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Abstract 

Small non-coding RNAs (sRNAs) are regulatory molecules that typically are 

not translated into proteins. These molecules are often highly structured and very 

stable and can affect many genetic pathways in all domains of life. Bacterial small 

regulatory RNAs (sRNAs) parallel microRNAs in their ability to control multiple 

targets. Small RNAs can bind to proteins or to mRNA targets. The sRNAs that act 

by an antisense mechanism can have full (cis-encoded) or partial complementarity 

(trans-encoded) with their targets. Most of the trans-encoded sRNAs studied so 

far in Escherichia coli bind the RNA chaperone Hfq. The 5’ end of antisense RNAs is 

usually found to be critical for the interaction with targets, generally inhibiting 

translation and promoting mRNA decay. RNases are key elements in the control of 

RNA levels in the cell and not surprisingly are also critical in the regulation of 

sRNAs. In E. coli there are three 3’-5’exoribonucleases that accomplish most of the 

mRNA exodegradative activity: ribonuclease II (RNase II), ribonuclease R (RNase R) 

and polynucleotide phosphorylase (PNPase). 

The main goal of this Doctoral work was to study the degradation pathways 

of sRNAs. It was already known that 3’-5’ exonucleolytic degradation was a major 

regulatory pathway controlling the levels of the small non-coding MicA RNA, an 

important regulator of outer membrane protein expression. Besides ribonucleases 

there are other factors involved in the decay of sRNAs. In this work we addressed 

some of these factors and their functions in the degradation of sRNAs. 

Hfq promotes sRNA-mRNA duplex formation and is important to stabilize 

sRNAs. However, the transient existence of sRNAs free from Hfq binding is part of 

the normal dynamic lifecycle of a sRNA. In the first part of this work, we studied 

the degradation pathways of sRNAs in the absence of Hfq. We have found that 

PNPase is the main ribonuclease involved in the rapid degradation of sRNAs, 

especially those that are not bound to Hfq. In Hfq‒ cells the inactivation of PNPase 
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leads to increased levels of the sRNAs MicA, GlmY, RyhB and SgrS. We also found 

that in the absence of Hfq all sRNAs are trimmed at their 3’-end resulting in 

slightly shorter transcripts than their full-length species.  

The turnover of Hfq-free sRNAs is growth-phase regulated and PNPase 

activity is particularly important in stationary phase. In fact, the contribution of 

PNPase to degradation of sRNAs is far greater than RNase E, which was commonly 

believed to be the main enzyme in the initiation of decay of sRNAs. The lack of 

poly(A) polymerase I (PAP I) also affects the degradation of Hfq-free sRNAs, 

although to a minor extent.  

Small RNAs are not “innocent” molecules waiting to be degraded. The 

sequence and structural features of the small RNAs influence their degradation. In 

the second part of this work, we characterised the RNA determinants involved in 

the stability of the sRNA MicA and further analysed how this may influence the 

regulation of its targets. Based on MicA sequence and secondary structure we 

predicted the following MicA domains: a linear 5’ end sequence; a structured 

module harbouring two stem loops, an internal A/U-rich sequence that is the 

predicted Hfq binding site and a transcriptional terminator with a U-rich linear 3’ 

end. Mutations were introduced and designed to affect certain domains, but not 

the global secondary structure of the MicA. 

Our results showed that besides the 5´domain of MicA, the stem loops and 

the 3´poly(U) tail are also important in target binding. In vivo and in vitro 

experiments showed that not only the AU-rich sequence but also the 

transcriptional terminator are critical for stability and Hfq-binding. The different 

MicA modules confer different stabilities and once again, PNPase was shown to 

be the most important exoribonuclease involved in MicA degradation. The specific 

MicA modules differentially affect the expression of the targets. Disruption of the 

5´ region of MicA significantly affects all mRNA targets analysed. STEM2 was 



xix 

found to be more important for the in vivo repression of both ompA and ecnB 

mRNAs while STEM1 was critical for regulation of tsx mRNA levels. Disruption of 

the 3´U-rich sequence greatly affects all the targets analysed. In conclusion, we 

found that MicA RNA can use different modules to regulate its targets. 

In the third part of this work, we analysed the entire RNA content of the 

cell. To investigate the roles of the three main exoribonucleases we used a whole 

transcriptome sequencing approach (RNA-seq). We used cufflinks algorithm to 

determine the relative abundance of the transcripts and cuffdiff algorithm to find 

significant changes in transcript expression when comparing two samples. After 

this step, we clustered the differentially expressed transcripts into different 

functional categories using the program GeneCodis to retrieve gene ontology 

terms and integrate the diverse biological information. 

We started by comparing the transcriptome changes that occur when cells 

go from exponential to stationary phase. We identified more than 1000 

transcripts that were significantly different between the exponential and 

stationary wild-type samples. Most of these transcripts are somehow connected 

to the E. coli membrane and transport. We found that the three exoribonucleases 

have different roles depending on the growth phase. However, there is some 

overlap between PNPase, RNase II and RNase R functions in both exponential and 

stationary phases. 

In exponential phase, RNase II significantly affected 187 transcripts. The 

majority of these transcripts belong to flagellar assembly and motility functional 

categories suggesting that RNase II mutant may present defects in motility. On the 

other hand, RNase R affected 202 transcripts of which the most interesting ones 

seems to link RNase R to anaerobic respiration. PNPase was the exoribonuclease 

whose mutation affected most transcripts, to a total of 226. Many of these 
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transcripts are stable RNAs (rRNAs, tRNAs and sRNAs) suggesting that PNPase 

might have a very important role in their metabolism.   

Regarding stationary phase, RNase R seems to be the most important 

enzyme in RNA degradation. In a ∆rnr mutant there are almost 700 transcripts 

that are differentially expressed, while ∆rnb and ∆pnp mutants only significantly 

affect 117 and 228 transcripts, respectively. On the other hand PNPase seems to 

be the most important exoribonuclease involved in the degradation of sRNAs. In 

the ∆pnp mutant 41% of the E. coli sRNAs are up-regulated.  

In summary, the work on this dissertation contributed to expand our 

knowledge not only on the small RNA degradation and mRNA targets control but 

also on the role of the exoribonucleases in RNA metabolism.  
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Resumo 

Pequenos RNAs não codificantes (sRNAs) são moléculas reguladoras que 

normalmente não são traduzidas em proteínas. Estas moléculas são na sua 

maioria muito estruturadas, muito estáveis e podem afectar múltiplas vias 

genéticas em todos os domínios da vida. Os pequenos RNAs reguladores (sRNAs) 

bacterianos são similares aos microRNAs na sua capacidade de controlar múltiplos 

alvos. Pequenos RNAs pode ligar-se a proteínas ou ao mRNA alvo. Os sRNAs que 

atuam por um mecanismo de antisense pode ter complementaridade completa 

(transcrito na mesma região mas em sentido contrário – cis) ou parcial (transcrito 

noutra região da sequência mas produzido em sentido contrário – trans) com os 

seus alvos. A maioria dos sRNAs trans-codificados estudados até agora em 

Escherichia coli ligam-se ao chaperone de RNA Hfq. A extremidade 5' dos sRNAs é 

geralmente considerada crítica para a interacção com os alvos, e geralmente 

inibem a tradução e promovem a degradação do mRNA. RNases são elementos 

chave no controle dos níveis de RNA na célula e também são fundamentais na 

regulação dos sRNAs. Em E. coli, há três 3'-5'exoribonucleases que realizam a 

maior parte da actividade degradativa do RNA: Ribonuclease II (RNase II), 

Ribonuclease R (RNase R) e “polynucleotide phosphorylase” (PNPase). 

O objetivo principal deste trabalho de Doutoramento foi estudar as vias de 

degradação de sRNAs. Já se sabia que a degradação exonucleolítica 3'-5 ' era uma 

importante via reguladora no controlo dos níveis do pequeno RNA não-

codificante MicA, um importante regulador da expressão das proteínas da 

membrana externa. Além das ribonucleases há outros fatores envolvidos na 

degradação de sRNAs. Neste trabalho abordamos alguns desses fatores e suas 

funções na degradação de sRNAs. 

A proteína Hfq promove a formação de sRNA-mRNA duplexes e é 

importante para estabilizar os sRNAs. No entanto, a existência transitória de 
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sRNAs livres da ligação ao Hfq faz parte do ciclo de vida normal e dinâmico de um 

sRNA. Na primeira parte deste trabalho, foram estudados os processos de 

degradação dos sRNAs na ausência de Hfq. Nós descobrimos que a PNPase é a 

principal ribonuclease envolvida na rápida degradação de sRNAs, especialmente 

aqueles que não estão ligados ao Hfq. Em células sem Hfq a inactivação da 

PNPase conduz ao aumento dos níveis dos sRNAs MicA, GlmY, RyhB e SgrS. 

Também descobrimos que na ausência de Hfq todos os sRNAs são cortados na sua 

extremidade 3', resultando em transcritos ligeiramente mais curtos do que os 

transcritos de comprimento normal. 

A degradação dos sRNAs não ligados ao Hfq é regulada de acordo com a 

fase de crescimento e a actividade da PNPase é particularmente importante na 

fase estacionária. De facto, a contribuição da PNPase na degradação de sRNAs é 

muito maior do que  a da RNase E, a qual foi geralmente reconhecida como a 

principal enzima involvida na degradação de sRNAs. A deleção da “poly(A) 

polimerase I” (PAP I) afecta também a degradação de sRNAs não ligados ao Hfq, 

mas em menor grau. 

Pequenos RNAs não são "inocentes" moléculas à espera de serem 

degradadas. A sequência e as características estruturais dos pequenos RNAs 

influenciam a sua degradação. Na segunda parte deste trabalho, foram 

caracterizados os determinantes do RNA envolvidos na estabilidade do sRNA MicA 

e ainda foi analisada a sua influência na expressão dos alvos do MicA. Com base 

na sequência e na estrutura secundária do MicA prevem-se os seguintes domínios 

no MicA: uma sequência linear na extremidade 5', um módulo estruturado com 

dois stem loops, uma sequência interna rica em A/U que é o local previsto para a 

ligação do Hfq e um terminador de transcrição com uma extremidade linear 3' rica 

em Uridinas. As mutações foram introduzidas e concebidas para afectar certos 

domínios, mas não a estrutura secundária global do MicA. 
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Os nossos resultados mostraram que, além do domínio 5' do MicA, os stem 

loops e a cauda 3'poly (U) também são importantes na ligação aos alvos. As 

experiências in vivo e in vitro mostraram que não só a sequência rica em A/Us, 

mas também o terminador de transcrição são críticos para a estabilidade e ligação 

com o Hfq. Os diferentes módulos do MicA conferem diferentes estabilidades e, 

mais uma vez, a PNPase mostrou ser a exoribonuclease mais importante 

envolvida na degradação do MicA. Os  módulos específicos do MicA afetam 

diferencialmente a expressão dos alvos. Perturbação da região 5' do MicA não 

afecta significativamente o alvo lamB mRNA, no entanto os níveis de ompA e ecnB 

são dramaticamente aumentados. Em contraste, mutações nos stem loops 

aumentam fortemente os níveis do mRNA lamB, mas quase não afetam os mRNAs 

ompA e ecnB. Apenas interrupção da seqüência 3' rica em Us afeta muito todos os 

alvos analisados. 

Na terceira parte deste trabalho, analisamos todo o RNA da célula. Para 

investigar os papéis das três principais exoribonucleases usamos uma abordagem 

de sequenciamento de todo o transcriptoma (RNA-seq). Usou-se o algoritmo 

cufflinks para determinar a abundância relativa dos transcritos e o algoritmo 

cuffdiff para encontrar mudanças significativas na expressão dos transcritos ao 

comparar duas amostras. Após este passo, agruparam-se os transcritos 

diferencialmente expressos em diferentes categorias funcionais, utilizando o 

programa GeneCodis para obter os termos da ontologia de genes e integrar a 

diversificada informação biológica. 

Começámos por comparar as alterações que ocorrem no  transcriptoma 

quando as células passam da fase exponencial para a fase estacionária. Foram 

identificados mais de 1000 transcritos significativamente diferentes entre as 

amostras wild-type em exponencial e em estacionária. A maioria desses 

transcritos estão de alguma forma ligado à membrana e ao transporte em E. coli. 
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Nós descobrimos que as três exoribonucleases têm papéis diferentes, 

dependendo da fase de crescimento. No entanto, existe alguma sobreposição 

entre os papéis da PNPase, da RNase II e da RNase R em ambas as fases 

exponencial e estacionária. 

Na fase exponencial, a RNase II alterava significativamente 187 transcritos. 

A maioria destes transcritos pertencem ás categorias funcionais de montagem de 

flagelos e mobilidade sugerindo que o mutante da RNase II pode apresentar 

defeitos na mobilidade. Por outro lado, a RNase R alterava 202 transcritos, dos 

quais os mais interessantes parece ligar a RNase R com a respiração anaeróbica. A 

PNPase foi a exoribonuclease cuja mutação alterou mais transcritos,  num total de 

226. Muitos desses transcritos são RNAs estáveis (rRNAs, tRNAs e sRNAs) 

sugerindo que a PNPase pode ter um papel muito importante no seu 

metabolismo.  

No que diz respeito fase estacionária, a RNase R parece ser a enzima mais 

importante na degradação de RNA. No mutante Δrnr há quase 700 transcritos que 

são diferencialmente expressos, enquanto que os mutantes Δrnb e Δpnp apenas 

afectam significativamente  117 e 228 transcritos, respectivamente. Por outro 

lado, a PNPase parece ser a mais importante exoribonuclease envolvida na 

degradação de sRNAs. No mutante Δpnp os níveis de 41% dos sRNAs de E. coli 

estão aumentados. 

Em resumo, o trabalho nesta Dissertação contribuiu para expandir o nosso 

conhecimento, não só sobre a degradação de pequenos RNAs e controlo dos 

mRNA alvos, mas também sobre o papel das exoribonucleases no metabolismo do 

RNA. 
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Thesis outline 

 

This dissertation is divided into five main chapters 

 

Chapter 1 is a general introduction relating RNA degradation mechanisms and 

some factors involved in RNA. This introduction focuses mainly on the degradative 

ribonucleases, small RNAs, Hfq and their importance for RNA degradation. 

 

The results of this Doctoral work are presented in the in the chapters 2, 3 and 4. 

Each of these chapters has its own Introduction, Results, Discussion, Materials and 

Methods and References sections. 

 

Chapter 2 explores the degradation pathways of small RNAs in the absence of the 

RNA chaperone Hfq. It is shown that PNPase has a crucial role in the degradation 

of small RNAs especially if they are not associated with Hfq. It was demonstrated 

that under these conditions the PNPase contribution for sRNAs decay is even 

higher than RNase E, which had been considered the main ribonuclease involved 

in sRNA decay. 

 

Chapter 3 analyses the role of the small RNA MicA sequence and structure in the 

stability of this sRNA and their function in target selectivity. It is shown that the 

different MicA modules confer different stabilities and that PNPase is the main 

exoribonuclease involved in the degradation of MicA. The 5´domain of MicA, the 

stem loops and the 3´poly(U) tail are also important in target-binding and the 

different MicA modules differentially affect the expression of the targets. 
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Chapter 4 studies the global roles of the 3’-5’exoribonucleases in the 

transcriptome of Escherichia coli by RNA-Seq. This advanced technology was used 

to identify the transcripts affected by RNase II, RNase R and PNPase in exponential 

and stationary cells. The three exoribonucleases have different roles depending 

on the growth phase. Some of their functions overlap. A deletion of both RNase II 

and RNase R is somehow compensated by the cell. PNPase is the main enzyme 

involved in small RNA degradation. 

 

Chapter 5 is the final discussion based on the results from the previous chapters 

and connects the main results from this Dissertation. This chapter also includes 

future perspectives. 
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1 General Introduction  

The RNA levels in the cell depend on the efficiency of the transcription, 

translation and the rate of degradation. Although transcription and translation are 

important to determine RNA steady state levels, the processing and degradation 

of RNA are also key factors in the regulation of gene expression. During this 

Dissertation the main focus will be on RNA degradation. Ribonucleases (RNases) 

are the enzymes that are able to process and degrade RNA. RNases are present in 

all domains of life, and play a central role in the control of gene expression by 

determining the levels of functional RNAs in the cell (Régnier & Arraiano, 2000; 

Arraiano & Maquat, 2003; Parker & Song, 2004). Many of the RNases in the cell 

are essential and others have overlapping functions (Régnier & Arraiano, 2000). 

They are also involved in the quality control of all types of RNAs, allowing the 

recycling of the ribonucleotides in the cell (Li et al., 2002; Silva et al., 2011). This 

introduction will focus on the ribonucleases involved in RNA degradation in 

Escherichia coli, which was the model organism throughout this Dissertation. 

 

2 RNA Degradation pathways in E. coli 

In order to degrade RNAs, ribonucleases can act alone or they can be part 

of RNA degradation complexes. Ribonucleases can be divided into 

endoribonucleases (which cleave the RNA molecules internally) and 

exoribonucleases (which degrade the RNA by removing terminal nucleotides from 

the 3’ end of the RNA molecules). Exoribonucleases can act hydrolytically, 

releasing nucleotide monophosphates, or phosphorolytically, if they use inorganic 

phosphate to cleave the molecules releasing nucleotide diphosphates (Zuo & 

Deutscher, 2001). Exoribonucleases cooperate in RNA degradation even if they 
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can compete for access to the same substrate. In E. coli there are two 

endoribonucleases (RNase E and RNase III) and four exoribonucleases (RNase II, 

RNase R, PNPase and oligoribonuclease) involved in mRNA degradation (Table 1).  

Table 1. Ribonuclease involved in RNA degradation in E. coli 

Ribonuclease Gene Family Comments 
RNase E rne RNase E Cleaves single stranded RNA. 
RNase III rnc RNase III Cleaves double stranded RNA. 

RNase II rnb RNase II Sensitive to RNA secondary structures. Can also 
protect RNA from degradation. 

RNase R rnr RNase II Highly effective against RNA duplexes. Stress 
induced protein. Growth-phase regulated. 

PNPase pnp PDX Degrades double stranded RNA when in 
multiprotein complexes. 

Oligoribonuclease orn DEDD 
Essential enzyme. Degrades the short 
oligoribonucleotides released from the 
degradative action of other exoribonucleases. 

 

The RNA degradation pathways are not universal (Grunberg-Manago, 

1999), and there are different mechanisms in bacteria (gram-positive versus gram-

negative) and eukaryotes (Arraiano et al., 2010). However in all systems the 

intrinsic characteristics of both available enzymes and RNA seem to control the 

degradation of individual RNAs. Still, some common characteristics arise from the 

analysis of different RNA degradation pathways. Perturbation of RNA structural 

features may also work as an efficient degradation signal. Relaxation of secondary 

structures may result in an easier accessibility of RNases, namely exposing the 3’ 

RNA end to exoribonucleolytic attack. 

In E. coli the decay of the majority of transcripts starts with an 

endoribonucleolytic cleavage by RNase E (Figure 1). This endoribonuclease prefers 

a monophosphorylated 5’ end but not in a strict way, and several RNAs that do 

not follow this rule have been described (Kime et al., 2010). RNase III is another 

enzyme responsible for the initial endoribonucleolytic cleavage of structured 
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RNAs. However, unlike RNase E (that only cleaves single-stranded RNAs) RNase III 

cleaves double-stranded RNAs.  

 
Figure 1. Model of RNA degradation pathways in E. coli.  
The decay of the majority of transcripts starts with an endoribonucleolytic cleavage by 
RNase E (single stranded RNA) or RNase III (double stranded RNA). After 
endoribonucleolytic cleavages, the linear transcripts are rapidly degraded by the 3’–5’ 
degradative exoribonucleases, RNase II, RNase R, and PNPase. RNase R, unlike RNase II 
and PNPase, is efficient against highly structured RNAs. PNPase in association with other 
proteins, namely RNA helicases, can also unwind RNA duplexes. A minor pathway in the 
cell is the exoribonucleolytic degradation of full-length transcripts. Poly (A) polymerase 
(PAP I) adds a poly (A) tail to the short 3’ overhang. These tails provide a toehold to which 
exoribonucleases can bind. Cycles of polyadenylation and exoribonucleolytic digestion can 
overcome RNA secondary structures. The small oligoribonucleotides (2–5 nucleotides) 
released by exoribonucleases are finally degraded to mononucleotides by 
oligoribonuclease. Adapted from (Arraiano et al., 2010). 
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After endoribonucleolytic cleavages, the linear transcripts are rapidly 

degraded by the 3’–5’ degradative exoribonucleases, RNase II, RNase R, and 

PNPase. RNase II and PNPase are sensitive to secondary structures while RNase R 

is the only exoribonuclease efficient against highly structured RNAs. However, 

PNPase can associate with other proteins, namely RNA helicases, to unwind RNA 

duplexes and consequently degrade structured RNAs (Andrade et al., 2009b). A 

smaller pathway in the cell does not require the initial endoribonucleolytic 

cleavage, instead polyadenylation emerges as important factor controlling the 

exoribonucleolytic activity (Dreyfus & Régnier, 2002). It extends the 3’ linear 

region providing a toehold that exoribonucleases can use to bind and initiate 

degradation. Interestingly, this mechanism was conserved through evolution and 

destabilizing poly(A) tails also promote exonucleolytic RNA degradation in 

eukaryotes (LaCava et al., 2005; Vanácová et al., 2005; Wyers et al., 2005). 

 

3 RNase E  

RNase E, encoded by rne gene, was first identified by a temperature-sensitive 

mutation (rne-3071) (Apirion & Lassar, 1978) and was initially described as an 

activity required for the processing of E. coli 9S rRNA (Ghora & Apirion, 1978). The 

ams (altered mRNA stability) locus was identified by a temperature-sensitive 

mutation (ams-1) (Ono & Kuwano, 1980) and was shown to have an important 

role in E. coli turnover (Ono & Kuwano, 1979). Later it was shown that these two 

previously identified genes, rne and ams were actually different mutant alleles of 

the same gene encoding RNase E (Mudd et al., 1990; Babitzke & Kushner, 1991; 

Melefors & von Gabain, 1991; Taraseviciene et al., 1991). This important 

endoribonuclease is essential for cell growth, and inactivation of temperature-

sensitive mutants inhibits processing and prolongs the lifetime of bulk mRNA 
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(Apirion & Lassar, 1978; Ono & Kuwano, 1979; Arraiano et al., 1988; Mudd et al., 

1990; Babitzke & Kushner, 1991; Melefors & von Gabain, 1991; Taraseviciene et 

al., 1991). It has been described that RNase E plays a central role in the processing 

of precursors of 5S ribosomal RNA (Apirion & Lassar, 1978; Misra & Apirion, 1979), 

16S ribosomal RNA (Li et al., 1999), tRNAs (Ow & Kushner, 2002), tmRNA (Lin-

Chao et al., 1999) and the M1 RNA component of the RNase P ribozyme (Lundberg 

& Altman, 1995; Ko et al., 2008). Homologous of RNase E have been identified in 

more than 50 bacteria, archaea, and plants (Lee & Cohen, 2003).   

 

3.1 RNase E structure and function 

E. coli RNase E is a 1061 residue enzyme composed of two distinct 

functional regions. The amino-terminal half forms the catalytic domain (residues 

1–529) and is relatively conserved among prokaryotes (Marcaida et al., 2006). The 

carboxy-terminal half of RNase E (residues 530-1061) is a non-catalytic region, 

largely unstructured and poorly conserved (Callaghan et al., 2004). Segment-A is 

located between residues 565 and 582 and is responsible for binding of the full 

length RNase E to the inner cytoplasmic membrane (Khemici et al., 2008). 

However, segment-A is not necessary for membrane interaction of the 

catalytically active segment (Murashko et al., 2012). Residues 601–700 form an 

arginine-rich segment that binds RNA in vitro and that is believed to enhance the 

activity of RNase E in mRNA degradation in vivo (Lopez et al., 1999; Ow et al., 

2000). Residues 701– 1061 form a scaffold for interactions between RNase E and 

the other major components of the degradosome, a protein complex involved in 

mRNA decay (Kaberdin et al., 1998; Vanzo et al., 1998).   

The first crystal structure for a member of the RNase E family has been 

determined at 2.9 Å, and it reveals that the catalytic domain of RNase E forms a 
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homotetramer with a molecular mass of roughly 260 kDa, organized as a dimer of 

dimers (Callaghan et al., 2005). Each protomer is composed of two globular 

portions, the large and small domains. The large domain consists of several 

subdomains including the 5′-sensor as well as subdomains structurally similar to 

protein folds found in S1, DNase I, and RNase H. In isolation each protomer 

appears elongated, with a large domain comprising the subdomains (S1, 5’-sensor, 

RNase H and DNase I), an elongated linker region (Zn-link) and then the small 

domain. The dimer-dimer interface is formed by the small domains. At the 

junction point there is a zinc binding site (Callaghan et al., 2005). The arrangement 

of the domains within each dimer resembles the blades and handles of an open 

pair of scissors. The positively charged surface within RNase H, 5’ sensor and 

DNase I subdomains mediate the interaction of the catalytic domain of RNase E 

with the membrane (Murashko et al., 2012).   

E. coli RNase E is a single-stranded, nonspecific endoribonuclease with a 

preference for cleaving A/U-rich sequences (Mackie, 1992; McDowall et al., 1995). 

In vitro experiments have shown that purified E. coli RNase E prefers to cleave 

RNAs that are monophosphorylated at the 5’ end (Mackie, 1998). It was shown 

that RppH (RNA pyrophosphohydrolase) converts the 5’ terminus of primary 

transcripts from a triphosphate to a monophosphate (Celesnik et al., 2007; Deana 

et al., 2008). However, some structured substrates can be cleaved independently 

of its state of phosphorylation by RNase E even if the 5’ end forms a secondary 

structure (Baker & Mackie, 2003; Hankins et al., 2007). This indicates that while 

5’-monophosphate-dependent pathway makes a significant contribution to mRNA 

degradation (Mackie, 1998, 2000), there is another pathway of initial substrate 

recognition by RNase E termed ‘bypass’ or ‘internal entry’ (Baker & Mackie, 2003; 

Kime et al., 2010). The requirements for this pathway seems to be only the 

existence of multiple single stranded segments in a conformation that allows 

interaction with RNase E (Kime et al., 2010).  
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The crystal structure explains some features of the protein and suggests a 

mechanism of RNA recognition and cleavage. A pocket is formed between the 5’ 

sensor and the RNase H subdomains and can bind a monophosphate group at a 5’ 

end (Callaghan et al., 2005). The catalytic site is physically separated of the 5’ 

sensing site. It contains conserved residues on the surface of the DNase I 

subdomain of RNase E and coordinate a magnesium ion implicated in catalysis. A 

‘mouse-trap’ model for communication between the 5’ sensing pocket and the 

site of catalysis has been suggested. S1 and 5’ sensing domains move together as 

one body to clamp down the substrate (Koslover et al., 2008). This conformational 

change suggests a mechanism of RNA recognition and catalysis that explains the 

enzyme’s preference for substrates with a 5’-monophosphate over a 5’-

triphosphate and 5’-hydroxy RNA. It was also observed substantial flexibility at 

one of the dimer-dimer interfaces, a deformation that may be essential to 

accommodate structured RNA for processing by internal entry. 

 

3.2 Control of RNase E expression 

The cellular level and activity of RNase E are subject to complex regulation. 

First, the enzyme concentration in the cell is regulated by a feedback loop in 

which  RNase E modulates decay of its own mRNA maintaining the level of the 

enzyme within a narrow range (Mudd & Higgins, 1993; Jain & Belasco, 1995; Diwa 

et al., 2000; Sousa et al., 2001; Ow et al., 2002). Recently it was shown that the 5’ 

sensor domain is essential for efficient autoregulation of RNase E (Garrey & 

Mackie, 2011). Second, the efficiency of RNase E cleavage depends on the 

structure of the substrates and the accessibility of putative cleavage sites. A 5’ 

monophosphate in substrate RNAs serves as an allosteric activator of RNase E 

activity (Mackie, 1998; Jiang & Belasco, 2004). Third, interactions of mRNA targets 

with Hfq and small RNAs exert an important role on the cleavage of certain 
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mRNAs by RNase E (Wagner et al., 2002). Fourth, the activity of RNase E is globally 

affected by protein inhibitors, namely L4 ribosomal protein, RraA and RraB 

(regulator of ribonuclease activity A and B, respectively) that interact with RNase 

E and inhibit RNase E endonucleolytic cleavages of a selective group of transcripts 

(Lee et al., 2003; Gao et al., 2006). Fifth, the membrane localization of RNase E 

and its association with the bacterial cytoskeleton may affect its function through 

various mechanisms (Liou et al., 2001; Khemici et al., 2008; Taghbalout & 

Rothfield, 2008).  

 

3.3 Relating RNase E and RNase G 

RNase G is a paralogue of RNase E (McDowall et al., 1993), belonging to the 

RNase E/G family, and is also involved in the degradation and processing of RNA 

(Carpousis et al., 2009). E. coli RNase G was initially identified by its role in 

chromosome segregation and cell division (Okada et al., 1994). RNase G was 

subsequently shown to exhibit endoribonuclease activity both in vivo (Li et al., 

1999; Wachi et al., 1999; Umitsuki et al., 2001) and in vitro (Jiang et al., 2000; Tock 

et al., 2000). A strong resemblance has been identified between RNase G and the 

amino-terminal portion of E. coli RNase E, sharing a high level of sequence identity 

(35%) and similarity (50%) (McDowall et al., 1993). Purified RNase G has in vitro 

properties similar to RNase E and both enzymes are required for a two-step 

sequential reaction of 5’ maturation of the 16S rRNA gene (Li et al., 1999; Wachi 

et al., 1999). Residues of RNase E that can contact a 5’-monophosphorylated end 

and coordinate the catalytic magnesium ion are conserved in RNase G (McDowall 

et al., 1993; Callaghan et al., 2005). The precise cleavage sites of RNase E and 

RNase G are not strictly conserved (Li et al., 1999; Tock et al., 2000). The 5’- 

monophosphate end, which stimulates RNase G, is generated by RppH (Deana et 

al., 2008) or by other endoribonucleases (Lee et al., 2002). Recently it was shown 
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that RNase G interaction with a single-stranded segment, linked physically to a 5’-

monophosphorylated-end, is an important determinant of the overall affinity of 

RNA binding (Jourdan et al., 2010).  Moreover, it was demonstrated that the 

sequence of a site bound by RNase G can moderate the maximal cleavage rate 

(Jourdan et al., 2010). RNase G is a paralogue of RNase E but up to now most of 

the research on RNA degradation has been focusing on RNase E. 

 

3.4 RNase E in other organisms 

Some variants of RNase E can be found in α-Proteobacteria, Synechocystis sp. 

and in the high G+C Gram-positive bacteria (Condon & Putzer, 2002). In 

Rhodobacter capsulatus, RNase E is the responsible enzyme for the majority of 

the endonucleolytic cleavages. In this organism RNase E has 118 KDa with a 

conserved N-terminal region (Jager et al., 2001) and a C-terminal portion, 

probably involved in the scaffold of degradosome assembly. It was purified in two 

different complexes, one where it is associated with a helicase and an unidentified 

protein, while in the other one was coupled with a helicase, the transcription 

terminator Rho and an unidentified protein (Jager et al., 2001). Moreover, in R. 

capsulatus, this enzyme is involved in the endonucleolytic process and 

stabilization of cspA mRNA (Jager et al., 2004). Similarly to R. capsulatus, 

Pseudomonas syringae, a psychrophilic bacterium, has also an RNase E which is 

associated with RNase R and the DEAD-box helicase RhlE in a degradosome 

(Purusharth et al., 2005). 

 

 

4 Ribonuclease III  
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Ribonuclease III (RNase III) was originally identified by Robertson and co-

workers in extracts of E. coli as the first specific double-stranded RNA (dsRNAs) 

endoribonuclease (Robertson et al., 1968). Members of RNase III family are widely 

distributed among prokaryotic and eukaryotic organisms, sharing structural and 

functional features (Lamontagne et al., 2001). However, until now homologues of 

RNase III have not been found in the genomes of archaea (Condon & Putzer, 

2002).  

 

4.1 RNase III family of enzymes 

The RNase III family comprises four classes, according to their polypeptide 

structure. The class I members of the RNase III family are ubiquitously found in 

bacteria, bacteriophages and some fungi (MacRae & Doudna, 2007).  

The Class II is exemplified by the eukaryotic Drosha protein while the class 

III is represented by the eukaryotic Dicer (MacRae & Doudna, 2007). The 

nucleases Drosha and Dicer have very important roles in RNA interference. Finally, 

the Class IV is represented by the Mini-RNase III of Bacillus subtilis (Redko et al., 

2008). Taken together, the functional and evolutionary conservation of RNase III 

family in bacteria and higher organisms is indicative of their biological relevance in 

RNA maturation and degradation. Despite the fact that RNase E is considered the 

major ribonuclease that catalyses the initial rate-determining cleavage of several 

transcripts, RNase III family of enzymes has emerged as one of the most 

important group of endoribonucleases in the control of RNA stability (Jaskiewicz & 

Filipowicz, 2008). 

4.2 RNase III structure and substrate recognition 
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E. coli RNase III has served as the prototypical member of the family. In this 

model microorganism, RNase III is encoded by the rnc gene, and is active as a 52 

kDa homodimer (Li & Nicholson, 1996). Each monomer contains a C-terminal 

dsRBD, located in the last 74 amino acids, which is responsible for substrate 

recognition and adopts a tertiary fold with the characteristic α1-β1-β2-β3-α2-

structure that is conserved throughout the RNase III family (Blaszczyk et al., 2001). 

Additionally, each monomer is also composed by an N-terminal NucD. When the 

two monomers are combined (RNase III homodimer), they form a single 

processing center in the subunit interface, in which each monomer contributes to 

the hydrolysis of one RNA strand of the duplex substrate. Ji and collaborators 

(Blaszczyk et al., 2004; Gan et al., 2006) solved the structure of the 

hyperthermophilic bacteria Aquifex aeolicus RNase III and the data has revealed 

two functional forms of dsRNA binding by RNase III: a catalytic form, functioning 

as a dsRNA-processing enzyme, cleaving both natural and synthetic dsRNA; and a 

non-catalytic form, in which RNase III has a role of dsRNA binding protein (without 

cleaving). The later activity is in agreement with previous studies in which this 

enzyme binds certain substrates in order to influence gene expression, affecting 

RNA structures (Calin-Jageman & Nicholson, 2003), (Court, 1993; Oppenheim et 

al., 1993; Dasgupta et al., 1998). Magnesium (Mg2+) is the preferred co-factor. 

Recent data are indicative that each active site contains two divalent cations 

during substrate hydrolysis (Meng & Nicholson, 2008).  

The RNase III substrate selection consists in a combination of structural 

determinants and sequence elements referred as reactivity epitopes, such as the 

helix length, the strength of base-pairing or the occurrence of specific nucleotide 

pairs (termed proximal and distal boxes) located at defined positions related to 

the cleavage site. In addition, there are also two classes of double-helical 

elements that can function as negative determinants, which can either inhibit the 
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recognition of this endoribonuclease or suppress the cleavage (without affecting 

recognition) (Zhang & Nicholson, 1997; Pertzev & Nicholson, 2006).    

 

4.3 RNase III activity and function 

All enzymes of this family are hydrolytic and have specificity for dsRNAs, 

generating 5’ monophosphate and 3’ hydroxyl termini with a two base overhang 

at the 3’ end (Meng & Nicholson, 2008). RNase III in E. coli is not essential, 

however it was observed that mutants for this endoribonuclease have a slow-

growth phenotype (Nicholson, 1999). This enzyme was initially identified due to 

its role in the maturation of tRNA precursors and rRNA. Regarding maturation of 

rRNA, RNase III is involved in the processing of 16S and 23S from a 30S rRNA 

precursor (Babitzke et al. 1993). In Salmonella and other members of α-

proteobacteria, RNase III is also responsible for the cleavage of intervening 

sequences (IVS) found in their 23S rRNA (Evguenieva-Hackenberg & Klug, 2000). 

RNase III is also involved in the decay of several mRNA species (Condon & Putzer, 

2002; Calin-Jageman & Nicholson, 2003). For example, in E. coli, this enzyme 

participates in the first step of the decay of pnp mRNA (Régnier & Portier, 1986), 

the gene encoding Polynucleotide Phosphorylase (PNPase), downregulating its 

synthesis (Régnier & Grunberg-Manago, 1990; Robert-Le Meur & Portier, 1992; 

Jarrige et al., 2001). Interestingly, this endoribonuclease has also the ability to 

regulate its own synthesis with a specific cleavage near the 5’ end of its own 

mRNA that removes a stem-loop, which acts as a degradation barrier (Bardwell et 

al., 1989; Matsunaga et al., 1996; Lioliou et al., 2012). A recent work show that in 

Staphylococcus aureus RNase III is involved in rRNA and tRNA maturation and 

regulates the turnover of mRNAs and non-coding RNAs (Lasa et al., 2011; Lioliou 

et al., 2012). 
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RNase III has been seen to work as a stress response modulator, controlling 

the steady state levels of genes involved in cellular adaptation to stress (Santos et 

al., 1997; Freire et al., 2006; Sim et al., 2010). It was seen in Salmonella 

typhimurium that RNase III regulates the levels of the small RNA (sRNA) MicA 

(Viegas et al., 2007), a main regulator of the abundant outer membrane protein 

OmpA that has an important structural role in the cell and is involved in 

pathogenesis (Guillier et al., 2006). The enzyme is also involved in the decay of 

sRNA/mRNA complexes upon translational silencing (Vogel et al., 2004; 

Afonyushkin et al., 2005), (Huntzinger et al., 2005; Kaberdin & Blasi, 2006). In this 

way, cleavage by RNase III within the sRNA/mRNA duplex and the resulting 

subsequent decay of the mRNA intermediate by the E. coli RNA decay machinery 

could resemble the RNA interference (RNAi) in the eukaryotic cells (Agrawal et al., 

2003). RNAi is an evolutionary conserved phenomenon that functions as a 

safeguard for the maintenance of genomic integrity. This phenomenon permits 

the selective post-transcriptional downregulation of target genes in the cells, in 

which RNase III-like enzymes dictate the degradation of dsRNA molecules 

(Jagannath & Wood, 2007; Ma et al., 2007; Jinek & Doudna, 2009). Accordingly, 

RNase III family has been associated with gene expression regulation, potential 

antivirus agent, and tumor suppressor (Lamontagne et al., 2001).   

 

5 RNase II 

E. coli RNase II is a 3’-5’ exoribonucleases and is the prototype of the RNase II 

family of enzymes (Mian, 1997; Mitchell et al., 1997; Zuo & Deutscher, 2001; 

Grossman & van Hoof, 2006). RNase II-like proteins are widespread among the 

three domains of life and in eukaryotes they are the catalytic component of the 

exosome (Liu et al., 2006; Dziembowski et al., 2007). The exosome is a multi-
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protein complex involved in RNA degradation in eukaryotes. In Saccharomyces 

cerevisiae Rrp44/Dis3 is the RNase II family member. Rrp44 has some extra 

domains at the N-terminal (CR3 and Pin) and can work also as an 

endoribonuclease (Schaeffer et al., 2009). In Schizosaccharomyces pombe and 

mammals there are several important members of this family such as Dis3, Dis3L 

and Dis3L2 (Tomecki et al., 2010; Malecki et al., 2012).  

 

5.1 Control of RNase II expression  

RNase II is encoded by the rnb gene that can be transcribed from two 

promoters P1 and P2 and terminates in a Rho-independent terminator 10 

nucleotides downstream of rnb stop codon (Zilhão et al., 1993; Zilhão et al., 

1995a; Zilhão et al., 1996). PNPase regulates RNase II expression by degrading the 

rnb mRNA (Zilhão et al., 1996). RNase III and RNase E endoribonucleases are also 

involved in the control of RNase II expression at the post-transcriptional level. 

RNase III does not affect rnb mRNA directly, but affects PNPase levels and RNase E 

is directly involved in the rnb mRNA degradation (Zilhão et al., 1995b).  

RNase II is also post-translationally regulated at level of protein stability and 

its levels are also adjusted according to growth conditions. gmr (Gene Modulating 

RNase II) is located downstream of rnb and is involved in the modulation of 

stability of RNase II (Cairrão et al., 2001). Gmr has a PAS domain which can act as 

an environmental sensor detecting changes in growth conditions. 

 

5.2 RNase II activity and RNA degradation 

E. coli RNase II is a sequence-independent hydrolytic exoribonuclease that 

processively degrades RNA in the 3’-5’ direction, yielding 5’-nucleoside 
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monophosphates. However, the processive degradation of an RNA molecule by 

RNase II is easily blocked by secondary structures, and the enzyme is known to 

stall around seven nucleotides before it reaches a double-stranded region 

(Cannistraro & Kennell, 1999; Spickler & Mackie, 2000). In E. coli RNase II is the 

major hydrolytic enzyme and participates in the terminal stages of mRNA 

degradation (Deutscher & Reuven, 1991). However the enzyme is not essential for 

E. coli growth unless PNPase is also missing (Donovan & Kushner, 1986; Zilhão et 

al., 1995a). Although RNase II degrading activity is sequence-independent, its 

favourite substrate is the homopolymer poly(A). Since the presence of a poly(A) 

tail is often needed for the RNA degradative process, the rapid degradation of 

polyadenylated stretches by RNase II can paradoxically protect some RNAs by 

impairing the access of other exoribonucleases (Hajnsdorf et al., 1994; Pepe et al., 

1994; Coburn & Mackie, 1996; Marujo et al., 2000; Mohanty & Kushner, 2000; 

Folichon et al., 2005b). Indeed, in the absence of RNase II a large number (31%) of 

E. coli mRNAs are decreased, especially ribosomal protein genes, suggesting a 

major function for this enzyme in the protection of specific mRNAs through 

poly(A) tail removal (Mohanty & Kushner, 2003). 

 

5.3 RNase II structure and function 

The structure of E. coli RNase II and its RNA-bound complex was 

determined (Frazão et al., 2006). This was the first structure of an 

exoribonuclease from the RNase II family that has been solved (Frazão et al., 

2006). The overall X-ray crystallographic structure of the wild-type enzyme 

(Frazão et al., 2006; Zuo et al., 2006) revealed four domains, as previously 

predicted by Amblar et al. (Amblar et al., 2006). Three RNA binding domains have 

been identified: two cold shock domains (CSD1 and CSD2) in the N-terminal region 

and an S1 RNA-binding domain at the C-terminus. The catalytic site resides in the 
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central RNB domain, whose structure has shown an unprecedented fold 

characteristic of this family. This domain contains four highly conserved sequence 

motifs (I-IV) with some invariant carboxylate residues (Mian, 1997). The RNA-

binding domains (CSD1, CSD2 and S1) are grouped together on one side of the 

structure, while the active site is on the other side of the molecule (Frazão et al., 

2006).  

Elimination of the N-terminal CSD1 resulted in an increase of the RNA-

binding affinity of the enzyme for poly(A), suggesting that this domain may have a 

role in controlling the movement of the enzyme on the poly(A) chain (Amblar et 

al., 2006; Arraiano et al., 2008). Interestingly, without all the RNA-binding 

domains the enzyme is still able to degrade RNA, although with much less 

efficiency than the wild-type enzyme (Matos et al., 2009; Vincent & Deutscher, 

2009). 

The structure of the RNA-bound enzyme revealed that the RNA fragment 

interacts with the protein at two non-contiguous regions, the “anchor” and 

catalytic regions (Cannistraro & Kennell, 1994; Frazão et al., 2006). Nucleotides 1-

5, at the 5’-end of the RNA fragment, are located in the “anchor” region in a deep 

cleft between the two CSDs and the S1 domain. The final nucleotides 9-13 are 

located in a cavity deep within the RNB domain, stacked and “clamped” between 

the conserved residues Phe358 and Tyr253. A 10-nucleotide fragment is the 

shortest RNA able to retain contacts with both anchor and catalytic regions. This 

fact explains why RNase II is processive on long RNA molecules but becomes 

distributive on substrates shorter than 10-15 nucleotides. When the RNA 

molecule is shorter than five nucleotides, the required packing of the bases can no 

longer occur, preventing the translocation of the RNA and a final end product of 

four nucleotides is released (Frazão et al., 2006). Tyr-253 has been identified as 

the responsible residue for setting the RNase II end-product, and its substitution 
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was shown to change the smallest end product of degradation from 4 to 10 

nucleotides (Barbas et al., 2008). This mutation has been proposed to cause 

loosening of the RNA substrate at the catalytic site and, as a consequence, binding 

at the anchor region would be essential to keep the RNA attached to the protein 

and allow cleavage. Molecules shorter than 10 nucleotides are too small to be 

simultaneously bound at both sites meaning that they would have to be degraded 

distributivety (Barbas et al., 2008). 

The access to the catalytic pocket is restricted to single-stranded RNA by 

steric hindrance, which explains the inability of RNase II to degrade double-

stranded RNA. DNA is not a substrate because there is a specific interaction 

between the protein and the ribose rings of nucleotides that directly contact the 

enzyme (Frazão et al., 2006). Residues Tyr-313 and Glu-390 have been 

demonstrated to be responsible for the discrimination of cleavage of RNA versus 

DNA (Barbas et al., 2009). 

Several residues in the catalytic region are important for catalysis (Amblar & 

Arraiano, 2005; Frazão et al., 2006). Asp-201 and Asp-210 substitution led to a 

significant loss of RNase II activity and Arg-500 has also been shown to be crucial 

for RNA cleavage (Frazão et al., 2006; Barbas et al., 2008, 2009). However, Asp-

209 is the only essential residue for RNA degradation (Amblar & Arraiano, 2005; 

Barbas et al., 2008). The conserved residue Glu-542 has been proposed to 

facilitate the elimination of the leaving nucleotide upon phosphodiester cleavage 

(Frazão et al., 2006). Interestingly its substitution by alanine rendered the mutant 

RNase II much more active than the wild-type and significantly increased the RNA-

binding ability. 3D modelling of the mutant enzyme indicated that the substitution 

induced a subtle conformational change in the RNB domain. This resulted in a 

reorganization of the RNA-binding interface that turned the RNase II into the so-
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called “super-enzyme”, an enzyme with extraordinary catalysis and binding 

abilities (Barbas et al., 2009).  

 

6 RNase R  

RNase R encoded by the rnr gene (previously vacB) is a 3’-5’ hydrolytic 

exoribonuclease from the RNase II family of exoribonucleases (Cheng & 

Deutscher, 2002; Vincent & Deutscher, 2006). The rnr gene is second in an operon 

together with nsrR (a transcriptional regulator), rlmB (rRNA methyltransferase), 

and yjfI (unknown function). Transcription is driven from a possible σ70 promoter 

upstream of nsrR (Cairrão et al., 2003). rnr mRNAs are post-transcriptional 

regulated by RNase E, although RNase G may also participate (Cairrão & Arraiano, 

2006). RNase R is a processive and sequence independent enzyme, with a wide 

impact in RNA metabolism (Cairrão et al., 2003; Cheng & Deutscher, 2005; 

Oussenko et al., 2005; Andrade et al., 2006; Purusharth et al., 2007; Andrade et 

al., 2009a). It is unique amongst the RNA degradative exoribonucleases present in 

E. coli as it can easily degrade highly structured RNAs (Cheng & Deutscher, 2002, 

2003; Awano et al., 2010). RNase R is able to degrade a RNA duplex provided 

there is a single stranded 3’ overhang (Cheng & Deutscher, 2002; Vincent & 

Deutscher, 2006). In fact, RNase R was shown to be a key enzyme involved in the 

degradation of polyadenylated RNA (Andrade et al., 2009a). 

 

6.1 RNase R modular organization and function 

RNase R shows a modular organization of RNA binding domains (CSD1 and 

CSD2 located at the N-terminus and a C-terminal S1 domain) flanking the central 
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catalytic RNB domain, typically found on RNase II-family members. A three-

dimensional model of RNase R has been proposed based on the structure of its 

paralogue RNase II (Barbas et al., 2008). Mutational analysis identified important 

residues located in the active centre: D272, D278 and D280 (Matos et al., 2009; 

Vincent & Deutscher, 2009). A D280N mutant showed no exonucleolytic activity, 

analogous to what was reported with the D209N mutant in RNase II (Amblar & 

Arraiano, 2005; Matos et al., 2009; Awano et al., 2010). RNase R degradation is 

processive and unlike RNase II, the final end-product of digestion is a dinucleotide. 

Tyrosine Y324 was found to be responsible for setting the final end-product of 

RNase R (Matos et al., 2009). 

RNase R was shown to bind RNA more tightly within its catalytic channel 

than does RNase II. Surprisingly, a mutant expressing only the nuclease domain 

(RNB) is able to degrade a perfect double stranded RNA (Matos et al., 2009; 

Vincent & Deutscher, 2009). Probably the RNA binding domains “block” the 

entrance of dsRNA into the catalytic channel. Accordingly, it was proposed that 

RNA binding domains actually discriminate the substrates that can be targeted by 

RNase R, favouring the selection of RNA molecules harbouring a 3’ linear tail. It 

has been suggested that RNase R can function both as an exoribonuclease as well 

as an RNA “helicase” (Awano et al., 2010). RNase R intrinsic “helicase” unwinding 

activity is dependent on RNA-binding regions (S1, CDS1 and most importantly 

CDS2). The double stranded RNA must have a 3’ linear overhang in order to 

become a suitable substrate to RNase R helicase activity. Altogether, RNA binding 

domains of RNase R seem to be responsible for the selection of RNA substrates 

harbouring a 3’ linear region, which can be provided by polyadenylation (Andrade 

et al., 2009a). Clearly, only the resolution of RNase R structure will allow the fully 

understanding of its remarkable modes of action. 
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6.2 RNase R role in RNA and protein quality control and mRNA 

decay 

RNase R is critical in RNA quality control, namely in degradation of defective 

tRNAs (Vincent & Deutscher, 2006; Awano et al., 2010) and rRNA (Cheng & 

Deutscher, 2003). Together with PNPase, RNase R eliminates aberrant fragments 

of 16S and 23S rRNA whose accumulation potentially affects ribosome maturation 

and assembly. Furthermore, the importance of RNase R in the accuracy of gene 

expression is broadening with its role in protein quality control. In the absence of 

RNase R, the small stable SsrA/tmRNA is not properly processed, leading to 

defects in trans-translation and significant errors in protein tagging for proteolysis 

(Cairrão et al., 2003). RNase R has also emerged as an important novel contributor 

to mRNA degradation. The absence of both RNase R and PNPase results in the 

strong accumulation of REP-containing mRNA sequences (Cheng & Deutscher, 

2005). However, the presence of only one of these exoribonucleases is sufficient 

to remove such transcripts, revealing again a functional overlap between these 

two enzymes. Remarkably, RNase R was also shown to degrade the ompA 

transcript in a growth-phase specific manner (Andrade et al., 2006). In the 

stationary phase of growth, the single inactivation of RNase R results in the 

accumulation of ompA mRNA and this correlated with increasing intracellular 

levels of OmpA protein. This work revealed a role for RNase R in control of gene 

expression that could not be replaced by any of the other exoribonucleases. 

 

6.3 RNase R is a stress induced protein 

The activity of RNase R is modulated according to the growth conditions of 

the cell and responds to environmental stimuli. RNase R is a general stress-

induced protein, whose levels are increased 3-10 fold under several stresses, 
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namely in cold-shock, and stationary-phase of growth (Cairrão et al., 2003; 

Andrade et al., 2006). RNase R is a highly unstable protein in exponential phase, 

however this protein is stabilized in stationary phase and other stress conditions, 

leading to its relative increase (Chen & Deutscher, 2010). tmRNA and SmpB 

binding to the C-terminal region of RNase R is responsible for the unstability of 

RNase R in exponential phase (Liang & Deutscher, 2010). This binding is regulated 

by acetylation of RNase R by the Pka acetylating enzyme that is absent from the 

cell under stress conditions such as stationary phase and cold-shock (Liang & 

Deutscher, 2012).   

 

6.4 RNase R in other organisms and its role in virulence 

RNase R-like enzymes are widespread in most sequenced genomes. 

Although most of the knowledge on this protein came from work in E. coli, many 

RNase R from other bacterial species have been identified. Notably, RNase R has 

also been implicated in the establishment of virulence in a growing number of 

pathogens. 

In Shigella flexneri RNase R was shown to be required for the expression of 

the invasion factors IpaB, IpaC, IpaD and VirG (Tobe et al., 1992). The disruption of 

VacB gene in other Shigella spp. and enteroinvasive Escherichia coli resulted in 

reduced expression of virulence phenotypes (Tobe et al., 1992). In Legionella 

pneumophila RNase R is the only hydrolytic exoribonuclease present. This protein 

is not essential for growth at optimal temperature, however, it is important for 

growth and viability at low temperatures and induces the competence 

development (Charpentier et al., 2008). To the date, only one exoribonuclease, 

RNase R (MgR), was identified in Mycoplasma genitalium, where is an essential 

protein (Hutchison et al., 1999). MgR shares some properties of both E. coli RNase 
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R and RNase II and can carry out a broad range of RNA processing and degradative 

functions (Lalonde et al., 2007). Similarly to what happens in E. coli, RNase R from 

Aeromonas hydrophila is also a cold-shock protein essential for the viability at 

lower temperatures and it absence leads to a reduction in A. hydrophila motility 

(Erova et al., 2008). The infection of mouse cells with ∆rnr strains shows that the 

virulence is attenuated, confirming the role of this enzyme in the pathogenesis of 

this organism (Erova et al., 2008). In Streptococcus pneumoniae there is a unique 

homolog of RNase II family of enzymes which was shown to be a RNase R-like 

protein (Domingues et al., 2009). Proteins isolated from different strains regarding 

their virulence ability (virulent vs. non-virulent) are different regarding their 

activity and RNA affinity (Domingues et al., 2009). Further studies are still 

necessary to confirm if the differences observed in RNase R protein are 

responsible for the virulence of these strains. 

In Pseudomonas syringae, RNase R is the exoribonuclease present in the 

degradosome as opposed to most other systems where PNPase is part of such 

complexes (Purusharth et al., 2005). Like in E. coli, RNase R is also particularly 

important at low temperatures, since inactivation of the rnr gene inhibits growth 

of both P. putida (Reva et al., 2006) and P. syringae (Purusharth et al., 2007) at 

4°C. In P. syringae RNase R is involved in 3’-end maturation of 16S and 5S rRNA, 

and in tmRNA turnover (Purusharth et al., 2007).  

Overall, RNase R-deficient bacteria have been shown to be less virulent than 

the wild-type parental strains. However, how this is achieved is still not 

completely clear. This is probably related to critical RNA degradation pathways. 

The fact that RNase R was found to be essential in the degradation of small RNAs, 

namely the virulence regulator SsrA/tmRNA, opens the way to broaden its role in 

pathogenesis. Altogether, the available data suggests that bacterial RNase R may 
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be attractive as a potential therapeutic agent but clearly more studies are 

required. 

 

7 PNPase  

PNPase is a 3’-5’ phosphorolytic exoribonuclease that belongs to the PDX 

family of exoribonucleases, which also includes RNase PH from bacteria, and the 

core of the exosome in archaea and eukaryotes (Mian, 1997; Zuo & Deutscher, 

2001; Pruijn, 2005). The enzyme is involved in global mRNA decay, being widely 

conserved from bacteria to plants and metazoans (Zuo & Deutscher, 2001; 

Bermúdez-Cruz et al., 2005). 

 

7.1 Control of PNPase expression 

PNPase is encoded by the pnp gene and is transcribed from two promoters  

(Portier & Régnier, 1984). pnp expression is negatively autoregulated at the post-

transcriptional level by the concerted action of PNPase and RNase III (Portier et 

al., 1987; Robert-Le Meur & Portier, 1992, 1994; Jarrige et al., 2001; Carzaniga et 

al., 2009). This autoregulation can be disrupted by Ribosomal protein S1 that 

binds to the pnp mRNA 5’-UTR (Briani et al., 2008). In an RNase III deficient strain 

there is a 10-fold increase of the PNPase levels (Portier, et al., 1987). PNPase 

levels are also affected by polyadenylation. It is likely that polyadenylated 

transcripts titrate out the amount of PNPase available to carry out normal 

autoregulation (Mohanty & Kushner, 2002). PNPase and RNase II are cross-

regulated (Zilhão et al., 1996). In the absence of RNase II, PNPase levels are 

increased and PNPase overexpression leads to a decrease in RNase II activity 

(Zilhão et al., 1996).  
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PNPase does not seem to be indispensable to E. coli at optimal 

temperature, unless either RNase II or RNase R is also missing (Donovan & 

Kushner, 1986; Cheng et al., 1998). However, PNPase is essential for E. coli growth 

at low temperatures (Luttinger et al., 1996; Piazza et al., 1996; Zangrossi et al., 

2000) and certain mutations of the RNA binding domains have been shown to 

confer a cold-sensitive phenotype (García-Mena et al., 1999; Briani et al., 2007; 

Matus-Ortega et al., 2007). However, over-expression of RNase II could 

complement cold shock function of PNPase (Awano et al., 2008). PNPase was also 

shown to be involved in the long-term survival of Campylobacter jejuni at 

temperatures below 10°C (Haddad et al., 2009). In E. coli, cold temperature 

induction of pnp expression occurs at post-transcriptional levels including reversal 

of pnp autoregulation (Zangrossi et al., 2000; Beran & Simons, 2001; Mathy et al., 

2001).  

 

7.2 PNPase activities and RNA degradation 

PNPase processively catalyses the 3’-5’ phosphorolytic degradation of RNA, 

releasing nucleoside diphosphates. Although the degrading activity of E. coli  

PNPase is known to be blocked by double stranded RNA structures (Spickler & 

Mackie, 2000), PNPase can form complexes with other proteins allowing it to 

degrade through extensive structured RNA. The main multi-protein complex that 

integrates PNPase is the degradosome. To degrade certain double-stranded RNAs 

PNPase can form a complex (α3β2) with the RhlB helicase (Lin & Lin-Chao, 2005), 

(Liou et al., 2002). PNPase also forms complexes with Hfq and PAP I (Mohanty et 

al., 2004). The enzyme was reported to degrade a stem-loop without the 

assistance of RhlB, but this could be related with the low thermodynamic stability 

of the stem-loop (Mohanty & Kushner, 2009). In the gram-negative bacteria 

Thermus thermophilus, the PNPase homologue (Tth PNPase) was shown to have 
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phosphorolytic activity at the optimal temperature 65ºC. Surprisingly, it is able to 

completely degrade RNAs with very stable intramolecular secondary structures 

(Falaleeva et al., 2008). 

A minimal 3’ overhang of 7-10 unpaired ribonucleotides is required for an 

RNA molecule to be bound by PNPase (Py et al., 1996; Cheng & Deutscher, 2005) 

and the action of the enzyme on folded RNAs is known to be stimulated by 3’ 

polyadenylation (Xu & Cohen, 1995; Py et al., 1996; Carpousis et al., 1999; Spickler 

& Mackie, 2000). PNPase is also able to catalyse the polymerization of RNA from 

nucleoside diphosphates at low inorganic phosphate concentration (Godefroy, 

1970; Littauer & Soreq, 1982; Sulewski et al., 1989). In vivo, PNPase is essentially 

devoted to the processive degradation of RNA, but is also responsible for adding 

the heteropolymeric tails observed in E. coli mutants devoid of the main 

polyadenylating enzyme PAP I (Mohanty & Kushner, 2000 ; Slomovic et al., 2008). 

In exponentially growing E. coli, more than 90% of the transcripts are 

polyadenylated and Rho-dependent transcription terminators were suggested to 

be modified by the polymerase activity of PNPase (Mohanty & Kushner, 2006). In 

spinach chloroplasts, Cyanobacteria and Streptomyces coelicolor, PNPase seems 

to be the main tail polymerizing enzyme (Yehudai-Resheff et al., 2001; Rott et al., 

2003; Sohlberg et al., 2003). PNPase–dependent RNA tailing and degradation are 

believed to occur mainly at low ATP concentrations, since ATP has been shown to 

inhibit both activities (Del Favero et al., 2008). Recently, it was shown that Bacillus 

Subtilis PNPase, in the presence of Mn2+ and low-levels of inorganic phosphate (Pi) 

is also able to degrade ssDNA, while in the presence of Mg2+ and higher amounts 

of Pi it degrades RNA. This information suggests that PNPase degradation of RNA 

and ssDNA occur by mutually exclusive mechanisms (Cardenas et al., 2009). Due 

to the ability of PNPase to carry out several distinct activities, the enzyme can be 

considered as a multifunctional protein. It is a pleiotropic regulator, involved in a 

number of different pathways of RNA degradation. Indeed, it is the only 
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exoribonuclease in Streptomyces being an essential enzyme in these organisms 

(Bralley & Jones, 2003; Bralley et al., 2006). In E. coli, PNPase is now believed to 

play a greater role in mRNA degradation than previously thought and its 

inactivation increases the steady-state levels of many transcripts (Deutscher & 

Reuven, 1991; Mohanty & Kushner, 2003). The enzyme was also reported to play 

an important role in protecting E. coli cells under oxidative stress (Wu et al., 

2009). In B. subtilis the RNA decay is primarily phosphorolytic and this major 

activity is attributed to the PNPase, which is the principal 3’-to-5’ exoribonuclease 

in this organism. Deletion of PNPase in B. subtilis causes a number of phenotypes 

like competence deficiency, cold and tetracycline sensitivity, and filamentous 

growth (Hahn et al., 1996; Luttinger et al., 1996; Wang & Bechhofer, 1996). 

Recently, several studies demonstrated that PNPase activity is affected by several 

cellular compounds like the ppGpp (Guanosine pentaphosphate), citrate and the 

second messenger cyclic diguanylic acid (c-di-GMP) (Gatewood & Jones, 2010; 

Nurmohamed et al., 2011; Tuckerman et al., 2011). ppGpp was shown to inhibit 

the activity of PNPase in Streptomyces species, however E. coli PNPase activity 

was not affected by ppGpp (Gatewood & Jones, 2010). On the other hand, citrate 

can either inhibit PNPase or stimulate PNPase activity. Binding of metal-chelated 

citrate in the active site appears to inhibit enzyme activity. Contrarily, metal-free 

citrate binds at a vestigial active site and stimulates PNPase activity (Nurmohamed 

et al., 2011). C-di-GMP was also shown to enhance several PNPase activities in a 

dose-dependent manner (Tuckerman et al., 2011).   

 

7.3 PNPase structure and function 

X-ray crystal structures of E. coli and Streptomyces antibioticus PNPase 

reveal a homotrimeric subunit organization with a ring-like architecture (Figure 1) 

(Symmons et al., 2000; Shi et al., 2008; Nurmohamed et al., 2009). Each monomer 
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exhibits a five-domain arrangement: at the N-terminus two RNase PH domains 

(PH1 and PH2) are linked by an α-helical domain; two RNA-binding domains, KH 

and S1, are found in the C-terminal end. In the quaternary structure the KH and S1 

domains are found together in one face of the trimer, while the active site is 

found in the opposite side. 

PNPase mutants lacking either the S1 or KH domain retain phosphorolytic 

activity (Jarrige et al., 2002; Stickney et al., 2005; Matus-Ortega et al., 2007). 

However, the presence of both KH and S1 domains are required for a proper 

binding (Matus-Ortega et al., 2007) and their absence may lead to a severe 

decrease in the number of molecules processed (Stickney et al., 2005). The crystal 

structure of a KH/S1 deletion mutant along with biochemical and biophysical data 

strongly suggests that these domains are involved not only in RNA-binding, but 

also contribute to the formation of a more stable trimeric structure (Shi et al., 

2008). Indeed, a previous study has shown that the S1 domain from PNPase was 

able to induce trimerization of a chimeric RNase II containing PNPase S1 (Amblar 

et al., 2007).  

Association of the three subunits encloses a central channel. A properly 

constricted channel and the conserved basic residues located in the neck region 

have been shown to play critical roles in trapping RNA for processive degradation 

(Shi et al., 2008). Two constricted points have been identified in the channel and 

the structure of PNPase in complex with RNA clearly indicates that the pathway 

followed by the RNA molecule is along the central pore in the direction to the 

active site (Symmons et al., 2000; Shi et al., 2008; Nurmohamed et al., 2009). The 

ability of the aperture at the central channel and its neighbouring regions to 

undergo conformational changes is likely to be a key aspect of the dynamic 

translocation of RNA by PNPase (Nurmohamed et al., 2009). The crystal structure 

of Caulobacter crescentus PNPase helped explaining the RNA directionality 
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(Hardwick et al., 2012). This structure suggested that the 3’-5’ polarity of the 

substrate came from the interactions of the KH domains with the RNA sugar-

phosphate backbone. When bound to RNA the three KH domains collectively close 

upon the RNA and direct the 3’ end towards the constricted aperture at the 

entrance of the central channel (Hardwick et al., 2012). 

The catalytic site of PNPase is composed of structural elements of both PH1 

and PH2 core domains and several mutations introduced into the PNPase core 

abolish or severely decrease all catalytic activities of the enzyme (Jarrige et al., 

2002; Briani et al., 2007). However, other mutations in the core region were 

analysed that do not affect phosphorolytic or polymerase activities, but rather 

RNA-binding is severely impaired (Regonesi et al., 2006). S. antibioticus PNPase 

catalytic center has been identified using tungstate (a phosphate analogue), which 

is coordinated by T462 and S463 (Symmons et al., 2000). E. coli PNPase crystals 

obtained in the presence of Mn2+ (which can substitute for Mg2+ to support 

catalysis) showed that the metal is coordinated by the conserved residues D486, 

D492 and K494 (Nurmohamed et al., 2009). Indeed, substitution of D492 

abolished both phosphorolysis and polymerization activities (Jarrige et al., 2002). 

 

7.4 PNPase role in virulence 

PNPase has been described to have a role in the establishment of virulence 

in several pathogens. In Salmonella, PNPase activity decreases the expression of 

genes from the pathogenicity islands SPI 1 (containing genes for invasion) and SPI 

2 (containing genes for intracellular growth) (Clements et al., 2002). Similarly, in 

Dichelobacter nodosus, PNPase acts as a virulence repressor in benign strains by 

decreasing twitching motility (Palanisamy et al., 2009). On the contrary, in Yersinia 

PNPase modulates the type three secretion system (TTSS) by affecting the steady-
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state levels of TTSS transcripts and controlling the secretion-rate (Rosenzweig et 

al., 2005; Rosenzweig et al., 2007).  This is probably the reason why the pnp 

deletion results in a less virulent strain in a mouse model (Rosenzweig, et al., 

2007). Inactivation of the C. jejuni PNPase also results in a less virulent strain. pnp 

mutants showed distinct phenotypes such as limitations in swimming, substantial 

delay in the colonization of the chicken gut and a decreased ability to adhere and 

invade cells (Haddad et al., 2009). Defects in motility are suggested to be 

responsible for many of the attenuation of the virulent traits of C. jejuni in the 

mutant pnp strain. Furthermore, proteomic studies also showed that PNPase 

affects the synthesis of proteins involved in virulence, such as LuxS and PEB3 

(Haddad et al., 2009; Haddad et al., 2012). Finally, in Streptococcus pyogenes, 

PNPase activity is rate-limiting for decay of sagA and sda which code for the 

important virulence factors streptolysin S and streptodornase (a DNase), 

respectively (Barnett et al., 2007).  

 

8 Role of small RNAs and Hfq in RNA decay 

Small noncoding RNAs (sRNAs) are molecules which are not translated into 

proteins. They are highly structured and very stable molecules that exert several 

regulatory functions in both prokaryotes and eukaryotes cells. Prokaryotic sRNAs 

can bind to proteins or to mRNA targets (antisense RNAs) with full (cis-encoded) 

or partial complementarity (trans-encoded) (Viegas & Arraiano, 2008). All trans-

encoded sRNAs studied so far in E. coli bind the RNA chaperone Hfq, which has 

been shown to stabilize several sRNAs as well as promoting sRNA–mRNA duplex 

(Valentin-Hansen et al., 2004; Brennan & Link, 2007).  
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8.1 Small RNAs mode of action  

The sRNA usually binds to the 5' end of the target mRNA, near the Shine 

Dalgarno sequence, blocking ribosome binding and affecting mRNA translation 

and/or stability (Urban & Vogel, 2007; Viegas & Arraiano, 2008) (Figure 2). 

However, some sRNAs can regulate mRNA levels by binding to the 5’end mRNA 

coding region (Argaman & Altuvia, 2000; Bouvier et al., 2008; Papenfort et al., 

2010; Rice & Vanderpool, 2011). More recently it was shown that the sRNA RyhB 

blocking translation cannot fully explain sRNA-induced mRNA degradation. In fact, 

RyhB binding to the ribosome-binding site (RBS) of sodB promotes mRNA cleavage 

at a distal site more than 350 nt downstream from the RBS. The degradation of 

some sRNAs was shown to be coupled with the endoribonucleolytic inactivation 

of their target mRNAs (Massé et al., 2003). However, it was also demonstrated 

that 3’-5’ exoribonucleolytic degradation can be important in the regulation of 

small RNAs (Viegas et al., 2007; Andrade & Arraiano, 2008). 

 

Figure 2 – Model for non-coding RNA mediated decay. Most of the ncRNA binds to the 
target mRNA with the help of Hfq. The binding of ncRNA to the mRNA blocks translation 
and promotes the target mRNA degradation. 
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The interaction between sRNAs and the target mRNA can include several 

regions of the sRNA. For example, OxyS RNA forms “kissing” complexes with its 

mRNA target fhlA at two different sites. This interaction occurs between two stem 

loops of OxyS RNA and two stem loops of fhlA mRNA (Argaman & Altuvia, 2000). 

The 5’ end stem loop of OxyS RNA binds to a short sequence (9 nucleotides) of the 

fhlA mRNA coding region, while a 3’ end stem loop binds to a 7 nucleotide 

sequence in the RBS site (Altuvia et al., 1998; Argaman & Altuvia, 2000). The 

binding of OxyS RNA to the coding region of fhlA mRNA facilitates the interaction 

of OxyS RNA to the RBS site of fhlA mRNA and a mutation in either one of the 

stem loops decreases the stability of the complex (Argaman & Altuvia, 2000). 

Nevertheless, generally is the 5’ end of the sRNA that is involved in the interaction 

with the target mRNA.  

In the last years it has become clear that a single sRNA can regulate several 

mRNA targets in a similar approach as miRNAs in eukaryotes. The major 

difference is in the length of the seed sequence (nucleotides involved in the base 

pairing). While miRNAs seed sequence is always the nucleotides 2-8 (Carthew & 

Sontheimer, 2009) the sRNAs in prokaryotes may have shorter or longer seed 

sequences. Also, it has been demonstrated that different seed sequences from 

the same sRNA can affect differently the mRNA targets (Guillier & Gottesman, 

2008; Balbontín et al., 2010; Rice & Vanderpool, 2011). In the case of OmrA and 

OmrB RNAs, two redundant sRNAs from E. coli, their conserved 5’ end region can 

regulate at least five different mRNA targets. However, the nucleotides and the 

length of the sequence involved in the regulation of the different targets may 

differ (Guillier & Gottesman, 2008). This is also true for SgrS sRNA and its mRNA 

targets (Rice & Vanderpool, 2011). In the case of SgrS RNA, it was also 

demonstrated that the secondary structure of the sRNA as well as the secondary 

structure of the mRNA targets are important for their interaction (Rice & 

Vanderpool, 2011). Another example as 5’ end can be important in the regulation 
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of multiple mRNA targets is sRNA RybB. A seed sequence of the first 7 nucleotides 

in the 5’ end of RybB RNA appears to be crucial for the interaction with ompC, 

ompD and chiP mRNA targets in Salmonella (Balbontín et al., 2010). The 5’ end of 

RybB RNA was also shown to be a target recognition domain, meaning that the 

RybB 5’ end by itself was able to target several omp mRNAs to degradation in 

Salmonella (Papenfort et al., 2010).  

MicA RNA is a 78 nucleotide sRNA that controls the expression several 

mRNA targets (Gogol et al., 2011). The most well studied MicA RNA targets are 

ompA, an outer membrane protein, and lamB, a maltoporin (Rasmussen et al., 

2005; Udekwu et al., 2005; Bossi & Figueroa-Bossi, 2007; Andrade & Arraiano, 

2008). MicA binds to the 5’-UTR of the target ompA mRNA in an Hfq dependent 

manner (Udekwu et al., 2005). This binding blocks the ribosome entry 

(translational repression) promoting the ompA mRNA degradation. MicA RNA 

regulation of ompA mRNA is growth phase and growth rate dependent occurring 

during stationary phase (Rasmussen et al., 2005). MicA RNA binding sequence to 

ompA mRNA is different from the binding sequence to lamB mRNA. Although, 

the 5’ end linear region of MicA RNA is involved in binding to both targets (Bossi 

& Figueroa-Bossi, 2007). 

 

8.2 Hfq roles in the cell 

Hfq is a RNA chaperone protein that enhances RNA annealing (Moll et al., 

2003b; Rajkowitsch & Schroeder, 2007). It was originally discovered as a host 

factor required for replication of phage Qβ RNA (Franze de Fernandez et al., 

1972). Hfq is a small protein of 102 a.a. encoded by the hfq gene (Kajitani et al., 

1994). Hfq regulates its own expression at the translational level by binding to two 

different sites in the 5’-UTR region of hfq mRNA (Tsui et al., 1997; Vecerek et al., 
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2005). Hfq is an ATP-binding protein and in the presence of ATP there is a 

significant destabilization of the Hfq-RNA complex (Arluison et al., 2007). Hfq is 

also involved in the metabolism of poly(A) tails (Hajnsdorf & Régnier, 2000; Le 

Derout et al., 2003; Folichon et al., 2005a). It was demonstrated that Hfq 

stimulates PAP I activity upon binding to the mRNA (Hajnsdorf & Régnier, 2000; 

Folichon et al., 2005a). Also, PAP I in the presence of Hfq becomes a processive 

enzyme extending RNAs harbouring oligo(A) tails (Hajnsdorf & Régnier, 2000). 

PNPase can also synthesize poly(A) tails, however, Hfq has a inhibitory effect on 

PNPase polymerization activity (Folichon et al., 2005a). Hfq affects not only PAP I 

activity but also the length and the frequency of the poly(A) tails (Le Derout et al., 

2003). Hfq also appears to have a significant role in tRNA metabolism (Scheibe et 

al., 2007; Lee & Feig, 2008). Hfq stimulates the CCA-adding enzyme (catalyses the 

synthesis of the 3’-terminal sequence CCA to all tRNAs) activity after binding 

tRNAs (Scheibe et al., 2007).  

Hfq mediates RNA-RNA interaction and is essential for the interaction of 

most of the known trans-acting sRNA with their mRNA targets (Moller et al., 

2002). Hfq was found to accelerate the duplex formation between the sRNA SgrS 

and the mRNA ptsG (Kawamoto et al., 2006). In some cases Hfq binds to the sRNA 

or to the mRNA destabilizing their structure and thus allowing binding between 

both RNAs, for example when Hfq binds sodB mRNA its structure is destabilized 

and allows the sRNA RyhB binding, and then triggers the degradation of both 

RNAs (Geissmann & Touati, 2004). On the other hand, there are also some 

examples where Hfq does not affect the RNA secondary structure (Brescia et al., 

2003). Hfq binding to DsrA sRNA does not affect this RNA secondary structure 

although it might affect its tertiary conformation (Brescia et al., 2003). In some 

cases Hfq stabilizes a sRNA. RyhB RNA is very unstable in the absence of Hfq 

(Massé et al., 2003). This might be due to an identical binding site of Hfq and 

RNase E. In the presence of Hfq RyhB is protected against cleavage by the RNase E 
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(Massé et al., 2003; Moll et al., 2003a). This also happens with the sRNA DsrA 

(Moll et al., 2003a) and the mRNA rpsO (Folichon et al., 2003). More recently, it 

was suggested that Hfq might also affect mRNAs at the transcriptional level 

independently of mRNA degradation, although the mechanism is still not clear (Le 

Derout et al., 2010). 

 

8.3 Hfq structure and function 

Hfq is a member of the Sm/Lsm superfamily and shares the OB fold (N-

terminal α-helix followed by five stranded β-sheet) characteristic of this family of 

proteins (Schumacher et al., 2002). Hfq forms a symmetric hexameric ring with a 

doughnut like shape (Schumacher et al., 2002). Although Hfq is a Sm protein, it 

has two structural differences from the other members of this family. One is a 

shorter turn between its Sm1 and its C-terminal region (“Sm2” motif); the other is 

the hexamer formation instead of a heptamer, like the other Sm proteins 

(Schumacher et al., 2002). The pore of the Hfq hexamer has residues from the 

Sm1 and the “Sm2” motifs that form a six nucleotide binding pocket. RNA binds 

around this pocket in a circular and unwound manner (Schumacher et al., 2002). 

The Hfq binding to poly(A) tails is very different from the Hfq binding to A/U-rich 

regions. Poly(A) tails bind to Hfq in its distal face of the hexameric ring instead of 

the proximal face were RNA binds, also Hfq has the capacity to bind 18 

nucleotides from the poly(A) tail (Link et al., 2009). The proximal face of Hfq was 

also identified as a tRNA binding site (Lee & Feig, 2008). So, it is possible to 

identify different Hfq interaction surfaces for different substrates (Mikulecky et 

al., 2004). 

The N-terminal region of the Sm proteins is much conserved; on the other 

hand the C-terminal region is extremely variable. The biological role for the C-
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terminal region of Hfq is still not clear. Although some studies with a C-terminally 

truncated variant of Hfq (Hfq65) suggested that this region was involved in 

regulation and that this Hfq variant was defective in mRNA binding (Vecerek et al., 

2008), other studies seems to demonstrate that the C-terminal region is not 

involved in riboregulation (Olsen et al., 2010). However, it was demonstrated that 

the C-terminal domain stabilizes the Hfq hexameric structure (Arluison et al., 

2004). 

 

8.4 Hfq complexes 

Hfq can form complexes with other several other proteins. One of these 

proteins is the ribosomal protein S1 (Sukhodolets & Garges, 2003; Morita et al., 

2005). Hfq can form a complex with the S1 and with the RNA polymerase, 

although by itself, Hfq has no affinity for the RNA polymerase (Sukhodolets & 

Garges, 2003). Hfq can also form complexes with both PNPase and Poly(A) 

polymerase (PAP I). These complexes can be Hfq-PNPase-PAP I, but also only Hfq-

PNPase or Hfq-PAP I (Mohanty et al., 2004). Hfq directly associates with the C-

terminal scaffold region of RNase E (Morita et al., 2005; Worrall et al., 2008; Ikeda 

et al., 2011). However, the overexpression of RhlB can inhibit Hfq binding to 

RNase E (Ikeda et al., 2011). It was also demonstrated that SgrS and RyhB RNAs 

can also associate with RNase E through Hfq, forming ribonucleoprotein 

complexes that act as specialized RNA decay machines (Morita et al., 2005). 
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9 Concluding Remarks 

Maintenance of optimal levels of RNAs at any time and under any 

circumstance is an extremely difficult task to achieve and requires great 

coordination among all the factors involved in this control. It is also assumed that 

there is a cross-talk between transcription and degradation to maintain the 

balance that is best for the survival of microorganisms. There are several 

examples where this is obvious, and when a specific message is more transcribed, 

it is also more stabilized, and vice versa. Transcripts can have a different half-life 

under different growth conditions to rapidly carry out the necessary changes and 

adjust to adequate RNA levels. The same RNA can have a ‘preferred’ decay 

pathway, but there are examples where there is alternative degradation pathways 

for the same transcript, depending on which enzyme cleaves first. After cleavage, 

the RNA breakdown product(s) can have a distinct half-life depending on 

sequence and structure. Therefore, the structural characteristics of RNA stability 

and instability predetermine the ‘fate’ of RNA, but the environment and the 

consequent levels and nature of the degradative enzymes will also play a 

determinant role in its turnover. For instance, the mRNAs expressed in 

heterologous systems can have a very different half-life than if they are expressed 

in their own microorganism. The directionality of the decay process depends on 

the transcript analysed. Once we characterise the enzymes from one 

microorganism, we can design strategies to stabilize RNAs. Mutants have been 

instrumental in characterizing degradation pathways and in changing the turnover 

of specific transcripts, especially because a limited number of RNases intervene in 

the maturation and degradation of RNAs. There are fundamental principles that 

govern RNA decay in all organisms. Evolution has resulted in similar functions 

performed by different enzymes. For instance, in E. coli, RNase E is one of the 

major endoribonucleases, but this enzyme is absent in B. subtilis. In B. subtilis, 
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RNase J1 seems to take over the same function, and this enzyme is not present in 

E. coli. In yeast, 5’–3’ decay is prominent, and Rrp44/ Dis3, an RNase II family 

enzyme, has dual endo and 3’–5’ exo activities, being an example of an optimized 

‘RNA degradation machine’. Sometimes, RNases also combine into complexes to 

speed up the decay process or confer specificity to certain targets. It is fascinating 

to know that RNases themselves are strictly regulated proteins and have 

mechanisms to adapt them to the environment and to the levels of the other 

RNases. For instance, RNase R is highly increased under cold shock; the levels of 

PNPase and RNase II are inter-regulated and the level of RNase E is autoregulated. 

Recent studies demonstrate that, between prokaryotic and eukaryotic systems, 

the RNA degradation mechanisms have much more similarities than expected. 

The mechanism of RNA interference in eukaryotes has shown the power of RNA 

degradation mechanisms involving RNases. It is now obvious that the modulation 

of RNA levels and their respective proteins can be rapidly achieved. The field of 

RNA still holds many unanswered questions. The continuous study of these 

diverse enzymes, small RNAs and other factors involved in RNA degradation will 

surely guarantee a more detailed understanding of RNA metabolism. 
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Abstract 

The transient existence of small RNAs free of binding to the RNA chaperone 

Hfq is part of the normal dynamic lifecycle of a sRNA. Small RNAs are extremely 

labile when are not associated with Hfq, but the mechanism by which Hfq 

stabilises sRNAs has been elusive. In this work, we have found that polynucleotide 

phosphorylase (PNPase) is the major factor involved in the rapid degradation of 

small RNAs, especially those that are free of binding to Hfq. The levels of MicA, 

GlmY, RyhB and SgrS RNAs are drastically increased upon PNPase inactivation in 

Hfq cells. In the absence of Hfq, all sRNAs are slightly shorter than their full-

length species as result of 3’-end trimming. We show that the turnover of Hfq-free 

small RNAs is growth phase regulated and that PNPase activity is particularly 

important in stationary-phase. Indeed, PNPase makes a greater contribution than 

RNase E, which is commonly believed to be the main enzyme in the decay of small 

RNAs. Lack of poly(A) polymerase I (PAP I) is also found to affect the rapid 

degradation of Hfq-free small RNAs although to a lesser extent. Our data also 

suggests that when the sRNA is not associated with Hfq, the degradation occurs 

mainly in a target-independent pathway in which RNase III has a reduced impact. 

This work demonstrated that small RNAs free of Hfq binding are preferably 

degraded by PNPase. Overall, our data highlights the impact of 3’-exonucleolytic 

RNA decay pathways and re-evaluates the degradation mechanisms of Hfq-free 

small RNAs. 
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Introduction 

The bacterial Hfq is a member of the Sm/Lsm superfamily of proteins 

involved in RNA metabolism (Wilusz & Wilusz, 2005). It is a global regulator of cell 

physiology with particular impact on stress responses and affects the virulence 

traits of many pathogens (Tsui et al., 1994; Chao & Vogel, 2010). Hfq plays a 

relevant role as a mediator of small noncoding RNAmRNA interactions (Valentin-

Hansen et al., 2004; Waters & Storz, 2009). Base pairing of small RNAs with their 

target mRNAs can alter mRNA translation and/or stability. The majority of small 

RNAs act as inhibitors of translation usually triggering mRNA decay, although 

some other sRNAs act as positive regulators (Massé et al., 2003; Vecerek et al., 

2007; Soper et al., 2010). 

Hfq forms a stable hexamer with a ring-shaped structure displaying two 

distinct RNA-binding surfaces (Brennan & Link, 2007). Biochemical and structural 

data support that the Hfq hexamer can bind simultaneously the sRNA on its 

proximal face and mRNA on its distal face increasing the probability of RNA-RNA 

interactions in order to form a heteroduplex (Schumacher et al., 2002; Lease & 

Woodson, 2004; Mikulecky et al., 2004; Link et al., 2009). In agreement, it has 

been suggested that the Hfq hexamer forms a ternary complex with oligo A18 and 

the small RNA DsrADII with a stoichiometry of 1:1:1 (Updegrove et al., 2011). Hfq 

can also work as a RNA chaperone and induce structural rearrangement of the 

RNA molecules to enable the contact between the two partner RNAs (Moll et al., 

2003b; Geissmann & Touati, 2004; Afonyushkin et al., 2005; Arluison et al., 2007). 

Bacterial small RNAs that act as repressors bind at or near the ribosome 

binding site (RBS) of the target mRNA blocking its translation (Morita et al., 2006; 

Bouvier et al., 2008). Most of the time, this promotes cleavages in the mRNA not 

only on the vicinity of the duplex (as happens with ompA mRNA/MicA) (Udekwu 

et al., 2005), but also downstream into the coding region (as reported for sodB 
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mRNA/RyhB) (Prévost et al., 2011). Ribonuclease (RNase) III is an important 

endoribonuclease in the degradation of sRNA coupled to their target mRNAs 

(Afonyushkin et al., 2005; Deltcheva et al., 2011). However other sRNAs mediate 

the destabilisation of the target mRNA in an RNase E-dependent manner (Massé 

et al., 2003; Afonyushkin et al., 2005; Morita et al., 2005; Udekwu et al., 2005). 

RNase E is a single-stranded RNA endoribonuclease involved in mRNA decay in 

Escherichia coli (Arraiano et al., 2010). Hfq can associate with RNase E and sRNA in 

ribonucleoprotein complexes that are thought to make the degradation of target 

mRNAs more efficient (Aiba, 2007). 

Hfq is also found to interact with other proteins involved in mRNA decay. 

One of these proteins is the poly(A) polymerase I (PAP I), responsible for the 

majority of polyadenylation in E. coli cells (Régnier & Hajnsdorf, 2009). Hfq is 

suggested to regulate polyadenylation by stimulating PAP I activity on mRNA 

(Hajnsdorf & Régnier, 2000; Folichon et al., 2005). In the absence of Hfq, the 

poly(A) levels are reduced and the poly(A) tails are suggested to become smaller 

(Le Derout et al., 2003; Mohanty et al., 2004). Hfq was also shown to interact with 

the polynucleotide phosphorylase (PNPase) (Mohanty et al., 2004), a major 3’-5’ 

exoribonuclease involved in RNA degradation (Andrade et al., 2009b). PNPase 

responds to environmental stimuli and its activity is modulated by metabolites, 

such as ATP, citrate and cyclic di-GMP (Del Favero et al., 2008; Nurmohamed et 

al., 2011; Tuckerman et al., 2011). We have previously shown that PNPase is a key 

factor in the turnover of small RNAs controlling the expression of outer 

membrane proteins in the stationary-phase of growth (Andrade & Arraiano, 

2008). It was recently suggested that PNPase can also have a protector role for 

some sRNAs in exponentially growing cells (De Lay & Gottesman, 2011). However, 

the details of the interplay between PNPase and Hfq in the function of sRNA are 

still not clear. 
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The interaction of Hfq with small RNAs is dynamic. Small RNAs compete for 

access to Hfq and it was shown that the expression of unrelated sRNAs can 

dissociate Hfq-sRNA complexes already formed (Fender et al., 2010; Hussein & 

Lim, 2011). The transient existence of small RNAs free from Hfq binding is thus 

part of the normal dynamic lifecycle of a sRNA. In addition, variations in the Hfq 

expression levels or in the availability of the free pool of Hfq can result in the 

reduction of Hfq-sRNA complexes. A small RNA that is not associated with Hfq is 

rapidly degraded, although the mechanism by which Hfq stabilises small RNAs is 

not yet fully understood. RNase E was considered to be the responsible for the 

rapid degradation of the small RNAs and was shown to compete with Hfq for 

access to the same RNA sequences (Massé et al., 2003; Moll et al., 2003a). 

However, the activity of RNase E may not be as generalised; for example, RNase E 

was not found to be important for the in vivo degradation of OxyS upon Hfq 

inactivation (Basineni et al., 2009). 

In this work, we have characterised the degradation of small RNAs that are 

unassociated with Hfq. We have constructed multiple hfq mutants defective in 

RNases or in the poly(A) polymerase and studied the impact of these factors in the 

expression of several small RNAs. We have shown that small RNAs in their Hfq-

free state are rapidly degraded by PNPase, particularly in the stationary-phase of 

growth. Moreover, PNPase was found to be more relevant than RNase E or RNase 

III in the degradation of small RNAs when these were not associated to Hfq. 

PNPase-mediated degradation of small RNAs is also found to be an active 

regulatory pathway in the cells expressing Hfq. Together, results show that 

PNPase has a predominant role in the degradation of Hfq-free small RNAs. 
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Results 

Inactivation of PNPase markedly increases the levels of small RNAs 

not associated with Hfq 

It is commonly believed that the RNA chaperone Hfq protects regulatory 

RNAs from RNase E endonucleolytic cleavages (Massé et al., 2003; Moll et al., 

2003a). Nevertheless, we have previously showed that 3’-5’ exonucleolytic activity 

can be determinant for the degradation of small RNAs even in the presence of Hfq 

(Andrade & Arraiano, 2008). In this work, we wanted to characterise the role of 

3’-5’ exoribonucleases in the degradation of small RNAs while are not associated 

with Hfq. Therefore, we have performed most of our studies in strains lacking Hfq. 

In this work, we have analysed four well characterised E. coli sRNAs; MicA, 

SgrS, RyhB and GlmY. Most of these small RNAs are induced under specific 

conditions of stress and in stationary-phase. Therefore, we decided to focus our 

work in this growth phase. Total RNA was extracted from stationary-phase 

cultures and the steady-state levels of these small RNAs were analysed by 

Northern blotting. Inactivation of Hfq resulted in the high reduction of all the 

small RNAs analysed, when compared to wild-type strain (Figure 1, central panel). 

Only GlmY levels seemed not to be so strongly affected by the absence of Hfq in 

the conditions analysed. Subsequently, a set of multiple mutants lacking both Hfq 

and one of the main 3’-5’ exoribonucleases (PNPase, RNase II or RNase R) was 

constructed. RNase II and RNase R had a reduced impact in this regulation; RNase 

II mutant was only shown to change GlmY levels and the absence of RNase R did 

not affect the levels of any of these small RNAs. Upon inactivation of PNPase in 

cells lacking Hfq, it was possible to detect a very strong signal for all the small 

RNAs analysed. These results indicate that PNPase is a major factor controlling the 

levels of small RNA that are not associated with Hfq. 



Hfq protects sRNAs from PNPase 

73 

 

Figure 1. PNPase strongly affects the levels of several small RNAs that are not bound to 
Hfq. 
Small RNA expression was analysed by Northern blot. (Left panel) The levels of MicA, SgrS, 

RyhB and GlmY were analysed in the wild-type (hfq pnp) and a PNPase mutant (hfq 

pnp). Total RNA was extracted from stationary-phase cultures grown at 37ºC as 
mentioned in Material and Methods. (Central panel) Hfq mutants lacking one of the 3’-5’ 
exoribonucleases PNPase (pnp), RNase II (rnb) and RNase R (rnr) were compared to wild-
type (wt) and hfq single mutant. (Right panel) To study the impact of the essential RNase E 
(rne), the double hfq rne-1 mutant was grown at 30ºC until it reached stationary-phase 
and then shifted to the non-permissive temperature of 44ºC for inactivation of the 
thermosensitive RNase E. Samples were withdrawn after 5 min incubation. For 

comparison, the single hfq mutant was treated in the same conditions. Specific 32P-
labelled probes were used to detect the small RNAs. Full-length small RNAs are clearly 
detected on wild-type (except for GlmY), showing the expected sizes: MicA (74 nts), RyhB 
(90 nts), GlmY (180 nts) and SgrS (227 nts), as estimated from markers run along the gels. 
Small RNAs detected on hfq mutants (namely in the hfq pnp) are slightly shorter than the 
corresponding full-length sRNAs; these shorter small RNA are designated by an asterisk 

(). The positions of both the full-length and the shorter small RNAs are indicated. 5S RNA 
or tmRNA were used as loading controls. 

 

In Hfq PNPase cells we observed the accumulation of a slightly shorter 

form of all the small RNAs (here designated respectively by MicA*, SgrS*, RyhB* 

and GlmY*) (Figure 1, central panel). These shorter sRNA are not detected or are 

barely perceptible in the wild-type strain. The shorter GlmY* (140nt) is an 

exception, being the predominant RNA detected in the wild-type. This has been 
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previously observed as the full-length GlmY (180nt) is rapidly processed in the 3’-

end to originate the GlmY* species (Reichenbach et al., 2008; Urban & Vogel, 

2008). Overexpression of PNPase in the hfq pnp strain was shown to reverse the 

accumulation of MicA* (Figure S1). This result confirmed that PNPase is 

responsible for the higher levels of small RNAs found in the Hfq PNPase cells. 

We had previously demonstrated the involvement of PNPase in the 

degradation of MicA in stationary-phase cells harbouring Hfq (Andrade and 

Arraiano, 2008). To check the impact of PNPase in the regulation of all these small 

RNAs in the presence of Hfq, we have analysed the levels of the same small RNAs 

in the pnp single mutant and compared it to the wild-type strain (Figure 1, left 

panel). Inactivation of PNPase in cells expressing Hfq resulted in higher levels of 

two of these sRNAs, namely GlmY* and MicA. In contrast, two other small RNAs 

RyhB and SgrS showed decreased amounts in the PNPase mutant strain. The 

reduction in the levels of other sRNAs following PNPase inactivation in 

exponential-phase was recently observed and may potentially reflect an increase 

in the activity of other RNase(s) (De Lay & Gottesman, 2011), but the genetic 

pathways involved in this regulation have not yet been elucidated. Here we show 

that in cells without Hfq the inactivation of PNPase (Hfq– PNPase– cells) results in 

increasing levels of all the sRNAs analysed, but that this regulation is not universal 

in the presence of Hfq (Hfq PNPase– cells). These results suggest that the binding 

of Hfq may impair the PNPase-dependent regulation of at least some small RNAs, 

but possibly many in stationary phase. 

We also analysed the effect of RNase E in the control of these regulatory 

RNAs, in the absence of Hfq (Figure 1, right panel). Only RyhB* and both 

GlmY/GlmY* levels were increased in the Hfq RNase E mutant while MicA* and 

SgrS* levels did not change. This greatly contrasted with the strong stabilisation of 

all the small RNAs obtained in the Hfq PNPase mutant. Hence, our results 
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indicated that when these small RNAs are not associated with Hfq, they are clearly 

more vulnerable to degradation by PNPase than to cleavages by RNase E. 

 

PNPase is a major factor in the rapid decay of the Hfq-free MicA* 

Taking into account these results and our previous data on MicA (Andrade 

& Arraiano, 2008) we decided to use this sRNA as the main model for further 

investigation. MicA (previously SraD), is an antisense RNA that downregulates the 

expression level of outer membrane proteins OmpA (Rasmussen et al., 2005; 

Udekwu et al., 2005) and LamB (Bossi & Figueroa-Bossi, 2007) as well as the 

members of the PhoPQ regulon (Coornaert et al., 2010).  

To evaluate whether the higher MicA* levels in the absence of PNPase were 

consequence of increased stability, we next analysed the decay rates of MicA* in 

the Hfq– PNPase– cells (Figure 2). We also tested the potential role of RNase II and 

RNase R in the degradation of small RNAs in cells without Hfq.  

 

Figure 2. PNPase is the major exoribonuclease involved in the degradation of MicA*. 
Samples from stationary-phase cultures of hfq and its derivative exoribonuclease mutants 
(hfq pnp, hfq ∆rnb and hfq rnr) grown at 37ºC were withdrawn after inhibition of 
transcription (timepoints are shown in minutes) and total RNA was analysed by Northern 
blot. A specific riboprobe for MicA was used. A nonspecific band that cross-hybridised 
with the antisense MicA probe was used as loading control. This band migrates above 
MicA and disappears with a more stringent washing step of the membrane without 
affecting MicA signal (Andrade & Arraiano, 2008). Hybridisation with a 5S RNA riboprobe 
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gave identical results. Only the MicA* RNA species is detected in the absence of Hfq. Half-
lives were determined after PhosphorImager densitometry quantification showing that 
PNPase is the major exoribonuclease involved in the degradation of the Hfq-unprotected 
MicA*.  NQ – not quantifiable. 

 

Stability measurements indicated that PNPase was found to be the only 

exoribonuclease significantly involved in the exo-degradation of MicA RNAs in 

stationary-phase cells lacking Hfq (Figure 2). Neither RNase II nor RNase R was 

shown to significantly affect this decay. The hfq pnp double mutant showed a 

nearly 4-fold stabilisation of MicA* when compared to hfq single mutant. 

Accordingly, the increasing levels of MicA* in Hfq PNPase cells are a 

consequence of its longer stability due to the inactivation of PNPase. These results 

indicate that PNPase has a major role in turning over MicA species that are not 

associated with Hfq. 

 

Poly(A) polymerase I promotes the degradation of MicA* 

Polyadenylation can promote RNA degradation by facilitating the 

exonucleolytic attack of an RNA substrate (Régnier & Hajnsdorf, 2009). Therefore, 

we decided to analyse the impact of polyadenylation in the degradation of MicA 

and compare it to PNPase. 

In stationary-phase cells expressing Hfq, the lack of poly(A) polymerase I 

(PAP I/pcnB) resulted in a modest increase in MicA half-life (only a 1.5-fold 

upregulation) from 8.2 to 12.5 minutes, as detected by Northern blotting (Figure 

3A). On the other hand and in the same conditions, inactivation of PNPase 

resulted in a stronger stabilisation of MicA (from 8.2 minutes in the wild-type to 

27.5 minutes in the pnp mutant). This indicates that in the presence of Hfq, 
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PNPase activity against MicA surpasses the effect of PAP I polyadenylation-

dependent pathways. 

MicA is very unstable in the absence of Hfq; its half-life decreases from 8.2 

minutes in the wild-type to 2 minutes in the hfq mutant (Figure 3). To check if PAP 

I could be involved in the rapid degradation of the MicA* in the absence of Hfq, 

we constructed the double hfq pcnB mutant. Two different pcnB mutations were 

used in this study: either a deletion pcnB (O'Hara et al., 1995) or the pcnB80 

allele (Hajnsdorf et al., 1995) was transferred to the hfq mutant strain; 

measurement of MicA half-lives gave identical results for both strains. The double 

mutant hfq pcnB was found to have a significant 2.5-fold more stable MicA* when 

compared to the single hfq mutant (increasing half-life from 2 to 5 minutes). In 

the absence of Hfq, the MicA* RNA is more susceptible to poly(A)-mediated decay 

in stationary-phase cells. This was surprising as an Hfq mutant was reported to 

have low levels of polyadenylation (Hajnsdorf & Régnier, 2000; Le Derout et al., 

2003; Mohanty et al., 2004). Notwithstanding the higher impact that poly(A) 

polymerase I displays in the degradation of the MicA* in the absence of Hfq, 

inactivation of PNPase still renders a more stable sRNA (Figure 3A, lower panel). 

Altogether, these results show that PNPase has a stronger effect than poly(A) 

polymerase I in the degradation of MicA RNAs, irrespective of the presence of 

Hfq.  
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Figure 3. Lack of poly(A) polymerase I results in increasing levels of MicA*. 

(A) Impact of poly(A) polymerase I (pcnB) in the degradation of the small MicA RNA in Hfq 

or Hfq cells. Stationary-phase cultures of wild-type and its derivatives pnp, pcnB, hfq 

pnp, hfq and hfq pcnB strains were treated with rifampicin and total RNA was analysed 
by Northern blot. MicA was detected by use of a specific riboprobe. Only the shorter 

MicA* RNA is visible in the Hfq cells. An nonspecific band cross-reacting with MicA probe 
was used as loading control. (B) The steady-state levels of several small RNAs from 

stationary-phase cultures of hfq and hfq pcnB mutants were evaluated by Northern blot. 

 

We also determined the relative levels of other small RNAs in the hfq pcnB 

double mutant compared to the hfq single mutant (Figure 3B). The levels of 

GlmY* were also increased by the lack of PAP I in the absence of Hfq. This was 

also confirmed to be consequence of the higher stabilisation of GlmY* in the hfq 

pcnB mutant (data not shown). GlmY* is known to be highly polyadenylated in 

cells harbouring Hfq (Reichenbach et al., 2008; Urban & Vogel, 2008). We have 

now shown that the lack of poly(A) polymerase I is an important factor affecting 

the sRNA decay in the absence of Hfq in stationary-phase cells. However, 

inactivation of PNPase in cells devoid of Hfq resulted in higher levels of all the 

small RNAs analysed, even the ones that were not affected by the lack of PAP I 

(namely RyhB* and SgrS*) (Figure 1 and Figure 3B). Hence, PNPase activity against 
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a small RNA that is not bound to Hfq does not necessarily require an active 

polyadenylation-dependent pathway. 

 

In the absence of Hfq, MicA* is a substrate for PNPase but not for 

RNase E or RNase III 

RNase E was thought to be responsible for the rapid degradation of small 

RNAs not protected by Hfq (Massé et al., 2003; Moll et al., 2003a). Surprisingly, 

we found that MicA* levels did not change substantially between the hfq single 

mutant and the hfq rne-1 double mutant (Figure 1, right panel). To analyse this 

observation further, we assayed MicA decay rates in both strains. As RNase E (rne) 

is essential in E. coli, we used a thermolabile allele (rne-1) and performed this set 

of experiments at the non-permissive temperature (Figure 4A). 

From previous work, we have identified that RNase E is involved in the 

degradation of MicA in cells producing Hfq (Andrade and Arraiano, 2008). 

Surprisingly, our results revealed that MicA* is not stabilised significantly when 

RNase E is inactivated in the absence of Hfq (Figure 4A). This indicates that RNase 

E is not able to efficiently degrade MicA* unless Hfq is present in the cell. A similar 

RNase E/Hfq dependency was observed in OxyS turnover (Basineni et al., 2009). 

To better assess the relative impact of RNase E and PNPase, we treated the 

culture of the hfq pnp mutant in the same conditions used to inactivate the 

thermosensitive RNase E (Figure 4B). No significant changes were detected when 

Hfq and RNase E were inactive, but MicA steady-state levels are substantially 

higher upon inactivation of both Hfq and PNPase (an 8-fold increase to the hfq 

mutant). This result clearly showed that in the absence of Hfq, PNPase is more 
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important than RNase E in the degradation of this sRNA. This result is also 

substantiated by data from Figure 1. 

 
Figure 4. PNPase but not RNase E nor RNase III degrades the Hfq-free MicA* RNA. 

(A) Northern blot detection of MicA RNA in Hfq cells harbouring or not the rne-1 allele. 
Stationary-phase cultures were treated at 44ºC for inactivation of the thermosensitive 
RNase E (as mentioned before). MicA RNA stability was analysed by Northern blot with a 

specific riboprobe. (B) Northern blot analysis of MicA in Hfq cells deficient in RNase E or 
PNPase. The double hfq rne-1 mutant was grown at 30ºC until stationary-phase and then 
incubated at 44ºC to inactivate RNase E. For comparison, the hfq and hfq pnp were 
treated in the same conditions. (C) Northern blot detection of MicA in stationary-phase 

cultures of Hfq cells harbouring or not RNase III (rnc), respectively. A loading control 
corresponding to a nonspecific band that cross-reacted with MicA probe is shown in the 

panel below. (D) Comparison of MicA* RNA steady-levels in Hfq stationary-phase cells 
deficient in RNase III or PNPase grown at 37ºC. 

 

The other main endoribonuclease involved in RNA degradation is RNase III 

(Arraiano et al., 2010). In vitro studies showed that Salmonella RNase III can 

cleave MicA when bound to its target ompA mRNA (Viegas et al., 2011). To further 

analyse the role of RNase III in cells without Hfq, we constructed and analysed 

double mutants lacking both Hfq and RNase III. RNA extracted from stationary-
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phase cultures from the deletion mutant of E. coli RNase III (rnc) and a double 

mutant lacking Hfq and RNase III (hfq rnc) was analysed by Northern blotting 

(Figure 4C). Inactivation of RNase III in the presence of Hfq appeared to block the 

degradation of MicA (this RNA apparently did not decay even 240 min after 

transcription blocking). This clear showed that E. coli RNase III is important in the 

control of MicA stability. However, MicA RNAs were barely detected in the double 

mutant hfq rnc reflecting the results obtained with the single hfq mutant. To 

confirm this result we also tested another allele of RNase III, the rnc105; the 

double mutant hfq rnc105 displayed identical results (not shown). The strong 

decrease in MicA levels typically found in the absence of Hfq obviously reduce the 

number of duplexes formed between this sRNA and its target mRNAs probably 

impairing RNase III activity against MicA. The MicA* levels found in the hfq pnp 

strain were higher (about a 6-fold increase to the hfq single mutant) than the 

MicA* levels found in the hfq rnc mutant (Figure 4D). These results clearly 

indicated that PNPase was more important than RNase III in the elimination of 

MicA* from the cell. Overall, when MicA is not associated with Hfq, the 3’-5’ 

exoribonucleolytic degradation pathway mediated by PNPase is found to be more 

important in this degradation than any of the main endoribonucleases involved in 

RNA turnover. 

 

Hfq is required for the optimal expression of the full-length MicA 

The slightly smaller MicA* is the predominant form in the hfq mutant in 

stationary-phase cultures, but it is barely detected in the wild-type (Figure 1). To 

examine if this RNA pattern was dependent on a growth phase specific regulation, 

we analysed both the wild-type and the hfq strain along the growth curve (Figure 

5A and Figure S2). In exponential-phase, the hfq mutant exhibited not only the 

full-length MicA as well as additional shorter bands of similar intensity, apparently 
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differing of few nucleotides in size. This pattern was growth dependent. In 

stationary-phase there was a decrease in the amount of full-length MicA and what 

appeared to be a concomitant accumulation of the smaller MicA*. This contrasted 

sharply with the wild-type strain where the full-length MicA was the most 

prominent band irrespective of the growth phase analysed. Moreover, supplying 

Hfq in trans from a plasmid complemented hfq deficiency on MicA expression and 

resulted in the strong accumulation of the full-length RNA and in the elimination 

of the shorter sized RNAs (Figure 5A). These results indicated that Hfq determines 

MicA full-length expression along growth, particularly in the stationary-phase. 

 
Figure 5. Hfq is required for the maintenance of the full-length MicA RNA. 
(A) Steady-state levels of MicA RNA along the growth curve. Culture samples of wild-type 
or hfq mutant bacteria were collected at exponential (EXP), late exponential, early 

stationary and stationary-phase (STAT) (corresponding to OD600 values of 0.3, 1.7, 2.5 

and 5.5 for the wild-type and 0.3, 0.8, 1.6 and 2.3 for the hfq mutant, respectively). 
The growth curves for the wild-type and the hfq mutant strain are given in Figure S2. A 
specific antisense MicA riboprobe was used to detect MicA. Stationary-phase cultures of 
the hfq mutant transformed with the overexpressing pHFQ plasmid shows 
complementation and do not exhibit the heterogeneous population of MicA’s typically 
found in the hfq single mutant. (B) Determination of the 5’-end of MicA. Total RNA from 
stationary-phase cells of wild-type, hfq, pnp and hfq pnp strains was analysed by primer 
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extension with the 32P-labelled primer MicA-PE. The same primer extension product 
(indicated by an arrow) is detected on all strains and absent from the deletion micA strain 

(micA) and the negative control reaction () done without RNA. Part of the DNA 

sequence is indicated on the right. The transcription start site of MicA is indicated (1) and 
is identical to the site described by Udekwu et al., 2005. The intensity of primer extension 
product obtained is higher in the wild-type rather than the hfq mutant, in agreement with 
the higher amount of MicA detected in the wild-type strain (see Figure 5A). (C) Northern 

blot detection of MicA in stationary-phase cultures of Hfq cells upon inactivation of 
RNase E. Cultures of wild-type and an RNase E mutant strain were grown at 30ºC until 
reached stationary-phase and then shifted to the non-permissive temperature of 44ºC. 
After 5 min, transcription was blocked with addition of rifampicin and samples were 
withdrawn at times indicated. A specific riboprobe was used to detect MicA RNA. A 
nonspecific band that cross-hybridised with the antisense MicA probe was used as loading 
control. The insert corresponds to a shorter exposure of the membrane in which is visible 
that both the full-length MicA and the shorter MicA* RNA are detected and stabilised 

upon inactivation of RNase E in Hfq cells. The hfq mutant was here used as a control to 
clearly identify MicA* RNA. 

 

The difference in size between the full-length MicA and MicA* is small, 

apparently in the range of 3-4 nucleotides as visible on Northern blotting. Such 

small variation must lie at one of the RNA extremities. Primer extension analysis 

was performed to evaluate which extremity was shortened (Figure 5B). 

Stationary-phase cultures of both the wild-type (which expresses full-length MicA) 

and the hfq mutant strain (where MicA* is detected) showed accumulation of a 

band which matches the start of MicA sequence. Furthermore, this same band 

was identified when testing either the pnp mutant or the hfq pnp double mutant, 

showing that the MicA RNAs that accumulate upon PNPase inactivation retain the 

same 5’ end than the wild-type MicA. Additional experimental approach using 

nuclease S1 mapping also determined the same 5’-end for both MicA species 

(Figure S3). Altogether, these findings supported that full-length MicA and MicA* 

have the same 5’-end and that the difference in size is located at the 3’-end. This 

suggests that the smaller RNA species probably arises from 3’-end processing of 

the full-length MicA. 



Chapter 2 

84  

The MicA* RNA is expressed at very low levels in the wild-type. This 

suggests that Hfq acts in order to prevent MicA* production or to ensure its rapid 

elimination. We decided to analyse the kinetics of decay and found that RNase E 

affected MicA* levels (Figure 5C). Inactivation of RNase E (in cells harbouring Hfq) 

resulted in the strong elevation of MicA levels in stationary-phase. However, a 

shorter exposure of this gel revealed the detection not only of the full-length 

MicA as well of the smaller MicA* (insert in Figure 5C). Both RNAs showed a two-

fold stabilisation in the absence of RNase E. This indicated that even in the 

presence of Hfq, the shorter MicA* RNA fragment is produced in the cell. 

 

Growth phase regulation of small RNAs by PNPase 

In the absence of Hfq, small RNAs are typically unstable and PNPase was 

found to be a major enzyme involved in the extensive degradation of MicA in 

stationary-phase cells. To check if this could be generalised to other small RNAs 

we extended this analysis to RyhB and SgrS. Since the RNA pattern of MicA 

changes along growth in Hfq cells (Figure 5A), is reasonable that different RNA 

degradation pathways might be involved in different stages of growth. To further 

analyse this, we decided to compare small RNA stability between exponential and 

stationary-phase cultures. 

In the absence of Hfq, all the small RNAs analysed were highly unstable, 

regardless of the growth phase that was analysed (Figure 6). As consequence of 

the extensive degradation happening in the absence of Hfq, the MicA, RyhB and 

SgrS levels were strongly reduced in the hfq mutant when compared to wild-type, 

both in exponential and stationary-phase cultures. In contrast, all these small 

RNAs were markedly stabilised in stationary-phase cultures of the hfq pnp double 

mutant compared to hfq strain. Interestingly, this regulation is not as common in 
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exponentially growing cells. In fact, only SgrS was found to be stabilised in 

exponential-phase cultures of the hfq pnp mutant strain compared to hfq strain 

(although this is significantly lower than the stabilisation observed in stationary-

phase cells). These results confirm PNPase as a major enzyme involved in the 

degradation of Hfq-free small RNAs in the cell.  

Hfq-deficiency resulted in the detection of shorter small RNAs that are 

stabilised upon further inactivation of PNPase (Figure 1 and Figure 6). In 

exponential growing cells without Hfq, only MicA was found to exhibit a 

heterogeneous sized population (Figure 5A and Figure 6). From these fragments, 

MicA* is shown to be the most resistant and is even the predominant RNA species 

found in hfq mutants in stationary-phase. The smaller RyhB* and SgrS* RNAs were 

only detected in stationary-phase cells. Together, these results suggested a 

protection of the full-length sRNA by Hfq which seems particularly important for 

sRNA expression in the stationary-phase of growth.  
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Figure 6. Growth phase regulation of Hfq-free small RNAs by PNPase. 
Northern blot determination of MicA, RyhB and SgrS RNA stabilities between the wild-type 
and its isogenic pnp, hfq and hfq pnp mutants either in exponential-phase or stationary-
phase cultures. Total RNA was extracted from culture samples withdrawn after inhibition 
of transcription with rifampicin (timepoints are shown in minutes). MicA, RyhB and SgrS 
RNAs were detected by the use of specific radiolabelled probes and quantified by 
PhosphorImager analysis. The full-length small RNAs or their respective shorter forms 
(where detected) are indicated on the gels. NQ – not quantifiable. 

 

To analyse if PNPase is affecting the stability of small RNAs independently 

of Hfq, we further analysed the decay rates of MicA, RyhB and SgrS in the pnp 

single mutant. Inactivation of PNPase in exponential-phase cells producing Hfq 

resulted in reduced levels and decreased stability of the small RNAs. Similar 

results were reported with other small RNAs, suggesting that PNPase may 

somehow protect some sRNA in exponential-phase (De Lay & Gottesman, 2011). 

In fact, this is also observed in stationary-phase cultures, as inactivation of PNPase 

is also found to reduce RyhB and SgrS levels under this condition. Only MicA was 

shown to be a substrate for PNPase either in the absence or presence of Hfq.  On 

the other hand, RyhB and SgrS were found to be preferably degraded by PNPase 
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in the absence of Hfq and were greatly stabilised in the hfq pnp double mutant, 

particularly in the stationary-phase of growth. Altogether, these results suggest 

that PNPase degrades small RNAs more efficiently in the absence of Hfq although 

this turnover pathway is clearly active in cells with Hfq. The fact that this occurs in 

cells expressing Hfq, may reflect the action of PNPase against small RNAs that are 

transiently in their Hfq-free state, as result of the dynamics of interaction with 

Hfq. PNPase-mediated degradation of small RNAs is suggested to be predominant 

in stationary-phase cells as this regulation apparently is not so common in 

exponential-phase cells. Therefore, these results demonstrated that the 

degradation pathways of a same small RNA can be different between exponential 

and stationary-phases and highlighted the role of PNPase in the growth phase 

regulation of small RNAs. 
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Discussion 

This work demonstrated that the pool of small RNAs that are not associated 

with Hfq is preferably degraded by PNPase. Overall, our data highlights the impact 

of 3’-5’ exonucleolytic RNA decay pathways re-evaluates the degradation 

mechanisms involved in the rapid decay of the Hfq-free small RNAs. The reduced 

levels of small RNAs typically found in the Hfq strain were strongly increased 

upon inactivation of PNPase in stationary-phase cells (Figure 1). This seems to be 

a general feature since PNPase inactivation resulted in increasing levels of at least 

the MicA, SgrS, RyhB and GlmY sRNAs. We only detected the accumulation of 

slightly shorter sRNAs rather than the full-length species and this was shown to be 

consequence of the higher stability of these fragments (Figure 2). 

The lack of poly(A) polymerase I was also found to impact the levels of small 

RNAs in the absence of Hfq although to a lesser extent than PNPase (Figure 3). 

These results were unexpected as no significant differences in mRNA stability 

were detected between hfq and hfq pcnB mutants (Mohanty et al., 2004). In 

contrast, our results clearly showed that in the absence of Hfq the small RNA 

turnover can be affected by the lack of poly(A) polymerase I. The sRNAs found to 

be highly affected by polyadenylation (MicA* and GlmY*) were also found to be 

excellent substrates for PNPase. Nevertheless, PNPase activity against Hfq-

unprotected small RNAs is not necessarily dependent on poly(A) polymerase I 

activity. RyhB* and SgrS* RNAs are not affected by polyadenylation although their 

levels were highly increased upon PNPase inactivation, as observed in the double 

hfq pnp mutant (Figure 1 and Figure 3B). Poly(A)-dependent pathways may thus 

not explain all the extraordinary impact of PNPase on sRNA turnover in the Hfq 

cells. 
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Pioneer work on PNPase revealed its ability to synthesise RNA (Grunberg-

Manago et al., 1955). Interestingly, it has been proposed that in the absence of 

Hfq, there is an increase in the biosynthetic activity of PNPase with 

heteropolynucleotide tails promoting RNA decay (Mohanty et al., 2004; Slomovic 

et al., 2008). Addition of these polynucleotide tails can potentially be responsible 

for PNPase notable impact on the degradation of sRNA in the absence of Hfq. 

RNase II (Marujo et al., 2000) and RNase R (Andrade et al., 2009a) are also major 

poly(A)-dependent exoribonucleases but they were not found to be involved in 

the degradation of MicA (Figure 2 and (Andrade & Arraiano, 2008). Similar results 

were obtained regarding the degradation of RyhB (data not shown). Surprisingly, 

despite RNase R intrinsic ability to easily degrade structured RNAs on its own and 

its affinity to poly(A) tails, RNase R was not shown to be part of these decay 

pathways. The absence of RNase R resulted in the reduction of MicA* levels in 

cells without Hfq (Figure 2). This might be consequence from an indirect effect in 

which the activity of a MicA repressor is increased when RNase R is not functional. 

Although the protection of RNA by a ribonuclease seems paradoxical, a similar 

effect has been described either for RNase II or PNPase (Marujo et al., 2000; De 

Lay & Gottesman, 2011). A major advantage feature of PNPase in the degradation 

of small RNAs might be its ability to form complexes with other proteins which 

can be particularly helpful in the elimination of such structured RNAs. However, 

we have already shown that PNPase activity on MicA can be independent of the 

degradosome assembly (Andrade & Arraiano, 2008). 

RNase E has a role in sRNA degradation (Massé et al., 2003; Morita et al., 

2005; Suzuki et al., 2006; Viegas et al., 2007; Andrade & Arraiano, 2008). 

However, our results demonstrated that its impact on Hfq cells may not be as 

general as previously believed. RNase E depletion did not affect the levels of SgrS 

and MicA RNA. While in the presence of Hfq both the full-length MicA and the 

MicA* RNAs are substrates for RNase E (Figure 5C), this regulation is lost when 
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Hfq is absent (Figure 4A). This indicates that RNase E requires Hfq in order to 

degrade MicA. A similar RNase E dependency of Hfq to act on sRNA turnover was 

also reported in the growth phase degradation of OxyS (Basineni et al., 2009). It is 

suggested that RNase E/Hfq cooperation (as observed in the mRNA decay 

mediated by sRNA) (Morita et al., 2005) can also be critical for the degradation of 

some small noncoding RNAs, like MicA. Nevertheless, we recognise that RNase E 

can also impact the levels of some sRNAs independently of Hfq. As observed, both 

RyhB* and GlmY are RNase E substrates even in cells lacking Hfq (Figure 1). 

A possible RNase III/Hfq pathway was also analysed. RNase III inactivation 

results in extremely long-lived MicA; however, this is strictly dependent on the 

presence of Hfq as this stabilisation is completely lost in the hfq rnc mutant 

(Figure 4C). The low levels of MicA found in hfq mutants strongly decrease the 

probability of base pairing with target mRNAs. The downregulation in sRNA-target 

mRNA duplexes probably explains the impairment in RNase III activity on MicA, in 

agreement with in vitro studies (Viegas et al., 2011). Data suggest that the 

degradation of small RNAs that are not associated with Hfq mainly occurs in a 

target-independent pathway, in which RNase III has a reduced impact. The free 

pool of small RNAs is then preferably degraded by PNPase. 

Hfq was thought to mainly protect sRNA from RNase E cleavages as both 

proteins showed in vitro affinity for the same A/U-rich sequences in RNA (Moll et 

al., 2003a). However, it has been recently demonstrated that Hfq actually prefers 

to bind U-rich sequences at the 3’-end of small RNAs over internal A/U-rich 

sequences (Otaka, 2011; Sauer & Weichenrieder, 2011). Small RNAs, like MicA, 

usually display a short U-rich 3’-end sequence immediately downstream a stem-

loop as a consequence of Rho-independent transcription termination (Rasmussen 

et al., 2005; Udekwu et al., 2005). The physiological meaning of the high affinity of 

Hfq to this U-rich sequence can be the protection of the 3’-end of the RNA against 



Hfq protects sRNAs from PNPase 

91 

degradation. Interestingly, our results showed that the 3’ ends of the small RNAs 

are shortened in the absence of interaction with Hfq (Figure 1 and Figure 5B). 

Even though PNPase is observed to be the main exoribonuclease involved in the 

degradation of these shorter small RNAs, it does not seem to be the main 

responsible for the initial 3’ end attack as this is not prevented in an pnp 

background. RNase II and RNase R inactivation did also not suppress the 

shortening of MicA. Data suggested that other (exo)nucleases would be 

responsible for the 3’ end trimming of the small RNAs whey they are Hfq-free. The 

transcriptional terminator stem loop of the small RNAs may function as a physical 

barrier against exoribonucleases. PNPase may be favoured in this action and 

progress to degradation of the sRNA body while other RNases may be inhibited 

and therefore could only degrade few nucleotides before releasing the sRNA. In 

the presence of Hfq, the shorter sRNAs are barely detected probably because Hfq 

protects the 3’ ends of the small RNAs. 

Our results also indicate that small RNAs are subject to different 

degradation pathways depending on growth (Figure 6). In the stationary-phase, 

PNPase is shown to be the main enzyme in the degradation of small RNAs (this 

work and (Andrade & Arraiano, 2008). On the other hand, it has been proposed 

that in exponential-phase, PNPase can actually protect small RNAs from rapid 

degradation by other ribonucleases, namely from RNase E activity (De Lay & 

Gottesman, 2011). The growth phase regulation of sRNA turnover pathways may 

help explaining why RNase E was shown to affect sRNA decay in previous studies 

in which the exponential-phase of growth was analysed (Massé et al., 2003), while 

it is not found to be the predominant degradative enzyme in stationary-phase 

(this work). PNPase responds to environmental stimuli and has been suggested to 

be responsible for the addition of heteropolymeric tails to the 3’ end of RNAs in 

the stationary-phase of growth (Cao & Sarkar, 1997; Mohanty & Kushner, 2000 ). 

PNPase could then use those tails to initiate RNA degradation. Accordingly, the 
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growth phase regulation of PNPase activities may thus help explaining the growth 

phase regulation of small RNAs driven by PNPase. 

Variations in the levels of Hfq can most probably influence the degradation 

pathways of the small RNA. Interestingly, Hfq was reported to vary along the 

growth and decreased levels of this protein were found in the entry to stationary-

phase (Ali Azam et al., 1999). Not only changes in the Hfq expression level but also 

variations in the pool of free Hfq can result in low amounts of this protein and 

consequently affect the sRNA-based regulatory pathways. Hfq binds very tightly 

the RNA molecules and this can result in the sequestration of Hfq. A model in 

which an increasing concentration of a competitor RNA promotes the dissociation 

of the Hfq-RNA complexes has recently been proposed to explain how it is 

possible to cycle the Hfq pool within the cell (Fender et al., 2010). In agreement, it 

was shown that induction of a sRNA without the concomitant overexpression of 

its target mRNA (or vice versa) can sequester Hfq and abolish the function of 

unrelated sRNAs (Hussein & Lim, 2011). Hence, Hfq depletion is likely to occur if 

transcription of sRNA and its target mRNAs is not coordinated. The rapid 

degradation of sRNA in the absence of interaction with Hfq may thus recycle any 

small RNAs that are produced in excess over Hfq. This reinforces the importance 

of studying the degradation of small RNAs when they are not associated with Hfq. 

Most of our work was performed in stationary-phase cells deleted for Hfq. 

However, we have shown that PNPase-mediated degradation of small RNAs is also 

an active regulatory pathway in cells expressing Hfq. This fact may reflect the 

action of PNPase against small RNAs that do not have their 3’ ends protected by 

Hfq. Our results are in agreement with in vitro data showing that Hfq can protect 

an mRNA from the exonucleolytic activity of PNPase (Folichon et al., 2003). 

A similar phylogenetic distribution may reflect functionally linked proteins 

(Pellegrini et al., 1999). A large number of bacteria encode both Hfq and PNPase 
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in their genomes (Zuo & Deutscher, 2001; Sun et al., 2002) while the presence of 

E. coli RNase E homologues is far more restricted (Condon & Putzer, 2002; 

Danchin, 2009). Interestingly, eukaryotes lack an RNase E but possess functional 

homologues of both PNPase and Hfq. The eukaryotic exosome adopts an PNPase-

like conformation and is implicated in the processing and degradation of several 

RNAs, namely the small nucleolar RNAs (snoRNAs) and the small nuclear RNAs 

(snRNAs) (Houseley et al., 2006). The exosome activity is suggested to be 

modulated by the Lsm1-7 complex (whose subunits are homologous to bacterial 

Hfq) although this interplay is still unclear (Wilusz & Wilusz, 2008). The fact that 

Hfq and PNPase are more widespread than RNase E supports the interesting 

hypothesis that Hfq-protection of sRNA against degradation by PNPase is far more 

common than was previously envisioned. 
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Material and Methods 

Growth conditions, strains and plasmids 

Bacteria were grown at 37ºC unless stated otherwise, with shaking at 180 

rpm in Luria-Bertani (LB) medium supplemented with thymine (50 g ml-1). SOC 

medium was used to recover cells after heat-shock in plasmid transformation 

steps. When required, antibiotics were present at the following concentrations: 

chloramphenicol, 50 g ml-1, kanamycin, 50 g ml-1; tetracycline, 20 g ml-1; 

ampicillin, 100 g ml-1. The E. coli strains used in this work are listed in Table 1. 

Strain MC4100 hfq::cat (kindly provided by S. Altuvia) was used as donor to move 

the mutant hfq allele into MG1693 (wild-type) and its derivative isogenic strains. 

Introduction of mutant alleles to different genetic backgrounds was done by P1 

transduction and positive colonies were checked by PCR. A DNA sequence of Hfq 

was PCR-amplified with primers hfq-EcoRI (5’-GTG ACG AAG aAT TcC AGG TTG 

TTG-3’) and hfq-HindIII (5’-CGG TCA AAC AAG CtT ATA ACC C-3’) and following 

enzyme restriction it was cloned into pBAD24 yielding the overexpression pHFQ 

plasmid. Hfq expression is obtained even without addition of the arabinose 

inducer as the cloned DNA retains hfq own promoters. For plasmid pMicA, 

primers MicA-PstI (5’- TTT TCG CCA CCC GAA CTG CAG GC -3’) and MicA-HindIII 

(5’- GGC TGG AAA AAC AaG CtT GAC AGA AAA GAA AAA GG -3’) were used to 

amplify the micA gene. Following enzyme restriction the insert was ligated into 

pWSK29 in sites PstI and HindIII. DNA polymerases and restriction enzymes were 

obtained from Fermentas and T4 DNA Ligase from Roche. All primers were 

obtained from StabVida (Portugal). 
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Table 1 - Bacterial strains used in this study 

Strain Relevant genotype Reference 

MC4100hfq hfq Soshy Altuvia 

MG1693 thyA715 (Arraiano et al., 1988) 

HM104 thyA715 rnr (Andrade et al., 2006) 

SK5665 thyA715 rne-1 (Arraiano et al., 1988) 

SK5671 thyA715 rne-1 pnp7 (Arraiano et al., 1988) 

SK5691 thyA715 pnp7 (Arraiano et al., 1988) 

SK7988 thyA715 pcnB (O'Hara et al., 1995) 

SK7622 thyA715 rnc38 (Babitzke et al., 1993) 

CMA201 thyA715 rnb (Andrade et al., 2006) 

CMA413 thyA715 micA (Andrade & Arraiano, 2008) 

CMA428 MG1693 hfq This study 

CMA429 MG1693 hfq rnr This study 

CMA430 MG1693 hfq rnb This study 

CMA431 MG1693 hfq pnp7 This study 

CMA436 MG1693 rne-1 hfq This study 

CMA441 MG1693 hfq rnc38 This study 

CMA448 MG1693 hfq rnc105 This study 

CMA449 MG1693 hfq pcnB This study 

CMA450 MG1693 hfq pcnB80 This study 

CMA513 MG1693 hfq + pHFQ This study 
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RNA extraction and Northern blot analysis 

Overnight cultures from isolated colonies were diluted in fresh medium to 

an initial OD6000.03 and grown to exponential (OD6000.3) or stationary-phase 

(OD6005.5 to wild-type or OD6002.3 to hfq mutants). The growth curves for the 

wild-type strain and the hfq mutant are provided in Figure S2. For decay 

experiments, blocking of transcription was obtained by adding rifampicin to a final 

concentration of 500 g ml-1. Culture samples were withdrawn at defined 

timepoints and mixed with equal volume of RNA stop buffer (10 mM Tris pH 7.2, 5 

mM MgCl2, 25 mM NaN3 and 500 g ml-1 chloramphenicol). RNA was isolated 

following cell lysis and phenol:chloroform extraction. After precipitation step in 

ethanol and 300 mM sodium acetate, RNA was resuspended in MilliQ-water. The 

integrity of RNA samples was evaluated by agarose gel electrophoresis. When 

necessary, DNase RQ (Promega) treatment following new phenol:chloroform step 

was used to remove contaminant DNA. 10-40 g of total RNA was used to analyse 

small RNA expression on 6%-12% polyacrylamide/7 M urea gels in TBE 1x. RNA 

was transferred onto Hybond-N+ membrane (Amersham Biosciences) using TAE 

1x as transfer buffer. RNAs were UV crosslinked to the membrane with a UVC 500 

apparatus (Amersham Biosciences). DNA templates carrying a T7 promoter 

sequence for in vitro transcription were generated by PCR using genomic DNA of 

MG1693 and primers listed in Table 2. GlmY was detected by 5’-end labelling of 

an antisense primer (Table 2). Radiolabelled probes were purified on G25 

Microspin columns (GE Healthcare). Hybridisations were carried out overnight at 

42-68ºC with the PerfectHyb Plus Hybridization Buffer (Sigma). RNA Decade 

markers (Ambion) or the 10 bp Step Ladder (Promega) were used for detection of 

small RNAs up to 150 nucleotides; for longer transcripts the 100-1000 bp Ladder 

(Biotools) was used. T7 RNA polymerase and T4 polynucleotide kinase were from 

Promega. All radiochemicals were purchased from Perkin-Elmer.  
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Table 2 – Oligonucleotides used in radiolabelling reactions 

Probe Sequence (5’–3’) 

MicA-T7 TAATACGACTCACTATAG GAA GGC CAC TCG TGA GTG GCC AA 

MicA-F  GAA AGA CGC GCA TTT GTT ATC 

SgrS-T7 TAATACGACTCACTATAGG CCA GCA GGT ATA AT C TGC 

SgrS-F GAT GAA GCA AGG GGG TGC CC 

RyhB-T7 TAATACGACTCACTATAGG AAA AGC CAG CAC CCG GCT GG CTA A 

RyhB-F GCG ATC AGG AAG ACC CTC 

5S-RNA-T7 TAATACGACTCACTATAGG ATG CCT GGC AGT TCC CTA CTC TCG C 

5S-RNA-F AAA CAG AAT TTG CCT GGC GGC AGT AG 

GlmY GCA CGT CCC GAA GGG GCT GAC ATA AG 

The T7 promoter sequence in the oligos is underlined. 

 

RNA half-life determination 

Northern blot signals were visualised on PhosphorImager STORM 860 and 

bands intensities were quantified using the IMAGEQUANT software (Molecular 

Dynamics). Half-lives of RNA were determined by linear regression using the 

logarithm of the percentage of RNA remaining versus time, considering the 

amount of RNA at 0 min as 100%. A minimum of two independent RNA 

extractions from each strain were tested and half-lives correspond to average of 

at least three experiments. 
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Primer extension analysis 

The MicA RNA was analysed by primer extension analysis using the MicA-PE 

primer (5’-CGT GAG TGG CCA AAA TTT CAT CTC TG-3’). 10 g of each RNA sample 

was incubated with 1 pmol of 5’-end -32PATP labelled primer. Sample 

denaturation was done for 5 min at 80ºC immediately followed by the annealing 

step (30min at 65ºC and 30min at 48ºC). cDNA synthesis was obtained using 200 

units of SuperScript III Reverse Transcriptase following the manufacturer’s 

instructions (Invitrogen). Incubation proceeded for 60 min at 55ºC and was 

terminated by heat inactivation of the samples for 15 min at 70ºC. The cDNA 

products were then ethanol precipitated with the addition of glycogen for 15 min 

in a -80ºC freezer. The cDNA pellet was dissolved in 2 l 0.1 M NaOH/1 mM EDTA 

and 4 l formamide loading buffer. Prior to loading, samples were denatured for 5 

min at 80 ºC and then fractionated on 6% polyacrylamide/7 M urea gels. Plasmid 

pMicA was used in sequencing reactions with primer MicA-PE following the 

instructions of the Sequenase Version 2.0 DNA Sequencing Kit (USB). The gel was 

exposed on a PhosphorImager screen and the signal was detected on a 

PhosphorImager STORM 860. 
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Figure S1 – PNPase overexpression reduces MicA* levels in the hfq pnp mutant. 

Figure S2 – Cell growth of wild-type and its isogenic hfq mutant. 

Figure S3 - Nuclease S1 mapping of the 5’ end of MicA. 
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Figure S1 

 

Figure S1. PNPase overexpression reduces MicA* levels in the hfq pnp mutant. 
Northern blot detection of MicA from total RNA isolated from stationary phase cultures. 
Bacterial strains from left to right: wild-type, hfq mutant, hfq pnp double mutant without 
and carrying the plasmid pKAK7 (overexpressing PNPase cloned with its own promoters). 
The full-length MicA and the shorter MicA* are indicated on the gel. Ladder bands run 
along the gel are indicated on the left side. 
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Figure S2 

 

Figure S2. Cell growth of wild-type and its isogenic hfq mutant. 
Cell cultures were grown in LB medium and incubated at 37ºC with shaking. OD600 
readings were determined over time. Strains displayed different growth curves and 
therefore exhibit different OD600 values for similar stages of growth. For Northern blot 
experiments in Figure 5A, total RNA was isolated from culture samples collected from four 
different stages: exponential (EXP), late exponential, early stationary and stationary phase 
(STAT). This corresponds on the graph to letters a-d for the wild-type (OD600 values of 

0.3, 1.7, 2.5 and 5.5) and letters e-h for the hfq mutant (OD600 values of 0.3, 0.8, 

1.6 and 2.3), respectively. 
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Figure S3 

 

Figure S3. Nuclease S1 mapping of the 5’ end of MicA. 
S1 nuclease mapping was done according to the standard procedure (Sambrook & Russell, 

2006). 30 g of total RNA isolated from wild-type or hfq mutant was mixed with 0.1 pmol 
of 5’-end labelled MicA-S1 primer (5’- ttt ctc tct cta ttc agc tat ttt tct TTC AGG GAT GAT 
GAT AAC AAA TGC GCG TCT TTC -3’). This primer is a 60-mer DNA oligonucleotide 
complementary to the first 33 nucleotides of MicA (capital letters) and has an overhang 
extension of 27 nucleotides. For each sample, 100 units of S1 nuclease (Promega) were 
used. Incubation was performed at 37ºC for 75 minutes. Following S1 nuclease treatment, 
the protected DNA probes were loaded on 10% polyacrylamide gel containing 8 M urea. 
Detection of radioactive signals was done by use of PhosphorImager scanning. Ladder 

bands (L) are indicated on the left side of the gel. A negative control () corresponding to a 
RNA/primer sample not treated with S1 nuclease is shown on the first lane. Undigested 
labelled probe (with the expected size of 60-mer) and the protected S1 nuclease 5’ end 
MicA fragment (with the expected size of 33 nucleotides) are identified by arrows on the 
right side of the gel. 

 

 

Supplemental References 

Sambrook J, Russell DW. 2006. The Condensed Protocols From Molecular Cloning: 
A Laboratory Manual. Cold Spring Harbor Laboratory Press: Cold Spring 
Harbor, New York. 



 

 

 

 

Chapter 3 
 

Small RNA Modules Confer 

Different Stabilities and Interact 

Differently With Multiple Targets 

 

 

 

 

 

 

Keywords: MicA/ PNPase / RNA degradation/ RNA domains/ Small non-

coding RNAs 



Chapter 3 

110 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter contains data publish in: 

Pobre V*, Andrade JM*, Arraiano CM. 2012. Small RNA Modules Confer Different 

Stabilities and Interact Differently With Multiple Targets. Accepted with 

modification. 

* Joint first authors  

 

For this work I helped carried out the experiments, the analysis of the data and 

writing of the manuscript. 



Mutagenesis of the modular domains of MicA 

111 

Table of Contents 

Abstract ................................................................................................................ 113 

Introduction ......................................................................................................... 115 

Results .................................................................................................................. 119 

1. Engineering synthetic MicA RNAs ................................................................ 119 

2. Experimental determination of the secondary structure of MicA mutants. 122 

3. The 5’ domain impacts MicA stability through an RNase III-mediated pathway

 .......................................................................................................................... 125 

4. Distinct roles of stem-loops in promoting MicA stability ............................. 127 

5. The A/U-rich linear sequence is not the only Hfq-binding site present in MicA

 .......................................................................................................................... 130 

6. The 3’ U-rich terminator sequence is critical for MicA stability ................... 132 

7. Differential control of target mRNAs by MicA variants ................................ 135 

Discussion ............................................................................................................ 139 

Materials and Methods ....................................................................................... 144 

Strains and growth conditions ......................................................................... 144 

Construction of plasmids .................................................................................. 145 

RNA extraction and Northern analysis ............................................................. 147 

Electrophoretic mobility shift assays (EMSA) ................................................... 149 

5’-end labelling of RNA ..................................................................................... 150 

Chemical probing .............................................................................................. 150 

Enzymatic probing ............................................................................................ 151 

RNase III cleavage assay of MicA RNA .............................................................. 151 

Acknowledgments ............................................................................................... 153 

References ........................................................................................................... 154 

Supplemental Data .............................................................................................. 159 

Figure S1 ........................................................................................................... 160 

Figure S2 ........................................................................................................... 161 



Chapter 3 

112 

Figure S3 ........................................................................................................... 162 

Figure S4 ........................................................................................................... 163 

Figure S5 ........................................................................................................... 165 

Figure S6 ........................................................................................................... 165 

Supplemental References ................................................................................. 166 

 

 
  



Mutagenesis of the modular domains of MicA 

113 

Abstract 

Bacterial Hfq-associated small regulatory RNAs (sRNAs) parallel eukaryotic 

microRNAs in their ability to control multiple target mRNAs. The small non-coding 

MicA RNA represses the expression of several genes, including major outer 

membrane proteins such as OmpA, Tsx and EcnB. In this study, we have 

characterised the RNA determinants involved in the stability of MicA and analysed 

how they influence the expression of its targets. Site-directed mutagenesis was 

used to construct MicA mutated forms. The 5’linear domain, the structured region 

with two stem-loops, the A/U-rich sequence or the 3’ poly(U) tail were altered 

without affecting the overall secondary structure of  MicA. The stability and the 

target regulation abilities of the wild-type and the different mutated forms of 

MicA were then compared. The 5’ domain impacted MicA stability through an 

RNase III-mediated pathway. The two stem-loops showed different roles and 

disruption of stem-loop 2 was the one that mostly affected MicA stability and 

abundance. Moreover, STEM2 was found to be more important for the in vivo 

repression of both ompA and ecnB mRNAs while STEM1 was critical for regulation 

of tsx mRNA levels. The A/U-rich linear sequence is not the only Hfq-binding site 

present in MicA and the 3’ poly(U) sequence was critical for sRNA stability. 

PNPase was shown to be an important exoribonuclease involved in sRNA 

degradation. In addition to the 5´ domain of MicA, the stem-loops and the 3´ 

poly(U) tail are also shown to affect target-binding. Disruption of the 3´U-rich 

sequence greatly affects all targets analysed. In conclusion, our results have 

shown that it is important to understand the “sRNA anatomy” in order to 

modulate its stability. Furthermore, we have demonstrated that MicA RNA can 

use different modules to regulate its targets. This knowledge can allow for the 

engineering of non-coding RNAs that interact differently with multiple targets. 
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Introduction 

Small RNA-mediated networks control a wide variety of cellular processes. 

The development of new experimental strategies has contributed enormously to 

the increasing number of small RNAs identified in bacteria (Sharma & Vogel, 

2009). About 100 small RNAs have been experimentally confirmed in Escherichia 

coli and many more have been predicted (Shinhara et al., 2011). Comparative 

profiling of strains has contributed to the identification of novel non-coding RNAs 

in other bacteria (Ferrara et al., 2012). Small RNAs are distinct amongst 

themselves and their structural diversity makes it difficult to unify this class of cell 

regulators. sRNAs are diverse in size and do not display a common sequence that 

can be used as a signature (Liu & Camilli, 2010). They present diverse modes of 

action, exerting either a positive or a negative effect on the expression of the 

target mRNAs. 

The interactions between sRNA and mRNAs contribute to the differential 

modulation of gene expression. Bacterial trans-encoded small RNAs bind to their 

target mRNAs through the establishment of short and imperfect antisense base 

pairing interactions in a close parallel to the action of eukaryotic miRNAs (Beisel & 

Storz, 2010). The base pairing of sRNAs can take place at different sites on the 

target but they usually occur within the 5’ end of the mRNA (Sharma et al., 2007; 

Bouvier et al., 2008; Guillier & Gottesman, 2008; Prévost et al., 2011). It was 

shown that sRNA-mRNA pairs can be subject to endonucleolytic degradation, in 

which RNase E and RNase III play major roles (Afonyushkin et al., 2005; Morita et 

al., 2005). However, as result of the base pairing dynamics not all the population 

of a small RNA is going to be bound to its targets. Degradation of the free fraction 

may unbalance the pool of available small RNAs. The 3’-5’ exoribonucleolytic 

degradation plays an important role in this regulation and PNPase was shown to 

be a major enzyme in the small RNAs turnover (Andrade & Arraiano, 2008; 
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Andrade et al., 2012). Therefore, the study of the elements controlling the sRNA 

stability is critical to better understand the regulation of the sRNA-based 

pathways. 

The well characterised small RNA MicA was used as model for our study. 

MicA was initially identified to repress the synthesis of several major outer 

membrane proteins (OMPs) (Rasmussen et al., 2005; Udekwu et al., 2005; Bossi & 

Figueroa-Bossi, 2007). The list of target mRNAs for MicA was recently expanded 

through the use of microarray studies (Gogol et al., 2011). MicA belongs thus to 

the increasing cluster of sRNAs that regulate multiple targets. The architecture of 

a small RNA greatly contributes to its stability and may define its ability to interact 

with different target mRNAs. Enzymatic and chemical probing was used to map 

the structure of MicA which was essentially consistent with the conformation 

predicted by the mfold algorithm (Zuker, 2003; Udekwu et al., 2005). Based on the 

sequence and secondary structure, we have defined the following domains in 

MicA: a 5’ linear sequence; a Hfq-binding A/U-rich sequence; two structured 

elements (stem-loops) and finally a U-rich linear stretch in the 3’ end (Figure 1 and 

Figure S1). A similar modular structure was proposed to other small RNAs, like 

RybB and SgrS (Balbontín et al., 2010; Papenfort et al., 2010; Otaka et al., 2011; 

Rice & Vanderpool, 2011). 

The 5’ end of MicA was suggested to be the principal target recognition 

domain, as found for many other small RNAs (Papenfort & Vogel, 2009). For the 

RybB RNA it was even possible to define a short “seed” sequence located in the 5’ 

end that is responsible for interaction with multiple targets in Salmonella 

(Balbontín et al., 2010; Papenfort et al., 2010). However, this does not seem to be 

the common rule and the nucleotides and the length of the 5’ sRNA sequence 

involved in the regulation of the different targets may differ (Guillier & 

Gottesman, 2008). 
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All the E. coli trans-encoded sRNA such as MicA bind to RNA chaperone Hfq, 

a protein homologous to Sm and Sm-like proteins involved in RNA processing in 

eukaryotes (Olejniczak, 2011; Vogel & Luisi, 2011). Hfq plays multiple roles in the 

cell but mostly facilitates the sRNA-mRNA annealing (Valentin-Hansen et al., 2004; 

Hajnsdorf & Boni, 2012). It was found to bind linear A/U-rich sequences in RNA 

and was recently shown to preferably interact with the 3’ end of small RNAs 

(Schumacher et al., 2002; Sauer & Weichenrieder, 2011; Sauer et al., 2012). Hfq is 

also very important for sRNA stabilization and was shown to protect from RNase 

E- and PNPase-mediated degradation (Moll et al., 2003; Andrade et al., 2012). 

Although sRNAs are usually structured molecules, the degree of RNA folding 

varies according to the GC-content of the sRNA analysed. A stem-loop followed by 

a short U-rich sequence corresponding to the rho-independent transcriptional 

terminator is ubiquitous amongst small RNAs (Reynolds & Chamberlin, 1992; Abe 

& Aiba, 1996). Very recently, Hfq was shown to bind to this sequence which 

makes this a potential domain for interaction with mRNA (Otaka et al., 2011; 

Sauer & Weichenrieder, 2011; Sauer et al., 2012). The presence of additional 

stems is frequent in many sRNAs and MicA harbours a total of two stem-loops. 

These structures can potentially act as stabilizer elements as they can hinder the 

3’-5’ exonucleolytic degradation pathway of many RNA substrates (Andrade et al., 

2009). The structure of the sRNA can also be critical for interaction with the target 

mRNA and conformational rearrangements can lead to disruption of sRNA-mRNA 

base pairing. This is well illustrated in many studies such as the OxyS interaction 

with the fhlA mRNA (Altuvia et al., 1998; Argaman & Altuvia, 2000) or the base 

pairing between RyhB and the iscRSUA policistronic transcript (Desnoyers et al., 

2009). 

Through use of mutational studies we analysed the modular domain 

organization of MicA. Several nucleotide changes were introduced in the micA 
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gene in order to disrupt independently each predefined domain without affecting 

the overall conformation of the molecule. We demonstrate that several elements 

present in the 3’ end of MicA act as stabilizers of this small RNA and this region is 

also suggested to play important roles in the MicA-dependent riboregulation of 

different target mRNAs. In addition to the well characterised role of the 5’ end of 

MicA in the interaction with targets we suggest that elements present in the 3’ 

end of MicA can also contribute to the differential regulation of the mRNA targets. 

 

 

 

 

 

 

 

 

 

  



Mutagenesis of the modular domains of MicA 

119 

Results 

1. Engineering synthetic MicA RNAs 

Base pairing with target mRNAs is a determinant of small RNA function and 

stability. The 5’ region of MicA was predicted to be the major region involved in 

the interaction with the target mRNAs. However, additional elements present in 

the small RNA molecule can potentially influence MicA activity and/or stability. 

From the analysis of MicA sequence and its secondary structure (as reported in 

(Udekwu et al., 2005)) we have defined the following small RNA modules: a 5’-end 

linear stretch, a structured region harbouring two stem-loops (STEM1 and STEM2) 

separated by an A/U-rich sequence and finally the transcriptional termination U-

rich sequence located at the 3’-end (Figure 1). The 5’ end and the far most 3’ end 

nucleotides of MicA are highly conserved while the regions encompassing the 

stem-loops can comprise some variability amongst enterobacteria, as observed in 

the sequence alignment in Figure 1. 

In order to get insights into the relationship between the architecture, the 

function and stability of a small RNA, we constructed several variants of MicA 

using the technique of overlapping PCR. The nucleotide changes introduced are 

easily identified in the schematic representation of MicA variants (Figure 1 and 

Figure S1). RNA secondary structure might be critical for the function of a small 

RNA. The chemical mapping of the structure of MicA RNA was previously 

performed and essentially agreed with the mfold algorithm analysis (Zuker, 2003; 

Udekwu et al., 2005). Accordingly, we used mfold to predict nucleotide changes 

that would not alter the overall secondary structure of the MicA molecule. The 

wild-type and the variant forms of MicA were cloned in a low copy number 

plasmid and were expressed from MicA own promoter. The synthetic MicA sRNAs 

were expressed in trans from a plasmid in cells deleted for the chromosomal micA 

gene. 
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The 5’ linear region of MicA is involved in the interaction with multiple 

target mRNAs (Gogol et al., 2011). MicA lacks a base pairing “seed” and the 

nucleotides involved in interactions with mRNAs can vary according to the target 

analysed. For this reason, we introduced extensive mutations in this 5’ linear 

sequence (MicA-5’mut) in order to maximize the disruption of MicA binding with 

its targets (Figure 1: 5’ end mutagenesis). 

The proper RNA folding can also be crucial for interaction with mRNAs and 

MicA exhibits two stable stem-loops (Figure 1). Furthermore, such structured 

features can potentially act as stabilizing elements as they may serve as physical 

barriers against 3’-5’ exonucleolytic degradation (Andrade et al., 2009). These 

elements may thus play multifunctional roles and we constructed several mutants 

to study them. MicA-STEM1 mutant harbours mutations that almost disrupt 

completely the first stem-loop (located more closely to the 5’ end) without 

affecting the global conformation of the molecule. On the other hand, the second 

stem-loop (closer to the 3’ end) was shown to be thermodynamically stronger and 

we could not disrupt it as this greatly changed the secondary structure of MicA; 

hence mutations introduced in MicA-STEM2 were chosen to allow stem-loop 

relaxation while the overall secondary structure of the molecule was not 

disturbed. In addition to these single mutants we also constructed the double 

MicA-STEM1_2 mutant harbouring mutations in both stem-loops (Figure 1: Stem-

loop mutagenesis). 

Another module present in MicA RNA is the short linear A/U-rich region 

between the two stem-loops that is a predicted in vitro binding site for Hfq 

(Rasmussen et al., 2005). Base pairing between the sRNA and its target mRNA is 

facilitated in the presence of the RNA chaperone Hfq (Valentin-Hansen et al., 

2004). In order to analyse the in vivo importance of this region for the Hfq-

dependent regulation of MicA we mutated the A/U-rich (5’-AAUUU-3’) to a C-rich 
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stretch (5’-ACCAC-3’) as these mutations are predicted to almost disrupt Hfq-

binding to the RNA (Figure 1: Hfq-binding site mutagenesis). 

The last unit to be analysed here is the short poly(U) tail of the rho-

independent terminator, a general feature of bacterial small RNAs. This was 

recently shown to be a key sequence for riboregulation and Hfq action on small 

RNAs (Otaka et al., 2011; Sauer & Weichenrieder, 2011; Sauer et al., 2012). Two 

mutants were designed for this region; MicA-3’mut1 exhibits two nucleotide 

substitutions in the poly(U) sequence while MicA-3’mut2 harbours more 

nucleotide changes (Figure 1: 3’ end mutagenesis). All the mutations described 

above were then analysed for their impact on MicA stability and capability to 

regulate its targets. All the work was performed with cultures in the stationary 

phase of growth, a condition in which MicA levels are increased (Argaman et al., 

2001; Udekwu et al., 2005). 

 

2. Experimental determination of the secondary structure of MicA 

mutants 

Although mfold prediction was previously shown to agree with the 

structure of the wild-type MicA (Zuker, 2003; Udekwu et al., 2005), we decided to 

experimentally validate the structural models of two of our most relevant 

mutants, MicA-5’mut and MicA-STEM1_2 (Figure 2). To characterise in vitro and in 

vivo the RNA secondary structures of these two mutants, we have used a broad 

range of enzymatic and chemical probes. Namely, the techniques performed were 

dimethyl sulphate (DMS) modification of RNA nucleotides, the use of RNase A 

(cuts C and U unpaired residues) or RNase T1 (identifies unpaired G residues) and 

detection of single-stranded residues by lead acetate (PbAc) and in line probing. 
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First we carried out in vitro and in vivo probing with DMS, which methylates 

unpaired adenosines and cytidines. After DMS treatment, a specific antisense 

primer to the 3’ end of MicA was used to perform primer extension reactions. 

However, this amplification revealed to be highly problematic probably due to the 

strong STEM2 present in MicA secondary structure that prevented annealing of a 

primer in this region. In fact, we only succeeded in obtaining cDNA from cells 

expressing the MicA-STEM1_2 variant; this result seems to support the relaxation 

of the STEM2 secondary structure. Only the use of a modified LNA primer allowed 

amplification with good resolution from nucleotides 1 to 50. Complementary 

studies using additional methods allowed then a better resolution of the most 3’ 

end nucleotides. 

 

Figure 2. Determination of the secondary structure of MicA-5’mut and MicA-STEM1_2 
RNAs. 
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(A) Results from in vitro and in vivo dimethyl sulphate (DMS) modification assay. cDNA 
obtained from total RNA samples treated (+) or untreated (-) with DMS in vitro, as 
indicated on top of the gel. In vivo denotes the reactions from DMS added directly to cell 
cultures. The position of some adenosine and cytidine residues that reacted with DMS is 
given. RNA extracted from cells transformed with the empty pWSK29 vector or expressing 
the MicA-WT, MicA-5’mut RNA and MicA-STEM1_2 RNAs was tested. MicA-STEM1_2 is 
expressed to lower levels than MicA-WT (see Figure 7). Therefore, the panel with MicA-
STEM1_2 RNA corresponds to the same gel but the image was slightly contrasted to better 
visualise the bands. The 3’ end of the MicA-DMS primer (Table III) used in the reverse 
transcription reaction is complementary to nucleotide 58 in MicA sequence. 
(B) Enzymatic probing of the different MicAs using RNase A and RNase T1. The position of 
several nucleotides is given. Controls with no addition of enzyme are shown on the left 
side of the gel. Alkaline ladders of MicA-WT are denoted as OH. A G-specific ladder 
generated by RNase T1 digestion of MicA-WT RNA under denaturing conditions is shown. 
Please note that in each series, MicA-WT was tested in duplicate. 
(C) Lead acetate probing. All reactions were done in native conditions, with addition of 
5mM PbAc. Incubation proceeded for 0.5, 1 or 2 minutes, as indicated. C is an untreated 
control, and G is a T1 ladder obtained under denaturing conditions. OH represents an 
alkaline ladder prepared with MicA-WT RNA. Some nucleotides are given for orientation. 
Thick lines on the side of the lanes represent the position of stem-loop arms. 
(D) Representation of MicA-WT, MicA-5’mut and MicA-STEM1_2 sequences, showing the 
enzymatic cleavages by RNase T1 (arrows) and RNase A (triangles) and the reactivity of 
nucleotides to DMS (blue dots below the nucleotides). Broken lines indicate weaker 
cleavage sites. Mutated nucleotides are shown in red. On the right side, is a schematic 
representation of the conformation of these RNAs. 

 

The mfold prediction of the MicA-WT RNA structure was very accurate 

compared to our experimental data (Figure 2) and to what was previously 

reported to the chromosomally encoded wild-type MicA (Zuker, 2003; Udekwu et 

al., 2005). A very good validation of the proposed computational model was also 

observed with the structure mapping of the MicA-STEM1_2. Mutations in the 

STEM1_2 MicA impaired the formation of STEM1 although mfold would predict 

the existence of a very weak stem-loop in this region; both methods agreed in the 

relaxation of the STEM2. Surprisingly, DMS probing and RNase cleavage assays of 

the MicA-5’mut RNA suggested that mutations introduced in the 5’ end resulted 

in the partial disruption of STEM1, a feature that was not predicted by the 

computational analysis. Using lead acetate (Figure 2C) and in line probing (Figure 

S2) we observed that disruption of STEM1 in the MicA-5’mut did not seem as 
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stronger as observed in the MicA-STEM1_2 variant. Altogether, these results 

suggested that a relaxed STEM1 is still probably detected in the conformation of 

the MicA-5’mut RNA while no changes were detected on STEM2 conformation 

(Figure 2D). 

 

3. The 5’ domain impacts MicA stability through an RNase III-

mediated pathway 

In order to study the impact of the different MicA modules on the stability 

of this sRNA, we measured the decay rate for the MicA-WT and compared it with 

the altered forms of MicA (represented in Figure 1). 

We first focused on the analysis of the role of the 5’ end of MicA in the 

stability of this small RNA. Mutagenesis of the 5’ end of MicA was previously 

shown to have an effect in the regulation of its target mRNAs (Udekwu et al., 

2005; Bossi & Figueroa-Bossi, 2007; Coornaert et al., 2010). The 5’ mutant that we 

constructed harbours more extensive modifications (9 nucleotide changes) than 

the other reported mutants. The structure mapping of this RNA (Figure 2) 

revealed that modifications introduced in the 5’ end could also affect the 

conformation of the STEM1. However, the MicA-5’mut RNA is shown to act 

differently than the MicA-STEM1 variant that harbours mutations that disrupt the 

STEM1 but maintain the 5’ linear end intact (as presented in the following set of 

results). This indicates that mutations introduced in the 5’ end have an effect that 

can be separated from the presence of an intact STEM1. 

We found that MicA-5’mut is more stable than MicA-WT (half-lives of 25 

min and 11 min, respectively as determined by Northern blotting) (Figure 3, upper 

panels). This result suggested that the degradation of MicA RNA is dependent on 

its 5’ end sequence. Since 5’ end of MicA interacts with target mRNAs, we could 
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also infer from this result that the stability of MicA could also be linked to its 

ability to base pair with mRNAs. 

 

Figure 3. Mutagenesis of the 5’ linear domain of MicA. Northern blot analysis of MicA in 

∆micA cells or its isogenic derivative lacking RNase III (micA rnc), expressing in trans 
either  the wild-type MicA (from the pMicA-WT plasmid) or the 5’ mutated MicA variant 
(from the pMicA-5’mut plasmid). RNA was extracted from stationary phase cultures and 
MicA stability was measured as described in Material and Methods. 

 

RNase III is a double-stranded RNA endoribonuclease (Arraiano et al., 2010). 

RNase III impact on MicA stability could result from the action on the small RNA 

itself (once it exhibits double-stranded regions) or from the activity of RNase III on 

the sRNA-mRNA hybrid. To test this, we performed an in vitro activity assay using 

purified E. coli RNase III and radioactive labelled wild-type MicA RNA as substrate 

and we found that this sRNA was not cleaved (Figure S3). This is in agreement 

with recent findings from our laboratory where it was shown that Salmonella 

RNase III (rnc) also does not cleave wild-type MicA in vitro but is able to cleave it 
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when it is bound to its target ompA mRNA (Viegas et al., 2011). Consequently, the 

activity of RNase III against MicA can potentially be used as an indirect approach 

to indicate when MicA is base pairing with its target mRNAs. 

To test the in vivo impact of E. coli RNase III in this regulation, we 

constructed the double mutant micA rnc and measured the stability of the 

trans-encoded MicAs. As expected, MicA-WT was highly stabilized in the absence 

of RNase III (MicA barely decayed even after 90 min after blocking of 

transcription) (Figure 3, lower panels). The introduction of several mutations in 

the 5’ end of MicA strongly impaired the RNase III-mediated degradation of this 

sRNA; in the absence of RNase III, MicA-5’mut showed only a stability of 30 min 

versus the >90 min obtained for the MicA-WT. Hence, the 5’ end domain of MicA 

modulates this sRNA stability through an RNase III-dependent pathway. 

Even though in the micA strain the MicA-5’mut is stabilised compared to 

the MicA-WT, we consistently observed that the MicA-5’mut is less abundant 

(Figure 3). The increasing stability that is observed is probably related to impaired 

RNase III activity against this molecule, as formation of MicA-mRNA target 

duplexes that corresponds to the RNase III substrate is suggested to be reduced. 

The lower abundance is more difficult to explain, but similar observations have 

been made (Bernstein et al., 2002; Le Derout et al., 2010). 

 

4. Distinct roles of stem-loops in promoting MicA stability 

MicA displays two GC-rich stem-loops, STEM1 (immediately after the 5’ 

linear sequence) and STEM2 (closer to 3’ end) (Figure 1). Computational analysis 

using the mfold algorithm (Zuker, 2003) predicts that STEM2 is thermodynamically 

stronger (G = 12.0) than STEM1 (G = 8.2). In agreement, our experimental 

structure mapping of the MicA variants showed that STEM1 conformation was 
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strongly affected by the nucleotide changes introduced (Figure 2). Hence, we also 

wanted to analyse the importance of these structural elements in the control of 

MicA stability. 

Plasmids expressing either the wild-copy of MicA (pMicA-WT) or the altered 

STEM1 (pMicA-STEM1) or STEM2 (pMicA-STEM2) versions were used to transform 

micA cells. The expression and stability of these MicA variants were tested by 

Northern blotting (Figure 4A). Results showed that these structured elements play 

different roles in protecting MicA from degradation. Disruption of STEM1 barely 

affected MicA stability (MicA-STEM1 exhibit an half-life of 9 min) when compared 

to the MicA-WT (half-life of 11 min). Actually, the levels of the MicA-STEM1 

variant are even slightly higher than the MicA-WT (Figure 4A). In contrast, 

perturbation of STEM2 considerably reduced the stability of this small RNA (MicA-

STEM2 has a half-life of 4.6 min) as well as its abundance when compared to wild-

type MicA (Figure 4A). In Salmonella two other point mutations located in STEM2 

have also been shown to affect the ability of MicA to downregulate lamB mRNA 

levels (Bossi & Figueroa-Bossi, 2007). The MicA-STEM1_2 (harbouring mutations 

in both stem-loops) followed the results obtained with the single disruption of 

STEM2 (Figure 4B). Relaxation of the transcriptional terminator is likely to result in 

transcriptional read-through (Reynolds & Chamberlin, 1992; Abe & Aiba, 1996). 

However, as no major transcriptional termination read-through products were 

detected on these gels, the low levels of the MicA-STEM2 or the MicA-STEM1_2 

variants are suggested to be consequence of their low stabilities. The 3’-5’ 

exoribonuclease PNPase was previously shown to degrade the wild-type MicA 

(Andrade & Arraiano, 2008) and was the likely candidate for the rapid degradation 

of these MicA variants. A new micA pnp strain was then constructed and 

transformed with the adequate plasmid. Clearly, inactivation of PNPase resulted 

in a more long-lived MicA-STEM1_2 RNA and its levels were strongly increased 
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(Figure 4B). The other major exoRNases (RNase II and RNase R) did not 

significantly participate in the degradation of this sRNA. 

 

Figure 4. Mutagenesis of MicA stem-loops. (A) Northern blot analysis of MicA in ∆micA 
cells expressing in trans either the wild-type MicA (from the pMicA-WT plasmid) or the 
stem-loops mutated MicA variants (from the pMicA-STEM1 or pMicA-STEM2 plasmids). 
When expressing the MicA-WT it is possible to visualise two lower molecular weight bands 
(<60 nts) that were previously identified in work performed in Salmonella to correspond 
to breakdown products of the duplex MicA-target mRNA (Viegas et al., 2011).  
(B) Impact of the disruption of both stem-loops (MicA-STEM1_2 variant) on MicA stability. 

Plasmid pMicA-STEM1_2 was used to transform micA cells and its isogenic derivatives 

lacking PNPase (micA pnp) or RNase III (micA rnc).  
(C) Northern blot analysis of the chromosomally encoded MicA or the MicA-WT expressed 
from plasmid, comparing the stability pattern in cells expressing or not PNPase. RNA was 
extracted from stationary phase cultures. 
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We also compared the activity of RNase III against the MicA-STEM1_2 RNA. 

This altered MicA variant with mutations on both hairpins was found to be 

stabilized in the micA rnc when compared to the micA strain (Figure 4B). This 

was expected as MicA-STEM1_2 retains an intact 5’ end domain that is known to 

direct RNase III cleavage. Strikingly, the MicA-STEM1_2 expression level is much 

higher upon inactivation of PNPase rather than RNase III. This may suggest that a 

large fraction of MicA-STEM1_2 RNA might not be bound to its targets and 

therefore the free population of this sRNA is preferably degraded 

exonucleolytically by PNPase. As expected, PNPase was also confirmed to be 

important in the decay of the plasmid encoded MicA-WT (Figure 4C). Overall, 

these results indicate that STEM1 plays a minor role in protecting MicA while 

STEM2 functions as an effective stabilizer element protecting MicA from 

degradation.  

 

5. The A/U-rich linear sequence is not the only Hfq-binding site 

present in MicA 

Another structural domain in MicA is an A/U-rich single-stranded region 

flanked by the two stem-loop structures. Previous work showed that Hfq has in 

vitro affinity for this region (Rasmussen et al., 2005). However, the role of this 

module in regulation of MicA stability has not been addressed. In order to study 

this sequence, we constructed a plasmid expressing a MicA variant in which we 

changed the linear A/U-rich tail between the stem-loops to a C-rich sequence 

(Figure 1: Hfq-binding site mutagenesis). This is predicted to impair the binding of 

Hfq to this sequence (Link et al., 2009). The pMicA-hfq plasmid was then used to 

transform micA cells and RNA extracted from stationary phase cultures was 

analysed by Northern blotting and compared to micA harbouring pMicA-WT. 
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The mutated MicA-hfq is less stable (<50%) than the MicA-WT (Figure 5A). 
This clearly showed that the internal A/U-rich sequence plays relevant roles in 
determining MicA stability in vivo. If this sequence was the only Hfq-binding site 
present in MicA, the stabilities of both MicA-hfq in cells harbouring Hfq and the 
MicA-WT in cells lacking Hfq were expected to be similar. However, the MicA-WT 

in hfq cells is less stable than the MicA-hfq variant in the presence of Hfq (Figure 
5A). 

 

Figure 5. Mutagenesis of the A/U-rich domain, a Hfq-binding site in MicA. 
(A) Northern blot analysis of MicA in ∆micA cells expressing in trans either the wild-type 
MicA (from the pMicA-WT plasmid) or a MicA variant with the A/U-rich domain mutated 
to a C-rich sequence (from the pMicA-hfq plasmid). Plasmid pMicA-WT was also used to 

transform a deletion strain of hfq. A smaller form of MicA (designated MicA) is only 
clearly observed in the absence of Hfq; this fragment had been previously identified 
(Andrade et al., 2012). A size marker is shown on the left of the gel. The riboprobe used to 

detect MicA, cross-reacts with a nonspecific band, (that is also detected on the micA 
strain, Figure S6) that was here used as loading control. A more stringent washing step 
eliminates this band without affecting the MicA signal, as previously described (Andrade & 
Arraiano, 2008). RNA was extracted from stationary phase cultures.  
(B) Mutagenesis of the A/U-rich domain of MicA to a C-rich sequence affects the Hfq 
binding ability to this small RNA. The gel mobility shift assay was performed with a 
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constant amount of radiolabelled MicA-WT or MicA-hfq variant as RNA substrates and 
increasing amounts of purified Hfq protein, as indicated in the figure. The free RNA and 
the Hfq-RNA complexes are indicated. The gels were then dried and exposed to a 
PhosphorImager screen and quantified using ImageQuant software. The results were plot 
using SigmaPlot software and binding curves were fit. Filled circles represent MicA-WT 
and open circles represent MicA-hfq variant. 

 

Furthermore, the lack of Hfq results in the detection of a slightly smaller 

MicA species (MicA) (previously identified in (Andrade et al., 2012)) that is not 

detected in the micA transformed with the pMicA-hfq plasmid (Figure 5A). Hfq is 

thus suggested to protect the 3’ end of MicA against nucleolytic degradation that 

originates the shorter and rather unstable MicA* species. Altogether, these 

results lead to the conclusion that the internal A/U-rich sequence is probably not 

the only Hfq-binding site in MicA. To confirm this, we have performed gel mobility 

shift experiments with a constant amount of radiolabelled MicA-WT or MicA-hfq 

variant as RNA substrates and increasing amounts of purified Hfq (Figure 5B). Hfq 

was able to form the same complexes with MicA-WT or MicA-hfq RNAs although 

binding with MicA-hfq was less efficient (with Kd values of 65 and 380 pM, 

respectively). Since Hfq could still form complexes with the MicA-hfq variant, this 

confirmed that this single-stranded A/U-rich sequence between the two stem-

loops is not the only Hfq-binding site present in MicA. 

 

6. The 3’ U-rich terminator sequence is critical for MicA stability 

Hfq binds preferably A/U-rich sequences but was also shown to interact 

with other U-rich elements present in mRNAs (Folichon et al., 2003). The poly(U) 

tail from the transcriptional terminator was thus an excellent candidate to 

interact with Hfq (Figure 1). Recent findings demonstrated that the poly(U) 

sequence downstream the terminator is involved in the Hfq-dependent regulation 
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of small RNAs (Otaka et al., 2011; Sauer & Weichenrieder, 2011). We further 

analysed the role of this domain in the control of MicA stability. 

We constructed two MicA mutants in which we changed the nucleotides in 

the 3’ poly(U) tail. In the MicA-3’mut1 variant, the 5’-UUUU-3’ linear sequence 

immediately after the terminator was changed to a 5’-UCUG-3’ sequence while in 

the MicA-3’mut2 this modification was more extensive (to 5’-GCCGA-3’) (Figure 1: 

3’ end mutagenesis). The corresponding plasmids harbouring these nucleotide 

changes in the 3’ end of MicA were used to transform the micA strain. In order 

to attenuate inefficient transcription termination that could arise from 

modification of the 3’ poly(U) sequence, an additional stretch of 8 T’s was 

included immediately after the 4U residues in both cloning strategies. The MicA-

3’mut1 variant showed decreased stability when compared to the wild-type (half-

life from 11 min to 6 min) (Figure 6A). Extended mutagenesis of the 3’ RNA 

sequence even resulted in a more drastic reduction (to 2.3 min for MicA-3’mut2).  

The 3’ altered MicA’s are slightly longer than the wild-type MicA (Figure 

6A). However, the elongated RNA species was also detected (in low level) when 

expressing the MicA-WT (Figure 6A, upper arrow on side of the gel). The wild-type 

MicA terminates in a linear stretch of 4 U’s which functions as efficient 

termination site (Argaman et al., 2001; Udekwu et al., 2005; Gogol et al., 2011). 

Nevertheless, an alternative transcriptional termination site located next to the 

this sequence can be found in the micA DNA (5’-TTTTCTTTT-3’) which can lead to 

slightly longer MicA species, as we observe in Figure 6A. Mutagenesis of the 

poly(U) sequence most probably results in the relaxation of the transcriptional 

termination leading to increasing amounts of this read-through RNA. However, 

even after the extensive modification of the 3’ poly(U) sequence in the MicA-

3’mut2 we did not detect in these gels the accumulation of other major 

transcriptional read-through bands when compared to the MicA-WT (Figure 6A). 
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This suggests that the reduced levels of the 3’ altered MicA RNAs are mainly 

consequence of its rapid turnover, as observed with the mutants in STEM2 (Figure 

4). In fact, we found that inactivation of PNPase resulted in the strong 

accumulation and stabilization of both the 3’ MicA modified RNAs (Figure 6B). 

 

Figure 6. Mutagenesis of the 3’ end U-rich domain of MicA. 
(A) Effect of mutations in the 3’end U-rich linear sequence in the stability of the MicA RNA. 
Northern blot analysis of MicA in ∆micA cells expressing in trans the wild-type MicA (from 
the pMicA-WT) or the mutated 3’ end variants (from the pMicA-3’mut1 or pMicA-3’mut2 
plasmids). Read-through bands are indicated by the symbol (¶). Two different sized forms 
of MicA can be detected and are marked with arrows on the side of the gel.  
(B) Northern blot analysis of MicA in ∆micA cells or its derivative isogenic mutants lacking 

either PNPase (micA pnp) or Poly(A) polymerase I (micA pcnB) expressing in trans 
either the mutated MicA-3’mut1 or the MicA-3’mut2 variant. RNA was extracted from 
stationary phase cultures. Upon hybridization of the membrane, a nonspecific band is 
observed and was here used as loading control (Andrade & Arraiano, 2008).  

 

In contrast, inactivation of the poly(A) polymerase (encoded by the pcnB 

gene) (Régnier & Hajnsdorf, 2009) did not show a great effect in the degradation 

of these full-length 3’ end MicA mutants (Figure 6B) although MicA-3’mut2 RNA 

was more affected than the MicA-3’mut1 variant. Yet, polyadenylation seemed to 

affect the degradation of an intermediate breakdown product (Figure 6B). 

Inactivation of PNPase resulted in much stronger stabilisation of these sRNAs, an 
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indication that PNPase is not dependent on an active poly(A)-dependent pathway 

to actively degrade these small RNAs. 

 

7. Differential control of target mRNAs by MicA variants 

We wanted to investigate whether our different MicA mutants were 

functional in riboregulation. To test this, we analysed the RNA levels of three 

different targets: ompA, tsx and ecnB mRNAs. OmpA is a major outer membrane 

protein and was the first identified target of MicA. EcnB (entericidin B membrane 

lipoprotein) and Tsx (nucleotide transporter) were recently shown to be 

specifically regulated by MicA in Salmonella (Rasmussen et al., 2005; Udekwu et 

al., 2005; Bossi & Figueroa-Bossi, 2007; Gogol et al., 2011). Our work extends the 

list of known target mRNAs in E. coli as for the first time tsx and ecnB transcripts 

are also shown to be regulated by MicA. 

A deletion strain of micA was transformed either with the empty plasmid 

(pWSK29), the plasmid expressing the wild-type copy of MicA or with the plasmids 

harbouring the different MicA variants and the levels of the target mRNAs were 

then evaluated. This provided a simple approach to test how the different 

mutations were affecting MicA repressor activity. Overexpression of the wild-type 

MicA is very efficient in the downregulation of its target mRNAs as compared to 

micA transformed with the empty vector (compare Figure 7, lane 1 and lane 2). 

On the other hand, MicA mutants exhibited different levels of repression (Figure 

7A, lanes 3-8). 
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Figure 7. Differential control of target mRNAs by the synthetic MicA variants. 
Northern blot analysis of ompA, tsx, ecnB and MicA transcripts. Total RNA was extracted 

from stationary phase cultures of micA cells transformed with a low copy number based 
plasmid (pWSK29) expressing either the wild-type copy of MicA or one of the mutated 
variants described in this work. Plasmids used were: pWSK29 (lane 1), pMicA-WT (lane 2), 
pMicA-5’mut (lane 3), pMicA-STEM1 (lane 4), pMicA-STEM2 (lane 5), pMicA-STEM1_2 
(lane 6), pMicA-hfq (lane 7) and pMicA-3’mut2 (lane 8). 23S was used as loading control 
for the ompA and tsx transcripts (analysis from agarose Northern blots) while 5S was used 
as loading control for ecnB and MicA RNAs (analysis from polyacrylamide Northern blots). 

 

Compared to the MicA-WT expression, the mutated forms of MicA (with 

exception of MicA-STEM1) present in Figure 7 have reduced concentrations as 

result of their lower stabilities (Figure 7, lower panel) and this could contribute to 

different levels of repression observed. Nevertheless, despite this different 

expression levels, we verified that a same MicA variant can differentially affect the 

levels of different target mRNAs. Even though the levels of MicA-5’mut were 

lower than the MicA-WT, all the target mRNAs accumulated showing that 

modification of the 5’ linear sequence is critical to downregulate the expression of 

these targets (compare Figure 7, lane 2 and lane 3). In addition, the levels of 
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MicA-STEM1 were identically to MicA-WT but we could detect different 

regulatory effects as MicA-STEM1 RNA was still able to repress ecnB expression 

(identically to MicA-WT) while it did not function as well to downregulate ompA 

or tsx mRNA levels (compare Figure 7, lanes 2 and 4). Conversely, the levels of 

MicA-STEM2 were strongly reduced but MicA-STEM2 was found to be much more 

important in the regulation of ecnB and ompA mRNAs than STEM1 (compare 

Figure 7, lane 2 with lanes 4-5).  

The stem-loops are shown to have different effects on the regulation of 

different targets. STEM2 seems to have a more generalised effect, affecting all the 

tested mRNAs while STEM1 was shown to particularly affect the tsx mRNA 

(compare Figure 7, lane 2 with lanes 4-5). MicA-STEM1_2 variant (harbours 

mutations in both MicA stem-loops) was not found to simply add the effects of 

STEM1 and STEM2 mutations (compare Figure 7, lanes 4-6). Despite the low levels 

of MicA-STEM1_2 (that follows the expression levels found to MicA-STEM2), this 

sRNA is still able to repress the expression of tsx mRNA but unlike MicA-STEM1 it 

did not seems to repress ompA and ecnB expressions (compare Figure 7, lanes 4-

6). 

The mutants for the two high affinity Hfq-binding sites in MicA were also 

analysed for their riboregulatory activity (Figure 1 and Figure 7, lanes 7-8). 

Mutagenesis of either the internal A/U-rich or the 3’ poly(U) tail reduces the 

ability of Hfq to interact with the sRNA and this is expected to affect the base 

pairing ability of the sRNA with the target mRNAs (Sauer & Weichenrieder, 2011; 

Sauer et al., 2012). MicA-hfq variant was less functional than the MicA-WT in the 

downregulation of all the targets, showing that this domain is required for 

riboregulation. However, this was shown to be more important for regulation of 

ompA mRNA than for the others transcripts tested (Figure 7, compare lanes 2 and 

7). On the other hand, the MicA-3’mut2 variant (harbouring mutations in the 3’ 
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poly(U) tail) resulted in the accumulation of all the targets analysed (Figure 7, 

compare lanes 2 and 8), to a level higher than the one obtained when 

overexpressing the MicA-hfq variant (Figure 7, compare lanes 7 and 8). These 

results suggest that the 3’ poly(U) sequence plays more relevant roles than the 

internal A/U-rich sequence in promoting interactions with the different target 

mRNAs; it is also possible that 3' poly(U) sequence can affect specificity of a sRNA. 
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Discussion 

The architecture of a small RNA is critical for its stability, influences the 

formation of sRNA-protein complexes and can affect base pairing with target 

mRNAs. The knowledge of the important factors controlling the sRNA abundance 

in the cell is of utmost importance for the manipulation of sRNA-based pathways. 

Through our mutagenic studies we have defined distinct modules in MicA that 

were shown to play distinct roles in protecting MicA from degradation. Mutations 

in the 5’ end domain resulted in the stabilisation of this sRNA, presumably by 

impairing RNase III activity against MicA. On the other hand, mutations in several 

3’ end elements resulted in unstable MicA’s and we showed that the 3’-5’ 

exoribonuclease PNPase was a major player in this degradation. Our data also 

suggest that different domains of MicA can be involved in the riboregulation of 

target mRNAs. Moreover, we have shown that the effect of these sRNA mutations 

in their regulatory pathways cannot be directly deduced from the levels or 

stability of the small RNAs. 

The free form of MicA is not cleaved by RNase III and only when it is bound 

to a target mRNA it becomes a substrate to RNase III (Figure S3 and (Viegas et al., 

2011)). This also helps explaining why mutagenesis of the 5’ end domain of MicA 

resulted in the stabilisation of this sRNA (Figure 3). This implies that the free (not 

bound to its targets mRNAs) population of MicA is degraded by a distinct pathway 

that does not necessarily involve RNase III. In fact, our data suggest that PNPase is 

actively involved in this decay. Therefore, alternative degradation pathways are 

used to control either the free MicA or the target-bound MicA. In an apparent 

paradox, even though MicA-5’mut was found to be more stable it is less abundant 

than MicA-WT (Figure 3). Similar results can be found in the literature for other 

RNAs. In fact, in E. coli the levels of RNAs not always have a direct correspondence 

to their half-lives as shown by a microarray analysis (Bernstein et al., 2002). We 
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may speculate that mutagenesis of the 5’ linear sequence of MicA could affect the 

production of this sRNA. Interestingly, it has been suggested that mutations 

inserted in the 5’ UTR sequence can influence the transcription rate in non-

bacterial systems (Kudla et al., 2006). 

The linear 5’ end sequence was shown to be the main domain that many 

small RNAs use to bind their targets (for example RybB, OmrA, OmrB and MicA) 

(Guillier & Gottesman, 2008; Balbontín et al., 2010; Papenfort et al., 2010; Gogol 

et al., 2011). We confirmed that the 5’ linear sequence of MicA (corresponding to 

the first 23 nts) is essential for repression of all the targets analysed (ompA, tsx 

and ecnB mRNAs). From these, tsx mRNA was the less affected by the mutations 

in the 5’ end of MicA, probably because the nucleotide changes still resulted in an 

extensive complementation with this target, as predicted by computational 

analysis (Figure S4). However, we have found that the 5’ linear sequence of MicA 

does not seem to be the only domain involved in the regulation of the targets 

(Figure 7). 

We observed that MicA stem-loops could affect differently the amounts of 

the distinct target mRNAs. STEM2 was found to be much more important for the 

in vivo repression of both ompA and ecnB mRNAs than STEM1, unlike we could 

expect from the RNAhybrid prediction (Figure S4). In contrast, STEM1 was critical 

for regulation of tsx transcript levels while disruption of STEM2 had a considerably 

less impact on this mRNA. MicA-STEM1_2 is clearly less efficient in the repression 

of ompA or ecnB mRNA levels (Figure 7). Therefore, these results suggest that the 

structure of both MicA stem-loops is important for interaction with such targets.  

The main function of stem-loops is usually considered the protection of 

RNA against degradation. The formation of a double-stranded region within the 

sRNA can sequester sequences susceptible to RNase E endonucleolytic cleavages 

and efficiently act as physical barriers against 3’-5’ exonucleolytic degradation 
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(Arraiano et al., 2010). The two stem-loops present in MicA were found to play 

distinct roles. Surprisingly, the extensive disruption of STEM1 did not significantly 

affect the stability of MicA (Figure 4A). The main role of STEM1 seems thus not to 

be the protection of the sRNA against degradation, unlike it was shown to happen 

with STEM2. This has implications in the relative abundance of these variants as 

MicA-STEM1 shows identical levels to MicA-WT whereas MicA-STEM2 is strongly 

downregulated (Figure 7). However, as showed here, some targets like ompA and 

ecnB mRNAs are more strongly affected by MicA-STEM2 than by the MicA-STEM1 

variant, which supports that the effects of these mutations in the regulatory 

pathways are not simply the result from changes in sRNA stability. The Hfq-

binding sites in MicA are in two separate domains: the internal A/U-rich sequence 

and the 3’ U-rich tail after the transcriptional terminator. The Hfq-binding site 

mutants of MicA were expected to be less efficient in the interactions with target 

mRNAs (because Hfq is known to accelerate the rate of sRNA-mRNA duplex 

formation) (Valentin-Hansen et al., 2004). Surprisingly, our results showed that 

these sequences can play distinct roles in the regulation of the different targets. 

Mutation of the 3’ U-rich sequence of MicA was shown to have a more 

generalised effect in all the mRNAs tested while mutation of the A/U-rich 

sequence had a more pronounced impact in the regulation of ompA mRNA levels 

than on the other targets. RNAhybrid predicted that mutations affecting the 3’ 

poly(U) sequence of MicA would affect more the base pairing with target mRNAs 

but failed to predict the impact of disrupt the internal A/U-rich sequence of MicA 

in the regulation of ompA mRNA levels (Figure S4). 

These results suggest that interaction of Hfq with the sRNA seems to greatly 

depend on the target itself or might require the interaction with additional 

factors. Mutants in one of the high affinity Hfq-binding sites of MicA (MicA-hfq 

and MicA-3’mut variants) were shown to accumulate at levels inferior to the 

MicA-WT (Figure 7). However, for each mutation we can observe distinct effects 
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for the different targets. For example, changes introduced in the 3’ U-rich linear 

sequence of MicA affected more strongly the levels of ompA and tsx mRNA in 

comparison to ecnB mRNAs. Again we conclude that this differential response 

shows that the effect of the mutations on target expression cannot be simply 

deducted from the sRNA levels. 

Hfq is known to protect sRNA from RNase E and PNPase-mediated 

degradation (Moll et al., 2003; Andrade et al., 2012). Mutations that disrupted the 

Hfq-binding sites were found to result in more labile MicA’s probably because 

these MicA variants become more accessible to the action of RNases. 

Modification of the 3’ U-rich linear tail of the transcriptional terminator (Figure 6) 

was shown to destabilize MicA to a higher extension than the mutations 

introduced in the internal A/U-rich sequence (Figure 5). Stability measurements 

revealed that PNPase was the main enzyme involved in the degradation of these 

MicA variants. We also examined the effect of modifying the 3’ poly(U) tail of the 

RybB, a small RNA that shares multiple targets with MicA (Balbontín et al., 2010; 

Papenfort et al., 2010; Gogol et al., 2011). Modification of the nucleotides 

immediately after the terminator stem-loop (from poly(U) to a 5’-CCGUC-3’ 

sequence) resulted as well in a more labile sRNA (Figure S5). Recent findings 

showed that shortening of the 3’ U-rich tail of other sRNAs also resulted in the 

instability of these sRNAs (Otaka et al., 2011). Therefore, Hfq binding to the 

uridylated 3’ end of MicA agrees with the protection of this protein against the 3’-

5’ exonucleolytic degradation by PNPase (this work and (Andrade et al., 2012)). 

The modular structure of MicA helps explaining the dynamics of interaction 

with its multiple targets. The 5’ end of MicA is critical for repression of some 

targets (such as ompA expression) while the 3’ end of MicA harbours elements 

that may be more relevant for regulation of other targets (such as tsx mRNA). 

These findings can most probably be extended to other regulatory RNAs, judging 
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by the results of a computational search which predicted that several other small 

RNAs can potentially use different regions to establish base pairing interactions 

with their targets (Peer & Margalit, 2011). FnrS and Spot42 are good examples of 

this, as both were shown to use different single-stranded regions for base pairing 

with different set of targets (Durand & Storz, 2010; Beisel et al., 2012). 

Our work confirms the importance of the 5’ end domain both in 

riboregulation and in the stabilisation of the sRNA. However, we expand this view 

by showing that 3’ end elements not only are critical for the stability of the sRNA 

but are also suggested to be involved in the regulation of some target mRNAs. As 

a matter of fact, the 3’ end is shown to harbour different stabilizer elements, 

namely stem-loops and high affinity Hfq-binding sites. Actually, Hfq has even a 

higher affinity for the 3’U-rich sequence rather than for internal A/U-rich 

sequences typically found in small RNAs (Sauer & Weichenrieder, 2011; Sauer et 

al., 2012). The 3’ end terminal nucleotides of MicA are highly conserved (as 

observed in the sequence alignment in Figure 1) and most likely our findings with 

E. coli MicA can be extrapolated across species. Moreover, the modular structure 

of MicA is commonly found among small RNAs, supporting that our results may be 

generalized to other non-coding RNAs (Balbontín et al., 2010; Papenfort et al., 

2010; Otaka et al., 2011; Rice & Vanderpool, 2011). There has been growing 

interest in the use of synthetic regulatory RNAs to program gene expression 

networks (Davidson & Ellington, 2005; Lioliou et al., 2010; Liang et al., 2011). We 

believe that mutations that alter the 3’end region, namely the 3’U-rich sequence 

of the sRNA can be a useful strategy to manipulate the networks regulated by 

small RNAs. 
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Materials and Methods 

Strains and growth conditions 

E. coli K-12 strain MG1693 (Arraiano et al., 1988) or its derivatives were 

used in this work (Table I). Deletion mutant of rybB was constructed by the one 

step inactivation of chromosomal genes method (Datsenko & Wanner, 2000). 

Bacteria were grown at 37ºC in Luria-Bertani (LB) medium supplemented with 

thymine (50 g ml-1). SOC medium was used to recover cells after heat-shock in 

plasmid transformation steps. When required, antibiotics were present at the 

following concentrations: chloramphenicol, 50 g ml-1, kanamycin, 50 g ml-1; 

ampicillin, 100 g ml-1. 

Table I. Strains used in this work 

Strain Relevant genotype Reference 
GSO80 MC4100hfq (Zhang et al., 2002) 

MG1693 thyA715 (Arraiano et al., 1988) 

SK5691 thyA715 pnp7 (Arraiano et al., 1988) 

SK7622 thyA715 rnc38 (Babitzke et al., 1993) 

CMA413 thyA715 micA (Andrade & Arraiano, 2008) 

CMA428 MG1693 hfq (Andrade et al., 2012) 

CMA514 thyA715 micA + pMicA-WT This study 

CMA515 thyA715 micA + pMicA-5’mut This study 

CMA516 thyA715 micA + pMicA-STEM1 This study 

CMA517 thyA715 micA + pMicA-STEM2 This study 

CMA518 thyA715 micA + pMicA-STEM1_2 This study 

CMA519 thyA715 micA + pMicA-hfq This study 

CMA520 thyA715 micA + pMicA-3’mut1 This study 

CMA521 thyA715 micA + pMicA-3’mut2 This study 

CMA522 thyA715 micA rnc38 + pMicA-WT This study 

CMA523 thyA715 micA rnc38 + pMicA-5’mut This study 

CMA524 thyA715 micA pnp7 + pMicA-WT This study 

CMA525 thyA715 micA pnp7 + pMicA-STEM1_2 This study 

CMA526 thyA715 micA rnc38 + pMicA-STEM1_2 This study 

CMA527 thyA715 micA pcnB + pMicA-3’mut1 This study 

CMA528 thyA715 micA pcnB + pMicA-3’mut2 This study 

CMA529 MG1693 hfq + pMicA-WT This study 
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CMA530 thyA715 micA pnp7 + pMicA-3’mut1 This study 

CMA531 thyA715 micA pnp7 + pMicA-3’mut2 This study 

CMA532 thyA715 rybB + pRybB-WT This study 

CMA533 thyA715 rybB + pRybB-3’mut This study 

 

Construction of plasmids 

All plasmids used in this work are based on the very low copy number 

pWSK29 (Wang & Kushner, 1991) and are indicated in Table II. DNA fragments 

containing the mutagenic micA variants (MicA-5’mut, MicA-STEM1, MicA-STEM2, 

MicA-STEM1_2, MicA-hfq, MicA-3’mut1, MicA-3’mut2) were amplified by PCR 

overlapping using the oligonucleotides indicated in Table III. Partial fragments 

were amplified with MicA-HindIII and the respective mutagenic forward primer or 

MicA-PstI and the respective mutagenic reverse primer (Table III). PCR bands were 

gel eluted using the gel extraction NucleoSpin Extract II kit (Macherey-Nagel). For 

each mutation, the partial PCRs carry an overlapping region of 20 nucleotides. 

Approximately equal amounts of each partial PCR (for a given construct) were 

added to Pfu reaction mix containing dNTPs but lacking primers. The extension 

step (30 s at 95ºC, 60 s at 55ºC and 30 s at 72ºC) proceeded for 15 cycles. The 

external primers MicA-HindIII and MicA-PstI were then added and the PCR 

reactions run for 20 cycles. A DNA fragment (274 bp) encompassing the entire 

wild-type MicA (MicA-WT) was directly amplified using primers MicA-HindIII and 

MicA-PstI. All DNA inserts include the MicA natural promoter (previously 

identified in (Udekwu & Wagner, 2007) and were HindIII/PstI cloned into pWSK29. 

Competent DH5 cells were used in the cloning procedure. Positive clones were 

selected by colony PCR. The nucleotide sequences of all constructs were 

confirmed by DNA sequencing (Stab Vida). 
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Table II. Plasmids used in this work 

Plasmid Comments Reference 

pWSK29 
very low copy number plasmid; ampicilin 

resistance 

(Wang & 

Kushner, 1991) 

pMicA-WT wild-type copy of MicA This study 

pMicA-5’mut 
MicA variant harbouring mutations in the 5’ 

linear sequence 
This study 

pMicA-STEM1 
MicA variant harbouring mutations in stem-

loop 1 
This study 

pMicA-STEM2 
MicA variant harbouring mutations in stem-

loop 2 
This study 

pMicA-STEM1_2 
MicA variant harbouring mutations in stem-

loops 1 and 2 
This study 

pMicA-hfq 

MicA variant harbouring mutations in the 

internal A/U-rich linear sequence (an high 

affinity Hfq-binding site) 

This study 

pMicA-3’mut1 
MicA variant harbouring 2 nucleotides changes 

in the 3’ end U-rich terminator sequence  
This study 

pMicA-3’mut2 
MicA variant harbouring 5 nucleotides changes 

in the 3’ end U-rich terminator sequence 
This study 

pRybB-WT wild-type copy of RybB This study 

pRybB-3’mut 
MicA variant harbouring 5 nucleotides changes 

in the 3’ end U-rich terminator sequence 
This study 
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RNA extraction and Northern analysis 

For decay experiments, blocking of transcription was obtained by adding 

rifampicin to a final concentration of 500 mg ml-1. Culture samples were 

withdrawn at defined timepoints thereafter and mixed with an equal volume of 

RNA stop buffer (10 mM Tris at pH 7.2, 5 mM MgCl2, 25 mM NaN3, and 500 mg  

ml-1 chloramphenicol). Total RNA was extracted by the phenol:chloroform method 

from stationary phase cultures as previously described (Andrade et al., 2012). 

Genomic DNA was removed from samples using the Turbo DNase (Ambion), as 

described by supplier. For Northern analysis, 10-30 g of total RNA was 

fractionated under denaturing conditions either in 6% (for detection of the ecnB 

mRNA) or 10% polyacrylamide/7 M urea gels in TBE (for detection of the sRNAs) 

or by 1.2% agarose formaldehyde-denaturing gel in MOPS buffer (for detection of 

ompA and tsx mRNAs). RNAs were transferred onto Hybond-N+ membrane (GE 

Healthcare) and U.V. crosslinked by UV irradiation using a UVC 500 apparatus 

(Amersham Biosciences). Membranes were hybridized with radiolabelled specific 

probes overnight in PerfectHyb Plus Hybridization Buffer (Sigma Aldrich) at 42-

68ºC. Specific probes were obtained either by 5’ end-labelling of antisense 

oligonucleotides using -32P-ATP and T4 polynucleotide Kinase (Fermentas) or by 

in vitro transcription reactions with PCR DNA templates carrying a T7 promoter 

sequence through the use of -32P-UTP and T7 RNA polymerase (Promega). 

Radiolabelled probes were purified on G25 Microspin columns (GE Healthcare). 

The probe used to detect MicA in the Northern blot experiments correspond to an 

antisense riboprobe complementary to the entire wild-type MicA sequence 

(about 74 nucleotides in length). RNA was analysed by Phosphorimaging 

(Storm860) using the ImageQuant software (Molecular Dynamics). The half-lives 

of RNA were determined by linear regression using the logarithmic of the 

percentage of RNA remaining versus time, considering the amount of RNA at 0 

min as 100%. Primers used in this work were obtained from Stab Vida (Portugal) 
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and are described in Table III. All radiochemicals were purchased from 

PerkinElmer. 

 

Table III. Primers used in this work 

PRIMER Sequence (5’-3’) 

Overlapping PCR 

MicA-HindIII AATGGAAGCttCTGATACCGAACCG  

MicA-PstI TTTTCGCCACCCGAACTGCAGGC  

MicA-5'mut F GCATATAAATCCTCCTTATCCCTGAATTCAGAGATGAAATTTTGGC  

MicA-5'mut R GATAAGGAGGATTTATATGCGTCTTTCATATACTCAGACTCGCCT  

MicA-STEM1 F GAcAccAAaTTTTgGCcACtCACGAGTGGCCTTTTTCTTTTCTGTCAGG  

MicA-STEM1 R aGTgGCcAAAAtTTggTgTCTGAATTCAGGGATGATGATAACAAATGCGC  

MicA-STEM2 F GAgAtgAAaTTTTaGCtACgCACGAGTGGCCTTTTTCTTTTCTGTCAGG  

MicA-STEM2 R cGTaGCtAAAAtTTcaTcTCTGAATTCAGGGATGATGATAACAAATGCGC  

MicA-STEM1_2 R cGTaGCtAAAAaTTggTgTCTGAATTCAGGGATGATGATAACAAATGCGC  

MicA-STEM1_2 F  GAcAccAAtTTTTaGCtACgCACGAGTGGCCTTTTTCTTTTCTGTCAGG  

MicA-hfq F CAGAGATGAAccacTGGCCACTCACG  

MicA-hfq R GTGGCCAGTGGTTCATCTCTGAATTCAGGGATG 

MicA-3'mut1 F aaaaAAAAGtcggcAGGCCACTCGTGAG TGGCC  

MicA-3'mut1 R TgccgaCTTTTttttCTGTCAGGCGTGTTTTTCCAG  

MicA-3'mut2 F aaaaAAAAGcAgAAGGCCACTCGTGAGTGGCC  

MicA-3'mut2 R TTCTGCTTTTttttCTGTCAGGCGTGTTTTTCCAG  

RybB-PstI CGTCCTGCaGACGCTGGCAGGGACAATC  

RybB-HindIII GACCGTAAGCttCTATCGCGCGAGGAG  

RybB-3mut F GTTGATGGGTgccTcTTTTTTTTGTTATCTAAAACTTATC  

RybB-3mut R GATAACAAAAAAAAgAggcACCCATCAACCTTGAACCG  

RNA substrate (in vitro transcription) 

T7-MicA TAATACGACTCACTATAGAAAGACGCGCATTTGTTATCATC  

in vitro MicA-wt AAAAGGCCACTCGTGAGTGGC  

in vitro MicA-
mut2 

TCGGCAGGCCACTCGTGAGTGGCC  

cDNA synthesis (reverse transcriptase reaction) 

MicA-DMS LNA AAA+A+G+AA+A+A+AGGCCACTCGTG 
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Gene deletion 

RybB-delFw CACAACCGCAGAACTTTTCCGCAGGGCATCAGTCTTAATTAGTATTGTGT
AGGCTGGAGCTGCTTC 

RybB-delR TGGTTGAGAGGGTTGCAGGGTAGTAGATAAGTTTTAGATAACGGTCCAT
ATGAATATCCTCCTTAG 

Northern probes 

MicA-T7 TAATACGACTCACTATAGGAAGGCCACTCGTGAGTGGCCAA  

MicA-Fw GAAAGACGCGCATTTGTTATC 

RybB-T7 TAATACGACTCACTATAGGAACAAAAAACCCATCAACCTTGAACCG  

RybB-Fw ACTGCTTTTCTTTGATGTCCC  

ompA-T7 TAATACGACTCACTATAGGAAAAAAAACCCCGCAGCAGC  

ompA-Fw TTGTAGACTTTACATCGCCAGGG  

ecnB-T7 TAATACGACTCACTATAGGTTATTGCTGCGCTTTCGTTGC 

ecnB-Fw ATGGTGAAGAAGACAATTGCAGCG    

tsx-T7 TAATACGACTCACTATAGGGCTCATCGGCAGGCCAGTGTCG 

tsx-Fw GCGGTACTGGCGCTCTCTTCG 

23S-RNA CCT ACA CGC TTA AAC CGG GAC 

5S-RNA CAT CGG CGC TAC GGC GTT TCA CTT C 

Nucleotide changes are indicated in small capitals; 

T7 promoter sequence is underlined. 

“+” precedes LNA-modified nucleotides 

 

Electrophoretic mobility shift assays (EMSA) 

Binding assays were performed in 10 mM Tris–HCl (pH 8), 1 mM EDTA, 80 

mM NaCl and 1% glycerol (v/v) (Ziolkowska et al., 2006) with increasing 

concentrations of His6-tagged Hfq purified protein (kindly provided by Eliane 

Hajnsdorf) and a constant amount of radiolabeled [-32P]-UTP MicA as substrate. 

Reactions were incubated at 37ºC for 30 min. EMSA samples were then 

electrophoresed on native 5% polyacrylamide gels in 1× TBE buffer in a cold room. 

Dried gels were then exposed on Phosphorimager screens and the corresponding 

signals were analysed using the ImageQuant software (Molecular Dynamics). 
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Binding data were fit to a Polynomial Quadratic curve and Kd values were 

calculated from the fit of the curve using SigmaPlot software (Systat Software). 

 

5’-end labelling of RNA  

MicA-WT and MicA-mutant RNA variants were transcribed with T7 RNA 

polymerase from PCR products obtained with primers described on Table III and 

relevant plasmid eluted from agarose gel as DNA templates. After 

dephosphorylation with Calf intestine alkaline phosphatase (Fermentas), RNA was 

5’-end labelled with [-32P]ATP and T4 polynucleotide kinase (Fermentas). Labelled 

RNAs were then purified by 10% polyacrylamide/7M urea/ 1x TBE gel 

electrophoresis, eluted and precipitated with ethanol. 

 

Chemical probing 

The dimethyl sulphate (DMS) modification of unpaired adenosine and 

cytidine nucleotides was carried out essentially as described (Tijerina et al., 2007). 

For in vitro reactions, a 25 µl of total RNA renatured in Na-Cacodylate/EDTA buffer 

supplemented with 10mM MgCl2 was treated with 1 µl freshly prepared DMS 

(Sigma-Aldrich) solution (diluted 1:7 in ethanol) for 10 min at 37ºC. Reaction was 

stopped with addition of 475 µl of quenching solution (4.3 M -

mercaptoethanol/0.3 M sodium acetate) and RNAs were precipitated overnight at 

-80ºC. The in vivo DMS modification of RNA from stationary phase cultures was 

performed essentially as described (Benito et al., 2000; Brunel & Romby, 2000). 

Primer extension reactions were carried out using a [-32P]-5’-end labelled MicA-

DMS LNATM primer (Exiqon) and the Transcriptor reverse transcriptase (Roche). 

After RNA alkaline hydrolysis, cDNA was resuspended in 6µl formamide loading 
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buffer. Samples were analysed on 6% or 8% polyacrylamide/7M urea gels run in 

TBE 1x buffer. The lead acetate cleavages were carried out as described (Salvail et 

al., 2010) with addition of 5mM PbAc (Sigma-Aldrich) to renatured 5’-end-labelled 

MicA RNAs in structure buffer 1x (Ambion) supplemented with 0.1mg/ml of yeast 

RNA. Samples were collected after incubation for 0.5, 1 or 2 min and reactions 

were stopped by addition of 10 µl of loading buffer II (Ambion). In line probing 

was performed as described (Regulski & Breaker, 2008). Samples were 

fractionated on 10% polyacrylamide/7M urea gels run in TBE 1x buffer. Gels were 

dried and exposed on the phosphor screen. 

 

Enzymatic probing 

Ribonucleases T1 (0.01U) and RNase A (0.01U) (Ambion) were incubated 

with the RNA for 15 min at 37ºC following manufacturer’s instructions. Before 

use, 5’-end labelled RNAs were renatured in structure buffer 1x (Ambion). 

Unfolded RNAs were prepared in sequencing buffer 1x and a ladder of G-specific 

cleavages was obtained upon RNase T1 incubation. Alkaline ladders correspond to 

incubation of the RNA in the alkaline hydrolysis buffer for 15 min at 90ºC. 

Reactions were stopped by adding 10 µl of loading buffer II (Ambion). Samples 

were then fractionated on 10% polyacrylamide/7M urea gels run in TBE 1x buffer. 

Gels were dried and exposed on the phosphor screen. 

 

RNase III cleavage assay of MicA RNA 

Reactions were performed using 1000 µM RNase III purified protein (kindly 

provided by Allen Nicholson) and radiolabeled [-32P]-UTP MicA-WT RNA as 

substrate. RNase III reaction buffer consisted of 160 mM NaCl, 30 mM Tris–HCl 
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(pH 8), 0.1 mM EDTA, 0.1 mM DTT and 10mM MgCl2 (Amarasinghe et al., 2001). 

Addition of the enzyme started the reaction and samples were collected at 

different timepoints. Incubation was performed at 37ºC. Reactions were stopped 

by the addition of formamide loading buffer supplemented with 20 mM EDTA. 

Reaction products were resolved in a 15% polyacrylamide/7 M urea gel. Signals 

were visualized by PhosphorImaging and analysed using the ImageQuant software 

(Molecular Dynamics). 
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Figure S1 

 

Figure S1. Identification of the nucleotide changes introduced in the synthetic MicA 
variants 
E. coli MicA wild-type sequence is indicated on top and the mutated MicA variants are 
shown below. Designation of each MicA variant is indicated on the left of each sequence. 
A multiple alignment of MicA in several eubacteria (see Figure 1) identified the conserved 
nucleotides (*) in MicA sequence. A color-code was used to better scheme the domains of 
MicA: the 5’ linear domain (blue), the stem-loop 1 (red), the Hfq-binding site A/U-rich 
sequence (green), the stem-loop 2 (brown) and the 3’ poly(U) terminator tail (purple). 
Mutated nucleotides are shown in lowercase; if conserved, the residue is also underlined. 
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Figure S2 

 

Figure S2. In line probing analysis of MicA RNAs 
5’-end labelled MicA-RNA was prepared in 50 mM Tris pH8, 20 mM MgCl2 and 100 mM 
KCl. In line probing reactions (Regulski & Breaker, 2008) were carried out for 48h at room 
temperature and were stopped with addition of loading buffer II (Ambion). Untreated 
controls (C1: MicA-5’mut; C2: MicA-WT; C3: MicA-STEM1_2). Alkaline ladders and RNase 
T1 ladders were run on the same gel (data not shown). Thick lines on the side of the lanes 
represent the position of stem-loop arms. Samples were fractionated on 10% 
polyacrylamide/7M urea gels run in TBE 1x buffer. 
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Figure S3 

 

 

Figure S3. In vitro RNase III cleavage assay 

In vitro activity assay (Amarasinghe et al., 2001) with 1000 M purified RNase III and 
radioactive labelled wild-type MicA RNA as substrate. Addition of RNase III started the 
reaction and samples were taken across time. A parallel reaction without the addition of 
enzyme was used as control. A size marker is shown on the left of the gel. 
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Figure S4 

A. MicA interactions with ompA mRNA 

 

 

 

 

 

 

B. MicA interactions with tsx mRNA 
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C. MicA interactions with ecnB mRNA 

 

 

 

 

 

Figure S4. Predicted Interactions between MicA-WT and the synthetic MicA variants 
with ompA, tsx and ecnB mRNAs 
The RNAhybrid software (Rehmsmeier et al., 2004) was used to predict interactions 
between MicA forms and target mRNAs, using the default parameters. A segment of the 5’ 
end of each target mRNA was chosen as previously described (Gogol et al., 2011). The 
complete sequences of all MicA variants were used. Nucleotide changes are shown 
underlined. For representative purposes, the predicted domains of MicA are color-coded: 
the 5’ linear domain (blue), the stem-loop 1 (red), the Hfq-binding site A/U-rich sequence 
(green), the stem-loop 2 (brown) and the 3’ poly(U) terminator tail (purple). 

 

 

 

 

 



Mutagenesis of the modular domains of MicA 

165 

Figure S5 

 

Figure S5. Mutagenesis of the 3’ end U-rich tail of RybB 

Decay measurement of the RybB. Deleted rybB cells (rybB) were transformed with a 
plasmid expressing either the wild-type copy (pRybB-WT) or a RybB variant in which the 3’ 
U-rich tail was modified to a CG-rich sequence (pRybB-3’mut). Total RNA was extracted 
from stationary phase cultures. 

 

Figure S6 

 
Figure S6. Northern blot analysis of MicA RNA  
A band denoted nonspecific is detected on Northern blot analysis from RNA extracted 

from the wild-type (wt) and micA strains (transformed or not with plasmid pMicA-WT) 
when using the MicA riboprobe described in Materials and Methods. 
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This chapter contains unpublished data. 

For this chapter I compiled several RNA-Seq results that are not published. 

Moreover, these results are not yet experimentally validated so this chapter only 

has results from bioinformatics analysis. 

I planned the experiments and did the bioinformatics analysis of the data 

and wrote the chapter.  

The analysis of RNA-Seq data is computationally very demanding and for 

this reason I did several bioinformatics courses: 

EMBO Practical course – “Computational RNA Biology”, 2010 

The Gulbenkian Training Programme in Bioinformatics – “RNA Bioinformatics”, 2010 

The Gulbenkian Training Programme in Bioinformatics – “Bioinformatics using Python for 

Biologists”, 2011 

EMBO Practical Course -  “MicroRNA-profiling: From in-situ hybridization to next-

generation sequencing”, 2011 

The Gulbenkian Training Programme in Bioinformatics – “Transcriptome Assembly, 

Automatic Functional Annotation and Data Mining”, 2012 

The Gulbenkian Training Programme in Bioinformatics – “Bioinformatics and Functional 

Genomics using R”, 2012 

 

With these courses I learned the basic on bioinformatics adapted to the 

field of RNA, acquired some programming skills and the knowledge to analyse the 

Next-Generation Sequencing data. 
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Abstract 

Exoribonucleases are crucial for RNA degradation. In E. coli there are three 

main exoribonucleases responsible for the exodegradative activity in the cell, 

RNase II, RNase R and PNPase. RNase II and RNase R are 3’-5’ hydrolytic 

exoribonucleases and belong to the RNase II family of enzymes. PNPase is a 3’-5’ 

phosphorolytic exoribonuclease from the PDX family of enzymes. In this work we 

analysed the roles of these exoribonucleases in both exponential and stationary 

phase, using RNA-Seq, the currently most advanced technology for whole-

transcriptome analysis. The adaptation to stationary phase involves major 

rearrangements of the E. coli transcriptome. Therefore we also analysed the 

transcriptomic changes between the exponential and stationary phase cells.  

We identified more than 1000 transcripts that were differentially expressed 

when we compared exponential with stationary growth phase. Most of these 

transcripts can be clustered into functional categories related to E. coli membrane 

and transport. We also found that the three exoribonucleases have different roles 

depending on the growth phase.  

In exponential phase, the deletion of RNase II significantly affects 187 

transcripts, deletion of RNase R affects 202 transcripts and deletion of PNPase 

affects 226 transcripts. Interestingly most of the transcripts affected by RNase II 

belong to flagellar assembly and motility. On the other hand, the transcripts 

affected by RNase R can be clustered into many different functional categories 

but it seems that RNase R might have an important role in anaerobic respiration. 

PNPase seems to overlap both RNase II and RNase R roles. In addition, PNPase 

also appears to have a more relevant role in the control of stable RNAs.  

In stationary phase, RNase R is the exoribonuclease that seems to have the 

predominant role. The RNase R deletion significantly affects almost 700 
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transcripts while RNase II deletion only affects 117 transcripts and PNPase 

deletion affects 228 transcripts. Nevertheless, PNPase seems to be the most 

important exoribonuclease involved in the degradation of sRNAs.  

Analysis of an RNase II and RNase R double mutant shows that the cell is 

somehow able to compensate the double mutation. The transcripts affected by 

the double mutation are similar to the ones affected by the single mutants, but 

the double mutant is not an “addition” of the single mutants. 

In conclusion, our data suggests that the three exoribonucleases have 

different roles in the cell, even though there is some overlap between their 

functions. Moreover they have different roles depending on the growth phase.   



RNA-Seq of exoribonucleases mutants 

173 

Introduction 

In stationary phase, E. coli cells undergo several physical and morphological 

adaptations (Hengge-Aronis, 1999). This adaptation requires an extensive 

adjustment of the gene expression. Therefore, many genes expressed in 

exponential phase are repressed in stationary phase, while other set of genes 

becomes highly expressed in stationary phase (Ishihama, 1997). These changes 

from exponential to stationary phase depend not only on the transcription, but 

also on the degradation of RNAs. In E. coli there are three main exoribonucleases 

(RNase II, RNase R and PNPase) involved in RNA degradation (Andrade et al., 

2009b; Arraiano et al., 2010).  

RNase II is a hydrolytic exoribonuclease that processively degrades RNA in 

the 3’-5’ direction. RNase II is sensitive to secondary structures, and the enzyme is 

known to stall before it reaches a double-stranded region (Cannistraro & Kennell, 

1999; Spickler & Mackie, 2000). Although RNase II degrading activity is sequence-

independent, its favourite substrate is poly(A) tails. RNase II rapidly degrades 

poly(A) tails but it halts if it finds secondary structures such as the Rho-

independent terminators. Therefore, the degradation of polyadenylated stretches 

by RNase II can paradoxically protect some RNAs because the other 

exoribonucleases (PNPase and RNase R) need a short poly(A) tail as a “toehold” in 

order to degrade secondary structures (Hajnsdorf et al., 1994; Pepe et al., 1994; 

Coburn & Mackie, 1996; Marujo et al., 2000; Mohanty & Kushner, 2000; Folichon 

et al., 2005). 

RNase R is another 3’-5’ hydrolytic exoribonuclease from the RNase II family 

of exoribonucleases (Cheng & Deutscher, 2002; Vincent & Deutscher, 2006). 

RNase R can easily degrade highly structured RNAs and was shown to be a key 

enzyme involved in the degradation of polyadenylated RNA (Cheng & Deutscher, 
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2002, 2003; Andrade et al., 2009a; Awano et al., 2010). RNase R is also a critical 

enzyme involved in RNA and protein quality control, namely in the degradation of 

defective tRNAs and rRNAs and is involved in degradation during trans-translation 

(Cairrão et al., 2003; Cheng & Deutscher, 2003; Vincent & Deutscher, 2006; 

Awano et al., 2010). The activity of RNase R is modulated according to the growth 

conditions of the cell and is induced under several stress conditions (Cairrão et al., 

2003; Andrade et al., 2006). RNase R is a highly unstable protein in exponential 

phase, however this protein is stabilized in stationary phase and other stress 

conditions, leading to its relative increase (Chen & Deutscher, 2010). 

Contrarily to RNase II and RNase R, PNPase is a 3’-5’ phosphorolytic 

enzyme. PNPase activity is blocked by double-stranded RNA structures (Spickler & 

Mackie, 2000), but it can form complexes with other proteins allowing it to 

degrade through extensive structured RNA (Arraiano et al., 2010). PNPase is not 

only a degradative enzyme, but is also capable of adding heteropolymeric tails 

(Mohanty & Kushner, 2000 ; Slomovic et al., 2008). In exponentially growing E. 

coli, more than 90% of the transcripts are polyadenylated and Rho-dependent 

transcription terminators were suggested to be modified by the polymerase 

activity of PNPase (Mohanty & Kushner, 2006).  

The role of exoribonucleases has been extensively studied, but there are 

still many unanswered questions (Arraiano et al., 2010). What is the exact role of 

these exoribonucleases in the RNA metabolism, which RNAs are substrates for 

each one of them and how the different exoribonucleases select their substrates 

are just some of the questions that are still under debate. To try to obtain some 

answers of which are the preferential targets of each RNase we have used RNA-

Seq, the current state-of-the-art technology.  

RNA-Seq uses recently developed deep-sequencing technologies. In 

general, a population of RNA (total or fractionated, for instance the selection of 
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poly(A)+ species) is converted to a library of cDNA fragments with adaptors 

attached to one or both ends (Figure 1). Each molecule, with or without 

amplification, is then sequenced in a high-throughput manner to obtain short 

sequences from one end (single-end sequencing) or both ends (pair-end 

sequencing) (Wang et al., 2009). With this technique it is possible to obtain 

information about the entire transcriptome of any organism or even from 

microbial communities (metatranscriptomics) (Guell et al., 2011). 

 
Figure 1 - RNA-Seq experiment  
RNAs are first converted into a library of cDNA fragments through RNA fragmentation. 
Sequencing adaptors (blue) are subsequently added to each cDNA fragment and a short 
sequence is obtained from each cDNA using high-throughput sequencing technology. The 
resulting sequence reads are aligned with the reference genome or transcriptome. Figure 
adapted from (Wang et al., 2009). 
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RNA-Seq has overcome some of the drawbacks of tiling arrays that has 

been an extensively used technique for whole-transcriptome profiling (Table 1). 

The major advantages of RNA-Seq when compared with tiling arrays are the 

capability to provide single-base resolution and a better signal-to-noise ratio due 

to a reduced background (Guell et al., 2011). Another major advantage is the fact 

that RNA-Seq does not require previous knowledge of the genomic sequence and 

therefore can be used for transcriptome profiling of organisms that are still not 

sequenced.  

Table 1 - Advantages of RNA-Seq compared with other transcriptomics methods 

Technology  Tiling microarray RNA-seq 

Principle  Hybridization High-throughput 
sequencing 

Resolution  From several to 
100 bp 

Single base 

Throughput  High High 

Reliance on genomic sequence  Yes No 

Background noise  High Low 

Simultaneously map transcribed 
regions and gene expression 

Yes Yes 

Required amount of RNA  High Low 

 

Nevertheless, RNA-Seq also presents some disadvantages, most of them 

related with the fact that RNA-Seq is still a very recent technique. The monetary 

cost of RNA-Seq is still a major limitation although the price is becoming more 

accessible. An important issue of RNA-Seq is the high amount of information that 

it provides. Consequently analysing RNA-Seq data is computationally very 

demanding and requires extensive bioinformatics knowledge and resources. In 

spite of these, RNA-Seq is a very powerful tool for transcriptome studies. For this 

reason, in this work we used RNA-Seq to explore the whole transcriptome of E. 

coli mutants for the three exoribonucleases (RNase II, RNase R and PNPase) at 

exponential and stationary phases to clarify their roles in RNA metabolism. 
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Results 

Transcriptome-wide analysis 

The RNA levels in the cell are a balance between transcription and 

degradation rates, therefore when studying transcriptomics is important to 

understand the degradation pathways involved in the establishment of the RNA 

levels. Exoribonucleases are at the center of RNA degradation pathways and 

respond to environmental stimuli, being for example modulated by many factors, 

such as stress or metabolites (Cairrão et al., 2003; Chen & Deutscher, 2010; 

Gatewood & Jones, 2010). Interestingly, work from this lab and others have 

shown that exoribonucleases can be growth-phase regulated. As examples, RNase 

R levels are increased in stationary phase (Andrade et al., 2006) and PNPase is 

particularly important in the degradation of sRNAs in stationary phase (Andrade & 

Arraiano, 2008; Andrade et al., 2012). In general, the RNA decay machinery is 

suggested to vary along the growth phase.  Usually most of the E. coli studies are 

done in exponential phase, however in its natural environment bacteria stay 

mostly in the stationary phase due to nutrient limitations and several stresses 

(Kolter et al., 1993). In this work, RNA-seq was used to compare the transcriptome 

of wild-type cells with mutants for the exoribonucleases RNase II (∆rnb), RNase R 

(∆rnr) and PNPase (∆pnp) in exponential and stationary phases of growth.  

We analysed the RNA-Seq results of all the transcripts in the cell. We plot 

the fold-change of the transcripts (Figure 2) to obtain an overview of the 

transcriptomic changes when comparing two samples. Each point in the MA 

scatterplots corresponds to a transcript. The transcripts with M equal to zero do 

not change between the two samples that are being compared. On the other 

hand, transcripts with M above zero are up-regulated while transcripts with M 

below zero are down-regulated. We observed a high range of the fold-change of 

the transcripts when comparing wild-type exponential cells with wild-type 
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stationary cells (Figure 2A). This suggests that many of the transcripts are 

differentially expressed between exponential and stationary phase.  As for the 

different exoribonucleases mutants the dispersion of the log fold-change is not 

that high for most of the transcripts (Figure 2B and 2C). However, there are some 

differences between the different mutants and the wild-type cells. In both 

exponential and stationary phase the PNPase mutant is the one that presents 

higher dispersion of the fold change values followed by RNase R mutant, while 

RNase II scatterplots show low dispersions for most of the transcripts (Figure 2B 

and 2C). This indicates that PNPase and RNase R have broader effects in the 

transcripts expression than RNase II.  

A 

 
 
 
 
 
 
 
 
 
 

-15

-10

-5

0

5

10

15

0 5 10 15 20

M
 

A 

wt EXP vs. wt STAT 



RNA-Seq of exoribonucleases mutants 

179 

B 

 
 
 
 
 
 

-15

-10

-5

0

5

10

15

0 5 10 15 20

M
 

A 

wt EXP vs. ∆rnb EXP 

-15

-10

-5

0

5

10

15

0 5 10 15 20

M
 

A 

wt EXP vs. ∆rnr EXP 

-15

-10

-5

0

5

10

15

0 5 10 15 20

M
 

A 

wt EXP vs. ∆pnp EXP 



Chapter 4 

180 

C 

 
Figure 2 – Overall RNA expression levels. A) MA scatterplot comparing wild-type (wt) in 
exponential with wild-type in stationary phase. B) MA scatterplot comparing wild-type 
(wt) with the different exoribonucleases mutants in exponential. C) MA scatterplot 
comparing wild-type (wt) with the different exoribonucleases in stationary. M is the Log2 
of the number of reads of condition 1 divided by the number of reads of condition 2, while 
A is the Log2 of the sum of the two conditions. For example, M = log2(wt STAT/wt EXP), A 
= log2(wt STAT + wt EXP). 

-15

-10

-5

0

5

10

15

0 5 10 15 20

M
 

A 

wt STAT vs. ∆rnb STAT 

-15

-10

-5

0

5

10

15

0 5 10 15 20

M
 

A 

wt STAT vs. ∆rnr STAT 

-15

-10

-5

0

5

10

15

0 5 10 15 20

M
 

A 

wt STAT vs. ∆pnp STAT 



RNA-Seq of exoribonucleases mutants 

181 

We also calculated the number of transcripts that were up or down-

regulated when comparing the different samples (Table 2). Comparing wild-type 

∆exponential phase with wild-type stationary phase cells we observed that the 

vast majority of the transcripts are down-regulated in stationary phase 

(approximately 85%), comparatively only approximately 14% of transcripts are up-

regulated (Table 2). The exoribonucleases are involved in the degradation of 

RNAs, therefore when comparing an exoribonuclease mutant with the wild-type 

we would expect to have more up than down-regulated transcripts.  Surprisingly, 

we found many more down-regulated transcripts in all the exoribonucleases 

mutants when compared to the wild-type, being particularly visible in the ∆rnb 

and ∆rnr mutants in stationary phase (Figure 2B and 2C). In exponential phase, 

the percentage of transcripts that are up-regulated when comparing the ∆rnb 

mutant with the wild-type is lower than the percentage of transcripts that are 

down-regulated (~29% and ~67% respectively, Table 2). The percentage of down-

regulated transcripts is also higher in the ∆rnr mutant in both exponential (~54%) 

and stationary phase (~85%). Only PNPase deletion resulted in more up-regulated 

than down-regulated transcripts in exponential and stationary phases, but even in 

the ∆pnp mutant there are still a considerable percentage of down-regulated 

transcripts (Table 2). 

Table 2 – Percentage of up and down-regulated transcripts in each of the conditions 
analysed.  

Condition 
%Up-regulated  

transcripts 
% Down-regulated  

transcripts 

Wild-type (wt) EXP vs. wt STAT 14,19 84,52 

Exponential phase 

wt vs. ∆rnb 29,05 66,90 

wt vs. ∆rnr 41,78 54,49 

wt vs. ∆pnp 58,95 38,62 

Stationary phase 

wt vs. ∆rnb 26,66 67,02 

wt vs. ∆rnr 9,74 85,42 

wt vs. ∆pnp 47,85 47,40 
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  The high percentage of down-regulated transcripts in the 

exoribonucleases mutants might be an indirect consequence of the 

exoribonucleases deletion, although there are some evidences that some 

transcripts can be protected instead of degraded by the exoribonucleases (Marujo 

et al., 2000; Mohanty & Kushner, 2003; De Lay & Gottesman, 2011). These set of 

results indicate that the role of the exoribonucleases in RNA metabolism is much 

more complex than previously believed.  

 

Exponential versus stationary phase of growth 

Next, we used the algorithm Cufflinks to determine the relative abundance 

of the transcripts and afterwards we use the algorithm Cuffdiff to find significant 

changes in transcript expression, when comparing two samples (Trapnell et al., 

2010). With this approach we were able to identify more than 1000 transcripts 

that were significantly different between the exponential and stationary wild-type 

samples (Table S1). These transcripts belong to different functional categories. 

Most of them are related to E. coli membrane and transport, but some transcripts 

are linked to more specific functional categories like anaerobic respiration, 

regulation of cell shape and flagellum organization (Figure 3). These results were 

expected as E. coli cells undergo several physical and morphological adaptations 

when entering the stationary phase (Hengge-Aronis, 1999). 
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Exponential versus Stationary phase wild-type cells 

 

Figure 3 – Transcripts distribution in different functional categories. The differentially 
expressed transcripts between wild-type exponential cells and wild-type stationary cells 
are grouped into different functional categories (CC – cellular component, BP – Biological 
process and MF – metabolic function). Not all the transcripts are represented in this 
figure. These results were obtained using GeneCodis (Tabas-Madrid et al., 2012). 

 

Small RNAs are important regulators in the cell and their roles are particular 

important in stationary phase. The GeneCodis program used to cluster the 

transcripts into the different functional categories does not cluster small non-

coding RNAs. Therefore, we analysed the differentially expressed sRNA between 

exponential and stationary phase. Most of the sRNAs are known to be up-

regulated in stationary phase and in fact, the transcript with the biggest fold-

change is the arrS small RNA (increases from 7 reads in exponential to 6760 reads 

in stationary). ArrS is a sRNA that is an antisense RNA of the gadE transcript 

(central activator of the acid resistance system in E. coli). Transcription of arrS is 

induced by acidic growth conditions and in stationary phase (Aiso et al., 2011). 

This is not the only sRNA that becomes up-regulated in stationary phase. Of all the 

1095 transcripts that are differentially expressed 22 are sRNA, of these 18 are up-

regulated (Table 3). Although the fold-change of the ssrS sRNA (6S RNA) is not as 
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high as compared with other transcripts, this sRNA is the most expressed sRNA in 

stationary phase (199689.02 RPKM – Reads Per Kilobase per Million mapped 

reads). This result is in agreement with other reports that demonstrated that 6S is 

essential for growth adaptation (Wassarman & Storz, 2000; Geissen et al., 2010) .  

Table 3 – sRNAs differentially expressed when comparing exponential with stationary 
wild-type cells.   

 

sRNA 
sRNA 

description 

RPKM Reads Log2 
fold 

change 
 wt EXP wt STAT wt EXP wt STAT 

Up-regulated 
in stationary 

phase 

arrS 
Antisense to 
gadE 
transcript 

10,20 7553,18 7 6760 9,92 

ryeA 
SraC small 
RNA 

186,15 22375,34 247 50225 7,67 

rprA 

Required for 
wt production 
of RpoS in 
response to 
osmotic shock 

71,13 3268,18 64 3835 5,91 

omrA 

Involved in 
regulation of 
the outer 
membrane 
proteins 

70,36 2404,54 56 2496 5,48 

micF 

Regulates 
ompF; is 
implicated in 
resistance to 
antibiotic 
drugs 

71,54 1218,80 59 1311 4,47 

glmY 

Specifically 
increases 
synthesis of 
GlmS 

252,67 3484,36 341 6133 4,17 

ryhB 
Involved in 
iron 
homeostasis 

64,40 859,38 52 905 4,12 

omrB 

Involved in 
regulation of 
the outer 
membrane 
proteins 

103,77 1380,79 79 1370 4,12 

rybB 
Expression is 
dependent on 
the σE 

245,97 2081,74 183 2020 3,46 

rdlB 

Antisense 
regulatory 
RNA part of a 
toxin-
antitoxin pair 

32,88 232,65 16 173 3,43 
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rdlC 

Antisense 
regulatory 
RNA part of a 
toxin-
antitoxin pair 

24,98 161,11 13 132 3,34 

gadY 

positive 
regulator of 
gadX and 
gadW 

67,12 520,62 60 607 3,34 

ssrS 

6S RNA; is 
involved in 
stationary 
phase 
regulation of 
transcription 
by the σ70 

31932,32 199689,02 42911 349981 3,03 

isrA 

McaS sRNA; it 
positively 
regulates 
flagellar 
motility and 
biofilm 
formation 

95,86 499,18 115 781 2,76 

dicF 
Inhibits cell 
division 

26,93 136,82 16 106 2,73 

rdlA 

Antisense 
regulatory 
RNA part of a 
toxin-
antitoxin pair 

66,69 220,44 33 175 2,41 

chiX 

MicM sRNA; 
negatively 
regulates 
expression of 
the 
DpiA/DpiB 
two-
component 
system 

1085,61 4388,11 839 4423 2,40 

rydB 
Regulator of 
RpoS 

22,04 54,08 15 48 1,68 

Up-regulated 
in 

Exponential 
phase 

tff 
T44 predicted 
small RNA or 
attenuator 

1709,64 83,63 1834 117 3,97 

ryfA 
Unknown 
function 

45,06 1,50 92 4 4,52 

psrO 
Unknown 
function 

829,78 19,59 1072 33 5,02 

rttR 
Unknown 
function 

314,61 3,61 137 2 6,10 

RPKM –  Reads Per Kilobase per Million, Units used for Next-generation sequencing data. 
Reads – Number of reads of a transcript in the different samples. 
Fold-change – Calculated from the number of reads of the transcripts (log2 (reads wt 
STAT/ reads wt EXP)).  
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Surprisingly, there are 4 sRNAs up-regulated in exponential phase. Not 

much is known about these sRNAs and more attention should be given to the 

study of the role of sRNAs in exponential phase.   

Considering the importance of ribonucleases in RNA metabolism we also 

analysed their expression comparing exponential and stationary phases of 

growth. Surprisingly, the exoribonucleases transcripts here studied were all found 

to be down-regulated in stationary phase (Table 4). 

Table 4 – Ribonuclease RNA levels and fold-change in exponential and stationary wild-
type cells.  

mRNA 
RPKM Reads Log fold 

change wt EXP wt STAT wt EXP wt STAT 

rne 253,60 11,59 4733 282 -4,07 

rnc 247,87 19,82 1045 109 -3,26 

rnb 139,58 8,44 1597 125 -3,68 

rnr 513,14 21,29 7373 399 -4,21 

pnp 1011,22 39,96 12747 657 -4,28 

  

The results obtained with RNase R seemed paradoxical, as RNase R protein 

levels are known to increase in stationary phase (Andrade et al., 2006). However, 

further work demonstrated that this is due to a stabilization of the protein and 

not to an increase in the mRNA levels (Chen & Deutscher, 2010; Liang & 

Deutscher, 2012). To determine if the transcriptomics data is comparable with the 

protein levels of the different ribonucleases, both in exponential and stationary 

phase, proteomics studies should be performed to complement our RNA-seq 

data. 
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Exoribonucleases in exponential phase 

To determine the role of the three different exoribonucleases in 

exponential phase we used Cufflinks to compare the ∆rnb, ∆rnr and ∆pnp mutants 

with the wild-type. We then cluster the list of differentially expressed transcripts 

into different functional categories using GeneCodis (see materials and methods). 

In the RNase II mutant, 187 transcripts are differentially expressed when 

compared with the wild-type (Table S2). Most of the transcripts that are affected 

by an RNase II deletion in exponential phase are related to flagellar assembly and 

motility (Figure 4A). Moreover, all the transcripts that are affected by the RNase II 

deletion and that belong to the Kegg pathway of flagellar assembly (Figure S1) are 

down-regulated (Table S2). Interestingly, the transcript that is most up-regulated 

in the ∆rnb mutant in exponential phase with a log2 fold change of 3.36 is 

Antigen-43 (flu) known to promote aggregation and inhibit bacterial motility 

(Ulett et al., 2006). Therefore, the RNase II deletion global effects on flagellar 

assembly can be an indirect effect due to the high levels of antigen-43 in the ∆rnb 

mutant. 

A – RNase II mutant 
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B – RNase R mutant 

 
 

C – PNPase mutant 

 
Figure 4 – Differentially expressed transcripts distribution in different functional 
categories. A) The differentially expressed transcripts between ∆rnb and wild-type in 
exponential phase. B) The differentially expressed transcripts between ∆rnr and wild-type 
in exponential phase. C) The differentially expressed transcripts between ∆pnp and wild-
type in exponential phase. Transcripts were grouped into different functional categories 
(CC – cellular component, BP – Biological process and MF – metabolic function). Not all 
the transcripts are represented in this figure. These results were obtained using 
GeneCodis (Tabas-Madrid et al., 2012). 
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The deletion of RNase R affects the expression of 202 transcripts involved in 

many metabolic function and biological processes such as metal-ion binding, 

electron transport chain and oxidoreductase activity (Figure 4B). When analysing 

the transcripts with the highest fold-change we observed that most of these 

transcripts are from anaerobic respiration and all are up-regulated (Table S3). One 

of these transcripts is the small RNA FnrS (log2 fold change of 2.35). FnrS 

reprograms metabolism in response to anaerobiosis and its expression was 

observed only under anaerobic growth conditions (Durand & Storz, 2010). The 

fact that FnrS expression levels are increased in the ∆rnr mutant under normal 

aerobic conditions indicates that RNase R regulates this sRNA and might even 

have an important role in the respiration process of E. coli. 

As for the PNPase mutant, there are 226 differentially expressed transcripts 

(Table S4). We can cluster these transcripts into functional categories like 

carbohydrate transport and ciliary or flagellar motility (Figure 4C). However, the 

number of transcripts grouped into the different functional categories is low, 

indicating that PNPase affects many different pathways in the cell but does not 

affect many transcripts of each pathway. Comparing the ∆pnp, the ∆rnb and ∆rnr 

differentially expressed transcripts in exponential phase we observed that there is 

an overlap in the functional categories of the three exoribonucleases (Figure 4). 

The deletion of any of the exoribonucleases appears to affect transcripts from the 

anaerobic respiration, although deletion of RNase R affects more transcripts 

involved in anaerobic respiration than deletion of RNase II or PNPase. Also in the 

∆rnb and ∆pnp mutants the transcripts of the anaerobic respiration are down-

regulated contrarily to what happens in the ∆rnr mutant (Tables S2, S3 and S4). 

Another functional category in which there is an overlap is the ciliary and flagellar 

motility. In both ∆rnb and ∆pnp mutants the transcripts are down-regulated, but 

deletion of PNPase seems to have a fewer impact than the deletion of RNase II 

(Table S2 and S4). 
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A striking difference between ∆pnp mutant and ∆rnb or ∆rnr mutants is the 

fact that many of the differentially expressed transcripts in ∆pnp mutant are 

tRNAs, rRNAs and sRNAs. Although in ∆rnb and ∆rnr these classes of RNAs were 

also present they were only a minority. The total number of tRNAs, rRNAs and 

sRNAs in ∆rnb is 11, in ∆rnr is 13 while in the ∆pnp there are 53. This result 

suggests that PNPase has a very important role in the regulation of these RNAs. 

As mentioned before, there seems to be an overlap between these three 

exoribonucleases. To determine exactly how extensive is this overlapping we 

compared the differentially expressed transcripts of the three exoribonucleases to 

determine which were affected only by one of the exoribonucleases and those 

that were affected by more than one exoribonuclease (Figure 5). In exponential 

phase a total of 484 transcripts are being differentially expressed by the three 

exoribonucleases. Of these, 29 transcripts are common to the three 

exoribonucleases. RNase II and RNase R belong to the same family of enzymes 

and are very similar exoribonucleases, therefore it is interesting that PNPase 

shares more transcripts with RNase II (38 transcripts) and RNase R (23 transcripts) 

than RNase II shares with RNase R (only 12 transcripts). These results correlate 

with the results obtained for the functional categories clustering (Figure 4). 
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Figure 5 – Diagram comparing the number of transcripts that are differentially expressed 
in each of the three exoribonucleases in exponential phase. 
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Exoribonucleases in stationary phase 

Using the same approach we clustered the differentially expressed 

transcripts for the three exoribonucleases in stationary phase.  

There are 117 differentially expressed transcripts in the RNase II mutant 

(Table S5). In contrast, to what was observed in exponential phase, in stationary 

phase transcripts were mainly involved with oxidation-reduction processes and 

DNA and metal ion binding (Figure 6A). None of the RNase II differentially 

expressed transcripts in stationary phase is related with flagellar assembly or 

motility (Table S5).   

A – RNase II 
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B – RNase R 

 
C – PNPase  

 

 
Figure 6 – Differentially expressed transcripts distribution in different functional 
categories. A) The differentially expressed transcripts between ∆rnb and wild-type in 
stationary phase. B) The differentially expressed transcripts between ∆rnr and wild-type in 
stationary phase. C) The differentially expressed transcripts between ∆pnp and wild-type 
in stationary phase. Transcripts were grouped into different functional categories (CC – 
cellular component, BP – Biological process and MF – metabolic function). Not all the 
transcripts are represented in this figure. These results were obtained using GeneCodis 
(Tabas-Madrid et al., 2012). 
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The number of transcripts that are differentially expressed in the ∆rnr 

mutant (694 transcripts) is much higher than for any other exoribonuclease (Table 

S6). Although RNase R deletion affects these many transcripts it does not seem to 

influence specific pathways. Instead we can cluster the transcripts in many 

different functional categories such as biosynthesis of secondary metabolites, 

oxidation-reduction processes, tricarboxylic acid cycle, protein binding and many 

more (Figure 6B). The difficulty in clustering all the transcripts that are 

differentially expressed in the ∆rnr mutant in stationary phase indicates how 

important this exoribonuclease is for the entire E. coli metabolism. 

The number of transcripts that are differentially expressed in the ∆pnp 

mutant in stationary phase is practically the same as in exponential phase (228 

and 226 respectively, Table S4 and Table S7). However, like RNase II and RNase R 

the pathways affected by the deletion of PNPase in exponential and stationary are 

different. For stationary phase we can cluster the transcripts into more 

biosynthetic and metabolic pathways like histidine and tryptophan biosynthetic 

processes and glutamine and arginine metabolic processes (Figure 6C). Again, 

exists an overlapping between the functional categories affected by of RNase II, 

RNase R and PNPase. The ∆pnp mutant affects functional categories like 

oxidation-reduction process and histidine biosynthetic process that are also 

affected in the RNase II and RNase R mutants. Transcripts related to response to 

stress are differentially expressed in both ∆pnp and ∆rnb mutants but not in the 

∆rnr mutant. Contrarily, transcripts from the tricarboxylic acid cycle are 

differentially expressed in the ∆pnp and ∆rnr mutants but not in the ∆rnb mutant 

(Figure 6). Although the deletion of the different exoribonucleases affects the 

same functional categories the transcripts affected are different. 

Comparing the three exoribonucleases in stationary phase we observed 

that from a total of 857 differentially expressed transcripts 694 transcripts are 
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regulated by RNase R (Figure 7). This clearly indicates that RNase R is the 

exoribonuclease with the most relevant role in stationary phase. From all of these 

transcripts only 26 are common to the three exoribonucleases. RNase R has more 

transcripts in common with PNPase (76 transcripts) than with RNase II (38 

transcripts). In stationary phase PNPase only affects 16 transcripts that are also 

affected by RNase II but not by RNase R (Figure 7).  

 

 

Figure 7 – Diagram comparing the number of transcripts that are differentially expressed 
in each of the three exoribonucleases in stationary phase. 
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The double mutant for both RNase II and RNase R behaves 

differently than the single mutants 

Exoribonucleases were found to share some substrates and there is the 

possibility that these enzymes could compensate themselves by having 

overlapping functions in the cell. To decipher these pathways we intended to 

study multiple exoribonucleases mutants. Double mutants ∆rnb ∆pnp or ∆rnr 

∆pnp are lethal (Donovan & Kushner, 1986; Deutscher, 1993; Cairrão et al., 2003), 

but we could delete both RNase II and RNase R (∆rnb ∆rnr mutant) from the cell. 

This mutant is extremely important as the hydrolytic pathway of exonucleolytic 

RNA degradation is severely affected.  

In the double mutant, 196 transcripts are differentially expressed in 

exponential phase (Table S8) while only 101 transcripts are significantly affected 

in stationary phase (Table S9). When compared with the number of transcripts 

that are differentially expressed in the single mutants we observed that the 

double mutant is not a simple addition of the ∆rnb and ∆rnr mutations (Figure 8). 

In spite of this, most of the transcripts that are differentially expressed in the 

double mutant are also differentially expressed in the ∆rnb or ∆rnr single mutants 

in both exponential and stationary phase (Figure 8). In exponential phase from the 

41 transcripts that are common to ∆rnb and ∆rnr only 22 transcripts are also 

differentially expressed in the ∆rnb ∆rnr double mutant (Figure 8A). In stationary 

phase this difference is even higher; from the 64 transcripts common to ∆rnb and 

∆rnr only 24 transcripts are also affected in the ∆rnb ∆rnr mutant (Figure 8B). The 

results also show that the double mutant has more transcripts common to the 

∆rnr than to the ∆rnb mutant, especially in exponential phase (Figure 8). 
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A – Exponential phase 

    

 

B – Stationary phase 

                         

Figure 8 – Number of transcripts that are differentially expressed in the hydrolytic 
exoribonucleases mutants. A) Comparison of differentially expressed transcripts in the 
∆rnb and ∆rnr single mutants and the ∆rnb ∆rnr double mutant in exponential phase.  
B) Comparison of differentially expressed transcripts in the ∆rnb and ∆rnr single mutants 
and the ∆rnb ∆rnr double mutant in stationary phase. 

 

Considering these results, is not so surprising that the clustering of 

transcripts results in the same functional categories than those existing for the 

single mutants (Figures 4, 6 and 9). For example in exponential phase we can 

identify transcripts that belong to metal ion binding and anaerobic respiration 
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that were common in the ∆rnr single mutant but we also detect transcripts from 

ciliary or flagellar motility and chemotaxis that were characteristic of  the ∆rnb 

single mutant (Figure 4A and 4B). The same happens in stationary phase, as for 

example, the tricarboxylic acid cycle and arginine biosynthetic process are 

common to the ∆rnr mutant and the histidine biosynthetic and enterobactin 

biosynthetic processes are common to the ∆rnb mutant (Figure 6A and 6B).   

 
A – Exponential phase 
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B – Stationary phase 

 

Figure 9 – Differentially expressed transcripts distribution into different functional 
categories. A) The differentially expressed transcripts between ∆rnb ∆rnr and wild-type in 
exponential phase. B) The differentially expressed transcripts between ∆rnb ∆rnr and wild-
type in stationary phases. Transcripts were grouped into different functional categories 
(CC – cellular component, BP – Biological process and MF – metabolic function). Not all 
the transcripts are represented in this figure. These results were obtained using 
GeneCodis (Tabas-Madrid et al., 2012). 

 

However, when comparing the lists of the ∆rnb, ∆rnr and the ∆rnb ∆rnr 

mutants we see that there are many transcripts that were differentially expressed 

in the single mutants, but not in the double mutant (Tables S2, S3, S5, S6, S8 and 

S9). This happens mainly in the stationary phase; for example sibB sRNA is up-

regulated in the ∆rnr mutant however it does not appear in the list of the 

differentially expressed transcripts in the double mutant. Others can be up or 

down-regulated in the single mutant but then in the double this is inverted, one 

example of this is Sra (Stationary-phase-induced ribosome-associated protein) 

that is down-regulated in the ∆rnr single mutant (log2 fold change of -1.75) but in 

the double is up-regulated (log2 fold change of 1.86). The same is true for 

exponential phase and for ∆rnb differentially expressed transcripts. For example, 

nrdI is up-regulated in the ∆rnb single mutant (log2 fold change of 2.39) however 

it does not appear in the double mutant list of the differentially expressed 
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transcripts. These results indicate that the cell is able to somehow compensate 

the deletion of the two hydrolytic exoribonucleases and further studies are 

necessary to determine exactly how the cell adapts in the absence of RNase II and 

RNase R.  

 

The role of exoribonucleases in small RNAs 

Small RNAs can control many different targets and small changes in their 

levels can greatly affect its regulatory pathways. As shown previously (Table 2) 

most of the sRNAs are up-regulated in stationary phase and it is in this growth 

phase that sRNAs exert a major role (Waters & Storz, 2009). Therefore we will 

focus now only on the results for sRNAs in stationary phase. The effect of each 

exoribonuclease on the sRNA levels was calculated (Figure 10). RNase II is shown 

to have a minor impact in the degradation of sRNAs with more than 50% of the 

sRNAs not changing their levels in the ∆rnb mutant while 24% are down-

regulated. Only 20% of sRNAs are up-regulated in the ∆rnr mutant. This suggests 

that RNase R is not significantly contributing for the degradation of the majority of 

sRNAs. On the other hand, PNPase deletion leads to an up-regulation of 41% of 

sRNAs.  According to these results PNPase is the main exoribonucleases involved 

in sRNA degradation in stationary phase, in agreement with previous results from 

this lab (Andrade & Arraiano, 2008; Andrade et al., 2012). 
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Figure 10 – Exoribonucleases role in sRNAs in stationary phase. All the annotated sRNAs 
were used to calculate the percentage of sRNAs that were up or down-regulated. The log2 
fold-change for each sRNA was calculated and all the sRNAs with a log2 fold-change 
inferior to 0.5 was considered not significantly changed.  
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Discussion 

The adaptation to stationary phase requires not only a rearrangement of 

the transcription, but also modulation of the RNA stability. Exoribonucleases are 

essential for RNA degradation and therefore here we try to determine their role in 

both exponential and stationary phase. RNA-seq was done to analyse the global 

transcriptome of mutants for the three main exoribonucleases in E. coli (RNase II, 

RNase R and PNPase). We found that the roles of RNase II, RNase R and PNPase 

are different depending on the growth phase. However, in both exponential and 

stationary phase PNPase overlaps with RNase II and RNase R. This was already 

expected because the double mutants (∆pnp ∆rnb and ∆pnp ∆rnr) are not viable 

(Donovan & Kushner, 1986; Deutscher, 1993; Cairrão et al., 2003). On the other 

hand, the double mutant ∆rnb ∆rnr is viable indicating that essential RNase II and 

RNase R roles can be carried on by other ribonucleases.  

In this work we studied the different roles of the three main E. coli 

exoribonucleases in exponential and stationary phases. Furthermore, we have 

shown what transcriptome rearrangements occur when E. coli goes from 

exponential to stationary phase. Approximately 85% of all transcripts were shown 

to be down-regulated in stationary phase when compared with exponential 

phase. Considering that in their natural habitat bacteria stays mostly in stationary 

phase due to limited nutrient availability (Kolter et al., 1993), therefore it is 

expected that the cells stop the transcription of most of the housekeeping genes 

as a defense mechanism to save energy.  However, 14% of transcripts are up-

regulated in stationary phase. Most of these are stress related transcripts that will 

confer E. coli cells resistance to the harsh conditions subsequent to stationary 

phase. It is well known that E. coli undergoes physical and morphological changes 

when entering stationary phase (Ishihama, 1997; Hengge-Aronis, 1999), therefore 

is not so surprisingly that most of the differentially expressed transcripts between 
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exponential and stationary phase are related to E. coli membrane and transport. 

One of the most important up-regulated transcript in stationary phase is the 

sigma factor rpoS. RpoS interacts with RNA polymerase and controls the 

expression of about 10% of the E. coli genome (Battesti et al., 2011). Our results 

show that rpoS RNA levels are 38% higher in stationary than in exponential phase 

(Table S1). This is in agreement with other reports stating that the protein levels 

of RpoS are 30% higher in stationary phase (Jishage & Ishihama, 1995). Another 

transcript essential for stationary phase adaptation is the small RNA ssrS (6S). The 

6S RNA binds to both σ70 (rpoD, the σ subunit involved in the transcription of most 

genes during exponential growth) and to RNA polymerase supressing the 

σ70dependent transcription during stationary phase (Wassarman & Storz, 2000). 

Here we showed that 6S is the most expressed small RNA in stationary phase even 

though it is not the one with the highest fold-change (Table 2). So far most of the 

studies carried on sRNAs were done in stationary phase as most sRNAs expression 

is higher in this condition. Interestingly, we have found 4 small RNAs (tff, ryfA, 

psrO and rttR) up-regulated in exponential phase (Table 2). Not much is known 

about these sRNAs and further studies should be done to address the relevance of 

the increasing levels of these sRNAs in exponential phase.  

The deletion of the exoribonucleases has different effects on the 

transcriptome depending on the growth phase. Interestingly, the deletion of 

exoribonucleases causes a down-regulation of a high percentage of transcripts. 

This is at first unexpected since the removal of an exoribonuclease should lead to 

the stabilization and consequently up-regulation of transcripts. Although it has 

been reported that in some cases an exoribonuclease can protect a transcript 

from degradation (Marujo et al., 2000; Mohanty & Kushner, 2003; De Lay & 

Gottesman, 2011) it is unlikely that all the transcripts down-regulated in the 

exoribonucleases mutants are result from such a protection effect. It is plausible 

that the down-regulated transcripts observed in the exoribonucleases mutants 
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can be due to indirect effect of the deletion of the RNase II, RNase R or PNPase. 

The same can happen with the up-regulated transcripts. Although many of the up-

regulated transcripts can be substrates for the exoribonucleases it is possible that 

some of these transcripts are up-regulated because of an indirect effect of the 

exoribonucleases. Some transcription factors are differentially expressed in the 

exoribonucleases mutants when compared to the wild-type cells and therefore, so 

transcription can be a factor responsible for the indirect effects of the 

exoribonucleases in the transcriptome. Altogether it is important to consider 

these results as global effects of the exoribonucleases in the cell transcriptome, 

and not only as direct effects of these enzymes in the transcripts. 

In exponential phase an RNase II mutation significantly affects 187 

transcripts (Table S2). Most of these transcripts belong to the functional category 

of flagellar assembly (Figure 3A and Figure S1) and are down-regulated suggesting 

that this mutant may present motility deficiencies. Interestingly, the transcript 

which is found more up-regulated in the ∆rnb mutant with a log2 fold change of 

3.36 is Antigen-43 (flu). Antigen-43 is an autotransporter protein that promotes 

aggregation and inhibits bacterial motility (Ulett et al., 2006). This suggests that 

RNase II deletion global effects on flagellar assembly might be a consequence of 

the high levels of antigen-43. Although RNase R is a member of the RNase II 

family, the two hydrolytic exoribonucleases are very different enzymes. The main 

difference is that RNase R is able to easily degrade structured RNAs while RNase II 

activity is blocked by secondary structures (Cannistraro & Kennell, 1999; Spickler 

& Mackie, 2000). The differences between these two enzymes are more evident 

when comparing the transcripts affected by the deletion of RNase II or RNase R 

(Table S2 and S3). In exponential phase the deletion of RNase R significantly 

affects the expression of 202 transcripts. Of all of these transcripts only 41 

transcripts are also affected by RNase II. However, most of these are down-

regulated in the ∆rnb mutant but up-regulated in the ∆rnr mutant. For example 
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nirB (Nitrite reductase [NAD(P)H] large subunit) is down-regulated in ∆rnb with a 

log2 fold-change of -1.46 while in the ∆rnr mutant nirB is up-regulated with a log2 

fold-change of 3.19 (Table S2 and S3). This might indicate that RNase II and RNase 

R have very distinct roles in the cell. The up-regulated transcripts with highest 

fold-change in the ∆rnr mutant can be clustered into the anaerobic respiration 

functional category (Figure 3B and Table S3). One of the most important 

transcripts being up-regulated in the ∆rnr mutant is fnrS small RNA. FnrS 

reprograms metabolism in response to anaerobiosis and so far, fnrS was only 

shown to be expressed under anaerobic growth conditions (Durand & Storz, 

2010). Considering that all cell cultures were grown at the same time and in the 

same conditions, the expression of fnrS and other anaerobic related transcripts in 

the ∆rnr mutant under normal aerobic conditions indicates that RNase R plays an 

essential role in the aerobic respiration process of E. coli.  A small number of these 

anaerobic respiration transcripts are also differentially expressed in the ∆rnb and 

∆pnp mutants. However, contrarily to what happens in the ∆rnr mutant the 

deletion of RNase II or PNPase leads to a down-regulation of these transcripts. 

Moreover, fnrS is not differentially expressed in either ∆rnb or ∆pnp mutants. This 

suggests that deletion of RNase II or PNPase can affect the cell respiratory 

processes but in a different mechanism than RNase R. Besides transcripts 

belonging to the anaerobic respiration functional categories, PNPase deletion also 

affected many other transcripts. In fact, PNPase was shown to be the 

exoribonuclease that affected more transcripts in exponential phase, in a total of 

226 differentially expressed transcripts (Table S4). Interestingly, many of these 

transcripts (53 transcripts) are stable RNAs (rRNAs, tRNAs and sRNAs) indicating 

that PNPase has a very important role in the regulation of stable RNAs. This is in 

agreement with previous studies demonstrating that PNPase is involved in the 

processing and degradation of rRNAs and tRNAs (Cheng & Deutscher, 2003; Maes 

et al., 2012). It was also suggested that PNPase protects some sRNAs in 
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exponential phase (De Lay & Gottesman, 2011; Andrade et al., 2012). According to 

our results this happens with some small RNAs but is far from generalization, in 

fact only 4 of the differentially expressed sRNAs in the ∆pnp mutant are down-

regulated. The other 8 differentially expressed sRNA are up-regulated meaning 

that PNPase is involved in their degradation. These results suggesting that PNPase 

role regarding small RNAs is still unclear and re-enforce the need for more studies 

to be carried out in exponential phase when analysing sRNAs.  

In stationary phase, RNase R is the exoribonuclease with the more 

predominant role. The deletion of RNase R significantly affected 694 transcripts 

while deletion of RNase II or PNPase only affected 117 transcripts and 226 

transcripts respectively. Also the number of overlapped transcripts of RNase R and 

the two other exoribonucleases is higher in stationary phase than in exponential 

phase (Figure 4 and Figure 5). Consequently we can observe a higher overlap of 

the functional categories affected by the three exoribonucleases (Figure 5). It was 

more difficult to cluster the differentially expressed transcripts for each of the 

exoribonucleases mutants in stationary phase than it was for exponential phase. 

This was mainly due to the fact that the transcripts could be clustered into many 

more functional categories and the number of transcripts in each category was 

smaller in stationary than in exponential phase.  The potential roles previously 

presented for RNase II in flagellar assembly and RNase R in anaerobic respiration 

seems to be restricted to exponential phase. In stationary phase all the three 

exoribonucleases seem to have a broader role in RNA metabolism. Interestingly, 

at this stage of growth, all the three exoribonucleases affected oxidation-

reduction processes (Figure 5). Considering that in stationary phase, there is an 

increase of oxidized proteins (Navarro Llorens et al., 2010) it makes sense that the 

cell maintains the transcripts involved in the response to oxidative stress under 

tight control. The deletion of any of the exoribonucleases will disturb the 

oxidation-reduction processes. For the same reasons is also not surprising that the 
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three exoribonucleases affect several metabolic and biosynthetic pathways 

(Figure 5). 

RNase II and RNase R apparently affect several identical metabolic 

pathways in the cell. However, even though these two exoribonucleases affect 

the same pathway they do it in a distinct manner. In this work we also compared 

the ∆rnb and ∆rnr single mutants with the double mutant ∆rnb ∆rnr (Figure 7). 

Interestingly the ∆rnb ∆rnr is not a simple addition of the ∆rnb and ∆rnr 

mutations. The number of transcripts differentially expressed in the double 

mutant is lower than the sum of the transcripts affected by the single mutations 

in both exponential and stationary phase (Figure 7). These results indicate that 

the cell is able to compensate the deletion of both RNase II and RNase R. Still the 

vast majority of the transcripts that are differentially expressed in the ∆rnb ∆rnr 

mutant are also differentially expressed in the single mutants. Also when 

clustering the differentially expressed transcripts of the ∆rnb ∆rnr mutant we 

observed that there is a mixture between the functional categories affected by 

the ∆rnb and ∆rnr single mutations. So far there is no other study about the 

deletion of both RNase II and RNase R in the cell, so these results are very 

important to understand how the cell adapts when the two major 

exoribonucleases are absent. However, more studies are needed to clarify the 

collaboration of the different exoribonucleases to maintain the RNA levels in the 

cell.  

Although our results raised some questions about small RNAs in 

exponential phase they corroborate the general view that small RNAs are mainly 

expressed in stationary phase. Our results confirm that PNPase is the main 

exoribonuclease involved in the decay of sRNAs in stationary phase. These results 

are in agreement with recent studies demonstrating that PNPase is extremely 
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important for small RNA degradation (Andrade & Arraiano, 2008; Andrade et al., 

2012).  

In conclusion, this work presents a wider overview on the role of 

exoribonucleases in exponential and stationary phase. All of these results have to 

be experimentally validated using other techniques like northern blot and RT-PCR. 

Still this work provides us a vast amount of information that aimed to expand our 

knowledge on RNA metabolism.  
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Materials and Methods 

Growth conditions, strains and plasmids 

Bacteria were grown at 37ºC, with shaking at 200 rpm in Luria-Bertani (LB) 

medium supplemented with thymine (50 g ml-1). When required, antibiotics 

were present at the following concentrations: kanamycin, 50 g ml-1; tetracycline, 

20 g ml-1; streptomycin/spectinomycin 20 µg ml-1. The E. coli strains used in this 

work are listed in Table 5. 

Table 5- Bacterial strains used in this study 

Strain Relevant genotype Reference 

MG1693 thyA715 (Arraiano et al., 1988) 

CMA201 thyA715 rnb (Andrade et al., 2006) 

HM104 thyA715 ∆rnr (Andrade et al., 2006) 

HM103 thyA714 ∆rnb ∆rnr This work 

SK10019 thyA715 ∆pnp (Mohanty & Kushner, 2003) 

  

RNA extraction for high-throughput sequencing  

Overnight cultures from isolated colonies were diluted in fresh medium to 

an initial OD6000.03 and grown to exponential (OD6000.3) or stationary-phase. 

RNA was isolated following cell lysis and phenol:chloroform extraction as 

described on Chapter 2. After precipitation step in ethanol and 300 mM sodium 

acetate, RNA was resuspended in MilliQ-water. The integrity of RNA samples was 

evaluated by agarose gel electrophoresis. Turbo DNase (Ambion) treatment was 

used to remove contaminant DNA following the instructions of the supplier. RNA 

samples (20 µg) were sent to Vertis Biotechnologie AG, Germany, for library 

preparation and sequencing. No biological replicates were sequenced. 
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Vertis Biotechnologies used the follow protocol for library 

preparation: 

1- Depletion of rRNA 

Ribosomal RNA molecules were depleted from the total RNA preparations 

using the MICROBExpress Bacterial mRNA Enrichment Kit (Ambion). Aliquots of 

the rRNA depleted samples were examined by capillary electrophoresis. 

2- cDNA synthesis 

The rRNA depleted RNAs were fragmented with Rnase III and the 5'PPP 

structures were removed using RNA 5' Polyphosphatase (Epicentre). Afterwards, 

the RNA fragments were poly(A)-tailed using poly(A) polymerase. Then a RNA 

adapter was ligated to the 5´-phosphate of the RNA fragments. Firststrand cDNA 

synthesis was performed using an oligo(dT)-adapter primer and M-MLV 

reversetranscriptase. The resulting cDNA was PCR-amplified to about 30 ng/μl 

using a high fidelity DNA polymerase. PCR cycles performed and barcode 

sequences, which are part of the 3' sequencing adaptor, are included in Table 2. 

The cDNA was purified using the Agencourt AMPure XP kit (Beckman Coulter 

Genomics) and analyzed by capillary electrophoresis. 

3- Description of the cDNA 

The cDNA is double stranded and has a size of about 200–500 bp. The 

primers used for PCR amplification were designed for TruSeq sequencing 

according to the instructions of Illumina. The following adapter sequences flank 

the cDNA insert: 

TrueSeq_Sense_primer 

5´- AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-3’ 
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TrueSeq_Antisense_primer Barcode 

5’-CAAGCAGAAGACGGCATACGAGAT-NNNNNN-

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATC(dT25)-3’ 

The cDNA pool was sequenced on an Illumina HiSeq 2000 machine and the 

number of reads varied between 6.369.529 to 8.422.390. 

 

High-throughput sequencing analysis 

The Vertis Biotechnologie AG bioinformatics department did a preliminary 

analysis of the high-throughput sequencing results. We confirmed the raw data 

quality using FastQC tool 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). After the quality 

control, the reads were mapped against E. coli genome (NC_000913 downloaded 

from NCBI genome database) using BowTie alignment tool (Langmead et al., 

2009). Approximately 94% of all reads were mapped against the genome, the 

reads that were not mapped were saved in a different fasta file and will be 

analysed posteriorly. The BowTie output is in SAM format that was then used to 

run HTSeq (Python framework to process and analyse high-throughput 

sequencing) to add gene annotations to the mapped reads. The HTSeq output is 

also a SAM file with gene names associated with the mapped reads. The FastQC, 

BowTie and HTSeq were run using the Linux versions.  

The SAM data was uploaded into Galaxy, an open web-based platform for 

high-throughput sequencing analysis (Giardine et al., 2005; Blankenberg et al., 

2010; Goecks et al., 2010). Galaxy was used to run Cufflinks (estimates the relative 

abundance of the transcripts) and after Cuffdiff to find significant changes in 

transcript expression when comparing two samples (Trapnell et al., 2010). 

Cufflinks uses the “average length method” to normalize the data (Trapnell et al., 

2010).  Although Galaxy can also be used for FastQC and BowTie the Linux 
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versions are much faster and allow you to choose the version of the genome and 

the annotations files to be used.  

The R packages DESeq (Anders & Huber, 2010) and edgeR (Robinson et al., 

2010) were also used to find significant changes in the transcripts expression. 

Although these two packages are very useful for the differential expression 

analysis of high-throughput data they presented several issues when analysing 

data without biological replicates. Therefore only Cuffdiff results were taken in 

consideration for these data analysis. The gene list resulted from Cuffdiff were 

then analysed using GeneCodis3, a web-based tool for the ontological analysis of 

large lists of genes (Tabas-Madrid et al., 2012). 
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Figure S1 

 

Figure S1 – Transcripts involved in the flagellar assembly. The transcripts involved in the 
flagellar assembly are in green boxes. All the transcripts with a red star are down-
regulated in the ∆rnb mutant in exponential phase. Figure adapted from flagellar assembly 
Kegg pathway. 
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General Discussion 

RNA degradation is a major factor involved in the control of the RNA levels 

and it has been the main focus of this Dissertation. In this work we studied RNA 

degradation mechanisms and investigated how exoribonucleases, Hfq and small 

RNAs can influence RNA levels in the cell and consequently affect gene 

expression. 

 

PNPase degradation of small RNAs when not bound to Hfq 

 In this Doctoral work we wanted to study the degradation pathways of 

small RNAs. Small non-coding RNAs are highly structured regulatory molecules 

that control many genetic pathways. Usually sRNAs act by an antisense 

mechanism and bind to their mRNA targets with full (cis-encoded) or partial 

complementarity (trans-encoded) (Viegas & Arraiano, 2008). They typically bind 

to the ribosome binding site of the target mRNAs, blocking ribosome binding and 

promoting mRNA degradation (Urban & Vogel, 2007; Viegas & Arraiano, 2008). In 

E. coli most of the trans-encoded sRNAs studied so far interact with the RNA 

chaperone Hfq. Hfq mediates RNA-RNA interaction (Moller et al., 2002) and 

accelerates duplex formation between the sRNA and the mRNA target (Kawamoto 

et al., 2006). In some cases Hfq binds to the sRNA or to the mRNA refolding their 

structure and thus allowing binding (Geissmann & Touati, 2004). Hfq is known to 

stabilize sRNAs and in its absence most of sRNAs became very unstable (Massé et 

al., 2003; Andrade et al., 2012). In E. coli RNA degradation is carried out mainly by 

two endoribonucleases (RNase E and RNase III) and three exoribonucleases 

(RNase II, RNase R and PNPase) (Arraiano et al., 2010).  
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It was thought that Hfq would protect sRNAs mainly by binding to the same 

site as RNase E, preventing the RNase E cleavage of sRNAs (Massé et al., 2003; 

Moll et al., 2003). However our results showed that, the PNPase contribution is 

far greater than RNase E in the degradation of sRNAs, especially when they are 

not bound to Hfq (results from Chapter 2). We found that small RNAs in their Hfq-

free state are rapidly degraded by PNPase, mainly in the stationary-phase of 

growth. In the absence of Hfq, PNPase inactivation resulted in increased levels of 

at least the MicA, SgrS, RyhB and GlmY sRNAs. This was shown to be consequence 

of the higher stability of these fragments (Andrade et al., 2012). Our results also 

demonstrated that the impact of RNase E on Hfq cells may not be as common as 

previously believed. Even though both RyhB and GlmY are RNase E substrates in 

cells lacking Hfq, RNase E depletion did not affect the levels of SgrS and MicA RNA. 

However, in the presence of Hfq MicA is a substrate for RNase E. This suggests 

that RNase E requires Hfq in order to degrade MicA. This had already been 

described for the degradation of OxyS by RNase E (Basineni et al., 2009). 

Nevertheless, RNase E can also affect the levels of some sRNAs independently of 

Hfq (Andrade et al., 2012).  

 Besides PNPase and RNase E, we also tested the impact of other 

ribonucleases on the small RNA levels. RNase II and RNase R were not found to be 

involved in the degradation of MicA either in the presence or absence of Hfq 

(Andrade & Arraiano, 2008; Andrade et al., 2012). Surprisingly, the absence of 

RNase R resulted in the reduction of MicA levels in cells without Hfq. The 

paradoxical protection of RNA by a ribonuclease has already been described for 

both RNase II and PNPase (Marujo et al., 2000; De Lay & Gottesman, 2011). RNase 

III inactivation in the absence of Hfq does not affect the sRNA levels. However, in 

the presence of Hfq and in the absence of RNase III MicA becomes extremely 

stabilized (results from Chapter 2 and Chapter 3). In an hfq mutant the MicA 

levels strongly decrease and consequently the probability of MicA to base pair 
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with target mRNAs diminishes. Also Hfq is essential for MicA to bind to its targets. 

Our results from Chapter 3 show that when the MicA binding to its mRNA targets 

is compromised there is an impairment in RNase III action on MicA, which is in 

agreement with in vitro studies (Viegas et al., 2011). Therefore the degradation of 

small RNAs can occur in two different pathways (Figure 1). When they are not 

associated with Hfq or the binding with the targets is compromised the 

degradation mainly occurs in a target-independent pathway, in which RNase III 

has a reduced impact. In this case PNPase is the main ribonuclease involved in the 

degradation of the small RNAs. In the other pathway if the sRNA is bound to its 

target mRNA forming a duplex then it can be initially cleaved by RNase III and then 

PNPase and possibly other exoribonucleases intervene in the degradation of both 

sRNA and mRNA. 

 

Figure 1 – Model for small RNA degradation pathways. In the cell there are two subsets 
of small RNA populations. One subset is the sRNA when bound to its mRNA targets while 
the other subset is the sRNA when not bound to its targets (“free” sRNA). Consequently 
there are two distinct pathways for the degradation of a small RNA. The target-dependent 
pathway where RNase III is the principal responsible for the degradation of the sRNA and 
the target-independent pathway where PNPase is the main ribonuclease involved in the 
sRNA decay.   

 

 Our results also showed that the lack of poly(A) polymerase I (PAP I) 

affected the levels of small RNAs in the absence of Hfq. Small RNAs that were 

highly affected by polyadenylation were also substrates for PNPase. However, 
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some sRNAs that were not affected by polyadenylation were also substrates for 

PNPase. Therefore the importance of PNPase on sRNAs levels in the absence of 

Hfq is independent of polyadenylation. On the other hand, it has been reported 

that PNPase biosynthetic activity is increased in the absence of Hfq (Mohanty et 

al., 2004; Slomovic et al., 2008). This fact may account for the impact of PNPase 

on the degradation of sRNAs in the absence of Hfq. 

It has been recently demonstrated that Hfq binds U-rich sequences at the 

3’-end of small RNAs (Otaka et al., 2011; Sauer & Weichenrieder, 2011; Pobre et 

al., 2012). Therefore another possibility for the great impact of PNPase on sRNA 

levels in the absence of Hfq is that Hfq protects the 3’ end of the RNA against 

PNPase degradation. Although our results show that the 3’ ends of the small RNAs 

are shortened in the absence of Hfq, PNPase does not seem to be the main 

responsible for the initial 3’ end attack. Apparently Hfq does protect the 3’ ends of 

the small RNAs because in the presence of Hfq the shorter sRNAs are barely 

detected. 

Another factor influencing the degradation pathways of sRNAs is the 

growth phase. In the stationary-phase PNPase is shown to be the main enzyme in 

the degradation of small RNAs (Andrade & Arraiano, 2008; Andrade et al., 2012). 

On the other hand, recent studies proposed that in exponential phase PNPase can 

protect small RNAs from degradation by other ribonucleases, namely from RNase 

E (De Lay & Gottesman, 2011). In fact previous work that reported that RNase E 

was the main enzyme involved in the decay of sRNAs was also performed in 

exponential phase (Massé et al., 2003). Therefore growth phase can have a large 

impact on the choice of enzymes and degradation pathways. 
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RNA determinants involved in small RNA stability and target 

selectivity 

Small RNAs are not “innocent” molecules waiting to be degraded. The 

sequence and structural features of the small RNAs influence their degradation. 

Most of the sRNAs are extremely structured RNAs with several stem loops that 

provide them some protection against exoribonucleolytic degradation and 

consequently sRNAs are usually very stable molecules. RNase II is a 3’-5’ 

exoribonuclease that stalls before it reaches double stranded regions (Cannistraro 

& Kennell, 1999; Spickler & Mackie, 2000). So it is not so surprising that so far 

RNase II was not shown to be involved in the degradation of sRNAs. On the other 

hand, RNase R is the only 3’-5’ exoribonuclease capable of degrading structured 

RNAs by itself (Cheng & Deutscher, 2002, 2003; Awano et al., 2010). However 

RNase R also does not seem to have any relevant role in the degradation of 

sRNAs. In contrast, PNPase seems to have very important roles in the degradation 

of sRNAs (Andrade & Arraiano, 2008; De Lay & Gottesman, 2011; Andrade et al., 

2012). Like PNPase, the endoribonucleases RNase E and RNase III are also involved 

in the degradation of sRNAs. However RNase III-mediated decay pathway is 

apparently dependent on the binding to the target (Viegas et al., 2011; Andrade 

et al., 2012; Pobre et al., 2012). 

Most of the studies on sRNA degradation are focused in the role of the 

exoribonucleases or in the interaction between sRNA-mRNA. So we focused on 

the intrinsic characteristics of a sRNA. For this study we used as a model the small 

RNA MicA. MicA was initially identified as a repressor of several major outer 

membrane proteins (OMPs) (Rasmussen et al., 2005; Udekwu et al., 2005; Bossi & 

Figueroa-Bossi, 2007). Recently MicA target mRNAs list was expanded through the 

use of microarray studies (Gogol et al., 2011). MicA is a 72bp RNA molecule with a 

5’ linear region, a predicted Hfq-binding A/U-rich region that is between two stem 
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loops and finally a U-rich linear stretch in the 3’ end (Udekwu et al., 2005; Pobre 

et al., 2012). Other small RNAs, like RybB and SgrS have a similar modular 

organization than MicA (Balbontín et al., 2010; Papenfort et al., 2010; Otaka et al., 

2011; Rice & Vanderpool, 2011). By introducing mutations in the different MicA 

regions (modules) we constructed several different MicA mutated forms to study 

the MicA determinants involved in the sRNA stability and target binding. Our 

Chapter 3 results demonstrate that distinct MicA modules play distinct roles in 

protecting MicA from degradation. The 5’ end of MicA was suggested to be the 

principal target recognition domain (Papenfort & Vogel, 2009). Mutations in the 5’ 

end domain resulted in the stabilisation of this sRNA. This is probably a 

consequence of the disruption of the base pairing between the sRNA and the 

mRNA targets that will impair the RNase III activity against MicA. And as 

previously mentioned the degradation pathway for a sRNA bound to the target is 

distinct from the degradation pathway of a free sRNA (Figure 1). The stem-loops  

protect the sRNA against degradation by acting as physical barriers against 3’-5’ 

exoribonucleolytic degradation or by sequestering sequences susceptible to 

RNase E cleavage (Arraiano et al., 2010). The two stem-loops present in MicA play 

distinct roles. Thermodynamically, STEM1 is weaker than STEM2 and the 

extensive disruption of STEM1 did not significantly affect the stability of MicA. In 

contrast STEM2 disruption greatly affected the stability of MicA, suggesting that 

this stem-loop is extremely important for the protection of the sRNA against 

degradation.  

 We confirmed that Hfq binds to MicA at two distinct sites. Not only Hfq 

binds to the internal A/U-rich region that was its predicted binding site, but Hfq 

also binds to the 3’ U-rich tail after the transcriptional terminator (Chapter 3 

results). As shown in Chapter 2 Hfq can protect sRNAs from degradation. 

Therefore is not surprising that mutations disrupting the Hfq-binding sites lead to 

more unstable MicA’s, probably because these MicA variants become more 
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vulnerable to the action of RNases. The mutations introduced in the 3’ U-rich 

region resulted in more destabilized MicA than mutations introduced in the 

internal A/U-rich. However in both cases PNPase was shown to be the main 

enzyme involved in the degradation of these MicA variants.  

 Our work also contributed to a better understanding on how small RNAs 

control different targets. Although the 5’ end of MicA is critical for repression of 

some targets (such as ompA expression) the 3’ end of MicA may be more relevant 

for regulation of other targets (such as tsx mRNA). The two stem-loops present in 

MicA were found to affect the MicA targets in different ways. MicA STEM1 was 

shown to strongly affect tsx mRNA while barely affect ompA and ecnB mRNAs. On 

the other hand, MicA STEM2 was shown to affect ompA and ecnB mRNAs but 

hardly affected tsx mRNA. There are other sRNAs that interact with their mRNA 

targets through the stem-loops. OxyS RNA forms “kissing” complexes with its 

mRNA target fhlA. This interaction occurs between the two stem loops of OxyS 

RNA and two stem loops of fhlA mRNA (Argaman & Altuvia, 2000). Hfq is essential 

not only for the stability of the sRNA (Andrade et al., 2012) but also for the 

binding to the target (Moller et al., 2002; Kawamoto et al., 2006). Our results 

showed that the two Hfq binding sequences play distinct roles in the regulation of 

the different targets. Mutations in the A/U-rich region affected more strongly 

ompA mRNA levels than the other targets. Disruption of the 3’ poly(U) tail of MicA 

had a more generalized effect on the mRNA targets tested. These results suggest 

that interaction of Hfq with the sRNA seems to greatly depend on the target itself 

or might require the interaction with additional factors. These results can most 

probably be extended to other regulatory RNAs and can be useful to design 

synthetic regulatory RNAs to program gene expression networks. 
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The role of 3’-5’ exoribonucleases investigated by RNA-Seq 

 The E. coli exoribonucleases roles have been extensively studied (Andrade 

et al., 2009). However most studies are directed to their roles in the degradation 

of specific targets, but what are their global roles in the cell? How do 

exoribonucleases choose their targets? Are there specific metabolic pathways 

affected by a specific exoribonuclease? These are some of the questions that are 

still unanswered. There are not many studies carried out from a global 

perspective in E. coli. However there are two studies that addressed the role of 

ribonucleases in RNA degradation using DNA microarrays (Mohanty & Kushner, 

2003; Bernstein et al., 2004). In both of these studies a PNPase mutant was 

analysed, in one study from a degradosome point of view (Bernstein et al., 2004) 

and in the other study the role of PNPase was compared with the role of RNase II 

in the decay of E. coli mRNAs (Mohanty & Kushner, 2003). PNPase role was shown 

to be independent of the degradosome assembly (Bernstein et al., 2004). PNPase 

deletion affected the steady-state levels of more mRNAs than inactivation of 

RNase II (Mohanty & Kushner, 2003). Also it was shown that a large number of E. 

coli mRNAs are decreased in the absence of RNase II, suggesting that this 

exoribonuclease can protect specific mRNAs from the activity of other 

ribonucleases (Marujo et al., 2000; Mohanty & Kushner, 2003). Both of these 

studies were done in exponential phase and provided valuable information about 

the role of ribonucleases in the mRNA decay. However DNA microarrays 

information is limited and nowadays there are other techniques much more 

advanced. RNA-Seq is the most advanced high-throughput technique. It uses 

deep-sequencing technologies and provides reliable information about the entire 

RNA content in the cell (Wang et al., 2009). Because is still a recent technique the 

monetary costs are high. For this reason our RNA-Seq results are based in only 

one sample for each condition and consequently all the results still need to be 

experimentally validated. Moreover there is still no straightforward bioinformatics 
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pipeline to analyse RNA-Seq data, meaning that the analysis of the data takes a 

long time and an extensive knowledge of bioinformatics.  

 The exoribonuclease levels in the cell are affected by many factors like 

stress, metabolites and growth phases (Cairrão et al., 2001; Cairrão et al., 2003; 

Chen & Deutscher, 2010; Gatewood & Jones, 2010). The majority of studies on the 

role of exoribonucleases are done in exponential phase, however in the last years 

this tendency has been reverted mainly because small RNAs are known to be up-

regulated in stationary phase. For this reason we analysed the role of 

exoribonucleases on both exponential and stationary phase. The transition from 

exponential to stationary phase requires extensive gene expression 

rearrangements (Ishihama, 1997; Hengge-Aronis, 1999). Our results shown that, 

approximately 85% of all transcripts are down-regulated in stationary phase. 

Contrarily only 14% of the transcripts are up-regulated (Chapter 4). In stationary 

phase cells have limited nutrient availability (Kolter et al., 1993), therefore it is 

expected that the cells stop the transcription of most of the genes as a survival 

mechanism. However, because cells in stationary phase have to deal with several 

stresses some genes should be up-regulated (Navarro Llorens et al., 2010).  In 

stationary phase the sigma factor rpoS interacts with RNA polymerase and 

controls the expression of about 10% of the E. coli genome (Battesti et al., 2011). 

We showed that RpoS levels are 38% higher in stationary phase. This values are in 

agreement with another report showing that the protein levels of RpoS are 30% 

higher in stationary phase (Jishage & Ishihama, 1995). Besides rpoS there are 

other transcripts that are important in stationary phase adaptation. For example, 

during stationary phase the 6S small RNA is up-regulated and supresses the σ70 

dependent transcription (σ subunit involved in the transcription of most genes 

during exponential growth) (Wassarman & Storz, 2000). In spite the fact that our 

results are based on only one sample several transcripts levels are in agreement 
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with other published results. This allows us to have some confidence in our 

results. 

Our results indicate that the PNPase roles overlap with RNase II and RNase 

R roles, but their roles differ from exponential to stationary phase. In exponential 

phase an RNase II mutation significantly affects 187 transcripts, the deletion of 

RNase R significantly affects the expression of 202 transcripts, while PNPase 

deletion affected 226 transcripts. This results are comparable with the DNA 

microarrays results (Mohanty & Kushner, 2003). Interestingly, most of the 

transcripts affected by RNase II deletion are down-regulated and belong to the 

functional category of flagellar assembly suggesting that this mutant may present 

motility deficiencies. This might be a consequence derived by the fact that in the 

absence of RNase II the Antigen-43 (promotes aggregation and inhibits bacterial 

motility (Ulett et al., 2006)) is up-regulated. Contrarily to RNase II, RNase R 

affected transcripts related mainly to anaerobic respiration suggesting that RNase 

R might play an essential role in the aerobic respiration process of E. coli. 

Curiously 41 transcripts that are affected by the RNase R deletion are also 

affected by RNase II deletion. However, most of these transcripts are down-

regulated in the ∆rnb mutant but up-regulated in the ∆rnr mutant. This seems to 

indicate that RNase II have opposing roles to RNase R in the cell. On the other 

hand, PNPase shares some roles with both RNase II and RNase R 

exoribonucleases. However, PNPase apparently has a specific role in the 

regulation of stable RNAs (rRNAs, tRNAs and sRNAs). This is in accordance with 

other reports that highlighted the PNPase role in the degradation of small RNAs 

(Andrade & Arraiano, 2008; De Lay & Gottesman, 2011; Andrade et al., 2012; 

Pobre et al., 2012). 

In stationary phase, like in exponential phase, there is an overlap between 

the roles of PNPase, RNase II and RNase R. However, in stationary phase RNase R 
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is clearly the most important exoribonuclease. The deletion of RNase R 

significantly affected 694 transcripts while deletion of RNase II affected 117 

transcripts and deletion of PNPase affected 226 transcripts. Moreover the number 

of overlapped transcripts is higher in stationary phase than in exponential phase 

and consequently there is a higher overlap in the functional categories affected by 

the three exoribonucleases. In stationary phase it is more difficult to cluster the 

differentially expressed transcripts than it was for exponential phase. This 

suggests that in stationary phase the exoribonucleases have broader roles in the 

RNA metabolism than in exponential phase. Most of the functional categories 

affected by the exoribonucleases can be related to stress resistance (oxidative 

stress, nutrient depletion and so on). A possible explanation resides in the fact 

that in stationary phase, cells need to have a tighter control of gene expression to 

deal with all the stresses inherent to stationary phase (Navarro Llorens et al., 

2010). 

 Our results show that RNase II and RNase R have different roles in the cell 

and in fact PNPase has a higher overlap with RNase II and RNase R than RNase II 

has with RNase R. This might explain why the double mutant ∆rnb ∆rnr is viable 

while the double mutants ∆rnb ∆pnp and ∆rnr ∆pnp are not (Cairrão et al., 2003). 

Although the most transcripts differentially expressed in the double mutant ∆rnb 

∆rnr are the same as the transcripts differentially expressed in the single mutants, 

the double mutant is not an “addition” of both mutants. Our results might suggest 

that the cell can somehow compensate the deletion of the two hydrolytic 

exoribonucleases, RNase II and RNase R.  

 A vast majority of small RNAs are up-regulated in stationary phase and 

consequently most of the sRNA studies are done in this growth phase. Our results 

suggest that PNPase is the main exoribonuclease involved in the decay of sRNAs in 
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stationary phase. This is in agreement to the previous results that we had during 

this Doctoral work (Chapter 2 and Chapter 3).  

 

The work described in this Dissertation expanded our knowledge on RNA 

degradation pathways, highlighting the roles of exoribonucleases, Hfq and small 

RNA sequence and structures on the RNA decay mechanisms. Our work not only 

provided several important answers regarding RNA degradation but also opened 

new perspectives. The modulations of sRNAs to control different targets and the 

study of the unexpected roles of RNase II in motility and RNase R in anaerobic 

respiration are only a small part of the future work subsequent to this Doctoral 

thesis. 
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Abstract

The continuous degradation and synthesis of prokaryotic mRNAs not only give rise to

the metabolic changes that are required as cells grow and divide but also rapid

adaptation to new environmental conditions. In bacteria, RNAs can be degraded by

mechanisms that act independently, but in parallel, and that target different sites with

different efficiencies. The accessibility of sites for degradation depends on several

factors, including RNA higher-order structure, protection by translating ribosomes

and polyadenylation status. Furthermore, RNA degradation mechanisms have shown

to be determinant for the post-transcriptional control of gene expression. RNases

mediate the processing, decay and quality control of RNA. RNases can be divided into

endonucleases that cleave the RNA internally or exonucleases that cleave the RNA from

one of the extremities. Just in Escherichia coli there are 4 20 different RNases. RNase E

is a single-strand-specific endonuclease critical for mRNA decay in E. coli. The enzyme

interacts with the exonuclease polynucleotide phosphorylase (PNPase), enolase and

RNA helicase B (RhlB) to form the degradosome. However, in Bacillus subtilis, this

enzyme is absent, but it has other main endonucleases such as RNase J1 and RNase III.

RNase III cleaves double-stranded RNA and family members are involved in RNA

interference in eukaryotes. RNase II family members are ubiquitous exonucleases, and

in eukaryotes, they can act as the catalytic subunit of the exosome. RNases act in

different pathways to execute the maturation of rRNAs and tRNAs, and intervene in

the decay of many different mRNAs and small noncoding RNAs. In general, RNases act

as a global regulatory network extremely important for the regulation of RNA levels.

Introduction

General outline

Many cellular mechanisms cannot be fully understood with-

out a profound knowledge of the RNA metabolism. Protein

production depends not only on the levels of mRNAs but

also on other RNA species. The translation of mRNAs is

mediated by tRNAs and rRNAs and functional RNAs also

intervene in the regulation of gene expression. Synergies

between the structure and function of RNAs contribute

towards orchestrating their fundamental role in cell viability.

Bacterial mRNAs are rapidly degraded and this allows the

microorganisms to rapidly adapt to changing environments.

Even though transcription is quite important to determine

steady-state levels, increasingly it is being established that the

role of post-transcriptional control is critical in the regulation

of gene expression. Analyzing RNA degradation in prokar-

yotes has been particularly difficult not only due to the

coupling of transcription, translation and mRNA degradation

but also because most mRNAs undergo a rapid exponential

decay with an average of 1.3 min at 37 1C. The rRNAs and

tRNAs are usually more stable, but in order to be functionally

active, they have to be processed to the mature form. It has

been shown that the levels of small noncoding RNAs (sRNAs)

are also highly dependent on post-transcriptional events. The

knowledge collected makes it clear how far our understanding

of RNA degradation has come in the last few years and how

much remains to be discovered about this important genetic

regulatory process. Applications of this knowledge in medi-

cine and biotechnology are underway.
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RNases are the enzymes that intervene in the processing,

degradation and quality control of all types of RNAs. A

limited number of RNases can exert a determinant level of

control acting as a global regulatory network, monitoring

and adapting the RNA levels to the cell needs. Many of them

are essential, but others exhibit a functional overlap and are

interchangeable. RNases can act alone or they can cooperate

in RNA degradation complexes. During RNA degradation,

they do not only act as ‘molecular killers’ eliminating RNA

species. RNases act according to the requirements of growth

in adaptation to the environment; they play an extremely

important role in contributing to the recycling of ribonu-

cleotides, and also carry out surveillance, destroying aber-

rant RNAs that would produce detrimental proteins.

Individual RNA species differ widely with respect to their

stability. The rate of turnover has no relation to the length of

the gene, the segments that decay more rapidly can be

anywhere in the mRNA and the stability of the gene

transcripts seems to be regulated by determinants localized

to specific mRNA segments. Secondary structure features

can also influence the degradation by RNases.

Several factors can intervene in the decay mechanism: the

sequence/structure of RNAs can act as stabilizer or destabi-

lizer elements to specific RNases; the presence of ribosomes

during active translation can hide some RNA loci that are

vulnerable to RNases; poly(A) stretches are the preferred

substrate for several RNases – therefore, the addition of

poly(A) tails can modulate the stability of full-length

transcripts and degradation intermediates and accelerate

the decay of defective stable RNAs; trans-acting factors can

bind to the RNAs and expose or hide RNA sites that are

preferential targets for RNases – for instance, the host factor

Hfq is known to bind sRNAs and affect their turnover; and

other factors such as helicases can act in trans and contribute

to RNA degradation because they unwind RNA structures

and can change their accessibility to RNases.

In this review, we will focus on RNA processing and

degradation in Escherichia coli, but we will also provide

comparative examples from many other microorganisms.

Namely, we will include the description of enzymes that

exist in Bacillus subtilis and are absent in E. coli, we will

provide examples from archaea and we will also include a

section that makes a parallel to what happens in yeast.

We will start by describing most of the known RNases,

characterizing their structure and function and the regulation

of their expression. They will be divided into endonucleases,

which cleave the RNA internally, and exonucleases, which

cleave the RNA from one of the extremities. After the

characterization of RNases, we will focus on their protein

complexes involved in decay mechanisms. Then we will focus

on the ‘RNases in action’. Examples will be provided regarding

the processing and degradation of RNAs. We will describe the

maturation of rRNAs and tRNAs, and characterize the decay

of many different mRNAs and sRNAs. Finally, we will

compare with what is known in eukaryotic microorganisms,

namely yeast. A small degree of overlap is unavoidable

between sections on related topics. This allows for each section

to be read and understood as an independent unit.

This review is intended to be an exhaustive and updated

overview of what is known on RNAs, RNases and the post-

transcriptional control of gene expression in microorgan-

isms. It is expected that it can be used as a reference to put in

perspective the critical role of RNA processing and degrada-

tion as a major global regulatory network.

Endonucleases

RNase E

RNase E, encoded by the rne gene, was first identified by a

temperature-sensitive mutation (rne-3071) (Apirion & Las-

sar, 1978) and was initially described as an activity required

for the processing of the E. coli 9S rRNA gene (Ghora &

Apirion, 1978). The ams (altered mRNA stability) locus was

also identified by a temperature-sensitive mutation (ams-1)

(Ono & Kuwano, 1980) and was shown to play an important

role in E. coli RNA turnover (Ono & Kuwano, 1979). The

combination of the Ams and RNase II ts-alleles plus

deficiency in polynucleotide phosphorylase (PNPase) was

shown to substantially increase the half-life of bulk mRNA,

and specific messengers were highly stabilized in the ams-1

rnb-500 pnp-7 mutant (Arraiano et al., 1988). Later, it was

shown that these two previously identified genes, rne and

ams, were actually different mutant alleles of the same gene

encoding RNase E (Mudd et al., 1990; Babitzke & Kushner,

1991; Melefors & von Gabain, 1991; Taraseviciene et al.,

1991). This important endonuclease is essential for cell

growth, and the inactivation of temperature-sensitive mu-

tants impedes processing and prolongs the lifetime of bulk

mRNA (Apirion & Lassar, 1978; Ono & Kuwano, 1979;

Arraiano et al., 1988; Mudd et al., 1990; Babitzke & Kushner,

1991; Melefors & von Gabain, 1991; Taraseviciene et al.,

1991). It has been reported that RNase E plays a central role

in the processing of precursors of the 5S rRNA gene

(Apirion & Lassar, 1978; Misra & Apirion, 1979), the 16S

rRNA gene (Li et al., 1999b), tRNAs (Ow & Kushner, 2002),

transfer mRNA (tmRNA) (Lin-Chao et al., 1999) and the

M1 RNA component of the RNase P ribozyme (Lundberg &

Altman, 1995; Ko et al., 2008). Homologues of RNase E have

been identified in 4 50 bacteria, archaea and plants (Lee &

Cohen, 2003).

Escherichia coli RNase E is a 1061-residue enzyme com-

posed of two distinct functional regions (Fig. 1a). The

amino-terminal half forms the catalytic domain (residues

1–529) and is relatively conserved among prokaryotes

(Marcaida et al., 2006). The carboxy-terminal half of RNase
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E (residues 530–1061) is a noncatalytic region, largely

unstructured and poorly conserved (Callaghan et al., 2004).

Segment A is located between residues 565 and 582 and is

responsible for binding of RNase E to the inner cytoplasmic

membrane (Khemici et al., 2008). Residues 601–700 form an

arginine-rich segment that binds RNA in vitro and that is

Fig. 1. Representative dendrograms of the endoribonucleases (a) and exoribonucleases (b) of Escherichia coli. This representation was based on the

amino acid sequence of each enzyme, after a multiple alignment using the CLUSTAL program (Thompson et al., 1997). Near each enzyme is the length

(number of amino acids) and architecture, emphasizing the domains of each enzyme. This representation was made based on the CDART program (Geer

et al., 2002). These dendrograms were adapted from Barbas et al. (2006).
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believed to enhance the activity of RNase E in mRNA

degradation in vivo (Lopez et al., 1999; Ow et al., 2000).

Residues 701–1061 form a scaffold for interactions between

RNase E and the other major components of the degrado-

some, a protein complex involved in mRNA decay (see

Complexes of RNases) (Kaberdin et al., 1998; Vanzo et al.,

1998).

The first crystal structure for a member of the RNase E

family has been determined at 2.9 Å, and it reveals that the

catalytic domain of RNase E forms a homotetramer with a

molecular mass of roughly 260 kDa, organized as a dimer of

dimers (Callaghan et al., 2005a). Each protomer is composed

of two globular portions: the ‘large’ and ‘small’ domains. The

‘large’ domain can be divided into four subdomains that

closely resemble established folds. One is related to the RNase

H endoribonuclease family, but is inactive. In this subdomain

an S1 domain is embedded and has a fold that participates in

the recognition of the 50 terminus of RNA (50-sensor). The

rest of the large domain is similar to the repetitive structural

element within the endodeoxyribonuclease DNase I. In isola-

tion, each protomer appears elongated, with a large domain

comprising the subdomains (S1, 50-sensor, RNase H and

DNase I), an elongated linker region (Zn-link) and then the

small domain. The dimer–dimer interface is formed by the

small domains. At the junction point, there is a zinc-binding

site (Callaghan et al., 2005a, b). The arrangement of the

domains within each dimer resembles the blades and handles

of an open pair of scissors.

Escherichia coli RNase E is a single-stranded, nonspecific

endonuclease with a preference for cleaving A/U-rich se-

quences (Mackie, 1992; McDowall et al., 1995). In vitro

experiments have shown that purified E. coli RNase E prefers

to cleave RNAs that are monophosphorylated at the 50 end

(Mackie, 1998). Recently, it was shown that RNA pyropho-

sphohydrolase (RppH) converts the 50 terminus of primary

transcripts from a triphosphate to a monophosphate (Celes-

nik et al., 2007; Deana et al., 2008). However, some structured

substrates can be cleaved independent of its state of phosphor-

ylation by RNase E even if the 50 end forms a secondary

structure (Baker & Mackie, 2003; Hankins et al., 2007). This

indicates that while the 50-monophosphate-dependent path-

way makes a significant contribution to mRNA degradation

(Mackie, 1998, 2000), there is another pathway of initial

substrate recognition by RNase E termed ‘bypass’ or ‘internal

entry’ (Baker & Mackie, 2003; Kime et al., 2009).

The crystal structure explains some features of the protein

and suggests a mechanism of RNA recognition and cleavage.

A pocket is formed between the 50-sensor and the RNase H

subdomains and can bind a monophosphate group at a 50

end (Callaghan et al., 2005a). The catalytic site is physically

separated from the 50-sensing site. It contains conserved

residues on the surface of the DNase I subdomain of RNase

E and coordinate a magnesium ion implicated in catalysis. A

‘mouse-trap’ model for communication between the 50-

sensing pocket and the site of catalysis has been suggested:

S1- and 50-sensing domains move together as one body to

clamp down the substrate (Koslover et al., 2008). This

conformational change suggests a mechanism of RNA

recognition and catalysis that explains the enzyme’s prefer-

ence for substrates with a 50-monophosphate over a 50-

triphosphate and 50-hydroxyl RNA. Substantial flexibility

was also observed at one of the dimer–dimer interfaces, a

deformation that may be essential to accommodate struc-

tured RNA for processing by internal entry.

The cellular level and activity of RNase E are subject to

complex regulation. First, the enzyme concentration in the

cell is regulated by a feedback loop in which RNase E

modulates the decay of its own mRNA, maintaining the

level of the enzyme within a narrow range (Mudd & Higgins,

1993; Jain & Belasco, 1995; Diwa et al., 2000; Sousa et al.,

2001; Ow et al., 2002). Second, the efficiency of RNase E

cleavage depends on the structure of the substrates and the

accessibility of putative cleavage sites. A 50-monophosphate

in substrate RNAs serves as an allosteric activator of RNase E

activity (Mackie, 1998; Jiang & Belasco, 2004). Third,

interactions of mRNA targets with Hfq and sRNAs play an

important role in the cleavage of certain mRNAs by RNase E

(Wagner et al., 2002). Fourth, the activity of RNase E is

globally affected by protein inhibitors, namely the L4

ribosomal protein, RraA and RraB (the regulator of RNase

activity A and B, respectively) that interact with RNase E and

inhibit RNase E endonucleolytic cleavages of a selective

group of transcripts (Lee et al., 2003; Gao et al., 2006). Fifth,

the membrane localization of RNase E and its association

with the bacterial cytoskeleton may affect its function

through various mechanisms (Liou et al., 2001; Khemici

et al., 2008; Taghbalout & Rothfield, 2008).

Some variants of RNase E can be found in Alphaproteo-

bacteria, Synechocystis spp. and in the high G1C Gram-

positive bacteria (Condon & Putzer, 2002). In Rhodobacter

capsulatus, RNase E is the enzyme responsible for the

majority of the endonucleolytic cleavages. Rhodobacter cap-

sulatus RNase E (118 kDa) has a conserved N-terminal

region (Jäger et al., 2001) and a C-terminal portion,

probably involved in the scaffold of degradosome assembly.

It was purified in two different complexes: one where it is

associated with a helicase and an unidentified protein and

the other, which was coupled with a helicase, Rho and

an unidentified protein (Jäger et al., 2001). Moreover, in R.

capsulatus, this enzyme is involved in the endonucleolytic

processing and stabilization of cspA mRNA (Jäger et al.,

2004). Similar to R. capsulatus, Pseudomonas syringae, a

psychrophilic bacterium, also has an RNase E that is

associated with RNase R and the DEAD-box helicase RhlE

in a degradosome (see Complexes of RNases) (Purusharth

et al., 2005).
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RNase G

Escherichia coli RNase G was initially identified by its role in

chromosome segregation and cell division (Okada et al.,

1994). Overproduction of this protein led to morphological

changes in which the bacteria formed anucleated chained

cells containing long axial filaments, justifying its former

name, cafA (cytoplasmic axial filament) (Okada et al., 1994).

RNase G was subsequently shown to exhibit endonuclease

activity both in vivo (Li et al., 1999b; Wachi et al., 1999;

Umitsuki et al., 2001) and in vitro (Jiang et al., 2000; Tock

et al., 2000). RNase G is a paralogue of RNase E (McDowall

et al., 1993), belonging to the RNase E/G family, and is also

involved in the degradation and processing of RNA (Car-

pousis et al., 2009).

A strong resemblance has been identified between RNase

G and the amino-terminal portion of E. coli RNase E,

sharing a high level of sequence identity (35%) and similar-

ity (50%) (McDowall et al., 1993) (Fig. 1a). Purified RNase

G has in vitro properties similar to RNase E and both

enzymes are required for a two-step sequential reaction of

50 maturation of the 16S rRNA gene (Li et al., 1999b; Wachi

et al., 1999). Their activity is 50 end dependent and both

RNases attack substrates in A1U-rich regions (Jiang et al.,

2000; Tock et al., 2000). Moreover, residues of RNase E that

can contact a 50-monophosphorylated end and coordinate

the catalytic magnesium ion are conserved in RNase G

(McDowall et al., 1993; Callaghan et al., 2005a). RNase G

seems to have a higher preference for 50-monophosphory-

lated substrates than RNase E (Tock et al., 2000) and the

precise cleavage sites of RNase E and RNase G are not strictly

conserved (Li et al., 1999b; Tock et al., 2000). The 50-

monophosphate end, which stimulates RNase G, is gener-

ated by RppH (Deana et al., 2008) or by other endonucleases

(Lee et al., 2002).

Whereas cells lacking RNase E are normally nonviable

(Apirion & Lassar, 1978; Ono & Kuwano, 1979), RNase G is

dispensable for viability (Li et al., 1999b; Wachi et al., 1999)

and is present in lower abundance (Lee et al., 2002). Some

functional homology between RNase G and RNase E was

suggested by the observations that RNase G expression can

confer viability to the rne deletion mutant strain (Lee et al.,

2002). However, at intracellular physiological levels, RNase

G cannot complement RNase E mutations (Lee et al., 2002;

Ow et al., 2003). Recently, single amino acid changes in the

predicted RNase H domain of RNase G led to complemen-

tation of RNase E deletion mutants, suggesting that this

region of the two proteins may help distinguish their in vivo

biological activities (Chung et al., 2010). However, these

RNase G mutant proteins do not fully substitute RNase E in

mRNA decay and tRNA processing (Chung et al., 2010).

Microarray data showed that RNase G controls the level

of transcripts associated with sugar metabolism centered on

glycolysis (adhE, pgi, glk, nagB, acs, eno, tpiA) (Lee et al.,

2002), and it has been shown that strains defective in RNase

G produce increased levels of pyruvic acid (Sakai et al.,

2007). These results suggest that RNase G is involved in the

regulation of central metabolism.

RNase III

RNase III was originally identified by Robertson et al. (1968)

in extracts of E. coli as the first specific double-stranded

RNA (dsRNAs) endoribonuclease. Members of the RNase

III family are widely distributed among prokaryotic and

eukaryotic organisms, sharing structural and functional

features (Lamontagne et al., 2001) (Fig. 1a). However, until

now, homologues of RNase III have not been found in the

genomes of archaea (Condon & Putzer, 2002). All enzymes

of this family are hydrolytic and have a specificity for

dsRNAs, generating 50-monophosphate and 30-hydroxyl

termini with a two-base overhang at the 30 end (Meng &

Nicholson, 2008). The RNase III family comprises four

classes, according to their polypeptide structure. The class I

is the simplest, containing an endonuclease domain

(NucD), characterized in several bacteria by the presence of

a highly conserved amino acid stretch NERLEFLGDS, and a

dsRNA-binding domain (dsRBD) (Blaszczyk et al., 2001).

The class II is exemplified by the Drosophila melanogaster

Drosha protein, which contains a long N-terminal exten-

sion, followed by two NucD and a single dsRBD. The class

III is represented by Dicer, which has an N-terminal heli-

case/ATPase domain, followed by a domain of unknown

function (DUF283), a centrally positioned Piwi Argonaute

Zwille (PAZ) domain and a C-terminal configuration like

Drosha, consisting of two NucD and one dsRBD (Drider &

Condon, 2004; MacRae & Doudna, 2007). Finally, the class

IV is only represented, to date, by the Mini-RNase III of B.

subtilis, which is constituted by a single NucD domain

(Redko et al., 2008).

The class I members of the RNase III family are ubiqui-

tously found in bacteria, bacteriophages and some fungi

(MacRae & Doudna, 2007). Escherichia coli RNase III has

served as the prototypical member of the family. In this

model microorganism, RNase III is encoded by the rnc gene,

and is active as a 52 kDa homodimer (Li & Nicholson,

1996). Each monomer contains a C-terminal dsRBD, lo-

cated in the last 74 amino acids, which is responsible for

substrate recognition and adopts a tertiary fold with the

characteristic a1-b1-b2-b3-a2 structure that is conserved

throughout the RNase III family (Blaszczyk et al., 2001).

Additionally, each monomer contains an N-terminal NucD.

When the two monomers are combined (RNase III homo-

dimer), they form a single processing center in the subunit

interface, in which each monomer contributes to the hydro-

lysis of one RNA strand of the duplex substrate. Ji and
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colleagues (Blaszczyk et al., 2004; Gan et al., 2006) resolved

the structure of the hyperthermophilic bacteria Aquifex

aeolicus RNase III and the data have revealed two functional

forms of dsRNA binding by RNase III: a catalytic form,

functioning as a dsRNA-processing enzyme, cleaving both

natural and synthetic dsRNA, and a noncatalytic form, in

which RNase III plays the role of a dsRNA-binding protein

(without cleaving). The latter activity is in agreement with

previous studies in which this enzyme binds certain sub-

strates in order to influence gene expression, affecting RNA

structures (Court, 1993; Oppenheim et al., 1993; Dasgupta

et al., 1998; Calin-Jageman & Nicholson, 2003). Further-

more, magnesium (Mg21) is the preferred cofactor. Recent

data are indicative that each active site contains two divalent

cations during substrate hydrolysis (Meng & Nicholson,

2008).

The RNase III substrate selection consists of a combina-

tion of structural determinants and sequence elements

referred to as reactivity epitopes, such as the helix length,

the strength of base-pairing or the occurrence of specific

nucleotide pairs (termed proximal and distal boxes) located

at defined positions related to the cleavage site. In addition,

there are also two classes of double-helical elements that can

function as negative determinants, which can either inhibit

the recognition of this endoribonuclease or suppress the

cleavage (without affecting recognition) (Zhang & Nichol-

son, 1997; Pertzev & Nicholson, 2006b).

RNase III in E. coli is not essential; however, it was

observed that mutants for this endoribonuclease have a

slow-growth phenotype (Nicholson, 1999). This enzyme

was initially identified due to its role in the maturation of

tRNA precursors and rRNA. Regarding the maturation of

rRNA, RNase III is involved in the processing of 16S and 23S

from a 30S rRNA gene precursor (Babitzke et al., 1993). In

Salmonella and other members of Alphaproteobacteria,

RNase III is also responsible for the cleavage of the inter-

vening sequences (IVS) found in their 23S rRNA gene

(Evguenieva-Hackenberg & Klug, 2000), and is also involved

in the decay of several mRNA species (Condon & Putzer,

2002; Calin-Jageman & Nicholson, 2003). For example, in E.

coli, this enzyme participates in the first step of the decay of

pnp mRNA (Régnier & Portier, 1986), the gene encoding

PNPase, downregulating its synthesis (Régnier & Grunberg-

Manago, 1990; Robert-Le Meur & Portier, 1992; Jarrige

et al., 2001). Interestingly, this endoribonuclease also has

the ability to regulate its own synthesis with a specific

cleavage near the 50 end of its own mRNA that removes a

stem loop, which acts as a degradation barrier (Bardwell

et al., 1989; Matsunaga et al., 1996).

RNase III participates as a stress response modulator,

controlling the steady-state levels of genes involved in

cellular adaptation to stress (Santos et al., 1997; Freire et al.,

2006; Sim et al., 2010). It was seen in Salmonella typhimur-

ium that RNase III regulates the levels of the sRNA MicA

(Viegas et al., 2007), a main regulator of the abundant outer

membrane protein OmpA that plays an important structur-

al role in the cell and is involved in pathogenesis (Guillier

et al., 2006). The enzyme is also involved in the decay of

sRNA/mRNA complexes upon translational silencing (Vogel

et al., 2004; Afonyushkin et al., 2005; Huntzinger et al.,

2005; Kaberdin & Blasi, 2006). In this way, cleavage by

RNase III within the sRNA/mRNA duplex and the resulting

subsequent decay of the mRNA intermediate by the E. coli

RNA decay machinery could resemble the RNA interference

(RNAi) in the eukaryotic cells (Agrawal et al., 2003). RNAi is

an evolutionarily conserved phenomenon that functions

as a safeguard for the maintenance of genomic integrity.

This phenomenon allows the selective post-transcriptional

downregulation of target genes in the cells, in which RNase

III-like enzymes dictate the degradation of dsRNA mole-

cules (Jagannath & Wood, 2007; Ma et al., 2007; Jinek &

Doudna, 2009). Accordingly, the RNase III family has been

associated with gene expression regulation, potential anti-

virus agents and tumor suppressors (Lamontagne et al.,

2001).

Bs-RNase III is a homologue of E. coli RNase III in

B. subtilis. It is a 28-kDa protein (Mitra & Bechhofer,

1994), encoded by the rncS gene (Mitra & Bechhofer, 1994;

Herskovitz & Bechhofer, 2000). In contrast to E. coli and

Staphylococcus aureus, where the RNase III gene can be

deleted without loss of viability, in B. subtilis and in the

yeast, Saccharomyces cerevisiae and Schizosaccharomyces

pombe, this enzyme is essential (Huntzinger et al., 2005).

Although the local environment of the site of Bs-RNase III

cleavage appears to be very similar to that of E. coli RNase

III, there are important differences in their substrate

specificity (Mitra & Bechhofer, 1994; Wang & Bechhofer,

1997). Some of the substrates for this enzyme are the 30S

ribosomal precursor RNA (Wang & Bechhofer, 1997)

and the small cytoplasmic RNA (scRNA) (Oguro et al.,

1998; Yao et al., 2007). More recently, another RNase III-like

protein was identified in B. subtilis called Mini-III, reported

to be involved in 23S rRNA gene maturation (Redko et al.,

2008). Interestingly, like Bs-RNaseIII, Mini-III does not

seem to have endogenous mRNA substrates (Bechhofer,

2009). In Lactococcus lactis, RNase III is encoded by the

rnc gene and plays a determinant role in the control

of citQRP mRNA stability (Drider et al., 1998, 1999).

Complementation assays performed in E. coli showed

that L. lactis RNase III can process E. coli rRNAs and regulate

the levels of PNPase mRNA, substituting the endogenous

RNase III (Amblar et al., 2004).

Taken together, the functional and evolutionary conser-

vation of the RNase III family in bacteria and higher

organisms is indicative of their biological relevance in RNA

maturation and degradation. Despite the fact that RNase E is
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considered the major RNase that catalyzes the initial rate-

determining cleavage of several transcripts, the RNase III

family of enzymes has emerged as one of the most important

groups of endoribonucleases in the control of RNA stability

(Jaskiewicz & Filipowicz, 2008).

RNase H

Both RNase III and RNase H are representatives of compo-

nents of the RNAi machinery and both are Mg21-dependent

hydrolytic endoribonucleases. The analysis of the crystal

structure of E. coli RNase H (Yang et al., 1990) revealed the

stepwise participation of two magnesium atoms in the

enzyme mechanism (Nowotny & Yang, 2006).

RNases H are enzymes that cleave the RNA of RNA/DNA

hybrids that are formed during replication and repair,

preventing aberrant chromosome replication (for a review,

see Condon & Putzer, 2002; Worrall & Luisi, 2007; Tadokoro

& Kanaya, 2009). It is a ubiquitous enzyme distributed

among all domains of life, and three different RNase H

enzymes have been identified (HI, HII and HIII) (Ohtani

et al., 1999). In E. coli, 95% of RNase H activity is provided

by RNase HI (widely distributed in Proteobacteria) and the

remainder by RNase HII (Fig. 1a). In B. subtilis, RNase H

activity is mostly provided by RNase HII and HIII. RNase H

activity is essential to both bacteria. Thus, the inactivation of

one of the rnh genes, but not both, is tolerated in these two

organisms (Itaya et al., 1999; Ohtani et al., 1999).

RNase HII is widely distributed in bacteria and archaea,

while RNase HIII is only present in a limited number of

bacteria (Ohtani et al., 1999). Proteins similar to HI and HII

(named H1 and H2, respectively) can also be found in

eukaryotes, but are larger and more complex than their

prokaryotic counterparts (see Cerritelli & Crouch, 2009 for a

review). The RNase H domain was also described in retro-

viruses (RNase HI), where it is associated with a reverse

transcriptase (Davies et al., 1991; Mian, 1997).

The PIWI domain of the eukaryotic Argonaute proteins,

involved in RNA silencing, is structurally similar to the

RNase H domain and conserves the residues necessary for

RNase H endonucleolytic activity (Song et al., 2004; Kita-

mura et al., 2010). The eukaryotic Ago proteins showing

endonuclease activity (slicer) can digest one RNA strand of

the RNA/RNA hybrid. In contrast, the few prokaryotic Ago

proteins known show a higher affinity for RNA/DNA

hybrids. Very recently, it was reported for the first time that

Pyrococcus furiosus RNase HII (pf-RNase HII) can digest an

RNA/RNA hybrid in the presence of Mn21 (Kitamura et al.,

2010).

RNase P

RNase P is a ribozyme considered to be a vestige from the

‘RNA world’. It was discovered by Sidney Altman, almost 40

years ago (Robertson et al., 1972), and for this, he received

the Nobel Prize in Chemistry in 1989. This ancestral protein

is a quasi-universal endoribonuclease found in all three

domains of life: Bacteria, Eukarya (and eukaryotic orga-

nelles) and Archaea. RNase P is best known for universally

catalyzing the endonucleolytic cleavage of the extra nucleo-

tides in the 50 end of the pre-tRNAs to generate the mature

tRNAs (for a recent review by Sidney Altman, see Liu &

Altman, 2009).

This ribozyme appears to have adapted to modern

cellular life by adding protein to the RNA catalytic core.

The bacterial version is the most simple, with a single RNA

[350–400 nucleotide (nt), encoded by the rpnB gene] and a

single small protein subunit (approximately 15 kDa, en-

coded by the rpnA gene) (Fig. 1a), both essential for cell

viability (Shiraishi & Shimura, 1986; Kirsebom et al., 1988;

Baer et al., 1989). In archaea and eukaryotes, the RNA

subunit is bound by multiple proteins (at least four and

nine proteins, respectively) with no relationship with their

bacterial counterpart (Hall & Brown, 2002).

Five distinct structural classes of RNase P RNAs have been

defined, based on the RNA secondary structure. In bacteria,

two distinct types predominate: the A type (for ancestral),

represented by E. coli RNase P RNA, and the B type (for

Bacillus), confined to the low G1C Gram-positive bacteria

(Chen et al., 1998; Massire et al., 1998; Smith et al., 2007).

Although evolution retained the catalysis function asso-

ciated with the RNA subunit, the protein(s) play vital

supporting roles. The higher protein : RNA mass ratio in

the archaeal and eukaryal holoenzymes reflects a recruit-

ment of protein cofactors during evolution, broadening the

substrate spectrum in the more complex cellular environ-

ments (Liu & Altman, 1994).

In the bacterium A. aeolicus, candidate genes for rpnA and

rpnB could not be identified (Willkomm et al., 2002; Lombo

& Kaberdin, 2008). However, recent work has demonstrated

the existence of an RNase P-like activity in this hyperther-

mophilic bacterium (Marszalkowski et al., 2008). The uni-

versality of RNase P is also challenged in the archaeon

Nanoarchaeum equitans in which tRNAs are transcribed as

primary 50 mature tRNAs, and therefore, RNase P activity

has been dispensed (Randau et al., 2008). In eukaryotes,

a different exception occurs. Human mitochondria and

higher plant chloroplasts possess a protein-only version of

the enzyme, known as ‘Proteinaceous RNase P’, which lacks

the RNA subunit (Holzmann et al., 2008; Gobert et al.,

2010). In this case, RNase P enzymes seem to have lost the

RNA component during evolution.

Despite less efficiently than with tRNAs, RNase P has been

shown to cleave other substrates, both in vivo and in vitro.

Namely, the E. coli enzyme processes two other important

stable RNA substrates involved in protein synthesis: the

tmRNA (Gimple & Schon, 2001) and 4.5S RNA (Bothwell
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et al., 1976; Peck-Miller & Altman, 1991). Other substrates

include phage-induced regulatory RNAs (Hartmann et al.,

1995), sRNA duplex substrates and snoRNAs (Ko & Altman,

2007; Yang & Altman, 2007), riboswitches (Altman et al.,

2005; Seif & Altman, 2008) and intergenic regions of

polycistronic operon mRNAs (Alifano et al., 1994; Li &

Altman, 2003).

Catalysis by RNase P RNA is hydrolytic and absolutely

dependent on divalent metal ions (Mg21 or Mn21) (Smith

et al., 1992; Kirsebom & Trobro, 2009). Its turnover rate is

slow compared with other enzymes, what may reflect a

specialization for cleavage-site selectivity and recognition of

several different substrates rather than for rapid catalysis. This

would explain the complex nature of this ancient ribozyme.

RNase Z

RNase Z is a conserved endonuclease that belongs to the b-

lactamase superfamily of metal-dependent hydrolases (Fig.

1a). Genes encoding RNase Z homologues were identified in

all three domains of life (Minagawa et al., 2004; de la Sierra-

Gallay et al., 2005). The enzyme is mainly responsible for the

30 end maturation of tRNAs.

Mature tRNAs all bear a CCA sequence at the end of the

acceptor stem that is essential for aminoacylation and

interaction with the ribosome. Two main modes for 30 tRNA

processing have been described: (1) a one-step maturation

involving direct endonucleolytic cleavage by RNase Z at the

30 end (CCA less tRNAs). The cleavage occurs after the

discriminator base (the unpaired nucleotide immediately

upstream the CCA motif) (Nashimoto, 1997; Pellegrini

et al., 2003) and provides the substrate for subsequent CCA

addition by tRNA nucleotidyltransferase to generate the

mature tRNA (Deutscher, 1990; Nashimoto, 1997; Schiffer

et al., 2002); and (2) multistep maturation involving endo-

and exonucleases (e.g. in E. coli where all genes have the

CCA encoded). Hence, the presence or not of the universal

30-terminal CCA sequence in the tRNA primary transcript is

the key determinant for the 30-tRNA processing pathway

(Deutscher, 1990; Schiffer et al., 2002). In organisms such as

B. subtilis, both types of 30-tRNA processing may occur (see

the section below on processing).

While the RNase Z gene is essential in B. subtilis for cell

viability (Schilling et al., 2004), in E. coli, mutants lacking

RNase Z have no obvious growth phenotype (Schilling et al.,

2004). The E. coli RNase Z, also known as the ElaC protein,

was initially identified as a zinc phosphodiesterase, ZiPD

(Vogel et al., 2002; Schilling et al., 2004). It had been

identified several years before as RNase BN, initially thought

to be a cobalt-activated RNase with exonuclease activity

(Asha et al., 1983). The enzyme was required for the

maturation of tRNA precursors encoded by phage T4.

However, the gene encoding RNase BN (rbn) was originally

misidentified, and was only recently shown to be the elaC

gene, known to encode RNase Z (Ezraty et al., 2005).

Therefore, the E. coli enzyme is still called RNase BN

occasionally. Other denominations include tRNase Z, 30-

tRNase and 30-pre-tRNase.

The enzyme is a zinc-dependent metallo-hydrolase, and

like RNase P, recognizes the tRNA structure in precursor

molecules (Pellegrini et al., 2003). RNase Z crystal structures

have revealed that the enzyme forms a dimer of metallo-b-

lactamase domains and has a characteristic domain, named

a flexible arm or an exosite, which protrudes from the

metallo-b-lactamase core and is involved in tRNA binding

(de la Sierra-Gallay et al., 2005). In the case of Thermotoga

maritima, the structure of the flexible arm of the enzyme is

different from those of homologue enzymes and may

explain why, in this bacterium, tRNase Z exceptionally

cleaves precisely after the CCA sequence (at 30) and not

after the discriminator base (Ishii et al., 2005).

The intriguing presence of an RNase Z homologue in

some members of the Gammaproteobacteria, such as E. coli

and Salmonella spp., even though its action is not needed for

tRNA maturation, has led to a search for other potential

substrates for RNase Z. Surprising results were obtained

when the rnz mutation was combined with a mutation in

RNase E. The lack of both enzymes resulted in a drastic

increase in the half-live compared with the absence of either

enzyme alone (Perwez & Kushner, 2006a). These authors

also observed that E. coli RNase Z was able to cleave rpsT

mRNA in vitro at locations distinct from those obtained

with RNase E. The enzyme is also capable of cleaving

unstructured RNA substrates (Shibata et al., 2006).

Deutscher and coworkers proposed that the E. coli

enzyme (RNase BN) may differ in certain respects from the

RNase Z homologues in other organisms; namely, it can

have a dual exo- and an endoribonuclease activity (Dutta &

Deutscher, 2009, 2010). This dual activity was also seen in

RNase J from B. subtilis, another member of the zinc-

dependent metallo-b-lactamases family (see the section on

Other endonucleases) (Mathy et al., 2007).

Other endonucleases

Several other endonucleases have been described not only in

E. coli but also in other microorganisms. Below, we will

briefly mention some of their main characteristics.

RNase I is a broad-specificity endoribonuclease, very

active, present in the periplasmic space of E. coli. The

enzyme belongs to the T2 superfamily of RNases, whose

members are widely distributed throughout nature (Irie,

1997; Condon & Putzer, 2002) (Fig. 1a). Although RNase I

activity is easily detected, its function in cell metabolism has

never been clarified, because RNase I-deficient mutants are

viable and do not affect global mRNA degradation (Zhu
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et al., 1990). The enzyme can cleave RNA between every

residue to yield mononucleotides and its activity is not

inhibited in the presence of EDTA. It was proposed to be

implicated in the scavenging of ribonucleotides from the

extracellular environment (Condon & Putzer, 2002).

There are reports of other broad-specificity endoribonu-

cleases that are RNase I related, namely, RNase I� (Cannis-

traro & Kennell, 1991) and RNase M (Cannistraro &

Kennell, 1989). However, their existence was never con-

firmed and seems to consist merely of different manifesta-

tions of RNase I (Subbarayan & Deutscher, 2001).

Escherichia coli RNase LS is an RNase that, despite playing

a minor role in noninfected bacteria (reviewed in Uzan,

2009), seems to constitute an important cellular defense

mechanism against bacteriophage invasion (Otsuka & Yo-

nesaki, 2005). Namely, bacteriophage T4 uses a combination

of host- and phage-encoded enzymes to degrade its mRNAs

in a stage-dependent manner. Phage T4 encodes RegB, a

sequence-specific endoribonuclease (Sanson & Uzan, 1995;

Uzan, 2001) that inactivates T4 early transcripts shortly after

infection. The middle and late T4 mRNAs are protected

from degradation by the viral factor Dmd. In T4-phages

defective for the dmd gene, RNase LS (for late-gene silencing

in T4) cleaves these T4 mRNAs, inhibiting phage multi-

plication. Therefore, this endonuclease acts as an antagonist

of T4 phage replication and Dmd is required for overcoming

the host’s RNase LS defense role.

Escherichia coli also encodes for a large number of suicide

or toxin genes. Their expression is toxic to their host cells,

causing growth arrest and eventual cell death. For example,

E. coli RelE and MazF are two different families of bacterial

toxins that inhibit translation by specific endonucleolytic

mRNA cleavage (Pedersen et al., 2003; Neubauer et al., 2009;

Yamaguchi & Inouye, 2009).

In B. subtilis, it was shown that the majority of the

ribonucleolytic activity is phosphorolytic. However, several

studies showed that PNPase is not responsible for the initial

step in RNA decay in B. subtilis, but is a secondary enzyme

that acts after the decay has been initiated by other RNases

(Bechhofer, 2009). Recently, two proteins (RNase J1 and

RNase J2) with cleavage activity equivalent to E. coli RNase E

were purified in this organism (Even et al., 2005). Moreover,

these enzymes share many other characteristics with RNase

E, which may be related to their similar endonucleolytic

activities (Bechhofer, 2009). RNase J1 and J2 are around

61 kDa and have both endonucleolytic and 50–30 exonucleo-

lytic activity, which is sensitive to the 50 phosphorylation

state of the substrate. These enzymes were the first described

50–30 exonucleases in bacteria (Mathy et al., 2007), the J1

activity being twofold higher than J2 (Mathy et al., 2010)

(see also under the topic Exonucleases the section on RNase

J1/J2). Furthermore, RNase J1 is essential, while RNase J2 is

not (Even et al., 2005).

RNase J1 plays a major role in RNA stability (Mader et al.,

2008) and maturation. It functions as a 50–30 exoribonu-

clease in the maturation of 16S rRNA gene and in regulating

the mRNA stability of the stationary-phase insecticidal

protein transcript cryIIIA (Mathy et al., 2007; Deikus et al.,

2008). RNase J1 is also responsible for increasing the

stability of the downstream fragments that result from the

endonucleolytic cleavage of thrS and thrZ mRNAs (Even

et al., 2005). A recent study using a bacterial two-hybrid

system showed that PNPase, RNase J1 and two glycolytic

enzymes can interact with RNase Y and potentially form a

degradosome-like complex (Commichau et al., 2009) (see

Complexes of RNases). Moreover, it was shown recently that

RNase J1 and J2 in wild-type cells are mostly in a complex.

While the individual enzymes have similar endonucleolytic

cleavage activities and specificities, as a complex, they

behave synergistically to alter cleavage site preference and

to increase cleavage efficiency at specific sites (Mathy et al.,

2010).

RNase J1 homologues are widely distributed in several

other bacteria and archaea (Even et al., 2005). The enzyme is

a member of the b-CASP subfamily of zinc-dependent

metallo-b-lactamases. The enzyme is composed of three

domains: an N-terminal b-lactamase domain, a b-CASP

and a C-terminal domain necessary for the enzyme activity.

A binding pocket coordinating the phosphate and base

moieties of the nucleotide in the surrounding area of the

catalytic center provides a basis for the 50-monophosphate-

dependent 50–30 exoribonuclease activity (de la Sierra-

Gallay et al., 2008). The endonucleolytic activity of the

enzyme is not dependent of 50-monophosphate. For the

initiation of endonuclease cleavage, RNase J1 either binds to

the 50 end or directly to the internal site of the mRNA. The

upstream product is rapidly degraded by the 30–50 exonu-

clease activity of PNPase. The downstream RNA fragment

with the 50-monophosphate end can be a target of new

RNase J1 endonuclease cleavage or processive 50–30 exonu-

cleolytic decay from the 50 end (Bechhofer, 2009). It was also

shown that RNase J1 requires a single-stranded 50 end with

AU-rich regions to allow the exoribonucleolytic activity

(Mathy et al., 2007). This was observed in infC leader RNA

(Choonee et al., 2007), trp leader RNA (Deikus et al., 2008)

and the RNA species called scRNA (Yao et al., 2007).

Similar to what happens with B. subtilis, we can find

RNase J1 and J2 also in Streptococcus pyogenes. While in

B. subtilis only RNase J1 is an essential protein, in

S. pyogenes, both proteins are essential for growth. In this

bacterium, RNases J1 and J2 were also seen to affect the

decay of several mRNAs (Bugrysheva & Scott, 2009).

Another endonuclease sensitive to the 50 end phosphor-

ylation state of the substrate was discovered recently. RNase

Y is involved in the initiation of turnover of B. subtilis S-

adenosylmethionine-dependent riboswitches (Shahbabian
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et al., 2009), which controls the expression of 11 transcrip-

tional units (Winkler & Breaker, 2005; Henkin, 2008). The

enzyme has a major function in the initiation of mRNA

degradation in this organism, affecting mRNA stability

4 30% in an RNase J1/J2 double-mutant strain. RNase Y

orthologues are present in about 40% of the eubacteria;

however, this enzyme is absent from archaea and eukaryotic

organisms, with the exception of Drosophila willistoni

(Shahbabian et al., 2009).

Other endonucleases are described in B. subtilis such as

RNase M5, RNase Z (see the above section on RNase Z),

RNase Bsn and RNase P (see the above section on RNase P).

However, neither RNase M5 nor RNase Z appears to have

mRNA targets in B. subtilis (Condon et al., 2002). RNase M5’s

major role is the maturation of the 5S rRNA gene (Sogin &

Pace, 1974) and can only be found in low G1C Gram-positive

bacteria (Condon et al., 2001). Bsn is an extracellular nuclease,

apparently with no sequence specificity. It can cleave RNA

endonucleolytically to yield 50-phosphorylated oligonucleo-

tides. The enzyme is found in some members of low G1C

Gram-positive bacteria (Nakamura et al., 1992).

Barnase is a guanyl-specific extracellular RNase. Although

it is found in many of the Bacilli, it is not present in B.

subtilis. Orthologues of Bacillus amyloliquefaciens Barnase

and its inhibitor Barstar are also found in Clostridium

acetobutylicum and the Gram-positive Yersinia pestis. It

appears that some organisms have lost their copy of the

Barnase gene because it was no longer required for a

selective advantage. Alternatively, they acquired the resis-

tance gene because other organisms sharing the same niche

produced Barnase (Belitsky et al., 1997).

Besides the well-known endonucleases, there are some

DNA-binding proteins in archaea with RNase endonucleo-

lytic activity; however, the physiological relevance of these

proteins with respect to RNA metabolism is not clear

(Evguenieva-Hackenberg & Klug, 2009). The attempts to

purify novel RNase activities from archaea resulted in the

isolation of very different proteins. Two proteins with RNase

activity were purified from Sulfolobus solfataricus (called p1

and p2). It was shown that divalent cations are not required

for their activity, and they were capable of cleaving yeast

tRNA (Fusi et al., 1993; Shehi et al., 2001). Another

9-kDa protein, called SaRD, whose RNase activity is not

affected in the presence of different divalent cations, was

purified from Sulfolobus acidocaldarius (Kulms et al., 1995).

Furthermore, two different dehydrogenases were identified

in the same organism, with RNase III-like properties and

cleavage patterns dependent on MgCl2: an aspartate-semi-

aldehyde dehydrogenase and acyl-CoA dehydrogenase (Ev-

guenieva-Hackenberg et al., 2002). A homologue of the

eukaryotic initiation factor 5A (eIF-5A) called archaeal

initiation factor 5A (aIF-5A), from Halobacterium salinar-

um, was also described as an RNase with activity in low salt

concentrations without addition of MgCl2 (Wagner & Klug,

2007). It was shown that aIF5A efficiently binds structured

RNA containing certain motifs and that the interaction is

hypusine dependent (Xu et al., 2004).

Exonucleases

PNPase

PNPase belongs to the PDX family of exoribonucleases,

which also includes RNase PH from bacteria, and the core

of the exosome in archaea and eukaryotes (Mian, 1997; Zuo

& Deutscher, 2001; Pruijn, 2005) (Fig. 1b). In 1959, Severo

Ochoa received the Nobel Prize for his studies on the poly-

merase activity of this enzyme, being the first to synthesize

RNA outside the cell. This was a major contribution towards

deciphering the genetic code. PNPase is also involved in

global mRNA decay, being widely conserved from bacteria

to plants and metazoans (Zuo & Deutscher, 2001; Bermú-

dez-Cruz et al., 2005).

PNPase is encoded by the pnp gene and is transcribed

from two promoters (Portier & Regnier, 1984). pnp expres-

sion is negatively autoregulated at the post-transcriptional

level by the concerted action of PNPase and RNase III

(Portier et al., 1987; Robert-Le Meur & Portier, 1992, 1994;

Jarrige et al., 2001; Carzaniga et al., 2009). This autoregula-

tion can be disrupted by ribosomal protein S1, which binds

to the pnp mRNA 50-UTR (Briani et al., 2008). In an RNase

III-deficient strain, there is a 10-fold increase in the PNPase

levels (Portier et al., 1987). PNPase levels are also affected by

polyadenylation. It is likely that polyadenylated transcripts

titrate out the amount of PNPase available to carry out

normal autoregulation (Mohanty & Kushner, 2002). PNPase

and RNase II are cross-regulated (Zilhão et al., 1996a). In the

absence of RNase II, PNPase levels are increased and PNPase

overexpression leads to a decrease in RNase II activity

(Zilhão et al., 1996a).

PNPase does not seem to be indispensable to E. coli at

optimal temperature, unless either RNase II or RNase R is

also missing (Donovan & Kushner, 1986; Cheng et al., 1998).

However, PNPase is essential for E. coli growth at low

temperatures (Luttinger et al., 1996; Piazza et al., 1996;

Zangrossi et al., 2000) and certain mutations of the RNA-

binding domains have been shown to confer a cold-sensitive

phenotype (Garcı́a-Mena et al., 1999; Briani et al., 2007;

Matus-Ortega et al., 2007). Higher levels of RNase II allow

lower levels of PNPase, and in fact, overexpression of RNase

II could complement the cold-shock function of PNPase

(Zilhão et al., 1996a; Awano et al., 2008). PNPase was also

shown to be involved in the long-term survival of Campylo-

bacter jejuni at temperatures 4 10 1C (Haddad et al., 2009).

In E. coli, cold-temperature induction of pnp expression

occurs at post-transcriptional levels including the reversal of
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pnp autoregulation (Zangrossi et al., 2000; Beran & Simons,

2001; Mathy et al., 2001).

PNPase processively catalyzes the 30–50 phosphorolytic

degradation of RNA, releasing nucleoside 50-diphosphates.

Although the degrading activity of E. coli PNPase is known

to be blocked by dsRNA structures (Spickler & Mackie,

2000), PNPase can form complexes with other proteins,

allowing it to degrade through extensive structured RNA.

The main multiprotein complex that integrates PNPase is

the degradosome (see the Complexes of RNases). To degrade

certain dsRNAs, PNPase can form a complex (a3b2) with

RNA helicase B (RhlB) (Liou et al., 2002; Lin & Lin-Chao,

2005). PNPase also forms complexes with Hfq and PAP I

(Mohanty et al., 2004). The enzyme was reported to degrade

a stem-loop without the assistance of RhlB, but this could be

related to the low thermodynamic stability of the stem-loop

(Mohanty & Kushner, 2010). In the Gram-negative bacteria

Thermus thermophilus, the PNPase homologue (Tth

PNPase) was shown to have phosphorolytic activity at the

optimal temperature of 65 1C. Surprisingly, it is able to

completely degrade RNAs with very stable intramolecular

secondary structures (Falaleeva et al., 2008).

A minimal 30 overhang of 7–10 unpaired ribonucleotides

is required for an RNA molecule to be bound by PNPase (Py

et al., 1996; Cheng & Deutscher, 2005), and the action of the

enzyme on folded RNAs is known to be stimulated by 30

polyadenylation (Xu & Cohen, 1995; Py et al., 1996;

Carpousis et al., 1999; Spickler & Mackie, 2000). PNPase is

also able to catalyze the polymerization of RNA from

nucleoside diphosphates at a low inorganic phosphate (Pi)

concentration (Godefroy, 1970; Littauer & Soreq, 1982;

Sulewski et al., 1989). In vivo, PNPase is essentially devoted

to the processive degradation of RNA, but is also responsible

for adding the heteropolymeric tails observed in E. coli

mutants devoid of the main polyadenylating enzyme PAP I

(Mohanty & Kushner, 2000b; Slomovic et al., 2008). In

exponentially growing E. coli, 4 90% of the transcripts are

polyadenylated and Rho-dependent transcription termina-

tors were suggested to be modified by the polymerase

activity of PNPase (Mohanty & Kushner, 2006). In spinach

chloroplasts, Cyanobacteria and Streptomyces coelicolor,

PNPase seems to be the main tail polymerizing enzyme

(Yehudai-Resheff et al., 2001; Rott et al., 2003; Sohlberg

et al., 2003). PNPase-dependent RNA tailing and degrada-

tion are believed to occur mainly at low ATP concentrations,

because ATP has been shown to inhibit both activities (Del

Favero et al., 2008). Recently, it was shown that B. subtilis

PNPase, in the presence of Mn21 and low levels of Pi, is also

able to degrade ssDNA, while in the presence of Mg21 and

higher amounts of Pi, it degrades RNA. This suggests that

PNPase degradation of RNA and ssDNA occurs by mutually

exclusive mechanisms (Cardenas et al., 2009). Because of the

ability of PNPase to carry out several distinct activities, the

enzyme can be considered as a multifunctional protein. It is

a pleiotropic regulator, involved in a number of different

pathways of RNA degradation. Indeed, it is the only

exoribonuclease in Streptomyces and is an essential enzyme

in these organisms (Bralley & Jones, 2003; Bralley et al.,

2006). In E. coli, PNPase is now believed to play a greater

role in mRNA degradation than previously thought and its

inactivation increases the steady-state levels of many tran-

scripts (Deutscher & Reuven, 1991; Mohanty & Kushner,

2003). The enzyme was also reported to play an important

role in protecting E. coli cells under oxidative stress (Wu

et al., 2009). In B. subtilis, the RNA decay is primarily

phosphorolytic and this major activity is attributed to the

PNPase, which is the principal 30–50 exoribonuclease in this

organism. The deletion of PNPase in B. subtilis causes a

number of phenotypes such as competence deficiency, cold

and tetracycline sensitivity, and filamentous growth (Hahn

et al., 1996; Luttinger et al., 1996; Wang & Bechhofer, 1996).

X-ray crystal structures of E. coli and Streptomyces anti-

bioticus PNPase reveal a homotrimeric subunit organization

with a ring-like architecture (Symmons et al., 2000; Shi

et al., 2008; Nurmohamed et al., 2009). Each monomer

exhibits a five-domain arrangement: at the N-terminus, two

RNase PH domains (PH1 and PH2) are linked by an a-

helical domain; two RNA-binding domains, KH and S1, are

found in the C-terminal end. In the quaternary structure,

the KH and S1 domains are found together in one face of the

trimer, while the active site is found in the opposite side.

PNPase mutants lacking either the S1 or the KH domain

retain phosphorolytic activity (Jarrige et al., 2002; Stickney

et al., 2005; Matus-Ortega et al., 2007). However, the

presence of both KH and S1 domains is required for a

proper binding (Matus-Ortega et al., 2007), and their

absence was proposed to affect product release and enzyme

cycling, leading to a decreased turnover number (Stickney

et al., 2005). The crystal structure of a KH/S1 deletion

mutant, along with biochemical and biophysical data,

strongly suggests that these domains are involved not only

in RNA binding but also contribute to the formation of a

more stable trimeric structure (Shi et al., 2008). Indeed, a

previous study has shown that the S1 domain from PNPase

was able to induce trimerization of a chimeric RNase II

containing PNPase S1 (Amblar et al., 2007).

The association of the three subunits encloses a central

channel. A properly constricted channel and the conserved

basic residues located in the neck region have been shown to

play critical roles in trapping RNA for processive degrada-

tion (Shi et al., 2008). Two constricted points have been

identified in the channel, and the structure of PNPase in

complex with RNA clearly indicates that the pathway

followed by the RNA molecule is along the central pore in

the direction of the active site (Symmons et al., 2000; Shi

et al., 2008; Nurmohamed et al., 2009). The ability of the
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aperture at the central channel and its neighboring regions

to undergo conformational changes is likely to be a key

aspect of the dynamic translocation of RNA by PNPase

(Nurmohamed et al., 2009).

The catalytic site of PNPase is composed of structural

elements of both PH1 and PH2 core domains, and several

mutations introduced into the PNPase core abolish or

drastically decrease all catalytic activities of the enzyme

(Jarrige et al., 2002; Briani et al., 2007). However, other

mutations in the core region were analyzed that do not affect

phosphorolytic or polymerase activities, but rather RNA

binding is severely impaired (Regonesi et al., 2004). Strepto-

myces antibioticus PNPase catalytic center has been identi-

fied using tungstate (a phosphate analogue), which is

coordinated by T462 and S463 (Symmons et al., 2000).

Escherichia coli PNPase crystals obtained in the presence of

Mn21 (which can substitute for Mg21 to support catalysis)

showed that the metal is coordinated by the conserved

residues D486, D492 and K494 (Nurmohamed et al., 2009).

Indeed, the substitution of D492 abolished both phosphor-

olysis and polymerization activities (Jarrige et al., 2002).

PNPase has been described to play a role in the establish-

ment of virulence in several pathogens. In Salmonella,

PNPase activity decreases the expression of genes from the

pathogenicity islands SPI 1 (containing genes for invasion)

and SPI 2 (containing genes for intracellular growth)

(Clements et al., 2002). Similarly, in Dichelobacter nodosus,

PNPase acts as a virulence repressor in benign strains by

decreasing twitching motility (Palanisamy et al., 2009). In

contrast, in Yersinia, PNPase modulates the type three

secretion system (TTSS) by affecting the steady-state levels

of TTSS transcripts and controlling the secretion rate

(Rosenzweig et al., 2005, 2007). This is probably the reason

why the pnp deletion results in a less virulent strain in a

mouse model (Rosenzweig et al., 2007). In C. jejuni PNPase

is involved in motility (Haddad et al., 2009). Finally, in S.

pyogenes, PNPase activity is rate-limiting for the decay of

sagA and sda, which code for the important virulence factors

streptolysin S and streptodornase (a DNase), respectively

(Barnett et al., 2007).

RNase II

Escherichia coli RNase II is the prototype of the RNase II

family of enzymes (Mian, 1997; Mitchell et al., 1997; Zuo &

Deutscher, 2001; Frazão et al., 2006; Grossman & van Hoof,

2006) (Fig. 1b). RNase II-like proteins are widespread

among the three domains of life, and in eukaryotes, they

are the catalytic component of the exosome (Liu et al.,

2006b; Dziembowski et al., 2007).

RNase II is encoded by the rnb gene that can be

transcribed from two promoters P1 and P2 and terminates

in a Rho-independent terminator 10 nucleotides down-

stream of the rnb stop codon (Zilhão et al., 1993, 1995a,

1996b). PNPase regulates RNase II expression by degrading

the rnb mRNA (Zilhão et al., 1996a). RNase III and RNase E

endonucleases are also involved in the control of RNase II

expression at the post-transcriptional level. RNase III does

not affect rnb mRNA directly, but affects PNPase levels, and

RNase E is directly involved in the rnb mRNA degradation

(Zilhão et al., 1995b).

The protein stability of RNase II is known to be post-

translationally regulated and its levels are adjusted according

to the growth conditions. gmr (gene modulating RNase II)

is located downstream of rnb and the related protein is

involved in the modulation of the stability of RNase II

(Cairrão et al., 2001). Gmr has a PAS domain that can act

as an environmental sensor detecting changes in growth

conditions.

Escherichia coli RNase II is a sequence-independent

hydrolytic exoribonuclease that processively degrades RNA

in the 30–50 direction, yielding 50-nucleoside monopho-

sphates. However, the processive degradation of an RNA

molecule by RNase II is easily blocked by secondary struc-

tures, and the enzyme is known to stall around seven

nucleotides before it reaches a double-stranded region

(Cannistraro & Kennell, 1999; Spickler & Mackie, 2000). In

E. coli, RNase II is the major hydrolytic enzyme and

participates in the terminal stages of mRNA degradation

(Deutscher & Reuven, 1991). However, the enzyme is not

essential for E. coli growth unless PNPase is also missing

(Donovan & Kushner, 1986; Zilhão et al., 1996a). Although

RNase II-degrading activity is sequence independent, the

most reactive substrate is the homopolymer poly(A). Be-

cause the presence of a poly(A) tail is often needed for the

RNA degradative process, the rapid degradation of poly-

adenylated stretches by RNase II can paradoxically protect

some RNAs by impairing the access of other exoribonu-

cleases (Hajnsdorf et al., 1994; Pepe et al., 1994; Coburn &

Mackie, 1996a; Marujo et al., 2000; Mohanty & Kushner,

2000a; Folichon et al., 2005). Indeed, in the absence of

RNase II, a large number (31%) of E. coli mRNAs are

decreased, especially ribosomal protein genes, suggesting a

major function for this enzyme in the protection of specific

mRNAs through poly(A) tail removal (Mohanty & Kushner,

2003).

The structure of E. coli RNase II and its RNA-bound

complex was determined (Frazão et al., 2006) (Fig. 2a). This

was the first structure of an exoribonuclease from the RNase

II family that has been resolved (Frazão et al., 2006). The

overall X-ray crystallographic structure of the wild-type

enzyme (Frazão et al., 2006; Zuo et al., 2006) revealed four

domains, as predicted previously by Amblar et al. (2006)

(see Figs 1b and 2a). Three RNA-binding domains have been

identified: two cold-shock domains (CSD1 and CSD2) in

the N-terminal region and an S1 RNA-binding domain at
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the C-terminus. The catalytic site resides in the central RNB

domain, whose structure has shown an unprecedented fold

characteristic of this family. This domain contains four

highly conserved sequence motifs (I–IV) with several invar-

iant carboxylate residues (Mian, 1997). The RNA-binding

domains (CSD1, CSD2 and S1) are grouped together on one

side of the structure, while the active site is on the other side

of the molecule (Frazão et al., 2006).

Elimination of the N-terminal CSD1 resulted in an

increase in the RNA-binding affinity of the enzyme for

poly(A), suggesting that this domain may play a role in

controlling the movement of the enzyme on the poly(A)

chain (Amblar et al., 2006; Arraiano et al., 2008). Interest-

ingly, without all the RNA-binding domains, the enzyme is

still able to degrade RNA, although with much less efficiency

than the wild-type enzyme (Matos et al., 2009; Vincent &

Deutscher, 2009).

The structure of the RNA-bound enzyme revealed that

the RNA fragment interacts with the protein at two non-

contiguous regions: the ‘anchor’ and catalytic regions (Can-

nistraro & Kennell, 1994; Frazão et al., 2006) (Fig. 2a).

Nucleotides 1–5, at the 50 end of the 13-mer RNA fragment,

are located in the ‘anchor’ region in a deep cleft between the

two CSDs and the S1 domain. The final nucleotides 9–13 are

located in a cavity deep within the RNB domain, stacked and

‘clamped’ between the conserved residues Phe358 and

Tyr253. A 10-nucleotide fragment is the shortest RNA able

to retain contacts with both the anchor and the catalytic

regions. This explains why RNase II is processive on long

RNA molecules, but becomes distributive on substrates

shorter than 10–15 nucleotides. When the RNA molecule is

shorter than five nucleotides, the required packing of the

bases can no longer occur, preventing the translocation of

the RNA, and a final end product of four nucleotides is

released (Frazão et al., 2006). Tyr-253 has been identified as

the residue responsible for setting the RNase II end product,

and its substitution was shown to alter the smallest end

product of degradation from 4 to 10 nucleotides (Barbas

et al., 2008). This mutation has been proposed to cause

loosening of the RNA substrate at the catalytic site and, as a

consequence, binding at the anchor region would be essen-

tial to keep the RNA attached to the protein and allow

cleavage. Molecules shorter than 10 nucleotides are too

small to be simultaneously bound at both sites, meaning

that they would have to be degraded in a distributive

manner (Barbas et al., 2008).

The access to the catalytic pocket is restricted to single-

stranded RNA by steric hindrance, which explains the

inability of RNase II to degrade dsRNA. DNA is not a

substrate because there is a specific interaction between the

protein and the ribose rings of nucleotides that directly

contact the enzyme (Frazão et al., 2006). Residues Tyr-313

Fig. 2. The making of a ‘super-enzyme’. (a) RNase II is composed of two N-terminal cold shock domains (CSD1 in orange and CSD2 in yellow), a central

catalytic domain (RNB in gray), a C-terminal S1 domain (in green). (b) Zooming the catalytic cavity of RNase II. (c) Modelling the E542A mutant with the Poly(A)

RNA strand in the RNB domain. Substitution in position 542 of the negatively charged glutamic side-chain for the smaller neutral methyl group of alanine could

reduce significantly both electrostatic and steric surfaces in the RNA-binding interface. (d) Exoribonuclease activity with the Poly(A) substrate: comparison of

wild-type and E542A proteins. It is possible to see that we need to use higher concentrations of RNase II when compared with the E542A mutant, which is

110-fold more active when compared with the wild type (Barbas et al., 2009. rThe American Society for Biochemistry and Molecular Biology).
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and Glu-390 have been demonstrated to be responsible for

the discrimination of the cleavage of RNA vs. DNA (Barbas

et al., 2009).

Several residues in the catalytic region are important for

catalysis (Amblar & Arraiano, 2005; Frazão et al., 2006).

Asp-201 and Asp-210 substitution led to a significant loss of

RNase II activity, and Arg-500 has also been shown to be

crucial for RNA cleavage (Frazão et al., 2006; Barbas et al.,

2008, 2009). However, Asp-209 is the only essential residue

for RNA degradation (Barbas et al., 2008). The conserved

residue Glu-542 has been proposed to facilitate the elimina-

tion of the exiting nucleotide upon phosphodiester cleavage

(Frazão et al., 2006). Interestingly, its substitution by alanine

rendered the mutant RNase II much more active than the

wild type and significantly increased the RNA-binding

ability (Fig. 2b–d). Three-dimensional modelling of the

mutant enzyme indicated that the substitution induced a

subtle conformational change in the RNB domain. This

resulted in a reorganization of the RNA-binding interface

that transformed the RNase II into the so-called ‘super-

enzyme’, an enzyme with extraordinary catalysis and bind-

ing abilities. When compared with the wild-type RNase II,

the ‘super-enzyme’ exhibits 4 100-fold increase in the

exoribonucleolytic activity (Fig. 2d) and about a 20-fold

increase in the RNA-binding affinity (Barbas et al., 2009).

RNase R

RNase R encoded by the rnr gene (previously vacB) is a 30–50

hydrolytic exoribonuclease from the RNase II family of

exoribonucleases (Cheng & Deutscher, 2002; Vincent &

Deutscher, 2006). The rnr gene is second in an operon,

together with nsrR (a transcriptional regulator), rlmB

(rRNA methyltransferase) and yjfI (unknown function).

Transcription is driven from a putative s70 promoter up-

stream of nsrR (Cheng et al., 1998; Cairrão et al., 2003). rnr

mRNAs are post-transcriptionally regulated by RNase E,

although RNase G may also participate (Cairrão & Arraiano,

2006). RNase R is a processive and sequence-independent

enzyme, with a wide impact on RNA metabolism

(Cairrão et al., 2003; Cheng & Deutscher, 2005; Oussenko

et al., 2005; Andrade et al., 2006, 2009a; Purusharth et al.,

2007). It is unique among the RNA-degradative exonu-

cleases present in E. coli as it can easily degrade highly

structured RNAs (Cheng & Deutscher, 2002, 2003; Awano

et al., 2010). RNase R is able to degrade an RNA duplex,

provided there is a single-stranded 30 overhang (Cheng &

Deutscher, 2002; Vincent & Deutscher, 2006). In fact, RNase

R was shown to be a key enzyme involved in the degradation

of polyadenylated RNA (Andrade et al., 2009a).

RNase R shows a modular organization of RNA-binding

domains (CSD1 and CSD2 located at the N-terminus

and a C-terminal S1 domain) flanking the central catalytic

RNB domain, typically found on RNase II-family members

(Fig. 1b). A three-dimensional model of RNase R has been

proposed based on the structure of its paralogue RNase II

(Barbas et al., 2008). Mutational analysis identified impor-

tant residues located in the active center: D272, D278 and

D280 (Matos et al., 2009). A D280N mutant showed no

exonucleolytic activity, similarly to what was reported with the

D209N mutant in RNase II (Amblar & Arraiano, 2005; Matos

et al., 2009; Awano et al., 2010). RNase R degradation is

processive, and unlike RNase II, the final end product of

digestion is a dinucleotide. Tyrosine Y324 was found to be

responsible for setting the final end product of RNase R

(Matos et al., 2009).

RNase R was shown to bind RNA more tightly within its

catalytic channel than does RNAase II (Matos et al., 2009;

Vincent & Deutscher, 2009). Surprisingly, a mutant expressing

only the nuclease domain (RNB) is able to degrade a perfect

dsRNA (Matos et al., 2009). Paradoxically, the presence of the

RNA-binding domains (CDS1, CDS2 and S1) requires the

presence of a short tail in order to degrade dsRNA (Matos

et al., 2009). The RNA-binding domains ‘block’ the entrance

of dsRNA into the catalytic channel. Accordingly, it was

proposed that RNA-binding domains actually discriminate

the substrates that can be processed by RNase R, favoring

the selection of RNA molecules harboring a 30 linear tail. It

has been suggested that RNase R can function both as an

exoribonuclease as well as an RNA ‘helicase’ (Awano et al.,

2010). RNase R intrinsic ‘helicase’ unwinding activity is

dependent on RNA-binding regions (S1, CDS1, and most

importantly, CDS2). The dsRNA must have a 30 linear over-

hang in order to become a suitable substrate for RNase R

helicase activity. Altogether, RNA-binding domains of RNase

R seem to be responsible for the selection of RNA substrates

harboring a 30 linear region, which can be provided by

polyadenylation (Andrade et al., 2009a; Matos et al., 2009).

Clearly, only the resolution of the RNase R structure will allow

a full understanding of its remarkable modes of action.

RNase R is critical in RNA quality control, namely in the

degradation of defective tRNAs (Vincent & Deutscher, 2006;

Awano et al., 2010) and rRNA (Cheng & Deutscher, 2003).

Together with PNPase, RNase R eliminates aberrant frag-

ments of the 16S and 23S rRNA genes, whose accumulation

potentially affects ribosome maturation and assembly.

Furthermore, the importance of RNase R in the accuracy of

gene expression is broadened with its role in protein

quality control. In the absence of RNase R, the small stable

SsrA/tmRNA is not processed properly, leading to defects in

trans-translation and significant errors in protein tagging for

proteolysis (Cairrão et al., 2003). RNase R has also emerged

as an important novel contributor to mRNA degradation.

The absence of both RNase R and PNPase results in the

strong accumulation of REP-containing mRNA sequences

(Cheng & Deutscher, 2005). However, the presence of only
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one of these exoribonucleases is sufficient to remove such

transcripts, revealing again a functional overlap between

these two enzymes. Remarkably, RNase R was also shown to

degrade the ompA transcript in a growth-phase-specific

manner (Andrade et al., 2006). In the stationary phase of

growth, the single inactivation of RNase R results in the

accumulation of ompA mRNA and this correlated with

increasing intracellular levels of OmpA protein. This work

revealed a role for RNase R in the control of gene expression

that could not be replaced by any of the other exoribonu-

cleases (Andrade et al., 2006).

The activity of RNase R is modulated according to the

growth conditions of the cell and responds to environmental

stimuli. RNase R seems to be a general stress-induced

protein, whose levels are increased under several stresses,

namely in cold shock, and the stationary phase of growth

(Cairrão et al., 2003; Andrade et al., 2006). RNase R-like

enzymes are widespread in most sequenced genomes.

Although most of the knowledge on this protein came from

work in E. coli, many RNase R from other bacterial species

have been identified. Notably, RNase R has also been

implicated in the establishment of virulence in a growing

number of pathogens.

In Shigella flexneri, RNase R was shown to be required for

the expression of the invasion factors IpaB, IpaC, IpaD and

VirG (Tobe et al., 1992). The disruption of the VacB gene in

other Shigella spp. and enteroinvasive E. coli resulted in the

reduced expression of virulence phenotypes (Tobe et al.,

1992). In Legionella pneumophila RNase R is the only

hydrolytic exoribonuclease present. This protein is not

essential for growth at optimal temperature; however, it is

important for growth and viability at low temperatures

and induces the competence (Charpentier et al., 2008). To

date, only one exoribonuclease, RNase R (MgR), was

identified in Mycoplasma genitalium, where it is an essential

protein (Hutchison et al., 1999). MgR shares some proper-

ties of both E. coli RNase R and RNase II and can carry out a

broad range of RNA processing and degradative functions

(Lalonde et al., 2007). Similar to what happens in E. coli,

RNase R from Aeromonas hydrophila is also a cold-shock

protein essential for viability at lower temperatures and its

absence leads to a reduction in A. hydrophila motility (Erova

et al., 2008). The infection of mouse cells with Drnr strains

shows that the virulence is attenuated, confirming the role of

this enzyme in the pathogenesis of this organism (Erova

et al., 2008). In Streptococcus pneumoniae, there is a unique

homologue of the RNase II family of enzymes that was

shown to be a RNase R-like protein (Domingues et al.,

2009). RNase R from Salmonella showed a reduction in its

activity and the ability to bind to RNA when compared with

E. coli RNase R (Domingues et al., 2009). Proteins isolated

from different strains regarding their virulence ability (viru-

lent vs. nonvirulent) are different regarding their activity

and RNA affinity (Domingues et al., 2009). Further studies

are still necessary to confirm whether the differences ob-

served in RNase R protein are responsible for the virulence

of these strains.

In P. syringae, RNase R is the exoribonuclease present in

the degradosome as opposed to most other systems, where

PNPase is part of such complexes (Purusharth et al., 2005)

(see Complexes of RNases). Like in E. coli, RNase R is also

particularly important at low temperatures, because inacti-

vation of the rnr gene inhibits the growth of both Pseudo-

monas putida (Reva et al., 2006) and P. syringae (Purusharth

et al., 2007) at 4 1C. In P. syringae, RNase R is involved in 30

end maturation of the 16S and 5S rRNA genes and in

tmRNA turnover (Purusharth et al., 2007). Genomic studies

revealed that P. putida RNase R plays an important role in

mRNA turnover because its absence led to the accumulation

of several mRNAs (Fonseca et al., 2008). On the other hand,

RNase R (previously YvaJ) from B. subtilis was suggested not

to play a critical role in RNA degradation; however, it may

play a role in mRNA turnover when polyadenylation at the

30 end occurs (Oussenko et al., 2005). Moreover, B. subtilis

RNase R was shown to be important for the quality control

of tRNAs (Campos-Guillen et al., 2010).

Overall, RNase R-deficient bacteria have been shown to

be less virulent than the wild-type parental strains. However,

how this is achieved is still not completely clear. This is

probably related to critical RNA degradation pathways.

The fact that RNase R was found to be key in the degrada-

tion of sRNAs, namely the virulence regulator SsrA/tmRNA,

paves the way to broaden its role in pathogenesis. It has also

been suggested that RNase R may control the export of

proteins involved in virulence mechanisms. Altogether, the

available data suggest that bacterial RNase R may be

attractive as a potential therapeutic agent, but clearly more

studies are required.

Oligoribonuclease

The end products resulting from the degradation of pre-

viously described RNases constitute a severe problem to the

cell viability, because these enzymes release RNA fragments

of 2–5 nucleotides in length whose accumulation may be

deleterious (Ghosh & Deutscher, 1999). Oligoribonuclease

is the enzyme that degrades these short oligoribonucleotides

(Stevens & Niyogi, 1967; Niyogi & Datta, 1975). From the

known exoribonuclease genes in E. coli the oligoribonu-

clease gene, orn, is the only one required for cell viability

(Ghosh & Deutscher, 1999).

Oligoribonuclease belongs to the DEDD family of exori-

bonucleases (Zuo & Deutscher, 2001), and is a homodimeric

(a2) enzyme (Zhang et al., 1998) that produces mononu-

cleotides and requires the presence of divalent cations

(Mn21) (Niyogi & Datta, 1975) (Fig. 1b). The hydrolysis is
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processive in the 30–50 direction; this enzyme has a

higher affinity to 5-mer oligoribonucleotides and the reac-

tion rate decreases with increasing chain length (Datta &

Niyogi, 1975). This enzyme requires a free 30-OH end and is

not sensitive to the 50-phosphorylation state of the RNA

(Datta & Niyogi, 1975). Only the preliminary X-ray char-

acterization of the E. coli oligoribonuclease structure has

been reported (Fiedler et al., 2004). It was shown recently

that Orn can degrade short DNA oligos, like its human

homologue Sfn, but this degradation requires higher en-

zyme concentrations than the RNA-directed activity (Mec-

hold et al., 2006).

Bacillus subtilis does not have an oligoribonuclease (Orn)

homologue. However, a functional analogue of Orn was

identified in this organism that was named YtqI (NrnA).

Surprisingly, this protein in vitro can degrade not only short

oligonucleotides (with a preference for 3-mer) but also 30-

phosphoadenosine 50-phosphate (pAp). This suggests the

existence of a closer link between sulfur and RNA metabolism

in B. subtilis (Mechold et al., 2007). More recently, a second

nanoRNase was discovered and named YngD (NrnB). This

protein is a member of the DHH/DHHA1 protein family of

phosphoesterases, and degrades nanoRNA 5-mers in vitro

similar to oligoribonuclease from E. coli (Fang et al., 2009).

In Streptomyces griseus and S. coelicolor, the gene ornA

encodes the oligoribonuclease protein. It is transcribed from

two promoters: one that is developmentally regulated and

the other that is a constitutive promoter (Ohnishi et al.,

2000). Unlike E. coli, in which oligoribonuclease is an

essential enzyme, if the ornA gene is deleted, the cells are

viable, but not able to form aerial hyphae (Ohnishi et al.,

2000). It was also shown that the degradation of RNA

oligomers by oligoribonuclease is critical for the completion

of the life cycle (Sello & Buttner, 2008).

In RNA metabolism, oligoribonuclease acts as the ‘finish-

ing enzyme’ to degrade oligoribonucleotides of two to five

nucleotides in length to mononucleotides in a wide range of

organisms.

RNase J1/J2

Recently, the discovery of RNase J1 and J2 shed new light on

the mechanism of RNA degradation in B. subtilis. These

enzymes were the first to be demonstrated to have bacterial

50–30 exoribonucleolytic activity (Mathy et al., 2007). More-

over, two different activities can be observed for these

enzymes, because they can act both as endo- and as

exoribonucleases (Even et al., 2005). RNases J1 and J2 had

already been described under endoribonucleases (see the

above section on Other endonucleases). RNase J1 is an

essential protein (Even et al., 2005) and its exoribonucleoly-

tic activity depends on the phosphorylation state at the 50

end, with a preference for monophosphate substrates

(Mathy et al., 2007). It was also shown that RNase J1

requires a single-stranded 50 end to allow the exoribonu-

cleolytic activity (Mathy et al., 2007). It also functions as a

50–30 exoribonuclease in the maturation of the 16S rRNA

gene and in regulating the mRNA stability of the Bacillus

thuringiensis stationary-phase insecticidal protein transcript

cryIIIA and the trp leader sequence (Mathy et al., 2007;

Deikus et al., 2008). There are indications that RNase J1

plays an important role both in the maturation or degrada-

tion of specific RNAs and in governing global mRNA

stability (Mader et al., 2008). Interestingly, RNase J homo-

logues are not present in Gammaproteobacteria such as E.

coli, but are widely distributed in other bacteria and in

archaea (Even et al., 2005; Mathy et al., 2007).

Other 30--50 exonucleases

In E. coli, besides the exoribonucleases mentioned above,

three others are present in the cell: RNase PH, RNase D and

RNase T.

RNase PH belongs to the same family of PNPase, the PDX

family of exoribonucleases (see Fig. 1b). It is encoded by the

rph gene and cotranscribed with pyrE, a gene necessary for

pyrimidine synthesis that is located upstream of rph (Ost &

Deutscher, 1991). However, while PNPase has an important

function in mRNA degradation, RNase PH is involved in

tRNA metabolism, namely in the processing of tRNA

precursors (Deutscher et al., 1988; Kelly et al., 1992). RNase

PH can act as a phosphorolytic RNase by removing nucleo-

tides following the CCA terminus of tRNA and also as a

nucleotidyltransferase by adding nucleotides to the ends of

RNA molecules (Jensen et al., 1992; Kelly & Deutscher,

1992). RNase PH can also cleave off the 30 end of other

sRNAs, including M1, 6S and 4.5S RNA (Li et al., 1998).

Deletion of the rph gene has no effect on the growth or the

viability of the cells. However, the combination of this

deletion with RNase T or PNPase deletions affects growth.

These data suggest that RNase PH has overlapping functions

in vivo with both RNase T and PNPase (Kelly et al., 1992). In

B. subtilis, there are two pathways for tRNA maturation and

RNase PH seems to be the most important for the matura-

tion of tRNA precursors with CCA motifs, while RNase Z is

responsible for the processing of CCA-less tRNA precursors

(Wen et al., 2005). The crystal structure of B. subtilis RNase

PH has been determined with a medium resolution and it

can be superimposed to the second core domain structure of

PNPase. Similar to what happens with RNase PH from A.

aeolicus and Pseudomonas aeruginosa, the protein crystallizes

as a hexamer arranged as a trimer of dimers and the

substrate interacts with the dimer (Ishii et al., 2003; Choi

et al., 2004; Harlow et al., 2004). However, the hexameric

ring formation is essential for the binding of precursor

tRNA and also for exoribonucleolytic activity (Choi et al.,
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2004). In Streptomyces, an RNase PH-like enzyme encoded

by the SCO2904 gene was identified. Similar to PNPase, this

can polyadenylate the 30 end of RNA in vitro; however,

in vivo studies showed that RNase PH may not be involved

in the synthesis or the maintenance of poly(A) tails in

S. coelicolor (Bralley et al., 2006). In Streptomyces, all

essential tRNA genes must encode the CCA end and the

RNase PH must be required to induce maturation of the 30

end of these tRNAs (Bralley et al., 2006) (see also below the

section on processing).

RNase D is a 30–50 hydrolytic exoribonuclease from the

DEDD superfamily, which contains both DNA and RNA

exonucleases (Zuo & Deutscher, 2001) (Fig. 1b). As a

member of this family, it has three conserved motifs. In

motif III, the presence of a tyrosine or histidine led to the

division of this family into two subgroups, DEDDy and

DEDDh, with RNase D belonging to the first one (Zuo &

Deutscher, 2001). RNase D requires divalent metal ions for

its activity and has a high degree of substrate specificity; its

substrates include denatured and damaged tRNAs, as well as

tRNA precursors with extra 30 residues following the CCA

sequence, but not ssRNA (Cudny & Deutscher, 1980; Cudny

et al., 1981; Zhang & Deutscher, 1988b) (see also below the

section on processing). RNase D overexpression seems to be

deleterious for the cell (Zhang & Deutscher, 1988a). The

chromosomal gene uses UUG as the initiation codon and

has an abnormally high level of rare codons, which could

limit the levels of endogenous protein (Kane, 1995). More-

over, it was shown that RNase D expression is negatively

regulated at the translational level by the initiation codon

(Zhang & Deutscher, 1989). The crystal structure of RNase

D shows that this protein has one DEDD catalytic domain

and two HRDC domains with a funnel-shaped ring archi-

tecture that could be important to define the exoribonu-

cleolytic activity of RNase D, which may be processive (Zuo

et al., 2005). RNase D homologues have been found in many

organisms, except archaea, and, in some genomes,

it is possible to find more than one homologue (Zuo &

Deutscher, 2001).

RNase T is a 30–50 exoribonuclease that belongs to the

DEDD superfamily of RNases and to the DEDDh subgroup

(Zuo & Deutscher, 2001) (Fig. 1b). It is a single-strand-

specific exonuclease and the activity is dependent on the

presence of divalent metal ions, such as Mg21 or Mn21

(Deutscher & Marlor, 1985; Zuo & Deutscher, 2002). Besides

the ability to cleave RNA molecules, RNase T also has DNA

exonuclease activity (Viswanathan et al., 1998). RNase T has

a distributive activity and an unusual base specificity,

discriminating against pyrimidines and, particularly, C

residues (Zuo & Deutscher, 2002). This sequence specificity

is largely determined by the last four nucleotides at the 30

end (Zuo & Deutscher, 2002). It is involved in the final step

of maturation of many stable RNAs and seems to be the

most important RNase with that function (Li & Deutscher,

1995, 1996; Li et al., 1998). In fact, it was shown that RNase

T is essential for the maturation of the 30 ends of 5S and 23S

rRNA genes (Li & Deutscher, 1995; Li et al., 1999a), and it is

also involved in the end turnover of tRNAs (Deutscher et al.,

1985). The crystal structures of RNase T from both E. coli

and P. aeruginosa show that the protein adopts an oligor-

ibonuclease-like homodimer architecture, which was shown

to be required for its activity (Li et al., 1996; Zuo et al.,

2007). The two monomers are facing opposite ends, which

means that the active site of one monomer is facing the

binding site of the other. This arrangement allows the

binding of the RNA molecule from one monomer to be

close to the active site of the other one (Zuo et al., 2007).

Despite its critical role in RNA metabolism, RNase T

orthologues are just found in a small group of bacteria, the

Gamma division of Proteobacteria (Zuo & Deutscher, 2001).

Both E. coli and Salmonella belong to the Enterobacter-

iaceae family. A recent work showed that the two hydrolytic

enzymes present in E. coli, RNase II and RNase R, are also

found in Salmonella and behave quite similarly in terms of

their the ability to degrade structured substrates and the

final product that is released. However, the proteins from

Salmonella showed a reduction in their activity and an

ability to bind to RNA when compared with the E. coli

enzymes (Domingues et al., 2009).

In B. subtilis, besides the proteins mentioned above, we

can find other RNase, YhaM. This protein has been impli-

cated in DNA replication (is able to degrade ssDNA), and

in vitro studies showed that is also able to cleave RNA into

the 30–50 direction in a Mn21-dependent manner. However,

the in vivo function of YhaM in RNA metabolism remains to

be determined (Noirot-Gros et al., 2002; Oussenko et al.,

2002). Sequence homologues of YhaM were found only in

Gram-positive bacteria (Oussenko et al., 2002).

Cyanobacteria are prokaryotes organisms that may be

related to the ancestor of chloroplasts. In the genome of

Synechocystis, it is possible to find genes that have a high

homology to RNase E, PNPase, RNase II/R and PAP, the

most important proteins involved in mRNA degradation

and polyadenylation (Rott et al., 2003). However, the

product of the putative PAP gene has nucleotidyltransferase

and not PAP activity, and the reaction of polyadenylation in

Synechocystis is performed by PNPase, which originates

heterogeneous poly(A)-rich tails, like it occurs in chloro-

plasts. These tails are found in the amino acid coding region,

the 50 and 30 untranslated regions of mRNAs, in rRNA and

the single intron located at the tRNAfmet (Rott et al., 2003).

PNPase is an essential protein for this organism because the

deletion of this gene causes lethality. The same is observed

when the gene for RNase II/R is disrupted (Rott et al., 2003).

There is no degradosome complex in cyanobacteria (see

Complexes of RNases).
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Complexes of RNases

RNA-degrading machines

The degradosome is a large multiprotein complex involved in

RNA degradation. It is believed to act as a general RNA decay

machine in which the components of the degradosome

cooperate during the decay of many RNAs. The complex

formation contributes to the coordination of the endoribo-

nucleolytic cleavage with the exoribonucleolytic degradation

(Py et al., 1994, 1996; Miczak et al., 1996; Vanzo et al., 1998).

In E. coli, this multiprotein complex is formed by RNA

degradation enzymes RNase E and the exonuclease PNPase,

as well as the ATP-dependent RhlB and the glycolytic

enzyme enolase (Py et al., 1994; Miczak et al., 1996; Vanzo

et al., 1998). RNase E provides the organizing scaffold for

the degradosome, through its carboxy-terminal half. In the

carboxy-terminal half, four segments were found to show a

tendency to form a secondary structure (Callaghan et al.,

2004), namely A, B, C and D. Segment A localizes the

degradosome to the inner cytoplasmic membrane (Khemici

et al., 2008). RhlB binds a 69-residue conserved segment

downstream of segment B, a coiled coil that may engage

RNA (Chandran et al., 2007; Worrall et al., 2008b). Segment

C is the enolase-binding site (Chandran & Luisi, 2006), and

segment D interacts with PNPase (Callaghan et al., 2004).

Under normal growth conditions, crystallographic and

biophysical measurements indicate that one enolase dimer

and one helicase protomer interact with one RNase E

monomer (Chandran & Luisi, 2006; Chandran et al., 2007;

Worrall et al., 2008a). Findings for the stoichiometry of

PNPase with the isolated recognition site from RNase E

(Callaghan et al., 2004), and recent crystallographic analysis

of the E. coli PNPase/RNase E complex reveal an equimolar

ratio (Nurmohamed et al., 2009). In principle, three RNase

E tetramers and four PNPase trimers could form a self-closing

assembly composed of 12 protomers, satisfying all possible

binding sites. The ideal composition of such an assembly is

12 : 12 : 24 : 12 (RNase E : PNPase : enolase : RhlB) (Marcaida

et al., 2006).

The group of minor components that bind to the degrado-

some to affect its composition and modulate its enzymatic

activity includes polyphosphate kinase, poly(A) polymerase,

ribosomal proteins and the molecular chaperones DnaK and

GroEL (Miczak et al., 1996; Butland et al., 2005; Morita et al.,

2005; Regonesi et al., 2006) and other DEAD-box helicases

(SrmB, RhlE and CsdA) that may bind to sites outside the

RhlB recognition region (Khemici & Carpousis, 2004). An-

other potential interaction may occur between the degrado-

some and the cytoskeleton protein MinD (a membrane-

localized bacterial cytoskeletal protein), which may account

for the apparent association of the degradosome with the

cytoskeleton (Taghbalout & Rothfield, 2007).

The composition of the degradosome can also undergo

changes depending on the conditions of growth or stress

(Khemici et al., 2004; Prud’homme-Genereux et al., 2004;

Morita et al., 2005; Gao et al., 2006). A different complex

containing RNase E, Hfq and SgrS, a small regulatory RNA,

is formed under conditions of phosphosugar stress (Morita

et al., 2005). The formation of the complex with Hfq and

SgrS requires the same region of RNase E that is necessary

for the formation of the canonical RNA degradosome, and

evidence suggests that the degradosome is remodelled as a

consequence of the new interaction. There is evidence that

RNase E can form a ‘cold-shock’ RNA degradosome in

which the helicase RhlB is replaced by CsdA, another

DEAD-box RNA helicase (Khemici et al., 2004; Prud’-

homme-Genereux et al., 2004). The compositional changes

in the degradosome following cold exposure may account,

in part, for changes in mRNA stability associated with cold

shock response. The PNPase content of the degradosome

can change in response to phosphosugar stress, temperature

shock and the growth stage (Beran & Simons, 2001; Liou

et al., 2001). Surprisingly, RNase E from P. syringae interacts

with the hydrolytic exoribonuclease RNase R instead of

PNPase and with another DEAD-box helicase, RhlE (Pur-

usharth et al., 2005).

Degradosome composition and function may also be

modulated through its interactions with the RNase E

inhibitory proteins RraA and RraB, which interact with the

C-terminal half of RNase E, thereby altering the composi-

tion of the degradosome, namely the amount of PNPase,

RhlB and enolase bound to RNase E. RraB expression gave

rise to degradosomes that contained the noncanonical

components DnaK and CsdA.

The global effects of mutations in degradosome constitu-

ents on mRNA levels have been evaluated using microarrays

(Bernstein et al., 2004). This work reported that the func-

tions of all degradosome constituents are necessary for

normal mRNA turnover and that assembled degradosome

components work in concert to regulate the transcripts of

some E. coli metabolic pathways, but not others. This

suggests the existence of structural features or biochemical

factors that distinguish among different classes of mRNAs

targeted for degradation.

Archaea are microscopic, single-celled organisms with no

nucleus, no mitochondria and no chloroplasts. Regarding

mRNA, they are more similar to bacteria than to eukaryotes:

mRNA does not have introns, it is polycistronic, is not

modified and does not have long stabilizing poly(A) tails at

the 30 end (Brown & Coleman, 1975; Brown & Reeve, 1986).

However, in Sulfolobus and Methanothermobacter, the ex-

istence of an archaeal exosome with characteristics of the

eukaryotic exosome was demonstrated (Evguenieva-Hack-

enberg et al., 2003; Farhoud et al., 2005). The exosome is a

multiprotein complex involved in the maintenance of the
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correct levels of mRNA in eukaryotic cells (van Hoof &

Parker, 1999) (see also below the section on RNA degradation

on eukaryotic microorganisms). The exosome of the archae-

on S. solfataricus is a protein complex with a dual function: it

is an RNA-tailing and RNA-degrading enzyme because it has

both phosphorolytic and polyadenylating activity (Lorentzen

et al., 2005; Portnoy et al., 2005). It is formed by a hexameric

ring consisting of three dimers of the orthologues of Rrp41

and Rrp42, and is responsible for phosphorolytic RNA

degradation (Lorentzen et al., 2005). It is able to synthesize

heteropolymeric RNA tails, and, generally, RNA synthesis by

the hexameric ring is more efficient than RNA phosphorolysis

(Evguenieva-Hackenberg et al., 2008). The Rrp41 orthologue

contains the active site; however, the ring structure is neces-

sary for the activity of the complex (Lorentzen et al., 2005).

On the top of the ring there are three polypeptides with RNA-

binding domains that are orthologues of Rrp4 (which con-

tains S1 and KH domains) and/or Csl4 (which contains S1

and Zn-ribbon domains) (Buttner et al., 2005; Lorentzen

et al., 2007). Recently, the structure of the S. solfataricus

exosome was resolved (Lu et al., 2010). The structure showed

that the RNA-binding ring is flexible, which may be impor-

tant for the unwinding of secondary structures (Lu et al.,

2010). The structure of the archaeal nine-subunit exosome is

very similar to the one present in Eukarya and to PNPase

(Lorentzen et al., 2005, 2007; Liu et al., 2006b). However, the

archaeal exosome contains at least one additional subunit

with an unknown function, a protein designated DnaG

(Evguenieva-Hackenberg et al., 2003), which can participate

in 5S rRNA gene maturation. The S. solfataricus exosome is

able to degrade synthetic and natural RNA efficiently, which

is in accordance with its proposed role as a major complex of

30 to 50 exoribonucleases in the cell. Moreover, the genome of

S. solfataricus does not contain genes for other predicted 30–50

exoribonucleases. In the absence of triphosphate at the 50 end,

the mRNA degradation can also occur in the 50–30 direction

(Hasenohrl et al., 2008). In this case, the degradation is

probably performed by the RNase J1/J2 homologue, which is

identical to the Mbl-like RNase (Koonin et al., 2001).

However, in halophilic and many methanogenic archaea

genomes, it is not possible to find the orthologues of

exosomal subunits, which indicates that the mechanism for

RNA degradation may be different in these archaea (Koonin

et al., 2001). Moreover, in archaea without an exosome,

there is no post-transcriptional modification of the RNA

molecules, and no tails are added to RNAs (Portnoy et al.,

2005; Portnoy & Schuster, 2006). In halophilic archaea,

there is an RNase R-like protein that is not found in

methanogenic archaea (Portnoy & Schuster, 2006). Like in

Mycoplasma, these archaea also have a minimal genome,

and, for this reason, the RNase R homologue may be the

only enzyme responsible for the exoribonucleolytic activity,

because both exosome and PNPase are absent (Zuo &

Deutscher, 2001). Haloferax volcanii is a representative

halophilic archaeon. It was shown that RNase R is required

for viability in H. volcanni, and therefore, plays an impor-

tant role in the mechanism of RNA degradation indepen-

dent of polyadenylation (Portnoy et al., 2005; Portnoy &

Schuster, 2006).

The RNases in action

Processing and degradation of RNAs

Processing of RNAs

All rRNA and tRNA species are transcribed as precursor

molecules that further undergo a series of modifications to

achieve the mature molecules (Deutscher, 2009). Here, we

will focus on the importance of RNases in the processing

events during the maturation of rRNA and tRNA effectors.

We will also refer to their role in the quality control of these

processes.

In prokaryotes, the 70S ribosomes are constituted of two

subunits: 30S and 50S particles. The smaller subunit com-

prises a 16S rRNA molecule and 21 proteins, and the larger

subunit comprises a 23S and a 5S rRNA molecules plus 33

proteins. rRNAs are transcribed as precursor molecules that

are processed and modified while assembly is occurring. In

E. coli, there are seven rRNA operons comprising the three

rRNA molecules always displayed in the same order: the 16S

gene at the 50 end, followed by the 23S, and finally by the 5S

rRNA gene at the 30 end (Deutscher, 2009). During tran-

scription, RNase III cleaves double-stranded structures in

the pre-rRNAs, releasing the fragments that will be subse-

quently cleaved to generate the 16S, 23S and 5S rRNA genes

(Robertson et al., 1968; Gegenheimer & Apirion, 1975).

RNase E further reduces the extra 115 nt from the 17S

rRNA gene (16S rRNA gene precursor) to 66 at the 50 end,

resulting in a 16.3S intermediate. Finally, RNase G (also

termed RNase M16) converts the 50 end to the mature

molecule (Hayes & Vasseur, 1976; Dahlberg et al., 1978; Li

et al., 1999b). In B. subtilis, the 50–30 exoribonuclease RNase

J1 is involved in rRNA processing (Even et al., 2005; Britton

et al., 2007; de la Sierra-Gallay et al., 2008). The 30 matura-

tion enzyme remains to be characterized both in E. coli and

in B. subtilis. In P. syringae the 30–50 exonuclease RNase R

seems to be acting to directly induce the maturation of the 30

terminus of the 16S rRNA gene (Cheng & Deutscher, 2002,

2005; Deutscher, 2006, 2009; Purusharth et al., 2007).

The E. coli 23S rRNA gene precursor is released, harbor-

ing three or seven 50 and seven to nine 30 extra residues. The

30 maturation requires RNase T for completion (Li et al.,

1999a). In B. subtilis the RNase III family Mini-III dimeric

enzyme is responsible for the simultaneous maturation of

both 50 and 30 sides of the double-stranded stalk that flanks
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the mature 23S rRNA gene (Olmedo & Guzman, 2008;

Redko et al., 2008). Salmonella constitutes an interesting

case where RNase III removes IVS in a way that the mature

rRNA molecule results from two fragments (Burgin et al.,

1990).

The E. coli 5S rRNA gene derives from a 9S precursor,

which is endonucleolytically cleaved by RNase E, releasing

an intermediate molecule with three additional nucleotides

at both ends (Ghora & Apirion, 1978; Misra & Apirion,

1979). The 50 maturation is still uncharacterized, while

RNase T is again responsible for removing (at least) the least

two 30 residues (Li & Deutscher, 1995). Bacillus subtilis

almost repeats the mechanism of maturation of the 23S for

the 5S rRNA gene, but in this case, RNase M5 cleaves the

double-stranded region, simultaneously inducing the ma-

turation of the 50 and 30 ends (Sogin et al., 1977).

rRNA degradation takes place whenever errors (e.g.

improper structure conformations, or misordered addition

of proteins) occur and also in response to stress conditions

(Deutscher, 2009). Quality control mechanisms occur at

levels that are almost negligible in fast-growing cells, but are

nevertheless essential as they avoid the accumulation of

defective ribosomes. RNase LS may participate in the 23S

rRNA gene degradation; PNPase, together with an RNA

helicase or RNase R, may also be involved, because they are

the only ones that can degrade structured RNAs. In addition

to these, any process that leads to damaged cell membranes

induces drastic RNA degradation, because it promotes the

release of the nonspecific endoribonuclease RNase I from

the periplasm into the cells (Cheng & Deutscher, 2005;

Otsuka & Yonesaki, 2005; Deutscher, 2009).

tRNAs are vital adaptors for the decoding of the genome

into proteins, and contribute up to 20% of the total RNA in

the cell (Dittmar et al., 2004; Hartmann et al., 2009). Both

E. coli K12 and B. subtilis bear 86 tRNA genes in their genome,

many of them associated into operons (Fournier & Ozeki,

1985; Inokuchi & Yamao, 1995; Dittmar et al., 2004). Introns

are rarely found and are present only in the anticodon loop of

some tRNAs in bacteria, but occur extensively in archaea

(Vogel & Hess, 2001; Marck & Grosjean, 2002, 2003). Two

endoribonucleases mainly process the pre-tRNAs: RNase P,

which almost universally generates 50 mature ends (Evans

et al., 2006; Randau et al., 2008), and RNase Z, which cleaves

the CCA-less pre-tRNAs (see the sections on RNase P and

RNase Z for details on these enzymes). All tRNA molecules

must have a CCA signal at their 30 end to allow aminoacyla-

tion by the tRNA nucleotidyltransferase. That can be

achieved, either by removing all extra nucleotides, when it is

already present in the sequence, or cutting after the discrimi-

nator nucleotide (Li & Deutscher, 1995; Hartmann et al.,

2009). The CCA motif varies from absent in eukarya to being

present in all genes of E. coli, about 2/3 of the B. subtilis pre-

tRNAs, and from 0% to 100% in archaea (Hartmann et al.,

2009). Two main modes of 30 maturation have been described

so far: a one-step endonucleolytic cleavage by the universally

conserved RNase Z homodimer (Dutta & Deutscher, 2009)

and a multistep process involving both endo- and exonu-

cleases (Li et al., 1998; Hartmann et al., 2009).

For instance, in E. coli where all genes encode the CCA

sequence, maturation usually begins with an RNase E cut at

the 30 end (eventually aided by PNPase or RNase II),

followed by 50 processing by RNase P, and a final 30

exonucleolytic trimming to expose the CCA sequence. The

trimming reaction is carried out by RNase II, RNase D, or

more effectively, RNase T or RNase PH (Li & Deutscher,

2002; Ow & Kushner, 2002).

Even though RNase Z is not essential for E. coli, it is

encoded in its genome and has been shown to be able to shut

down growth when overexpressed (Takaku & Nashimoto,

2008).

In B. subtilis all the CCA-less tRNAs are processed by the

RNase Z and all the CCA-containing tRNAs are envisaged to

follow a multistep maturation pathway, although the en-

donuclease responsible for the first step has not yet been

found (Pellegrini et al., 2003). RNase PH is the main exo

involved in the trimming process (Wen et al., 2005).

tRNAs have several constraints because they must be

sufficiently similar to be processed, and able to fit within

the ribosome, but must be sufficiently different to ensure

correct loading with specific amino acids and recognize

exclusively the codon(s) for their anticodon sequence

(Hopper et al., 2010). Modifications are of absolute im-

portance for folding stabilization avoiding rapid decay,

fidelity and efficiency of aminoacylation and/or proper

binding to the ribosomes (Hou & Perona, 2010; Phizicky &

Alfonzo, 2010). Indeed, about 100 modifications have been

described for tRNAs so far (Czerwoniec et al., 2009; Hopper

et al., 2010). Although tRNAs are stable, they have quality

control mechanisms for eliminating defective species, and it

seems at least partially dependent on polyadenylation by

poly(A) polymerase (and removal by polynucleotide phos-

phorylase). RNase R has also been shown to participate in

tRNA quality control mechanisms in a B. subtilis condi-

tional CCA mutant strain. In this sense, flawed stable RNA

molecules would behave like unstable RNAs being rapidly

degraded by similar mechanisms (Li et al., 2002; Campos-

Guillen et al., 2010).

tmRNA is a hybrid/bifunctional RNA molecule that

shares the characteristics of both tRNA structural folds

involving the 30 and 50 ends (Hayes & Keiler, 2010) – and

mRNA – bearing a sequence that encodes for an ORF,

consisting of a peptide signal for proteolytic degradation,

ended with UAA termination codons. The tmRNA matura-

tion is similar to the mechanism described above regarding

tRNA processing. However, it was shown that RNase R is

quite important for the maturation of the 30 end of the
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tmRNA, even more relevantly under cold-shock conditions

(Cairrão et al., 2003). SmpB is a small basic protein that

binds to tmRNA with a high affinity and specificity (Karzai

et al., 1999; Dulebohn et al., 2006), and specifically recog-

nizes paused ribosomes near the 30 end of truncated mRNAs

(Janssen & Hayes, 2009). This RNA-binding protein is a

regulator for the tmRNA-based quality control system in the

cells, because it can prevent tmRNA degradation by RNase R

(Hong et al., 2005).

RNA degradation mechanisms

The same RNA molecule can be degraded by different path-

ways depending on the stress conditions or the growth

phase. Thus, the degradation pathways are not universal.

However, the interplay between the different factors in-

volved in RNA decay emphasizes the role of RNases in the

degradation of multiple substrates (Fig. 3).

In this section, we illustrate various examples of the relevant

mechanisms of mRNAs and sRNAs degradation mainly in

E. coli, but we also refer to examples from B. subtilis.

pyrF-orfF

The dicistronic transcript from pyrF-orfF contains pyrF,

encoding orotidine-50-monophosphatase decarboxylase,

and an ORF (orfF) encoding a polypeptide of unknown

function (Donovan & Kushner, 1983; Jensen et al., 1984;

Turnbough et al., 1987). The full-length transcript is rapidly

cleaved into a series of breakdown products, and at least 18

endonucleolytic cleavage sites have been mapped through-

out the full-length mRNA (Arraiano et al., 1997). Moreover,

it seems that the pyrF-orfF transcript may be degraded by

more than one enzymatic pathway depending on where the

initial cleavage occurs. Therefore, some fragments seem to

be degraded in a 50–30 direction, while other degradation

products are processively cleaved in a 30–50 direction. The

results obtained by Arraiano et al. (1997) provided, for the

first time, support to the hypothesis that multiple decay

pathways are involved in the decay of a single transcript. It

thus seems reasonable to assume that in vivo there are a

variety of ways in which a particular mRNA can be

degraded. Which pathway is used may be related to the

particular context in which one or more of the decay-

mediating factors has access to the mRNA.

trxA

The E. coli trxA gene, which encodes for thioredoxin, is

transcribed as a monocistronic message of 493 nucleotides.

In the study of the trxA decay multiple mutant strains were

constructed deficient in RNase E (rne – previously known as

ams), PNPase (pnp) and RNase II (rnb) (Arraiano et al.,

1988). Northern and S1 analysis showed that full-length

transcripts are initially processed by endonucleolytic clea-

vages (Arraiano et al., 1993). The complete degradation of

the initially cleaved transcripts occurs through progression

of endonucleolytic steps in the 30–50 direction, followed by

exonucleolytic degradation by RNase II and PNPase. This

was the first report of a progression of endonucleolytic

cleavages in a 30–50 direction during the degradation of a

full-length transcript.

rpsO

The rpsO gene encodes for the E. coli ribosomal protein S15.

The degradation of rpsO mRNA is accomplished by several

independent pathways, including the RNase E-dependent

endonucleolytic pathway and a pathway that requires the

polyadenylation of transcripts (Braun et al., 1996). The

stability of the rpsO transcript is mainly controlled by

RNase E. After RNase E cleavage, the mRNA lacking the

30-terminal RNA secondary structure becomes an ideal

substrate for PNPase (Braun et al., 1996). When the primary

pathway of decay mediated by RNase E is inactive, the

exoribonucleolytic poly(A)-dependent degradation of rpsO

mRNA is stimulated (Hajnsdorf et al., 1995; Marujo et al.,

2003; Folichon et al., 2005). It was shown that RNase R is

the main enzyme involved in the poly(A)-dependent degra-

dation of the rpsO mRNA (Andrade et al., 2009a) and that

RNase II protects the full-length rpsO mRNA from degrada-

tion by removing the poly(A) tails (Marujo et al., 2000).

Elongated rpsO transcripts harboring poly(A) tails of in-

creased length are specifically recognized by RNase R and

strongly accumulate in the absence of this exonuclease.

Because this enzyme is able to degrade dsRNAs, the 30

oligo(A)-extension may stimulate the binding of RNase R,

allowing the complete degradation of the rpsO mRNA. The

RNA chaperone Hfq can protect the rpsO mRNA from

exonucleolytic degradation by PNPase and RNase II, and

from cleavage by RNase E (Folichon et al., 2003). Moreover,

it was shown recently that in the absence of this chaperone,

stabilization of rpsO mRNA occurs, with a concomitant

decrease in its level, indicating that the change in the mRNA

levels in the hfq mutant does not result from the modifica-

tion of RNA stability, but probably from changes in tran-

scriptional activity (Le Derout et al., 2010).

rpsT

The rpsT gene encodes the E. coli ribosomal protein S20. This

gene is transcribed from two promoters (P1 and P2) and

terminates at a Rho-independent terminator, yielding two

monocistronic mRNA species: P1 (447 nt) and P2 (356 nt)

(Mackie & Parsons, 1983). The first step of the rpsT decay is

carried out by RNase E and there are several lines of evidence

indicating that this step is independent of polyadenylation

(Mackie, 1991; Coburn & Mackie, 1996b, 1998). However,
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PAP I, PNPase, ATP and phosphate are necessary to catalyze

the degradation of the smaller intermediates generated by

RNase E cleavage (Coburn & Mackie, 1998). On the other

hand, RNase II inhibits PNPase-mediated degradation of

transcripts by removing the poly(A) tails added by PAP I. The

same had also been observed with rpsO (Coburn & Mackie,

Fig. 3. Mechanisms of decay. (a) Model of RNA degradation

pathways in Escherichia coli. The decay of the majority of

transcripts starts with an endoribonucleolytic cleavage by

RNase E. This endoribonuclease prefers a monophosphory-

lated 50 end, but not in a strict way, and several RNAs escaping

this rule have been described (Kime et al., 2009). RNase III is

another enzyme responsible for the initial endoribonucleolytic

cleavage of structured RNAs. However, unlike RNase E (that

only cleaves single-stranded RNAs), RNase III cleaves dsRNAs.

After endoribonucleolytic cleavages, the linear transcripts are

rapidly degraded by the 30–50 degradative exoribonucleases,

RNase II, RNase R and PNPase. RNase R, unlike RNase II and

PNPase, is efficient against highly structured RNAs. PNPase, in

association with other proteins, namely RNA helicases, can

also unwind RNA duplexes. A minor pathway in the cell is the

exoribonucleolytic degradation of full-length transcripts.

Poly(A) polymerase (PAP I) adds a poly(A) tail to the short 30

overhang. These tails provide a ‘toe-hold’ to which exoribonu-

cleases can bind. Cycles of polyadenylation and exoribonu-

cleolytic digestion can overcome RNA secondary structures.

The small oligoribonucleotides (two to five nucleotides)

released by exoribonucleases are finally degraded to

mononucleotides by oligoribonuclease (Andrade et al.,

2009b). (b) Model of RNA degradation pathways in Bacillus

subtilis. In B. subtilis, the main enzyme responsible for RNA

decay is RNase J1. RNase J1 has both an endoribonucleolytic

and a 50–30 exoribonucleolytic activity (Mathy et al., 2007).

RNase J2 has endoribonucleolytic cleavage activities and

specificities similar to RNase J1 and normally they form a

complex. RNAs can be degraded from the 50 end by the 50–30

exoribonuclease activity of RNase J1, or first, they can be

endonucleolytically cleaved by RNase J1 or by RNase Y

(Shahbabian et al., 2009). The products from this endoribo-

nucleolytic cleavage can then be degraded by the 30–50

exoribonucleases, PNPase and RNase R, or by the 50–30

exoribonuclease activity of RNase J1 (Bechhofer, 2009). The

small oligoribonucleotides released by the 30–50 exoribonu-

cleases are finally degraded to mononucleotides by the NrnA

(YTqI) or the NrnB (YngD) enzymes (Fang et al., 2009). (c)

Model of RNA degradation in eukaryotes. In yeast, the mRNA

decay is initiated with the shortening of the poly(A) tail at the

30 end (deadenylation). After deadenylation, there are two

possible degradation pathways for the transcripts. One is the

removal of the 50 cap structure of the transcripts by the Dcp1p/

Dcp2p decapping complex, leaving the RNA molecule

accessible to the Xrn1 50–30 exoribonuclease, which rapidly

degrades the uncapped RNA. The other pathway is the 30–50

exoribonucleolytic degradation by the exosome, a multiprotein

complex in which the Rrp44 is the only active RNase (Houseley

& Tollervey, 2009). Recently, it was demonstrated that Rrp44

can degrade RNA in both an exo- and an endoribonucleolytic

manner (Schaeffer et al., 2009). The capped oligonucleotides

produced from the exosome RNA decay are hydrolyzed by the

DcpS scavenger decapping enzyme (Liu & Kiledjian, 2006a).
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1998; Marujo et al., 2000). Therefore, RNase II paradoxically

protects these RNAs from degradation by PNPase.

malEF

The polycistronic malEFG operon of E. coli encodes three

proteins involved in the transport of maltodextrins. The

malEF intercistronic region contains two REP sequences

(Newbury et al., 1987) that protect the transcript from 30–50

exonucleolytic degradation (Higgins et al., 1988). RNase R

and PNPase are shown to play a major role in the degrada-

tion of the sRNA fragments resulting from the RNase E

cleavage (Khemici & Carpousis, 2004; Cheng & Deutscher,

2005). PNPase degradation of the malEF transcript is only

accomplished in the presence of RNase E and RhlB, indicat-

ing that the degradosome complex participates in this

degradation (Stickney et al., 2005). RhlB unwinds the folded

RNA and passes it to PNPase (Coburn et al., 1999; Khemici

& Carpousis, 2004). Polyadenylation of the malEF REP

sequences by PAP I seems to be a crucial factor in the

degradation of these sequences because they accumulate to

high levels in pcnB mutants (Khemici & Carpousis, 2004).

ompA

The ompA gene is transcribed as a monocistronic mRNA

and encodes the major protein of E. coli outer membrane

OmpA (von Gabain et al., 1983). It was demonstrated

previously that ompA stability is growth rate dependent

and that shorter generation times in the exponential phase

corresponded to longer ompA mRNA half-lives (Nilsson

et al., 1984). The degradation of this mRNA is initiated by

an RNase E cleavage in the 50 UTR stem-loops (Melefors &

von Gabain, 1988; Arnold et al., 1998). Then, exonucleolytic

degradation and polyadenylation seem to account for the

elimination of breakdown products (O’Hara et al., 1995;

Mohanty & Kushner, 1999; Andrade et al., 2006). The

presence of only one of the exoribonucleases (RNase II,

RNase R or PNPase) may be sufficient to remove most of the

decay intermediates (Cheng & Deutscher, 2005). Further-

more, the exonucleolytic activity on the full-length ompA

transcript was shown to be growth phase regulated (An-

drade et al., 2006). The sRNA MicA, first known as SraD, is

the principal post-transcriptional regulator of the ompA

expression (Rasmussen et al., 2005; Udekwu et al., 2005).

This antisense sRNA, when present in high levels, blocks

ribosome binding at the ompA mRNA translation start site

and subsequently destabilizes this mRNA. Moreover, the

MicA-mediated decay of ompA mRNA depends on Hfq

(Rasmussen et al., 2005; Udekwu et al., 2005). Therefore,

the levels of ompA are also dependent on the levels of MicA.

Because OmpA is one of the main outer membrane proteins

in E. coli, it is fundamental to have a strict regulation in

order to maintain the homeostasis of the cell.

pac

Penicillin amidase, encoded by the pac gene, is an important

enzyme for industry because it is used in the production of

semi-synthetic penicillins. The degradation of this mRNA

seems to be initiated by an endonucleolytic cleavage because

the most remarkable stabilization of the E. coli pac mRNA was

obtained in the RNase E mutant. RNase III seems to play no

role in the degradation of this transcript. The RNase E cleavage

is followed by the exonucleolytic degradation by RNase II,

RNase R and/or PNPase. Single deletions of any of these

exoribonucleases were unable to stabilize this mRNA most

probably because of their redundant effect (Viegas et al., 2005).

trp

In the last few years, the degradation of the B. subtilis

tryptophan operon, trp, has been studied in detail. This

operon was used recently for the study of the cleavage

specificity of the RNase J1 endonuclease (Deikus & Bechho-

fer, 2009). The trp operon is regulated at the level of

transcription termination (Babitzke & Gollnick, 2001; Hen-

kin & Yanofsky, 2002), which is controlled by binding of the

trp RNA-binding attenuation protein (TRAP) to the trp

leader RNA. When the supply of intracellular tryptophan is

low, the trp operon genes are transcribed from a constitutive

promoter and more tryptophan is generated. When the

intracellular supply of tryptophan is sufficient, the TRAP

protein complex binds to a specific region of the trp leader

sequence. This binding results in the formation of a stem-

loop structure that induces transcription termination, gen-

erating a 140 nt trp leader RNA.

The degradation of this trp leader RNA is initiated by an

RNase J1 endonucleolytic cleavage at a single-stranded AU-

rich region upstream of the 30 transcription terminator

(Deikus et al., 2008). This cleavage is followed by a 50–30

degradation of the downstream fragment by the exonucleoly-

tic activity of the RNase J1 (Deikus et al., 2008) and a 30–50

degradation of the upstream fragment by PNPase (Deikus

et al., 2004). The PNPase action is essential for the efficient

release and recycling of TRAP (Deikus et al., 2004).

sRNAs

RNases also play a very important role in the regulation of

sRNAs. These RNAs have received considerable attention

over the past decade because they can be crucial for the post-

transcriptional control of gene expression (Storz et al., 2004;

Viegas & Arraiano, 2008). In order to understand the action

of these sRNAs, it is fundamental to study the processing

and turnover of these molecules.

sRNA MicA and RybB are stationary-phase regulators

and belong to the group of sRNAs that control outer

membrane permeability. RybB controls the expression of

outer membrane proteins OmpC and OmpW (Guillier

FEMS Microbiol Rev 34 (2010) 883–923 c� 2010 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd. All rights reserved

905RNA maturation and degradation in control of gene expression



et al., 2006; Johansen et al., 2006) and MicA controls the

expression of OmpA (Rasmussen et al., 2005; Udekwu et al.,

2005). In E. coli, MicA and RybB are destabilized by PNPase

in the stationary phase (Andrade & Arraiano, 2008). More-

over, PNPase can degrade MicA in a degradosome-indepen-

dent manner. Polyadenylation of MicA by PAP I appears not

to be essential for PNPase action on this sRNA. The 30

exoribonucleases RNase II and RNase R appear not to be

required for the degradation of MicA.

In S. typhimurium, the sRNAs MicA, SraL, CsrB and CsrC

are also mainly degraded by PNPase in the late stationary

phase. In the case of CsrB and CsrC, the absence of this

exoribonuclease also induced a change in degradation

patterns with the accumulation of several decay intermedi-

ates (Viegas et al., 2007).

The antisense RNA CopA inhibits the replication of

plasmid R1 by binding to the target region, CopT, that is

located within the repA mRNA. This binding blocks the

synthesis of the replication initiator protein RepA (Stou-

gaard et al., 1981; Givskov & Molin, 1984). The decay of

CopA is initiated by an endonucleolytic cleavage by RNase

E, followed by the addition of a poly(A) tail. The poly(A)

tails facilitate degradation by PNPase and RNase II

(Söderbom et al., 1997). Both PNPase and RNase II were

able to degrade the processed transcript (Söderbom &

Wagner, 1998).

ColE1 RNAI is the copy number regulator of the plasmid

ColE1 (Lin-Chao & Cohen, 1991). PNPase, PAP I, RNase E

and RNase III have been demonstrated to play roles in

ColE1 RNAI decay (Lin-Chao & Cohen, 1991; Xu et al.,

1993; Xu & Cohen, 1995; Binnie et al., 1999). Two degrada-

tion pathways have been suggested for this RNA (Binnie

et al., 1999). The primary pathway starts with RNase E

cleavage, followed by PAP I polyadenylation and PNPase-

mediated degradation. The second mechanism begins with

the polyadenylation of RNAI, followed by RNase III clea-

vage and a subsequent exonucleolytic attack. In the absence

of RNase E, RNase III and PAP I, the antisense RNAI

continues to disappear, showing that yet other enzymes are

able to catalyze its decay.

The replication of the ColE2 plasmid requires a plasmid-

coded initiator protein, Rep. ColE2 RNAI controls rep expres-

sion by the blockage of translation (Takechi et al., 1994).

ColE2 RNAI degradation starts with RNase E cleavage at the 50

end. PAP I polyadenylates the 30 ends of degradation inter-

mediates and both RNase II and PNPase act in further

exoribonucleolytic degradation (Nishio & Itoh, 2008). Be-

cause PNPase and RNase II prefer a single-stranded ‘toe-hold’

to bind the 30 end of the mRNA, PAP I generates a binding site

for these exoribonucleases by adding a poly(A) tail to the

30 end of the mRNA. Thus, cycles of polyadenylation and

exoribonucleolytic attack contribute towards the correct de-

gradation of the mRNA after the initial cleavage.

The hok/sok system mediates plasmid R1 stabilization by

killing plasmid-free cells. Sok antisense RNA inhibits the

translation of the hok mRNA, a toxic protein mRNA (Gerdes

et al., 1990). As Sok RNA is highly unstable, the pool of free

Sok RNA decays rapidly in plasmid-free cells. The decay of

Sok RNA leads to Hok protein synthesis and killing of the

plasmid-free cells (Dam Mikkelsen & Gerdes, 1997). Like in

the other antisense RNAs described previously, the initial

step of Sok RNA decay is performed by RNase E in the

single-stranded 50 end. RNase E cleavage products are

rapidly degraded from their 30 ends by PNPase using a PAP

I-dependent mechanism. Sok RNA, as well as CopA, is

destabilized when RNase II is absent.

RNA degradation in eukaryotes

Because this publication has focused mainly on RNA

degradation in prokaryotes, it was not the purpose of this

chapter to provide a complete overview of RNA metabolism

in eukaryotic cells but only pinpoints some interesting links

between the systems. For a more comprehensive overview of

the RNA degradation pathways in eukaryotes, readers can

refer to publications focused on eukaryotes (Doma &

Parker, 2007; Amaral et al., 2008; Rougemaille et al., 2008;

Shyu et al., 2008; Houseley & Tollervey, 2009; Moore &

Proudfoot, 2009).

RNA degradation in eukaryotes is much more complex

and involves more factors than those in prokaryotes

(Houseley & Tollervey, 2009). The eukaryotic cell is divided

into two main parts: the nucleus and the cytoplasm, and

RNA degradation is important in both compartments.

Compartmentalization causes considerable change in

mRNA’s fate; eukaryotic RNAs have to survive in the cell

much longer than prokaryotic messengers, and the molecule

synthesized in the nucleolus has to be transported to the

cytoplasm for protein production. In the nucleus, aberrant

transcripts are selectively degraded; RNases also act in

multiple processing steps and remove the processing bypro-

ducts and a myriad of noncoding cryptic transcripts. The

balance between the rate of transcription and RNA degra-

dation regulates messenger levels. In the cytoplasm, the

transcripts are translated to the proteins; therefore, in this

compartment, it is very important to check the translational

abilities of RNAs and remove incorrect molecules that can

cause the production of aberrant proteins (Doma & Parker,

2007). In the cytoplasm, differences in the degradation rate

can influence protein expression. A set of factors can affect

the lifetime of the transcript including RNA-binding pro-

teins that bind to the RNAs, and sRNAs that can drive

transcripts to degradation or cause translational silencing

(siRNA and miRNA) (Eulálio et al., 2008; Carthew &

Sontheimer, 2009).
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It has been considered that in eukaryotes, the RNA

degradation is mainly exonucleolytic (Fig. 3), while in

prokaryotes, endonucleases have a significant impact on

degradation process. In the best-studied model – yeast S.

cerevisiae – the main enzymes involved in the degradation

are exoribonucleases. Degradation in the 50–30 direction is

performed by the Xrn1 protein in the cytoplasm and the

Rat1 enzyme in the nucleus (Fritz et al., 2004; Meyer et al.,

2004). The main yeast 30–50 hydrolytic exonuclease is Rrp44/

(Dis3) from the RNase II family. In the nucleus, there is also

another 30–50 exonuclease: Rrp6. Rrp44 interacts with the

nine-protein ring-shapes complex to generate a ribonucleo-

lytically active exosome, where Rrp44 is the only active

RNase (Liu et al., 2006b; Dziembowski et al., 2007).

The exosome ring is homologous to the archaeal complex

with phosphorolytic nuclease activity and to the bacterial

PNPase (Lorentzen et al., 2007). Surprisingly, this huge

protein machine lost its phosphorolytic activity in the

evolution and in most eukaryotes can induce RNA

degradation only when cooperating with the active compo-

nent Rrp44 (Dziembowski et al., 2007). Recent structural

studies showed that even if the Rrp44 protein by itself is able

to degrade RNA, it seems that the substrates that are

delivered to this nuclease first have to pass the channel in

the exosome ring structure (Bonneau et al., 2009).

Research performed in the last few years proved that

involvement of endonuclease activity in the RNA degrada-

tion process in eukaryotes was underestimated. Among the

other examples (Huntzinger et al., 2008; Eberle et al., 2009),

the most evident was the discovery of the endonucleolytic

activity of the exosome complex; this activity is carried by

the PIN domain localized in the N-terminal part of the

Rrp44 protein. Rrp44, the only active component of the

yeast exosome, can degrade RNA in both an exo- and an

endonucleolytic manner. Because the homologues of Rrp44

from other eukaryotes also have PIN domains, it seems that

endonucleolytic activity is the common feature in its RNA

degradation (Lebreton et al., 2008; Schaeffer et al., 2009).

For a long time, the function of polyadenylation in the

RNA degradation process was considered as one of the most

striking differences between the eukaryotic and the prokar-

yotic RNA metabolism. In the eukaryotes, long poly(A) tails

added by the poly(A) polymerase to the 30 end of newly

created transcripts have been considered as RNA-stabilizing

elements while in the prokaryotic cell polyadenylation leads

to transcript degradation. Surprisingly, it was discovered that

in eukaryotes, polyadenylation can also drive RNAs to decay.

The TRAMP complex composed of poly(A) polymerase,

helicase and an RNA-binding protein is able to add short

poly(A) tails to the aberrant transcripts, targeting them to

induce rapid degradation (LaCava et al., 2005). This showed

that the poly(A)-dependent RNA degradation mechanism

active in prokaryotes is still present in eukaryotic cells.

Last discoveries in the field of RNA degradation in

eukaryotes showed that we can find much more similarities

to prokaryotic systems than was previously expected. The

degradation pathways in eukaryotes are obviously more

complex and different in many aspects, but at the same

time, many mechanisms are very similar. We can find

homologues of prokaryotic enzymes that serve important

functions in eukaryotic systems such as bacterial RNase II

and RNase R homologue Rrp44, RNase D homologue Rrp6,

the exosome ring that is structurally very similar to PNPase

and others. Moreover, we can find strikingly similar me-

chanisms even if they are performed by factors without

obvious homology. A key example is the prokaryotic anti-

viral defense system CRISPR, which resembles the eukaryo-

tic RNAi mechanism (Hale et al., 2009). Another example is

the 50–30 direction exoribonucleolytic degradation pathway,

which is very important in eukaryotic RNA metabolism. In

the last few years, it became clear that, in spite of earlier

beliefs, this pathway in prokaryotes also exists, but enzymes

that are involved are not homologues of the eukaryotic ones

(Mathy et al., 2007). This and many other examples clearly

show that evolution has led to the development of similar

solutions regarding degradation mechanisms.

Eukaryotic organelles are structures of endosymbiotic

prokaryotic origin; they possess their own usually reduced

genome, which is expressed and transcribed, and RNAs are

processed and degraded. The expression of proteins encoded

in the organellar genome is, in most cases, crucial for energy

management in eukaryotic cells. Many questions still remain

about the RNA degradation pathways in organelles, mostly

because they seem to be different in different organisms and

so it is hard to find the general rules that can be applied to all

systems. Nonetheless, RNA metabolic pathways in the

organelles retained some characteristics of the prokaryotic

ancestors. RNA degradation in chloroplasts seems to be

most similar to prokaryotic process. In the higher plant

genomes, we can find sequences of homologues of bacterial

nucleases RNase E and RNase J that are localized in

chloroplasts (Lange et al., 2009). The degradation process,

similar to that in bacteria, starts with endonucleolytic

cleavage and is then accelerated by polyadenylation and

exonucleolytic degradation by PNPase. There is also an

RNase R homologue that was shown to play a role in rRNA

processing (Bollenbach et al., 2005).

RNA degradation pathways in the mitochondria seem to

be more divergent in different organisms. Interestingly, and

in contrast to the situation in chloroplasts, degradation

pathways in the mitochondria are supposed to be mostly

exonucleolytic. In plants, the main player seems to be

PNPase, which degrades polyadenylated RNA molecules

in the mitochondria (Holec et al., 2006). In contrast, in

yeast S. cerevisiae, there is no mitochondrial PNPase;

instead, the main degrading machinery is the mitochondrial
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degradosome complex (mtEXO), which digests RNA in the

30–50 direction and is composed of the homologue of RNase

II-Dis3 protein and the conserved RNA DEAD-box helicase

Suv3 (Dziembowski et al., 2003; Malecki et al., 2007).

Additionally, it was suggested that there is one more

potential enzyme Pet127 that can degrade RNA in the 50–30

direction (Fekete et al., 2008). Surprisingly, there is no

polyadenylaton in yeast mitochondria; instead, stabilizing

functions are served by the proteins that bind to the 30 and

50 untranslated ends of the RNA molecules. Degradation of

transcripts in human mitochondria is not well character-

ized. Although the data on this topic are not consistent, it

seems that a homologue of bacterial PNPase is present in the

mitochondria, and it was found recently that it can form a

complex with the human homologue of Suv3 helicase. Suv3

is involved in RNA degradation and removal of aberrant and

cryptic transcripts; the exact function of this protein is still

not clear (Szczesny et al., 2010). Transcripts in human

mitochondria are stably polyadenylated, which, in contrast

to the situation in plant mitochondria, suggests a stabiliza-

tion role for poly(A) tails (Tomecki et al., 2004). On the

other hand, scientists also discovered polyadenylated degra-

dation byproducts, which suggests that polyadenylation can

trigger or aid transcripts’ degradation; therefore, it seems

that polyadenylation in human mitochondria can serve both

functions (Slomovic et al., 2005; Szczesny et al., 2010).

Concluding remarks

Maintenance of optimal levels of RNAs at any time and

under any circumstance is an extremely difficult task to

achieve and requires great coordination among all the

factors involved in this control. It is also assumed that there

is a cross-talk between transcription and degradation to

maintain the balance that is best for the survival of micro-

organisms. There are several examples where this is obvious,

and when a specific message is more transcribed, it is also

more stabilized, and vice versa.

Transcripts can have a different half-life under different

growth conditions to rapidly carry out the necessary changes

and adjust to adequate RNA levels. The same RNA can have

a ‘preferred’ decay pathway, but there are examples where

there are alternative degradation pathways for the same

transcript, depending on which enzyme cleaves first. After

cleavage, the RNA breakdown product(s) can have a distinct

half-life depending on sequence and structure. Therefore,

the structural characteristics of RNA stability and instability

predetermine the ‘fate’ of an RNA, but the environment and

the consequent levels and nature of the degradative enzymes

will also play a determinant role in its turnover. For instance,

the mRNAs expressed in heterologous systems can have a

very different half-life than if they are expressed in their own

microorganism. The directionality of the decay process

depends on the transcript analyzed. Once we characterize

the enzymes from one microorganism, we can design

strategies to stabilize RNAs. Mutants have been instrumental

in characterizing degradation pathways and in changing the

turnover of specific transcripts, especially because a limited

number of RNases intervene in the maturation and degrada-

tion of RNAs.

There are fundamental principles that govern RNA decay

in all organisms. Evolution has resulted in similar functions

performed by different enzymes. For instance, in E. coli,

RNase E is one of the major endonucleases, but this enzyme

is absent in B. subtilis. In B. subtilis, RNase J1 seems to take

over the same function, and this enzyme is not present in E.

coli. RNase J1 has been shown to have both endo and 50–30

exo activities. In yeast, 50–30 decay is prominent, and Rrp44/

Dis3, an RNase II family enzyme, has dual endo and 30–50

exo activities, being an example of an optimized ‘RNA

degradation machine’. Sometimes, RNases also combine

into complexes to speed up the decay process or confer

specificity to certain targets.

It is fascinating to know that RNases themselves are

strictly regulated proteins and have mechanisms to adapt

them to the environment and to the levels of the other

RNases. For instance, RNase R is highly increased under cold

shock; the levels of PNPase and RNase II are inter-regulated

and the level of RNase E is autoregulated.

Recent studies demonstrate that, between prokaryotic

and eukaryotic systems, the RNA degradation mechanisms

have much more similarities than expected. The mechanism

of RNAi in eukaryotes has shown the power of RNA

degradation mechanisms involving RNases. It is now ob-

vious that the modulation of RNA levels and their respective

proteins can be rapidly achieved. In prokaryotes, it was

already known that antisense RNAs could be quite impor-

tant for the control of gene expression. Moreover, the

recently discovered CRISP RNAs (Karginov & Hannon,

2010), which can be considered a bacterial RNAi mechan-

ism, have lent an extra level of complexity to the study of

RNAs and bacterial RNA degradation mechanisms. It is very

stimulating to work in a field of research still full of

surprises! This is a thorough review, but in a few years, we

are sure that there will be much more to say!

It is our hope that this review conveys some of the current

excitement in research on RNA and serves as a source of

inspiration for scientists entering this field.
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Jäger S, Evguenieva-Hackenberg E & Klug G (2004) Temperature-

dependent processing of the cspA mRNA in Rhodobacter

capsulatus. Microbiology 150: 687–695.

Jain C & Belasco JG (1995) Autoregulation of RNase E synthesis

in Escherichia coli. Nucleic Acids Symp Ser 33: 85–88.

Janssen BD & Hayes CS (2009) Kinetics of paused ribosome

recycling in Escherichia coli. J Mol Biol 394: 251–267.

Jarrige A, Brechemier-Baey D, Mathy N, Duche O & Portier C

(2002) Mutational analysis of polynucleotide phosphorylase

from Escherichia coli. J Mol Biol 321: 397–409.

Jarrige AC, Mathy N & Portier C (2001) PNPase autocontrols its

expression by degrading a double-stranded structure in the

pnp mRNA leader. EMBO J 20: 6845–6855.

Jaskiewicz L & Filipowicz W (2008) Role of Dicer in

posttranscriptional RNA silencing. Curr Top Microbiol 320:

77–97.

Jensen KF, Larsen JN, Schack L & Sivertsen A (1984) Studies on

the structure and expression of Escherichia coli pyrC, pyrD, and

pyrF using the cloned genes. Eur J Biochem 140: 343–352.

Jensen KF, Andersen JT & Poulsen P (1992) Overexpression and

rapid purification of the orfE/rph gene product, RNase PH of

Escherichia coli. J Biol Chem 267: 17147–17152.

Jiang X & Belasco JG (2004) Catalytic activation of multimeric

RNase E and RNase G by 50-monophosphorylated RNA. P

Natl Acad Sci USA 101: 9211–9216.

Jiang X, Diwa A & Belasco JG (2000) Regions of RNase E

important for 50-end-dependent RNA cleavage and

autoregulated synthesis. J Bacteriol 182: 2468–2475.

Jinek M & Doudna JA (2009) A three-dimensional view of the

molecular machinery of RNA interference. Nature 457:

405–412.

Johansen J, Rasmussen AA, Overgaard M & Valentin-Hansen P

(2006) Conserved small non-coding RNAs that belong to the

sigmaE regulon: role in down-regulation of outer membrane

proteins. J Mol Biol 364: 1–8.

Kaberdin VR & Blasi U (2006) Translation initiation and the fate

of bacterial mRNAs. FEMS Microbiol Rev 30: 967–979.

Kaberdin VR, Miczak A, Jakobsen JS, Lin-Chao S, McDowall KJ

& von Gabain A (1998) The endoribonucleolytic N-terminal

half of Escherichia coli RNase E is evolutionarily conserved in

Synechocystis sp. and other bacteria but not the C-terminal

half, which is sufficient for degradosome assembly. P Natl Acad

Sci USA 95: 11637–11642.

Kane JF (1995) Effects of rare codon clusters on high-level

expression of heterologous proteins in Escherichia coli. Curr

Opin Biotech 6: 494–500.

Karginov FV & Hannon GJ (2010) The CRISPR system: small

RNA-guided defense in bacteria and archaea. Mol Cell 37:

7–19.

Karzai AW, Susskind MM & Sauer RT (1999) SmpB, a unique

RNA-binding protein essential for the peptide-tagging activity

of SsrA (tmRNA). EMBO J 18: 3793–3799.

Kelly KO & Deutscher MP (1992) Characterization of Escherichia

coli RNase PH. J Biol Chem 267: 17153–17158.

Kelly KO, Reuven NB, Li Z & Deutscher MP (1992) RNase PH is

essential for tRNA processing and viability in RNase-deficient

Escherichia coli cells. J Biol Chem 267: 16015–16018.

Khemici V & Carpousis AJ (2004) The RNA degradosome and

poly(A) polymerase of Escherichia coli are required in vivo for

the degradation of small mRNA decay intermediates

containing REP-stabilizers. Mol Microbiol 51: 777–790.

Khemici V, Toesca I, Poljak L, Vanzo NF & Carpousis AJ (2004)

The RNase E of Escherichia coli has at least two binding sites for

DEAD-box RNA helicases: functional replacement of RhlB by

RhlE. Mol Microbiol 54: 1422–1430.

Khemici V, Poljak L, Luisi BF & Carpousis AJ (2008) The RNase E

of Escherichia coli is a membrane-binding protein. Mol

Microbiol 70: 799–813.

Kime L, Jourdan SS, Stead JA, Hidalgo-Sastre A & McDowall KJ

(2009) Rapid cleavage of RNA by RNase E in the absence of 50-

monophosphate stimulation. Mol Microbiol 76: 590–604.

Kirsebom LA & Trobro S (2009) RNase P RNA-mediated

cleavage. IUBMB Life 61: 189–200.

Kirsebom LA, Baer MF & Altman S (1988) Differential effects of

mutations in the protein and RNA moieties of RNase P on the

efficiency of suppression by various tRNA suppressors. J Mol

Biol 204: 879–888.

Kitamura S, Fujishima K, Sato A, Tsuchiya D, Tomita M & Kanai

A (2010) Characterization of RNase HII substrate recognition

using RNase HII-Argonaute chimeric enzymes from

Pyrococcus furiosus. Biochem J 426: 337–344.

Ko JH & Altman S (2007) OLE RNA, an RNA motif that is highly

conserved in several extremophilic bacteria, is a substrate for

and can be regulated by RNase P RNA. P Natl Acad Sci USA

104: 7815–7820.

FEMS Microbiol Rev 34 (2010) 883–923 c� 2010 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd. All rights reserved

915RNA maturation and degradation in control of gene expression



Ko JH, Han K, Kim Y et al. (2008) Dual function of RNase E for

control of M1 RNA biosynthesis in Escherichia coli.

Biochemistry 47: 762–770.

Koonin EV, Wolf YI & Aravind L (2001) Prediction of the

archaeal exosome and its connections with the proteasome

and the translation and transcription machineries by a

comparative-genomic approach. Genome Res 11: 240–252.

Koslover DJ, Callaghan AJ, Marcaida MJ, Garman EF, Martick M,

Scott WG & Luisi BF (2008) The crystal structure of the

Escherichia coli RNase E apoprotein and a mechanism for RNA

degradation. Structure 16: 1238–1244.

Kulms D, Schafer G & Hahn U (1995) SaRD, a new protein

isolated from the extremophile archaeon Sulfolobus

acidocaldarius, is a thermostable ribonuclease with DNA-

binding properties. Biochem Bioph Res Co 214: 646–652.

LaCava J, Houseley J, Saveanu C, Petfalski E, Thompson E,

Jacquier A & Tollervey D (2005) RNA degradation by the

exosome is promoted by a nuclear polyadenylation complex.

Cell 121: 713–724.

Lalonde MS, Zuo Y, Zhang J, Gong X, Wu S, Malhotra A & Li Z

(2007) Exoribonuclease R in Mycoplasma genitalium can carry

out both RNA processing and degradative functions and is

sensitive to RNA ribose methylation. RNA 13: 1957–1968.

Lamontagne B, Larose S, Boulanger J & Elela SA (2001) The

RNase III family: a conserved structure and expanding

functions in eukaryotic dsRNA metabolism. Curr Issues Mol

Biol 3: 71–78.

Lange H, Sement FM, Canaday J & Gagliardi D (2009)

Polyadenylation-assisted RNA degradation processes in plants.

Trends Plant Sci 14: 497–504.

Lebreton A, Tomecki R, Dziembowski A & Seraphin B (2008)

Endonucleolytic RNA cleavage by a eukaryotic exosome.

Nature 456: 993–996.
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The crucial role of PNPase in the degradation of small

RNAs that are not associated with Hfq

JOSÉ M. ANDRADE, VÂNIA POBRE, ANA M. MATOS,1 and CECÍLIA M. ARRAIANO2

Instituto de Tecnologia Quı́mica e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal

ABSTRACT

The transient existence of small RNAs free of binding to the RNA chaperone Hfq is part of the normal dynamic lifecycle of
a sRNA. Small RNAs are extremely labile when not associated with Hfq, but the mechanism by which Hfq stabilizes sRNAs has
been elusive. In this work we have found that polynucleotide phosphorylase (PNPase) is the major factor involved in the rapid
degradation of small RNAs, especially those that are free of binding to Hfq. The levels of MicA, GlmY, RyhB, and SgrS RNAs are
drastically increased upon PNPase inactivation in Hfq� cells. In the absence of Hfq, all sRNAs are slightly shorter than their full-
length species as result of 39-end trimming. We show that the turnover of Hfq-free small RNAs is growth-phase regulated, and
that PNPase activity is particularly important in stationary phase. Indeed, PNPase makes a greater contribution than RNase E,
which is commonly believed to be the main enzyme in the decay of small RNAs. Lack of poly(A) polymerase I (PAP I) is also
found to affect the rapid degradation of Hfq-free small RNAs, although to a lesser extent. Our data also suggest that when the
sRNA is not associated with Hfq, the degradation occurs mainly in a target-independent pathway in which RNase III has
a reduced impact. This work demonstrated that small RNAs free of Hfq binding are preferably degraded by PNPase. Overall, our
data highlight the impact of 39-exonucleolytic RNA decay pathways and re-evaluates the degradation mechanisms of Hfq-free
small RNAs.

Keywords: Hfq; MicA; PNPase; small noncoding RNAs; RNase E

INTRODUCTION

The bacterial Hfq is a member of the Sm/Lsm superfamily
of proteins involved in RNA metabolism (Wilusz and
Wilusz 2005). It is a global regulator of cell physiology
with particular impact on stress responses and affects the
virulence traits of many pathogens (Tsui et al. 1994; Chao
and Vogel 2010). Hfq plays a relevant role as a mediator of
small noncoding RNA�mRNA interactions (Valentin-
Hansen et al. 2004; Waters and Storz 2009). Base-pairing
of small RNAs with their target mRNAs can alter mRNA
translation and/or stability. The majority of small RNAs
act as inhibitors of translation, usually triggering mRNA
decay, although some other sRNAs act as positive regula-
tors (Massé et al. 2003; Vecerek et al. 2007; Soper et al.
2010).

Hfq forms a stable hexamer with a ring-shaped structure
displaying two distinct RNA-binding surfaces (Brennan and

Link 2007). Biochemical and structural data support that the
Hfq hexamer can bind simultaneously the sRNA on its
proximal face and mRNA on its distal face, increasing the
probability of RNA–RNA interactions in order to form
a heteroduplex (Schumacher et al. 2002; Lease and Woodson
2004; Mikulecky et al. 2004; Link et al. 2009). In agree-
ment, it has been suggested that the Hfq hexamer forms
a ternary complex with oligo A18 and the small RNA
DsrADII with a stoichiometry of 1:1:1 (Updegrove et al.
2011). Hfq can also work as a RNA chaperone and induce
structural rearrangement of the RNA molecules to enable
the contact between the two partner RNAs (Moll et al.
2003b; Geissmann and Touati 2004; Afonyushkin et al. 2005;
Arluison et al. 2007).

Bacterial small RNAs that act as repressors bind at or
near the ribosome binding site (RBS) of the target mRNA
blocking its translation (Morita et al. 2006; Bouvier et al.
2008). Most of the time, this promotes cleavages in the
mRNA, not only on the vicinity of the duplex (as happens
with ompA mRNA/MicA) (Udekwu et al. 2005), but also
downstream into the coding region (as reported for sodB
mRNA/RyhB) (Prévost et al. 2011). Ribonuclease (RNase)
III is an important endonuclease in the degradation of sRNA
coupled to their target mRNAs (Afonyushkin et al. 2005;
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Deltcheva et al. 2011). However, other sRNAs mediate the
destabilization of the target mRNA in an RNase E-dependent
manner (Massé et al. 2003; Afonyushkin et al. 2005; Morita
et al. 2005; Udekwu et al. 2005). RNase E is a single-stranded
RNA endonuclease involved in mRNA decay in Escherichia
coli (Arraiano et al. 2010). Hfq can associate with RNase E
and sRNA in ribonucleoprotein complexes that are thought
to make the degradation of target mRNAs more efficient
(Aiba 2007).

Hfq is also found to interact with other proteins involved
in mRNA decay. One of these proteins is the poly(A)
polymerase I (PAP I), responsible for the majority of poly-
adenylation in E. coli cells (Régnier and Hajnsdorf 2009). Hfq
is suggested to regulate polyadenylation by stimulating PAP I
activity on mRNA (Hajnsdorf and Régnier 2000; Folichon
et al. 2005). In the absence of Hfq, the poly(A) levels are
reduced and the poly(A) tails are suggested to become
smaller (Le Derout et al. 2003; Mohanty et al. 2004). Hfq
was also shown to interact with the polynucleotide phos-
phorylase (PNPase) (Mohanty et al. 2004), a major 39–59

exonuclease involved in RNA degradation (Andrade et al.
2009b). PNPase responds to environmental stimuli, and its
activity is modulated by metabolites such as ATP, citrate,
and cyclic di-GMP (Del Favero et al. 2008; Nurmohamed
et al. 2011; Tuckerman et al. 2011). We have previously
shown that PNPase is a key factor in the turnover of small
RNAs controlling the expression of outer membrane proteins
in the stationary phase of growth (Andrade and Arraiano
2008). It was recently suggested that PNPase can also have
a protector role for some sRNAs in exponentially growing
cells (De Lay and Gottesman 2011). However, the details of
the interplay between PNPase and Hfq in the function of
sRNA are still not clear.

The interaction of Hfq with small RNAs is dynamic. Small
RNAs compete for access to Hfq, and it was shown that
the expression of unrelated sRNAs can dissociate Hfq–sRNA
complexes already formed (Fender et al. 2010; Hussein and
Lim 2011). The transient existence of small RNAs free from
Hfq binding is thus part of the normal dynamic lifecycle of
a sRNA. In addition, variations in the Hfq expression levels
or in the availability of the free pool of Hfq can result in the
reduction of Hfq–sRNA complexes. A small RNA that is
not associated with Hfq is rapidly degraded, although the
mechanism by which Hfq stabilizes small RNAs is not yet
fully understood. RNase E was considered to be responsi-
ble for the rapid degradation of the small RNAs and was
shown to compete with Hfq for access the same RNA
sequences (Massé et al. 2003; Moll et al. 2003a). However,
the activity of RNase E may not be as generalized; for
example, RNase E was not found to be important for the in
vivo degradation of OxyS upon Hfq inactivation (Basineni
et al. 2009).

In this work we have characterized the degradation of
small RNAs that are unassociated with Hfq. We have
constructed multiple hfq mutants defective in RNases or

in the poly(A) polymerase, and studied the impact of
these factors in the expression of several small RNAs. We
have shown that small RNAs in their Hfq-free state are
rapidly degraded by PNPase, particularly in the stationary
phase of growth. Moreover, PNPase was found to be more
relevant than RNase E or RNase III in the degradation
of small RNAs when these were not associated to Hfq.
PNPase-mediated degradation of small RNAs is also
found to be an active regulatory pathway in the cells
expressing Hfq. Together, results show that PNPase has
a predominant role in the degradation of Hfq-free small
RNAs.

RESULTS

Inactivation of PNPase markedly increases the levels
of small RNAs not associated with Hfq

It is commonly believed that the RNA chaperone Hfq
protects regulatory RNAs from RNase E endonucleolytic
cleavages (Massé et al. 2003; Moll et al. 2003a). Neverthe-
less, we have previously showed that 39–59 exonucleolytic
activity can be a determinant for the degradation of
small RNAs, even in the presence of Hfq (Andrade and
Arraiano 2008). In this work, we wanted to characterize
the role of 39–59 exonucleases in the degradation of small
RNAs that are not associated with Hfq. Therefore, we
have performed most of our studies in strains lacking
Hfq.

In this work we have analyzed four well-characterized
E. coli sRNAs: MicA, SgrS, RyhB, and GlmY. Most of these
small RNAs are induced under specific conditions of stress
and in the stationary phase. Therefore, we decided to focus
our work on this growth phase. Total RNA was extracted
from stationary-phase cultures, and the steady-state levels
of these small RNAs were analyzed by Northern blotting.
Inactivation of Hfq resulted in the high reduction of all of
the small RNAs analyzed when compared with the wild-
type strain (Fig. 1, middle). Only GlmY levels seemed not
to be so strongly affected by the absence of Hfq in the
conditions analyzed. Subsequently, a set of multiple mu-
tants lacking both Hfq and one of the main 39–59 exo-
nucleases (PNPase, RNase II, or RNase R) was constructed.
RNase II and RNase R had a reduced impact on this
regulation; RNase II mutant was only shown to change
GlmY levels, and the absence of RNase R did not affect
the levels of any of these small RNAs. Upon inactivation
of PNPase in cells lacking Hfq, it was possible to detect
a very strong signal for all of the small RNAs analyzed.
These results indicate that PNPase is a major factor
controlling the levels of small RNA that are not associated
with Hfq.

In Hfq� PNPase� cells we observed the accumulation of
a slightly shorter form of all of the small RNAs (here
designated, respectively, by MicA*, SgrS*, RyhB*, and GlmY*)
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(Fig. 1, middle). These shorter sRNA are not detected or are
barely perceptible in the wild-type strain. The shorter GlmY*
(z140 nt) is an exception, being the predominant RNA
detected in the wild type. This has been previously observed
as the full-length GlmY (z180 nt) is rapidly processed in the
39-end to originate the GlmY* species (Reichenbach et al.
2008; Urban and Vogel 2008). Overexpression of PNPase in
the hfq pnp strain was shown to reverse the accumulation of
MicA* (Supplemental Fig. S1). This result confirmed that
PNPase is responsible for the higher levels of small RNAs
found in the Hfq� PNPase� cells.

We had previously demonstrated the involvement of
PNPase in the degradation of MicA in stationary-phase
cells harboring Hfq (Andrade and Arraiano 2008). To
check the impact of PNPase in the regulation of all of
these small RNAs in the presence of Hfq, we have
analyzed the levels of the same small RNAs in the pnp
single mutant and compared it with the wild-type strain

(Fig. 1, left). Inactivation of PNPase in cells expressing
Hfq resulted in higher levels of some of these sRNAs,
namely, GlmY* and MicA. In contrast, other small RNAs
such as RyhB and SgrS showed decreased amounts in the
PNPase mutant strain. The reduction in the levels of
other sRNAs following PNPase inactivation in exponen-
tial phase was recently observed and may potentially
reflect an increase in the activity of other RNase(s) (De
Lay and Gottesman 2011), but the genetic pathways
involved in this regulation have not yet been elucidated.
Here we show that in cells without Hfq the inactivation of
PNPase (Hfq– PNPase– cells) results in increasing levels
of all of the sRNAs analyzed, but that this regulation is
not universal in the presence of Hfq (Hfq+ PNPase– cells).
These results suggest that the binding of Hfq may impair
the PNPase-dependent regulation of at least some small
RNAs.

We also analyzed the effect of RNase E in the control
of these regulatory RNAs in the absence of Hfq (Fig. 1,
right). Only RyhB* and both GlmY/GlmY* levels were
increased in the Hfq� RNase E� mutant, while MicA* and
SgrS* levels did not change. This greatly contrasted with
the strong stabilization of all of the small RNAs obtained
in the Hfq� PNPase�mutant. Hence, our results indicated
that when these small RNAs are not associated with Hfq,
they are clearly more vulnerable to degradation by PNPase
than to cleavages by RNase E.

PNPase is a major factor in the rapid decay
of the Hfq-free MicA*

Taking into account these results and our previous data
on MicA (Andrade and Arraiano 2008), we decided to
use this sRNA as the main model for further investiga-
tion. MicA (previously SraD) is an antisense RNA that
down-regulates the expression level of outer membrane
proteins OmpA (Rasmussen et al. 2005; Udekwu et al.
2005) and LamB (Bossi and Figueroa-Bossi 2007), as well
as the members of the PhoPQ regulon (Coornaert et al.
2010).

To evaluate whether the higher MicA* levels in the
absence of PNPase were the consequence of increased
stability, we next analyzed the decay rates of MicA* in the
Hfq– PNPase– cells (Fig. 2). We also tested the potential
role of RNase II and RNase R in the degradation of small
RNAs in cells without Hfq. Stability measurements in-
dicated that PNPase was found to be the only exoribo-
nuclease significantly involved in the exo-degradation
of MicA RNAs in stationary-phase cells lacking Hfq
(Fig. 2). Neither RNase II nor RNase R was shown to
significantly affect this decay. The hfq pnp double mutant
showed a nearly fourfold stabilization of MicA* when
compared with hfq single mutant. Accordingly, the in-
creasing levels of MicA* in Hfq� PNPase� cells are a
consequence of its longer stability due to the inactivation

FIGURE 1. PNPase strongly affects the levels of several small RNAs
that are not bound to Hfq. Small RNA expression was analyzed by
Northern blot. (Left) The levels of MicA, SgrS, Ryhb, and GlmY
were analyzed in the wild-type (hfq+ pnp+) and a PNPase mutant
(hfq+ pnp�). Total RNA was extracted from stationary-phase
cultures grown at 37°C as mentioned in the Materials and Methods.
(Middle) Hfq mutants lacking one of the 39–59 exoribonucleases
PNPase (pnp), RNase II (rnb), and RNase R (rnr) were compared with
wild-type (wt) and hfq single mutant. (Right) To study the impact of
the essential RNase E (rne), the double hfq rne-1 mutant was grown
at 30°C until it reached stationary phase and then shifted to the
nonpermissive temperature of 44°C for inactivation of the thermo-
sensitive RNase E. Samples were withdrawn after 5 min of in-
cubation. For comparison, the single hfq mutant was treated in the
same conditions. Specific [32P]-labeled probes were used to detect
the small RNAs. Full-length small RNAs are clearly detected on wild
type (except for GlmY), showing the expected sizes: MicA (74 nt),
RyhB (90 nt), GlmY (180 nt), and SgrS (227 nt), as estimated from
markers run along the gels. Small RNAs detected on hfq mutants
(namely, in the hfq pnp) are slightly shorter than the corresponding
full-length sRNAs; these shorter small RNAs are designated by an
asterisk (*). The positions of both the full-length and the shorter
small RNAs are indicated. 5S RNA or tmRNA were used as loading
controls.

Hfq protects sRNAs from PNPase
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of PNPase. These results indicate that PNPase has a major
role in turning over MicA species that are not associated
with Hfq.

Poly(A) polymerase I promotes the degradation
of MicA*

Polyadenylation can promote RNA degradation by facilitat-
ing the exonucleolytic attack of an RNA substrate (Régnier
and Hajnsdorf 2009). Therefore, we decided to analyze the
impact of polyadenylation in the degra-
dation of MicA and compare it with
PNPase.

In stationary-phase cells expressing
Hfq, the lack of poly(A) polymerase I
(PAP I/pcnB) resulted in a modest in-
crease in MicA half-life (only a 1.5-fold
up-regulation) from 8.2 to 12.5 min, as
detected by Northern blotting (Fig. 3A).
On the other hand and in the same
conditions, inactivation of PNPase re-
sulted in a stronger stabilization of
MicA (from 8.2 min in the wild type
to 27.5 min in the pnp mutant). This
indicates that in the presence of Hfq,
PNPase activity against MicA surpasses
the effect of PAP I polyadenylation-
dependent pathways.

MicA is very unstable in the absence
of Hfq; its half-life decreases from 8.2
min in the wild type to 2 min in the hfq
mutant (Fig. 3A). To check whether PAP

I could be involved in the rapid degradation of the MicA*
in the absence of Hfq, we constructed the double hfq pcnB
mutant. Two different pcnB mutations were used in this
study: either a deletion DpcnB (O’Hara et al. 1995) or the
pcnB80 allele (Hajnsdorf et al. 1995) was transferred to the
hfq mutant strain; measurement of MicA half-lives gave
identical results for both strains. The double-mutant hfq
pcnB was found to have a significant 2.5-fold more stable
MicA* when compared with the single hfq mutant (in-
creasing half-life from 2 to 5 min). In the absence of Hfq,
the MicA* RNA is more susceptible to poly(A)-mediated
decay in stationary-phase cells. This was surprising, as
a Hfq� mutant was reported to have low levels of poly-
adenylation (Hajnsdorf and Régnier 2000; Le Derout et al.
2003; Mohanty et al. 2004). Notwithstanding the higher
impact that poly(A) polymerase I displays in the degrada-
tion of the MicA* in the absence of Hfq, inactivation of
PNPase still renders a more stable sRNA (Fig. 3A, bottom).
Altogether, these results show that PNPase has a stronger
effect than poly(A) polymerase I in the degradation of
MicA RNAs, irrespective of the presence of Hfq.

We also determined the relative levels of other small
RNAs in the hfq DpncB double mutant compared with the
hfq single mutant (Fig. 3B). The levels of GlmY* were also
increased by the lack of PAP I in the absence of Hfq. This
was also confirmed to be a consequence of the higher
stabilization of GlmY* in the hfq pcnB mutant (data not
shown). GlmY* is known to be highly polyadenylated in
cells harboring Hfq (Reichenbach et al. 2008; Urban and
Vogel 2008). We have now shown that the lack of poly(A)
polymerase I is an important factor affecting the sRNA
decay in the absence of Hfq in stationary-phase cells.
However, inactivation of PNPase in cells devoid of Hfq

FIGURE 2. PNPase is the major exoribonuclease involved in the
degradation of MicA*. Samples from stationary-phase cultures of
hfq and its derivative exoribonuclease mutants (hfq pnp, hfq Drnb,
and hfq rnr) grown at 37°C were withdrawn after inhibition of
transcription (timepoints are shown in minutes) and total RNA was
analyzed by Northern blot. A specific riboprobe for MicA was used.
A nonspecific band that cross-hybridized with the antisense MicA
probe was used as loading control. This band migrates above MicA
and disappears with a more stringent washing step of the mem-
brane without affecting MicA signal (Andrade and Arraiano 2008).
Hybridization with a 5S RNA riboprobe gave identical results.
Only the MicA* RNA species is detected in the absence of Hfq.
Half-lives were determined after PhosphorImager densitometry
quantification showing that PNPase is the major exoribonuclease
involved in the degradation of the Hfq-unprotected MicA*. (NQ)
Not quantifiable.

FIGURE 3. Lack of poly(A) polymerase I results in increasing levels of MicA*. (A) Impact of
poly(A) polymerase I (pcnB) in the degradation of the small MicA RNA in Hfq+ or Hfq� cells.
Stationary-phase cultures of wild type and its derivatives pnp, DpcnB, hfq pnp, hfq, and hfq
DpcnB strains were treated with rifampicin, and total RNA was analyzed by Northern blot.
MicA was detected by use of a specific riboprobe. Only the shorter MicA* RNA is visible in the
Hfq� cells. A nonspecific band cross-reacting with MicA probe was used as loading control. (B)
The steady-state levels of several small RNAs from stationary-phase cultures of hfq and hfq
DpcnB mutants were evaluated by Northern blot.
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resulted in higher levels of all of the small RNAs analyzed,
even the ones that were not affected by the lack of PAP I
(namely RyhB* and SgrS*) (Figs. 1, 3B). Hence, PNPase
activity against a small RNA that is not bound to Hfq does
not necessarily require an active polyadenylation-depen-
dent pathway.

In the absence of Hfq, MicA* is a substrate
for PNPase, but not for RNase E or RNase III

RNase E was thought to be responsible for the rapid
degradation of small RNAs not protected by Hfq (Massé
et al. 2003; Moll et al. 2003a). Surprisingly, we found that
MicA* levels did not change substantially between the hfq
single mutant and the hfq rne-1 double mutant (Fig. 1,
right). To analyze this observation further, we assayed MicA
decay rates in both strains. As RNase E (rne) is essential in
E. coli, we used a thermolabile allele (rne-1) and performed
this set of experiments at the nonpermissive temperature
(Fig. 4A).

From previous work, we have identified that RNase E
is involved in the degradation of MicA in cells producing
Hfq (Andrade and Arraiano 2008). Surprisingly, our results
revealed that MicA* is not stabilized significantly when
RNase E is inactivated in the absence of Hfq (Fig. 4A). This
indicates that RNase E is not able to efficiently degrade

MicA* unless Hfq is present in the cell. A similar RNase E/
Hfq dependency was observed in OxyS turnover (Basineni
et al. 2009).

To better assess the relative impact of RNase E and
PNPase, we treated the culture of the hfq pnp mutant in
the same conditions used to inactivate the thermosensitive
RNase E (Fig. 4B). No significant changes were detected
when Hfq and RNase E were inactive, but MicA steady-
state levels are substantially higher upon inactivation of
both Hfq and PNPase (an eightfold increase in the hfq
mutant). This result clearly showed that in the absence
of Hfq, PNPase is more important than RNase E in the
degradation of this sRNA. This result is also substantiated
by data from Figure 1.

The other main endonuclease involved in RNA degra-
dation is RNase III (Arraiano et al. 2010). In vitro studies
showed that Salmonella RNase III can cleave MicA when
bound to its target ompA mRNA (Viegas et al. 2011). To
further analyze the role of RNase III in cells without Hfq,
we constructed and analyzed double mutants lacking both
Hfq and RNase III. RNA extracted from stationary-phase
cultures from the deletion mutant of E. coli RNase III
(Drnc) and a double mutant lacking Hfq and RNase III
(hfq Drnc) was analyzed by Northern blotting (Fig. 4C).
Inactivation of RNase III in the presence of Hfq appeared
to block the degradation of MicA (this RNA apparently

did not decay even 240 min after tran-
scription blocking). This clearly showed
that E. coli RNase III is important in the
control of MicA stability. However,
MicA RNAs were barely detected in
the double-mutant hfq Drnc, reflecting
the results obtained with the single hfq
mutant. To confirm this result we also
tested another allele of RNase III, the
rnc105; the double-mutant hfq rnc105
displayed identical results (data not
shown). The strong decrease in MicA
levels typically found in the absence of
Hfq obviously reduce the number of
duplexes formed between this sRNA
and its target mRNAs, probably im-
pairing RNase III activity against MicA.
The MicA* levels found in the hfq pnp
strain were higher (about a sixfold in-
crease in the hfq single mutant) than the
MicA* levels found in the hfq Drnc
mutant (Fig. 4D). These results clearly
indicated that PNPase was more impor-
tant than RNase III in the elimination
of MicA* from the cell. Overall, when
MicA is not associated with Hfq, the
39–59 exoribonucleolytic degradation
pathway mediated by PNPase is found
to be more important in this degrada-

FIGURE 4. PNPase, but not RNase E or RNase III, degrades the Hfq-free MicA* RNA.
(A) Northern blot detection of MicA RNA in Hfq� cells harboring or not harboring the rne-1
allele. Stationary-phase cultures were treated at 44°C for inactivation of the thermosensitive
RNase E (as mentioned before). MicA RNA stability was analyzed by Northern blot with
a specific riboprobe. (B) Northern blot analysis of MicA in Hfq� cells deficient in RNase E or
PNPase. The double hfq rne-1 mutant was grown at 30°C until stationary phase and then
incubated at 44°C to inactivate RNase E. For comparison, the hfq and hfq pnp were treated
in the same conditions. (C) Northern blot detection of MicA in stationary-phase cultures of
Hfq� cells harboring or not harboring RNase III (rnc), respectively. A loading control
corresponding to a nonspecific band that cross-reacted with MicA probe is shown in below.
(D) Comparison of MicA* RNA steady-levels in Hfq� stationary-phase cells deficient in RNase
III or PNPase grown at 37°C.
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tion than any of the main endoribonucleases involved in
RNA turnover.

Hfq is required for the optimal expression
of the full-length MicA

The slightly smaller MicA* is the predominant form in the
hfq mutant in stationary-phase cultures, but it is barely
detected in the wild-type (Fig. 1). To examine whether this
RNA pattern was dependent on a growth phase-specific
regulation, we analyzed both the wild-type and the hfq
strain along the growth curve (Fig. 5A; Supplemental Fig.
S2). In exponential phase, the hfq mutant exhibited the full-
length MicA, as well as additional shorter bands of similar
intensity, apparently differing a few nucleotides in size. This
pattern was growth dependent. In stationary phase there
was a decrease in the amount of full-length MicA and what

appeared to be a concomitant accumulation of the smaller
MicA*. This greatly contrasted with the wild-type strain,
where the full-length MicA was the most prominent band,
irrespective of the growth phase analyzed. Moreover, sup-
plying Hfq in trans from a plasmid complemented hfq
deficiency on MicA expression and resulted in the strong
accumulation of the full-length RNA and in the elimina-
tion of the shorter sized RNAs (Fig. 5A). These results
indicated that Hfq determines MicA full-length expression
along growth, particularly in the stationary phase.

The difference in size between the full-length MicA and
MicA* is small, apparently in the range of from 3 to 4 nt,
visible on Northern blotting. Such small variation must lie
at one of the RNA extremities. Primer extension analysis
was performed to evaluate which extremity was shortened
(Fig. 5B). Stationary-phase cultures of both the wild-type
(which expresses full-length MicA) and the hfq mutant

FIGURE 5. Hfq is required for the expression of the full-length MicA RNA. (A) Steady-state levels of MicA RNA along the growth curve. Culture
samples of wild-type or hfq mutant bacteria were collected at exponential (EXP), late exponential, early stationary, and stationary phase (STAT)
(corresponding to OD600 values of z0.3, z1.7, z2.5, and z5.5 for the wild-type and z0.3, z0.8, z1.6, and z2.3 for the hfq mutant,
respectively). The growth curves for the wild-type and the hfq mutant strain are given in Supplemental Figure S2. A specific antisense MicA
riboprobe was used to detect MicA. Stationary-phase cultures of the hfq mutant transformed with the overexpressing pHFQ plasmid show
complementation and do not exhibit the heterogeneous population of MicA’s typically found in the hfq single mutant. (B) Determination of the
59-end of MicA. Total RNA from stationary-phase cells of wild-type, hfq, pnp, and hfq pnp strains was analyzed by primer extension with the
[32P]-labeled primer MicA-PE. The same primer extension product (indicated by an arrow) is detected on all strains and absent from the deletion
micA strain (DmicA) and the negative control reaction (�) done without RNA. Part of the DNA sequence is indicated on the right. The
transcription start site of MicA is indicated (+1) and is identical to the site described by Udekwu et al. (2005). The intensity of the primer
extension product obtained is higher in the wild-type rather than the hfq mutant, in agreement with the higher amount of MicA detected in the
wild-type strain (see Fig. 5A). (C) Northern blot detection of MicA in stationary-phase cultures of Hfq+ cells upon inactivation of RNase
E. Cultures of wild-type and an RNase E mutant strain were grown at 30°C until they reached stationary phase, and then shifted to the
nonpermissive temperature of 44°C. After 5 min, transcription was blocked with the addition of rifampicin, and samples were withdrawn at times
indicated. A specific riboprobe was used to detect MicA RNA. A nonspecific band that cross-hybridized with the antisense MicA probe was used
as loading control. The inset corresponds to a shorter exposure of the membrane in which it is visible that both the full-length MicA and the
shorter MicA* RNA are detected and stabilized upon inactivation of RNase E in Hfq+ cells. The hfq mutant was used here as a control to clearly
identify MicA* RNA.
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strain (where MicA* is detected) showed accumulation of
a band that matches the start of the MicA sequence.
Furthermore, this same band was identified when testing
either the pnp mutant or the hfq pnp double mutant,
showing that the MicA RNAs that accumulate upon PNPase
inactivation retain the same 59 end as the wild-type MicA.
An additional experimental approach using nuclease S1
mapping also determined the same 59-end for both MicA
species (Supplemental Fig. S3). Altogether, these findings
supported that full-length MicA and MicA* have the same
59-end, and that the difference in size is located at the 39-end.
This suggests that the smaller RNA species probably arises
from 39-end processing of the full-length MicA.

The MicA* RNA is expressed at very low levels in the
wild type. This suggests that Hfq acts in order to prevent
MicA* production or to ensure its rapid elimination. We
decided to analyze the kinetics of decay and found that
RNase E affected MicA* levels (Fig. 5C). Inactivation of
RNase E (in cells harboring Hfq) resulted in the strong
elevation of MicA levels in stationary phase. However,
a shorter exposure of this gel revealed the detection not
only of the full-length MicA, but as well, the smaller MicA*
(inset in Fig. 5C). Both RNAs showed a twofold stabiliza-
tion in the absence of RNase E. This indicated that even in
the presence of Hfq, the shorter MicA* RNA fragment is
produced in the cell.

Growth-phase regulation of small RNAs by PNPase

In the absence of Hfq, small RNAs are typically unstable
and PNPase was found to be a major enzyme involved in
the extensive degradation of MicA in stationary-phase cells.
To check whether this could be generalized to other small
RNAs, we extended this analysis to RyhB and SgrS. Since
the RNA pattern of MicA changes along with growth in

Hfq� cells (Fig. 5A), it is reasonable that different RNA
degradation pathways might be involved in different stages
of growth. To further analyze this, we decided to compare
the small RNA stability between exponential and stationary-
phase cultures.

In the absence of Hfq, all of the small RNAs analyzed
were highly unstable, regardless of the growth phase that
was analyzed (Fig. 6). As consequence of the extensive
degradation occurring in the absence of Hfq, the MicA,
RyhB, and SgrS levels were strongly reduced in the hfq
mutant when compared with wild type, both in exponential
and stationary-phase cultures. In contrast, all of these small
RNAs were markedly stabilized in the stationary-phase cultures
of the hfq pnp double mutant compared with the hfq strain.
Interestingly, this regulation is not as common in exponen-
tially growing cells. In fact, only SgrS was found to be sta-
bilized in exponential-phase cultures of the hfq pnp mutant
strain compared with the hfq strain (although this is sig-
nificantly lower than the stabilization observed in stationary-
phase cells). These results confirm PNPase as a major enzyme
involved in the degradation of Hfq-free small RNAs in the cell.

Hfq deficiency resulted in the detection of shorter small
RNAs that are stabilized upon further inactivation of PNPase
(Figs. 1, 6). In exponential-growing cells without Hfq, only
MicA was found to exhibit a heterogeneous-sized popu-
lation (Figs. 5A, 6). From these fragments, MicA* is shown
to be the most resistant and is even the predominant RNA
species found in hfq mutants in the stationary phase. The
smaller RyhB* and SgrS* RNAs were only detected in
stationary-phase cells. Together, these results suggested a
protection of the full-length sRNA by Hfq, which seems
particularly important for sRNA expression in the station-
ary phase of growth.

To analyze whether PNPase is affecting the stability of
small RNAs independently of Hfq, we further analyzed the

FIGURE 6. Growth-phase regulation of Hfq-free small RNAs by PNPase. Northern blot determination of MicA, RyhB, and SgrS RNA stabilities
between the wild-type and its isogenic pnp, hfq, and hfq pnp mutants either in exponential-phase or stationary-phase cultures. Total RNA was
extracted from culture samples withdrawn after inhibition of transcription with rifampicin (timepoints are shown in minutes). MicA, RyhB, and
SgrS RNAs were detected by the use of specific radiolabeled probes and quantified by PhosphorImager analysis. The full-length small RNAs or
their respective shorter forms (where detected) are indicated on the gels. (NQ) Not quantifiable.
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decay rates of MicA, RyhB, and SgrS in the pnp single
mutant. Inactivation of PNPase in exponential-phase cells
producing Hfq resulted in reduced levels and decreased
stability of the small RNAs. Similar results were reported
with other small RNAs, suggesting that PNPase may some-
how protect some sRNA in exponential phase (De Lay and
Gottesman 2011). In fact, this is also observed in stationary-
phase cultures, as inactivation of PNPase is also found to
reduce RyhB and SgrS levels under this condition. Only
MicA was shown to be a substrate for PNPase either in the
absence or presence of Hfq. On the other hand, RyhB and
SgrS were found to be preferably degraded by PNPase in the
absence of Hfq and were greatly stabilized in the hfq pnp
double mutant, particularly in the stationary phase of
growth. Altogether, these results suggest that PNPase de-
grades small RNAs more efficiently in the absence of Hfq,
although this turnover pathway is clearly active in cells with
Hfq. The fact that this occurs in cells expressing Hfq may
reflect the action of PNPase against small RNAs that are
transiently in their Hfq-free state, a result of the dynamics of
interaction with Hfq. PNPase-mediated degradation of small
RNAs is suggested to be predominant in stationary-phase
cells, as this regulation apparently is not so common in
exponential-phase cells. Therefore, these results demon-
strated that the degradation pathways of a same small RNA
can be different between exponential and stationary phases
and highlighted the role of PNPase in the growth-phase
regulation of small RNAs.

DISCUSSION

This work demonstrated that the pool of small RNAs that
are not associated with Hfq is preferably degraded by
PNPase. Overall, our data highlight the impact of 39–59

exonucleolytic RNA decay pathways and re-evaluates the
degradation mechanisms involved in the rapid decay of
the Hfq-free small RNAs. The reduced levels of small RNAs
typically found in the Hfq� strain were strongly increased
upon inactivation of PNPase in stationary-phase cells
(Fig. 1). This seems to be a general feature, since PNPase
inactivation resulted in increasing levels of at least the
MicA, SgrS, RyhB, and GlmY sRNAs. We only detected
the accumulation of slightly shorter sRNAs rather than
the full-length species, and this was shown to be the
consequence of the higher stability of these fragments
(Fig. 2).

The lack of poly(A) polymerase I was also found to
impact the levels of small RNAs in the absence of Hfq,
although to a lesser extent than PNPase (Fig. 3). These
results were unexpected, as no significant differences in
mRNA stability were detected between hfq and hfq DpcnB
mutants (Mohanty et al. 2004). In contrast, our results
clearly showed that in the absence of Hfq, the small RNA
turnover can be affected by the lack of poly(A) poly-
merase I. The sRNAs found to be highly affected by

polyadenylation (MicA* and GlmY*) were also found to
be excellent substrates for PNPase. Nevertheless, PNPase
activity against Hfq-unprotected small RNAs is not
necessarily dependent on poly(A) polymerase I activity.
RyhB* and SgrS* RNAs are not affected by polyadenyla-
tion, although their levels were highly increased upon
PNPase inactivation, as observed in the double hfq pnp
mutant (Figs. 1, 3B). Poly(A)-dependent pathways may
thus not explain all the extraordinary impact of PNPase
on sRNA turnover in the Hfq� cells.

Pioneer work on PNPase revealed its ability to synthesise
RNA (Grunberg-Manago et al. 1955). Interestingly, it has
been proposed that in the absence of Hfq, there is an
increase in the biosynthetic activity of PNPase with hetero-
polynucleotide tails promoting RNA decay (Mohanty et al.
2004; Slomovic et al. 2008). Addition of these polynucleotide
tails can potentially be responsible for PNPase notable im-
pact on the degradation of sRNA in the absence of Hfq.
RNase II (Marujo et al. 2000) and RNase R (Andrade et al.
2009a) are also major poly(A)-dependent exoribonucleases,
but they were not found to be involved in the degradation of
MicA (Fig. 2; Andrade and Arraiano 2008). Similar results
were obtained regarding the degradation of RyhB (data not
shown). Surprisingly, despite RNase R intrinsic ability to
easily degrade structured RNAs on its own and its affinity to
poly(A) tails, RNase R was not shown to be part of these
decay pathways. The absence of RNase R resulted in the
reduction of MicA* levels in cells without Hfq (Fig. 2). This
might be a result of an indirect effect in which the activity
of a MicA repressor is increased when RNase R is not
functional. Although the protection of RNA by a ribonucle-
ase seems paradoxical, a similar effect has been described
either for RNase II or PNPase (Marujo et al. 2000; De Lay
and Gottesman 2011). A major advantageous feature of
PNPase in the degradation of small RNAs might be its ability
to form complexes with other proteins, which can be
particularly helpful in the elimination of such structured
RNAs. However, we have already shown that PNPase activity
on MicA can be independent of the degradosome assembly
(Andrade and Arraiano 2008).

RNase E has a role in sRNA degradation (Massé et al.
2003; Morita et al. 2005; Suzuki et al. 2006; Viegas et al.
2007; Andrade and Arraiano 2008). However, our results
demonstrated that its impact on Hfq� cells may not be as
general as previously believed. RNase E depletion did not
affect the levels of SgrS and MicA RNA. While in the
presence of Hfq, both the full-length MicA and the MicA*
RNAs are substrates for RNase E (Fig. 5C); this regulation
is lost when Hfq is absent (Fig. 4A). This indicates that
RNase E requires Hfq in order to degrade MicA. A similar
RNase E dependency of Hfq to act on sRNA turnover was
also reported in the growth-phase degradation of OxyS
(Basineni et al. 2009). It is suggested that RNase E/Hfq
cooperation (as observed in the mRNA decay mediated by
sRNA) (Morita et al. 2005) can also be critical for the
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degradation of some small noncoding RNAs, like MicA.
Nevertheless, we recognize that RNase E can also impact
the levels of some sRNAs independently of Hfq. As observed,
both RyhB* and GlmY are RNase E substrates, even in cells
lacking Hfq (Fig. 1).

A possible RNase III/Hfq pathway was also analyzed.
RNase III inactivation results in extremely long-lived MicA;
however, this is strictly dependent on the presence of Hfq,
as this stabilization is completely lost in the hfq Drnc mutant
(Fig. 4C). The low levels of MicA found in hfq mutants
strongly decrease the probability of base-pairing with target
mRNAs. The down-regulation in sRNA-target mRNA du-
plexes probably explains the impairment in RNase III ac-
tivity on MicA, in agreement with in vitro studies (Viegas
et al. 2011). Data suggest that the degradation of small RNAs
that are not associated with Hfq mainly occurs in a target-
independent pathway, in which RNase III has a reduced
impact. The free pool of small RNAs is then preferably
degraded by PNPase.

Hfq was thought to mainly protect sRNA from RNase E
cleavages, as both proteins showed in vitro affinity for the
same A/U-rich sequences in RNA (Moll et al. 2003a).
However, it has been recently demonstrated that Hfq
actually prefers to bind U-rich sequences at the 39-end of
small RNAs over internal A/U-rich sequences (Otaka et al
2011; Sauer and Weichenrieder 2011). Small RNAs, like
MicA, usually display a short U-rich 39-end sequence
immediately downstream from a stem–loop as a consequence
of Rho-independent transcription termination (Rasmussen
et al. 2005; Udekwu et al. 2005). The physiological meaning
of the high affinity of Hfq to this U-rich sequence can be the
protection of the 39-end of the RNA against degradation.
Interestingly, our results showed that the 39-ends of the small
RNAs are shortened in the absence of interaction with Hfq
(Figs. 1, 5B). Even though PNPase is observed to be the main
exoribonuclease involved in the degradation of these shorter
small RNAs, it does not seem to be the main reason for the
initial 39-end attack, as this is not prevented in a pnp
background. RNase II and RNase R inactivation also did
not suppress the shortening of MicA. Data suggested that
other (exo)nucleases would be responsible for the 39-end
trimming of the small RNAs when they are Hfq free. The
transcriptional terminator stem–loop of the small RNAs
may function as a physical barrier against exoribonucleases.
PNPase may be favored in this action and progress to de-
gradation of the sRNA body, while other RNases may be
inhibited, and therefore could only degrade a few nucleotides
before releasing the sRNA. In the presence of Hfq, the
shorter sRNAs are barely detected, probably because Hfq
protects the 39-ends of the small RNAs.

Our results also indicate that small RNAs are subject
to different degradation pathways, depending on growth
(Fig. 6). In the stationary phase, PNPase is shown to be the
main enzyme in the degradation of small RNAs (Andrade
and Arraiano 2008; this work). On the other hand, it has

been proposed that in exponential phase, PNPase can
actually protect small RNAs from rapid degradation by
other ribonucleases, namely, from RNase E activity (De Lay
and Gottesman 2011). The growth-phase regulation of sRNA
turnover pathways may help to explain why RNase E was
shown to affect sRNA decay in previous studies in which
the exponential phase of growth was analyzed (Massé et al.
2003), whereas it is not found to be the predominant
degradative enzyme in the stationary phase (this work).
PNPase responds to environmental stimuli and has been
suggested to be responsible for the addition of heteropoly-
meric tails to the 39-end of RNAs in the stationary phase
of growth (Cao and Sarkar 1997; Mohanty and Kushner
2000). PNPase could then use those tails to initiate RNA
degradation. Accordingly, the growth-phase regulation of
PNPase activities may thus help in explaining the growth-
phase regulation of small RNAs driven by PNPase.

Variations in the levels of Hfq can most probably in-
fluence the degradation pathways of the small RNA. In-
terestingly, Hfq was reported to vary along the growth, and
decreased levels of this protein were found in the entry to
stationary phase (Ali Azam et al. 1999). Not only changes in
the Hfq expression level, but also variations in the pool of
free Hfq can result in low amounts of this protein and,
consequently, affect the sRNA-based regulatory pathways.
Hfq binds the RNA molecules very tightly and this can result
in the sequestration of Hfq. A model in which an increasing
concentration of a competitor RNA promotes the dissocia-
tion of the Hfq–RNA complexes has recently been proposed
to explain how it is possible to cycle the Hfq pool within the
cell (Fender et al. 2010). In agreement, it was shown that
induction of a sRNA without the concomitant overexpres-
sion of its target mRNA (or vice versa) can sequester Hfq
and abolish the function of unrelated sRNAs (Hussein and
Lim 2011). Hence, Hfq depletion is likely to occur if tran-
scription of sRNA and its target mRNAs is not coordinated.
The rapid degradation of sRNA in the absence of inter-
action with Hfq may thus recycle any small RNAs that are
produced in excess over Hfq. This reinforces the impor-
tance of studying the degradation of small RNAs when they
are not associated with Hfq. Most of our work was per-
formed in stationary-phase cells deleted for Hfq. However,
we have shown that PNPase-mediated degradation of small
RNAs is also an active regulatory pathway in cells expres-
sing Hfq. This fact may reflect the action of PNPase against
small RNAs that do not have their 39-ends protected by Hfq.
Our results are in agreement with in vitro data showing that
Hfq can protect an mRNA from the exonucleolytic activity
of PNPase (Folichon et al. 2003).

A similar phylogenetic distribution may reflect functionally
linked proteins (Pellegrini et al. 1999). A large number of
bacteria encode both Hfq and PNPase in their genomes (Zuo
and Deutscher 2001; Sun et al. 2002), while the presence of
E. coli RNase E homologs is far more restricted (Condon and
Putzer 2002; Danchin 2009). Interestingly, eukaryotes lack an
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RNase E, but possess functional homologs of both PNPase and
Hfq. The eukaryotic exosome adopts an PNPase-like confor-
mation and is implicated in the processing and degradation of
several RNAs, namely, the small nucleolar RNAs (snoRNAs)
and the small nuclear RNAs (snRNAs) (Houseley et al. 2006).
The exosome activity is suggested to be modulated by the
Lsm1–7 complex (whose subunits are homologous to bacterial
Hfq), although this interplay is still unclear (Wilusz and
Wilusz 2008). The fact that Hfq and PNPase are more wide-
spread than RNase E supports the interesting hypothesis that
Hfq protection of sRNA against degradation by PNPase is far
more common than was previously envisioned.

MATERIALS AND METHODS

Growth conditions, strains,
and plasmids

Bacteria were grown at 37°C unless stated
otherwise, with shaking at 180 rpm in Luria-
Bertani (LB) medium supplemented with
thymine (50 mg mL�1). SOC medium was
used to recover cells after heat shock in
plasmid transformation steps. When required,
antibiotics were present at the following con-
centrations: chloramphenicol, 50 mg mL�1,
kanamycin, 50 mg mL�1; tetracycline, 20 mg
mL�1; ampicillin, 100 mg mL�1. The E. coli
strains used in this work are listed in Table 1.
Strain MC4100 hfqTcat (kindly provided by
S. Altuvia) was used as donor to move the

mutant hfq allele into MG1693 (wild type) and its derivative iso-
genic strains. Introduction of mutant alleles to different genetic back-
grounds was done by P1 transduction, and positive colonies were
checked by PCR. A DNA sequence of Hfq was PCR-amplified with
primers hfq–EcoRI (59-GTGACGAAGaATTcCAGGTTGTTG-39)
and hfq–HindIII (59-CGGTCAAACAAGCtTATAACCC-39), and
following enzyme restriction it was cloned into pBAD24, yielding
the overexpression pHFQ plasmid. Hfq expression is obtained
even without addition of the arabinose inducer, as the cloned DNA
retains hfq’s own promoters. For plasmid pMicA, primers MicA–PstI
(59-TTTTCGCCACCCGAACTGCAGGC-39) and MicA–HindIII
(59-GGCTGGAAAAACAaGCtTGACAGAAAAGAAAAAGG-39) were
used to amplify the micA gene. Following enzyme restriction, the
insert was ligated into pWSK29 in sites PstI and HindIII. DNA
polymerases and restriction enzymes were obtained from Fermentas,
and T4 DNA Ligase from Roche. All primers were obtained from
StabVida (Portugal).

RNA extraction and Northern blot analysis

Overnight cultures from isolated colonies were diluted in fresh
medium to an initial OD600 z 0.03 and grown to exponential
(OD600 z 0.3) or stationary phase (OD600 z 5.5 to wild-type or
OD600 z 2.3 to hfq mutants). The growth curves for the wild-type
strain and the hfq mutant are provided in Supplemental Figure S2.
For decay experiments, blocking of transcription was obtained
by adding rifampicin to a final concentration of 500 mg mL�1.
Culture samples were withdrawn at defined timepoints and mixed
with an equal volume of RNA stop buffer (10 mM Tris at pH 7.2,
5 mM MgCl2, 25 mM NaN3, and 500 mg mL�1 chloramphenicol).
RNA was isolated following cell lysis and phenol:chloroform
extraction. After a precipitation step in ethanol and 300 mM sodium
acetate, RNA was resuspended in MilliQ-water. The integrity of RNA
samples was evaluated by agarose gel electrophoresis. When neces-
sary, DNase RQ (Promega) treatment following a new phenol:
chloroform step was used to remove contaminant DNA. Next, 10–
40 mg of total RNA was used to analyze small RNA expression on
6%–12% polyacrylamide/7 M urea gels in TBE 1x. RNA was
transferred onto Hybond-N+ membrane (Amersham Biosciences)
using TAE 1x as transfer buffer. RNAs were UV cross-linked to the
membrane with a UVC 500 apparatus (Amersham Biosciences).
DNA templates carrying a T7 promoter sequence for in vitro
transcription were generated by PCR using genomic DNA of
MG1693 and primers listed in Table 2. GlmY was detected by 59-
end labeling of an antisense primer (Table 2). Radiolabeled probes

TABLE 1. Bacterial strains used in this study

Strain
Relevant
genotype Reference

MC4100hfq hfq Soshy Altuvia
MG1693 thyA715 Arraiano et al. 1988
HM104 thyA715 rnr Andrade et al. 2006
SK5665 thyA715 rne-1 Arraiano et al. 1988
SK5671 thyA715 rne-1 pnp7 Arraiano et al. 1988
SK5691 thyA715 pnp7 Arraiano et al. 1988
SK7988 thyA715 DpcnB O’Hara et al. 1995
SK7622 thyA715 Drnc38 Babitzke et al. 1993
CMA201 thyA715 Drnb Andrade et al. 2006
CMA413 thyA715 DmicA Andrade and Arraiano

2008
CMA428 MG1693 hfq This study
CMA429 MG1693 hfq rnr This study
CMA430 MG1693 hfq Drnb This study
CMA431 MG1693 hfq pnp7 This study
CMA436 MG1693 rne-1 hfq This study
CMA441 MG1693 hfq Drnc38 This study
CMA448 MG1693 hfq rnc105 This study
CMA449 MG1693 hfq DpcnB This study
CMA450 MG1693 hfq pcnB80 This study
CMA513 MG1693 hfq + pHFQ This study

TABLE 2. Oligonucleotides used in radiolabeling reactions

Probe Sequence (59–39)

MicA-T7 TAATACGACTCACTATAGGAAGGCCACTCGTGAGTGGCCAA
MicA-F GAAAGACGCGCATTTGTTATC
SgrS-T7 TAATACGACTCACTATAGGCCAGCAGGTATAATCTGC
SgrS-F GATGAAGCAAGGGGGTGCCC
RyhB-T7 TAATACGACTCACTATAGGAAAAGCCAGCACCCGGCTGGCTAA
RyhB-F GCGATCAGGAAGACCCTC
5S-RNA-T7 TAATACGACTCACTATAGGATGCCTGGCAGTTCCCTACTCTCGC
5S-RNA-F AAACAGAATTTGCCTGGCGGCAGTAG
GlmY GCACGTCCCGAAGGGGCTGACATAAG

The T7 promoter sequence in the oligos is underlined.
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were purified on G25 Microspin columns (GE Healthcare).
Hybridizations were carried out overnight at 42°C–68°C with
the PerfectHyb Plus Hybridization Buffer (Sigma). RNA Decade
markers (Ambion) or the 10-bp Step Ladder (Promega) were
used for detection of small RNAs up to 150 nt; for longer transcripts,
the 100–1000 bp Ladder (Biotools) was used. T7 RNA polymerase
and T4 polynucleotide kinase were from Promega. All radiochem-
icals were purchased from Perkin-Elmer.

RNA half-life determination

Northern blot signals were visualized on PhosphorImager STORM
860, and bands intensities were quantified using the IMAGEQUANT
software (Molecular Dynamics). Half-lives of RNA were determined
by linear regression using the logarithm of the percentage of RNA
remaining versus time, considering the amount of RNA at 0 min as
100%. A minimum of two independent RNA extractions from each
strain were tested and half-lives correspond to average of at least
three experiments.

Primer extension analysis

The MicA RNA was analyzed by primer extension analysis us-
ing the MicA-PE primer (59-CGTGAGTGGCCAAAATTTCATCT
CTG-39). A total of 10 mg of each RNA sample was incubated with
1 pmol of 59-end [g-32P]ATP-labeled primer. Sample de-
naturation was done for 5 min at 80°C, immediately followed
by the annealing step (30 min at 65°C and 30 min at 48°C). cDNA
synthesis was obtained using 200 units of SuperScript III Reverse
Transcriptase, following the manufacturer’s instructions (Invitrogen).
Incubation proceeded for 60 min at 55°C and was terminated by
heat inactivation of the samples for 15 min at 70°C. The cDNA
products were then ethanol precipitated with the addition of
glycogen for 15 min in a �80°C freezer. The cDNA pellet was
dissolved in 2 mL of 0.1 M NaOH/1 mM EDTA and 4 mL of
formamide loading buffer. Prior to loading, samples were de-
natured for 5 min at 80°C, and then fractionated on 6%
polyacrylamide/7 M urea gels. Plasmid pMicA was used in sequenc-
ing reactions with primer MicA-PE following the instructions of the
Sequenase Version 2.0 DNA Sequencing Kit (USB). The gel was
exposed on a PhosphorImager screen and the signal was detected on
a PhosphorImager STORM 860.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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