fluka 

Polyethylene glycol monomethylether 2000 (PEG 2 K) Fluka 

Polyethylene glycol 4000 (PEG 4 K) Merck 

Polyethylene glycol 6000 (PEG 6K) Merck 

Polyethylene glycol 8000 (PEG 8K) Sigma 
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Potassium ferricyanide Merck 

Prestained SDS PAGE marker (6-203 kDa) BioRad 

quinhydrone 98% Merck 

Sodium chloride (NaCl) 
José Manuel Gomes dos 
Santos 

Sodium dithionite Sigma Aldrich 

Sodium dodecyl sulphate (SDS) Panreac 

Sucrose Sigma Aldrich 

Trichloroacetic Acid (TCA) Roth 

Trimethylhydroquinone 97% Sigma Aldrich 

Triptone Cultimed 

Tris-(hydroxymethyl)aminomethane (Tris) Panreac 

Tris-(2-Carboxyethyl)phosphine hydrochloride (TCEP) Sigma Aldrich 

Urea Harnstoff 

Yeast extract Cultimed 

1,2 Naphthoquinone Fluka  

1,4- Napthoquinone hydrate 97% Sigma Aldrich 

1,2-naphtoquinone-4-sulfonic acid, sodium salt 99% Sigma Aldrich 

2-Hydroxy-1,4-naphthoquinone Sigma Aldrich 

2-Mercaptoethanol Sigma Aldrich 

2-Methyl-2,4 pentanediol (MPD) Merck 

2- Propanol Riede-deHaën 

2, 4, 6 Tris (2-pyridyl) – S-triazine (TPTZ) Sigma Aldrich 

(+)-sodium L - ascorbate Sigma Aldrich 
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