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Resumo 

O FucoPol é um biopolímero de elevado conteúdo em fucose, produzido pela bactéria 

Enterobacter A47 DSM 23139. Trata-se de um exopolissacárido microbiano (EPS) cuja 

composição engloba açúcares neutros (fucose, galactose, glucose), açúcar acídico (ácido 

glucurónico), e ainda grupos acilo substituintes (acetato, piruvato e succinato). 

No âmbito deste trabalho foram considerados dois objectivos principais: a optimização da 

produção de EPS e o estudo das propriedades funcionais de diversos polímeros produzidos 

pela Enterobacter A47. No estudo da optimização do FucoPol, foi avaliado tanto o efeito do 

oxigénio dissolvido em diferentes concentrações (10, 30 e 60%), como o impacto da redução 

de concentração de fosfato no meio de cultura. Desta forma, não só foi possível observar o 

efeito de ambos os parâmetros no crescimento celular e na capacidade produtiva bacteriana, 

como também, a sua influência na composição química do EPS. A produção máxima de EPS 

(6.11 g L-1) foi obtida a 10% de oxigénio dissolvido, e, embora a redução de fosfato no meio de 

cultivo não tenha influenciado a capacidade produtiva bacteriana, esta originou uma 

diminuição do conteúdo em fucose até 24%mol. 

Posteriormente, foram avaliadas as propriedades funcionais de exopolissacáridos 

produzidos pela Enterobacter A47, a diferentes condições de cultivo. A maioria dos polímeros 

evidenciou um comportamento reofluidificante, atingindo maior viscosidade aparente (0.2 - 

0.3 Pa.s) a menores taxas de escoamento (0.3 a 1 s-1) para os polímeros EPS-g, EPS-s e GNEX. 

Também na sua maioria, os polímeros apresentaram capacidade para formar e estabilizar 

emulsões a diferentes temperaturas. Relativamente à capacidade filmogénica, EPS-s, EPS-g e 

EPS-x demonstraram boas propriedades mecânicas juntamente com elevada permeabilidade 

ao vapor de água. Todos os polímeros demonstraram actividade floculante à concentração de 

0.01%, sendo esta substancialmente diminuída a uma menor concentração de EPS (0.001%). 

 

Palavras-chave: exopolissacárido, oxigénio dissolvido, fosfato, propriedades funcionais. 
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Abstract 

FucoPol is a fucose-containing biopolymer produced by the bacterium Gram-negative, 

Enterobacter A47 DSM 23139. It is an exopolysaccharide (EPS) composed of neutral sugars 

(fucose, galactose, glucose), an acidic sugar (glucuronic acid), and also non-saccharide 

substituents (acetate, pyruvate and succinate). 

In this work, two primary objectives were considered: the optimization of EPS production 

by varying two different parameters, and the functional properties’ assessment of different 

EPS produced by the bacterium. In the optimization study, the influence of different dissolved 

oxygen concentrations (controlled at 10, 30 and 60% of air saturation), and the impact of 

phosphate concentration reduction in the culture medium (5.25 and 3.81 g L-1) were assessed. 

The objective was to evaluate not only the effect of both parameters on cellular growth and 

exopolysaccharide-synthesis, but also to determine their influence in EPS chemical 

composition. The best results were obtained with DO at 10%, with the highest EPS production 

(6.11 g L-1), and although a reduction of phosphate concentration didn’t affect the EPS 

production, it reduced the exopolysaccharide’s fucose content to 24%mol. 

Secondly, the functional properties of nine distinct exopolysaccharides synthesized by 

Enterobacter A47 under different cultivation conditions were evaluated. Rheologically, most of 

the EPS polymer solutions showed shear-thinning behavior, wherein EPS-s, EPS-g and GNEX 

achieved the highest apparent viscosity (0.2 - 0.3 Pa.s) at lower shear rates (0.3 to 1 s-1). Also, 

most of the polymers presented emulsifying capacity at different temperatures. Concerning 

the film-forming capacity, EPS-s, EPS-g and EPS-x films demonstrated to have good mechanical 

properties and high water vapour permeability. And, all polymers described flocculating 

activity at 0.01% of EPS, which was significantly diminished at lower concentration, 0.001%. 

 

Keywords: exopolysaccharide, dissolved oxygen, phosphate, functional properties. 
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1. Introduction 

Bacterial cells possess a cellular 

membrane that separates them from the 

exterior and whose sole function is to select 

the movement of ions, nutrients, metabolic 

products, among others. The cellular 

membrane can present different external 

structures: flagella and fimbriae, for 

locomotion and adhesion purposes, 

respectively, a cell wall and a capsule (Lopes 

et al. 2005) (Figure 1.1). 

On the other hand, the capsule, mostly 

constituted by polysaccharides, is often 

associated to the cell’s protective response towards external factors (Lopes et al. 2005). Its 

physiological roles can vary from desiccation protection due to its high water content, 

protection against predatory microorganisms or even blockage of other microorganisms’ 

interactions. The capsule can be highly structured, being associated with the cell surface 

membrane and may be covalently bound to it, or highly disorganised, resulting into a slime 

layer of extracellular polymer, loosely bound to the cell surface (Vanhooren et al. 1998). The 

later, are known as extracellular polysaccharides or exopolysaccharides (EPS) and their 

different structural organization is dependent on the specific bacterial secretion systems 

(Whitney et al. 2013). 

The EPS are hydrophilic and high molecular weight polymers, mainly composed of 

carbohydrates, with glucose, galactose and mannose being the most common monomers, 

wherein neutral sugars (e.g. rhamnose and fucose), some uronic acids (mainly glucuronic and 

galacturonic acids) and aminosugars (N-acetylamino sugars) are also frequently present. 

Bacterial EPS might also contain non-sugar functional groups, like ester-linked and ketal-linked 

pyruvate as organic substituents (Sutherland 1994).  

Polysaccharides can be derived from many natural sources. They may be plant based (e.g. 

guar gum, arabic gum, starch and pectins), marine originated (e.g. carrageenan and alginate), 

animal originated (e.g. chitin and chitosan) or of microbial origin (e.g. xanthan, gelan, pullulan 

and bacterial alginate) (Kaur et al. 2012).  

Microorganisms are found to be more advantageous than plants, crustacean and algae for 

exopolysaccharide production, due to their intrinsic characteristics. Bacteria usually have 

Fig. 1.1 – Bacterial external structure representation and its 
circular DNA molecule identified as circular chromosome. 

(http://science.kennesaw.edu/~jdirnber/Bio2108/Lecture/Le
cBiodiversity/BioDivProkaryotes.html) assessed at 

11.09.2013 
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higher specific growth rates and allow manipulation of the growth conditions for improving 

fermentation yields, productivity and biopolymer’s properties (Freitas et al. 2009a). 

Many Gram-negative EPS-producing bacterial species have been reported in the literature 

over the last decades. For example, Azotobacter vinelandii (Sabra et al. 1999), Agrobacterium 

sp. (Lee et al. 1999), Sphingomonas paucimobilis (Ashtaputre et al. 1995) and Xanthomonas 

campestris (Liakopoulou-Kyriakides et al. 1999) and their products have gainned considerable 

commercial interest in the past few years. 

These biopolymers possess numerous properties depending on their chemical 

composition, molecular structure, average molecular weight, and distribution. The main 

properties of polysaccharides that are relevant for their industrial development include 

rheology modifier of aqueous solutions, gel-forming ability, and emulsifying and/or 

flocculating capacity, among others. As such, they can be valorized into food, pharmaceuticals, 

cosmetics and agriculture applications, just to name a few (Freitas et al. 2011a). 

 

 

1.1 Substrate 

The major limitation for EPS production at large scale is their inherent production costs. 

For this reason expensive substrates (e.g. refined sugars as glucose, sucrose, etc. ) usually used 

in microbial EPS production are being replaced by some manufactures by cheaper and more 

accessible substrates, like waste residues or agro-industrial by-products, in order to have more 

cost-effective processes (Du et al. 2011). 

Biodiesel is a well-known biofuel that has been contributing to the worldwide bioenergy 

production scenario, with a significant share of the renewable sources. It is originated by the 

transesterification of vegetable oils and animal fats in the presence of a catalyst, through a 

primary alcohol (usually methanol or ethanol), leading to the product formation of fatty acid 

methyl esters, FAMES (Rywinska et al. 2013), along with a major by-product formation, crude 

glycerol.  

The worldwide biodiesel production has been increasing exponentially, raising from 4 

million m3 in 2005 to 19.21 million m3 in 2010. Approximately 1 kg of crude glycerol is 

generated for every 10 kg of biodiesel produced (Delgado et al. 2013). Consequentially, the 

crude glycerol production, that initiated with almost 0.5 million m3 in 2005 rose to 2.0 million 

m3 in 2010 (Almeida et al. 2012). This parallel increase of crude glycerol originated an 

enormous amount of energy stocked (turning it into a waste residue), as opposed to the 

purified glycerol that is utilized as a raw material in several industrial sectors.  
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The main disadvantages of crude glycerol for use in several of the glycerol traditional 

applications rely on its variable composition and lower purity degree associated to 

contaminants. Crude glycerol contains several impurities, such as  fat and protein contents 

ranging from 1 to 13 % and 0.06 to 0.44 %, respectively, whereas metals (Ca2+, K+, Mg2+) and 

other macroelements (P and S) are commonly present in smaller concentrations, from 4 to 163 

mg L-1, in exception for Na2+, which averages barely over 1% (Rywinska et al. 2013). However, 

these industrial wastes’ inherent characteristics can be overcome by refining their 

composition, or using microbes tolerant to inhibitors present in this case in crude glycerol, 

converting it into various biotechnological products.  

On the other hand, industrial waste prices can also be decisive for the approval of crude 

glycerol as a primary carbon resource. As such, crude and pure glycerol’s prices in Europe were 

assessed at 200-260 and 480-530 euros per ton, respectively, in September of 2011 (Almeida 

et al. 2012), constituting an attractive and crucial factor to its growing preference towards 

biotechnological applications. 

 

 

1.2 Exopolysaccharide composition 

Bacterial EPS of Gram-negative bacteria can be homopolysaccharides, usually with D-

glucose as the repeating unit, or heteropolysaccharides (Figure 1.2 and 1.3), whose repeating 

units differ not only along its structure but also in its size distribution, ranging from 

disaccharides to octasaccharides. 

In heteropolysaccharides, sugar monomers can be of up to four different types and 

classified into neutral, uronic or aminated sugars. In addition to its sugar backbone, 

heteropolysaccharides may also contain non-carbohydrate substituents, such as amino acids, 

organic acids (e.g. acetate, succinate, pyruvate, glycerate, proprionate and hydroxybutanoate) 

and inorganic acids (phosphate and sulphate) (Sutherland 2001). 
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The acyl groups play an important role in the exopolysaccharide properties since the 

charged residues, found on the exterior of the extended molecules, may promote interaction 

with ions and other macromolecules (Chandrasekaran 1997). That is originated for instance by 

pyruvate, glycerate and succinate, which confer an anionic character to the polysaccharides 

(Freitas et al. 2009a). 

 

 

1.3 Exopolysaccharide structure 

A polysaccharide is constituted by long chains of monosaccharide units linked together 

by glycosidic linkage. The glycosidic linkages can be either alfa or beta, and vary between 1 3; 

1 4; 1 6 or 1 2 to form either linear or ramified structures (Kumar et al. 2007). 

For instance, the bacterial EPS curdlan is composed entirely of 1 3 β-linked D-glucose 

residues, while fungal scleroglucan has the same backbone structure as curdlan but has 

attached side-chains of 1 6 β-linked D-glucose (Sutherland 1994). 

The EPS structure has direct influence on its function once the presence of side-chains on 

linear polysaccharide macromolecules promote conformational disorder and inhibit ordered 

assembly, therefore resulting in solubility in aqueous solutions (Rinaudo 2004). 

 

Fig. 1.2 - The ideal repeating unit of xanthan as reported by Jansson et al. 1975. 

Fig. 1.3 - Gellan structure: repeating units of D-glucose, D-glucuronic acid, D-glucose, and L-rhamnose  
(Prajapati et al. 2013). 

http://en.wikipedia.org/wiki/Glycosidic_bond
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1.4 Bacterial biosynthetic pathways 

Bacterial EPS are synthesised by either Gram-positive or Gram-negative bacteria, by two 

very distinct mechanisms. In Gram-positive bacteria, EPS (e.g. levans, alternans and dextrans) 

are synthesized by an extracellular process (Vanhooren et al. 1998) but in Gram-negative 

bacteria they are synthesized intracellularly (e.g. xanthan, gellan, cellulose, succinoglycan) 

(Sutherland 2001). 

The intracellular biosynthesis is regulated by enzymes that are located in various regions of 

the cell. In the citoplasm, glucose-1-phosphate (G-1P) is converted (Figure 1.4) to the key 

molecule in exopolysaccharide synthesis, uridine diphosphate glucose (UDP-Glc) (Figure 1.4). 

Afterwards, in the cell periplasmic membrane, glycosyltransferases transfer the nucleosides 

diphosphates sugars (NDPs) to form the repeating unit attached to a glycosyl carrier lipid. 

Finally, the macromolecules are polymerized and secreted (Kumar et al. 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

1.5 Exopolysaccharides properties 

Microbial polysaccharides stand out from traditional plant polysaccharides due to their 

unique or superior physical properties (Sutherland 1998). Aside from their intrinsic 

biodegradability, non-toxicity and biocompability characteristics, this type of natural 

polysaccharides can possess many properties that could be broadly used in industrial 

applications: as emulsion stabilizing and gelling agents in food products; as foam stabilizing 

agents in the beverage industry and to fire-fighting fluids;  as inhibitors of crystal formation in 

Fig. 1.4 - Catabolic mechanism representing the sugar nucleotide synthesis and the interconversion of various 
monosaccharides through epimerization, dehydrogenation and decarboxylation, occurred in the cell cytoplasm. 

(Kumar et al. 2007). 
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frozen food, pastilles and sugar syrups;  as film-forming agents that have special interest in 

food coatings; as flocculant agents, applied into water clarification; as hydrating agents in 

cosmetics and pharmaceutical products, among others (Sutherland 1998). Most of these 

applications have been developed and improved, for xanthan, gellan and hyaluronan (Mishra 

et al. 2013), and their potential has also been introduced into bioplastic industry and designed 

to meet therapeutic trends, as drug-delivery composites, for example (Halley et al. 2011). 

 

 

1.5.1 Rheological properties 

Various microbial polysaccharides show high water solubility, producing aqueous 

solutions with interesting rheological properties that can be used as viscosifying, thickening, 

stabilizing and/or gelling agents in several applications (Freitas et al. 2009a). 

Aqueous solutions of polysaccharides can be characterized as Newtonian or non-

Newtonian fluids (Verbeeten 2010).  

For a Newtonian fluid, there is a direct relationship between the shear stress (τ) and its 

shear rate ( ̈) (Figure 1.5). A non-Newtonian fluid is a fluid whose flow properties aren´t 

proportional to the shear rate, being non-linear and even time-dependent (Figure 1.5).  

Without any applied force, the EPS in the aqueous media are randomly arranged and 

present no resistance. But, when a unidirectional shear stress is applied, an initial resistance 

can be observed, before the fluid starts to flow. Hence, when the biomolecules are moving, 

they tend to entangle themselves with each other, resulting in an enhanced resistance to flow 

(McNeil et al. 1993; Gibbs et al. 2000). Thus the relationship between shear stress and shear 

rate is not constant, depending on the imposed degree of shearing (Seviuor et al. 2011). 

Regarding shear stress, shear-thinning fluids appear to be thinner (exhibiting lower 

viscosity) at higher shear stresses due to the increased alignment of the molecules, while at 

low shear stresses, they appear to be thicker (exhibiting higher viscosity) in result of the 

entanglements between their molecules (Figure 1.5).  

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Fluid
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Shear-thinning fluids are the largest and probably most important class of non-Newtonian 

fluids (Cross 1965). 

Many non-Newtonian fluids, like most EPS aqueous solutions, exhibit both viscous and 

elastic properties when undergoing deformation, behavior that is known as viscoelasticity. 

Further, non-linear viscoelastic materials exhibit mechanical properties that are dependent 

upon time and magnitude of the stress that is applied to the material, simultaneously (Vélez-

Ruiz et al. 1997). On the contrary, mechanical properties of linear viscoelastic materials only 

are dependent upon time. 

The viscoelastic behavior of EPS aqueous solutions is evaluated by measuring the storage 

modulus and the loss modulus (Figure 1.6). 

The storage modulus (G’) or elastic modulus, measures the ability of the material to store 

energy or its ability to recover while the loss modulus (G’’) or viscous modulus, expresses the 

ability of the material to dissipate energy as heat (per cycle of deformation). In a perfect 

elastic-solid polymer wherein all energy is stored, G’’ is zero, in opposition to a liquid that 

without any elastic properties, i.e., all the energy is dissipated, G’ is in turn, zero (Rao 2007).  

 

 

 

 

 

 

Fig. 1.5 - Flow curves corresponding to different types of liquid behavior: Newtonian fluids and non-Newtonian fluids. 
(http://www.globalspec.com/reference/10735/179909/chapter-3-physical-properties-of-fluids-vapor-pressure-and-

boiling-point-of-liquids) assessed at 11.09.2013 

 

SHEAR-THICKENING 
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1.5.2 Emulsion forming and stabilizing capacity 

In an emulsion, one liquid (the dispersed phase) is 

dispersed in other liquid (the continuous phase), presenting a 

two-phase system (Figure 1.7). This system may exhibit 

structural changes depending on the characteristics of the 

phases, and the conditions that they are under (Vianna-Filho 

2013). 

Emulsifying compounds can be low molecular weight 

molecules that efficiently lower the surface tension and 

interfacial tensions or high molecular weight molecules, which bind tightly to surfaces thus 

being more effective at stabilizing water/oil emulsions (Abbasi et al. 2008). These 

characteristics are found in some neutral, eg. galactomannans, or in anionic polysaccharides, 

eg. xanthan gum and fugogel, which possess emulsion forming and stabilizing capacity (Vianna-

Filho 2013). 

Biobased emulsions can be utilized in engineered multilayered ‘smart’ delivery systems, 

for targeted delivery of specialized bioactive agents and functional foods, to combat diseases 

and to promote and sustain good health. Hence, biobased emulsions can play a fundamental 

role in many fields, including the pharmaceutical, cosmetics and food industries (Imam et al. 

2012). 

 

 

 

Fig. 1.6 - Frequency sweep graphic, representing both elastic (G’) and viscous (G’’) modulus 
at fixed stress and temperature. 

Fig. 1.7 - An emulsion vs an 
unblended oil-water liquid system. 
(http://www.fiocruz.br/ccs/media/

emulsao%20biosurfactante.JPG) 

assessed at 14.09.2013. 

http://en.wikipedia.org/wiki/Phase_(matter)
http://en.wikipedia.org/wiki/Dispersion_(chemistry)
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1.5.3 Flocculation capacity 

Flocculation is first and foremost a 

chemical process wherein particles dispersed 

in a liquid, and not actually dissolved 

in solution, come out of suspension in the 

form of stable flocs or aggregates (Chaiwong 

et al. 2008) (Figure 1.8). This separation 

occurs by the addition of a flocculating agent, 

into the previous heterogeneous mixture.  

Differently to precipitation, in a flocculated system, there’s no cake formation, since all 

the particles behave like flocs or aggregates. Still, and because the particles are not in physical 

contact it is also possible to reverse the formation of aggregates.  

Conventionally, many different flocculants are used in several industrial processes, such 

as, wastewater treatment, dredging, brewing, downstream processing, fermentation and food 

processing (Dermlin et al. 1999). However the most commonly used products are synthetic 

flocculants, organic (eg. polyacrylamide, polyethylenimine) and inorganic (eg. polyaluminium 

chloride and aluminium sulphate), that have shown to be carcinogenic and neurotoxic (Kumar 

et al. 2004).  

In light of this, the naturally occurring flocculant agents (eg. chitosan, sodium alginate, 

gelatin and microbial polymers), have been recently preferred due to their biodegradability 

factor and innocuous degradative intermediates (Mandal et al. 2013). The flocculating 

substances produced by microorganisms are expected to be useful since they are 

environmentally safer and also can be produced uniformly and reliably by fermentation 

(Prasertsan et al. 2006). 

 

 

1.5.4 Film-forming capacity 

 As mentioned before, polysaccharides have a huge variety of functional attributes. Their 

unique macromolecular features turn them into very attractive raw materials for the public 

consumption, in chemicals, pharmaceuticals, tissue engineering products, nutraceuticals, 

biomedical devices, building materials and enhanced oil recovery aids (Imam et al. 2012).  

Fig. 1.8 – Representation of the water treatment steps 
(an example). 

http://en.wikipedia.org/wiki/Solution
http://en.wikipedia.org/wiki/Suspension_(chemistry)


Exopolysaccharide production by Enterobacter A47: optimization of cultivation conditions and study 
of polymer functional properties 

 2012/2013

 

10 
 

Some natural polysaccharides, from soluble soybean (Tajik et. al. 2013), chitosan 

(Bourbon et al. 2011), levan and alginate (Freitas et al. 

2011a), for example, have film-forming capacity (Figure 1.9). 

This property can be useful in bioplastics and packaging 

industries where they are used for tailoring the mechanical 

and barrier properties of those materials and improving the 

efficiency of packaged foods conservation (Tajik et. al. 2013). 

In order to characterize the exopolysaccharide biofilm’s 

properties several parameters should be studied, including 

their water vapour permeability and the mechanical 

properties. 

The water vapour permeability measures the diffusion capacity of the water molecules 

through the polymer matrix (Alves et al. 2010a), while the mechanical properties of the films, 

namely tensile strength and elongation at break are important to evaluate their ability to 

perform in different applications (Xu et al. 2005). 

 

 

1.6 FucoPol  

FucoPol is a high molecular fucose-containing 

exopolysaccharide (EPS) produced by Enterobacter A47 (DSM 

23139) (Freitas et al. 2011b).  

This bacterial strain belongs to a large family of Gram-

negative bacteria, the Enterobacteriaceae. The 

Enterobacteriaceae include many genera: Escherichia, Shigella, 

Salmonella, Klebsiella, Serratia, Proteus, Enterobacter and others. 

This family has rod-shaped morphology with typically 1-5 μm in 

length (Figure 1.10), it is non-spore-forming, it is facultative 

anaerobe or aerobe and it can also ferment a wide range of 

carbohydrates (Murray et al. 2003). 

This biopolymer (Figure 1.11) is composed of fucose (36-

37%mol), galactose (25-26%mol), glucose (27-28%mol), 

glucuronic acid (10-11%mol), pyruvate (9-13%mol), succinate (2-3%mol) and acetate (5-

8%mol) (Torres et al. 2012). Fucose is a neutral sugar commonly found in exopolysaccharides 

Fig. 1.11 – Freeze-dried 
biopolymer, FucoPol, produced by 

Enterobacter A47 (DSM 23139). 

Fig. 1.9 - Soluble soybean 
polysaccharide based film.  

(Tajik et. al. 2013) 

Fig. 1.10 - Enterobacter A47 
(DSM 23139) rod-shaped 

morphology. 

http://en.wikipedia.org/wiki/Bacillus
http://en.wikipedia.org/wiki/Facultative_anaerobe


Exopolysaccharide production by Enterobacter A47: optimization of cultivation conditions and study 
of polymer functional properties 

 2012/2013

 

11 
 

produced by bacteria of the genus Enterobacter, such as E. amnigenus, E. sakazakii and E. 

cloacae.  

E. amnigenus originates a heteropolymer containing glucose, galactose, fucose, mannose, 

glucuronic acid and pyruvil (Cescutti et al. 2005); Enterobacter sp. CNCM 1-2744 has fucose, 

galactose, glucose and glucuronic monomers in a ratio of 2:2:1:1 (Philbe 2002); Enterobacter 

sp. SSYL (KCTC 0687BP) produces a exopolysaccharide with a 40-70% and 8-10% of glucuronic 

acid and fucose content, respectively (Yang 2002); Enterobacter sakazakii strains ATCC 53017, 

ATCC 29004 and ATCC 12868 form an exopolysaccharide with 13-22% of fucose content (Harris 

et al. 1989) and Enterobacter cloacae secretes a biopolymer with glucose, galactose, 

glucuronic acid, fucose and acetyl groups in a molar ratio of 5:4:4:11:1 (Meade et al. 1994). 

The monosaccharide fucose adds an increased market-value to the biopolymer since L-

fucose and fucose-rich oligo- and polysaccharides (FROP-s) have proven to promote 

acceleration of wound healing and scavenge free radicals. As a starting point, this rare sugar 

has anti-inflammatory and anti-aging properties, enhancing its biological properties that can 

be incorporated into pharmaceutical and cosmetic products (Péterszegi et al. 2003a; 

Péterszegi et al. 2003b). However, for this particular exopolysaccharide (FucoPol), its biological 

activity related to the monomer fucose is yet to be determined. 

FucoPol production is a patented process (Reis et al. 2011) which consists on the use of 

glycerol byproduct from the biodiesel industry, as the carbon source. Its standard operation 

results in a specific growth rate of 0.30-0.32 h-1, a volumetric productivity of 0.53-0.56 gEPSgCDW
-

1d-1 and EPS production of 7.23-7.79 g L-1 (Torres et al. 2012). Its main known properties are 

related to viscous shear-thinning solutions in aqueous media, film-forming, emulsifying and 

flocculating capacity, as well as biological activity due to fucose content (Freitas et al., 2011b). 

Enterobacter A47 can also originate EPS with different compositions when cultivated in 

different conditions. The distinct EPS produced by Enterobacter A47 possess different 

properties that can be useful in different applications. This feature can be useful to obtain 

tailored EPS production by simply altering the cultivation conditions (Torres et al. 2012). 
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2 Motivation 

 

The microbial polysaccharides have been raising commercial interest against synthetic 

polymers, over the past years. This increasing attention has been associated with their natural 

sources and renewable resources based production. Microbial polysaccharides are able to 

provide biodegradable and biocompatible polymers, as opposed to the synthetic polymers, 

and utilize industrial wastes/byproducts for polymer production, which consequently heighten 

their value-added characteristics. 

The glycerol byproduct of biodiesel industry was presented as the sole carbon source of 

the novel patented bacterial fucose-rich exopolysaccharide, FucoPol (Reis et al., 2011). In 

addition to previous studies on the effect of the environmental conditions, pH and 

temperature (Torres et al. 2012), and nitrogen/glycerol ratio (Torres et al. 2013), it was also 

necessary to determine the oxygen dissolved requirements of such production. Furthermore, 

an evaluation on the reduction of the phosphate concentration into FucoPol production was 

needed, in order to decrease its associated high costs. 

The present work’s third goal was to assess the functional properties of the 

exopolysaccharides produced by Enterobacter A47, using different cultivation conditions. 

These EPS which are described in Table 2 (page 25), were previously produced by other 

investigators prior to this thesis. It was important to examine the impact of the different 

chemical characteristics into the functional properties of those polymers, namely, in rheology, 

film-forming capacity, emulsion formation and stabilizing capacity and flocculating activity.  
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3 Materials and Methods 

3.1 EPS Production 

3.1.1 Microorganism 

Enterobacter A47 (DSMZ 23139) was preserved in 20% (v/v) glycerol as a cryoprotectant 

agent, at -80 °C. To perform the reactivation of the microorganism, it was grown in a 

chromagar (CHROMagarTM Orientation) plate, during 24 h at 30 °C, to obtain isolated colonies. 

 

 

3.1.2 Cultivation Media 

Luria Broth (LB) medium, used for preparation of the pre-inocula, had the following 

composition (per liter): yeast extract (Cultimed), 5.0 g; bacto-tryptone (LaborSpirit) 10.0 g and 

NaCl (Panreac) 10.0 g.  

Medium E*, which was used for preparation of the inocula for bioreactor and shake flasks 

experiments, had the following composition (per liter): (NH4)2HPO4 (Scharlau), 3.3 g; K2HPO4 

(Panreac), 5.8 g; KH2PO4 (Panreac), 3.7 g; 10 mL of a 100 mM MgSO4 solution (Cmd Chemicals) 

and 10 mL of a micronutrients solution. This micronutrients solution had the following 

composition (per liter of 1N HCl (Scharlau)): FeSO4·7H2O (Sigma-Aldrich), 2.78 g; MnCl2·4H2O 

(Acros-Organics), 1.98 g; CoSO4·7H2O (Merck), 2.81 g; CaCl2·2H2O (Scharlau), 1.67 g; CuCl2·2H2O 

Merck), 0.17 g; ZnSO4·7H2O (Merck), 0.29 g. 

Every step involved in the handling of the bacterial strain was carried out in a laminar flow 

chamber (Heraeus SB 48, Germany). For every flask or bottle containing solutions required to 

the bioreactors’ experiments, sterilization (Uniclave 77, Portugal) was achieved at 120 °C, 

during at least 20 min. 

 

 

3.1.3 Inocula preparation 

Pre-inocula for the experiments were prepared by inoculating a single Enterobacter A47 

colony grown on a chromagar plate into 40 mL LB Medium (pH 6.8-7.0) and incubating it in an 

orbital shaker (IKA ® KS 260 basic orbital shaker, Germany) at 30 °C, 200 rpm during 24 h.  

Inocula were prepared in Medium E*, supplemented with ≈40 g L-1 of glycerol-rich product, 

(SGC, SGPS, Portugal) or glycerol 99% (Sigma-Aldrich) as the carbon source. 20 mL of the pre-
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inocula prepared as described above were transferred into 200 mL Medium E*, in 500 mL 

shake flasks, and incubated at 30 °C, 200 rpm during 48-72h. 

 

 

3.1.4 Shake Flasks Assays 

For the study of the effect of phosphate on the bioprocess, six shake flasks assays were 

performed (in duplicate experiments) by varying the concentration of this nutrient’s sources in 

Medium E*(K2HPO4 and KH2PO4). Hence the phosphate concentrations tested were: 

 

Table 1 - Phosphate concentrations of the different experiments in the shake flasks assays. 

Experiment A B C D E F 

PO4
3- (g L-1) 8.12 5.25 3.81 3.09 2.95 2.37 

 

 

3.1.5 Bioreactor cultivation assays 

All the experiments were executed in 2 L bioreactors (BioStat B-plus, Sartorius, Germany) 

with the following operation mode: a batch phase characterized by the exponential microbial 

growth phase, followed by a fed-batch phase during which a feeding solution was supplied to 

the culture at a constant rate of 2.5 mL h-1. This solution was identical to Medium E* 

(described above), but had a higher carbon source concentration, 200 g L-1. The bioreactor was 

operated with a constant aeration rate of 0.125 vvm, with controlled temperature and pH, 30 

°C and 6.8-7.0, respectively. The pH control was achieved with 2M NaOH (eKa) and 2M HCl 

(Scharlau). Silicone based anti-foam (VWR) was used to control foam formation during the 

process. 

The dissolved oxygen concentration (DO) was controlled by the automatic variation of the 

stirrer speed (300–800 rpm). In the study of the effect of phosphate on the bioprocess, the DO 

was controlled at 10% of the air saturation, while in the study of the effect of DO, it was 

maintained at different air saturation values: 10, 30 or 60% during the batch and fed-batch 

phases. 

To measure the broth viscosity and to quantify the kinetic parameters, ≈25 mL samples 

were periodically taken during the cultivation assays. 
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3.2 Exopolysaccharide Extraction 

For extraction of the biopolymer from the cultivation broth, it was diluted with deionized 

water. This dilution depended on the broth’s viscosity: 1-50 mPa.s (no dil.); 50-300 mPa.s (dil. 

1:2); 300-1000 mPa.s (dil. 1:3), which was measured at shear rates from 0.3 to 55.8 s-1. The 

diluted broth was then centrifuged (Sartorius 4K 15, Germany) at 11 627 g for 15 min to 

separate the biomass from the cell-free supernatant, which contained the biopolymer. After 

this separation step, the cell-free supernatant was subjected to a thermal treatment at 70 °C 

for 1 h followed by centrifugation at 11 627 g for 15 min, to remove any remaining cell debris 

and denatured proteins. The treated supernantant was subjected to dialysis with a 10,000 

MWCO membrane (SnakeSkinTM Pleated Dialysis Tubing, Thermo Scientific) against deionized 

water, with constant stirring at 4 °C. The dialysis was monitored through measurements of the 

ionic content in the solution for an average of 48 h, so that the conductivity reached below 25 

µS m-1, and contaminants adsorbed by the biopolymer were reduced. 

For the study of the functional properties the polymers were extracted with an alternative 

procedure, to guaranty a higher purity degree. A similar procedure was performed, but the 

thermal treatment of the cell-free supernatant was replaced by protein precipitation with 

trichloroacetic acid (TCA). 4 mL TCA 99% (Sigma-Aldrich) at a concentration of 100% (w/v) was 

added to the cell-free supernatant (40 mL) and the mixture was kept at 4 °C for 15 min. After 

centrifugation at 11 627 g for 15 min to remove the denatured proteins, the treated 

supernatant was dialyzed, as described above. 

In both procedures, the dialyzed supernatants were frozen in liquid nitrogen and freeze-

dried (Telstar Cryodos-50, Spain) at - 40 °C and 340 mbar for 48 h. 

 

 

3.3 Analytical Techniques 

3.3.1 Apparent Viscosity 

The apparent viscosity of the broth samples taken from the bioreactor was measured 

using a digital viscometer (Brookfield, EUA).  
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3.3.2 Cell Dry Weight 

The broth samples were centrifuged (16 743 g during 15 min). The cell-free supernatant 

was kept at -20 °C for the quantification of ammonium, glycerol and exopolysaccharide, while 

the cell pellet was used for the gravimetric quantification of the cell dry weight (CDW). The 

pellet was washed twice in deionized water, filtered in a vacuum system through a cellulose 

acetate membrane 0.2 µm (GVS), and, finally, dried at 100 °C (Memmert U15, Germany) for   

24 h. 

 

3.3.3 Ammonium concentration  

To determine the ammonium concentration, 1 mL of the cell-free supernatant sample was 

mixed with 20 µL ISA (Ionic Strength Adjuster) which is a reagent composed of NaOH, 200 g; 

EDTA, 8.6107 g; and thymolphthalein, 0.0158g per liter of deionized water. After 5 min, the 

conductivity was measured using a potentiometric sensor (Thermo Electron Corporation Orion 

9512). The ammonium concentration was determined using a NH4Cl (Sigma-Aldrich) standards 

(0.0056 – 1.8 g L-1). 

  

 

3.3.4 Glycerol concentration 

Glycerol concentration in the cell-free supernatant was determined by high performance 

liquid chromatography (HPLC) with a Varian 87H column (Metacarb), coupled to a 

refractometer (Merck). This analysis was performed at 50 ◦C, using 0.01 N H2SO4 (Fischer 

Chemical) as eluent at a flow rate of 0.6 mL min-1. A standard calibration curve (glycerol 99% - 

Sigma-Aldrich) with concentrations ranging from 0.15 to 5 g L-1 was used. 

 

 

3.4 Calculations 

3.4.1 Specific Growth Rate 

The maximum specific growth rate (µmax, h-1) was determined using the following 

equation: 

                               
           ⁄  

 
                                                                                            , 

Where CDW0 is the initial cellular density. 
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3.4.2 Volumetric Productivity 

The EPS volumetric productivity (rP, g L-1 h-1) was determined by the following equation: 

                     
       

  

  
                                                                                                   , 

Where dP (g L-1) is the variation of product formation during the experiment and dt (h) is 

the time period of the experiment delay. 

                         

 

3.4.3 Product and Biomass Yield 

The biomass yield on substrate (Υx/s, gcell gglycerol
-1) was determined considering the biomass 

produced (ΔX, gcell) per substrate consumed (ΔX, gglycerol) during the assay:     

 

                             ⁄ (          
  )  

  

  
                                                                                            , 

 

The product yield on substrate (Υp/s, gEPS gglycerol
-1) is based on the product formed (ΔP, gEPS) 

per substrate consumed (ΔX, gglycerol):  

                       

                            ⁄ (         
  )  

  

  
                                                                                             .  

 

 

3.5 Chemical Characterization of the Polymers  

3.5.1 Elemental Analysis 

The measurement of the biopolymers’ composition in C, N, O, H and S, was executed at 60 

kPa pressure with a carrier gas flow of 150 mL min-1 and column temperature of 1000 °C 

(Manufacturer Eurovector, Model EuroEA, Italy). 

 

 

3.5.2 Exopolysaccharide Composition 

3.5.2.1 Sugar Monomers 

The exopolyssacharide’s sugar composition was performed by hydrolyzing 20 µL of 1 % 

(w/v) of EPS solution with 20 µL of 0.04 % (v/v) of trifluoroacetic acid, TCA 99% (Scharlau). The 
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reaction was done at 120 °C for 2 h. After hydrolysis, 92 µL of 1.6 % NH4OH was added to the 

hydrolyzed sample.  

Prior to analysis, all samples were prepared according to the following 96-well PMP-

derivatization method: 75 µL of derivatization reagent were added to 25 µL of sample in a 96-

well-PCR micro titer plate. The plate was sealed with a silicone cap mat, mixed well and 

centrifuged at 2.000 g for 2 min at 20 °C. After incubation (100 min at 70 °C) in a PCR-cycler 

and a following automated cool down to 20 °C, an aliquot of 20 µL was transferred to a fresh 

96-well micro titer plate and mixed with 130 µL acetic acid. The samples were then transferred 

into a 96-well filter plate and centrifuged at 2.500 g for 5 min at 20 °C. Finally, the plate was 

sealed with a 96-well silicon cap mat.  

The analysis was performed by a HPLC analysis of monosaccharide-PMP-derivatives. The 

HPLC system (Ultimate 3000RS, Dionex) was composed of a degasser (SRD 3400), a pump 

module (HPG 3400RS), an autosampler (WPS 3000TRS), a column compartment (TCC 3000RS), 

a diode array detector (DAD 3000RS) and an ESI-ion-trap unit (HCT, Bruker).  

Data was collected and analyzed with Bruker Hystar, QuantAnalysis and Dionex 

Chromelion software. The column (Gravity C18, 100 mm length, 2 mm i.d.; 1.8 µm particle size; 

Macherey-Nagel) was tempered to 50 °C. Mobile phase A consisted of 5 mM ammonium 

acetate buffer with 15 % acetonitrile and a chromatographic flow rate of 0.6 mL/min. A switch 

valve behind the UV-detector (245 nm) refused the first 3 min of chromatographic flow. Before 

entering ESI-MS the flow was splitted 1:20 (Accurate-Post-Column-Splitter, Dionex).The 

autosampler temperature was set to 20 °C and an injection volume of 10 µL was used. 

Calibration 200 - 2mg/L: Man, D-mannose; GlcUA, D-glucuronic acid; GlcN, D-glucosamine; 

GalUA, D-galacturonic acid; Rib, D-ribose; Rha, L-rhamnose; Gen, D-gentiobiose; GalN, 

D-galactosamine; GlcNAc, N-acetyl-D-glucosamine; Lac, D-lactose; Cel, D-cellobiose; Glc, D-

glucose; GalNAc, N-acetyl-D-galactosamine; Gal, D-galactose; Ara, L-arabinose; Xyl, D-xylose; 

Fuc,L-Fucose; 2-d-Glc, 2-deoxy-D-glucose; 2-d-Rib, 2-deoxy-D-ribose.  

The ion-trap was operated in the ultra-scan mode (26.000 m/z/sec) from 50 to 1.000 m/z. 

The ICC target was set to 200.000 with a maximum accumulation time of 50 ms and four 

averages. The ion source parameters were set as follows: capillary voltage 4 kV, dry 

temperature 325 °C, nebulizer pressure 40 psi and dry gas flow 6 L/min. Auto MS mode with 

the smart target mass of 600 m/z and a MS/MS fragmentation amplitude of 0.5 V was used. 
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3.5.2.2 Volatile Fatty Acids 

 

The analysis of the acyl groups’ composition was performed by hydrolyzing 5mg of EPS 

dissolved in 5mL of deionized water, with 100 µL of trifluoroacetic acid, TCA 99% (Scharlau). 

The reaction was done at 120 °C in 2 h (Hach Lange LT 200, Germany).  

A standard solution composed by a mixture of acetic acid (Fischer Chemicals), succinic acid 

(Merck) and pyruvic acid (Sigma-Aldrich), each in a 1 g L-1 concentration, with 0.001 M H2SO4 as 

solvent, was hydrolyzed under the same conditions as the samples. This standard solution was 

successively diluted to: 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625 and 0.0078125 g L-1. All the 

reagents used in the standard solution had a purity degree ranging from 98 to 100%. 

The analysis was performed by HPLC (Merck) with an Aminex 87H column (Biorad), 

coupled to a UV-Visible detector (Merck), at 50 ◦C, 210 nm and a flow rate of 0.6 mL min-1 with 

0.001 M H2SO4 as eluent. 

 

 

3.5.2.3 Protein, Water and Inorganic Content 

 

For determination of the protein content, 5.5 mL samples of aqueous EPS solutions (4.5 g 

L-1) were mixed with 1 mL 20% NaOH and hydrolyzed at 100 °C for 5 min. After cooling on ice, 

170 µL of 25% (v/v) CuSO4
.5H2O (Riedel de Haen) were added. After mixing, the samples were 

centrifuged (VWR MicroStar 17, EUA) at 10000 rpm during 5 min and the optical density was 

measured at 560 nm (Spectrophotometer Helios Alpha, Thermo Spectronic, UK). The protein 

standard solutions contained BSA 98% (Sigma-Aldrich) in 3.0 to 0.015625 g L-1 concentrations. 

In relation to the water content quantification, 10 mg of EPS was placed in a glass fiber 1.2 

µm (VWR), folded and placed at 100 °C overnight. Afterwards the same sample was placed at 

550 °C (Muffle Nabertherm B150, Germany) during 20 h.  

The water content was determined as the amount of water that was evaporated from the 

EPS sample, after 24 h at 100 °C, as suggested by the following formula:  

 

                  
(           ) (           )      

    
                                          . 

 

The inorganic content was determined as the inorganic salts content of the EPS sample 

after pyrolysis, in which all organic matter is decomposed. 
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3.6 Functional Properties 

EPS with distinct composition produced by the bacterium Enterobacter A47 under 

different cultivation conditions were characterized in terms of their functional properties. Such 

polymers were obtained in previous studies and their physical-chemical characteristics are 

present in Table 2. 

 

3.6.1 Rheological Properties 

The rheology of 1% (w/w) biopolymers’ aqueous solutions in 0.1 M NaCl (Panreac) were 

studied using a controlled stress rheometers (Haake Mars III, Thermo Scientific, Germany), 

equipped with a cone and plate geometry: diameter 3.5 cm and a 2° angle. During the 

experiments, the shearing geometry was covered with paraffin oil in order to prevent water 

loss. Flow curves were determined at 25 °C using a steady state flow ramp in the shear range 

of 1–700 s−1. The shear rate was measured point by point with consecutive 30 s steps of 

constant shear rate. The viscosity was recorded for each point to obtain the flow curves. 

Frequency sweeps were carried out at a controlled stress of 1 Pa (shown by stress sweeps to 

give values within the linear viscoelastic region) in order to measure the dynamic moduli G’ 

and G’’. 

 

3.6.2 Film-forming capacity 

A preliminary test was made for all biopolymers to test their capacity to form films by 

solvent casting: 5 mL of 1% (w/w) EPS aqueous solutions were put in plastic Petri dishes (d=90 

mm) and placed at 40 °C, for 24 h, for solvent evaporation. For the biopolymers which had 

film-forming capacity, their properties were studied, including the mechanical properties and 

water vapor permeabilities. For this purpose, films were prepared using 19.5 g of 1.25% (w/w) 

EPS aqueous solutions with 30% (v/v) (gglycerol gdry polymer
-1) glycerol 99% content as a plasticizer. 

The solutions were put in plastic Petri dishes and placed at 40 °C for approximately 48 h, for 

solvent evaporation. The films were peeled from the dishes’ surfaces and kept in a desiccator 

with a controlled relative humidity atmosphere of 45 % until testing. Their thickness was 

measured at three different points using a digital micrometer (Mitutoyo, UK). 

Mechanical properties were tested by performing tensile tests of the different films, which 

were carried out by attaching 20 mm × 60 mm film strips on tensile grips and stretching them 

at 1 mm s-1 in tension mode. To this assessment was used a TA-Xtplus texture analyser (Stable 
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Micro Systems, Surrey, England). The stress at break was calculated as the ratio of the 

maximum force to the films' initial cross-sectional area. The elongation at break was 

determined as the ratio of the extension of the sample upon rupture by the initial gage length. 

The slope of stress as a function of strain, within the elastic deformation of the stress–strain 

curve, was taken as the Young's modulus, which was calculated according to the following 

equation: 

    
 

 
     

 
 
  
 

                                                                                                     

 

Where,   (Pa) is the Young’s modulus (or elastic modulus). 

 

Water vapour permeability’s evaluation was performed gravimetrically at 25.0 ± 1.0 °C. 

The films samples were sealed with silicone on the top of the vials (d=2.5 cm), placed in a 

desiccator containing a saturated Mg(NO3)2.6H2O solution (aw = 0.534) and equipped with a fan 

to promote air circulation. Room temperature and relative humidity inside the desiccator were 

monitored over time using a thermohygrometer (Vaisala, Finland). To impose the selected 

driving force, a saturated KBr solution was placed inside the vial (aw = 0.809) and water vapour 

flux was determined by weighing the vial in regular time periods for 47 h. Three independent 

runs were performed for each EPS film. The water vapour permeability was determined by the 

following equation: 

 

    
    

       
                                                                                               

 

Where,    is the water vapour molar flux,  is the film thickness and         is the 

effective driving force, expressed as the water vapour pressure difference between both sides 

of the film, calculated taking into account the mass transfer resistance of the stagnant film of 

air below the test film. 

 

3.6.3 Emulsion forming and stabilizing capacity 

The capacity of the EPS to stabilize emulsions was measured using 0.5% (w/v) EPS aqueous 

solutions that were mixed with sunflower oil (Continente) in a 2:3 (v/v) ratio and stirred in the 

vortex for 2 min. Each EPS-oil mixture was subjected to various tests: emulsion stability at 
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different temperatures, 4, 23 and 37 °C, independently, for several days and temperature 

fluctuations, such as, freezing at -20 °C and sequential thawing at 20 °C for a time period of 24 

h, and increasing temperature from 40 to 100 °C. Each test was carried out once for each EPS-

oil mixture.  

The emulsification index (EIndex, %), was determined by the following equation: 

 

                       
  

  
                                                                                                  ,  

 

Where    (cm) is the height of the emulsion layer and    (cm) is the total height of the 

mixture. 

 

3.6.4 Flocculation capacity 

To test the flocculating activity of the different polymers, a 5 g L-1 Kaolin clay (Fluka) 

suspension was prepared along with a 1% (w/v) CaCl2 (Kemira) solution. EPS aqueous solutions 

at two different concentrations, 0.01 and 0.001% (w/v) were tested. With a final ratio volume 

of 40:1:0.1 (Kaolin:CaCl2:EPS), the samples were stirred in the vortex at 2400 rpm, for 1 min. 

After 5 min the optical density was measured at 550 nm.  

A blank sample containing deionized water instead of the EPS solution was used. All 

measurements were performed in duplicate. 

Flocculation (%) was determined using the following equation:  

 

                 (
             

      
)                                                                                , 

 

Where ODH20 is the optical density for the suspension containing deionized water and 

ODEPS is the optical density for the suspension containing exopolysaccharide. 
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Table 2 - Biopolymers description including cultivation conditions and physical characterization. Biopolymers produced by Enterobacter A47 

(*) Freitas et al. 2013; (*1) Torres et al. 2012; (*2) Torres et al. 2013

EPS 

Cultivation conditions Average 
Molecular 

Weight 

Sugar composition  
(%mol) 

Acyl groups’ composition  
(% (w/v)) 

Substrate 
T 

(°C) 
pH Fed-batch 

fucose galactose glucose rhamnose glucuronic 
acid 

glucosamine pyruvate acetate succinate 

EPS-x 
(*) 

Xylose 30 7.0 
pO2 control 
with 200g/L 

xylose 
1.7×10

6
 38 18 27 0 17 0 15 0 2 

EPS-g 
(*) 

Glucose 30 7.0 
pO2 control 
with 200g/L 

glucose 
4.2×10

6
 29 29 26 0 16 0 15 5 2 

EPS-m 
(*) 

GRP  
+  

Methanol 
30 7.0 

pO2 control 
with pure 
methanol 

4.5×10
6
 22 23 30 3 19 2 2 0 2 

S4 
(*1) 

GRP 

15.
9 

7.0 

Constant 
feeding with 
200g/L GRP 

6.3×106 26 21 36 2 12 2 3 3 2 

S7 
(*1) 

30 5.6 9.8×106 13 13 58 6 8 2 3 4 0 

S8 
(*1) 

40 8.0 1.3×107 0 24 54 10 8 4 0 1 0 

S10 
(*1) 

30 8.4 8.4×10
6
 0 12 37 29 11 11 1 3 0 

EPS-s 
(*1) 

30 7.0 4.3×106 36 26 28 0 10 0 9 7 2 

GNEX 
(*2) 

30 7.0 
Constant 

feeding with 
400g/L GRP 

7.2×10
5
 26 34 30 0 10 0 4 5 4 
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4 EPS Production by Enterobacter A47 

One of the aims of this thesis was to optimize the production of biopolymer FucoPol, 

otherwise known as a fucose-containing biopolymer.  

In order to improve productivity many factors have to be taken into account, such as, the 

type of bioreactor used, the mode of operation, the medium composition, and the culture 

conditions: temperature, pH, dissolved oxygen concentration, aeration rate and stirring speed. 

In previous studies, the mode of operation (Torres et al. 2013) and the effect of 

temperature and pH (Torres et al. 2012) on exopolysaccharide production by Enterobacter 

A47, were established. Hence, in this thesis, two other factors were chosen to be studied, the 

effect of dissolved oxygen concentration and the effect of phosphate concentration, on EPS 

production. 

 

 

4.1 Effect of Dissolved Oxygen Concentration 

4.1.1 Cultivation Assays 

For this particular study, dissolved oxygen concentration (DO, %) was selected because it is 

extremely important in aerobic bioprocesses. The DO corresponds to the relative amount of 

oxygen gas in the media, depending intrinsically on the oxygen gas partial pressure (Atkins, P. 

et al. 2008). A suitable DO allows a sufficient accessibility from bacterial cells towards the 

oxygen gas, which in turn determines their growth.  

To begin with, experiments were performed at a constant aeration rate of 1 vvm varying 

the DO concentration (10, 30 and 60%), as shown in Figure 4.1.  

Figure 4.1 (A) shows the profile of cell growth and production of the exopolysaccharide 

under the standard conditions, with DO controlled at 10%, similar to previous assays (Alves et 

al. 2010b; Torres et al. 2010). Following inoculation of the culture into the bioreactor, bacterial 

growth started without presenting any lag phase, leading to an immediate decrease of the DO 

(from 100 to 9.2% within 5 h) due to bacterial activity. The maximum specific growth rate was 

0.33 h-1 (Table 3), and the biomass concentration rose from 1.48 g L-1 to approximately 6.00 g 

L-1 at the end of the batch phase (Figure 4.1 (A)). 

The nitrogen source (ammonium) was exhausted in the first 10 h of cultivation. Being the 

nitrogen source a limitating factor towards cell growth, as soon as ammonium was completely 

consumed, bacterial growth was restricted. Along with ammonium depletion, a substrate 

consumption of approximately 15 g L-1 (from the 55 g L-1 initially available) was also observed. 
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At this point, the fed-batch phase was implemented (Figure 4.1), in which a feeding solution 

was fed to the bioreactor to provide more nutrients, namely glycerol.  

EPS production slowly started after 1 h of the inoculation, reaching only 0.18 g L-1 by the 

end of the batch phase. In the next 20 h, EPS production was still relatively low, rising to 0.81 g 

L-1, but immediately after, it started to increase significantly for the remaining cultivation time. 

An EPS production of 6.11 g L-1, was attained at the end of the run. As shown in Table 3, 

cultivation with DO controlled at 10% resulted in a volumetric productivity of 0.080 g L-1h-1 and 

an yield on glycerol of 0.11 gEPS gglycerol
-1. 

Biomass concentration declined 18% since its maximum (7.32 g L-1 ) at ≈20 h. This outcome 

was probably due to dilution of biomass caused by the volume withdrawn from the bioreactor 

for sampling and the addition of feeding solution and pH control solutions during the fed-batch 

phase. 

Comparatively with other experiments previously performed with the standard conditions 

(Alves et al. 2010b; Torres et al. 2010), it is verified a very similar cultivation profile.  

Concerning the kinetics parameters, this assay also showed similar growth rate, 0.33 h-1, 

with the one referred in (Torres et al. 2012), 0.36 h-1, although the biomass yield and  

produced biomass concentration (0.12 gcell gglycerol
-1 and 6.60 g L-1), were lower than in previous 

work (0.49 gcell gglycerol
-1 and 7.68 g L-1) (Torres et al. 2010). Moreover, the overall product yield 

on glycerol was also similar, 0.11 gEPS gglycerol
-1, even when EPS production was lower, 6.11 g L-1, 

and the productivity much lower, 0.080 g L-1h-1, than in (Torres et al. 2010), 7.50 g L-1 and 0.28 g 

L-1h-1, respectively. 
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Fig. 4.1 - Cultivation profiles for Enterobacter A47 with dissolved oxygen concentration controlled 
at 10% (A), 30% (B) and 60% (C) air saturation. 

10% DO 

30% DO 

60% DO 
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Finally, during the cultivation assay, a change in the broth viscosity was observed (Figure 

4.2). At the beginning, when the EPS concentration in the broth was low, the broth’s viscosity 

was 1.45 mPa.s (at 11.2 s-1). In the first 30 h, the broth’s viscosity was slightly increased to 2.86 

mPa.s ( at 11.2 s-1). After that, the broth’s viscosity increased proportionally to EPS production, 

till the end of the run, reaching a maximum of 671 mPa.s (at 0.3 s-1) along with the maximum 

EPS production. 

 

 

 

 

 

 

 

 

 

 

 

 

In the cultivation assay wherein DO was controlled at 30%, a similar cultivation profile was 

verified, since DO quickly stabilized at 30% within 3.5 h and was kept at this value till the end 

of the run. Also without lag phase, bacteria grew exponentially for 7 h with a specific growth 

rate of 0.33 h-1, rising from an initial CDW of 1.04 to 6.78 g L-1 in the end of batch phase. During 

this batch phase, ammonium was consumed and reached a limiting concentration (<0.1 g L-1). 

10 g L-1 of carbon source were also consumed, from the initially 50 g L-1 available (Figure 4.1 

(B)). Then, the fed-batch phase was initiated by the addition of the feeding solution to the 

bioreactor. 

Exopolysaccharide production begun, at 10 h and proceeded until the end of the run. After 

approximately 98 h of cultivation, 4.35 g L-1 of EPS were produced, corresponding to an overall 

volumetric productivity of 0.045 g L-1 h-1. These values are lower than the ones obtained under 

the standard conditions (6.11 g L-1 and 0.080 g L-1 h-1, respectively), which is probably related to 

the non-limiting DO concentration (30%). Also, the lower EPS productivity resulted in a lower 

yield of EPS on glycerol, 0.07 gEPS gglycerol
-1 in comparison to 0.11 gEPS gglycerol

-1, with DO at 10% 

(Table 3). Furthmore, glycerol consumption was higher (64.36 g L-1) than in standard conditions 

(55.99 g L-1), which indicates that with 30% of air saturation, less EPS production is obtained 

Fig. 4.2 - Apparent viscosity of the culture broth during cultivation of Enterobacter A47 
with DO controlled at 10%, measured at shear rates of 0.3 – 11.2 s-1. 

10% DO 
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with superior substrate consumption. This superior substrate consumption was probably due 

to its deviation towards other metabolic pathways. 

Taking into consideration the maximum value of CDW at standard conditions, 7.32 g L-1, at 

30%, CDW reached to 7.80 g L-1, which describes a similar behavior in the biomass 

concentration even if DO its three times higher. 

So, in conclusion, the biomass concentration was not affected with DO at 30% but the EPS 

productivity ability of the bacteria, decreased considerably. 

Relatively to the culture broth viscosity (Figure 4.3), that was initially 1.05 mPa.s (at 11.2 s-

1), it increased slowly to 50.1 mPa.s (at 0.6 s-1) and it took another 20 h to reach to 391 mPa.s 

(at 0.3 s-1), as opposed to the 671 mPa.s (at 0.3 s-1), in 98 h of cultivation with DO controlled at 

10% (Figure 4.2). The inferior increase of broth’s viscosity was corroborated by the direct 

relation to the lower EPS production, with DO controlled at 30%.  

 

 

 

 

 

 

 

 

 

 

 

In the cultivation assay Figure 4.1 (C), wherein the DO concentration was controlled at 

60%, identical bacterial growth profile was observed. 

The cell growth started without lag phase, increasing exponentially for 9 h, from 0.06 to 

6.21 g L-1 with a specific growth rate of 0.33 h-1, till the end of the batch phase. This occurred 

simultaneously with the exhaustion of ammonium, which reached the limiting condition, <0.1 

g L-1, and also with the consumption of 20 g L-1of glycerol (from the initial 60 g L-1 initially 

available).  

After that, the fed-batch phase was implemented and it was continuously fed with a 

solution containing 200 g L-1 of glycerol, equally to both cultivation assays presented previously 

(DO at 10 and 30%). At the fed-batch phase, DO and ammonium levels were kept at 60% and 

<0.1 g L-1, respectively. 

Fig. 4.3 - Apparent viscosity of the culture broth during cultivation of Enterobacter A47 
with DO controlled at 30%, measured at shear rates of 0.3 – 11.2 s-1. 

30% DO 
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Even though the exopolysaccharide was slowly produced during the entire cultivation 

assay, from 0.12 g L-1 to only 1.27 g L-1, after 87 h of fed-batch phase, bacteria continued to 

consume glycerol till the end. Its total glycerol consumption (61.90 g L-1) was higher than 

glycerol consumption (55.99 g L-1) at standard conditions, probably due to its deviation for 

other metabolic routes (e.g. protein production), with high DO concentrations. The EPS 

production and volumetric productivity, 1.27 g L-1 and 0.013 g L-1 h-1, respectively, were 

unequivocally lower than standard conditions.  

The only parameter that was not affected with DO controlled at 60%, was the biomass 

concentration that reached a maximum of 7.20 g L-1, identical to the ones verified with DO at 

10 and 30%, 7.32 and 7.80 g L-1, respectively. The EPS production, productivity and yield on 

glycerol were negatively affected, reaching to the lowest values of the present study. For these 

last reasons, the cultivation assay with DO at 60% is considered an exopolysaccharide non-

productive set of conditions. 

Regarding the culture broth viscosity (Figure 4.4), concomitant with the low EPS 

production, it reached a final value of only 25 mPa.s (at 1.4 s-1). 

 

 

 

 

 

 

 

 

 

 

 

Resorting to Table 3, all different DO concentration values equally provided optimal 

bacterial growth, ranging from 6.54 to 7.11 g L-1, with a specific growth rate of 0.33 h-1 and 

biomass yield of 0.12 gcell gglycerol
-1. Nevertheless, higher DO concentrations, inversely affected 

the product yield, which was five times lower at 60%, 0.02 gEPS gglycerol
-1 than it was in standard 

conditions, 0.11 gEPS gglycerol
-1. 

 

Fig. 4.4 - Apparent viscosity of the culture broth during cultivation of Enterobacter 
A47 with DO controlled at 60%, measured at shear rates of 1.4 – 11.2 s

-1
. 

60% DO 
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Table 3 - Kinetic parameters for the cultivation of Enterobacter A47 with dissolved oxygen concentration controlled 

at different air saturation values. 

Experiment A B C 

DO (%) 10 30 60 

µ (h-1) 0.33 0.33 0.33 

CDWproduced (g L-1) 6.60 7.11 6.54 

EPS (g L-1) 6.11 4.35 1.27 

rp (g L-1h-1) 0.080 0.045 0.013 

glycerol cons. (g L-1) 55.99 64.36 61.90 

YX/S (gcell gglycerol
-1) 0.12 0.11 0.11 

YP/S (gEPS gglycerol
-1) 0.11 0.07 0.02 

 

According to these data, it’s possible to confirm that standard conditions were the most 

adequate for EPS production by Enterobacter A47. A partially-growth associated product was 

attainable with this specific bacteria caused by two triggering events, carbon source availability 

and nitrogen limitation. Therefore, similar biomass concentration was originated in all assays 

by exhaustion of the limiting nutrient and EPS production was reduced for DO concentration 

above 10% of air saturation.  

In comparison to the literature, it is referred that the role of oxygen limitation in 

polysaccharide biosynthesis could exercise positive or negative influence. For instance, (Peters 

et al. 1989) and (Amanullah et al. 1998), support the idea that dissolved oxygen above 20%, 

enhance biopolymer formation and production rate in species such as Xanthomonas 

campestris. Banik et al. 2006, also reported that cultivation of Sphingomonas paucimobilis with 

higher DO levels, from 20 to 100%, increases biomass formation and biopolymer production, 

as opposed to DO levels below 20%.  

However, Rho et al. 1988 support that in some cultures, such as Aureobasidium pullulans, 

oxygen demand is so high, that under conditions at low DO, an optimum biopolymer synthesis 

is achieved. Moreover, they reinforce that biomass production is not affected by different DO 

levels. Specifically for bacteria strains, such as Azotobacter vinelandii, low DO concentrations 

(between 2-3%) were the most suitable for alginate production and biomass formation, in the 

range of 1–10% of air saturation, after which both parameters decreased significantly 

(according to Sabra et al. 1999). 

Therefore, Enterobacter A47 apparently falls into the same category that Aureobasidium 

pullulans and Azotobacter vinelandii, since it was determined that lower DO promoted high 

EPS production and that different DO concentrations didn’t affect cell growth. 
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4.1.2 EPS Chemical characterization 

Concerning the biopolymers chemical composition, it was examined for its sugar and acyl 

groups composition (Table 4) and its content in carbon, oxygen, nitrogen, hydrogen and 

sulphur atoms (by elemental analysis) as well as well as its protein, ashes and water content 

(Table 5). 

 

Table 4 - Exopolysaccharide sugar and acyl’s composition. 

 

Regarding the sugar monomers, changes were observed with DO controlled at 30%, more 

specifically the reduction in galactose and an increase in glucose monomers. In relation to 

glucuronic acid monomers, their content for all experiments, with exception for 30%, was 

slightly below of the 10% reported in (Torres et al. 2012), with optimal conditions. However for 

higher DO concentrations, in gellan production by Sphingomonas paucimobilis, Banik et al. 

2006 reported that it did not suggested significant variation in glucose and glucuronic acid 

monomers, in accordance with the results obtained. 

Identical acyl groups’ contents were obtained for all three biopolymers (20.5 ± 0.2 % 

(w/v)), which is similar to the value reported for FucoPol produced under the standard 

conditions (Torres et al. 2010). The non-saccharide total composition of the fucose-containing 

biopolymer is composed by acetyl, pyruvil and succinyl (Torres et al. 2010). Pyruvil and succinyl 

confer an anionic character to the exopolysaccharide, which functions as counter ions for the 

inorganic salts (Freitas et al. 2009a), and also defines its solubility and rheological properties 

(Rinaudo 2004). Further studies on acyl groups’ composition variation throughout the 

cultivation assays, should be considered in order to speculate the influence of acetyl, pyruvil 

and succinyl in the exopolysaccharide structure. 

Taking into consideration the elemental analysis of all three biopolymers, it is possible to 

confirm that changes in DO concentration didn’t greatly affect the composition of each atom. 

In fact, carbon, oxygen, nitrogen, hydrogen and sulfur contents were similar for all 

experiments.  

Experiment 
Sugar monomers (%mol) Total acyl groups 

composition (% (w/v)) Fucose Galactose Glucose Glucuronic acid 

10% 31 30 31 7 20.67 

30% 32 14 45 10 20.52 

60% 29 27 37 6 20.27 
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Table 5 – Exopolysaccharide’s elemental analysis and its water, protein and inorganic residues content.  

 

In addition to this characterization, it was possible to verify an inorganic salt content under 

1% (v/v) for all biopolymers produced. Besides that, the protein content also revealed itself a 

depreciable component into the biopolymers composition, since it wasn’t higher than 4% 

(w/v), as it is referred in (Freitas et al. 2011b).  

The inorganic salt compounds’ percentage corresponds to all non-aqueous residues that 

were present in the culture medium and the protein content in turn, was related to the 

proteins produced by the bacteria, both adsorbed by the polymer. Those low values 

mentioned above, represent a reduced amount of contaminants in the biopolymer, meaning 

that the dialysis was successfully achieved ultimately providing a refined biopolymer.  

 

 

 

Experiment 
Elemental analysis (%) Water  

(% (w/v)) 
Ashes  

(% (w/w)) 
Protein  

(% (w/v)) C O N H S 

10% 39.74 35.44 3.61 5.97 0.00 15.73 0.50 3.71 

30% 40.17 31.11 3.91 6.08 0.11 12.97 0.70 3.27 

60% 40.02 35.07 3.53 5.80 0.06 14.94 0.99 3.60 



Exopolysaccharide production by Enterobacter A47: optimization of cultivation conditions and study 
of polymer functional properties 

 2012/2013

 

36 
 

4.2 Effect of Phosphate Concentration 

The overall FucoPol production costs are greatly influenced by the phosphate components, 

K2HPO4 and KH2PO4, of the culture medium. For this reason, it was studied the impact of the 

reduction of these two components in the bacterial behavior and performance. 

 

 

4.2.1 Shake flasks assays 

Firstly, preliminary tests in shake flasks were performed, in order to determine the impact 

of the phosphate reduction in the bacterial growth. Six different phosphate concentrations 

were tested, as described in Table 1, section 3.1.4.  

The shake flasks assays allowed a pre-visualization of the Enterobacter A47 behavior for a 

period of 47 h. All experiments were performed in parallel.  

In this time period, bacterial growth in all experiments behaved similarly to each other, 

and achieved identical optical density values, as shown by the Figure 4.5. For this reason, it 

was possible to verify that a reduction of the phosphates concentrations, didn´t significantly 

affect the overall bacterial activity. 

 

 

 

 

 

 

 

 

 

 

It is known that in shake flasks assays, pH and dissolved oxygen concentration control do 

not exist, only temperature and stirring speed are possible to maintain constant (Gamboa-

Suasnavart et al. 2013). Therefore, and since phosphate nutrient acts as a buffering 

component of the culture media, the reduction of its concentration consequently led to the pH 

Fig. 4.5 - Optical density of Enterobacter A47 grown in the shake flasks assays, for 47h, with different 
phosphate concentrations: 8.12 g L-1 (Experiment A); 5.25 g L-1 (Experiment B); 3.81 g L-1 (Experiment C); 
3.09 g L-1 (Experiment D); 2.95 g L-1 (Experiment E) and 2.37 g L-1 (Experiment F). 
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reduction. The pH initially in 6.90 ± 0.03 was then slowly changed over time reaching to ≤ 4.0 

for most experiments. 

Once the bacterial growth was not apparently affected by the diminution of phosphate 

concentration in shake flasks, experiment B and C were firstly chosen to evaluate if the 

bacteria could adapt to these conditions, throughout the all assay, wherein oxygen levels could 

only be controlled in bioreactor. 

 

 

4.2.2 Bioreactor Cultivation assays  

Since in a bioreactor experiment, loss of buffering capacity of the culture medium can be 

overcome (by online addition of base and acid in response to pH alterations) and all 

parameters are simultaneously controlled, two initial cultivation assays were conducted to 

validate preliminary tests, as shown in Figure 4.6. Those cultivation assays are related to the 

phosphate concentrations of 5.25 g L-1 and 3.81 g L-1, identified as Phalf and Pquarter, 

respectively. These two conditions were selected to assess, in the first place, if a smaller 

reduction on the macronutrient phosphate, in the culture medium, did not negatively disturb 

the EPS production. 

It is important to refer that each inoculum was grown in the same phosphate 

concentration of the correspondent cultivation assay, so that any condition couldn’t be 

favored prior to bioreactor inoculation. 

These cultivation assays were also performed with DO at 10%, since it was previously 

established that it was considered the best DO concentration to promote an optimal bacterial 

growth and EPS production.  
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The Phalf and Pquarter cultivation assays, in Figure 4.6, showed similar cultivation profiles 

compared to the standard conditions in Figure 4.1 (A), which contained a total phosphate 

concentration of 8.12 g L-1. 

Following the inoculation of the culture into the bioreactor, it was observed a sharp 

decrease in DO in the first 5 h of both batch phases, which was kept at 10% till the end of both 

runs. Ammonium depletion (<0.1 g L-1) was also achieved in the first 9 to 10 h of both batch 

phases and maintained throughout the entire cultivation assays. 

 On the other hand, cell growth behaved very differently in these two situations. In the 

Phalf run, a fast bacterial growth with a specific growth rate of 0.31 h-1 was verified, reaching 

to a biomass concentration of 2.36 g L-1 at the end of batch phase. Afterwards, biomass 

concentration increased in the next 20 h, to a maximum of 4.42 g L-1.  

Fig. 4.6 - Cultivation profiles for Enterobacter A47 with dissolved oxygen concentration controlled at 10% 
air saturation and phosphate concentrations: 5.25 g L-1 (A) and 3.81 g L-1 (B). 
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In the Pquarter run, a slow bacterial growth occurred in the first 5 h, probably due to an 

initial microbial adaptation to the culture conditions. Then, it was followed by an exponential 

cell growth characterized with a specific growth rate of 0.26 h-1, which led to a biomass 

concentration of 4.29 g L-1, at the end of batch phase. Biomass concentration did not 

significantly change by the end of the run. 

The carbon source consumption, in both batch phases, presented some differences. From 

the initially available 52 g L-1, in Phalf, and 51 g L-1, in Pquarter, around 22 and 16 g L-1, 

respectively, were consumed. Also in both batch phases, as expected, it was verified a very low 

EPS production, with only 0.18 g L-1, in Phalf, and 0.22 g L-1, in Pquarter. 

 At this point, for both Phalf and Pquarter experiments, the fed-batch phase started and a 

feeding solution containing 200 g L-1 of carbon source was continuously fed into the 

bioreactors. 

In the fed-batch phase, the glycerol consumption in Phalf, was around 20 g L-1, and it was 

higher than in Pquarter, with just 10 g L-1. Considering this kinetic parameter it is 

acknowledged that the glycerol accumulation in the broth may be explained due to the 

microbial adaptation in these culture conditions. 

The biomass concentration was maintained at 4.35 g L-1 ± 0.05 for both cultivation assays 

till the end of the runs. This was supported by the overall biomass yield that revealed to be 

quite similar, 0.07 gcell gglycerol
-1 and 0.06 gcell gglycerol

-1, for Phalf and Pquarter, respectively. 

Finally, the EPS production although slow, was enhanced after 50 h and 65 h in Phalf and 

Pquarter, reaching to 8.64 and 7.38 g L-1 maximum values, respectively. However, both 

conditions promoted similar productivities, 0.10 and 0.08 g L-1, for Phalf and Pquarter, and also 

equal product yields, 0.13 gcell gglycerol
-1.  

Concomitant with exopolysaccharide synthesis, broth’s viscosity increased over time 

(Figure 4.7). A slight increase on the broth’s viscosity was observed in the first 50 and 65 h, for 

Phalf and Pquarter, respectively. Afterwards, Phalf broth’s viscosity started to rapidly increase 

reaching to 605 mPa.s (at 0.3 s-1), while for Pquarter, a smoother increase of broth’s viscosity 

was promoted, reaching to 274 mPa.s (at 0.6 s-1). 
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According to Table 6, considering the volumetric productivities and product yield on 

glycerol, apparently the reduction of phosphate concentration in the medium was favorable 

for EPS production. So, to conclude, results suggest that an efficient bacterial growth along 

with high production performance can be reached with a reduction of the phosphate 

concentration to a quarter of the usually used value in previous work (Torres et al. 2010). 

 

Table 6 - Kinetic parameters for the cultivation of Enterobacter A47 in medium supplemented with different 
phosphate concentrations. 

Experiment Standard(*) Phalf Pquarter 

PO4
3- (g L-1) 8.12 (*) 5.25 3.81 

µ (h-1) 0.36 0.31 0.26 

CDWproduced (g L-1) 7.68 4,40 4.29 

EPS (g L-1)  7.50 8.64 7.38 

rp (g L-1h-1) 0.10 0.10 0.08 

glycerol cons. (g L-1) 66.19 64.75 55.80 

YX/S (gcell gglycerol
-1) 0.49 0.07 0.06 

YP/S (gEPS gglycerol
-1) 0.11 0.13 0.13 

(*)
 Torres et al. 2010 

Hereupon it´s possible to affirm that a decrease in the phosphate nutrient concentration 

didn´t affect the overall production behavior of Enterobacter A47, and was in fact proved to be 

as excellent as in standard conditions. 

This conclusion is also beneficial to the environmental and economic cost of the bioprocess 

once this particular biopolymer can be produced in a sustainable affordable way. 

In relation to the literature, it was reported in (Yu et al. 2007), that the highest EPS 

production, by Aurebasidium pullulans, was achieved with a phosphate concentration of 3 g L-

Fig. 4.7 - Apparent viscosity of the culture broth during cultivation of Enterobacter A47 with different phosphate 
concentrations: 5.25 g L-1 and 3.81 g L-1, measured at shear rates of 0.3 – 11.2 s-1. 
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1. Although insignificant interference in the EPS production was observed at higher 

concentrations, untill 9 g L-1, a great decrease in EPS production was verified under 3 g L-1. 

Furthermore the cell growth was not affected by the different phosphate concentrations. 

Umashankar et. al. 1996, reported that Xanthomonas campestris had higher EPS production 

when 4 and 6 g L-1 of phosphate were used, while below 4 g L-1, xathan production decreased. 

In regard to the cell growth, it wasn’t affected by phosphate concentrations under 5 g L-1, 

however with higher concentrations, it slowly decreased. 

In this perspective, Enterobacter A47 behavior, related to the EPS production, has similar 

behavior to Xanthomonas campestris. This is corroborated with the increase in biopolymer 

production at phosphate concentrations between 3.81 and 5.25 g L-1. 

 

 

4.2.3 EPS Chemical characterization 

In the phosphate study, the chemical composition of the biopolymers produced was 

accomplished by the determination of its sugar and acyl contents (Table 7), in first place, and 

also by the determination of its protein, ashes, water content and elemental analysis (Table 8). 

The monosaccharide composition (Table 7) was significantly different from that reported 

by Torres et al. 2012, for fucose, galactose and glucose. Both exopolysaccharides presented a 

higher content in glucose, while galactose and fucose were reduced in comparison with the 

standard FucoPol (Freitas et al., 2011b). Nevertheless, the total acyl groups’ content of both 

biopolymers (21.0 ± 0.5 % (w/v)) matched once again the standard values referred by (Torres 

et al. 2010). 

 

Table 7 - Exopolysaccharide sugar and acyl composition of the different phosphate concentrations’ cultivation 

assays. 

 

According to Table 8, it was verified that carbon, oxygen, nitrogen, hydrogen and sulfur 

contents were very similar for both Phalf and Pquarter’s biopolymers.  

Additionally, determination of the inorganic salts’ composition revealed that it was less 

than 4 % (w/w), similarly to the values reported by Freitas et al. 2011b. Regarding the protein 

Experiment 
Sugar monomers (%mol) 

Total acyl groups 
composition (% (w/v)) Fucose Galactose Glucose Rhamnose 

Glucuronic 
acid 

Phalf 24 25 45 2 5 20.58 

Pquarter 24 25 45 1 5 21.64 
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content, it was also determined in a concentration lower than 4 % (w/v). For these last two 

reasons, it is possible to validate an efficient dialysis, since removal of most of contaminants 

was achieved. 

 

Table 8 - Exopolysaccharide’s elemental analysis and its water, protein and inorganic content of the different 

phosphate concentrations’ cultivation assays. 

 

Finally, considering that fucose render increased value to the EPS, the reduction of its 

content is not advantageous. Nonetheless, these exopolysaccharides are still industrially 

desirable due to their content in fucose, as mentioned before in section 1.6, towards 

pharmaceutical and cosmetic based products. However, the impact of phosphate 

concentration on EPS composition, especially on fucose content must be studied in greater 

detail to confirm that saving in production costs justify obtaining an EPS with lower fucose 

content and, eventually, different functional properties. 

Experiment 
Elemental analysis (%) Water 

(% (w/v)) 
Ashes 

(% (w/w)) 
Protein 

(% (w/v)) C O N H S 

Phalf 40.91 30.85 4.18 6.20 0.00 17.59 2.80 3.29 

Pquarter 41.26 
 

30.99 4.38 6.13 0.10 12.28 1.39 2.99 
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5 Functional Properties of the EPS synthesized by Enterobacter A47 

The results presented in this chapter were published in a peer reviewed paper:  

Freitas F., et al. (2013) Controlled production of exopolysaccharides from Enterobacter 

A47 as a function of carbon source with demonstration of their film and emulsifying abilities. 

Appl Biochem Biotechnol (in press) (DOI: 10.1007/s12010-013-0560-0). 

 

In this chapter, the properties of different exopolysaccharides synthesized by 

Enterobacter A47 were studied. 

These sugar and acyl groups composition, as well as the average molecular weight of 

these exopolysaccharides, are described in Table 2, where it’s possible to observe that their 

physical-chemical characteristics are influenced by the cultivations. 

 

5.1 Rheological properties 

Due to their functional properties, microbial polysaccharides enable larger industrial 

applications. They can be used as thickening, emulsion stabilizer, flocculating and binding 

agents in various fields, for example, in food, pharmaceutical, cosmetic products, or even in 

paint manufacture. Nevertheless, these applications rely on the exopolysaccharide behavior in 

aqueous solutions and for this reason it is crucial a better understanding of the viscosity and 

viscoelastic properties of such polymers. Hence, the rheological properties of the different EPS 

synthesized by Enterobacter A47 were studied in aqueous solution. 

The flow curves obtained for the different EPS produced are presented in Figure 5.1. All 

EPS solutions had the same concentration 1% (w/w) in 0.1 M NaCl and the flow curves were 

measured at 25 °C. It is observed that all biopolymers, except S8 and S10, showed a similar 

apparent viscosity profile as a function of the shear rate (shear-thinning behavior).  

 

 

 

 

 

 

 

 

 

Fig. 5.1 - Comparative flow curves of the different exopolysaccharides produced by Enterobacter A47. 
The measurements were made at 25 °C, with 1% (w/w) of EPS aqueous solutions in 0.1 M NaCl. 
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The results show that the flow curves of the aqueous solutions of GNEX and EPS-g 

biopolymers were similar to the EPS obtained under the standard conditions (EPS-s). A 

Newtonian plateau is observed at 0.2 - 0.3 Pa.s (from 0.3- 17.5 s.1) for EPS-s, GNEX and EPS-g 

polymers and the apparent viscosity decreases as the shear rate increases.  Moreover, a better 

defined Newtonian plateau was demonstrated with EPS-x at 0.08 Pa.s (from 0.3- 17.5 s.1), with 

shear-thinning behavior also present as the shear rate was increased.  

In turn, for EPS-m and S4 solutions an attenuated shear-thinning behavior was verified. In 

relation to S7 solution, it showed also a shear-thinning behavior. However, the profile is 

different of the other solutions (Figure 5.1), since it presents a shear-thinning behavior for 

lower shear rates and for higher rates it is observed an approaching of the second Newtonian 

plateau. 

Differently, S8 and S10 showed constant apparent viscosity for all measured shear rates, 

0.017 and a 0.015 Pa.s, respectively, corresponding to a Newtonian fluid behavior.  

The different rheological behavior shown by the polymers is probably related to their 

composition and average molecular weight. The EPS solutions with the highest apparent 

viscosity (EPS-s, GNEX and EPS-g) were composed of nearly equimolar amounts of the neutral 

sugar monomers: 26-36%mol fucose, 26-34%mol galactose and 26-30%mol glucose (Table 2). 

Moreover, their acyl groups content was higher (13-22 %(w/v)) than that of most of the other 

tested EPS. The lower apparent viscosity shown by EPS-x solution is probably related to the 

polymer’s lower galactose content (18%mol), since its content in fucose (38%mol) and glucose 

(27%mol), as well as in acyl groups (17 %(w/v)), was close to those of EPS-s, GNEX and EPS-g 

solutions. On the other hand, the flow behavior of EPS-m and S4 might be explained by the 

polymers’ considerably lower acyl groups content (4 and 8 %(w/v), respectively) and/or the 

presence of rhamnose and glucosamine in the polymers’ composition (Table 2). 

The Newtonian fluid behavior of S8 and S10 solutions might be related to their 

considerably different composition in comparison with the other tested polymers. The main 

sugar component of those EPS was glucose (54 and 37%mol, respectively), they had increased 

rhamnose (10 and 29%mol, respectively) and glucosamine contents (4 and 11%mol, 

respectively). Additionally, no fucose was detected in the composition of both polymers and 

their acyl groups content was also lower (1 and 4 %(w/v), respectively) than that of the other 

tested EPS.  

The shear-thinning behavior, in aqueous media, has been observed for others microbial 

polysaccharides, such as, Aeromonas nichidenii 5797 (Xu et. al. 2007) and Pseudomonas 

oleovorans (Freitas et al. 2009b), for example. However, some microbial polysaccharides 
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display a Newntonian behavior, such as, for instance levan (produced by Bacillus sp.) until 

concentrations up to about 30 % (w/w) (Arvidson et al. 2006). 

When the material response to increase stress is monitored at a constant frequency and 

temperature, it is called a stress sweep. When the material response to increase frequency is 

monitored at a constant stress and temperature, it is called a frequency sweep. So, a stress 

sweep evaluates the material resilience while a frequency sweep, evaluates the material 

viscoelasticity properties (Rao 2007). 

 

 

Fig. 5.2 - Mechanical spectra for the different exopolysaccharides, with a 1% (w/w) of EPS solution at frequency 
values up to 10 Hz, for a fixed tension within the linear viscoelastic region.  
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In Figure 5.2, the viscous modulus (G’’) and the elastic modulus (G’), of the tested 

polymers, as a function of the frequency are represented. For all polymers the viscous modulus 

was higher than the elastic modulus, which is translated into a predominant viscous behaviour.  

For GNEX, EPS-g and EPS-s polymers, the same behaviour was observed, wherein the 

mechanical spectra is characterized by the approaching of a crossover of the dynamic moduli, 

at the highest frequency, 10 Hz. EPs-x also showed an approaching of a crossover of both 

modulus at 10 Hz, but its dynamic moduli values were lower than GNEX, EPs-g and EPS-s, 

particularly in the elastic modulus. This dependence of the dynamic moduli with the frequency 

indicates the presence of solutions with entangled polymer chains. 

For EPs-m and S7 polymers the viscoelastic moduli did not cross, nevertheless they 

presented identical viscous and elastic modulus’ values for frequencies till 1 Hz, in comparison 

to GNEX, EPS-g and EPs-s. 
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5.2 Film-forming capacity 

The polysaccharides synthesized by Enterobacter A47 have been also the subject of 

characterization for renewable materials into bioplastics trends, as they show non-toxic and 

eco-friendly film forming capacities (Nagarajan et al. 2013). 

In order to assess this ability, a preliminary test was performed for all polymers, in which 

the outcome is shown in Figure 5.3. 

 

 

First and foremost, it is possible to verify that most of the polymers were capable of 

forming films without the addition of any sort of plasticizer. As it can be seen by EPs-g, GNEX, 

EPS-x, EPS-s, EPS-m and S4 polymers, transparent films with notorious plastic appearance were 

obtained. S8 and S10 polymers were unable to form films (Figure 5.3) 

With these results in perspective, the most promising film-forming EPS were chosen to 

perform further films characterization, namely, the study of their mechanical properties and 

water vapour permeability. The selected polymers were: EPs-g, EPs-x and EPs-s (Figure 5.4). 

For this film-forming characterization, a widely used plasticizer, glycerol, was used in order to 

overcome the films’ brittleness usually associated with polysaccharide-based films, and also to 

increase their workability and flexibility (Tajik et. al. 2013). The glycerol was added into all EPS 

Fig. 5.3 - Preliminary test for film-forming capacity of the different exopolysaccharides produced by Enterobacter A47, 
in petri-dishes, using an aqueous solution of 1% (w/v). 
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solution in the same concentration (0.3 gglycerol gpolymer
-1) and the water content was measured, 

to ensure equal conditions.  

 

 

 

 

 

 

 

 

 

 

 

At first sight both EPs-g and EPs-s exhibited thin, transparent, but somewhat fragile films, 

while EPS-x presented a colored and more elastic film.  

The films were maintained under a controlled relative humidity before performing any 

others tests. The water content of the conditioned films from, EPs-g, EPs-x and EPs-s was: 18 ± 

0.6, 15 ± 3.0 and 20 ± 0.2, respectively, describing an average of 18-20% for all three polymers.  

In addition to glycerol, a common plasticizer (Tajik et. al. 2013), the adsorbed water also acts 

like it, conditioning the films properties.  

 

 

5.2.1 Tensile tests 

The mechanical properties of a polymer allow to perceive the resilience of these type of 

biomaterials and, consequently, establish if they accommodate the desired applications’ 

characteristics. In order to assess these properties, polymers were subjected to tensile stress 

to evaluate their elastic or plastic behavior. With elastic behavior, a polymer can suffer 

elongation and return to its original shape and size, upon removal of the tension, while with 

plastic (or ductile) behavior its deformation is permanent. After continuous stress the ductile 

material eventually ruptures, step also known as ductile fracture (He et al. 2013). 

Fig. 5.4 - Films made from specific exopolysaccharides produced by Enterobacter A47, 
which presented film-forming capacity using an aqueous solution of 1.25 % (w/v), with 

presence of 30% of glycerol 99% as plasticizer. 
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The selected polymers were then tested through tensile tests, as shown in the next figure: 

 

 

 

 

 

 

 

 

 

 

 

 

As the films were stretching due to the applied force, their capacity to endure such 

strength was recorded online until they were no longer capable of stretch and break, as shown 

by Figure 5.5. 

It was evidently observed that EPs-s and EPS-g films had similar mechanical properties 

(Figure 5.6), in relation to the deformation tolerated till break occurred. These two polymer 

films had identical strain at break, 4 and 5 % (Table 9), respectively, since for both of them an 

elongation of almost 3-4 mm was only possible with a force of approximately 8-10 N. On the 

contrary, for EPS-x polymer’s break to occur it was necessary much less applied force, around 3 

N, and it was stretched till 9 mm, which was more than double comparatively to the other 

polymers. 

 

 

  

 

 

 

 

 

 

 

 

Fig. 5.5 - Assembly of the film in the TA-Xtplus texture analyser at rest and 
visualization of film’s rupture as result of the tensile experiments. 

Fig. 5.6 - Representation of the tensile tests, F vs distance, of the EPS-s, EPs-g and EPS-x films. 
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Once EPs-x films required less stress to break (3.84 MPa) and in simultaneous 

demonstrated a higher strain at break (15%), nearly triple, it illustrated a significant reduction 

on the mechanical resistance when compared to the other films tested. 

These facts were corroborated by the data presented in Table 9, whereas the lower 

mechanical resistance of EPS-x film is suggested by the lowest Young’s modulus value, as 

opposed to the higher mechanical resistance of the EPS-s and EPs-g films.  

 

Table 9 –Mechanical properties for the three tested biopolymers, EPs-s, EPS-g and EPS-x, and literature data, with 

30% (w/w) of glycerol content. 

(*)Tajik et. al. 2013 

 

Also, when compared to the reported data by Tajik et. al., 2013 (Table 9), it was possible 

to observe that only EPS-x described higher elongation with considerable reduction of the 

applied force, which represented a significant diminution of the mechanical resistance. 

Concerning EPS-s and EPS-g films, although they demonstrated higher mechanical resistance 

than the soluble soybean polysaccharide film, they consequently presented significant 

reduction in the ability to deform, a characteristic that doesn’t meet the required standards. 

All these results can be probably due to the lesser film’s thickness in comparison to the soluble 

soybean polysaccharide film. 

The different characteristics of EPS-x film might be due to its different chemical 

composition in terms of galactose content that was much lower than the other two polymers. 

Besides that, EPS-x average molecular weight was lower (1.7x106) than the others (> 4.0x106) 

(Table 2). 

 

 

 

 

 

 

Film Thickness (µm) 
Young’s modulus 

(MPa) 

Stress at 
break 
(MPa) 

Strain at 
break 

(%) 

EPs-s 32.0 ± 5.7 303 11.64 4 

EPS-g 40.0 ± 8.5 425 15.54 5 

EPS-x 57.0 ± 14.1 15 3.84 15 

Soluble soybean 
polysaccharide (*) 

73.0 ± 5.0 40 11.27 30 
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5.2.2 Water Vapour Permeability 

This parameter indicates the easiness how water molecules diffuse through the dense film 

matrix, which are moving according to a concentration gradient (or the driving force). 

 

The EPS-s, EPS-g and EPS-x films were also subjected to this characterization.  

 

 

  

 

 

 

 

After approximately two days of experiment, it was determined the water vapour 

permeability, accordingly to equation 7 (Table 10). 

 

Table 10 – Water Vapour Permeability data for the three tested biopolymers, EPs-s, EPS-g and EPS-x, and literature 
data, incorporated with 30% (w/w) of glycerol content. 

 

 

 

 

 

 

(*)Tajik et. al. 2013 

 

The water vapour permeability values for EPS-s and EPS-g films, with 1.75E-11 and 1.73E-

11 mol m-1 s-1 Pa-1, respectively, were identical to each other, while EPS-x film presented a 

higher permeability, of 2.26E-11 mol m-1 s-1 Pa-1.  

In literature, this characteristic has also been found for other polysaccharides. For 

example, in Tajik et. al. 2013, soluble soybean polysaccharide films (which have a pectin-like 

structure) presented a water vapour permeability of 1.13E-11 mol m-1 s-1 Pa-1, with the same 

glycerol plasticizer concentration (30% (w/w)) and 73 ± 5.0 µm of film thickness.  Regarding 

Film 
WVP 

(mol m-1 s-1 Pa-1) 
average 

WVP 
(mol m-1 s-1 Pa-1) 
standard deviation 

EPs-s 1.75E-11 7,290E-12 

EPS-g 1.73E-11 3,994E-12 

EPS-x 2.26E-11 5,186E-12 

Soluble soybean 
polysaccharide (*) 

1.13E-11 3.889E-12 

(A) (B) (C) 

Fig. 5.7 - Schematics of the water vapour permeability’s equipment: (A) vial; (B) vial with 
saturated Mg(NO3)2.6H2O solution and (C) assembly of a EPS film circle in (B), with silicone. 
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EPS films produced by Enterobacter A47, the water permeability results do not meet the 

required parameters into food applications, just because the water vapour permeability in the 

biofilm should be as low as possible in order to retard the passage of moisture (Bourbon et al. 

2011). 

To conclude, all three EPS were able to form transparent stand-alone films, whose with 

mechanical and barrier properties must be enhanced. It  is expected that EPS films produced 

by Enterobacter A47 can be tailor-made to meet the specifications of certain food products. 
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5.3 Emulsifying capacity 

The newly demand of emulsifying properties has been increasing over the past years, in 

several different areas, from personal care products and food processing and even to oil 

industries, among others (Freitas et al. 2009b).  

In response to these needs, microbial polysaccharides have attracted considerable 

attention over the synthetic products. Aside from their eco-friendly features, such as, 

biodegradability and low toxicity, microbial polysaccharides also display many attributes 

required in food applications: higher foaming, specific activity at extreme temperature, pH and 

salinity, without forgetting their ability to be synthesized from renewable and low cost sources 

(Banat et al. 2000). 

For the purpose of assessing all polymers emulsion formation and stabilizing capacities, 

tests at different temperatures were performed, over a certain time period. The emulsions 

were made with 0.5 %(w/v) EPS aqueous solution and sunflower oil in a 2:3 (v/v) ratio and 

stirred in the vortex for 2 min. 

In first place, as seen by Figure 5.8, all polymers were able to form emulsions at room 

temperature (23 ± 1.0 °C), with an emulsification index of 70% or higher (for the first 24 h), the 

exception being for EPs-x that wasn’t able to form stable emulsions. After this positive 

preliminary test, additional emulsions tests were executed, at different temperatures, to 

evaluate their stabilizing capacity over time.  

The polymers showed different behavior in terms of their emulsion forming and 

stabilizing capacity at the different temperatures of the tests. Equally to the emulsions at room 

temperature, the emulsification index at 24 h for all polymers at 4 and 37 °C were in average 

above 70%. From that point forward, each polymer emulsion behaved differently, as it will be 

explained next. 

To begin with, it was observed that at room temperature, the emulsions prepared with 

either EPs-s or S10 polymer solutions showed the lowest decrease in emulsification, 15-20%, 

for a time period of 21 days. And, with an identical behavior, also GNEX polymer solution’s 

stabilizing capacity presented a reduction of 20% in 17 days. After that, EPS-s and S7 solution 

polymers presented the highest emulsion stabilizing capacity (above 50%) for another 21-28 

days.  

At lower temperature, 4 °C, only GNEX and EPS-s polymer solutions possessed a stabilizing 

capacity above 60% for the first 14 days, while EPS-s polymer solution emulsification remained 

constant at 60% for another 4 weeks.  
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With higher temperatures, 37 °C, S10 and GNEX polymer solutions showed the highest 

stabilizing capacity within 21 days, which was above 60%. On the contrary, for EPs-s and EPs-g, 

both polymers described an inability to stabilize emulsions at higher temperatures, since it was 

continuously diminishing in the first 21 days, till eventually breakdown. 

Finally, for S8 polymer solutions, they weren’t able to stabilize the emulsions at any of the 

temperatures tested since the emulsification broke down in only 3-7 days, as well as for EPs-x 

polymer solutions, that in a matter of hours, all three emulsions broke. 

This panoply of polymers resulted in a highly variability of results that can be fitted into 

numerous applications, thus because either demulsification either emulsification are 

parameters required for different industries. A demulsifier, as the EPS-g polymer, is able to 

reduce the interfacial shear viscosity of an oil-water interface, and promote the aggregation 

and coalescence of the water droplets. For this reason, EPS-g polymer, for instance, can 

compete with commercial polymeric surfactants in oilfileds, and be used for pipelining (Kang et 

al. 2013). 

For the ones whose emulsions were kept stable for time periods longer than a month (4-5 

weeks), they can be widely used in products that are expected to have longer lifetime. On the 

other hand, for those which exhibited less variance after exposure at different temperatures, 

they can be introduced into products that are expected to maintain their quality during and 

after transportation and/or storage. For GNEX and S10 polymer solutions, the emulsion 

stabilizing capacity is still needed to be studied for a longer period in order to conclude if they 

really promote emulsification above 50% for more than those initial 3 weeks.  

To compare the results in Figure 5.8, only S7 and EPS-s polymer solutions were revealed 

as good emulsifiers (≥50%) at room temperatures and for more than 42 days, while EPS-s 

polymer solution also provided an emulsification above 50%, at 4 °C, for the same time period. 

Relatively to the emulsification index (for 24 h) showed in emulsions at room 

temperature, only S4, S10 and EPS-g polymers presented an equal value, 80%, to the one 

showed with rice brain oil, as reported by Freitas et al. 2011b. These results were very 

promising once the EPS:oil ratio in these experiments, was lower (2:3) than in Freitas et al., 

2011b (3:2), meaning that a smaller quantity of EPS solution is capable of efficiently stabilize 

emulsions. Moreover, EPS-s, S7, GNEX and EPS-m polymers exhibited similar or even higher 

emulsification indexes (≥90%) in relation to the synthetic surfactant Triton X-100 (90%) and 

other natural polysaccharides, such as xanthan, alginate and pectin (50-60%) emulsion 

stabilizing capacities, in water-rice bran oil mixture (Freitas et al. 2011b). 



Exopolysaccharide production by Enterobacter A47: optimization of cultivation conditions and study 
of polymer functional properties 

 2012/2013

 

55 
 

Fig. 5.8 - Representation of the emulsification index at different temperatures: 4, 23 and 37 °C, with 0.5% (w/v), for the different exopolysaccharides produced by Enterobacter A47. 
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Now, considering a time period of 17 days (Figure 5.9), in which all polymers could be 

equally compared, it was possible to verify that GNEX showed the most promising stable 

emulsions for all three different temperatures. These highest results are in agreement with 

(Willumsen et al. 1997), in which is established that a stable emulsion is defined by an 

emulsification index after 24 h, of 50%. 

 

Since GNEX fulfills this parameter, it can probably be explained by its lower molecular 

weight, 7.2×105 (Table 2). 

Then, EPS-s polymer had the same profile as GNEX but only for emulsions exposed at 4 

and 23 °C, possibly due to its higher acetate content. For S10 polymer solution, good emulsions 

were obtained for 23 and 37 °C, in which its higher rhamnose relative concentration may be 

the origin of it. For EPS-m and S4 polymer solutions, an only acceptable emulsion were 

produced at 23 °C, maybe because its glucose content is quite similar to the glucose content in 

S10, while for S7, a reasonable emulsion at 37 °C was caused by its absence of succinate 

content, commonly to S10. 

As for EPS-g, EPS-x and S8, no emulsions were found at low temperatures, 4 °C, and 

residual emulsions were produced at 23 and 37 °C. 

In spite this last data, it’s conclusive that Enterobacter A47 is a good emulsifier-producing 

strain because the majority of its polymers’ emulsions have emulsification indexes equal to 

50%, 24 h after shaking.  

 

 

 

Fig. 5.9 - Emulsification index at different temperatures: 4, 23 and 37 °C within 17 days, of different 
exopolysaccharides produced by Enterobacter A47 
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5.3.1 Freezing and Thawing Stability  

 

From the previous analysis on the emulsion stability over time, it was set aside EPS-x and 

S8 polymers into further assessments because of their absent emulsion stabilizing capacity. 

 

 

 

 

 

 

 

 

After preliminary tests on emulsions at 4, 23 and 37 °C, it was performed an evaluation on 

their stability upon a freezing-thawing cycle (Figure 5.10). This test consisted on freezing the 

prepared emulsions at -20 °C for 24 h, followed by thawing those emulsions at room 

temperature, 23 °C, for another 24 h. After freezing at -20°C, all polymers described an 

excellent ability to stabilize highly stable emulsions (≥ 80%), but only GNEX, also presented 

great emulsion stabilization in sequential thawing at room temperature (24% reduction of 

emulsification index). From EPS-m and EPS-s polymers it was possible to achieve satisfactory 

emulsions, with only 30%, while from S4, EPS-g, S10 and S7, those were entirely disrupted. 

Taking into consideration the high emulsion stabilizing capacity for all EPS solutions 

polymers (Figure 5.10) after freezing at -20 °C, their integration into frozen-food applications 

(e.g. pre-prepared meals, sugar syrups), can be applied. They can act as inhibitors of crystal 

formation, like xanthan is used to it (Sutherland 1998). In addition to this, GNEX polymer 

solution showed the highest emulsification upon freezing-thawing cycle, and consequently has 

the highest potential to be used for example in food applications wherein the products are 

frozen or stored at room temperature. 

 

 

 

 

Fig. 5.10 - Emulsification index relative to freezing at -20°C for 24 h (initial) and sequential thawing at room 
temperature for 24 h (final). 
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5.3.2 Thermal Stability  

In addition to exposure at lower temperatures, the emulsion capacity to endure exposure 

to high temperatures was also measured. The emulsions prepared with the EPS polymers 

previously selected, were subjected to increasing temperatures, from 40 to 100 °C, as 

described in Figure 5.11.  

In opposition to previous emulsification results, EPS-g turned out to be an excellent 

emulsifying agent at high temperatures, since its emulsification index was always close to 

100%, decreasing slightly to 89 and 70% at 90 and 100 °C, respectively. Hence, they may be 

considered as thermostable emulsions. 

For the emulsions prepared with S4, identical results were achieved with temperatures 

from 40 to 80, emulsification indexes varying between 100 and 80%, but as the temperature 

rose to 100 °C, the emulsification index dropped significantly to 35% as result of stability 

diminution. With S7 polymer, it was noted a good and constant stabilizing capacity at 70% for 

the increasing temperatures, even for 100 °C in which only EPS-g polymer was able to endure 

it too.  

The emulsions prepared with EPS-s, GNEX, EPS-m and S10 polymers were less 

thermostable, as they were disrupted for temperatures above 50 °C (Figure 5.11). 

As postulated in literature (Sutherland 2001), the polymers properties are influenced by 

many factors, such as, the sugar and acyl composition, primary, secondary and tertiary 

polymeric structure, molecular weight, presence of contaminants, among others. With this in 

perspective, and since all polymers were produced at different cultivations conditions, it could 

be the origin of such emulsion formation and stabilizing variability (Figures 5.8 – 5.11), in 

relation to these polymers solutions. For instance, proteins can be responsible for these 

differences in thermostability. If this contaminant isn’t effectively removed during the 

polymer’s purification step, it could act as surfactant, and in the presence of high 

temperatures (above 37 °C), protein denaturation may occur changing their surfactant ability 

and changing the stability of the emulsions. 

To compare, some other microbial polysaccharides, like gellan and xanthan, have also 

been recognized as emulsion former and stabilizers agents (Imam et al. 2012). For instance, 

like xanthan (Sutherland 1998), the EPS polymer produced by Enterobacter A47, can be used 

to foam stabilization in fire-fighting fluids, wherein high temperatures are achieved. 

 

   



Exopolysaccharide production by Enterobacter A47: optimization of cultivation conditions and study 
of polymer functional properties 

 2012/2013

 

59 
 

 

Fig. 5.11 - Emulsification index measurements for thermal stability, within temperatures from 40 to 100 °C. 
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5.4 Flocculating capacity 

The main objective of this evaluation experiments was to assess the flocculating activity of 

the Enterobacter A47 polysaccharides, at room temperatures and neutral pH. 

In order to determine this physical property, an EPS aqueous solution that acts as a 

flocculating agent, was added to a kaolin clay suspension. This flocculant agent can promote 

the flocculation activity after mechanical agitation, wherein the dispersed clay platelets 

spontaneously form flocs and are separated from the liquid phase (Chaiwong et al. 2008). 

Two sets of experiments were performed, namely using EPS solutions with different 

concentration 0.01 and 0.001% (Figure 5.12). At this concentration, EPs-x immediately stands 

out for its superior flocculating capacity, in which 43% of the particles dispersed into the 

solution were separated from the liquid phase. In similar way, also S7 and EPS-m polymers 

were capable of flocculating 39 and 37% of the clay particles, respectively. However, EPS-s had 

the lowest flocculating capacity (<20%). 

As demonstrated in Freitas et al. 2011b, considering the flocculants concentration of 

0.01%, the most efficient inorganic flocculating agent, Al2(SO4)3 (at 30%), was evidently 

exceeded by EPS-g < S8 < EPs-m < S7 < EPS-x polymers (in ascending order).  

With a 10% lower concentration of EPS (Figure 5.12), almost all biopolymers’ flocculating 

activity were dramatically reduced, especially for S8 and EPS-g polymers whose flocculating 

activity was extinguished. 

 

 

 

 

 

 

 

 

 

 

For EPS-x, EPS-m and S7 polymers that exhibited the highest flocculating activity (with 

0.01%), it was diminished between 26-29%. However, S10 showed a similar flocculating 

activity for both EPS concentrations. And, for EPS-s, it was doubly enhanced, turning into the 

most economical promising biopolymer, since with fewer EPS concentration it was able to 

aggregate the same amount of particles presented in solution. 

Fig. 5.12 - Flocculation capacity of different exopolysaccharides, produced by Enterobacter 
A47, at two distinct exopolysaccharide concentrations: 0.01 and 0.001%. 
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In conclusion, polysaccharides produced by Enterobacter A47 can be broadly used for 

specific market needs, not only because their flocculating capacity meet the high standards 

imposed by synthetic polymers, but also because their higher biodegrability, eco-friendly 

compatibility and low toxicity can compete with the low cost and not shear resistant synthetic 

polymers. 
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6 Conclusion and Future Work 

Enterobacter A47 was able to grow and synthesize EPS under the different experimental 

conditions performed, namely, with DO at 10, 30 and 60%, as well as with reduced phosphate 

concentrations, 5.25 and 3.81 g L -1. However, the culture’s ability to synthesize EPS and the 

polymer’s composition were affected by the conditions tested. 

The optimal control of DO concentration for FucoPol production was determined to be 

10% of air saturation value, due to its superior EPS production (6.11 g L-1) and volumetric 

productivity (0.080 g L-1 h-1), in comparison to the assays wherein DO was controlled at 30 and 

60%.  

The reduction of phosphate concentration in the cultivation medium to a quarter of its 

value in the standard cultivation, did not affect the culture’s EPS production capacity. In fact, 

an EPS production of 7.38 g L-1 was achieved, a value identical to the standard conditions (7.50 

g L-1) previously reported. Moreover, this reduction implied a considerable diminution of the 

overall FucoPol’s cost production, since phosphate sources are expensive. 

In future studies, the FucoPol production can be further improved by assessing the 

influence of other inorganic salts present in the cultivation media, namely, magnesium, 

calcium, sodium, potassium, among others, as suggested by studies performed with other 

microorganisms. 

The study about the functional properties of the distinct EPS synthesized by Enterobacter 

A47 revealed that their different physical-chemical characteristics have conferred them 

different interesting properties.  

In terms of rheology, all polymers demonstrated shear-thinning behavior, the exception 

being for S8 and S10 in which a Newtonian plateau was described. It would be interesting to 

complement this part of the study, with an evaluation of the polymers’ apparent viscosity at 

various temperatures, and also an assessment of the polymers’ intrinsic viscosity, the latter 

being because they all present different molecular weights and possibly different chain 

rigidities.  

Concerning the film-forming capacity, EPS-s, EPS-g and EPS-x films presented high water 

vapour permeability and, in addition to this, it was clearly observed that EPS-x films 

demonstrated a superior elasticity. However, it is still necessary to examine the mechanical 

resistance of these three films with variable glycerol concentrations and without glycerol as 

plasticizer, in order to correlate its influence on the films behavior. Moreover, all of these film-

forming tests are yet to be performed for S4 and GNEX polymers, who also demonstrated film-

forming capacity.  
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Regarding the emulsion formation capacity, all polymers possessed this functional 

characteristic. Nevertheless, emulsion stabilizing capacity was not present in all of them, more 

precisely to S8 and EPS-x. Instead, EPS-s polymer solutions showed higher stability (at 4 and 23 

°C) within 42 days, while S7 polymer solution stabilizing capacity (at 23°C) was extended for 

another 14 days. With freezing-thawing cycle evaluation, only GNEX showed excellent 

emulsion stabilizing capacity, while at increasing temperatures, it was EPS-g who evidently had 

superior stabilizing capacity. This work could also be optimized by varying the EPS:oil ratio in 

the mixtures, and assessing the minimal quantity of EPS needed to form and stabilize 

emulsions. 

Additionally, all polymers presented different flocculating capacities for both 0.01 and 

0.001% of EPS. The EPS-x polymer showed highest flocculating capacity, 43% (at 0.01%), and 

EPS-s increased its flocculating capacity up to 38%, with a lower concentration (0.001%). Thus, 

this capacity should also be studied within different pH ranges and with different cations, for 

example. 

In conclusion, Enterobacter A47 is able to produce various polymers with many different 

functional properties. This versatility is very interesting thus because it is possible to produce 

tailor-made polymers (to meet specific market demands), and also because it can have a wide 

range of applications. Those applications can be implemented in food, pharmaceutical, oil and 

petroleum industries, painting manufacture, and others, as emulsifier, stabilizer, gelling 

agents, thickening agents, film formers, and even to be incorporated as antimicrobial or 

antioxidant agents, for example. 



Exopolysaccharide production by Enterobacter A47: optimization of cultivation conditions and study 
of polymer functional properties 

 2012/2013

 

65 
 

7 Bibliography 

Abbasi, A.; Amiri, S., 2008. Emulsifying behavior of an exopolysaccharide produced by 

Enterobacter cloacae. African Journal of Biotechnology 7, No 10, 1574-1576. 

 

Almeida, J.R.M.; Fávaro, L.C.L.; Quirino, B.F., 2012. Biodiesel biorefinery: opportunities and 

challenges for microbial production of fuels chemicals from glycerol waste. Biotechnology for 

Biofuels, 5:48 

 

Alves, V. D.; Freitas, F.; Torres, C.A.V.; Cruz, M. et al., 2010. Rheological and morphological 

characterization of the culture broth during exopolysaccharide production by Enterobacter sp. 

Carbohydrate Polymers 81, 758-764. 

 

Alves, V.D.; Costa, N.; Coelhoso, I.M., 2010. Barrier properties of biodegradable composite 

films based on kappa-carrageenan/pectin blends and mica flakes. Carbohydrate Polymers 79, 

269-276.  

 

Amanullah, A.; Tuttuet, B.; Nienow, A.W., 1998. Agitator Speed and Dissolved Oxygen Effects in 

Xanthan Fermentations. Biotechnology and Bioengineering 57, No 2, 198-210. 

 

Arvidson, S.A.; Rinehart, B.T.; Gadala-Maria, F. 2006. Concentration regimes of solutions of 

levan polysaccharide from Bacillus sp. Carbohydrates Polymers 65, 144-149. 

 

Ashtaputre, A.A.; Shah,A.K., 1995. Studies on the Exopolysaccharide from Sphingomonas 

paucimobilis-GS1: Nutritional Requirements and Precursor-Forming Enzymes. Current 

Microbiology 31, 234-238. 

 

Atkins, P.; Jones, L. Chemical Principles: The Quest for Insight. Fourth Edition. New York: W.H. 

Freeman and Company, 2008. 144-154p. 9780716799030 

 

Banat, I.; Makkar, RS.; Cameotra, SS., 2000. Potential commercial applications of microbial 

surfactants. Appl. Microbiol. Biotechnol. 53, 495-508. 

 



Exopolysaccharide production by Enterobacter A47: optimization of cultivation conditions and study 
of polymer functional properties 

 2012/2013

 

66 
 

Banik, R.M.; Santhiagu, A., 2006. Improvement in production and quality of gellan gum by 

Sphingomonas paucimobilis under high dissolved oxygen tension levels. Biotechnol Lett 28, 

1347-1350. 

 

Bourbon, A.I.; Pinheiro, A.C.; Cerqueira, M.A., et al. 2011. Physico-chemical characterization of 

chitosan-based edible films incorporating bioactive compounds of different molecular weight. 

Journal of Food Engineering 106, 111-118. 

 

Cescutti, P.; Kallioinen, A.; Impallomeni, G., et al., 2005. Structure of the exopolysaccharide 

produced by Enterobacter amnigenus. Carbohydrate Research 340, 439-447. 

 

Chaiwong, N.; Nuntiya, A., 2008. Influence of pH, Electrolytes and Polymers on Flocculation of 

Kaolin Particle. Chiang MaiJ.Sci 35, No 1, 11-16. 

 

Chandrasekaran, M., 1997. Industrial enzymes from marine microorganisms: The Indian 

scenario. J. Mar. Biotechnol. 5, 86–89. 

 

Cross, M.M., 1965. Rheology of non-newtonian fluids: a new flow equation for pseudoplastic 

systems. Journal of Colloid Science 20, 417-437. 

 

Delgado, R.; Rosas, J.G.; Gómez, N., et al., 2013. Energy valorization of crude glycerol and corn 

straw by means of slow co-pyrolysis: Production and characterization of gas, char and bio-oil. 

Fuel 112, 31-37. 

 

Dermlin, W.; Prasertsan, P. Doelle, H., 1999. Screening and characterization of bioflocculant 

produced by isolated Klebsiella sp. Appl Microbiol Biotechnol 52, 698-703. 

 

Du, J.; Shao, Z.; Zhao, H., 2011. Engineering microbial factories for synthesis of value-added 

products. J. Ind. Biotechnol. 38, 873-890. 

 

Freitas F., et al., 2013. Exopolysaccharide synthesis by Enterobacter A47 using different carbon 

sources: impact on production and polymer physical-chemical properties. Submitted to 

Carbohydrate Polymers 



Exopolysaccharide production by Enterobacter A47: optimization of cultivation conditions and study 
of polymer functional properties 

 2012/2013

 

67 
 

Freitas, F. et al. 2009. Characterization of an extracellular polysaccharide produced by a 

Pseudomonas strain grown on glycerol. Bioresource Technology 100, 859-865. 

 

Freitas, F.; Alves, V.; Reis, M.A.M., 2011. Advances in bacterial exopolysaccharides: from 

production to biotechnological applications. Trends in Biotechnology 29, N0 8, 388-398. 

 

Freitas, F.; Alves, V.D.; Carvalheira, M., et al., 2009. Emulsifying behavior and rheological 

properties of the extracellular polysaccharide produced by Pseudomonas oleoverans grown on 

glycerol byproduct. Carbohydrate Polymers 2009, 549-556. 

 

Freitas, F.; Alves, V.D.; Torres, C.A.V., et al., 2011. Fucose-containing exopolysaccharide 

produced by the newly isolated Enterobacter strain A47 DSM 23139. Carbohydrate Polymers 

83, 159-165. 

 

Gamboa-Suasnavart, R.A.; Marín-Palacio, L.D.; Martínez-Sotelo, J.A., et al., 2013. Scale-up from 

shake flasks to bioreactor, based on power input and Streptomyces lividans morphology, for 

the production of recombinant APA (45/47 kDa protein) from Mycobacterium tuberculosis. 

World J Microbiol Biotechnol 29, 1421-1429. 

 

Gibbs, PA.; Seviour, RJ; Schmid, F., 2000. Growth of filamentous fungi in submerged culture: 

problems and possible solutions. Crit Rev Biotechnol. 20, 17–48. 

 

Halley, P.J.; Dorgan,J.R. 2011. Next-generation biopolymers: Advanced functionality and 

improved sustainability. Materials Research Society 36, 687-691. 

 

Harris, L.S.; Oriel, P.J., 1989. Heteropolysaccharide produced by Enterobacter sakazakii. US 

Patent 4 806 636. 

 

He, J.; Cui, Z.; Chen, F., et al., 2013. The new ductile fracture criterion for 30Cr2Ni4MoV ultra-

super-critical rotor steel at elevated temperatures. Materials and Design 52, 547-555. 

Imam, S.H.; Bilbao-Sainz, C.;Chiou, B., et al., 2012. Biobased adhesives, gums, emulsions, and 

binders: current trends and future prospects. Journal of Adhesion Science and Technology, 1-

26. 

 



Exopolysaccharide production by Enterobacter A47: optimization of cultivation conditions and study 
of polymer functional properties 

 2012/2013

 

68 
 

Jansson, P. E., Kenne, L., & Lindberg, B., 1975. Structure of extracellular polysaccharide from 

Xanthomonas campestris. Carbohydrate Research, 45(DEC), 275L 282. 

 

Kang, W.L.; Liu, S.R.; Xu, B., et al., 2013. Study on Demulsification of a Demulsifier at Low 

Temperature and Its Field Application. Petroleum Science and Technology 31, 572-579. 

 

Kaur, G.; Mahajan, M.; Bassi, P., 2012. Derivatized Polysaccharides: Preparation, 

Characterization, and Application as Bioadhesive Polymer for Drug Delivery. International 

Journal of Polimeric Materials and Polymeric Biomaterials 62, 475-481. 

 

Kumar, A.S.; Mody, K.; Jha, B., 2007. Bacterial exopolysaccharides - a perception. Journal of 

Basic Microbiology 47, 103-117. 

 

Kumar, C.G.; Joo, H.; Kavali, R., et al., 2004. Characterization of an extracellular biopolymer 

flocculant from a haloalkalophilic Bacillus isolate. World Journal of Microbiology % 

Biotechnology 20, 837-843. 

 

Lee, I.Y.; Kim, M.K.; Lee, J.H.; et al., 1999. Influence of agitation spped on production of curdlan 

by Agrobacterium species. Bioprocess Engineering 20, 283-287. 

 

Liakopoulou-Kyriakides, M.; Psomas, S.K.; Kyriakidis, D.A., 1999. Xanthan Gum Production by 

Xanthomonas campestris w.t. Fermentation from Chestnut Extract. Applied Biochemistry and 

Biotechnology 82, 175-183. 

 

Lopes, A.M.; Fonseca, A. Biologia Microbiana. 1ª Edição. Lisboa: Universidade Aberta, 2005. 52-

56p. 972-674-170-X. 

 

Mandal, A.K.; Yadav, K.K.; Sem, I.K., et al., 2013. Partial Characterization and flocculating 

behavior of an exopolysaccharide produced in nutrient-poor medium by a facultative 

oligotroph Klebsiella sp. PB12. Journal of Bioscience and Bioengineering 115, N0 1, 76-81. 

McNeil, B., Harvey, LM., 1993. Viscous fermentation products. Crit Rev Biotechnol, 13, 275–

304. 

 



Exopolysaccharide production by Enterobacter A47: optimization of cultivation conditions and study 
of polymer functional properties 

 2012/2013

 

69 
 

Meade, M.J.; Tanenbaum, S.W.; Nakas, J.P., 1994. Optimization of novel extracellular 

polysaccharide production by an Enterobacter sp. on wood hydrolysates. Applied and 

Environmental Microbiology 60, No 4, 1367-1369. 

 

Mishra, A.; Jha, B. 2013. Microbial polysaccharides. The prokaryotes-applied Bacteriology and 

Biotechnology 179-192. 

 

Murray, PR. et al. Enterobacteriaceae: Introduction and Identification. In: Manual of Clinical 

Microbiology, 8th ed. ASM Press, 2003. 

 

Nagarajan, M.; Benjakul, S.; et al., 2013. Film forming ability of gelatins from splendid squid 

(Loligo formosana) skin bleached with hydrogen peroxide. Food Chemistry 138, 1101-1108. 

Peters, H. et al., 1989. The Influence of Agitation Rate on Xanthan Production by Xanthomas 

campestris. Biotechnology and Bioengineering 34, 1393-1397. 

 

Péterszegi, G.; Fodil-Bourahla, I.; Robert, A.M.; Robert, L., 2003. Pharmacological properties of 

fucose. Applications in age-related modifications of connective tissues. Biomedicine & 

Pharmacotherapy 57, 240-245. 

 

Péterszegi, G.; Robert, A.M.; Robert, L., 2003. Protection by L-fucose and fucose-rich 

polysaccharide against ROS-produced cell death in presence of ascorbate. Biomedicine & 

Pharmacotherapy 57, 130-133. 

 

Philbe, J.L., 2002. Nouveau microorganism de la famille dos Enterobacteriaceae. French 

National Patent FR 2840920. 

 

Prajapati, V.D.; Jani, G.K.; Zala, B.S. et al., 2013. An insight into the emerging exopolysaccharide 

gellan gum as a novel polymer. Carbohydrated Polymers 93, 670-678. 

 

Prasertsan, P.; Dermlim, W.; Doelle, H.; Kennedy, J.F., et al., 2006. Screening characterization 

and flocculating property of carbohydrate polymer from newly isolated Enterobacter cloacae 

WD7. Carbohydrate Polymers 66, 289-297. 

 



Exopolysaccharide production by Enterobacter A47: optimization of cultivation conditions and study 
of polymer functional properties 

 2012/2013

 

70 
 

Rao, M.A. Rheology of Fluid and Semisolid Foods: Principles and Applications. 2nd Edition. 

Washington: Springer Science+Business Media, LLC., 2007. 105-109p. 978-0-387-70929-1. 

 

Reis, M.A.M., Oliveira, R., Freitas, F., Alves, V.D., 2011. Fucose-containing bacterial biopolymer, 

WO 2011/073874 A2. 

 

Rho, D.; Mulchandani, A.; Luong, J.H.T.; LeDuy, Anh., 1988. Oxygen requirement in pullulan 

fermentation. Appl Microbiol Biotechnol 28, 361-366. 

 

Rinaudo, M., 2004. Role of Substituents on the Properties of Some Polysaccharides. 

Biomacromolecules 5, 1155-1165. 

 

Rywinska, A.; Juszczyk, P.; Wojtatowicz, M., et al., 2013. Glycerol as a promising substrate for 

Yarrowia lipolytica biotechnological applications. Biomass and Bioenergy 48, 148-166. 

 

Sabra, W.; Zeng, A.-P.; sabry, S.; Omar, S. et al., 1999. Effect of phosphate and oxygen 

concentrations on alginate production and stoichiometry of metabolism of Azotobacter 

vinellandii under microaerobic conditions. Appl Microbiol Biotechnol 52, 773-780. 

 

Seviuor, R.J.; McNeil, B.; Fazenda, M.L., et al., 2011. Operating bioreactors for microbial 

exopolysaccharide production. Critical Reviews in Biotechnology 31, No 2, 170-185. 

 

Sutherland, I.W., 1994. Structure-Function Relationships in Microbial Exopolysaccharides. 

Biotech.Adv. 12, 393-448. 

 

Sutherland, I.W., 1998. Novel and established applications of microbial polysaccharides. 

TIBTECH 16, 41-46. 

Sutherland, I.W., 2001. Microbial polysaccharides from Gram-negative bacteria. International 

Dairy Journal 11, 663-674. 

 

Tajik, S.; Maghsoudlou, Y.; Khodaiyan, F., et. al., 2013. Soluble soybean polysaccharide: A new 

carbohydrate to make a biodegradable film for sustainable green packaging. Carbohydrate 

Polymers 97, 817-824. 

 



Exopolysaccharide production by Enterobacter A47: optimization of cultivation conditions and study 
of polymer functional properties 

 2012/2013

 

71 
 

Torres C.A.V., et al., 2013. Impact of glycerol and nitrogen concentration on Enterobacter A47 

growth and exopolysaccharide production. Submitted to Process Biochemistry 

 

Torres, C.A.V.; Antunes, S.; Ricardo, A.R., et al, 2012. Study of the interactive effect of 

temperature and pH on exopolysaccharide production by Enterobacter A47 using multivariate 

statistical analysis. Bioresource Technology 119, 148-156. 

 

Torres, C.A.V.; Marques, R.; Antunes, S., et al. 2010. Kinetics of production and 

characterization of the fucose-containing exopolysaccharide from Enterobacter A47. Journal of 

Biotechnology 156, 261-267. 

Umashankar, H.; Annadurai, G.; Chellapandian, M.R.V., 1996. Influence of nutrients on cell 

growth and xanthan production by Xanthomas campestris. Bioprocess Engineering 14, 307-

309. 

 

Vanhooren, P.; Vandamme, E.J., 1998. Biosynthesis, physiological role, use and fermentation 

process characteristics of bacterial exopolysaccharides. Recent Res. Devel. Fermen. Bioeng. 1, 

253–299. 

 

Vélez-Ruiz, J.F.; Cánovas, G.V.B.; Peleg, M., 1997. Rheological properties of selected dairy 

products. Critical Reviews in Food Science and Nutrition 37, No 4, 311-359. 

 

Verbeeten, W.M.H., 2010. Non-linear viscoelastic models for semi-flexible polysaccharide 

solution rheology over a broad range of concentrations. J.Rheol. 54, No 3, 447-470. 

 

Vianna-Filho, R.P., 2013. Rheological characterization of O/W emulsions incorporated with 

neutral and charged polysaccharides. Carbohydrate Polymers 93, 266-272. 

Whitney, J.C.; Howell, P.L., 2013. Synthase-dependent exopolysaccharide secretion in Gram-

negative bacteria. Trends in Microbiology 21, No 2, 63-72. 

 

Willumsen, P.A.; Karlson, U., 1997. Screening of bacteria, isolated from PAH-contaminated 

soils, for production of biosurfactants and bioemulsifiers. Biodegradation 7, 415-423. 

 

Xu, X.; Chen, P.; Zhang, L., 2005. Chitosan-starch composite film: preparation and 

characterization. Industrial Crops and Products 21, 185-192. 



Exopolysaccharide production by Enterobacter A47: optimization of cultivation conditions and study 
of polymer functional properties 

 2012/2013

 

72 
 

 

Xu, X.; Chen, P.; Zhang, L., 2007. Viscoelastic properties of an exopolysaccharide: Aeromonas 

gum, produced by Aeromonas nichidennie 5797. Biotechnology 44, 387-401. 

 

Yang, Y.L., 2002. Novel microorganism isolated from Chinese elm (Ulms sp.) and process for 

preparing exopolysaccharides by employing the microorganism. US Patent 2002/0115158.  

 

Yu, X.; Wang, Y.; Wei, G.; Dong, Y., 2007. Media optimization for elevated molecular weight 

and mass production of pigment-free pullulan. Carbohydrate Polymers 89, 928-934. 


