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ABSTRACT 

 

This work considers the problem of modelling and forecasting mortality. 

In the context of the Lee-Carter model, where the overall temporal pattern of 

mortality is well described by a time-varying index moderated by age-specific effects, 

the study proposes a sequential testing procedure valid in the presence of a structural 

change in the index of mortality, which allows the identification of the appropriate 

model used in forecasting future mortality patterns. Testing procedures proposed are 

applied to Portugal, and other eighteen developed countries, using data for the period 

1950-2007. Structural changes in the overall time trend are found in Portugal, as well as 

in other developed countries, occurring mainly in male mortality. The impacts of a 

neglected structural change in the overall temporal behaviour of mortality are illustrated 

for the case of male Portuguese population.  

In order to better understand male and female mortality patterns in Portugal, 

several descriptive measures and visualization techniques are used and various 

extensions of the Lee-Carter model are applied. Changing rhythms of decline over ages 

and time are found. The possibility of a cohort effect in male mortality is also 

suggested.  

Finally, cohort specific influences in male Portuguese mortality patterns are 

studied using log-linear additive age-period-cohort models, as well as models allowing 

for age interaction with period and cohort effects. The evidence is favourable to the 

existence of cohort effects influencing male population patterns, with some generations 

experiencing stabilizing or even poor mortality conditions than preceding and 

subsequent cohorts.  

 

 

Keywords: Age-period-cohort model, cohort effects, Lee-Carter model, mortality 

forecasting, structural change, unit root.  
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RESUMO 

 

 

Este trabalho considera o problema da modelização e previsão da mortalidade. 

No contexto do modelo de Lee-Carter, em que a tendência temporal global da 

mortalidade é bem descrita por um índice que varia ao longo do tempo, moderado por 

efeitos específicos por idade, o estudo propõe um procedimento sequencial de teste que 

é válido na presença de uma alteração estrutural no índice de mortalidade, permitindo a 

identificação do modelo mais apropriado para previsão do comportamento futuro da 

mortalidade. O procedimento de teste proposto é aplicado a Portugal, e a mais dezoito 

países desenvolvidos, utilizando dados para o período 1950-2007. Alterações estruturais 

na tendência de declínio da mortalidade são encontradas em Portugal e em quase todos 

os outros países considerados no estudo, ocorrendo principalmente na mortalidade 

masculina. Os impactos de negligenciar uma alteração estrutural na tendência da 

mortalidade são ilustrados para o caso da população masculina portuguesa. 

  A fim de compreender melhor os padrões de mortalidade de homens e 

mulheres em Portugal, são usadas várias medidas descritivas e técnicas de visualização, 

bem como, desenvolvimentos recentes ao modelo de Lee-Carter. São evidentes 

alterações nas taxas de declínio da mortalidade ao longo do tempo e por idades, bem 

como, uma forte possibilidade de um efeito geracional na mortalidade masculina. 

Finalmente, é estudada a influência de efeitos de coorte no comportamento da 

mortalidade masculina em Portugal através da utilização de modelos log-lineares idade-

período-coorte, considerando também interações idade-período e idade-coorte. A 

evidência empírica é favorável à existência de efeitos de geração que influenciam o 

padrão de mortalidade masculina, em que algumas coortes experimentam uma 

estabilização ou mesmo deterioração das condições de mortalidade comparativamente a 

coortes anteriores e subsequentes.  

 

Palavras-chave: Alteração estrutural, efeitos de coorte, modelos idade-período-

coorte; modelo de Lee-Carter, previsão da mortalidade, raiz unitária.   
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1. INTRODUCTION 
 

 

Mortality in Portugal, following the trend in other developed countries, has 

changed tremendously over the twentieth and first decade of the twenty-first centuries. 

During this period, with the exception of the influenza epidemic crisis in 1918, one saw 

a general decline in the level of mortality, a dramatic reduction in infant mortality, the 

increase of survival at more advanced ages, and extraordinary gains in the life 

expectancy of the population. Over the last 60 years, life expectancy at birth in Portugal 

increased more than 20 years.  

Although positive for the individual as well as for the society as a whole, in the 

actual social and demographic context, these achievements and the perspective of 

further longevity gains pose a challenge to public sector health care provision, to public 

retirement system and to private life annuities business, among many others. As such, 

the analysis and monitoring of the mortality patterns, as well as modelling and 

forecasting future mortality patterns are of fundamental importance. 

The major problem for age-specific modelling and forecasting mortality is the 

high dimensionality of the data, especially if single ages and calendar years are used. In 

order to deal with the dimensionality problem, it is necessary to use models allowing a 

more parsimonious representation of the data.  

The Lee-Carter methodology (Lee and Carter, 1992) constitutes a landmark in 

the evolution of mortality stochastic modelling. Several methodological developments 

have been proposed to improve the accuracy of the model, among which the choice of 

an optimal fitting period (Booth, Maindonald and Smith, 2002), adding an age-specific 

enhancement factor (Renshaw and Haberman, 2003), a log-bilinear Poisson 

specification (Brounhs, Denuit and Vermunt, 2002), and the introduction of an age-

cohort term in the log-bilinear model (Renshaw and Haberman, 2006). These 

methodological developments motivated the present work, either in what concerns the 

research on a possible structural change in the temporal mortality pattern as in exploring 

other specific patterns in overall mortality in Portugal, in our knowledge not yet, such as 

cohort effects. The present work was also inspired on the classical log-linear additive 
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age-period-cohort model, largely used in health and epidemiological studies, as well as 

on recent research concerning the intrinsic identification problem of this type of models. 

The purpose of this thesis is to further explore mortality patterns in Portugal, 

over the period 1950 – 2007, investigate the possibility of a structural break in the 

overall temporal trend of mortality, identify different rhythms of decline of age-specific 

rates, detect and model the eventual presence of cohort effects in mortality patterns. 

These contributions are important in establishing more accurate models on which to 

base future forecasts.  

The thesis consists of three papers organized in chronological order. The first 

paper addresses the structural change in time-varying mortality index and proposes a 

sequential testing procedure to test for structural change and unit-roots prior to the 

identification step in the Box-Jenkins time-series methodology. The second paper, using 

descriptive measures and visualization techniques, explores the mortality patterns of 

male and female populations. Different empirical models are considered for the whole 

1950 – 2007 period and for several sub-periods, with the objective of obtaining 

consistency with the main mortality patterns that were found. The third paper considers 

age-period-cohort models, exploring different model specifications, as well as measures 

to evaluate the goodness of fit of the various models, and concludes for the evidence of 

cohort influences in male mortality.  

The main contributions of this work are as follows. We expect to demonstrate 

how the Lee-Carter model might be improved by the developments in the theory of unit 

roots and structural changes in order to provide better mortality and longevity forecasts. 

Also, we expect to contribute to a more accurate knowledge of mortality patterns in 

Portugal, specially the influence of cohort effects, moderated by age, which should be 

considered in mortality modelling and forecasting.  

A more detailed description of each paper follows. 
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1.1. Forecasting Mortality in the Event of a Structural Change 

 

The paper considers the problem of forecasting future mortality patterns in the event of 

a structural change in the context of the Lee-Carter model (1992), a pioneering 

contribution for stochastic mortality forecasting methods and that, as well as some of its 

extensions, is widely used by demographers and actuaries to model and forecast 

mortality. A core assumption of the Lee-Carter model is that the evolution of age-

specific death rates is driven by a common time-varying index, which represents the 

improvements over time of the general level of mortality. This mortality index is then 

forecast to obtain future mortality patterns.  

Several recent studies have documented changes in the pace of decline of the 

general level of mortality (Booth, et al., 2002; Renshaw and Haberman, 2003; Booth, 

Hydman, Tickle, and Jong, 2006; Shang, Hydman and Booth, 2010), providing 

evidence of changing trends in the mortality declining rate.  The eventual presence of a 

structural break in the general level of mortality poses a methodological problem to 

modelling the mortality index, since the standard procedures to check the stationarity of 

a time series are not valid and may induce the researcher to select a sub-optimal model 

for the index of mortality and consequently obtain biased forecasts.  The paper 

demonstrates how recent advances in statistical testing for structural changes can be 

used to arrive at a properly specified model for the general level of mortality. 

Specifically, the results of tests for a change in the trend of the mortality index and for 

the presence of a unit-root are used to identify appropriate forecasting models. The 

testing methodology proposed also allows, in the case of the presence of a structural 

change, to identify the date when the change occurred. The paper also shows the 

importance of considering structural changes when making predictions, illustrating, for 

the case of Portuguese male mortality, the impact in mortality and life expectancy 

forecasts of accounting for such structural changes. 

It concludes that there is significant evidence supporting the presence of a 

structural change in the evolution of male mortality, which is associated with a more 

accentuated decline in the overall mortality rate in recent years for almost every country 

considered. In contrast, evidence of structural changes in female mortality is found only 

for a few countries. It is interesting to note that in the case of the European countries 
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these structural changes have all taken place in the second half of the sample, that is, 

after the mid-1970s. These findings are in line with changes documented in other 

studies.  

The main contribution is the definition of a sequential testing procedure, which 

is valid in the presence of a structural change, and, if a change is present, allows 

determining the date when it occurred, contributing to the identification of the 

appropriate model used to forecasting.   

A succinct summary of each section of the paper follows.  

After a brief introduction, which states the problem and explains the contribution 

intended by the researchers, the paper introduces the classical Lee-Carter method, 

proposed by Ronald Lee and Lawrence Carter in 1992, and the Poisson regression 

extension proposed by Brouhns, Denuit and Vermunt (2002), that is followed in the 

empirical application.  

Lee and Carter (1992) propose a demographic model for describing the temporal 

evolution of age-specific death rates as a function of a single time-varying index. The 

model is estimated and the resulting time-varying parameter is then forecast using Box-

Jenkins time-series methods. Forecasts for the age-specific death rates are obtained 

using the estimated effects and the forecasts of the time-varying index. To estimate the 

demographic model for a given matrix of death rates by age and calendar year, Lee and 

Carter (1992) propose a least squares solution using a singular value decomposition, 

assuming errors with zero mean and constant variance. Following several critics on the 

homoskedastic nature of the errors, Brounhs et al. (2002) propose an alternative model 

that keeps the functional form of the Lee-Carter model but replaces the least-squares 

approach with a Poisson regression for the number of deaths, and a maximum 

likelihood interactive estimation process.  

The main steps of the Box-Jenkins methodology used to model the mortality 

index time-series are also briefly reviewed. In particular, the first step in obtaining an 

appropriate ARIMA model for the mortality index using the Box-Jenkins methodology. 

It consists of determining if some transformation of the series, such as differencing or 

de-trending, is necessary to induce stationarity before identifying and estimating the 

forecasting model. Different transformations chosen to induce stationarity generate 

different point forecasts and different probability intervals. 
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In the third section, the paper discusses the implications of the presence of a 

structural change in the trend of the mortality index, and a sequential testing approach to 

cope with this possibility when forecasting the mortality index, based on the papers of 

Harvey, Leybourne, and Taylor (2009) and Harris, Harvey, Leybourne, and Taylor 

(2009), is proposed.  

The importance of testing for a structural change is that any neglected or 

wrongly placed structural change in a time-series occurring in the estimation phase may 

result in forecasts with a tendency to deviate from the future realizations of the series, 

resulting in potentially large forecast errors. However, the approach to test for and 

estimate a model with a structural change is highly dependent on the stationarity 

proprieties of the time-series process.  

In the presence of a structural change in the trend, standard procedures to detect 

the presence of a unit-root and the need to first-difference the data, such as the analysis 

of the empirical autocorrelation functions and the standard Dickey-Fuller unit root tests, 

are not valid, having the tendency to wrongly suggest a unit-root when the series is, in 

fact, stationary around a broken trend. Modified unit-root tests valid in the presence of a 

structural change, when the change date is not known and must be estimated were 

proposed by Zivot and Andrews (2002) and Perron and Rodriguez (2003). However, 

when no change is actually present, several problems arise, such as a spurious change 

date or erroneously find a structural change when there is none due to the presence of a 

unit root.  

A sequential testing procedure is proposed to deal with this dilemma. In a first 

step, since it is not possible to know beforehand if there is a unit-root or not in the 

mortality index, we test for the presence of a structural change in the trend. To do that 

we apply the test for a structural change in the trend proposed by Harvey, et al. (2009) 

that is valid regardless of whether the series is difference-stationary or trend-stationary. 

Secondly, as in Harris, et al. (2009), the result of this structural change test is used to 

decide on the appropriate unit-root test to use: with or without allowing for a structural 

change. Thirdly, if according to the Harvey et al. (2009) test (1) the hypothesis of a 

structural change is rejected, one should use standard unit root procedures (ADF-GLS 

test not allowing for a break); (2) the hypothesis of a structural change is not rejected, 

one should use the Harris et al. (2009) unit root test allowing for a break (ADF – GLS 
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test allowing for a break). Fourth, according to the results of the appropriate unit-root 

test, in the case where in the first step a structural change was detected, the date when 

the change occurred is estimate using first-differences if a unit root is found or using 

levels otherwise. At last, based on the conclusions of the previous steps, the appropriate 

ARIMA model is fitted to the mortality index and forecasts obtained.  

In the fourth section, the paper illustrates the sequential testing methodology 

proposed by an application to post-1950 mortality data for a set of 18 developed 

countries: Austria, Belgium, Canada, Denmark, England and Wales, Finland, France, 

Ireland, Italy, Japan, Netherlands, Norway, Portugal, Spain, Switzerland, Sweden, 

United States of America, and West Germany.  

Fitting the Poisson Lee-Carter to male and female populations in each country, 

the estimated mortality indices confirm the downward trend in mortality over time 

observed in all countries, and their visual inspection suggest that the rate of decline after 

the mid-1970s, especially for male mortality, might have become more accentuated in a 

number of countries. Such visual inspection, however, may suggest a spurious break if a 

unit-root in present in the time-series.  

The results of the first step of the sequential testing approach to identify the 

correct forecasting model in the potential presence of a structural change show 

significant evidence of a structural change in the trend slope of male mortality indices in 

all countries, except Finland and Spain. The situation is quite different for females, 

where the evidence is favourable to a structural change in the trend slope only in 

Austria, Ireland, Italy, Japan and Sweden. Evidence of a unit-root is found in all 

countries, except Denmark for males and Japan and Sweden for females, which implies 

that the mortality indices are stationarity in first-differences, that is, the model should be 

fitted to the first-differences of the mortality indices, except for males from Denmark 

and females from Japan and Sweden. The authors note that in the case of the European 

countries these structural changes have all taken place in the second half of the sample, 

that is, after the mid-1970s.  

The authors consider the male Portuguese mortality case to illustrate how the 

results of the proposed sequential tests methodology can be used to arrive at an 

appropriate forecasting model, as well as the impact of the results of the unit-root and 

structural change tests obtained previously in terms of mortality and life expectancy 
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forecasts considering models estimated with different specifications of the structural 

change and unit-root. 

According to the results of the sequential testing approach the mortality index 

for the Portuguese males presents a structural change in 1996 and first-differences 

should be applied to induce stationarity. The appropriate model is then an ARIMA 

(0,1,1) model allowing for a structural change in 1996. Using this model we obtain 

forecasts of the mortality index for the period 2008 – 2050 and the corresponding 95% 

confidence bands. The confidence bands widen over time as a direct consequence of the 

unit-root non stationary model. 

The impact of allowing for a structural change in the mortality index is 

illustrated by comparison of the above model with three other models estimated with 

different specifications of the structural change and the unit-root: (1) ARIMA (0,1,0) 

with drift or random walk with drift model, (2) the ARIMA (1,1,0) not allowing for a 

break, and (3) the ARMA (1,0) allowing for a break in 1973.  

The random walk with drift model, which is the model most often used to fit the 

mortality index and that was found to be optimal in the original work of Lee and Carter 

(1992), does not fit well to the male Portuguese mortality index. The ARIMA (1,1,0) is 

the model without a structural change that better fit the estimated mortality index. By 

construction using this model the forecasted rate of decline in mortality is basically 

given by the average rate of decline during the whole estimation period, therefore the 

more accentuated rate of decline in mortality since the end of 20th century until the end 

of the estimation sample is not translated into the future projections. Comparatively 

with the optimal model, the projected decline in mortality is much less using this model 

and its confidence bands are wider as a consequence of the poorer fit. The ARMA (1,0) 

model allowing for a break in 1973 corresponds to the trend-stationary model that better 

fit the mortality index. The forecasted decline in mortality is also not as great as in the 

optimal forecasting model, and the confidence bands, as expected, do not grow as the 

forecasting horizon grows, since this model assumes stationarity around a broken trend. 

Thus, for longer horizons, this model will produce forecast intervals with the least 

amplitude, but obviously underestimating future uncertainty, given the results of the 

sequential testing procedure that led to the optimal forecasting model. 
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For each of the estimated models, mortality index forecasts are used also to 

produce forecasts for the age-specific death rates and forecasts for the life expectancy at 

birth and at 65 years were calculated. The optimal model with a unit-root and a change 

in 1996 gives the highest projected gains in life expectancy during the next four 

decades. The confidence bands for the mortality forecasts and the amplitude of the 

confidence bands for the 2050 life expectancy forecasts are substantially smaller for the 

optimal model than for the unit-root models without allowing for a structural change, 

but larger when compared with the trend-stationary model with a break. 

The paper concludes with a discussion of the results comparatively with several 

research studies that show evidence regarding changes in the rate of decline of the 

general level of mortality. The findings are in line with these results and the paper 

concludes that the testing procedures can be used to select the appropriate forecasting 

model in the context of Lee-Carter model. Future research paths point to allowing more 

than one latent mortality index in the model to capture dissimilar evolutions of mortality 

at different ages, as well as the possibility of considering more than one structural 

change.  

 

 

1.2. Patterns of Mortality Decline in Portugal since 1950 

 

This paper considers mortality improvement patterns in Portugal, over the period 1950 – 

2007. The aim is to show how a detailed descriptive analysis of the patterns of mortality 

improvement can be used to benefit the formulation and validation of a parsimonious 

model for estimating mortality dynamics over age and time. To identify the major 

patterns in the evolution of mortality over time for different ages, detailed descriptive 

analysis and graphical visualizations of mortality data are explored, as well as the 

analysis of the fitting results from the Poisson Lee-Carter model applied to the whole 

1950-2007 period and to different sub-periods, and results from an extended model 

adding a second order age-period term.  

The paper was motivated by previous research findings (Coelho and Nunes, 

2011), in particular the evidence of a clear pattern in deviance residuals from the 

Poisson Lee-Carter model applied to Portuguese male mortality, suggesting that there 
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are patterns in male mortality that have not been fully captured by the model. Deviance 

residuals plotted against age show larger residuals at infancy and around the accident 

hump ages, suggesting that there are age-period interactions not captured by the model. 

The plot of deviance residuals versus year of birth shows some sort of ripple effect, 

which suggest that not only period effects may differ between ages but also cohort 

effects may be influencing the mortality pattern.  

The descriptive analysis of age-specific mortality rates, as well as composite 

longevity indicators such the life expectancy at birth, show that the rate of mortality 

decline at infant and younger ages has changed dramatically, and improvements at other 

ages have also had several distinct decline patterns over the period 1950 - 2007. In the 

case of male population, there are even periods of some deterioration in mortality 

conditions for some age groups. These differences in sensitivity of age-specific 

mortality to a temporal trend are not properly captured by the Lee-Carter model, and 

suggest that additional parameters should be added to the demographic model to allow 

for greater flexibility.   

The findings concern the relevance of descriptive analysis for the specification 

of the model that most adequately captures mortality patterns. The Lee-Carter model 

with a second age-period interaction term is found to be the most appropriate model, 

however with less significant improvement for females than for males, and still, in the 

case of male mortality, some patterns are not fully captured. The possibility of a cohort 

effect is left for further research.  

A succinct summary of each section of the paper follows.  

After a brief introduction, the paper describes the improvement in observed 

mortality patterns over age and time, for males and females separately, based on 

calculation and graphical analysis of indicators of longevity, age-specific mortality 

indicators, and rates of mortality improvement over age groups and time intervals. The 

most relevant conclusions of the analysis are the remarkable increase in life expectancy 

at birth, that surpassed twenty years during the period 1950 – 2007; the huge decline in 

infant mortality; the decline of death rates at almost all ages but at different paces; lower 

or even deterioration of male mortality conditions for some age groups that move 

upward with age; recent contributions for increases life expectancy at birth are specially 

becoming from those aged 60 to 79 years; the concentration of deaths around the mode 
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of the distribution of deaths and the consequent rectangularization and expansion of the 

survival curve.  

The third section of the paper briefly reviews the classical Lee-Carter method 

(Lee and Carter, 1992), and its Poisson extension proposed by Brouhns, et al. (2002), 

which assumes a Poisson distribution for the number of deaths and proposes a 

maximum likelihood interative estimation process. The latter is used in the empirical 

modelling. The addition of a second bilinear age-period term, which allows for a greater 

flexibility in capturing the mortality patterns, is also considered, following the work of 

Booth et al. (2002) and Renshaw and Haberman (2003). Model performance measures, 

based on residuals, are discussed, such as the deviance residuals and the pseudo2R , 

proposed by Cameron and Windmeijer (1997) for Poisson regression models. 

Section 4 presents and discusses the estimation results of the Poisson Lee-Carter 

model, applied for males and females separately, to the whole 1950 – 2007 period.  In 

general the model captures the overall trends in mortality, the exceptions being those 

ages with a less regular behaviour where some difficulties of adjustment are evident, as 

in the case of men between 20 to 35 years old. Systematic pattern in the deviance 

residuals are visible, in particular for men, presenting a structure hardly consistent with 

the assumption of independence of the residuals, showing a diagonal clustering of 

residuals which suggest the presence of cohort effects.  

The results of fitting the Poisson Lee-Carter model to four subsequent sub-

periods, to address the problem of age-specific changing patterns, are presented in 

section 5. The results confirm that the rates of mortality improvement at each age have 

changed over time.  

In section 6, the paper presents the results of the Lee-Carter model with a second 

age-period interaction term applied to the entire period 1950 – 2007. Overall, adding a 

second age-period interaction term improves the fit of the model, in particular for men 

by capturing the nonlinearity in the log-rates in particular at young ages. The impact of 

the second bilinear term for women is less significant. The analysis of the residuals for 

males, however, continues to show some clustering patterns. 

The paper concludes with the discussion of the consistency of the results of the 

descriptive analysis and the estimated results from each of the above models. The 

relevancy of descriptive analysis for the specification of the model that most adequately 
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captures mortality patterns is acknowledged. The possibility of a cohort effect in the 

male mortality is left for further research.  

 

 

1.3. Cohort Effects in Mortality Modelling 

 

This paper studies the possibility of a cohort effect in male Portuguese mortality, using 

age-period-cohort models, considering additive period and cohort effects as well as age-

period and age-cohort interactions. The purpose of age-period-cohort models is to 

estimate the respective contributions of the effects of age, period and cohort on the 

evolution of the overall mortality. All three types of effects are distinct, but operate 

simultaneously, given the relation among them, which poses the problem of 

identification at the core of age-period-cohort modelling.  

It is useful to define the three types of effects in age-period-cohort analysis. Age 

represents the intrinsic mortality risks related to biological and physiological factors, 

which are associated to the aging process, and which affect equally all individuals of the 

same age, regardless of their generational experience and observation period. Period 

effects are environmental conditions common to a given time period that change the 

level of mortality risk at all ages. Cohort effects or generational effects represent the 

influence of past conditions on current mortality risks; these are attributable to the life 

course experience of a cohort.  

The study was motivated by a previous exploratory analysis of the patterns of 

mortality decline in Portugal over the period 1950 – 2007 (Coelho and Nunes, 2011), 

which showed that the rhythm at which mortality has been improving differs between 

ages and over periods of time. In particular, an apparently odd pattern of mortality 

improvement was detected in the male population, suggesting that over time a specific 

group of male individuals might have experienced a non-declining or even increasing 

mortality. The deviance residuals, from fitting the Lee-Carter model to male Portuguese 

mortality, also suggest that particular age-time influences are not fully captured by the 

model. Specifically the plot of the deviance residuals versus year of birth show a ripple 

effect, a pattern similar to that found in England and Wale due to cohort effects in 

mortality. Furthermore, to our knowledge, all studies of the mortality evolution in 
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Portugal have focused on the impacts of age and period, and relatively little is known 

about possible cohort effects.  

The paper, using the Bayesian Information Criterion (BIC), concludes that an 

age, period and cohort model with period and cohort effects moderated by age - the 

Renshaw-Haberman model - is the most suitable model to describe Portuguese male 

mortality patterns from 1950 to 2007. These findings are consistent with previous 

descriptive findings. The paper also concludes about the validity of BIC in the selection 

of the most parsimonious and adequate model through a simulation procedure. 

A concise summary of each section of the paper follows.  

Following a brief introduction, the paper presents the theoretical framework of 

the Age-Period-Cohort (APC) modelling, based on data arrayed by age and period, with 

equal interval widths for age and period, which identify cohorts by the diagonal cells of 

the table.  

First, it contemplates the additive APC model, the identification problem of the 

APC model, the constrained-based approach proposed by K. Mason, W. Mason, 

Winsborough and Poole (1973) to estimate and solve the identification problem, as well 

as more recent developments, in particular the approach of Kuang, Nilsen and Nilsen 

(2008). The introduction of age-period and age-cohort interactions in the model is 

presented next. This is illustrated by the Lee-Carter model (Lee and Carter, 1992; 

Brouhns, et al., 2002), the Renshaw-Haberman model (Renshaw and Haberman, 2006), 

and the Lee-Carter model with additive cohort effects.  

Age-Period-Cohort analysis was initially based on the visual inspection of death 

rates plotted by year of birth. Researchers, such as Derrick in 1927 (see Hobcraft et al., 

1982), Kermack, McKendrick and McKinlay in 1934 (see Murphy, 2010; Hobcraft et 

al., 1982), and Frost in 1939 (Case, 1956), demonstrated graphically that age-specific 

mortality rates seem to be more regular for cohorts than for periods, and as such more 

useful to project future trends. A formal approach came several years later. Although 

the statement of the APC model is straightforward, its estimation poses a statistical 

problem, known as the identification problem, due to the linear relationship between 

age, period and cohort. For the case of mortality, the APC model states that some 

monotonic transformation of the observed age-specific mortality rates can be modelled 

as a linear additive function of age, period and cohort effects.  
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The seminal work of K. Mason, W. Mason, Winsborough and Poole (1973), 

address the identification problem in the age-period-cohort model and, using a multiple 

classification framework, propose a constrained-based approach, based on a priori and 

theoretical knowledge, to estimate the age, period and cohort model parameters. Several 

other approaches to solve the identification problem of the APC model have followed, 

such as estimable functions of the parameters invariant to the particular constrain 

applied, among which second differences of age, period and cohort effects (Clayton and 

Schifflers, 1987). Using second order differences of the three effects as measures of 

curvature, Kuang et al. (2008) propose an alternative approach to the identification 

problem in the age-period-cohort model, which consists in transforming the design 

matrix so that curvatures (the second differences) of age, period and cohort are 

estimated directly along with the two linear components. Still the original parameters 

are obtained imposing identification restrictions on the parameters.  

Either explicitly or not, attempts to solve the identifiability problem, and obtain 

estimates of the absolute values of the age, period and cohort effects, are ultimately 

based on some type of constraint. According to Clayton and Schifflers (1987) and 

Carstensen (2007) it is not possible to uniquely estimate the absolute effects of age, 

period and cohort, unless the researcher is willing to make some assumptions on the 

relative importance of the effects, since it is not achievable to surmount the problem of 

having two variables as well as their sum in the same linear model. 

The introduction of age-period and/or age-cohort interactions may be a way of 

solving the identification problem, but also carry specific identification requirements 

that need to be attended. The Lee-Carter model (Lee and Carter, 1992) includes an age-

period interaction, but no cohort effect. The Renshaw-Haberman model (Renshaw and 

Haberman, 2006) generalizes the Lee-Carter model adding an additional age-cohort 

interaction. The authors also generalize the Lee-Carter model to include an additive 

cohort effect.  

The data and a visual analysis of the age-specific mortality rates for Portuguese 

males are presented in section 3 of the paper. Data for the number of deaths and the 

corresponding exposure to risk, by single ages and years of calendar, for the period 

1950 – 2007, are obtained from the Human Mortality Database. The evidence from the 
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graphical analysis is that besides aging changing effects, period and cohort effects may 

both be present in the data.  

In section 4 the estimation results of the following models are presented: the 

age-cohort (AC) model, the age-period (AP) model, the age-period-cohort (APC) 

model, the Lee-Carter (LC) model, the Lee-Carter with additive cohort effects (LCC), 

and the Renshaw-Haberman (RH) model. The fitting quality of each model is checked 

through the graphical analysis of the deviance residuals plotted against age, calendar 

year and year of birth, and by the values of deviance and BIC.  

The Renshaw-Haberman model, with period and cohort effects both moderated 

by age, is found to be the most suitable model to describe Portuguese male mortality 

patterns from 1950 to 2007. This result is consistent with our expectations from the 

exploratory analysis of male mortality pattern in Portugal over 1950 – 2007, showing 

different rates of improvement for different ages, and the fact that some birth cohorts 

showed particular poor mortality improvements over adulthood when compared to other 

generations. The evidence of the graphical analysis, as well as the results from the 

estimated models, allude to the existence of cohort effects influencing Portuguese male 

mortality data.  

In section 5 the paper proceeds with a simulation study. The simulation allows 

us to determine if BIC is able to select the appropriate model for different data 

generating processes. Through the simulation study it is also possible to understand 

what happens when the fitted model does not correspond to the true model, that is, what 

are the consequences of an incorrect specification of the model. Simulation settings are 

chosen such that they mimic real world situations, in particular Portugal and England 

and Wales. England and Wales have well documented cohort effects (Willets, 1999, 

2003). The simulation concludes that BIC is in fact choosing the most adequate model 

to the data, since it selects the model corresponding to the data generating process. In 

what concerns errors in the specification it is found that if only additive cohort effects 

are present in the data, allowing for age interaction terms will result in an over 

parameterized model. On the other hand, if the cohort effect is omitted and a model with 

an age-period interaction term is fitted to such data, the estimated age-period interaction 

terms will capture part of the cohort effect in the data. If only age-period interaction 

terms and additive cohort effects are present in the data, allowing for a cohort effect and 
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the respective age interaction terms will result in an over parameterized model. 

Conversely, the omission of an interaction term will result in spurious cohort effects.  
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Abstract 

 

In recent decades, life expectancy in developed countries has risen to historically 

unprecedented levels driven by unforeseen declines in mortality rates. The prospects of 

further reductions are of fundamental importance in various areas. In this context, we 

consider the problem of forecasting future mortality and life expectancy in the event of 

a structural change. We show how recent advances in statistical testing for structural 

changes can be used to arrive at properly specified models for the general level of 

mortality in the context of the Lee-Carter model. Specifically, the results of tests for a 

change in the trend of the mortality index and for the presence of a unit-root are used to 

identify appropriate forecasting models. The proposed methodology is applied to post-

1950 mortality data for a set of developed countries in order to test the usual assumption 

made in the literature of a sustained decline in mortality at roughly constant rates in this 

period. Structural changes in the rate of decline in overall mortality are found for almost 

every country, especially in male populations. We also illustrate how accounting for 

such a change can lead to a major impact in mortality and life expectancy forecasts over 

the next decades. 

 

 

Keywords: Lee-Carter model, life expectancy, mortality forecasting, structural change, 

unit root. 
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2.1. Introduction 

 

Over the past decades, life expectancy in developed countries has risen to historically 

unprecedented levels. The prospects of further future reductions in mortality rates are of 

fundamental importance in various areas such as demography, actuarial studies, public 

health, social insurance planning, and economic policy. Over the last years, significant 

progress has been made in mortality forecasting (for a recent review see Booth, 2006). 

The most popular approaches to long-term forecasting are based on the Lee and Carter 

(1992) model. It describes the time-series movement of age-specific mortality as a 

function of a latent level of mortality, also known as the overall mortality index, which 

can be forecasted using simple time-series methods. Some of the advantages of this 

approach are its simplicity and the robustness of the forecasts when age-specific log-

mortality rates decline linearly over time. The method was initially used to forecast 

mortality in the U.S., but since then it has been applied to many other countries, 

including Australia (Booth, Maindonald and Smith, 2002), Austria (Carter and 

Prskawetz, 2001), Belgium (Brounhs, Denuit and Vermunt, 2002), Brazil (Fígoli, 1998), 

England and Wales (Renshaw and Haberman, 2003a, 2003b), Japan (Wilmoth, 1996), 

Spain (Guillen and Vidiella-i-Anguera, 2005; Debón, Montes, and Puig, 2008), Sweden 

(Lundstrom and Qvist, 2004), the Nordic countries (Koissi, Shapiro and Högnäs, 2006), 

and the G7 countries (Tuljapurkar, Li and Boe, 2000). 

The original Lee-Carter model has also received a number of criticisms (see the 

discussion in Lee and Miller, 2001) and several extensions have been proposed in the 

literature (see Booth and Tickle, 2008). One major issue concerns the stability of the 

model over time. Since the method is usually applied to long time-series there is a risk 

that important structural changes may have occurred in the past. And any neglected 

structural change in the estimation period may result in forecasts that have a tendency to 

deviate from the future realizations of the mortality index, leading to potentially large 

long-term forecast errors. Moreover, inaccurate modelling of past trends also 

compromises the estimation of the past variability of mortality, leading to further biases 

regarding the estimation of forecast uncertainty.  

In fact, historically, mortality in the USA has not always declined in a linear way 

as depicted in Lee and Carter (1992) for the period 1900-1989. These authors also re-
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estimated their random walk with drift model for the mortality index for several shorter 

and more recent periods and concluded that there was some instability. As noted by Lee 

(2000), if one had used their method to extrapolate the mortality index backward in 

time, one would arrive at too high mortality rates for the beginning of the 19th century. 

Other studies also document that there has been a systematic overestimation of the 

projected mortality rates in many countries (Stoto, 1983, Koissi et al., 2006). In multi-

country comparisons of several versions of the Lee-Carter method, Booth, Hyndman, 

Tickle, and De Jong (2006) and Shang, Hyndman, and Booth (2010) find significant 

differences in the forecasting performance when alternative fitting periods are used, 

providing evidence of changing trends in the mortality decline rate.  

This paper considers the problem of forecasting future mortality and life 

expectancy in the event of a structural change. We show how recent advances in 

statistical testing for structural changes can be used to arrive at a properly specified 

forecasting model for the general level of mortality in the context of the Lee-Carter 

model. Specifically, the results of tests for a change in the trend of the mortality index 

and for the presence of a unit-root are used to identify the appropriate model to be 

estimated and used to carry out the projections. In particular, it allows one to detect if a 

change is present or not, to estimate the date where the change occurs, and to determine 

if the appropriate forecasting model should be based on the levels or the first-

differences of the mortality index series. The last distinction is important as the two 

alternatives lead to substantial differences in the amplitudes of the forecast confidence 

intervals. 

The proposed methodology is applied to post-1950 time-series mortality data for 

18 developed countries from Western Europe and North America, and for Japan, for 

which reliable data is available. According to several studies, during this period, the 

majority of the developed countries have experienced a sustained decline in mortality at 

roughly constant rates (see Tuljapurkar et al., 2000, and Lee and Miller, 2001). 

However, recent studies have questioned the linearity of the decline in mortality, and 

provide evidence of changes in the pattern of decline in this period (some examples are 

Booth et al., 2002, for Australia; Renshaw and Haberman, 2003a, for England and 

Wales; and Booth et al., 2006, for several developed countries). By applying our 

proposed tests, we provide statistical evidence regarding this question. Indeed, 
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according to our results, structural changes in the rate of decline in the overall mortality 

rate are found for almost every country considered and especially in the male 

populations. We consider as an example the case of Portuguese male mortality and 

show that accounting for a structural change leads to a major impact in mortality and 

life expectancy forecasts over the next decades. 

The article is organized as follows. Section 2 presents a brief review of the Lee-

Carter method and its extensions. The proposed approach to forecast mortality in the 

presence of structural change is described in Section 3. The empirical application is 

presented in Section 4. Finally, Section 5 discusses the results obtained and presents 

some concluding remarks. 

 

 

2.2. The Lee-Carter Method 

 

The Lee-Carter method combines a demographic model of age-specific death 

rates with statistical time-series forecasting methods. In this section, we give a brief 

description of the implementation of these two components of the method. We also 

present the Poisson regression extension that we follow in our empirical application. 

 

 

2.2.1. The demographic model  

 

The core assumption behind the Lee-Carter (1992) model is that the evolution of 

death rates for any age x is driven by a common time-varying component, denoted by 

tk , which is also referred to as the overall mortality index. More precisely, the 

following relation is assumed: 

 ( ) ( )tktm xtxxx εβα ++=ln  (1) 

where ( )tmx  is the central death rate for age x and calendar year t, xα  are the age-

specific parameters that affect the overall level of ( )tmxln  over time, xβ  are the age-

specific parameters that characterize the sensitivity of ( )tmxln  to changes in the 

mortality index tk , and ( )txε  represent error terms capturing particular age-specific 
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historical influences not explained by the model. These errors are assumed to have zero 

mean and constant variance. Lee and Carter estimate the age-specific death rates by the 

following ratio: 

 ( )
tx

tx
x E

D
tm

,

,ˆ =  (2) 

where txD ,  denotes the number of deaths recorded at age x during year t from a 

corresponding exposure-to-risk txE , . 

Lee and Carter (1992) propose a two-stage procedure to estimate the model 

given by equation (1). First, a least-squares solution to estimate xα , xβ , and tk  is 

found. Since the model is clearly underdetermined, some normalization constraints are 

imposed to obtain a unique solution: the sum of the xβ  over all ages equals one and the 

sum of the tk  over time equals zero. As a consequence, the xα  will be equal to the 

average values of ( )tmxˆln  over time. The solution is found using the singular value 

decomposition. Since the model is written in terms of log mortality, the observed total 

number of deaths in each year will not equal the sum of the fitted deaths by age. To 

ensure this equality, the tk  are estimated a second time, taking the xα  and xβ  estimates 

from the first step, such that for each year t, given the actual age distribution for the 

population, the implied number of deaths equals the observed number of deaths.  

The homoskedasticity assumption on the error term ( )txε , implied by the 

singular value decomposition estimation of the parameters xα , xβ , and tk , has been 

considered fairly unrealistic (Wilmoth, 1993; Alho, 2000) since the logarithm of the 

age-specific death rate is much more volatile at old ages, where the number of deaths 

and of those exposed to risk are relatively small. To circumvent this problem, Brouhns, 

Denuit and Vermunt (2002) propose an alternative model that keeps the Lee-Carter log-

bilinear functional form, but replaces the least-squares approach with a Poisson 

regression for the number of deaths. Specifically, they consider the following model 

describing the distribution of txD , : 

 ( )( )tEPoissonD xtxtx µ,, ~     with    ( ) ( )txxx kt βαµ += exp , (3) 
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where the parameters xα , xβ , and tk  retain the meaning originally attributed by the 

Lee-Carter model, and where ( )txµ  denotes the force of mortality. Note that if the force 

of mortality is assumed to be constant within bands of age and calendar years, but 

allowed to vary from one band to the other, that is 

 ( ) ( )tt xyx µτµ =++   for  1,0 <≤ τy , (4) 

it follows that the force of mortality is identical with the central death rate, 

( ) ( )tmt xx =µ . 

The parameters of the Poisson model can be estimated by maximum likelihood 

still subject to the model identification constraints that the sum of the xβ  over all ages 

equals unity and the sum of the tk  over time equals zero. The second stage in the 

estimation of the tk , required in the classical Lee-Carter model, is no longer necessary 

with this Poisson model since the sum of the estimated number of deaths by age will 

automatically equal the total observed deaths in each year. Note that, although we use 

the same notation for kt in equations (1) and (3), the estimates obtained from the Lee-

Carter and the Poisson regression will in general be different. Examples of the 

application of the Poisson model are Brouhns et al. (2002) for Belgium, Renshaw and 

Haberman (2003b) for England and Wales, and Koissi et al. (2006) for the Nordic 

countries. 

Given the estimated xα  and xβ  in equation (1) or (3), the problem of forecasting 

age-specific mortality rates and, consequently, life expectancies, is reduced to 

forecasting the mortality index tk . This is considered in the following subsection.  

 

 

2.2.2. Modelling the index of mortality 

 

Lee and Carter (1992) propose using the Box-Jenkins methodology to arrive at 

an appropriate ARIMA model to forecast the mortality index. In that methodology, the 

first step always consists of determining if some transformation of the series is 

necessary to induce stationarity before identifying and estimating the forecasting model. 

Many studies have arrived at an ARIMA(p, 1, q) model, that is, a stationary 
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ARMA(p,q) model fitted to the first-differences of the mortality index. For instance, an 

ARIMA(0,1,0) is adopted in the Lee and Carter (1992) study of U.S. mortality and in 

Tuljapurkar et al. (2000) for the G7 countries, and an ARIMA(1,1,0) is selected in 

Renshaw and Haberman (2003a) for England and Wales. Series whose first-differences 

are stationary are also called difference-stationary, and are described by a unit-root in 

their autoregressive representation. The usual approach to check this is by analysing the 

behaviour of the empirical autocorrelation functions. However, it is also possible to use 

formal statistical tests. The most popular are variants of the original Dickey and Fuller 

(1979) tests for the presence of a unit-root. 

For illustration, consider an ARIMA (0,1,0) model, that is, a random walk with 

drift: 

 ttt udkk +=− −1 , (5) 

where the drift d gives the mean annual change in tk , and tu  are i.i.d. errors. The drift d 

is estimated as the time-average of the series of first-differences 1t t tk k k−∆ = − . Given 

any initial value for tk , this model implies that: 

 stttst uudskk +++ ++++= L1 , (6) 

that is, future values of the mortality index equal the sum of a deterministic linear trend 

component with slope d, given by the term dskt +  in equation (6), plus an error 

component given by the sum of several shocks u. Since part of the uncertainty when 

forecasting kt+s comes from the cumulative sum of the shocks, 1t t su u+ ++ +L , it follows 

that the forecast uncertainty grows with the forecast horizon s. It is straightforward to 

show that this result also holds for any other ARIMA(p,1,q) model.  

If for a particular mortality index series the unit-root/difference-stationary 

hypothesis is rejected, the alternative hypothesis that should be considered would be 

that of stationarity around a linear trend capturing the linear decline in mortality. In such 

a case, the mortality index would be described by the following trend-stationary model: 

 tt utddk ++= 10 , (7) 

with ut being a stationary ARMA process. In this equation, the d1 parameter represents 

the slope of the linear trend. Examples of applications where a deterministic time trend 

model is assumed are Sithole, Haberman and Verral (2000) and Denuit and Goderniaux 

(2005). Renshaw and Haberman (2003a) also consider a deterministic time trend in the 
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context of a generalized linear modelling version of the Lee-Carter model. Since model 

(7) is specified and estimated in the levels of kt, not the first-differences, it will in 

general produce forecasts that are different from the previous unit-root model. Also, 

given that in this model the deviations from the linear trend, given by ut, are stationary, 

the forecast uncertainty will no longer have a tendency to increase with the forecast 

horizon. 

Unfortunately, the usual procedures based on the analysis of the autocorrelation 

function or on unit-root tests to decide about the appropriate class of forecasting model 

to be used, are only valid if the linear trend, and in particular the trend slope, d in model 

(6) or d1 in model (7), has remained constant over time. In the next section we discuss in 

more depth the implications of the presence of a structural change in the trend of the 

mortality index and propose a suitable approach to cope with this possibility when 

forecasting the mortality index. 

 

 

2.3. Allowing for a Structural Change  

 

A large literature on structural change models has emerged in the last years (see 

the surveys by Perron 2006, 2008). An important result is that, when producing long-

term forecasts, any neglected or wrongly placed structural change occurring in the 

estimation phase may result in forecasts with a tendency to deviate from the future 

realizations of the series, resulting in potentially large forecast errors. It is also known 

that the correct approach to test for and estimate a model with a structural change is 

highly dependent on the stationarity properties of the time-series process.  

In particular, if the mortality index series kt is known to be trend-stationary then 

i) the tests for the presence of a structural change in the trend and ii) the estimation of 

the forecasting model should both be carried out using regressions based on the levels 

of the series. An example is the join-point regression approach that has been often used 

in the analysis of cancer mortality and survival rates (see Kim, Fay, Feuer, and 

Midthune, 2000, and Yu, Huang, Tiwari, Feuer, and Johnson, 2009) and is implemented 

in the Joinpoint software distributed by the U.S. National Cancer Institute (available at 

http://srab.cancer.gov/joinpoint). The approach can account for autocorrelated data, 
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although this option is not available in the latest version of the program (version 3.4.3). 

However, the method performs badly in the presence of strong positive autocorrelation 

(see Kim et al., 2000). Moreover, it is not valid in the presence of a unit-root, as is the 

case of any ARIMA(p,1,q) process, since it will lead to spurious breaks (see Nunes et 

al., 1996). 

On the other hand, if it is known that the kt series is non-stationary with a unit-

root, first-differences should be used instead. In general, the results obtained by 

following these two alternatives can be quite different in terms of a presence or not of a 

structural change and, in case one is detected, in terms of its dating. 

In the literature of mortality forecasting, there are also some examples of 

approaches to account for the possible occurrence of a structural change. Booth et al. 

(2002) find some evidence that the decline in the mortality index kt is not linear in their 

application of the Lee-Carter model to Australia, and try to avoid producing biased 

forecasts by selecting a best fitting period that insures linearity of the trend component 

assuming a unit-root. The criterion used is based on the ratio of a measure of the lack of 

fit of the model imposing a constant coefficients ARIMA model to the overall lack of fit 

of the Lee-Carter model. Lack of fit of the models are measured by mean deviance 

statistics. The chosen fitting period is that for which this ratio is substantially smaller 

than for periods starting in previous years. Denuit and Goderniaux (2005) also propose 

a similar solution, but assuming stationarity of the error term. The optimal starting year 

is determined by maximizing the R2 statistic for a linear regression as in equation (7). 

Therefore, both methods make an a priori assumption about the existence, or not, of a 

unit-root. Moreover, for both methods, the decision about the existence of a structural 

change and of its location, rely on non-objective criteria based on visual inspection of 

the time plots of model fit ratios or the R2. Another disadvantage is that since a specific 

fitting period is chosen, all information before the selected starting year is discarded. 

Therefore, these methods do not use all the available information available to estimate 

the variability of past mortality which is essential for instance in producing reliable 

forecast confidence intervals. 

As mentioned above, the traditional approaches to detect the presence of a unit-

root and the need to first-difference the data are based on examining the empirical 

autocorrelation functions or on performing standard unit-root tests. However, as shown 
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by Perron (1989), these approaches are not valid if a structural change is present, as they 

have a tendency to wrongly suggest a unit-root when the series is, in fact, stationary 

around a broken trend. As a solution, Perron (1997) proposes a modified unit-root test 

that is valid in the presence of a structural change at a known date. Zivot and Andrews 

(1992), Perron and Rodríguez (2003), and other authors have extended the test to the 

case where the change date is not known and must be estimated. However, when no 

change is actually present, several problems arise. As shown in Harris, Harvey, 

Leybourne, and Taylor (2009) (henceforth HHLT) there will be severe efficiency losses. 

Moreover, the estimated change date suggested by these tests may be spurious since, as 

shown by Nunes, Kuan, and Newbold (1995), the presence of a unit-root may lead one 

to erroneously find a structural change when there is none. In fact, when using the Zivot 

and Andrews (1992) unit-root test, the estimated change date is not even consistent for 

the true date if a change does occur. An example where such an inappropriate approach 

is followed is Chan, Li, and Cheung (2008) in a study of mortality in Canada, England 

and Wales, and the United States. Another issue is that the correct critical values to 

implement these tests become dependent on whether a structural change is present or 

not. 

We propose a solution to these dilemmas in the context of mortality forecasting 

by following a simple and consistent sequential approach based on recent statistical 

results in the literature of structural change. In a first step, since it is not possible to 

know beforehand if there is a unit-root or not, we apply a test for a structural change in 

the trend proposed by Harvey, Leybourne, and Taylor (2009) (henceforth HLT) that is 

valid regardless of whether the series is difference-stationary or trend-stationary. 

Secondly, as in HHLT, the result of this structural change test is used to decide on the 

appropriate unit-root test to use: with or without allowing for a structural change. 

Thirdly, if according to the HLT test a change is present, the break date is estimated 

taking into account the result of the HHLT test, that is, a) using the first-differences of 

the series if a unit-root is found or b) using the levels of the series otherwise. Finally, 

based on the conclusions of the previous steps, the appropriate ARIMA model is fitted 

to the kt series and used to produce the forecasts. In the following subsections we 

describe these structural change and unit-root tests in more detail. 
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2.3.1. Testing for a change in the trend 

 

As mentioned above, we use the HLT test for the existence of a structural 

change in the trend of the mortality index kt when it is not known a priori if the series 

has a unit-root or not. The date of the break, if present, is estimated from the available 

sample. The test is relatively simple to implement since it only requires estimating the 

following two linear regression models by least squares: 

 kt = α + β t + γ DTt(τ) + ut ,   t = 1, …, T, (8) 

and 

 ∆kt = β  + γ DUt(τ) + ut ,   t = 2, …, T, (9) 

where the change dummy variables are defined as DTt(τ) = t-TB if t > TB and DTt(τ) = 0 

if t ≤ TB, DUt(τ) = 1 if t > TB and DUt(τ) = 0 if t ≤ TB, with TB = [τT] denoting the 

possible trend change date, and τ the associated change date fraction with τ ∈ (0, 1). 

Equation (8) corresponds to the trend-stationary case with stationary shocks ut and kt 

fluctuating around a linear trend with slope β subject to a change of magnitude γ 

occurring at a given date TB. Equation (9) corresponds to the case where the shocks to kt 

are non-stationary with a unit-root, so that the first-differences, ∆kt = kt - kt-1, fluctuate 

around the mean, given by the drift parameter β which is also subject to a change of 

magnitude γ occurring at date TB. In this last equation, the shocks ut to ∆kt are also 

stationary. In both equations, the null hypothesis of no change in the trend slope 

corresponds to H0: γ = 0. The model described here corresponds to Model A in HLT. It 

is straightforward to allow for a simultaneous change in the slope and the level of the 

trend (Model B in HLT) by including an extra dummy variable in each regression. 

However, if the mortality index does not show any abrupt changes in its level, it is not 

necessary to consider such a model. 

If kt is known to be trend-stationary, a valid test for the presence of a structural 

change in the trend slope can be based on the t-statistic for testing H0 in equation (8), 

which we denote as t0(τ). To allow for serial correlation in the error term, an auto-

correlation robust t-statistic must be used. Since the change date τ is not known a priori, 
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but may be inferred from the data itself, the test statistic is computed by the maximum 

of the sequence of t0(τ) statistics for all possible change fractions τ as: 

 t0
* = sup τ∈Λ | t0 (τ ) | (10) 

where the supremum is taken over a set Λ = [τL , τU ], with 0 < τL < τU < 1. HLT suggest 

setting the trimming parameters τL and τU equal to 0.1 and 0.9 respectively. Allowing 

for structural changes too close to the beginning or the end of the sample may lead to 

erroneous conclusions on the existence of a structural change in the trend since there 

may not be enough observations to support it. In our application presented in Section 4, 

this corresponds to the first five and last five observations in the sample. Li and Chan 

(2005) in a study of outliers also mention that the identified type and the estimation of 

an outlier may not be reliable when it lies within the last five observations of the series. 

On the other hand, if it is known that kt is difference-stationary, one should use 

the corresponding t-statistic from equation (9), which we denote as t1 (τ). As in the 

previous case, given that the change date is not known a priori, the test statistic is given 

by 

 t1
* = sup τ∈Λ | t1 (τ ) |. (11) 

The change fractions at which the test statistics t0
* and t1

* attain their maximum will be 

denoted as τ0
* and τ1

*, respectively. 

Finally, the HLT test, which is valid for both unit-root and trend-stationary 

processes, is computed as a weighted average of the t0
* and t1

* tests: 

 tλ
* = λ t0

* + m (1-λ ) t1
* (12) 

with the weight λ given by  

 λ = exp[ - ( 500 S0
* S1

* )2 ] (13) 

and S0
* and S1

* denoting the KPSS (see Kwiatkowski, Phillips, Schmidt, and Shin, 

1992) stationary test statistics calculated from the OLS residuals of equations (8) and 

(9) when evaluated at the τ0
* and τ1

* change dates respectively. As shown in HLT, λ 

converges asymptotically to 1 if the series is trend-stationary or to 0 if it is difference-

stationary at sufficiently fast rates so that the correct test statistic, t0
* or t1

* respectively, 

is selected. As shown by HLT, the 5% asymptotic critical value of tλ
* equals 2.563 

provided the constant m is set equal to 0.853. 
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2.3.2. Unit-root test 

 

As mentioned above, standard unit-root tests have several shortcomings when it 

is not known a priori if a structural change has occurred or not. However, as shown in 

HHLT, the HLT tλ
* structural change test in (12) can be used as a pre-test. If it rejects 

the null hypothesis of no change, an optimal test for a unit-root in the presence of a 

structural change should be used. If it does not reject, then an optimal unit-root test 

without allowing for a structural change should be used. We now describe these unit-

root tests in more detail. 

For the case where a structural change is detected with the HLT test, the 

estimated change fraction using the first-differenced model, τ1
*, is used to estimate 

model (8) by GLS as in Perron and Rodriguez (2003). For τ = τ1
*, equation (8) can be 

rewritten as 

 kt = Xt(τ1
*) θ0 + ut ,   t = 1, …, T, (14) 

where Xt (τ1
*) = (1, t, DTt (τ1

*)) and θ0 = (α , β , γ )´. The GLS estimation is 

implemented by estimating with OLS the following quasi-difference transformation of 

equation (14): 

 kc,t = Xc,t(τ1
*) θ0 + uc,t ,   t = 1, …, T, (15) 

where kc,t = kt - ρ kt-1 and Xc,t (τ1
*) = Xt (τ1

*) - ρ Xt-1 (τ1
*) for t = 2, …, T, kc,t = k1 and Xc,t 

(τ1
*) = X1 (τ1

*) for t = 1, and ρ = 1- c/T where c is the quasi-difference parameter. The 

value of c can be chosen according to a local power criterion as explained in HHLT. Let 

ĉθ denote the OLS estimator of θ0 in equation (15) and tu% = kt - Xt(τ1
*) ĉθ  the residuals. 

The unit-root test is finally obtained by estimating the following ADF regression: 

 1 ,
1

, 2,...,
p

t t j t j p t
j

u u u e t p Tφ δ− −
=

∆ = + ∆ + = +∑% % % . (16) 

The number of lags p can be chosen by a modified Akaike criterion (see HHLT for 

details). Values of c and critical values for several significance levels and estimated 

change fractions needed for the implementation of this test can be found in HHLT and 

Carrion-i-Silvestre, Kim, and Perron (2008). 

When no structural change is found by the HLT test, a unit-root test without 

allowing for a change should be used such as the ADF-GLS optimal test proposed by 
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Elliot, Rothenberg, and Stock (1996). This test is computed as above but with the 

following two modifications: a) the structural change dummy variable is excluded from 

the Xt(τ1
*) vector and b) the optimal value of c in this case equals 13.5. 

 

 

2.4. Empirical Application 

 

In this section, the methodology proposed above is illustrated by an application 

to the following 18 developed countries: Austria, Belgium, Canada, Denmark, England 

and Wales, Finland, France, Ireland, Italy, Japan, Netherlands, Norway, Portugal, Spain, 

Switzerland, Sweden, United States of America, and West Germany. These countries 

experienced large increases in life expectancy during the twentieth century, interrupted 

only by the global influenza epidemic in 1918-19 and the two World Wars (Bongaarts, 

2006). However, the decline in mortality rates was not simultaneous in all countries, 

and rather diverse situations prevailed until the Second World War (Monnier, 2004). 

The increases in life expectancy were more pronounced during the first half of the 

century, affecting in particular early ages in life (Wilmoth, 2000).  The pace of 

improvement in life expectancy slowed down around the middle of the century, when 

the predominant types of mortality reduction shifted from curing infectious diseases that 

heavily affect the young to degenerative diseases that largely affect the elderly (see 

White, 2002, and Vallin and Meslé, 2004).  Several studies also provide evidence that 

the age pattern of mortality decline changed over time (e.g. Kannisto, Lauritsen, and 

Thatcher 1994; Horiuchi and Wilmoth, 1998; Wilmoth, 1998; Carter and Prskawetz, 

2001; Lee and Miller, 2001).  

Lee and Miller (2001) found evidence in the United States, Sweden, Japan, 

France and Canada, that the current pattern of mortality change began around the mid-

twentieth century and suggest fitting the Lee-Carter model on data since 1950 to reduce 

structural shifts. Tuljapurkar et al. (2000), in their study of the G7 countries, also adopt 

1950 as the initial year of analysis. However, as we discussed above, a number of 

studies have questioned the linearity of the decline in mortality since 1950 and provide 

evidence of changes in the pattern of decline in recent years. We investigate this 

question by applying our proposed methodology based on statistical testing procedures. 
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 We use time-series data obtained from the Human Mortality Database (HMD), 

sponsored by the University of California, Berkeley, and the Max Planck Institute for 

Demographic Research (http://www.mortality.org), for the number of deaths, txD , , and 

exposure-to-risk, txE , , by single year of age, sex, and calendar year from 1950 (for 

West Germany data are available only since 1956) until the most recent available year 

(2005 for Austria, Canada, and U.S.A., 2006 for Belgium, England & Wales, France, 

Ireland, Italy, Netherlands, Spain, and West Germany, and 2007 for Denmark, Finland, 

Japan, Norway, Portugal, Switzerland, and Sweden). The Ex,t are based on annual 

population estimates with a small correction that reflects the timing of deaths during the 

interval (see HMD, 2007). 

We first apply the Brouhns et al. (2002) Poisson regression extension of the Lee-

Carter method described in Section 2 to obtain estimates of the model parameters and 

the mortality index series for the male and female populations in each country. Next, we 

apply the procedure proposed in Section 3 to test for the presence of structural changes 

and unit-roots in the estimated mortality indices. We note that the proposed procedure 

does not affect the estimation of the kt. Finally, we illustrate how these results can be 

used to arrive at appropriate forecasting models by considering the case of male 

mortality in Portugal. We compare the resulting mortality and life expectancy forecasts 

with those obtained using alternative models. 

 

 

2.4.1. Estimation of the index of mortality 

 

The estimated mortality indices tk  for the male and female populations in each 

country are plotted in Figures 1.a-c and confirm the downward trend in mortality over 

time observed in all countries. A more detailed visual inspection of the graphs also 

seems to suggest that after the mid-1970s, the rate of decline, especially for male 

mortality, might have become more accentuated in a number of countries. Examples of 

perceptible structural changes can be found in the mid-1970s for Belgium, Canada, and 

West Germany, mid-1980s for Italy, Norway, and Sweden, mid-1990s for Denmark, 

and around 2000 for Ireland and Netherlands.  
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Figure 1.a. Estimated mortality indices for selected countries. 
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Figure 1.b. Estimated mortality indices for selected countries. 
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Figure 1.c. Estimated mortality indices for selected countries. 

 

However, as explained in the previous section, if the time-series process has a 

unit-root, there is a risk that such apparent structural changes may be nothing more than 

illusions in the data. The problem of spurious breaks was first raised, from a graphical 

perspective, by Hendry and Neale (1991). A statistical explanation of the phenomena 

was given by Nunes et al. (1995, 1996). Next, we present formal and valid tests for the 

genuine presence of structural changes in the mortality indices. 
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Figure 2. Plots of Deviance Residuals of the Poisson Lee-Carter model for Portuguese 

Males. 
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2.4.2. Structural change and unit-root tests 

 

Before conducting a time series analysis of the mortality indices, we start by 

looking at potential outliers that may be present in the data. We follow the method 

proposed by Chen and Liu (1993) modified by Goméz and Maravall (1997) which is 

implemented in the program TRAMO, and included in the DEMETRA software 

distributed by Eurostat. A similar approach is also used in Li and Chan (2007), who 

propose an outlier-adjusted model for kt for Canada and the United States, and Li and 

Chan (2005) for the UK and the Scandinavian countries. This method is able to detect 

four types of outliers: additive outlier (AO) which affects only the level of a single 

observation, innovational outlier (IO) affecting all observations beyond some date 

through the dynamics of the process, level shift (LS) affecting the level of all 

observations after a given time, and temporary change (TC) affecting all observations 

after a given point but with an exponentially decaying effect. It is important to note that 

this outlier analysis is able to detect changes in the level of the series but not in the trend 

slope. In TRAMO, the critical value used to detect the outliers is determined by the 

number of observations in the series based on simulation experiments. We also exclude 

dates within five observations of the start or end of the sample. 

Very few outliers are actually found. For West Germany females a LS in 1968; 

for Sweden males an IO in 1989; for France males a TC in 1958 and AOs in 1961 and 

1969; and for Denmark males a TC in 1977. Therefore, for only 4 out of the 36 series 

analyzed, were outliers found. This suggests that in the second half of the 20th century 

and beginning of the 21st, there is little evidence of major disrupting events that would 

require some outlier correction. If our analysis had started in the beginning of the 20th 

century, the outlier analysis would have captured significant events, such as the two 

World Wars or the Spanish flu. Lin and Chan (2005, 2007) find several outliers 

throughout the 20th century. However, if the authors had used the value recommended in 

TRAMO according to the number of observations in the series, fewer outliers would 

have been found. For instance, in the case of England and Wales, all outliers would 

occur in the 1st half of the 20th century. Therefore, in what follows, we opted for using 

the original series without using any outlier correction. 
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 The traditional Box-Jenkins approach to forecasting would begin by analysing 

the stationarity of each series. For all the estimated tk , the corresponding empirical 

autocorrelation functions approach zero very slowly while, on the contrary, the 

empirical partial autocorrelation functions cut off abruptly at lag one. The same 

behaviour is obtained after removing a linear trend from the kt series. These are typical 

behaviours of non-stationary unit-root series and, according to the usual Box-Jenkins 

approach, a clear indication that the tk  series should be first-differenced, leading 

therefore to ARIMA(p,1,q) forecasting models. However, as explained above, this 

analysis is not valid in the presence of structural changes. 

We now follow the sequential approach described in Section 3 to identify the 

correct forecasting model in the potential presence of a structural change. The results of 

the different structural change and unit-root tests for males and females are summarized 

in Table 1.  

We begin by looking at the results of the t0
* and t1

* structural change tests. Since 

there is no reason or evidence pointing to simultaneous changes in the level and slope of 

the downward trend in mortality, the structural change tests are performed using model 

A in HLT, which considers only a change in the trend slope. For males, according to 

both tests, there is evidence of a structural change in the trend slope in all countries, 

except Finland and Spain. In these two countries, evidence is favourable to a structural 

change only in the case of the t0
* test. The results of the robust tλ* test confirm the 

presence of a structural change in all countries except Finland and Spain. 

For females, the situation is quite different. Evidence is in general favourable to 

a structural change in the trend slope when using the t0
* test, except for Finland, Spain, 

and Switzerland. However, for the t1
* test, which is valid only if a unit-root is present, 

evidence of a structural change is favourable only for Austria, Ireland, and Japan. The 

results of the tλ* test confirm the presence of a structural change only in Austria, 

Ireland, Italy, Japan, and Sweden. 
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Table 1. Structural change and unit-root tests 

Males Structural Change Tests Unit-Root Tests Conclusion 

Country t0* t1* tλ* 
ADF-
GLS 

ADF-GLS-
break 

I(0)/I(1) 
Break 
Date 

Austria 17.21**  4.85**  4.49**  -0.93 -1.83 I(1) 1983 
Belgium 15.91**  3.70**  3.16**  -0.64 -1.72 I(1) 1976 
Canada 14.97**  5.59**  4.77**  -0.26 -2.01 I(1) 1975 
Denmark 26.10**  7.40**  10.83**  -0.46 -3.24***  I(0) 1994 
England & 17.40**  5.01**  4.27**  -0.64 -1.90 I(1) 1979 
Finland 8.98**  2.23 1.90 -1.41 -1.70 I(1) - 
France 12.41**  3.13**  3.93**  -1.15 -2.39 I(1) 1985 
Ireland 10.04**  8.02**  6.81**  -1.02 -1.40 I(1) 1999 
Italy 18.10**  5.80**  4.95**  -0.95 -2.51 I(1) 1983 
Japan 8.92**  3.44**  2.94**  -0.80 -1.41 I(1) 1955 
Netherlands 9.78**  5.37**  4.58**  -0.68 -1.18 I(1) 2000 
Norway 19.54**  5.64**  4.81**  -1.27 -2.00 I(1) 1988 
Portugal 8.32**  3.77**  3.18**  -0.10 -1.83 I(1) 1996 
Spain 3.49**  2.77 2.32 -2.24 -3.20***  I(1) - 
Sweden 22.86**  5.35**  4.83** -1.21 -1.66 I(1) 1988 
Switzerland 10.03**  4.00**  3.41**  -0.92 -1.79 I(1) 1990 
United States 14.58**  4.55**  4.04**  -0.78 -2.79 I(1) 1968 
West Germany 13.72**  4.88**  4.16**  -0.83 -1.73 I(1) 1975 

 
 

Females Structural Change Tests Unit-Root Tests Conclusion 

Country t0* t1* tλ* 
ADF-
GLS 

ADF-GLS-
break 

I(0)/I(1) 
Break 
Date 

Austria 12.82**  3.10**  2.66**  -0.94 -1.42 I(1) 1983 
Belgium 7.69**  2.00 1.71 -1.43 -2.00 I(1) - 
Canada 5.23**  1.97 1.68 -1.77 -2.80 I(1) - 
Denmark 6.46**  2.55 2.17 -1.25 -2.31 I(1) - 
England & 
Wales 

5.90**  2.32 2.19 
-1.41 -2.05 

I(1) - 

Finland 2.44 1.91 1.63 -1.53 -1.83 I(1) - 
France 3.97**  1.40 1.42 -1.78 -2.61 I(1) - 
Ireland 7.12**  5.22**  4.46**  -1.74 -1.38 I(1) 1999 
Italy 12.05**  2.61 5.41**  -0.78 -1.77 I(1) 1983 
Japan 5.75**  4.26**  4.19**  -1.46 -4.32***  I(0) 1955 
Netherlands 6.52**  1.81 1.54 -1.16 -1.80 I(1) - 
Norway 4.29**  1.57 1.34 -2.24 -2.57 I(1) - 
Portugal 9.86**  2.88 2.46 -0.43 -2.20 I(1) - 
Spain 1.59 1.45 1.24 -3.02 -2.96 I(1) - 
Sweden 5.19**  1.44 3.35**  -1.00 -3.51***  I(0) 1984 
Switzerland 1.94 1.60 1.36 -1.92 -2.28 I(1) - 
United States 3.76**  1.96 1.67 -1.50 -2.05 I(1) - 
West Germany 7.26**  2.34 1.99 -1.56 -2.05 I(1) - 

Notes: ** denotes rejection of the null hypothesis of no structural change at the 5% level. *** denotes 
rejection of the null hypothesis of a unit-root at the 5% level. I(0) denotes trend-stationarity and I(1) 
denotes a unit-root process. The following critical values were used: 2.56 for t0

* and tλ
*, and 3.00 for t1

* 
(Table 1 in HLT); -3.19 for ADF-GLS (Table I in Elliot et al., 1996); and a set of critical values that 
depend on the break fraction (between -3.45 and -3.09) for ADF-GLS-break (Table 1 in Carrion-i-Silvestre 
et al., 2008).trend-stationarity and I(1) denotes a unit-root process. The following critical values were 
used: 2.56 for t0

* and tλ
*, and 3.00 for t1

* (Table 1 in HLT); -3.19 for ADF-GLS (Table I in Elliot et al., 
1996); and a set of critical values that depend on the break fraction (between -3.45 and -3.09) for ADF-
GLS-break (Table 1 in Carrion-i-Silvestre et al., 2008). 
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The next step consists of testing for a unit-root. In every case that the result of 

the tλ* test points to a structural change, the appropriate unit-root test to use is the ADF-

GLS test allowing for a change and denoted as ADF-GLS-break in Table 1.  For males, 

except for Finland and Spain, this is the appropriate unit-root test to use, while for 

females it should be used only for Austria, Ireland, Italy, Japan, and Sweden. The ADF-

GLS test not allowing for a break should be used in all the other cases. In almost all 

cases, the evidence supports the unit-root hypothesis. The few exceptions are the cases 

of males in Denmark and females in Japan and Sweden. 

Finally, for the cases where in the first step a structural change was detected, the 

date when that change occurred is estimated in accordance with the conclusion of the 

appropriate unit-root test. Wherever a unit-root is present, the selected estimator of the 

structural change date corresponds to the date where the t1
* statistic in (11) attains its 

maximum. In the few cases where a unit-root is rejected, the selected estimator of the 

structural change date corresponds to the date where the t0
* statistic in (10) attains its 

maximum. These dates are presented in the last column of Table 1. Although not 

presented, for almost every case where a structural change is identified, the 

corresponding estimated magnitude of the change in the trend slope, given by γ in (8) or 

(9), is negative. The only exceptions are the cases of males and females in Japan and 

females in Sweden. 

In summary, there is significant evidence supporting the presence of structural 

changes in the evolution of male mortality associated with a more accentuated decline 

in the overall mortality rate in recent years for almost every country considered. In 

contrast, evidence of structural changes in female mortality is found only for a few 

countries. It is interesting to note that in the case of the European countries these 

structural changes have all taken place in the second half of the sample, that is, after the 

mid-1970s.  

The evidence of a unit-root found in almost every case considered implies that 

the uncertainty regarding the future evolution of mortality will increase with the 

forecast horizon. If instead the alternative of stationarity was found, confidence bands 

would not grow with the forecast horizon. We illustrate this in the next section. 
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2.4.3. Forecasting Portuguese male mortality 

 

To illustrate the impact of the results of the unit-root and structural change tests 

obtained in the previous sub-section in terms of mortality and life expectancy forecasts, 

we consider as an example the case of the Portuguese male population. We start by 

analysing the fit of the Poisson regression model by plotting the standardised deviance 

residuals against calendar year, age and year of birth (Figure 2). The overall pattern of 

well balanced positive and negative residuals and the absence of trends indicate a good 

adjustment of the model in terms of capturing period and age effects. There is only a 

slight ripple effect in the plot against year of birth, indicating eventual cohort effects 

that are not contemplated by this model. 

According to the results of the tests presented in Table 1, the adequate 

forecasting model to consider is an ARIMA(p,1,q) allowing for a change in the drift in 

1996, that is, an ARMA(p,q) model for the first-differences of kt including as 

deterministic regressors a constant term and a step dummy variable as in equation (9). 

The orders p and q of this model are identified by analysing the residual autocorrelation 

functions, and using the Ljung-Box Q-tests and the Akaike and Schwarz information 

criteria. The final estimated model is the following ARIMA(0,1,1) model allowing for 

the structural change in 1996: 

 ,53.0  with  ,72.137.1 1
1996

1 −− −=+−−=− ttttttt uuDUkk εε  (17) 

where 1996
tDU  = 1 if t > 1996 and 1996

tDU  = 0 if t ≤  1996, and tε  is a white noise. More 

detailed estimation results for this model appear in the first column of Table 2. Using 

this model we obtain forecasts of the mortality index tk  for the period 2008-2050. 

These are presented in Figure 3 together with the corresponding 95% confidence bands. 

The computed confidence intervals only account for the variability coming from the 

fitted ARIMA model: parameter estimation errors and future shocks. Other sources of 

variability could be allowed for by using bootstrap methods as in Brouhns, Denuit, and 

Van Keilegom (2005), Koissi et al. (2006), and Renshaw and Haberman (2008). As 

expected, the model predicts a decline in the mortality index at a pace that is consistent 

with the more pronounced decline in mortality in the final years of the 20th century and  
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 Figure 3. Portuguese males mortality index (1950-2007) and forecasts from an 

ARIMA(0,1,1) with a break in drift in 1996 (2008-2050) 

 

beginning of the 21st century. The fact that the confidence bands widen is a direct 

consequence of the unit-root non-stationarity of this model.  

To better understand the impact of allowing for a structural change in the 

mortality index by following the approach proposed in this paper, we also considered 

models estimated with different specifications of the structural change and the unit-root. 

Estimation results for these models also appear in Table 2. In Figure 6 we plot the 

resulting point forecasts for the period 2008-2050 for some of these models. The 

optimal model forecasts the greater decline in the mortality index. 

We begin by analysing the random walk with drift model, which was found to be 

the optimal ARIMA model for tk  in the original work of Lee and Carter for the US 

population and in many other applications of their method. This model appears in the 

second column of Table 2. However, according to the residual autocorrelation functions 

and the Ljung-Box Q-statistics, this model does not fit well the Portuguese mortality 

index. The unit-root model without allowing for a structural change that best fits the 

mortality index series is an ARIMA(1,1,0) model, which appears in the third column of 

Table 2. An ARIMA(0,1,1) model was also reasonable but did not fit the model as well. 

The point forecasts of these models were very similar but with the simple random walk 

with drift model generating wider confidence bands. 
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Table 2. Estimated forecasting models for the Portuguese male mortality index 

 (1) 
ARIMA(0,1,1) 
break in 1996 

(2) 
ARIMA(0,1,0) 

no break 

(3) 
ARIMA(1,1,0) 

no break 

(4) 
ARMA(1,0) 

break in 

Constant -1.37** 
(0.16) 

-1.70** 
(0.35) 

-1.69** 
(0.23) 

38.57** 
(2.90) 

1996
tDU  -1.72** 

(0.38) 
   

t     
-0.92** 
(0.16) 

1973
tDT     

-1.12** 
(0.21) 

)1(AR    
-0.40** 
(0.13) 

0.59** 
(0.13) 

)1(MA  -0.53** 
(0.12) 

  
 
 

Log-
Likelihood 

-121.65 -132.65 -127.86 -125.74 

AIC 4.45 4.77 4.64 4.63 

SBC 4.56 4.81 4.71 4.78 

Q(4) p-value 0.509 0.011 0.840 0.113 

No. Obs. 56 56 56 56 

Forecasts of life expectancy at birth 

2030 80.9 
[80.2 , 81.7] 

78.7 
[76.8 , 80.5] 

78.7 
[77.4 , 79.9] 

78.8 
[78.2 , 79.2] 

2050 84.8 
[84.0 , 85.6] 

81.1 
[78.7 , 83.3] 

81.1 
[79.5 , 82.6] 

81.6 
[81.1 , 82.1] 

Forecasts of life expectancy at age 65 

2030 20.0 
[19.5 , 20.5] 

18.5 
[17.3 , 19.7] 

18.5 
[17.7 , 19.3] 

18.5 
[18.2 , 18.9] 

2050 22.7 
[22.1 , 23.3] 

20.1 
[18.5 , 21.6] 

20.1 
[19.1 , 21.1] 

20.5 
[20.1 , 20.8] 

 

The corresponding forecasts from this model appear in Figure 4. The first thing 

to note is that, in this model, the forecasted rate of decline in mortality is, by 

construction, basically given by the average rate of decline during the whole estimation 

period. Therefore, the more accentuated decline in mortality since the end of the 20th 



43 

 

 

century until the end of the estimation sample is not translated into the future 

projections. Consequently, the projected decline in mortality is much less when 

compared with the optimal model, which allowed for a structural change in 1996. 

Another important difference is that the confidence bands for the projected mortality 

index are wider for this model. This is a consequence of the poorer fit of this model 

relative to the optimal structural change model.  
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Figure 4. Portuguese males mortality index (1950-2007) and forecasts from an 

ARIMA(1,1,0) with no break (2008-2050) 

 

We also considered trend-stationary models. When no break in trend was 

allowed for, the analysis of the residuals suggested an ARMA(1,1) model. However, 

this model resulted in an autoregressive root very close to 1, which basically confirms 

the previously obtained unit-root tests results. Because the model also includes a linear 

trend, the estimated near unit-root would, in fact, lead to a quadratic trend. We conclude 

that this model is not able to adequately describe the mortality index. 

Finally, we have considered a trend-stationary model allowing for a change in 

the trend slope as in equation (8). According to the t0
* test statistic, the estimated break 

date is in 1973. The best model in this case is an ARMA(1,0) including as deterministic 

regressors a constant term, a linear trend, and a change dummy defined as 1973
tDT  = t - 

1973 if t > 1973 and 1973
tDT  = 0 if t ≤ 1973. Estimation results are presented in the 
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fourth column of Table 2. The corresponding mortality index forecasts are graphed in 

Figure 5. The forecasted decline in mortality is also not as great as in the optimal 

forecasting model. Regarding the confidence bands, as expected, these do not grow as 

the forecasting horizon grows, since this model assumes stationarity around a broken 

trend. Thus, for longer horizons, this model will produce forecast intervals with the least 

amplitude, but obviously underestimating future uncertainty, given the results of the 

sequential testing procedure that led to the optimal forecasting model. 
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Figure 5. Portuguese males mortality index (1950-2007) and forecasts from an 

ARMA(1,0) with a break in trend slope in 1973 (2008-2050) 

 

The mortality index forecasts are also used to produce forecasts of the age-

specific forces of mortality ( )txµ  using the previously estimated xα  and xβ  in equation 

(3). From these, we obtain forecasts for life expectancy at birth and at age 65 for each 

model (see Brouhns et al., 2005). These appear in Table 2 (see also Figure 7). In 

accordance with the forecasts obtained for the mortality index, the optimal model with a 

unit-root and a change in 1996 gives the highest projected gains in life expectancy 

during the next four decades. Life expectancy at birth is expected to increase by almost 

9 years and life expectancy at age 65 by 6 years. 
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Figure 6. Portuguese males mortality index (1940-2007) and forecasts for several 

models (2008-2050) 

 

The predicted value for life expectancy at birth in 2050 is 84.8 years with a 95% 

confidence interval of 84.0 to 85.6 years. Life expectancy at age 65 is predicted to grow 

from 16.7 years in 2007 to 22.7 years in 2050 with a ± 0.6 years 95% confidence 

interval. Also, in agreement with the results obtained regarding the confidence bands for 

the mortality forecasts, the amplitude of the confidence bands for the 2050 life 

expectancy forecasts is substantially smaller for the optimal model than for the unit-root 

models without allowing for a structural change, but larger when compared with the 

trend-stationary model with a break. 
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Figure 7. Portuguese males life expectancy at birth (1950-2007) and forecasts from an  

ARIMA(0,1,1) with a break in drift in 1996 (2008-2050). 

 

 

2.5. Discussion of Results and Conclusions 

 

In the previous sections, we have considered the problem of forecasting future mortality 

and life expectancy in the possible presence of a structural change in the context of the 

Lee-Carter model. The proposed approach avoids the problems of other unit-root tests 

and is valid even in the presence of a structural change in the trend slope of the 

mortality index.  Specifically, the results of tests for a change in the trend and for the 

presence of a unit-root are used to identify the most efficient ARIMA model for the 

mortality index that should be used to carry out the projections. 

We apply the proposed procedure to post-1950s time-series mortality data for 18 

developed countries and find significant evidence of structural changes in the rate of 

decline in the overall male mortality rate for almost every country considered. In 

contrast, female mortality decline has remained stable for the majority of the countries. 

These findings are consistent with results appearing in some recent studies. 
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Booth et al. (2006) compare the original Lee-Carter method with the variant 

proposed by Booth et al. (2002) to determine the optimal fitting period, and with the 

Lee and Miller (2001) approach which sets the starting period in 1950. Using data by 

sex for 10 developed countries (Australia, Canada, Denmark, England and Wales, 

Finland, France, Italy, Norway, Sweden, and Switzerland), the authors find that these 

variants are more accurate and that the Booth et al. (2002) variant had the best 

performance for 15 of the 20 populations, with optimal fitting periods starting in the late 

sixties or during the seventies. Since the fitting period in the study ends in 1985, the 

authors could not identify changes in the linear pattern after this year. The authors also 

find that the average overall absolute forecast error in the period from 1986 till the end 

of the century for the female populations is smallest for the fitting period starting in 

1950, while for males is smallest for shorter fitting periods. Shang et al. (2010) extend 

the results of Booth et al. (2006) and include more recent data till 2004 for 14 countries, 

identifying consistent linear mortality declines for most countries starting in the late 

1960s, during the 1970s and 1980s. 

Carter and Prskawetz (2001) also found deviations from linearity in the data for 

Austria from 1947 to 1999. They find a substantial difference in life expectancy 

forecasts, for both males and females, when using the 1976-1999 sub-sample, which 

generates higher life expectancies when compared with the forecast based on the full 

sample.  However, the authors refrain from identifying a date for the structural change. 

Renshaw and Haberman (2003a) while applying the Lee-Carter model to England and 

Wales for 1950-1998, found that the estimated kt profile appears linear for females but 

seems to depart from linearity for males. For those, the pattern in the estimated kt 

essentially comprises two linear segments, hinged in the mid-1970s. For females, 

however, the pattern in the estimated kt is essentially linear throughout the time span 

concerned. These findings were consistent with a preceding exploratory analysis of 

trends in crude death rates developed by the authors, which showed that for males there 

was a pronounced increase in the rate of improvement in mortality, stemming from the 

1970s, in most age bands. This is a feature that was also noted by Wilmoth (2000) and 

Valin and Meslé (2004) for Western countries. In a study of Belgian male mortality 

from 1948 to 2001, Denuit and Goderniaux (2005) also consider the possibility of a 
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change in the trend of mortality decline. Using an ad-hoc rule based on the R2 statistic, 

they actually find that the optimal starting point to consider is the year of 1970.  

The fact that a structural change may have occurred earlier in the case of the US 

and only later for most European countries is also brought up in a study of long-term 

mortality forecasters by Waldron (2005). The author remarks that a period of rapid 

mortality improvement started in the US in 1968, but only in 1982 for most of Europe. 

Wilmoth (2000) highlights the rapid decline in cardiovascular diseases (CVD) in the US 

since 1968 explained by a number of factors: a decrease in adult smoking, reduced 

blood pressure levels, more control of hypertension, a decrease in the consumption of 

saturated fats and cholesterol, medical advances, and improved medical care, among 

others. The author also points the early decline in cancer mortality that occurred in 

Japan since the 1960s. Cutler, Deaton and Lleras-Muney (2006) also refer that the 

decline in CVD in the US in 1960s was also accompanied by an important reduction in 

infant mortality due to improved neonatal medical care for low weight newborns. It is 

also pointed out that US females started smoking later than men, and were slower to 

quit. In some European countries, female smoking was still rising. 

We also show the importance of considering structural changes when making 

predictions. By studying the case of Portuguese male mortality, we illustrate that 

accounting for such structural changes in a forecasting model in fact leads to a major 

impact in mortality and life expectancy forecasts over the next decades. Of course, one 

thing that our approach is not able to do, as in the case of similar extrapolative methods, 

is to predict the occurrence of new structural changes in the future. That would require 

extending the demographic model by including explanatory variables capable of 

predicting major changes that might affect future mortality, such as advances in 

medicine, occurrence of new diseases, changes in lifestyles, or the improvement or 

degradation in socio-economic conditions. However, the use of such information also 

raises a number of difficult problems. An example of including the effects of economic 

conditions on mortality is considered by Hanewald (2009). 

 Our proposed sequential testing approach to detect unit-roots and structural 

changes was applied in the context of the typical Lee-Carter model. However, it should 

be possible to also apply it to other variants of this model that allow, for instance, more 

than one latent mortality index in order to capture dissimilar evolutions of mortality at 
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different ages as in Renshaw and Haberman (2003b). Another extension of the proposed 

approach would be to consider the possibility of more than one structural change 

occurring during the analyzed period. These possible extensions are left for future 

research.  
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3. PATTERNS OF MORTALITY DECLINE IN PORTUGAL SINCE 

1950 

 

 

Abstract 

 

In this paper, we show how a detailed descriptive analysis of the patterns of 

mortality decline can be used in the process of formulating and validating parsimonious 

mortality models. In particular, we study the characteristics of mortality behaviour in 

Portugal from 1950 to 2007 by exploring different descriptive analysis and 

visualizations of mortality data, and use the Lee-Carter model, as well as some of its 

extensions, in order to identify the major patterns in the evolution of male and female 

mortality over time for different ages. In our analysis of Portuguese data, we show that 

an extension of the mortality model adding a second order age-period term is able to 

provide a better fit to the data by capturing important characteristics of the data, in 

particular the non-linear decline in log-death rates for some ages over the period 

considered.  
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3.1. Introduction 

 

The pattern of mortality behaviour in Portugal, as in other developed countries, 

has changed dramatically throughout the twentieth century to this day. During this 

period, with the exception of the influenza epidemic crisis in 1918, one saw a general 

decline in the level of mortality, a dramatic reduction in infant mortality, the increase of 

survival at more advanced ages, and extraordinary gains in the life expectancy of the 

population. The ongoing mortality decline and increasing longevity has huge 

consequences for the individual as well as for society as a whole in questions regarding 

public sector pension provisions, saving for old age, health care provision, and changing 

family structures, among many others.  

Understanding mortality dynamics over the age and time dimensions is crucial 

for any demographic analysis. Towards this end, it is important to look at the historical 

time series data from different perspectives and to use appropriate mortality models. 

Booth (2006) and Booth and Tickle (2008) provide excellent overviews of the recent 

development and state of the art in stochastic mortality modelling and forecasting 

methods. The most prominent method was initially proposed by Lee and Carter (1992) 

using U.S. mortality data. This model has seen several extensions (see, e.g., Lee and 

Miller, 2001; Brouhns, Denuit and Vermunt, 2002; or Renshaw and Haberman, 2006), 

and has been applied to model death rates in many countries, including the G7 countries 

(Tuljapurkar, Li and Boe, 2000), Brazil (Fígoli, 1998), Japan (Wilmoth, 1998), Austria 

(Carter and Prskawetz, 2001), Australia (Booth, Maindonald and Smith, 2002), and 

Spain (Debón, Montes and Puig, 2008). Moreover, variations of the Lee-Carter model 

have been employed to model and forecast other demographic variables such as fertility 

rates or migration flows (Girosi and King, 2008; Hardle and Mysickova, 2009).  

The main objective of this paper is to better understand the characteristics of 

mortality behaviour in Portugal from 1950 to 2007. We explore different descriptive 

analysis and visualizations of mortality data and use the Lee-Carter model, as well as 

some of its extensions, in order to identify the major patterns in the evolution of male 

and female mortality over time for different ages.  

We show how a detailed descriptive analysis of the patterns of mortality decline 

can be used in the process of formulating and validating parsimonious mortality models. 
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In our analysis of Portuguese data, a model with two age-period interaction 

terms is able to provide a good fit to the data and to improve upon the simple Lee-Carter 

model by capturing the non-linear decline in log-death rates for some ages over the 

period considered. 

The paper is set out as follows. In the following section, we present the relevant 

data and conduct a descriptive analysis of the main trends in Portuguese mortality. 

Section 3 summarizes the Lee-Carter model and several of its extensions. The results of 

the application of the Poisson Lee-Carter model are presented and discussed in section 

4. Section 5 analyzes the differences in estimation results obtained for several sub-

periods. Estimation results for the extension of the model allowing for two factors are 

considered in section 6. A summary of the results obtained and concluding remarks are 

provided in the last section of the paper. 

 

 

3.2.  Mortality in Portugal from 1950 to 2007 

 

The demographic data used to study the dynamics of mortality decline in the 

Portuguese population are the size of the population under analysis and the number of 

deaths that occur in the population at different ages and points in time. These data allow 

calculating other indicators such as death rates and life expectancies which we analyse 

in this section. We use data from 1950 to 2007 obtained from the Human Mortality 

Database (HMD). This database contains information from official sources in different 

countries and provides them for scientific analyzes in a uniform format. Data contained 

in the HMD are known for their reliability and accuracy and offer a valuable resource 

for mortality research. In what concerns the quality of the data on the numbers of 

deaths, after 1960 these are reasonably accurate. Prior to this date, they exhibit patterns 

of age heaping at ages ending in zero and should be used with more caution (see 

Canudas-Romo, Coelho and Pina, 2008). Data on population has some more quality 

issues, which are evident prior to the 1981 Census. Population count data are actually 

unknown.  Population is estimated by the Instituto Nacional de Estatística (INE) in-

between census periods (which occur every ten years), taking into account recorded 

births and deaths, and estimated net migration. These data are available, from INE, by 
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single year of age up to an open interval 85 and older. The survivor ratio methods are 

used by the HMD to estimate the population aged 85 and older (for details see Wilmoth, 

Jdanov and Glei, 2007, and Canudas-Romo et al., 2008). 
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Figure 1. Life expectancy at birth, 15, 35 and 65 years old for male (left panel) and 

female (right panel) population, 1950 – 2007, Portugal. 

Source: Human Mortality Database. 

 

 

Between 1950 and 2007, life expectancy at birth in Portugal increased 20.1 years 

for men and 21.2 years for women, attaining, respectively, 75.9 and 82.2 years, which 

represents remarkable gains in terms of expected longevity for both sexes (see also 

Figure 1). Within the European Union (EU15), Portugal is the country whose life span 

has extended the most in the last six decades, although it was also the country with one 

of the lowest life expectancies at birth throughout the period (see Figure 2 and Table 1). 
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Figure 2. Life expectancy at birth for EU15 countries (except Greece), total population, 

1950 - 2007. 

Source: Human Mortality Database. 

 

Table 1: Life Expectancy at Birth for EU15 Countries (except Greece) for Male and Female 

Populations 

Country Reference year Males Females
Austria 2005 76,7 82,2
Belgium 2006 76,5 82,2
Denmark 2007 76,1 78,4
Finland 2007 75,9 82,9
France 2007 77,4 84,4
Irland 2006 77,3 81,9
Italy 2006 78,6 84,1
Luxembourg 2006 76,7 81,8
Netherlands 2006 77,6 81,9
Portugal 2007 75,9 82,2
Spain 2006 77,6 84,1
Sweden 2007 78,9 83,0
UK 2006 77,2 81,5
WestG 2006 77,2 82,3

Life Expectancy at Birth

 

Source: Human Mortality Database. 
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These advances in life expectancy are perceptible at all ages. Female life expectancy has 

increased 11.1 years at age 15, 8.8 at 35 years old, 5.6 at 65, and 2.2 at 80. Male life 

expectancy increased 9.8, 7.5, 4.5 and 1.9 years at the same ages. The longevity gains 

over the whole period have been more favourable to women and the difference between 

life expectancy of men and women is higher in 2007 than the one in 1950. The annual 

evolution of this difference, however, varies with age. Until 1995, the gap in life 

expectancy at birth, 15 and 35 years old, steadily increased. From 1996 onwards this 

trend changed course due to the acceleration of male longevity improvements while 

women showed slower gains in life expectancy. At 65 years, the difference between life 

expectancy of men and women has continued to grow until the end of the 20th century 

showing an apparent tendency to stabilize in more recent years. 
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Figure 3. Male log death rates by age for selected years, Portugal. 

 

The overall mortality age profiles presented in Figures 3 and 4 are consistent 

with the typical pattern found in most other developed countries, starting with a high 

infant mortality, followed by a rapid decline throughout the early childhood years. 

Mortality then increases to a local maximum between ages 15 and 30, especially among 

men. This feature is designated as the “accident hump” and reflects accident mortality 

for males and accident plus maternal mortality for the female population (see Heligman 
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and Pollard, 1980). The rates then steadily increase across older ages. Over time, the 

mortality age profile tends to move down reflecting the overall improvements in all age-

specific deaths rates.  
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Figure 4. Female log death rates by age for selected years, Portugal. 

 

Although age-specific death rates, over the period 1950 to 2007, declined at all 

ages for both men and women, the pace of the decline differs between ages, sexes and 

over periods of time as can be seen from Figure 5.1 The most significant gains in 

mortality occurred at younger ages, i.e., in children under one year of age and children 

between 1 and 4 years of age, mainly as a result of reducing the number of deaths due to 

infectious diseases (see Rodrigues, Moreira and Fernandes, 2004). In 1950, 97 per 1000 

female live births and 112 per 1000 male live births did not survive their first year of 

life. In 2007 these figures were reduced to about 3 deaths per 1000 live births. As can be 

seen from Figure 6, where the average annual rate of mortality decline over the whole 

period is plotted for different age groups, important improvements in mortality were 

also obtained by individuals at their teens and twenties. The improvements for the 

                                                           
1 One should note that death rates for some age groups, particularly older ages, show somewhat erratic 
fluctuations and high variability due to small exposures to risk and inaccuracies in the register of ages in 
the official statistics. 
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elderly were more modest, but still significant, explaining the increase in life 

expectancy at age 65 in Figure 1. 
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Figure 5. Age-groups log death rates for males (left panel) and females (right panel) over time, 

1950 – 2007, Portugal. 

 

The analysis of the average annual rates of mortality decline by age-groups for 

different sub-periods as depicted in Figures 7 and 8, or over time for different age 

groups (using nine-year rolling averages) as presented in Figures 9 and 10,  shows some 

fairly different time paths. The 1950s were characterised by a general decline in 

mortality at all ages below 60 years old, with the greatest improvements for people then 

aged 15 to 29, followed by children aged 1 to 14 years old. The improvements in death 

rates from 1960 till the end of the century were relatively more modest at young adult 

ages, particularly for men that at some ages even experienced increases in mortality in 

some decades. During the 1970s, the mortality of children from 1 to 4 years old has 

declined at the fastest rates, closely followed by infant mortality. From 1980 to 2000, 
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infant mortality decreases at the fastest rate and gains in male mortality in the late teens 

and initial twenties begin to become evident. In the first years of the 21st century, it is 

noteworthy the rise in the rates of decline of mortality at almost all ages. This is 

particularly evident for men up to 40 years old.  In this last period, the pace of mortality 

decline at older ages, i.e., over 65 years, also grew. 
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Figure 6. Age-groups average annual rate of mortality decline (in %), 1950 – 2007, 

Portugal. 

 

The analysis of the graphical pattern of mortality improvement rates in Figure 7 

further suggests that over time a specific group of male individuals might have 

experienced a non-declining or even increased mortality. In particular, from 1960 to 

1980 this happened to young male adults between 15 to 29 years. In the 1980s, 

increases in death rates were experienced by males from 20 to 39 years. In the next 

decade, males aged between 30 and 49 years didn’t benefit from improvements in 

mortality or even experienced a deterioration of death rates. The age groups showing 

lower improvements in death rates are apparently moving upwards along time.  
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Figure 7. Average annual rate of male mortality decline by age-groups for selected 

decades, Portugal. 
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Figure 8. Average annual rate of female mortality decline by age-groups for selected 

decades, Portugal. 
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However, this pattern becomes less evident with increasing ages. This particular 

behaviour suggests that specific generations of males may have been experiencing 

mortality conditions particularly difficult compared to others during some time. To 

better understand this, Figure 11 graphs the average annual improvement rates for the 

period 1950 to 2007 calculated by year of birth using data for ages 0 to 99. The graph 

suggests that people born around the 1950s, especially men, have experienced particular 

poor improvements in mortality when compared with adjacent generations. As 

discussed by Willets (1999, 2004), this particular behaviour may be due either to 

“period-specific” or “cohort-specific” influences. 
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Figure 9. Average annual rate of male mortality decline, nine-year rolling averages, for 

selected age groups, Portugal. 
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Figure 10. Average annual rate of female mortality decline, nine-year rolling averages, 

for selected age groups, Portugal 

 

Table 2 shows the contributions of different age groups to the increase in life 

expectancy at birth. These were calculated using the Arriaga’s (1984) method. The age 

group from 1 to 19 years old was the largest contributor to the increase in life 

expectancy at birth during the 1950s. After 1960 and till the end of the 1980s, the major 

contributions to the increase in life expectancy come from improvements in mortality at 

age 0. In the 1960s, the age group from 1 to 19 years was the second largest contributor 

to the increase in life expectancy, but in the following two decades this place is 

occupied by those aged 60 to 79 years. This older age group becomes the one with the 

larger contribution to the increase in life expectancy at birth in subsequent years. 
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Figure 11. Average annual rate of mortality decline by year of birth, Portugal 

population data from 1950 to 2007, ages 0 to 99 

 

 

Table 2. Age-contribution to Change in Life Expectancy Over Time in Portugal, by Sex 

and Period (in Years) 

Age-groups 1950-1960 1960-1970 1970-1980 1980-1990 1990-2000 2000-2007 Total Change 
1950-2007

Females

0 1,16 1,44 2,61 0,91 0,36 0,15 6,63

1-19 2,36 0,97 0,74 0,27 0,19 0,14 4,67

20-39 1,33 0,31 0,15 0,09 0,16 0,16 2,20

40-59 0,70 0,22 0,28 0,25 0,33 0,27 2,05

60-79 0,41 0,15 1,09 0,81 1,10 0,88 4,44

80+ -0,08 0,12 0,17 0,21 0,42 0,29 1,14

Total 5,88 3,21 5,05 2,53 2,56 1,89 21,12

e0 at start of period 61,03 66,91 70,12 75,17 77,7 80,26

Males

0 1,09 1,50 2,64 1,06 0,45 0,22 6,97

1-19 2,11 0,83 0,59 0,34 0,40 0,27 4,53

20-39 1,39 0,12 0,06 -0,09 0,15 0,72 2,34

40-59 0,74 0,12 0,19 0,48 0,43 0,25 2,22

60-79 0,21 -0,04 0,67 0,62 1,03 0,93 3,42

80+ -0,03 0,06 0,07 0,12 0,19 0,18 0,59

Total 5,49 2,6 4,23 2,53 2,65 2,57 20,07

e0 at start of period 55,79 61,28 63,88 68,11 70,64 73,29  
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Analysis of the distribution of deaths by age, plotted in Figures 12 and 13, show 

the increasing concentration of deaths around the mode of the distribution, with this 

mode moving toward older ages through time. These two aspects are reflected,  
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Figure 12. Distribution of the male deaths over ages for selected years, Portugal 
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Figure 13. Distribution of the female deaths over ages for selected years, Portugal. 
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respectively, in the phenomena of "rectangularization" and "expansion" of the survival 

curve, plotted in Figures 14 and 15, which represents the probability of surviving from 

birth to various ages. In other words, individuals are surviving in greater proportions to 

older ages and at these ages, both men and women, can expect to live on average longer.  
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Figure 14. Male survival curve for selected years, Portugal 
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Figure 15. Female survival curve for selected years, Portugal 



70 

 

 

 

3.3. The Lee-Carter Method and Extensions 

 

The most popular stochastic mortality method is the one proposed by Lee and Carter 

(1992). It combines a demographic model of age-specific death rates with statistical 

time-series forecasting methods. Let ( )txµ  denote the mortality force at age x during 

calendar year t and txD ,  denote the number of deaths recorded at age x during year t 

from an exposure-to-risk txE , .2 We assume that age-specific mortality rates are constant 

within bands of age and time, but allowed to vary from one band to the next. 

Specifically, given any integer age x and a calendar year t, it is assumed that 

( ) ( )tt xyx µτµ =++   for  1,0 <≤ τy . (1) 

Under (1), estimates of ( )txµ , denoted as ( )txµ̂ , are given by the following ratio: 

( )
tx

tx
x E

D
t

,

,ˆ =µ . 
(2) 

The Lee-Carter (1992) model assumes that the observed force of mortality for any age x 

is driven by a common time-varying component, denoted by tk , which is also referred 

to as the overall mortality index. More precisely, the following relation is assumed:  

( ) ( )tkt xtxxx εβαµ ++=ˆln  (3) 

where ( )txµ̂  is given by (2), xα  are the age-specific parameters that affect the overall 

level of ( )txµ̂ln  over time, xβ  are the age-specific parameters that characterize the 

sensitivity of ( )txµ̂ln  to changes in the mortality index tk , and ( )txε  represent error 

terms capturing particular age-specific historical influences not explained by the model. 

The errors are assumed to have mean 0 and constant variance.  

Lee and Carter (1992) propose a two-stage procedure to estimate the model 

given by equation (3). First, a least-squares solution to estimate xα , xβ  and tk  is found.  

Since the model is underdetermined, some normalization constraints are imposed to 

obtain a unique solution: the sum of the xβ  over all ages equals one and the sum of the 

                                                           
2 Estimates of the population exposed to the risk of death are based on population estimates, with a 
correction reflecting the timing of deaths (see Human Mortality Database). 
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tk  over time equals zero. As a consequence, the xα  will be equal to the average values 

of ( )txµ̂ln  over time. The solution can be found using the singular value decomposition. 

Since the model is written in terms of log mortality, the observed total number of deaths 

in each year will not equal the sum of the fitted deaths by age. To ensure this equality, 

the tk  are estimated a second time, taking the xα  and xβ  estimates from the first step, 

such that for each year t, given the actual age distribution for the population, the implied 

number of deaths equals the observed number of deaths.  

The homoskedasticity assumption on the error term ( )txε , implied by the 

singular value decomposition estimation of the parameters xα , xβ  and tk , has been 

considered fairly unrealistic since the logarithm of the observed force of mortality is 

much more volatile at old ages, where the number of deaths and of those exposed to risk 

are relatively small (see Wilmoth, 1993, and Alho, 2000). To circumvent this problem, 

Brouhns et al. (2002) propose an alternative model that keeps the Lee-Carter log-

bilinear form for the force of mortality but replaces the least-squares approach by a 

Poisson regression for the number of deaths. Specifically, they consider the following 

model describing the distribution of txD , : 

( )( )tEPoissonD xtxtx µ,, ~      (4) 

with 

( ) ( )txxx kt βαµ += exp , (5) 

where the parameters xα , xβ and tk  keep the meaning originally attributed by the Lee-

Carter model. These parameters can be estimated by maximum likelihood still subject to 

the model identification constraints that the sum of the xβ  over all ages equals unity 

and the sum of the tk  over time equals zero. The Poisson likelihood is optimised 

adapting the iterative fitting method due to Goodman (1979), as described in Brouhns et 

al. (2002). Lee and Carter (1992) also show that, given the estimated parameters, the 

Box-Jenkins methodology can be used to forecast the mortality index tk  and, 

consequently, life expectancies.  

Booth et al. (2002) and Renshaw and Haberman (2003) argue that the interaction 

between age and time in the demographic model can be captured better by adding a 

second log-bilinear term to equation (5), which would become  
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( ) ( )2,2,1,1,exp txtxxx kkt ββαµ ++= . (6) 

The identification conditions of the model are now described by: 

∑ ∑ ==
t t

tt kk 02,1, , (7) 

∑ ∑ ==
x x

xx 12,1, ββ . (8) 

To estimate the parameters, the iterative procedure developed by Goodman (1979) is 

reformulated in order to include the additional parameters (for details see Renshaw and 

Haberman, 2003). 

In the process of statistical modelling, residuals provide information regarding 

assumptions about error terms and the appropriateness of the model. They measure the 

departure of fitted values from actual values of the dependent variable, and can be used 

to detect model misspecification, outliers or observations with poor fit. In particular, 

visual inspection of the residuals can potentially indicate the nature of misspecifications 

and ways that it may be corrected, as well as provide a feel for the magnitude of the 

effect of the misspecification.  

For linear models, a residual is easily defined as the difference between the 

actual and the fitted value. For the classical linear regression model, with normally 

distributed homoskedastic error, in large samples the residual has the desirable 

properties of being symmetrically distributed around zero with constant variance. For 

nonlinear models the very definition of a residual is not unique and several residuals 

have been proposed (see Cameron and Trivedi, 1998). For count data there is no one 

residual that has zero mean, constant variance and symmetric distribution. With a 

Poisson random component, deviance residuals have been considered the most 

appropriate to monitor the quality of the fit (Brounhs, Denuit and Keilegom, 2005). 

These are defined as:    

( ) ( )
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−= txtx
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D
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(9) 

where  

( )txxtxtx kED ˆˆˆexpˆ
,, βα +=  (10) 
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Renshaw and Haberman (2006) also propose using the standardised deviance 

residuals: 

( )
( )

( )
v

DDDev

DD
D

D
D

DDsign
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(11) 

where ( )xttx DDDev ˆ,,  is the deviance statistic, a measure of goodness-of-fit of the 

model (see definition below), and v  = (number of data cells – number of independent 

parameters) corresponds to the degrees-of-freedom.  

A graphical analysis can be used to check that the residuals are independent and 

identically distributed (Brounhs et al., 2005; Koissi, Shapiro and Högnäs, 2006). A 

shaded contour plot of the residuals over ages and years can also be used to locate 

where the model cannot properly capture mortality trends and may reveal peculiar 

period shocks, cohort effects or specific age-time interaction effects not captured by the 

model (Booth et al., 2002; Koissi et al., 2006).  

The deviance statistic ( )xttx DDDev ˆ,, , as already mentioned, is a common 

measure of goodness-of-fit of the model and may be used as a measure of the overall 

performance of the model: 

( ) ( )∑∑
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with 
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(13) 

The model performance may also be accessed by the percentages of total deviance 

explained by the model. Cameron and Windmeijer (1997) for Poisson regression 

models proposed a pseudo 2R  based on the decomposition of the deviance, denoted by 

2
DevR , 
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(14) 

2
DevR  can be interpreted as the relative reduction in deviance due to covariates in the 

model and shares the characteristics of the 2R  for the common linear regression. 

Proportions of the variance accounted for by the model (ratio of the variance of 

differences between the actual and fitted number of deaths to the variance of the actual 

ones) over the years at different ages are also computed by Brouhns et al. (2002) to 

evaluate model performance.  

 

 

3.4. Results of the Poisson Lee-Carter Model applied to 1950 - 2007 

 

In this section we present and discuss the estimation results of the Poisson 

extension of the Lee-Carter model, hereafter designated as PLC model, for the 

Portuguese data, separately for men and women, from 1950 to 2007. Figures 16, 17 and 

18 plot the estimated xα̂ , xβ̂ , and tk̂ , respectively. The xα̂ ’s describe the general shape 

of the age-specific death rates, and correspond to the time-average of the logarithms of 

deaths rates that were presented in Figures 3 and 4. As expected, these are relatively 

high at infant and childhood ages, declining very rapidly with age to reach its minimum 

at around ages 10 to 12. The values of xα̂  then increase to a local maximum around the 
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Figure 16. PLC model estimates: xα̂  for ages from 0 to 99, 1950 – 2007, Portugal 

 

late teens and early twenties, predominantly among men, corresponding to the “accident 

hump”. Then, the xα̂ values follow an unavoidable nearly linear increase into the 

middle and older ages, reflecting the higher mortality at more advanced ages. 
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Figure 17. PLC model estimates: xβ̂  for ages from 0 to 99, 1950 – 2007, Portugal 
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Figure 18 plots estimates of tk̂ , for females and males. As shown, tk̂  declines 

roughly linearly from 1950 to 2007, reflecting the overall improvements in mortality 

over time. The downward trend in tk̂  is in general more pronounced for women. 
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Figure 18. PLC model estimates: tk̂ , 1950-2007, Portugal 

 

 

Since all age-specific death rates are driven by this overall time index, they 

move up and down together, although not necessarily by the same amount. The 

estimated parameters xβ̂  appearing in Figure 17 tell us at which ages do death rates 

decline more rapidly and which decline more slowly over time in response to the overall 

decline in tk̂ . The estimates xβ̂  and tk̂  are thus complementary, i.e., it is the value of 

the product of both that results in temporal variations in age-specific death rates. The 

larger values of xβ̂  are attained at infant and younger ages, confirming the pattern of 

mortality decline by age-groups observed in Figure 6. The values of xβ̂  decrease with 

age but remain positive. Significant declines in mortality have occurred also among 

females in their twenties, while males in late teens and twenties have had weak 

improvements in mortality. 
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The actual and estimated log-death rates for a selected set of ages are presented 

in Figure 19. In general, the PLC model captures the overall trends in mortality, with 

the estimated age-specific death rates showing a decreasing behaviour over time 

consistent with the observed age-specific death rates behaviour. The exceptions are 

those ages with a less regular behaviour where some difficulties of adjustment are 

evident (ages 20 and 30 for instance).  

The standardized deviance residuals over ages and years are plotted in a heat-

map presented in Figure 20. Negative residuals occur where the model overestimates 

death rates and positive residuals where the model underestimates the death rates. 

Systematic patterns are visible, in particular for men, showing a structure hardly 

consistent with the hypothesis of independence of the residuals. Among other things, 

there is an apparent cohort effect reflected in the salient diagonal with similar values. 

The deviance residuals for women are, in absolute value, lower (as can be confirmed by 

the different scales used in Figure 20) and although there is some clustering, there is no 

clear evidence of a cohort effect.  

The percentages of total deviance explained by the model are high. The values 

of 2
DevR are 95.5% for males and 95.6% for females, clearly conveying that the model 

provides a good overall fit to the data. However, the percentages of the total deviance of 

the number of deaths explained by the model at different ages shown in Figure 31, 

evidence the difficulties of the model for late teens and young adult ages, particularly 

among males. 
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Figure 19. Actual (solid line) and fitted (dotted line) log death rates from PLC model 

for males (left panel) and females (right panel) for selected ages, Portugal 

 

 

 Summarizing the results, we find that the Poisson Lee-Carter model in general 

fits well the data and is able to capture the major patterns of mortality decline. However, 

there are some difficulties in fitting at some particular ages. Also, the presence of some 

clustering in the residuals may suggest the presence of some age-time interactions or a 

cohort effect not accounted for by this model. 
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Figure 20. Standardized deviance residuals from PLC model for males (left panel) and 

females (right panel), 1950-2007, Portugal 

 

 

3.5. Results of the Poisson Lee-Carter Model applied to Sub-periods 

 

As discussed in Section 2, an analysis of the age-specific paths of mortality 

decline over the period 1950 to 2007 shows rather different improvement patterns in 

different sub-periods. This cannot be captured by the PLC model estimated in the 

previous section which assumes that the age-specific patterns of mortality decline are all 

similar, as they are driven by the common overall mortality index tk  and the vector of 

parameters xβ  is invariant over time. In fact several empirical studies find that the xβ  

parameters are not necessarily fixed in time, which may cause a lack of fit of the model 

for longer periods. An example is Lundstrom and Qvist (2004) who examine changing 

trends in the Swedish mortality decline during the twentieth century. Booth at al. 2002 

partially addresses this problem when choosing the fitting period to be used for 

forecasting purposes. Also Lee and Miller (2001), Carter and Prskawetz (2001) and 

Koissi and Shapiro (2009) propose alternative solutions to accommodate the age-

specific variation in the Lee-Carter model. 
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To address this problem, we apply the PLC model to four sub-periods: 1950-

1964, 1965-1979, 1980-1994, and 1995-2007, and estimate the parameters xα̂ , xβ̂  and 

tk̂  in each case. Results are presented in Figures 21-25. 
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Figure 21. PLC model estimates for males: xα̂ , for each of the four sub-samples 

considered, Portugal. 
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Figure 22. PLC model estimates for females: xα̂ , for each of the four sub-samples 

considered, Portugal. 



81 

 

 

Males

-0,04

-0,02

0

0,02

0,04

0,06

0,08

0,1

0,12

0 10 20 30 40 50 60 70 80 90

1950-1964 1965-1979 1980-1994 1995-2007
 

Figure 23. PLC model estimates for males: xβ̂ , for each of the four sub-samples 

considered, Portugal 
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Figure 24. PLC model estimates for females: xβ̂ , for each of the four sub-samples 

considered, Portugal 
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The behaviour of the estimated overall age profiles, xα̂ , presented in Figures 21 

and 22, shifting down over time, is consistent with the pattern already observed in 

Figures 3 and 4, reflecting the decline in death rates at all ages with the exception of the 

increase in male mortality between 15 and 25 years old in the period 1980 -1994. 

The trajectories of the tk̂ , presented in Figure 25 for all sub-periods, show a 

well-defined decreasing trend. However, the rhythm of decline between 1965 and 1994 

is relatively more moderate, especially for men. In the latest period, there is evidence of 

a more pronounced decline in mortality trends. In a study of the mortality trends in 

developed countries, Coelho and Nunes (2011) also find evidence of a structural change 

in the overall rate of mortality decline for Portugal in this period.  
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Figure 25. PLC model estimates for males and females: tk̂ , for each of the four sub-

samples considered, Portugal 

 

Figures 23 and 24 depict the age-specific parameters xβ̂ , for men and women, 

estimated for each sub-time period. The rate of improvement in mortality at each age 

changes substantially over time, confirming the descriptive analysis in Section 2. In the 

period 1950 to 1964, the death rates of young adults declined more rapidly than at other 

ages. From 1965 to 1979, males aged 15 to 25 experience strong deteriorations in 
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mortality. The relative deterioration in male mortality shifts into older ages (ages 25 to 

40) in the period 1980-1994. In this period, the greatest relative mortality declines occur 

at younger ages as well as at older adult ages. The period 1995 – 2007 is marked by 

relative improvements in mortality most evident in the younger ages that extend up to 

about 40 years old.  

 

 

3.6. Results of the Double Bilinear Poisson Lee-Carter Model 

 

The patterns observed in the residual analysis of the PLC model, especially for 

men, suggest possible age-time interactions not fully captured by the model, similar to 

the pattern found by Booth et al. (2002) for Australia. Moreover, the results of applying 

the PLC model to different sub-periods confirm the findings of the descriptive analysis 

in Section 2 that the rate of mortality decline over time did not follow the same pattern 

for all ages. This suggests applying the extension of the PLC model which adds a 

second bilinear term to the demographic model, henceforth designated as PLC2, in 

order to better capture the time trend behaviour in the age-specific death rates. 

Estimates of the parameters 1ˆ
xβ , 2ˆ

xβ  , 1ˆ
tk  and 2ˆ

tk  for this extended model are plotted in 

Figures 26 to 29. We omit the estimated xα̂  since they were almost identical to the ones 

obtained with the PLC model considered in Section 4. 

The estimated 1ˆ
tk  show an almost linear downward trend for both men and 

women. The values of 1ˆ
xβ  are positive for all ages (except for ages above 90), which 

associated with the decrease in 1ˆ
tk , translate into a roughly exponential decrease of 

death rates. This first term is thus very similar to the tk̂ obtained in the PLC model. The 

rate of decline captured in 1ˆtk  is attenuated or accentuated by the effect of 2ˆ
tk . This 

second term starts with a decreasing trend in the 1950s. In the 1960s, it is more or less 

constant for women, after which it shows a growing trend. In the case of men, 2ˆ
tk  

presents an increasing trend after 1960, stabilizing near the end of the twentieth century. 

The values of 2ˆ
xβ  are larger for young adult ages, both men and women, which means 
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that the impact of the introduction of this second term is more focused at these 

particular ages. 
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Figure 26. PLC2 model estimates: 1ˆxβ  for ages from 0 to 99, 1950 – 2007, Portugal. 
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Figure 27. PLC2 model estimates: 2ˆ
xβ  for ages from 0 to 99, 1950 – 2007, Portugal. 
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For men, the growing trend of 2ˆ
tk  from 1960 till the end of the century 

associated with positive values of 2ˆ
xβ , specially for young adult ages, results in the 

attenuation of the effect of the first factor, i.e. reducing the rate of decline of the death 

rates in that period for those ages.  This also implies that the rhythm of decline of male 

mortality is accentuated at the end of the twentieth century and beginning of the twenty 

first century. 
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Figure 28. PLC2 model estimates: 1t̂k , 1950-2007, Portugal. 

 

 

The impact of the introduction of a second term for women is less significant 

since 2ˆ
tk varies less over time. The major effect is to reduce the gains determined by the 

first factor between ages 15 to 30 years since 1970. It should be noted that in the case of 

women, 2ˆ
xβ  takes negative values for ages above 60 years which attenuates the rate of 

decline of death rates for these ages in the first years of the period in analysis while 

accentuating the decline afterwards. 
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Figure 29. PLC2 model estimates: 2t̂k , 1950-2007, Portugal. 

 

Overall, the inclusion of the second term improves slightly the fit of the model. 

The percentages of total deviance explained by the model with two factors are higher 

for both men and women, the values of 2
DevR are 96,8% for males and 97,6% for females. 

As can be seen from Figure 31, the fit is improved especially at young adult ages.  

Although systematic patterns in the residuals are still found for men and women, as can 

be seen in Figure 30, they have a relatively smaller dimension when compared with the 

PLC model considered in Section 4, in particular for men. 

We conclude that the second term enables the model to capture the non-

linearities in the decline of log-death rates for particular ages, in particular young adults. 

There is also some evidence of some possible structural change at the end of the 

twentieth century with a more accentuated decline in male mortality thereafter. 
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Figure 30. Standardized deviance residuals from PLC2 model for males (left panel) and 

females (right panel), 1950-2007, Portugal 
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Figure 31. Proportions of total explained deviance of the number of deaths by age from 
PLC and PLC2 models for males (left panel) and females (right panel), 1950-2007, 

Portugal. 

 

 

 

Years

A
ge

0

10

20

30

40

50

60

70

80

90

1950 1960 1970 1980 1990 2000

-6

-4

-2

0

2

4

Years
A

ge

0

10

20

30

40

50

60

70

80

90

1950 1960 1970 1980 1990 2000

-8

-6

-4

-2

0

2

4

6



88 

 

3.7. Conclusion 

 

In this paper, we analyse the pattern of mortality decline in Portugal since 1950. 

The general shape of the age specific death rates is consistent with the typical pattern 

found in other countries, and has moved down over time reflecting the overall decreases 

in mortality at all ages. These improvements have been greater at lower ages, especially 

infant mortality, than at higher ages. However the rate of improvement in death rates 

showed considerable variability over the period considered, particularly in the case of 

teens and young adults. In more recent years, increases in life expectancy at birth are 

originating more and more from improvements in mortality at older ages. Also, the 

beginning of the 21st century denotes an apparently different pattern in mortality 

decline, particularly evident for men up to 40 years old. Evidence of some apparent 

cohort effect for people born between 1950 and 1960, have been noticed, especially for 

men, that seem to have experienced particular poor improvements in mortality when 

compared with adjacent cohorts. 

We estimate several extensions of the Lee-Carter mortality model in order to 

capture the main characteristics of the decline in mortality. The results obtained from 

using the Poisson Lee-Carter model with one interaction term show an almost linear 

declining trend of mortality over time. The model also captures the greater decline in 

death rates at younger ages in response to changes in this general declining time path. 

Although the model fits reasonably well the data in general terms, for some specific 

ages the fit is not so good, as is the case of men between 20 and 35 years. From an 

analysis of the pattern of the residuals, an eventual 1950-1960 cohort effect is also not 

appropriately captured by the model. The Lee-Carter model was also estimated for 

different sub-periods. The results confirm that the patterns of mortality improvements at 

each age have changed over time. Finally, we considered the model incorporating an 

extra age-time interaction component. The inclusion of this second term is able to 

improve the fit of the model by capturing the non-linearity in the decline of log-death 

rates at some ages. 

We conclude that a careful descriptive analysis of the patterns of mortality 

decline is essential to help formulate and validate parsimonious mortality models. In our 
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analysis of Portuguese data, we discussed how an extension of the mortality model was 

able to provide a better fit to the data by capturing important characteristics of the data. 

However, there were a number of issues that we left for subsequent studies. A 

better understanding of the major patterns of mortality decline and the choice of more 

appropriate mortality models is important not only for historical purposes but also for 

forecasting purposes. Alternative formulations of the stochastic model will have 

consequences in terms of predictions of future mortality and life expectancy. An 

evaluation of the different models in terms of forecasting validity and performance is 

therefore an important issue to investigate. We also leave for future research some 

questions that were raised during our analysis, namely studying the eventual presence of 

a cohort effect. 
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4. COHORT EFFECTS IN MORTALITY MODELLING 

 

 

Abstract 

 

In Portugal, as in other developed countries, substantial mortality gains have occurred at 

all ages in the last decades. However, a previous exploratory study of the patterns of mortality 

decline in Portugal over the period 1950 – 2007 (Coelho and Nunes, 2010) shows that the 

rhythm at which mortality has been improving differs between ages and over periods of time. In 

particular, an apparently odd pattern of mortality improvement was detected in the male 

population, suggesting that over time a specific group of male individuals might have 

experienced a non-declining or even increasing mortality.  

In this paper we use age-period-cohort (APC) models to investigate the feasibility of a 

cohort effect in the Portuguese male mortality. Besides the classical additive APC model, the 

possibility of an interaction of period and cohort with age is considered. The Bayesian 

Information Criterion (BIC) is used to select a parsimonious model that adequately fits the data. 

The APC with age-period and age-cohort interactions is found to be the model that best captures 

male mortality patterns over the period 1950 – 2007. A simulation study is conducted to show 

the consequences of estimating an incorrect model. The results also confirm that BIC can be 

used to select the correct model. 

 

 

Key words: Age-Period-Cohort model, Bayesian Information Criterion, cohort effects, period 

effects. 
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4.1. Introduction 

 

In Portugal, as in other developed countries, substantial mortality gains have 

occurred at all ages in the last decades. However, a previous exploratory study of the 

patterns of mortality decline in Portugal over the period 1950 – 2007 (Coelho and 

Nunes, 2010) shows that the rhythm at which mortality has been improving differs 

between ages and over periods of time. In particular, an apparently odd pattern of 

mortality improvement was detected in the male population, suggesting that over time a 

specific group of male individuals might have experienced a non-declining or even 

increasing mortality3. Willets (1999, 2004) found a similar behavior for England and 

Wales, attributing it to “cohort-specific” influences.  

The residual analysis of the Poisson Lee-Carter model (Lee and Carter, 1992; 

Brouhns, Denuit and Vermunt, 2002) applied to Portuguese male mortality data, by 

Coelho and Nunes (2011), also suggests that particular age-time influences are not fully 

captured by the model. These results lead us to consider the possibility of a cohort effect 

not yet identified in the temporal pattern of male mortality in Portugal. 

Besides England and Wales, cohort effects are also found in Spain (Cleries, 

Martínez, Valls, Pareja, Esteban, Gispert, Moreno, Ribes, and Borràs, 2009), Denmark, 

and in the male populations of Austria, France, Italy, Japan, Netherlands and 

Switzerland (Andreev and Vaupel, 2005). 

In this paper we use age-period-cohort (APC) models to investigate the 

feasibility of a cohort effect in the Portuguese male mortality. To our knowledge, all 

studies of the mortality evolution in Portugal have focused on the impacts of age and 

period, and relatively little is known about possible cohort effects. The objective of the 

APC analysis is to disentangle the effects of age, period and cohort on some outcome, in 

our case, mortality. The separation of age, period and cohort patterns in mortality 

decline can contribute in important ways to an understanding of the recent mortality 

decline as well as for forecasting future trends. In the prospect of a relevant cohort 

effect, the possibility of an interaction with age, that is cohort-specific age effects, is 

also considered. This is done by applying the extension of the Lee-Carter model 

                                                           
3 The average annual mortality improvement rates for Portuguese males plotted by year of birth suggest 
that people born between 1950 and 1960, especially men, have experienced particular poor improvements 
in mortality when compared to adjacent generations. 
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including a cohort effect associated with an age interaction term as proposed by 

Renshaw and Haberman (2006). 

The Bayes Information Criterion (BIC) is used to select the most parsimonious 

model that best captures mortality patterns (Cairns, Blake, Dowd, Coughlan, Epstein, 

Ong and Balevich, 2009). As such, we conclude for cohort specific influences in the 

data if the selected model includes cohort effects.  A simulation study allows us to 

confirm if BIC is indeed selecting the correct model and to explore what are 

consequences of estimating an incorrect model.  

In the first section we present the theoretical framework of the classical APC 

model, the well-known problem of model identification, classical estimation methods 

and some recent developments. Then the introduction of interactions in the model is 

discussed and the general model of Renshaw and Haberman (2006) is presented.  Using 

data on the annual number of deaths and population size by age over the period 1950 – 

2007 empirical results are presented. Finally, the results of the simulation study are 

shown, followed by final considerations. 

 

 

4.2. Age-Period-Cohort Analysis 

 

4.2.1. Introduction  

 

The discussion of the importance of cohort influences on mortality risks dates 

back to the 1920’s (Hobcraft, Menken and Preston, 1982; Richards, 2008; Murphy, 

2010). According to Collins (1982) and Hobcraft et al. (1982), it was Derrick, in 1927, 

who first argued that age-specific death rates plotted by year of birth provided a more 

consistent basis for projecting mortality patterns rather than the more familiar year of 

death. While analyzing age-specific mortality rates for England and Wales from 1841 to 

1925, Derrick found that logarithms of mortality rates plotted against year of birth were 

strikingly parallel and concluded that almost all the temporal change in mortality is due 

to the birth cohort influence (Hobcraft et al., 1982). In 1934, Kermack, McKendrick and 

McKinlay reached similar conclusions for the regularity of the cohort effect that 

changes the relative risk of mortality by the same proportion at most ages (Murphy, 
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2010; Hobcraft et al., 1982). The term “cohort” was used and defined for the first time 

in 1939 in a posthumous publication on tuberculosis by Frost (Case, 1956). Using age-

specific death rates from tuberculosis in Massachusetts from 1880 to 1930, Frost 

showed graphically that age-specific rates seem to be more regular for cohorts than for 

periods and demonstrated that age patterns of mortality from tuberculosis look quite 

different for cohorts and for periods (Hobcraft et al., 1982).  

The graphical display of the data can reveal probable relationships. However a 

formal approach to modeling data, such as regression analysis is thought to be helpful. 

According to Hobcraft et al. (1982), the first proper identified APC model was specified 

by Greenberg, Wright, and Sheps (1950), where the age effects were parameterized 

through a beta distribution. While the statement of the APC model is straightforward, 

the estimation of the model poses a statistical problem, known as the identification 

problem, due to the linear relationship between age, period and cohort. Two decades 

later, K. Mason, W. Mason, Winsborough and Poole (1973) address the identification 

problem in the APC model and, using a multiple classification framework, propose a 

constrained-based approach, founded on a priori and theoretical knowledge, to estimate 

the age, period and cohort model parameters. Following the constrained-based approach 

proposed by Mason et al. (1973), several other approaches have been proposed in order 

to solve the identification problem of the APC model. Among them are the analyses 

ignoring sequentially one of the three dimensions and the search for an estimable 

function of the parameters (Kupper and Janis, 1980; Rodgers, 1982; Holford, 1983; 

Kupper, Janis, Karmous and Greenberg, 1985; Holford, 1991; Clayton and Schifflers, 

1987; Fu, 2000; Yang, Fu, and Land, 2004; Kuang, Nilsen and Nilsen, 2008a).   

Holford (1983) focused on finding estimable functions of the parameters which 

are invariant as to the particular constraint applied, and in particular proposed a partition 

of age, period and cohort effects into linear and curvature components, the latter 

components being uniquely determined, and noting that the second differences are a 

well known measure of curvature. Clayton and Schifflers (1987) also focused their 

attention on what functions of the death rates could be meaningfully estimated, in 

particular on the ratios of relative risks which are identifiable. In the logarithmic scale 

these ratios correspond to second order differences. Zero values for the second order 

differences indicate that the log-risk versus calendar time curve is locally a straight line, 
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while positive or negative values indicate convex or concave relationships, respectively. 

The second differences have the important property of representing characteristics 

specifically attributable to age, period or cohort without any arbitrary repartition of the 

linear components.  

Although literature on age-period-cohort models is rich with attempts to solve 

the identifiability problem, Clayton and Schifflers (1987) and Carstensen (2007) agree 

that such attempts are useless, since is not possible to surmount the problem of having 

two variables as well as their sum in the same linear model. According to them it is not 

possible to uniquely estimate the absolute effects of age, period and cohort, unless the 

researcher is willing to make some assumptions on the relative importance of the 

effects. Carstensen (2007) proposed what he called as a sensible parameterization to 

overcome the identifiability problem of the APC model. A sensible parameterization 

depends on the analysis of the subject matter, it is meaningful, understandable and 

recognizable, practically estimable, and allows reconstruction of the fitted rates from the 

estimated parameters. 

Carstensen (2007) also proposed an extension of the APC model considering 

explicitly data tabulated by Lexis triangles, and parametric smooth functions, such as 

splines, natural splines or fractional polynomials, to model age, period and cohort 

effects. 

Using the second order differences of the three effects as measures of curvature, 

Kuang et al. (2008b) propose an alternative approach to the identification problem in 

the APC model. Their approach consists in transforming the design matrix so that 

curvatures (the second differences) of age, period and cohort are estimated directly.  

 

 

4.2.2. The Classical Additive Age-Period-Cohort Model 

 

The purpose of the APC model is to estimate the respective contributions of the 

effects of age (at the event), period (year of occurrence) and cohort (year of birth) on the 

evolution of the variable of interest.  

Age is considered the most important source of variation in vital rates (Hobcraft 

et al., 1982; Clayton and Schifflers, 1987). It represents the mortality risks related to 
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biological and physiological factors, which are associated to the aging process, and 

which affect equally all individuals of the same age, regardless of their cohort and 

observation period. 

Period effects represent contemporaneous conditions that change the level of 

mortality risk at all ages. Period effects may be associated, for example, to advances in 

medical knowledge, the development of new diagnostic methods, the access to health 

facilities, improved sanitary conditions, improvement in life conditions; environmental 

conditions that are susceptible to affect all cohorts at all ages.  

Cohort effects represent the influence of past conditions on current mortality 

risks, which differentially affects age groups. The cohort could be a generation of 

individuals, a group of individuals born during the same year (birth cohort), or a group 

of people that lived through important comparable historical events or structural 

environment changes in the same period (Wilmoth, 2001, Willekens and Scherbov, 

1991). The birth cohort effect is better thought of as a generational effect, because it is 

not limited to exposures that might occur at the time of birth (Holford, 2006). The 

cohort represents the events that affect in a similar way all individuals of the same 

cohort regardless of the age of the individuals and observation period.  

 

 

4.2.2.1. Model formulation 

 

Let ijD  denote the number of deaths recorded at age i  and calendar year j , and 

ijE  the number of persons at risk of death at age i  and calendar year j , where [ ]Iiii ,1∈  

and [ ]Tjjj ,1∈ . Consider a rectangular data array, ),( ijij ED , comprising the observed 

number of deaths ijD  with matching exposure to risk of death ijE . Age-specific death 

rates are calculated by the ratio of the number of deaths and exposure-to-risk estimates 

in matched intervals of age and time (see Human Mortality Database (2007)), 
ij

ij
ij E

D
m = . 

Cohort or year of birth z is defined by [ ]11 , ijijijz TI −−∈−= .  
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Let the dependent variable ijy  denote some monotonic transformation (e.g., 

linear, logarithm, or logit) of the observed death rates, ijm , at age i and year j, which is 

modeled as a linear additive function of age, period, and cohort effects. The APC model 

may be written as: 

ijzjiijy εγβαδ ++++=  (1) 

where the parameter δ  is an overall constant that establishes a general level to ijy ; iα , 

jβ , and zγ  denote the effects for age group i, period j, and cohort z, respectively; and 

ijε  is the random error component with ( ) 0=ijE ε .  

The random distribution of ijε  is tied to the assumptions on the stochastic nature of ijy . 

Most age-period-cohort models have been approached as a class of generalized linear 

models (GLM) (Robertson and Boyle, 1998a; Robertson, Gandini and Boyle, 1999). 

The Poisson distribution is generally a valid distribution to model counts of 

demographic events, such as deaths (Brillinger, 1986), and log-linear Poisson models 

are widely used in demography and epidemiology. 

 

 

4.2.2.2. The identification problem 

 

The major problem with APC models is the exact linear relationship between 

age, period and cohort, ijz −= , which can be viewed as a special case of collinear 

regressors. Since there are infinitely many linear transformations leading all to the same 

estimated occurrence (incidence or mortality) rate, it is impossible to estimate a unique 

set of parameters.  

The identification problem, in that arbitrary constants and an arbitrary linear 

trend can be added to the elements of the three components parameters without 

changing the predicted values of ijy , can be illustrated using arguments of group theory 

as in Kuang et al. (2008a) and in Carstensen (2007). The predicted values of ijy   given 

equation (1) are a function of the parameters δ , iα , jβ  and zγ , with ijz −= , which is 

invariant to the group transformations g defined by  
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where a, b, c and λ are arbitrary real numbers. These means that if the estimated 

parameters δ̂ , iα̂ , jβ̂  and zγ̂ are adjusted in such a way that: 

iaii ⋅++= λαα ˆ*  

jbjj ⋅−+= λββ ˆ*  

zczz ⋅++= λγγ ˆ*  

cba −−−= δδ ˆ*  

then the predicted values of ijy  using model (1) are the same, for the two sets of 

parameters (δ̂ , iα̂ , jβ̂ , zγ̂ ) and ( *δ , *
iα , *

jβ , *
zγ ), whichever the choice of a, b, c and  

λ, since ijz −= : 

*****
zjiijy γβαδ +++=  

zcjbiacba zji ⋅+++⋅−++⋅+++−−−= λγλβλαδ ˆˆˆˆ  

( ) ( )zjicbacbazji +−++++−−−++++= λγβαδ ˆˆˆˆ  

( ) ( )( )ijjizji −+−++++= λγβαδ ˆˆˆˆ  

ijzji ŷˆˆˆˆ =+++= γβαµ . 

 

Since the different sets of parameters age, period and cohort lead to identical estimated 

values for the dependent variable, there is no way of selecting between the alternative 

solutions based on the goodness of fit quality. 

A regression model that includes complete sets of dummy variables for each age, 

period and cohort factors is not estimable since the columns of the regressors matrix 

(matrix X in OLS) will be linear functions of one another and consequently the matrix 

XX ′ is not invertible.   Usually in regression models that assume unique effects for each 

category within each dimension and each dimension is represented exhaustively by its 

categories, a location or normalization constraint, such as taking one level of age, period 
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and cohort as a reference by setting one of each three scales parameters to zero or sum-

to-zero constraints to center the parameters so that they sum to zero, are sufficient to 

identify the model. Such constrains, however, are insufficient to break the linear 

dependency between age, period, and cohort in the age-period-cohort model.  

Arbitrary linear trends may be added to any of the factors with compensating 

trends in the other two (Carstensen, 2007). Unless one has prior reasons for fixing 

overall trends in any of the effects, only departures from linearity can be detected 

(Holford, 1983; Clayton and Schifflers, 1987).    

 

 

4.2.2.3. The estimation approach of Kuang, Nilsen and Nilsen 

 

Acknowledging the identification problem of the APC model, several estimation 

strategies have been proposed. Following the suggestion of Holford (1983) and Clayton 

and Schifflers (1987), Kuang, et al. (2008a) propose an alternative approach to the 

identification problem in the APC model using second order differences, which can be 

uniquely estimated. Their proposal consists in transforming the design matrix so that 

curvatures (the second differences) of age, period and cohort are estimated directly.  

Kuang et al. (2008a) consider the identification problem and propose a maximal 

invariant parameter based on the second differences and three initial points designated a 

canonical parameterization. Considering the APC model for the logarithm of mortality 

rates, ijij my log= : 

ijzjiijy εγβαδ ++++=  (3) 

with age i =  i1,…, i I, year j = j1,…,jT, and cohort z=j-i= j 1- iI,…, jT - i1, Kuang et al. 

(2008a) show that it can be written in terms of the second differences and three initial 

points: 

( )( ) ( )( ) ijjijijijijiij ayyjyyiyy +−−+−−+= ++ 1111111111 ,1,,,1, 11  (4) 

with 

( ) ( ) ( )∑∑∑
−

+−=+=+=
∆+−−+∆+−+∆+−=

ij

ijs
s

j

js
s

i

is
sij
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2
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where 2∆  denotes the second difference operator. In (4), 
11, jiy  determines the level, 

( )
1111 ,,1 jiji yy −+  and ( )

1111 ,1, jiji yy −+  determine linear effects, and the double differenced 

parameters determines the non-linear effects. Second differences have the advantage of 

being interpretable. A nil value indicate the absence of change in the local trend, a 

positive value or a negative value correspond respectively to an acceleration or 

deceleration of the local trend. 

The canonical parameter proposed is 

( )
1111111111

2
2

22
2

22
2

2
1,,1, ,,,,,,,,,,, ijijTjiijijiji TII

jyyy −+−++++ ∆∆∆∆∆∆= γγββααξ KKK  (5) 

Kuang et al. (2008a) demonstrate that ξ  gives a unique parameterization of ijy 4. For 

estimation, a design matrix for the canonical parameter ξ  can be deducted from (4).  

The uniqueness of ξ  implies that the design matrix has full column rank. So the 

model may be estimated by least squares regression or generalized least squares 

regression (linear or Poisson regression). 

The original parameters iα , jβ , and ij −γ  can be constructed from ξ , imposing 

some identification restrictions on the parameters. To do so the researcher should look 

at the estimated parameters in conjunction with information external to the data. For 

instance, one can set the constant, the first age, cohort and period parameters equal to 

zero and an additional equality constraint on the first two calendar year parameters in 

order to get estimates for the parameters levels, 02111 ===== ββγαδ .  

Carstensen (2007), Kuang et al. (2008a) remark the importance of the graphical 

representation of the three components estimated effects, and the fact that the first 

differences as well as the absolute levels can be moved around between the three 

components.  

 

 
                                                           
4Kuang et al. (2008a) show that the three corner points ( 1,,1, 111111

,, ++ jijiji yyy ) can be replaced by three 

other points ( )'''',''''',''', ,, jijiji yyy  and the parameterization of ijy  by ξ  remains unique (exactly 

identified) if the matrix B, based on the new set of three points, and defined as 

( )′= '''''''''''' jijiji bbbB  where ( )1,1,1 −−= jibij , is invertible.  
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4.2.3. Age-by-Period and Age-by-Cohort Interactions 

 

The classical APC model is a linear, additive, fixed effects model. It assumes 

that age effects are the same for each period and cohort, period effects are the same for 

each age and cohort, and cohort effects are the same for each age and period. The 

empirical and theoretical adequacy of the classical APC model that allows no 

interaction terms have been questioned (Glenn, 1976; Rodgers, 1982; Wilmoth, 1990). 

Glenn (1976) argues that there are often substantive reasons for assuming the existence 

of such interactions. Following the criticism of Glenn (1976), and taking into 

consideration the discussion on the conceptual nature of a cohort in Ryder’s (1965), in 

that he explains that the cohort can change over time, not only due to composition 

changes, but because different cohorts live through different social events, or the same 

events at different ages, and these events may change the cohort nature in several 

lifelong ways, Fienberg and Mason (1982) describe several ways to extend APC models 

to include interactions.  

The inclusion of interaction terms was also proposed as a solution to the 

identifiability problem of the classical additive APC model. Moolgavkar, Stevens and 

Lee (1979) proposed, and James and Segal (1982) extensively analyzed, a non-linear 

APC model with an age interaction term associated to the period effects.  The non-linear 

model for the time effect proposed by Moolgavkar et al. (1979) is just one example of 

interaction terms in the APC model.  

According to Holford (1991, 2005) nonlinear models with age-period and/or 

age-cohort interactions are especially interesting, because in most situations they will 

yield a unique set of parameters, without the use of arbitrary constraints. However, the 

authors remark that the additive APC model is a special case of this form, and special 

caution is necessary. Also they note that intrinsically nonlinear models often have 

complex regions where the different parameters give nearly identical fitted values to the 

data, resulting in unstable parameter estimates.  

The well known Lee-Carter model (Lee and Carter, 1992) includes a bilinear 

term in the age-period model, but no cohort effect. Renshaw and Haberman (2006), 

based on the work of James and Segal (1982), generalized the Lee-Carter model to 

incorporate cohort effects with an interaction term with age. The APC model is 
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generalized to allow age profiles to change over time, period effects to have different 

influences on people of different ages, and cohorts to change from one period to the 

next. 

 

 

4.2.3.1. The Lee-Carter model 

 

Lee and Carter (1992) propose the following model for the logarithm of death 

rates, ijij my log= : 

ijjiiij ky εβα ++=  (6) 

where iα  represents the general shape of the age-specific mortality profile (main age 

effects), jk  represent the main period effects (underlying time trend), iβ are age-

specific parameters that measure the sensitivity of ijmlog  to changes in the temporal 

index of mortality jk , and ijε represent the error terms which are assumed to have zero 

mean and constant variance. 

The structure is invariant to the group transformations g defined by: 
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where c and d are arbitary constants with 0≠d . So jk  is determined up to a linear 

transformation, iβ only up to a multiplicative constant and iα  only up to a linear 

transformation.  

In order to ensure the identifiability of the model two constraints must be 

imposed. Lee and Carter (1982) propose using the following identifying constraints 

∑
=

=
Ii

ii
i

1

1β  and ∑
=

=
Tj

jj
jk

1

0 , which imply that iα  is an average of ijmlog  taken over time. 

The homoscedasticity assumption on the error term ijε  have been considered 

fairly unrealistic (Wilmoth, 1993; Alho, 2000) and Brouhns et al. (2002) proposed an 
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extension to the Lee-Carter model that keeps the log-bilinear functional form, but 

replaces the least squares approach with a Poisson regression for the number of deaths. 

 

 

4.2.3.2. The Renshaw-Haberman model 

 

Renshaw and Haberman (2006) incorporated cohort effects into the model, 

adding an additional pair of bilinear terms ( )
iji −γβ 2 , where ij −γ  represent cohort effects 

and ( )2
iβ  measure the corresponding interaction with age. The model proposed by 

Renshaw and Haberman, henceforth designated RH model, for the logarithm of death 

rates, ijij my log= , can be written as follows:   

( ) ( )
ijijijiiij ky εγββα +++= −

21  (8) 

The structure is invariant to the group transformations g defined by: 
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(9) 

where c, d, e and f are arbitrary constants with 0≠c  and 0≠e . 

To deal with the identifiability problem of the model, due to the relationship 

between the three time components and to ensure a unique set of parameters, Renshaw 

and Haberman (2006) adopted a two-stage fitting strategy in which iα  is estimated first, 

according to the original Lee-Carter model (the average over time of the logarithm of 

death rates), followed by an iterative fitting algorithm to estimate the remaining 

parameters subject to the parameter constraints: 

( )∑
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ii
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12β  and 0
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The last constraint is used when setting the starting values and is subsequently 

maintained in the iterative fitting algorithm, while the first two constraints are imposed 

once the algorithm has converged.  

According to Haberman and Renshaw (2009), estimating iα  first by 

conditioning on a predetermined static life table allows the preservation of a realistic 

representation of the main age effects which match the typical shape of a static life table 

on the log scale.  

Renshaw and Haberman (2006) had already noted that convergence of the 

iterative fitting procedure was slow when fitting age-period-cohort with interactions. 

Cairns et al. (2009) also found that parameter values in the iterative scheme converge 

very slowly to their maximum likelihood estimates, which according to them suggests 

that some sort of identifiability problem remains. Arguing that the model proposed by 

Renshaw and Haberman (2006) lacked robustness in the parameter patterns, Cairns et 

al. (2009), proposed a different algorithm to fitting the Renshaw-Haberman model and 

impose the following constraints to ensure identifiability: 

∑
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ii
i

1

12β  . 

Imposing the sum of period and cohort parameters equals one, implies that the estimate 

for iα  will be (at least approximately) equal to the mean over time of the logarithm of 

the age-specific death rates, ijmlog (Cairns et al., 2009).  

 

 

4.2.3.3. The Lee-Carter model with additive cohort effects  

 

The Lee-Carter model may be extended to include an additive main cohort 

effect, or alternatively we can set the age-cohort interaction parameters, in the RH 

model ( )2
iβ , equal to a constant. In such a model cohort effects are fixed over the 

lifetime of the cohort. The Lee-Carter with additive cohort effects model for the 

logarithm of death rates, ijij my log= , can be written as follows:  

ijijjiiij ky εγβα +++= −  (10) 

The structure is invariant to the group transformations g defined by: 
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where c, d and f are arbitrary constants with 0≠c . To ensure the identifiability of the 

model, constraints such as defined by Cairns et al. (2009) for the Renshaw-Haberman 

model may be adopted: 
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4.3. Data Description 

 

In this study we use post-1950 data for the Portuguese male population. The 

data, number of deaths and exposures-to-risk, by ages at last birthday from 0 to 99 years 

old, were obtained from the Human Mortality Database, which is sponsored by the 

University of California, Berkeley, and the Max Planck Institute for Demographic 

Research (http://www.mortality.org). Data were tabulated by age and time of death 

using equally spaced intervals for age and calendar period. Age-specific death rates are 

calculated by the ratio of death counts and exposure-to-risk estimates in matched 

intervals of ages and time. Cohorts are found on the diagonals of the table. One should 

note that the diagonal cells in such a table, however, do not define non-overlapping 

cohorts. These correspond to “synthetic cohorts”, they do not match to successive 

observations of the same birth generation but instead to successive age intervals in 

successive time intervals. If we consider one-year intervals for age and period, each cell 

represents the experience of two actual cohorts, or the number of deaths during a 

calendar year between two different birth cohorts. For example, individuals aged 50 

who died during the calendar year 2000 were born sometime during the years 1949 and 

1950, corresponding to two different birth generations. Similarly, individuals aged 51 

belong to the 1948-1949 cohort, which overlaps the previous cohort. 
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The graphical analysis of the observed death rates provides a first step in better 

understanding the data (see figure 1.). However this figure may be interpreted with 

caution since not all cohorts are observed at all ages, and consequently not all contribute 

with the same information to the mean death rates. Older and younger cohorts are 

under-represented. The earliest birth cohort in our data corresponds to individuals born 

between 1st January 1850 and 31st December 1851, those deceased at the age of 99 years 

old in 1950, the first calendar year of observation in our data. According to the 

convention adopted in the study, the first cohort (1850-1851) will be designated as 1851 

birth cohort, obtained by the difference between year of death and age at last birthday. 

For this birth cohort only one observation is available. As we move forward we are 

adding information on more cohorts to the dataset. For these initial cohorts we only 

have available data for very old ages. As we move forward across cohorts, till the birth 

year 1908, we are adding information on the death rates of younger ages, which are 

lower. It follows that the average of the cohort-specific death rates are falling as can be 

seen in Figure 1. At birth year 1909, we begin to lose the older ages, but keep adding 

cohorts with younger ages. Therefore, when analysing the mean death rate by cohort 

(Figure 1) we can detect a more pronounced decline after 1909, as older ages with high 
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Figure 1. Mean male deaths rates by cohort year-of-birth (unbalanced sample). 
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death rates are being substituted by younger ages with lower death rates. For the birth 

years during the second half of 1940s we start adding to the data cohorts with ages 

under 5, at a time when infant mortality rates are still very high, which results in an 

increase of the mean death rate till 1950. From birth year 1950 onwards, all cohorts 

include ages 0 and above, but start losing older ages leading to a decline in the mean 

death rate. Finally, by the end of the sample, the mean death rate goes up as we have 

cohorts with data available only for the very young ages. 

The graphical analysis of the observed age-specific death rates plotted by 

calendar year and year of birth offer a better approach for analyzing the effects of age, 

period and cohort (Carstensen, 2007; Kupper et al., 1985; Roberston and Boyle, 1998b). 

To facilitate the visual analysis, age-specific death rates for Portuguese males from 

1950 onwards were plotted only for five-year age groups and five-year calendar periods.  

An analysis of the cross-sectional age-specific deaths rates in Figures 2 and 3 

shows that male mortality has improved at all ages in Portugal over the last 60 years, 

but not all improved at the same pace and a few ages even showed increases in some 

calendar periods. 
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Figure 2. Male age-specific rates by period. 
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The decline in mortality begins earlier and is more accentuated among younger 

ages (Figure 3). Death rates from birth to 4 years old show an unprecedented decline 

and a consistent overall declining trend over time. Although at a slower pace, mortality 

between ages 5 and 14 also show the same consistent declining pattern over time. In the 

earlier years, an accentuated decline is showed by mortality between ages 15 and 50, 

but latter these improvements stabilize and these death rates even increased during some 

time, returning to a decreasing trend in more recent years. An example of such behavior 

is the decline in rates at ages 15-19 during the 1950’s, after which these begin to 

increase attaining a peak in 1980-1984, when a decline starts again. The same behavior 

(of a clear decline and then an increase and then another decrease) can be observed 

regarding the rates at 20 to 30 years old. This pattern of behavior moves in time as 

people age, which is apparently an indication of a birth generation of individuals 

sharing higher deaths rates than previous generations. 
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Figure 3. Male period-specific rates by age. 
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Age-specific death rates curves (Figure 2) move downwards over time, which is 

an evidence of the influence in mortality of the environmental conditions operating at 

the time of death; this is, of a period effect. The age distribution however changes from 

period to period. The shape of age distribution of death rates is affected both by varying 

age effects and by varying cohort effects, as these curves cut across a number of birth 

cohorts (Kupper, et al., 1985). After a high incidence of mortality in early childhood, 

the rates decrease dramatically until about 10-14 years of age when they begin to rise 

again. The incidence of mortality peaks around the age 20-24, stabilizing till age 35 in 

the early periods. In the more recent periods 1970-1974 to 1985-1989, after a peak at 

age 20-24, the incidence of mortality declined between those aged 25-29 and 30-34.   

Cross-sectional age-specific death rates changed over time. These changes may 

reflect aging influences, period effects or it may be the reflection of the different 

characteristics of the cohorts that happen to be passing through those ages during those 

calendar years.  
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Figure 4. Male age-specific rates by date of birth. 
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Figure 4 displays the change in mortality of a population born within the same 

time interval over their lifetime. Following the trend from the early cohorts to the more 

recent ones, cohorts’ life-course patterns show a general consistent behavior. A peak at 

early childhood is followed by a decrease till around age 10-14, and then by an increase 

in mortality which attains a peak at around age 20-24, followed by a decline of 

mortality in each cohort and then by an increase as each cohort ages. The age where the 

inflexion point between decline and increase happens, however, seems to move to the 

right. Some specific behavior is visible for the cohorts born between 1945 and 1974 

(Figure 5), which comparatively with previous cohorts, show higher mortality at ages 

15 – 19 to 35 – 39.   
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Figure 5. Male cohort-specific rates by age. 

 

The evidence from the graphical analysis is that besides aging changing effects, 

period and cohort effects may both be present in the data. Since age, calendar time and 

cohort are fundamentally tied to each other (as time advances, a cohort ages), it is 

difficult to determine graphically if these three effects are simultaneously present. 
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However distortions of cross-sectional plot of age-specific death rates are a possible 

indication of the presence of cohort effects, while distortions in longitudinal plots of 

age-specific death rates point to the existence of period effects, and both are evident 

from the plots. Formalizing the age-period-cohort analysis may help to disentangle the 

influences of each type of effect.   

 

 

4.4. Estimation Results 

 

In this section we present the estimation results of the various models: the age-

cohort (AC) model, the age-period (AP) model5, the age-period-cohort (APC) model, 

the Lee-Carter (LC) model, de Lee-Carter with additive cohort effects (LCC), and the 

Renshaw-Haberman6 (RH) model for the Portuguese male mortality data. For the 

models estimation we have considered one-year age and period intervals.  

Maximum likelihood estimates for the parameters, for each of the above 

mentioned models, are obtained based on the following assumptions: 

- The number of persons at risk of death at age i  and calendar year j , ijE , is a 

deterministic exposure measure; 

- The number of deaths at age i  and calendar yearj , ijD ,  are jointly 

independent random variables following a Poisson distribution with mean 

ijijE µ⋅  or   ( )ijijij EPoissonD µ⋅~ , where ijµ  denotes the age-specific forces of 

mortality, which are assumed to be constant within bands of age and time but 

allowed to change from one band to the next; 

                                                           
5 The AC and AP models were fitted using the glm procedure implemented in the Stats R Package. The 
statistical software “R” is available free of charge from www.r-project.org. 
   
6 The APC, LC, LCC and RH models were fitted using an adaptation of the code, written by Professor 
Andrew Cairns in the “R” programming language, which is part of the LifeMetrics toolkit (Coughland, 
G., Epstein, D., Ong, A., Sinha, A., Hevia-Portocarrero, J., Gingrich, E., Khalaf-Allah, M., and Joseph, 
P., 2007).  
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- With a log-link function, the logarithm of the expected number of deaths is 

given by ( ) ( )ijijij EDE µlogloglog += , where ( )ijµlog  correspond to the 

parametric structure of ( )ijyE  for each of the models considered.  

 

 

4.4.1. The age-period and age-cohort models 

 

As a first step in the analysis we fitted an age-period and an age-cohort models, 

which give a rather simplistic description of the actual impacts of risk factors on 

mortality. The deviance residuals from both models are plotted against age, calendar 

year and year of birth (Figure 6). The plot of deviance residuals versus age from both 

models shows large residuals at childhood, denoting the difficulties in capturing the 

trends of mortality at these ages. The dramatic decline of death rates at the youngest 

ages, from very high rates at the 1950s to very low rates at the first years of the twenty-

first century, is not well captured in particular by the age-period model. The plot of 

deviance residuals against calendar year shows large positive deviance residuals for the 

early calendar years and large negative deviance residuals in more recent years.  

The deviance residuals plotted against year of birth show a sort of ripple effect. 

It is more visible for the age-period model, showing larger deviance residuals for the 

generations born after 1940. This pattern may suggest the need of a cohort effect in 

explaining the mortality behavior. The ripple effect for the cohorts born between 1950 

and around 1975 is also evident in the plot of deviance residuals from the age-cohort 

model. To check whether this apparent cohort effect is not caused by the particular 

structure of our dataset where higher infant death rates are first included in the year 

1950, we re-estimated these models excluding ages 0-2. The results obtained still show 

a visible ripple effect in the residuals, symptom of the need to model a cohort effect. 

The age-cohort model seems to capture the trends in mortality more effectively 

than the age-period model, reducing the deviance substantially comparatively to the 

age-period model. Neither, however, seem to be the appropriate models to describe the 

trajectory of male Portuguese mortality, since clear non-random patterns subsist in the 

residuals. 
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Figure 6.Age-period and age-cohort models deviance residuals plots against age, period 
and cohort year-of-birth, males, Portugal, 1950 – 2007. 
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4.4.2. The age-period-cohort model 

 

 

A more realistic assumption will be that neither period nor cohort effects alone 

lead to an adequate description of the data. The age-period-cohort model, which 

combines the cohort and the period approaches, will allow a simultaneous analysis of 

both dynamics in the mortality trends. We fit the age-period-cohort model to mortality 

data using the approach proposed by Kuang et al. (2008a). The second differences of 

age, period and cohort are estimated directly. 

Following the recommendations of Carstensen (2007) and Kuang et al (2008 

a,b) on the parameterization of the effects, we look at the estimated parameters, and in 

conjunction with information external to the data on the mortality behavior patterns, we 

set the constant, the first age, cohort and period parameters equal to zero. Additionally 

we set an equality constraint on the first two calendar year parameters. The selected 

parameterization is based on the predominance of aging influences on all causes 

mortality (Hobcraft et al, 1982; Clayton and Schifflers, 1987), and on the declining time 

pattern of overall mortality in developed countries over the twentieth century associated 

to period influences, both important in explaining mortality decline in Portugal. The 

interpretation of the parameters is conditioned by the adopted parameterization. 

Figure 7 shows the estimated age, period, and cohort parameters. The estimated 

age effects profile corresponds to the familiar shape, showing higher mortality levels at 

childhood and falling rapidly afterwards and then increases showing a clear accident 

hump, and then increasing as age advances. The period estimated parameters show a 

declining trend over time with several oscillations. The cohort parameters show an 

increase in mortality among generations born in the late 1940s and during the 1950s. 

 

 

 

 

 

 

 



117 

 

 

 Estimated parameters Deviance residuals

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

1852 1872 1892 1912 1932 1952 1972 1992

C
o

h
o

rt
ef

fe
ct

s

Year of birth

-5,0

-4,0

-3,0

-2,0

-1,0

0,0

1,0

2,0

3,0

0 10 20 30 40 50 60 70 80 90

A
g

e
 e

ff
ec

ts

Age

-1,0

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0,0

1950 1960 1970 1980 1990 2000

P
e

rio
d

 e
ff

e
ct

s

Calendar year

-30

-20

-10

0

10

20

30

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

R
es

id
ua

ls

Age

-30

-20

-10

0

10

20

30

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

R
es

id
ua

ls

Calendar year

-30

-20

-10

0

10

20

30

1851 1871 1891 1911 1931 1951 1971 1991

R
es

id
ua

ls

Year of birth

 

 

Figure 7. Age-period-cohort model: estimated parameters iα , jβ , and ij −γ , and 

deviance residual plots against age, period and cohort year-of-birth, males, Portugal, 
1950 – 2007. 
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Although the fit of the age-period-cohort model improved over the age-period 

and age-cohort models (Table 1), the analysis of the residuals of the age-period-cohort 

model (Figure 7) still shows some difficulties in capturing the trend in mortality at 

childhood. 

 
Table 1. Summary Measures on the Estimated Models 

MODEL AP AC APC LC LCC RH 
N.º of observations 5800 5800 5800 5800 5800 5800 
N.º of parameters 157 256 312 256 412 511 
Log-likelihood -98252 -42929 -40714 -33423 -29304 -27547 
BIC 197864 198722 84132 69064 63036 59522 
Deviance 153583 42937 38509 23925 15687 12173 
 

The age-period-cohort model provides a more adequate description of the data 

than a model that considers only period or cohort effects. However it is still just an 

approximation for explaining the influences of age, period and cohort risk factors on 

mortality. Being an additive model it is based on the assumption that the influence of 

age is the same in all time periods and for all cohorts; that the influence of period is the 

same for people of all ages; and that cohorts do not change over time. However, period 

and cohort influences in practice however have proven to operate differentially at 

different ages (Schulhofer-Wohl and Yang, 2011). The historical behavior of overall 

mortality tells a somewhat different story, namely that the influence of age changes over 

time and across cohorts. An obvious example is the huge decreases in infant mortality 

over the past century, with substantially different rhythms of decline over time, not only 

due to cohort effects but mainly influenced by environmental factors associated to the 

time of death. 

 

 

4.4.3. The Lee-Carter model 

 

The possibility of an interaction effect of age with period suggested by the 

graphical analysis may be verified by estimating the Lee-Carter model. Instead of 

considering period effects that have the same impact at all ages, as in the age-period 

model, the Lee-Carter model introduces an interaction term of age with period. 
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The results of the Lee-Carter model applied to Portuguese mortality are 

presented by Coelho and Nunes (2011).  The age effects iα̂  (Figure 8) show the general  
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Figure 8.Lee-Carter model: (1) estimated parameters (main age effects iα , age-period 

interaction effects iβ , and main period effects jk ), and (2) deviance residual plots 

against age, period and cohort year-of-birth, males, Portugal, 1950 – 2007. 
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shape of the age specific death rates, with relatively high values at the infant and 

childhood ages, declining very rapidly with age till around ages 10 to 12, at which it 

attains its minimum. And then the iα̂  increases to a local maximum around the late 

teens and early twenties (accident hump), after which it follow a nearly linear increase 

into the middle and older ages. The jk̂  (Figure 8) declines almost linearly over time, 

suggesting a more accentuated rate of decline after the mid-1970s, and driving all age-

specific rates down, but not by the same amount due to the different values of iβ̂  

(Figure 8). Infant ages and childhood show relatively high iβ̂  values, declining to a 

minimum value around age 20. A slight increase of iβ̂  are visible till around age 70, 

when it declines again.   

The introduction of an interaction term of age with period reduces the deviance 

residuals (Table 1), and the Lee-Carter model represents a fitting improvement over the 

age-period, age-cohort and age-period-cohort models. The residuals plotted against age 

(Figure 8) still shows larger residuals at infancy and around the accident hump ages; 

however the amplitude of variation is substantially inferior to the age-period model 

residuals. The deviance residuals plotted against year of birth however still show a clear 

ripple effect, suggesting a cohort effect. Comparatively to the age-period-cohort model, 

the Lee-Carter model provides a better description of the male Portuguese mortality but 

deviance residuals show an existing pattern, which may suggest that not only period 

effects differ between ages but also a cohort effect may be influencing the mortality 

pattern.  

 

 

4.4.4. The Renshaw-Haberman model 

 

The Renshaw and Haberman (2006) model includes interactions of age with 

period and with cohort effects. The main age effect plot iα̂  (Figure 9) exhibits the 

familiar pattern. The main period effect jk̂  (Figure 9) declines almost linearly over 

time, although with some small oscillations. The age-by-period interaction term 1
iβ   
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Figure 9. Renshaw-Haberman model estimated parameters: main age effects iα , age-

period interaction effects ( )1
iβ ,  main period effects jk , age-cohort interaction effects 

( )2
iβ , and main cohort effects ij −γ , males, Portugal, 1950 – 2007 

 

(Figure 9) pattern, which represents the rate of decline by period of age specific rates of 

mortality, show that even though all age-specific rates have declined with time, some 
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have had larger improvements, in particular those at childhood and among ages 65 to 80 

years old.  

The plot of the cohort effects (Figure 9) exhibit a pronounced increase in the 

ij −γ̂  profile for the generations born in the late 1940s, during the 1950s and the first 

years of the 1960s, remaining relatively stable over the 1960s. This behavior is 

consistent with the increases in death rates observed in the exploratory analysis for these 

cohorts. Generations born after 1970 seem to benefit from mortality improvements 

relatively to previous generations. The age-by-cohort interaction term 2
îβ  (Figure 9) 

pattern, which represents how the cohort effects change with age, show that the 

influence of cohort effects is more pronounced at infancy, between ages 15 to 35 years 

old and after 60 and below 80 years old.    

The decline in mortality at older ages is represented by the combination of 

negative main cohort effects, ij −γ̂ , in the oldest generations, which are highly sensitive 

to age (large positive values of 2îβ ). The estimated behavior suggests that the oldest 

cohorts have been able to improve mortality rates as they age.  

Cohorts born after 1913 and before 1990 show positive main cohort effects, 

ij −γ̂ , stronger, as already mentioned, among those born between 1950 and 1970. These 

are associated to relatively larger values of 2
îβ  around the accident hump ages, 

suggesting that these cohorts experienced worse mortality conditions than previous 

cohorts at the same ages.  

As before, we also re-estimated the Renshaw-Haberman model excluding ages 

0-2. The results obtained confirm the presence of cohort effects for the same 

generations. 

The analysis of the residuals plots of the age-period-cohort model with age 

interactions (Figure 10) shows that the ripple effects in the year-of-birth residuals plots 

under the age-period and the Lee-Carter model are largely removed, suggesting the 

relatively success in capturing the mortality pattern and an improvement over the pure 

age-period-cohort model and the Lee-Carter model.  
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Figure 10. Renshaw-Haberman model deviance residual plots against: age, period, and 
cohort year-of-birth, males, Portugal, 1950 – 2007. 
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4.4.5. The Lee-Carter model with additive cohort effects 

 

Finally we have also fitted the Lee-Carter model adding additive cohort effects. 

The estimated parameters are presented in Figure 11. The age effects iα̂  show an 

identical profile to those estimated by LC and RH models. The jk̂  however is closer to 

the estimated main period effects from the RH model, denoting an almost linearly 

behavior over time. Also the age-period interaction profile, iβ̂ , show a profile closer to 

the one estimated by the RH model, with higher values at infant and childhood ages, but 
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Figure 11. Lee-Carter with additive cohort effects model estimated parameters:  main 

age effects iα , age-period interaction effects iβ , main period effects jk , and main 

cohort effects ij −γ , males, Portugal, 1950 – 2007. 
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lower than the age-period interaction parameters estimated by the LC model. In the 

estimated cohort effects, ij −γ̂ , are also evident worse mortality conditions for those born 

between 1950 and 1970, and comparatively with the RH model, a more accentuate 

decline for the more recent cohorts. 

The introduction of additive cohort effect reduces the deviance residuals (Table 1), and 

the model represents a fitting improvement over the LC model. The plots of the 

deviance residuals show very similar patterns to those of the Renshaw-Haberman 

model, but with a higher variability. 
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Figure 12. Lee-Carter with additive cohort effects model deviance residual plots 

against: age, period, and cohort year-of-birth, males, Portugal, 1950 – 2007. 
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4.4.6. Model selection 

 

Although the analysis of the deviance residuals allows us to compare the fitting 

quality of the different models, it is natural for models with more parameters to fit the 

data better. The Bayes Information Criterion (BIC) is used to select the a parsimonious 

model that adequately describes the data (Cairns et al. 2009). BIC compares maximum 

likelihoods attained by each model but penalizes models that are overparameterized. 

The BIC is calculated as (Cameron and Triverdi, 1998) : 

nvlBIC log)ˆ(2 +−= φ  (11) 

where φ̂  is the maximum likelihood estimate of the parameter vector,  ( )φ̂l  is the 

maximum log likelihood, n is the number of observations and v is the effective number 

of parameters being estimated. Models can be ordered, with the most appropriate model 

having the lowest BIC.  

Table 1 show some summary measures on the estimated models. According to 

the value of BIC, the Renshaw-Haberman model is the most suitable model to describe 

Portuguese male mortality patterns from 1950 to 2007. This result is coherent with our 

expectations from the exploratory analysis of male mortality pattern in Portugal over 

1950 – 2007, showing different rates of improvement for different ages, and the fact 

that some birth cohorts showed particular poor mortality improvements over adulthood 

when compared to other generations.  

 

 

4.5. Simulation Study 

 

The evidence of the graphical analysis as well as the results from the estimated 

models allude to the existence of cohort effects influencing Portuguese male mortality 

data. The most adequate model to describe mortality patterns was selected based on BIC 

rankings, and we have selected a model with both age and cohort effects as well as the 

respective age interaction terms.  

To make sure that one is choosing the appropriate model it is essential to 

determine whether BIC is actually able to select the best model. To do that we 

conducted a simulation study that should help us determine if BIC is choosing the 
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appropriate model for different data generating processes (DGP). Through the 

simulation study it is also possible to understand what happens when the fitted model 

does not correspond to the true model, that is, what are the consequences of an incorrect 

specification of the model.   

Simulation settings are chosen such that they mimic real world situations, in 

particular Portugal and England and Wales7.  

Portugal is an obvious choice since we want to guarantee that we are choosing 

the most appropriate model to describe male Portuguese mortality. In England and 

Wales, on the other hand, there are important and well-document cohort effects 

(Willets, 1999; Willets, 2004; Renshaw and Haberman, 2006; Richards, Ellam, 

Hubbard, Lu, Makin and Miller, 2007). Details on mortality trends in England and 

Wales are discussed by Willets (1999; 2004). Although a decline in mortality have 

taken place in both countries over 1950 – 2007, one should note that, at the beginning of 

the period these countries were in quite different stages in mortality progress, with 

Portugal showing comparatively poor mortality conditions. Over the second half of the 

20th century, however, we have observed a remarkable declining trend in overall 

Portuguese mortality levels, converging to similar mortality levels of England and 

Wales. The pattern of age-specific rate of decline of both countries is however very 

different. While Portugal shows greater improvements over time at children and 

younger adults, England and Wales show the greater improvements at adult and senior 

ages. These different patterns in mortality improvements are evident from the estimated 

parameters of the LC e RH models, shown in Figures 8 and 9 for Portugal and provided 

by Renshaw and Haberman (2006) for England and Wales.  

Our simulation strategy is described by the following steps. In the first step, 

assuming a Poisson distribution for the number of deaths, ijD , we estimate a model that 

is used to generate random samples in the second step.  

In the second step, we simulate the number of deaths from a Poisson with a 

mean computed using the estimated parameters from the model estimated in step one. 

For each DGP we generate 1,000 simulated random data sets.  

                                                           
7 Data for Spain is also used in some of the simulations as the demographic context of Spain is closer to 
the Portuguese. 
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In the third step, for each simulated data set, we estimated each of the above 

mentioned models (APC, LC and RH), obtain estimates of the respective parameters 

and the value of BIC, and select the best model. 

In the fourth step, for each DGP, we compute the number of times each model is 

selected by BIC. The results are presented in Table 2.    

We considered the following data generating processes (DGP): (1) Age-Period-

Cohort (APC) model, (2) Lee-Carter (LC) model, and (3) Renshaw-Haberman (RH) 

model. Since in step 1 of the simulation we may be fitting a model that is not the most 

adequate to describe the data, we also considered the following alternative to determine 

the values of the parameters of the first two DGPs.  In particular in step 1 we estimated 

the RH model, which includes all other models as special cases, imposing in step 2 the 

following constraints to generate the random samples: (1) for the APC model we 

impose the age-interaction terms equal to a constant, in particular 01.021 == ii ββ 8, (2) 

for the LC model we impose the cohort effect equal to zero, 0=− ijγ . We also 

considered a fourth DGP setting the estimated age-cohort interaction term in the RH 

model equal to a constant, 01.02 =iβ , which corresponds to the LC model with additive 

main cohort effects.  

Besides BIC, we have also analyzed the estimated parameters obtained from 

each simulation, in particular their mean and percentiles over the 1,000 replications.  

 

 

4.5.1. Data generating process: Age-period-cohort model 

 

Using as DGP the APC model, either using the parameters estimated directly by 

the APC or the RH model with restrictions, as expected the model most often selected 

by BIC is the APC model.  

The RH model provides the second most adequate model, however the estimated 

age-period, 1
îβ , and age-cohort, 2

îβ , parameters do not show any clear pattern denoting 

                                                           

8 We set the constant equal to 0.01 given the identification condition , ( ) 1
1

2 =∑
=

Ii

ii
iβ , and the fact that we 

have considered one hundred single ages.   
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a random behavior. This is a sign that the RH model is an over parameterized model to 

fit the data.  

The LC model presents the weakest performance in terms of BIC. Looking at the 

estimated parameters of the LC from the simulation scenarios of Portugal and England 

and Wales, even though the DGPs do not include any age-period interaction effects, the 

estimated age-period interaction parameters, 1
îβ , (Figure 13) show a clear non-random 

profile with the greatest values at the younger ages and then showing a declining 

smooth trend till around age 40, when it increases slightly for the age interval 50 to 70 

years old, returning to the declining trend after that. The pattern of 1
îβ  from the Lee-

Carter model tries to capture the cohort effects in the simulated data.  
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Figure 13.  DGP APC model – LC model simulated age-period interaction effects, 
males, Portugal and England and Wales, 1950 – 2007. 

 

The results suggest that if there are only additive cohort effects in the data, 

allowing for cohort effects interacting with age in the estimated model will result in an 

over parameterized model. On the other hand, if we estimate a model without cohort 

effects but with an age-period interaction term, as the LC model, the result will be a 

spurious age-period interaction term.  

As a final point, we note that if we use as DGP an age-cohort model, if we fitted 

the LC model using the simulated data we get estimated age-period interaction effects 

with a similar profile to the ones estimated above for the APC model as DGP.  
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4.5.2. Data generating process: Lee-Carter model 

 

Using as DGP the LC model, either using the parameters estimated directly by 

the LC model or the RH model with restrictions, as expected the Lee-Carter model is 

the model most often selected by BIC.  

Due to the age-period interaction term, the RH model is the second most 

adequate model, and the estimated parameters, iα̂ , 1
îβ , and jk̂ , show the typical pattern, 

while the estimated age-cohort interaction parameters 2
îβ  and the main cohort effect 

parameters ij −γ̂ , both show a random behavior, suggesting that the RH model is over 

parameterized.  

The APC model is the third choice according to BIC. The age and period effects 

showed the traditional patterns. However, the graphical profile of the estimated cohort 

effect suggests the presence of a cohort effect, which is not present in the simulated 

data. For the simulation scenario of Portugal, the cohort effect profile (Figure 14) shows 

a more rapid increase in mortality for the generations born between 1947 and 1952 

when compared to previous generations.  
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Figure 14. DGP Lee-Carter model – APC model simulated cohort effects, males, 

Portugal and England and Wales, 1950 – 2007. 

 

Higher levels of mortality are shared by generations born during the 1950s. The top of 

the hump is located precisely when the data on mortality at youngest ages begin to be 

incorporated in the data, during the decades of 1940 and 1950, when generations under 
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study begin to comprise younger children and finally the generation born in 1950 

include infants, ages where the death rates were particular high, and with a great 

sensitivity to the declining temporal trend. The simulated cohort effects for England and 

Wales shows a similar behaviour, although much smoother, which would be associated 

to the lesser sensitivity of age-specific mortality to the temporal trend.  

In summary, the results of the simulation suggest that if we have data without a 

cohort effect but with an age-period interaction term, if we fit an APC model, the age-

period interaction in the data is translated into an apparent cohort effect, and its 

magnitude depends on the strength of the age-period interaction term. Also, the location 

of the estimated cohort effect coincides with the period when the youngest cohorts enter 

the data. Introducing the young cohorts in the data, with a high sensitivity to time 

declining trend induces a spurious estimated cohort effect in the APC model. This 

conclusion is supported by the fact that if we use an AP model with no age-interaction 

(DGP) to generate the data, the APC model does not find a cohort effect, showing only 

the expected declining period effect.  

 

 

4.5.3. Data generating process: Renshaw-Haberman model 

 

Using as DGP the RH model, the simulated data for the two scenarios, Portugal 

and England and Wales, have main age, period and cohort effects, as well as age-period 

and age-cohort interaction terms, meaning that the impact of period effects and cohort 

effects are different for different ages. The simulated data for the two scenarios differ in 

the profile of age-interaction terms as well as in the strength of the main effects. The 

age-interaction effect is stronger for Portugal whereas the cohort effect is more 

pronounced in the case of England and Wales. According to the BIC criterion, the RH 

model is the model selected more often for both scenarios.  

In the simulation scenario for Portugal, the LC model proves to be the second 

most adequate, followed by the APC model. In this scenario, there exists a strong age-

period interaction, especially at younger ages, and the evidence of a rather weak cohort 

effect. So, between a model with no age-interactions and a cohort effect and a model 
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without cohort effect but with an age-period interaction, the LC model is chosen over 

the APC model9.  

In the simulated data for England and Wales, the APC model dominates the LC 

model with a lower BIC, a result that may be connected to the higher importance of 

cohort effects in England and Wales.  

The relative importance of the age-period interaction and the cohort effects 

influences the model fitting results, and the choice of the most appropriate model.    

 

 

4.5.4. Data generating process: Lee-Carter model with additive cohort 

effects 

 

Finally, we consider as DGP the LC with additive cohort effects parameters 

obtained in the estimated RH model setting the age-cohort interaction parameters equal 

to a constant.  

 

Table 2. Simulation Summary  Results 

DGP 
Portugal England and Wales 

1st  2nd  3rd  1st  2nd  3rd  
APC APC RH LC APC RH LC 

APC (restricted RH) APC RH LC APC RH LC 
LC LC RH APC LC RH APC 

LC (restricted RH) LC RH APC LC RH APC 
RH RH LC APC RH APC LC 

LCC (restricted RH) RH LC APC RH APC LC 
Note: In all cases the model the BIC selects more often (in the 1st column) is chosen in more than 99% of 

the times.  

 

                                                           
9 If we use data for a mortality scenario close of the one of Portugal during the period 1950 – 2007, as is 
the case of Spain, we find the same results. The relative importance of the age-period interaction and 
period effects, stronger in Portugal and Spain (countries with similar demographic background) makes the 
LC model to capture the mortality pattern better than the APC. Cleries, Martínez, Valls, Pareja, Esteban, 
Gispert, Moreno, Ribes and Borràs (2009) discuss a cohort effect in Spain, and find a rising trend in 
mortality among the 1940 – 1970 cohorts. 
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According to the values of BIC, the model that is selected more often is the RH 

model. In the second place, for the scenario of Portugal, is the LC model, whereas for 

England and Wales’s scenario is the APC model.  

These results suggest that the chosen model depends on the relative importance 

of the cohort effect versus the age-period interaction effects.  

 

 

4.6. Discussion of Results and Conclusions 

 

This study focused on Portuguese male mortality post-1950. We conducted an 

APC analysis based on the combination of graphical descriptive analysis and formal 

modelling techniques.  

The descriptive analysis of male mortality rates over age, year at death and year 

at birth show that overall mortality has improved substantially since 1950, but age-

specific deaths rates have declined at different rhythms. In particular, male population 

born during the late 1940s and during the 1950s have experienced particular poor 

improvement in mortality, and even increased mortality rates, when compared to 

adjacent generations. Such type of pattern, in which some generations show specific  

conditions of mortality, either faster or slower improvements in mortality, when 

compared to adjacent generations is associated to the presence of cohort effects in 

mortality, which may be birth generation effects or due to the exposure to external 

causes over some period of their lives. Willets (1999, 2004) found cohort effects for 

people born in England and Wales between 1925 and 1945. Renshaw and Haberman 

(2006) have also demonstrated that an adequate modelling of past mortality patterns in 

England and Wales needs both period and cohort effects. Among others, cohort effects 

were also found in Japan, Austria and France (Willets, 2004; Vaupel and Andreev, 

2005). 

A modelling approach of mortality dynamics is used to separate the different 

sources of variation in deaths rates. We have fitted the classical APC model, using a 

recently developed method of estimation proposed by Kuang et al. (2008), and APC 

models allowing for age-period and age-cohort interactions proposed by Renshaw and 

Haberman (2006) and further explored by Cairns et al. (2009). The estimation results 
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show evidence of significant age-period interaction patterns and a declining time trend 

affecting overall mortality, but also evidence of the presence of cohort effects in male 

Portuguese mortality. According to the analysis of the residuals and the BIC criterion, 

the Renshaw-Haberman model, which includes age, period and cohorts as well as age-

period and age-cohort interactions, was selected as the model that most adequately 

described male mortality patterns in Portugal since 1950. The profile of the estimated 

cohort effects shows a pronounced increase during the 1950s with particular incidence 

in the young adult ages, which is consistent with the results from the graphical analysis 

of the specific deaths rates in this study, and with the findings of Coelho and Nunes 

(2010), Lages (2007) and Morais (2002).  

A simulation study is conducted to confirm if BIC is a satisfactory criterion to 

select a parsimonious model that most adequately fit the data. The simulation results 

demonstrate that BIC can be used to choose the correct model, and these also allow us 

to verify the impacts of an incorrect specification of the model on the estimated 

parameters. Specifically, if only additive cohort effects are present in the data, allowing 

for age interaction terms will result in an over parameterized model. On the other hand, 

if we omit cohort effects and estimate a model with an age-period interaction term, we 

obtain spurious age-period interaction terms. If only age-period effects are present in the 

data, allowing for age-cohort interaction term will result in an over parameterized 

model. On the other hand, the omission of an age-period interaction results in spurious 

cohort effects.  

These findings highlight the potential importance of incorporating cohort effects 

for building better models of mortality temporal dynamics. Not only cohort effects may 

be important for clarifying recent mortality patterns, but also as a tool for forecasting 

future mortality patterns.  

The results of the estimated models confirm the results obtained by the analysis 

of the evolution of death rates, suggesting a cohort effect in male Portuguese mortality,  

specifically that men born at the latest 1940s and during the 1950s seem to have 

experienced poorer improvements in mortality than generations born either side of this 

period. These findings give rise to questions on why these cohorts constitute a 

disadvantaged group of individuals before death, and if this phenomenon represents a 
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lasting characteristic of mortality patterns in such cohorts or otherwise it will fade with 

age.  

In what concerns understanding and explanations for such cohort effects, as 

Hobcraft et al. (1982) argue, age, period and cohorts do not directly determine 

demographic outcomes, but instead are markers for underlying biological, 

epidemiological, social, and economic factors.  Period is a proxy for contemporaneous 

influences, while cohort is a proxy for influences in the past. Factors such as early life 

conditions, improved nutrition, social and economic conditions, life styles and cultural 

behaviors are some of the factors likely to produce cohort effects. Cohorts may be 

differentiated from all others because different cohorts live through different 

experiences, or live through the same experiences at different ages, and these 

experiences change the cohort in long-term ways (Schulhofer-Wohl and Yang, 2009).  

Although we have not found any explicit study on cohort effects on Portuguese 

mortality, Lages (2007), while studying the risk behaviors of young population in 

Portugal and their mortality, found an increase in mortality among young men after 

1960-1961 that extend further in time to adults and later up to 50 years old. According 

to Lages (2007), the profile of mortality in 1960-1961 was still the result from natural 

conditions, showing a high infant mortality, a fairly regular growth of mortality with 

age, after preadolescence, and irregularities in the improvement rates at older ages. 

Mortality affected all cohorts in a predictable and undifferentiated way. In 1970-1971, 

however, the author identifies a slight increase of male mortality between ages 16 and 

30.  What was a small increase in 1970-1971 outspreads in intensity and extend to older 

ages.  In 1980-81, this increase in mortality intensifies after age 16 and extends until 

around age 35. In 1990-1991, the same pattern of increase of mortality is found, but 

seems to extend much longer, up about 50 years old. One notes that the age groups 

referred by Lages (2007) over subsequent decades correspond to men born between the 

beginning of the 1940s and the middle 1960s.  

Lages (2007) concludes that factors that led to the emergence of these worse 

conditions of mortality, that keep affecting men into the middle-age, can only be 

associated to behaviors that do not fall under natural causes or random mortality, but 

instead associated to factors arising from group cultures that increasingly extended 

further in time. Also, he argues that the increase of mortality among young individuals 
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that extend further in time are not circumstantial, but instead have structural features, 

since it subsists in the cohorts that experienced poorer mortality conditions in more 

recent years. 

Morais (2002) also finds a break in the declining trend of mortality among males 

aged 15 to 19 years old after 1960, which in the 1980s and 1990s extends to adult ages. 

According to Morais (2002), those increases in mortality are associated to traffic 

accidents and other violent causes that are largely determined by social pathologies, 

such as alcoholism, lifestyle and the cumulative incidence of such behaviour.  

The explanations provided by Lages (2007) for the phenomenon are based on 

the effects of the major transformations that occurred in Portugal since 1960. Among 

them are: the effects of emigration to Europe and the years of war overseas on the 

structure and changing behaviors of the population during the 1970s; the impact of the 

political revolution and of the return of around half a million Portuguese citizens from 

former African colonies, particularly visible during the 1980s, the consolidation of the 

democracy, the entry of Portugal in the European Union, and the establishment of a 

prominent middle class in the following years. These were fifty years of major 

structural changes, imposing huge pressures on the Portuguese society and economic 

structure, accompanied by cultural transformations of similar weight, which are 

reflected in the differentiated risk exposure of the population.  

Cohort effects in male Portuguese mortality are likely to have been caused by a 

combination of all those factors, which might have produced a different imprint in 

generations born a few years apart. The eventual determination of the exact origin of 

such effects would require further multidisciplinary research, for instance related to 

epidemiological developments and to social and economic conditions that could have an 

enduring impact on rates of mortality improvement.   

The results of this study show a cohort effect for men born between 1948 and 

1959. These generations have now attained, or are close to attaining ages 53 – 64. If 

these men keep having higher mortality rates over their whole life-time experience, the 

cohort effect will shift mortality rates for the elderly men upwards, changing the 

lifespan expectations.    

The importance of considering cohort effects in forecasting future mortality 

patterns depends however on the enduring or temporary nature of those effects, which 
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still remains to establish. If we expect that the poor mortality conditions are to be kept 

as the cohort ages, one should consider such cohort effects in forecasting future 

mortality patterns. Otherwise, if cohort effects are expected to fade with age, their 

impacts in forecasts are negligible and should be excluded. Clues on future mortality 

expectations for such cohort may be provided by the study of their causes of death, as 

well as by the explanatory factors that contributed for the presence of a cohort effect in 

male mortality.  

We leave for future research the detailed analysis of the factors that may explain 

the presence of cohort effects in Portugal, which also would be helpful in accessing the 

nature of such cohort effects and the importance of incorporating cohort effects into 

mortality forecasting models. Also, further research on how to incorporate cohort 

effects into forecasting models and what are the impacts of their consideration in future 

mortality patterns, and consequently on future life expectancy. 
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