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Abstract

The main goal of this thesis will be focused on developing an adaptative closed loop
control solution, using fuzzy methodologies. A positive theoretical and experimental
contribution, regarding modelling and control of fuzzy and neuro fuzzy systems, is ex-
pected to be achieved.
Proposed non-linear identification solution will use for modelling and control, a recur-
rent neuro fuzzy architecture. Regarding model solution, a state space approach will be
considered during fuzzy consequent local models design. Developed controller will be
based on model parameters, being expected not only a stable closed loop solution, but
also a static error with convergence towards zero. Model and controller fuzzy subspaces,
will be partitioned throughout process dynamical universe, allowing fuzzy local models
and controllers commutation and aggregation.
With the aim of capturing process under control dynamics using a real time approach,
the use of recursive optimization techniques are to be adopted. Such methods will be
applied during parameter and state estimation, using a dual decoupled Kalman filter ex-
tended with unscented transformation.
Two distinct processes one single-input (SISO) other multi-input (MIMO), will be used
during experimentation. It is expected from experiments, a practical validation of pro-
posed solution capabilities for control and identification. Presented work will not be
completed, without first presenting a global analysis of adopted concepts and methods,
describing new perspectives for future investigations.

Keywords: Recursive optimization, online identification, adaptative control, self learn-
ing, Kalman filtering, Unscented Transformation, recursive neuro fuzzy.
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Resumo

O objectivo primordial desta tese tem por base o desenvolvimento de uma solução de
controlo adaptativo fazendo uso de metodologias difusas. Consequentemente, pretende-
se com esta dissertação dar um contributo positivo para modelos e controladores descri-
tos segundo métodos difusos e neuro difusos.
A solução de controlo passa pela criação de um modelo não linear, baseado numa arqui-
tetura neuro-difusa recorrente com modelos locais descritos sobre a forma de espaço de
estados. É também desenvolvido um controlador neuro difuso recorrente, baseado nos
parâmetros do modelo, que permita uma solução estável em anel fechado com um erro
estático convergente para zero. Tem-se como objectivo a criação de um modelo distri-
buído pelo universo de funcionamento do processo, permitindo a comutação e agregação
de diversos modelos e controladores locais.
Procurando capturar as dinâmicas do processo sobre controlo, segundo uma abordagem
em tempo real, é necessária a utilização de técnicas de optimização, com capacidades de
recursividade. Para o efeito, recorre-se neste trabalho, a técnicas de estimação de parâ-
metros e de estados baseadas no filtro de Kalman dual e desacoplado, estendido com a
técnica de transformação de incerteza.
É efetuada uma análise experimental utilizando dois processos distintos, visando a conci-
liação dos conceitos teóricos apresentados na solução proposta. Na experimentação serão
demostradas as capacidades de identificação e controlo para sistemas não só de uma en-
trada e uma saída (SISO), como também para sistemas de múltipla entrada múltipla saída
(MIMO). Irá ser realizada uma análise global da solução, incluindo novos pontos de vista
para caminhos de futuras investigações.

Palavras-chave: Estimação recursiva, identificação em linha, controlo adaptativo, auto
aprendizagem, filtragem Kalman, transformação de incerteza, neuronal difuso.
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1
Introduction

1.1 Global motivations

In a time where systems are becoming extremely complex, and computers processing ca-
pabilities faster and cheaper, new computer algorithms demanding high processing ca-
pabilities, such as genetic algorithms and recurrent neuro networks, are becoming widely
used for real-time process identification and control. Since electronics are not a precise
science, components characteristics might drift during their life cycle. Process dynamics
consequently, might also change for an uncertain and time dependent amount. Also pro-
cesses behaviour might be correlated with unexpected external variables (for instance en-
vironment conditions), which can considerably affect process working conditions. Such
effects can drive closed loop solution to divergence. To overcome this fact, most con-
trollers implement an adaptative strategy, allowing an adaptation for process behaviour
changes. Several control theories capable of real time adaptation exist, among them it
can be highlighted controllers which are based on model dynamics, also known as model
based controllers (MBC). For these methods, model parameters will be used during eval-
uation of control actions. Process modelling and identification techniques, will induce
a need for real time model and controller adaptation, being possible to cover not only
changes in process dynamics, but also allowing a convergence to a more accurate sys-
tem identification. Most identification algorithms follow an approach of finding a global
model that best fits into real process dynamics. Since during real-time identification old
data needs to be rejected in order to allow new data acquisition, the dynamical range of
a global model approach, might not fit process dynamics over its complete dynamical
range. Is towards this fact, where it can be found fuzzy modelling approaches for model
and controller design. It allows the concept of a global model being defined with local

1



1. INTRODUCTION 1.2. Goals and contributions

optimum solutions.

1.2 Goals and contributions

Having in scope a model and controller design defined by several local models and con-
trollers, two major theories have been selected i.e fuzzy modelling and neural networks.
Combining both methods into a single concept, will result in a new theory known in lit-
erature by neuro fuzzy modelling (NFM). This new method for system modelling, takes
the advantage of fuzzy by allowing a continuous and stable model switching during
real-time evaluation. By making use of neuro networks, NFM diminishes fuzzy infer-
ence process abstractness. It also allows an augmentation of fuzzy model parameters,
due to creation of weights between neuron connections. Several neuro fuzzy systems
(NFS) architectures were already developed and analysed. Although, most of them use
an ARX structure for model design (case of ANFIS structure), being difficult to directly
implement a MBC controller using system states. Some proposals for NFS using local
models structured in a state space approach exist in literature, but none featured with
recursiveness. Due to adaptation requirements, learning algorithm should be able to be
computed during real-time processing, fulfilling process sampling times. Among sev-
eral algorithms which fits into this class, a Kalman filtering (KF) technique was adopted
due to its recursive nature. An extension to standard KF method known as Unscented
Transformation (UT) was considered, allowing to compute model mean and covariance
in a statistical fashion. The extension of KF with UT, is known in literature by Unscented
Kalman Filtering (UKF), where instead of finding a model that best fits process output
dynamics, it will fit model to process output distribution. Proposed global solution for
system identification and control, is described in Figure 1.1.

Method 

Optimization 

Architecture 

Module 

Solution 

Controller 

RNFS 

Local 
Controllers 

UKF 

Model 

RNFS 

Local 
Models 

UKF 

Membership 
Functions 

ICUKF 

Adaptation 

Figure 1.1: Global solution block diagram

Achieved solution is described in previous figure using a top down hierarchy. As it can be
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noticed two modules were defined, a controller and a model. For both, a new Recursive
Neuro Fuzzy architecture (RNF), using state space local models and controllers, was de-
veloped. Both modules will be under a real time recursive optimization, handled by UKF
algorithm. Model will not only enforce optimization in rules local models, both for states
and parameters, but also in membership functions (MF). Controller in opposition, will
not handle MF optimization because it will use model premises. A constrained prob-
lem must be considered during MF optimization, which was addressed by other UKF
extension known as Interval Constrained Unscented Kalman Filter (IUKF). Optimization
of Rules aggregation and input weights is also seen as a constrained problem, although
experimentation will not handle such optimization. New scientific contributions can be
found in settled goals, precisely a new RNFS architecture which can be used both for
controller and model design. Also, a new integration and applicability of UKF and IUKF
theory was achieved, by applying it to a RNFS model and controller optimization.

(1) Identification of non-linear systems
The new NFS topology (as so far observed) proposed in this work, is featured with
recurrence capabilities and contains eight layers handling fuzzification, fuzzy infer-
ence and defuzzification. The number of neurons for each layer depends on input and
output variables, number of states and membership functions. The number of MFs
depends on adopted fuzzy partitions, which should reflect process working zones.
Increasing fuzzy partitions, might also increase model accurateness if enough input
data is used to stimulate process throughout its working points. Although, it is also
expected an augmentation of model and controller complexity, since new rules need
to be considered. Complete process identification will be handled in a closed loop
control solution as described in Figure 1.2.
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Figure 1.2: Closed loop identification block diagram

Concerning figure above, it was considered an additive noise both for model and
controller. The latest, should smoothly drive process output to a desired reference
value. Concerning model, it has for goal an increase of process fitness degree and
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consequently, an improvement of prediction accuracy. An analytical study regarding
stability analysis will not be presented, its is known that local models might suffer
from zero pole cancellation and become unstable and uncontrollable. For a better un-
derstanding of Figure 1.2, it is worth a brief description regarding involved variables,
which will be introduced in section 4.4. It should be considered:

• yd is the desired process output values;

• x̂ stands for model predicted states;

• ω̂C is the RNFS local controllers predicted parameters;

• ω̂µ;ψ is the prediction of RNFS local models membership functions and conse-
quents respectively;

• y is the process output;

• ŷ is the model predicted output;

• e and η are additive Gaussian noise for parameters and outputs respectivelly.

(2) Recurrent algorithm for training neuro fuzzy systems
Regarding the use of UKF algorithm for RNFS identification, a sequential approach
as defined in Figure 1.3 was considered.
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Figure 1.3: Optimization algorithm block diagram

A decoupled formulation of UKF regarding system parameters and states was adopted.
Firstly, an optimization of predicted model states will be handled, followed by an
optimization of predicted model parameters. Based on optimized model parame-
ters and states, a controller parameter optimization will then be enforced, in order
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to produce the next most accurate control action. It is worth mention that controller
innovations, depend on error between output and reference. Regarding model, its
innovations will use as cost factor the error between predicted and process outputs.
Due to KF nature, it is expected for both errors a convergence to zero. Figure 1.3 vari-
ables will be introduced in chapter 4 meanwhile, a brief description for a better figure
understanding should be handled. It is defined:

• x̂+
k−1 is the previous UKF prediction of model state;

• x̂−k is the current UKF prediction of model state after algorithm time update
stage;

• x̂+
k is the current UKF prediction of model state;

• yk current process output;

• ydk+1 is the next process output desired values;

• ω̂ψ+
k−1 is the previous UKF prediction for RNFS model consequents parameters;

• ω̂ψ−k is the current UKF prediction for RNFS model consequents parameters after
algorithm time update stage;

• ω̂ψ+
k is the current UKF prediction for RNFS model consequents parameters;

• ω̂µ+
k−1 is the previous UKF prediction for RNFS model membership functions;

• ω̂µ−k is the current UKF prediction for RNFS model membership functions after
algorithm time update stage;

• ω̂µ+
k is the current UKF prediction for RNFS model membership functions;

• ω̂C+
k−1 is the previous UKF prediction for RNFS controller parameters;

• ω̂C−k is the current UKF prediction for RNFS controller parameters after algo-
rithm time update stage;

• ω̂C+
k is the current UKF prediction for RNFS controller parameters;

• UKFx UKF algorithm for RNFS model state optimization;

• UKFψω UKF algorithm for RNFS model consequents parameter optimization;

• UKFµω UKF algorithm for RNFS model membership functions optimization (us-
ing ICUKF extension);

• UKFCω UKF algorithm for RNFS controller parameter optimization

1.3 Thesis structure

Presented thesis contains six chapters including presentation chapter. Each chapter starts
firstly with fundamental concepts, and a state of the art regarding what have been done
and could be adopted. In chapter three a new architecture regarding model and controller
design will be proposed. Chapter four will also describe the applicability of UKF in
proposed RNFS architecture. A brief conclusion is included at the end of each chapter,
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describing what remains to be done, future enhancements and other capabilities and
applications beyond used ones.

Chapter 2: Fuzzy Logic Systems: Theory and Concepts

This chapter introduces a brief overview regarding fuzzy notions. It starts with a
description about fuzzy sets and their operations, finishing with a description of
fuzzy inference mechanisms.

Chapter 3: Fuzzy System Modelling

Focusing on model design phase, several modelling methodologies will be pre-
sented. Chapter starts with an overview regarding ARX, NARX and state space
model structuring. Then it continues with a description of neuro networks con-
cepts and their evolution to neuro fuzzy networks. Chapter ends with a new net-
work structuring proposal, which can be seen as an upgrade over existing state of
the art methods. Also a complete closed loop network solution as in Figure 1.2
regarding process identification and control is presented.

Chapter 4: Estimation Methods for Fuzzy Structures Parameters

This chapter provides the next step towards final system identification solution.
It starts with an introduction of Kalman statistical properties and the principle of
unscented transformation. Also the pervasive computation of UKF regarding state
and parameter optimization is demonstrated. Searching for a better comprehension
regarding UKF and RNFS integration, chapter includes an analytical description of
RNFS architecture parameters, comprising variable design and dimensioning both
for controller and model. Having defined RNFS variables, chapter describes the
computation of ICUKF and UKF for RNFS optimization. For a better understand-
ing of UKF intrinsic variables and dynamics, a theoretical model well known in
literature, will serve as use case for a better understanding regarding algorithm
convergence and stability.

Chapter 5: Implementation

Chapter five handles experimentation phase, it analyses proposed theoretical ar-
chitectures and respective optimization processes. Theory presented so far, will be
used to modelling and control both a SISO and MIMO plants. Model fitting ratio
will be validated by making use of mean square error analysis. Controller response,
will also be analysed through static error, raising time and overshot ratio. Chapter
also includes an analysis regarding the effects of MF optimization i.e the advantages
and disadvantages when it is considered during the optimization loop.

6
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Chapter 6: Global Conclusions and Further Research

Presented thesis will not end without a global overview regarding proposed so-
lution and achieved experimental results. Chapter will also include an analysis
regarding further enhancements, new perspectives and vectors which could have
been adopted as possible solution. The thesis will finish with an overview of what
was achieved, presenting possible future investigations based on proposed solu-
tion.
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2
Fuzzy Logic Systems: Theory and

Concepts.

2.1 Introduction

This chapter aims to introduce fundamental notions regarding fuzzy reasoning. Pre-
sented theory will allow a complete understanding of proposed solution. Firstly, it will
handle basic notions regarding fuzzy sets and their evolution from crisp sets. Having
introduced fuzzy sets, it will continue with an analytical description of standard oper-
ations on fuzzy sets including their shapes known as MFs. Before starting with fuzzy
inference process, it is worth defining fuzzy relations, since it contains key aspects for
understanding of fuzzification, implication and defuzzification processes.

2.2 Fuzzy sets theory.

It was Zadeh [1] whom in 1965 introduced fuzzy logic, namely fuzzy sets. This theory
allowed the introduction of a multi-valour logic against a boolean logic. Fuzzy logic is
reflected in human methods for system analysis, which exact characteristics or properties
are unknown and can differ depending on each person interpretation. This way, it is
possible to handle information containing a high degree of uncertainty and accuracy,
which was not possible using a "yes or no", "true or false" methodology.
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2. FUZZY LOGIC SYSTEMS: THEORY AND CONCEPTS. 2.2. Fuzzy sets theory.

2.2.1 Classic sets.

For more information regarding classic sets consider [1], since presented work will only
demonstrate key notions, which will be used as starting point for the introduction of
fuzzy sets. Classic or crisp sets are all sets whose elements have only two states i.e, it can
either full belong or not belong to a set. Take as example the boolean logic where a vari-
able can only be zero or one. Let U be a not empty set also known as universe of discourse
(UD), it contains all possible elements or members of a given context, each of those ele-
ments are contained in U. The union of several elements of U is known as a subset U of U.

Definitions:

• u ∈ U - a member u of U belongs to the subset U of U;

• u /∈ U - u is not member of U ;

• u ⊆ U - U is subset of U or U iqual U;

• ∅ - empty set;

Sets with distinct properties P1...Pn for all UD are assigned with a linguistic term for
instance A where:

A = {a|a with properties P1...Pn}

Each set properties can be described by their characteristic function, defined as::

fA =

{
1, if u ∈ A
0, if u /∈ A

(2.1)

In other words, characteristic function performs the mapping of elements contained in
U to elements in domain {0, 1} by using fA : U → {0, 1}. If fA(u) = 1, u ∈ A oth-
erwise, if fA(u) = 0, u /∈ A. The characteristic function of a subset of U, where sub-
set U is the aggregation of all n sets ∈ U, is defined as f(u), and is the projection of
fA1(u), fA2(u), ..., fAn(u),with n ∈ < along y − axis ∀u ∈ U.

Figure 2.1(a) displays the characteristic function of two crisp sets, with linguistic words
“Warm” and “Hot”, where U covers the temperature (T ) value range of a room T ∈ <.
In many cases U ∈ <n belongs to a range ∈ [−1, 1], becoming in this case known as
“normalized universe of discourse”.

2.2.2 Fuzzy sets.

Since first publication by Zadeh forty five years ago regarding fuzzy sets, a large vari-
ety of publications concerning new fuzzy set theories emerged [2] although, this section
will focus on initial theory concepts provided by [1]. It includes basic concepts, the most
commonly used fuzzy sets, and a theory analysis regarding fuzzy sets intersection and
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(a) Crisp sets (b) Fuzzy sets

Figure 2.1: Illustration of crisp and fuzzy sets

union. For a profound theoretical analysis it is highlighted [3].

As it can be seen through 2.1, the main disadvantage of a crisp against a fuzzy set, dues
to a constrained linguistic variable u ∈ < characteristic function, supporting only two
values. Concerning given example, the room temperatures will vary abruptly from a full
”Warm” to a full ”Hot” state. It was towards this direction that fuzzy sets evolved, al-
lowing a characteristic function with a smooth transition between sets as it can be seen
by 2.1(b). Fuzzy sets can be seen as an extension of crisp sets, where instead of mapping
a fuzzy variable into set of values {0, 1}, it maps to a value contained in interval [0, 1].
The characteristic function of a fuzzy set can be defined as:

fA : U→ [0, 1] ∈ <
or

µA : U→ [0, 1] ∈ <
(2.2)

where µA is the membership function of a fuzzy set A whose value represents the vari-
able u ∈ U degree of membership on set A. For instance, through 2.1(b) it can be noticed
that linguistic variable t ∈ T (where T is the UD), contains a degree of membership
µWarm(t) = 0.6 in set “Warm” and µHot(t) = 0 set “Hot”. Next will be presented several
definitions from the standard fuzzy sets theory (SFST):

Definition (Fuzzy Set) - A fuzzy set defined in space U is a set of pairs:

A = {(u, µA(u)) , u ∈ U} , ∀x ∈ U. (2.3)

Definition (Empty) - A fuzzy set A is called empty if:

∀ u ∈ U, µA(u) = 0. (2.4)

Definition (Equality) - Two fuzzy sets A and B are equal if:

∀ u ∈ U, µA(u) = µB(u) or simply µA = µB. (2.5)

11
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Definition (Complement) - A fuzzy set A complement denoted by A′ is defined as:

µA = 1− µA. (2.6)

Definition (Containment) - A is contained in B, or A is a subset of B, if:

µA ⊂ µB ⇐⇒ A ≤ B. (2.7)

Definition (Union) - Union of two fuzzy sets A and B with respective membership func-
tions µA and µB is a new fuzzy set C where C = A ∪ B, whose membership function is
related to µA and µB through:

µC(u) = Max [µA(u), µB(u)] ∀ u ∈ U (2.8)

or simply
µC = µA ∨ µB. (2.9)

In other words, the union of A and B is the lowest fuzzy set containing A and B a s it can
be seen by 2.2(b).

Definition (intersection) - Intersection of two fuzzy setsA andB with membership func-
tions µA and µB respectively, is a new fuzzy set C such that C = A ∩ B, where its mem-
bership function is related with µA and µB through:

µC(u) = Min [µA(u), µB(u)] ∀ u ∈ U (2.10)

or simply
µC = µA ∨ µB. (2.11)

In other words, intersection of A and B is the highest fuzzy set which is contained in A
andB, as it can be observed from 2.2(c). It is worth mention that for fuzzy sets, in opposi-
tion to crisp sets, is has no meaning saying that a given linguistic variable belongs to a set
if µA(u) > 0 with u ∈ U. In fuzzy domain multiple intervals can be defined for instance,
α and β with, 0 < α < 1; 0 < β < 1 and β < α. Also, sentence “u belongs to A” might
depend on several constraints, for instance if µA(u) > α or β < µA(u) < α. Fuzzy sets
are not constrained to a single value logic, they allow reasoning based on a multi value
logic.

Definition (Height) - The height of a fuzzy set A is the maximum value of its mem-
bership function:

hgt(A) = sup
u∈U

µA(u). (2.12)

if hgt(A) = 1 fuzzy set A is called normal, otherwise subnormal.
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(a) Fuzzy sets (b) Union

(c) Intersection

Figure 2.2: Basic operations on fuzzy sets

Definition (Support) - Support of a fuzzy set A corresponds to all values of u ∈ U over
which µA(u) > 0, this means:

supp(A) = {u ∈ U|µA(u) > 0} . (2.13)

Definition (Core) - Core of a fuzzy set A corresponds to all values of u ∈ U over which
µA(u) = 1 i.e:

core(A) = {u ∈ U|µA(u) = 0} . (2.14)

A fuzzy set A is normal if its core is not empty. 2.3 demonstrates a use case of concepts
“height”,“core”,“support” of a fuzzy set having linguistic word “Warm”.

Definition (Convexity) - A fuzzy set A is convex if for any u1, u2 ∈ Un given λ ∈ [0, 1]

µA(λu1 + (1− λ)u2) ≥ min {µA(u1), µA(u1)} . (2.15)

as shown in 2.4.

Definition (Symmetry) - A fuzzy set is symmetric if its membership function is sym-
metric around a given point c

µA(c+ ∆u) = µA(c−∆u), ∀ c−∆u e c−∆u ∈ U. (2.16)
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Figure 2.3: Fuzzy set with height= 1, support = [0, 0.8] and core = [0.4, 0.6]

Figure 2.4: Convexity of a fuzzy set

2.2.3 Triangular norms and negation.

Several studies in the field of fuzzy set theories have been done [2] (pp. 30-63) although,
section 2.2.2 only introduced classic theory from Zadeh. This section presents other the-
ories as t-norm, t-conorm and negation, which mathematical nomenclature is based on
[4](pag. 13-21).

Definition (t-norm) - The t-norm is a function T of two variables

T : [0, 1]× [0, 1]→ [0, 1] (2.17)

satisfying conditions:

1. T is monotonous

T {µA(u), µC(u)} ≤ T {µB(u), µD(u)} ∀ µA(u) ≤ µB(u) e µC(u) ≤ µD(u) (2.18)

2. T is commutative

T {µA(u), µB(u)} = T {µB(u), µA(u)} , (2.19)
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3. T is associative

T {T {µA(u), µB(u)} , µC(u)} = T {µA(u), T {µB(u), µC(u)}} , (2.20)

4. T satisfying boundary conditions

T {µA(u), 0} = 0, T {µA(u), 1} = µA(u), (2.21)

with µA(u), µB(u), µC(u), µD(u) ∈ [0, 1] ∧ u ∈ U.

symbolically, t-norm in arguments µA(u), µB(u) refers to the intersection of two fuzzy
sets A,B ∈ U with membership functions µA e µB respectively,

T {µA(u), µB(u)} = µA(u)
T∗ µB(u). (2.22)

µA∩B = µA(u)
T∗ µB(u) (2.23)

Extending t-norm aggregation definition (2.20) to n > 2 variables

Tni=1 {µAi} = T
{
T
n−1
i=1 {µAi(u)} , µAn(u)

}
= T {µA1(u), µA2(u), ..., µAn(u)} =

= T {µA(u)} = µA1(u) ∗T µA2(u) ∗T ... ∗T µAn(u).
(2.24)

Definition (t-conorm) - T-conorm is a function S of two variables

S : [0, 1]× [0, 1]→ [0, 1] (2.25)

satisfying conditions:

1. S is monotonous

S {µA(u), µC(u)} ≤ T {µB(u), µD(u)} ∀ µA(u) ≤ µB(u) e µC(u) ≤ µD(u), (2.26)

2. S is commutative

S {µA(u), µB(u)} = S {µB(u), µA(u)} , (2.27)

3. S is associative

S {S {µA(u), µB(u)} , µC(u)} = S {µA(u), S {µB(u), µC(u)}} , (2.28)

4. S satisfies boundary conditions

S {µA(u), 0} = 0, S {µA(u), 1} = µA(u), (2.29)
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with µA(u), µB(u), µC(u), µD(u) ∈ [0, 1] ∧ u ∈ U.

symbolically, t-conorm in arguments µA(u), µB(u) is the union of two fuzzy setsA,B ∈ U
with membership functions µA and µB respectively, and is defined as:

S {µA(u), µB(u)} = µA(u)
S∗µB(u). (2.30)

µA∪B = µA(u)
S∗µB(u) (2.31)

Extending t-conorm definition (2.28) to n > 2 variables

Sni=1 {µAi(u)} = S
{
S
n−1
i=1 {µAi(u)} , µAn(u)

}
= S {µA1(u), µA2(u), ..., µAn(u)} =

= S {µA(u)} = µA1(u) ∗S µA2(u) ∗S ... ∗S µAn(u).
(2.32)

Both t-norm and t-conorm have three general derivations:

• The family min/max already introduced in 2.2.2 defined as:

TM {µA1(u), µA2(u)} = min {µA1(u), µA2(u)}
SM {µA1(u), µA2(u)} = max {µA1(u), µA2(u)}

TM {µA1(u), µA2(u), ..., µA2(u)} = mini=1,...,n {µAi(u)}
SM {µA1(u), µA2(u), ..., µA2(u)} = maxi=1,...,n {µAi(u)}

(2.33)

• The family of algebraic triangular norms defined as:

TP {µA1 , µA2} = µA1µA2

SP {µA1 , µA2} = µA1 + µA2 − µA1µA2

TP {µA1 , µA2 , ..., µAn} =
∏n
i=1 µAi

SP {µA1 , µA2 , ..., µAn} = 1−
∏n
i=1(1− µAi)

(2.34)

TP also known as t-norm product, such as SP also known as t-conorm probabilistic
sum.

• Lukasiewicz triangular norm family are defined as:

TL {µA1 , µA2} = max {µA1 + µA2 − 1, 0}
SL {µA1 , µA2} = min {µA1 + µA21, 1}

TL {µA1 , µA2 , ..., µAn} = max {
∑n

i=1 µAi − (n− 1), 0}
SL {µA1 , µA2 , ..., µAn} = min {

∑n
i=1 µAi , }

(2.35)

Definition (negation)

1. A non increasing function N : [0, 1] → [0, 1] is called negation if N(0) = 1 and
N(1) = 0.
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Figure 2.5: Intersection and union operators

2. A negation N : [0, 1] → [0, 1] is called strict negation N is continuous and strictly
decreasing.

3. A strict negation N : [0, 1] → [0, 1] is called strong negation if it is an involution, in
other words, if N(N(µA(u))) = µA(u)

Simbolically a negation or complement of two fuzzy setsA,B ∈ U with respective mem-
bership functions µA and µB can be written as

µA(u) = N(µA(u)) (2.36)

where N(µA(u)) can be any type of negation. In general, three types of negation can be
defined:

• Zadeh’s negation defined as

N(µA(u)) = 1− µA(u) (2.37)
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• Yager’s negation defined as

N(µA(u)) = (1− µA(u)p)
1
p , p > 0 (2.38)

• Sugeno’s negation defined as

N(µA(u)) =
1− µA(u)

1 + pµA(u)
, p > −1 (2.39)

2.6 illustrates an example of three negations types, and 2.5(a), 2.5(b), 2.5(c) demonstrates
three types of intersection and union.

(a) Zadeh’s negation (b) Yager’s negation

(c) Sugeno’s negation

Figure 2.6: Complement operators.

2.2.4 Fuzzy Relations

This part describes the basic concepts of fuzzy relations used in fuzzy reasoning, which
will be addressed during next section. The Cartesian product [4] is defined as:

Definition (Cartesian product) - Having two fuzzy sets A ⊆ U and B ⊆ Y , then
the Cartesian product between A and B is denoted by A × B and defined as:

µA×B(u, y) = min {µA(u), µB(u)}

or

µA×B(u, y) = µA(u).µB(u)

(2.40)

where u ∈ U and y ∈ Y are linguistic variables. For n fuzzy sets A1 ⊆ U1, A2 ⊆
U2, . . . , An ⊆ Un the Cartesian product is denoted by A1 × A2 × . . . × An and defined
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as:
µA1×A2×...×An(u1, u2, . . . , un) = min

i=1...n
{µAi(ui)}

or

µA1×A2×...×An(u1, u2, . . . , un) =

n∏
i=1

µAi(ui)

(2.41)

In a generic concept, the Cartesian product is described by a t-norm not being restricted
to the min operator. A Fuzzy relation µR(u, y) is a mapping from the Cartesian space
U × Y to the interval [0 1] [5] such that:

A×B = R ⊂ U × Y

=
∑
U×Y

µR(U × Y )

(U × Y )

(2.42)

with membership function

µR(u, y) = µA×B(u, y)

= minµA(u), µB(y)
(2.43)

The Cartesian product defined in (2.42) is implemented through the cross product of two
vectors, for instance consider fuzzy set

A =
0.2

u1
+

0.6

u2
+

1

u3

and fuzzy set

B =
0.3

y1
+

0.9

y2

µR is computed through:

µR =
min(0.2, 0.3)

u1, y1
+
min(0.2, 0.9)

u2, y2
+ . . .+

min(1, 0.9)

u3, y2

relation R according to (2.42) can be expressed in matrix form:

A×B = R =

y1 y2

u1

u2

u3

 0.2

0.3

0.3

0.2

0.6

0.9



Definition (Fuzzy composition) - Consider fuzzy relations R and S defined in U × Y
and Y × Z respectivelly. The sup-T composition of R and S is a fuzzy relation denoted
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by R ◦ S ⊆ U ×Z defined as:

µR◦S(u, z) = sup
y∈Y

{
µR(u, y) ∗T µS(y, z)

}
(2.44)

Fuzzy composition can also be applied to obtain a fuzzy setB ⊆ Y from the composition
of fuzzy set A ⊆ U and fuzzy relation R ⊆ U × Y this means,

B = A ◦R ⊆ Y

with membership function

µB(y) = µA◦R(y)

= sup
u∈U

µA(u) ∗T µR(u, y)

(2.45)

from above deductions ∗T is a T-norm previously defined.

2.2.5 Membership functions

This section will introduce most common types of membership functions (MFs), which
analytical definition can be found in [6]. As it was already mentioned in section 2.2.2 by
2.2, a MF of set A respectively µA, does a mapping of a fuzzy variable u ∈ U through
fuzzy set A ∈ U, where U is the UD defining the variable membership degree.

1. Gaussian MF “MF-G” (figure 2.7b)), has three parameters σ and c ∈ < such that

f(u;σ, c) = e
−(u−c)2

2σ2 (2.46)

2. Generalized bell MF “MF-SG” (figure 2.7d)), has three parameters a, b, c ∈ < such
that

f(u; a, b, c) =
1

1 + |u−ca |2b
(2.47)

3. S-shaped MF “MF-S” (much similar with figure 2.7c)), contains two parameters a
and b ∈ <

f(u; a, b) =



0, u ≤ a

2
(
u−a
b−a

)2
, a ≤ u ≤ a+b

2

1− 2
(
u−a
b−a

)2
, a+b

2 ≤ u ≤ b
1, u ≥ b

(2.48)

4. Sigmoidal shape MF “MF-SIG” (figure 2.7c)), contains two parameters a and b ∈ <
such that

f(u; a, b) =
1

1 + e−a(u−c) (2.49)

The sign of parameter a changes the function opening, if right or left opened. Based
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on this MF-SIG, two other functions can be defined through the product of two sig-
moidal functions MF-SIG ×MF-SIG = MF-PSIG (figure 2.7f)) or by their difference
MF-SIG −MF-SIG = MF-DSIG (figure 2.7a))

5. Z-shaped MF “FP-Z” (figure 2.7g)), contains two parameters a and b ∈ <

f(u; a, b) =



1, u ≤ a

1− 2
(
u−a
b−a

)2
, a ≤ u ≤ a+b

2

2
(
b− u

b−a

)2
, a+b

2 ≤ u ≤ b
0, u ≥ b

(2.50)

6. Triangular shaped MF “MF-TRI” (figure 2.7h)), contains three parameters a, b and
c ∈ <

f(u; a, b, c) =


0, u ≤ a
u−a
b−a , a ≤ u ≤ b
c−u
c−b , b ≤ u ≤ c
0, c ≤ u

(2.51)

or in a compact form

f(u; a, b, c) = max

(
min

(
u− a
b− a

,
c− u
c− b

)
, 0

)
(2.52)

7. Trapezoidal shape MF “MF-TRAP” (figure 2.7i)), contains four parameters a, b, c
and d ∈ <

f(u; a, b, c, d) =



0, u ≤ a
u−a
b−a , a ≤ u ≤ b
1, b ≤ u ≤ c
d−u
d−c , c ≤ u ≤ d
0, d ≤ u

(2.53)

8. PI(π) shaped MF “MF-PI” (figure 2.7e)), contains four parameters a, b, c and d ∈ <.
This MF is built from the product between MF-S ×MF-Z = MF-PI:

f(u; a, b, c, d) =



0, u ≤ a

2
(
u−a
b−a

)2
, a ≤ u ≤ a+b

2

1− 2
(
u−b
b−a

)2
, a+b

2 ≤ u ≤ b
1, b ≤ u ≤ c

1− 2
(
u−c
d−c

)2
, c ≤ u ≤ c+d

2

2
(
u−d
d−c

)2
, c+d

2 ≤ u ≤ d
0, u ≥ d

(2.54)
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Figure 2.7: Different shapes of MFs a) MF-DSIG; b) MF-G; c) MF-SIG; d) MF-SG; e) MF-PI;
f) MF-PSIG; g) MF-Z; h) MF-TRI; i) MF-TRAP;

2.3 Fuzzy Inference

Any fuzzy system can be comprised by four main components Figure 2.8, a Fuzzifier,
Defuzzifier, Inference Engine and a rule base, independently from the used inference
type. Every fuzzy system should have a finite universe of discourse U in order to be
practically conceivable. A finite UD is achieved through a normalizer and a denormalizer
layers. The normalizer projects any input linguistic variable u onto U by a scaling factor
û = u

k k ∈ <. In opposition, the denormalizer undoes the initial projection by the same
scaling factor u = û× k k ∈ <.

2.3.1 Fuzzifier

This layer retains all information about fuzzy sets and their characteristic shapes i.e mem-
bership functions. The fuzzifier firstly takes as input a crisp variable u ∈ <n, then trans-
forms it into a linguistic variable u by mapping u from domain <n to domain U ⊂ <n,
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Figure 2.8: Fuzzy inference block diagram

which is a normalized UD ∈ [−1, 1]. Fuzzifier also assigns u with a grade of member-
ship in all fuzzy sets defined in U [7](pp.49-51). This degree of membership can be seen
as a vector whose elements are membership grades per each linguistic value. The map is
defined according to (2.2). Analytically the fuzzifier computes:

µAi(ui) =

[
T
{
µA′i(ui), µA1

i
(ui)

}
T
{
µA′i(ui), µA2

i
(ui)

}
. . . T

{
µA′i(ui), µ

A
ni
mf
i

(ui)

}]
(2.55)

where A′i, A
l
i are fuzzy sets with membership functions µA′i , µAli , i = 1, . . . , n and l =

1, . . . , nimf with n the number of inputs and nimf the number of fuzzy sets for input i. In
most cases and because it is less computationally costly, µA′ is defined with a singleton
membership function:

µA′(u) =

{
1 if u = u

0 if u 6= u
(2.56)

for singletone fuzzifiers (2.55) can be reduced to

µAi(ui) =

[
µA1

1
(ui) µA2

1
(ui) . . . µ

A
ni
mf

1

(ui)

]
(2.57)

The fuzzifier using (2.56) is known as a singletone fuzzifier, Figure 2.10 and Figure 2.9
are examples of a singletone and non singletone fuzzifiers. Figure 2.10 shows two in-
puts and one output, input u1 membership function is composed by three fuzzy sets
A11, A12 and A13. Considering u1 = 0.4 the fuzzifier returns the vector µA(0.4) =

[µA11(0.4) µA12(0.4) µA13(0.4)] = [0.25 0.95 0.14] containing the membership grades
for all defined fuzzy sets.

2.3.2 Rule Base

The rule base contains the fuzzy system reasoning knowledge, and relates system input
variables to its output variables. The rule base is composed by a set of propositions which
according to [3], are classified into four types. Consider variable u1 ∈ U and y ∈ Y ,
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fuzzy set A ∈ U and fuzzy set B ∈ Y , and also variable S which is a fuzzy truth
modifier belonging to a fuzzy set. Propositions can be classified as:

• unconditional and unqualified propositions;

p : u1 is A

T (p) = µA(V )

• unconditional and qualified propositions;

p : u1 is A is S

T (p) = S(µA(V ))

• conditional and unqualified propositions;

p : If u1 is A, Then y is B

the proposition can also be described as a fuzzy relation subsection 2.2.4

p : (u1, y) is R

R(u1, y) = I {µA(u1), µB(y)} , R ∈ U × Y

where I is a fuzzy implication

• conditional and qualified propositions.

p : If u1isA, Then y is B isS

Both first and second classes, are only characterized by an antecedent part or a premise
part, there is no implication between premises and consequents, as it happens with the
last two classes. Another important concept, although not considered in this work, is
the use of linguistic hedges [3] where linguistic terms are modified when combined with
special linguistic terms, modifying previously defined propositions. For instance, the use
of linguistic hedge “very” along with linguistic value “high”, can modify rule premiss:

• “Temperature is very high is true”

• “Temperature is high is very true”

• “Temperature is very high is very true”
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Based on generalized modus ponens, fuzzy reasoning premises are constructed as:

Premise : u isA′

Implication : IF u is A THEN y is B

Conclusion : y is B′

(2.58)

with A,A′, B,B′ fuzzy sets and u a linguistic variable. Based on (2.45), fuzzy set B′ can
be obtained by:

B′ = A′ ◦R

= A′ ◦ (A→ B)

with

µB′(y) = µA′◦R(y)

= sup
u∈U

{
µA′(u) ∗T µR(u, y)

}
(2.59)

The membership function of the fuzzy relation R, having a known µA and µB , is com-
puted as follows:

µR(u, y) = µA→B(u, y)

µA→B(u, y) = I(µA(u), µB(y))
(2.60)

where I is a fuzzy implication which will be explained in next subsection. For exam-
ple consider Figure 2.9 which is composed by the conditional and unqualified propo-
sition “IF u1 is A THEN y is B”, where u1 and y are linguistic variables and A,A′, B

are fuzzy sets with known membership functions. Fuzzy set B′ is obtained according to
(2.59) and (2.60) using a mandani inference which will be defined in next section. The
previous fuzzy rules consequent are composed by fuzzy sets although, other types of
consequent can be considered, not requiring the use of fuzzy sets. An example is the
fuzzy reasoning according to Takagi-Sugeno (TS) [8][9]. The TS rule base shares the same
premise structure as previously defined (2.58) although consequent output is a crisp vari-
able y = f(u, θ). The generalized modus ponens of a TS rule base can be seen as a generic
rule base Equation 2.58 with consequents composed by singletone membership functions
[6]:

µB : < → [0, 1]

µB =

{
1 if y = f(u,θ)

0 if y 6= f(u,θ)

(2.61)

From Equation 2.61 the single tone MF is not restricted to fuzzy domain Y which is a
normalized UD. A constraint must be imposed to TS defuzzification, allowing the denor-
malizer concept from Figure 2.8:

µB = max {min {f(u,θ),max(UD)} ,min(UD)} (2.62)

As an example of a TS consequent structure see Figure 2.10.
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Figure 2.9: A fuzzy example using Mandani inference
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Figure 2.10: A fuzzy example using Mandani inference for a TS system and a standard
fuzzy system

2.3.3 Inference Engine

Inference engine assigns trough fuzzy implications, a truth value on each fuzzy. Basic
notions of fuzzy implications according to [4][3] can be defined as:

Definition (Fuzzy implication) - Fuzzy implication I(a, b) is as function I : [0, 1]×[0, 1]→
[0, 1] for any a and b ∈ [0, 1]. Distinct classes of fuzzy implications can be defined:

I(a, b) = S(N(a), b) (2.63)
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with S a T-conorm and N(a) a negation,

I(a, b) = sup
u
{u ∈ [0, 1]|T (a, u) ≤ b} (2.64)

where T is a T-norm
I(a, b) = S(N(a), T (a, b)) (2.65)

and finally
I(a, b) = S(T (N(a), N(b)), b) (2.66)

with S, T,N satisfying the De Morgan Laws. Different implications can be obtained using
specific T-norms, T-conorms and negations see [3]. In practice other group of implications
known as mandani implications, can also be used. Mandani implications does not obey
to axiomatic definition of fuzzy implications [10], they are classified as “engineering im-
plications” according to [11][12]. This work will consider inference systems based only
on mandani implications, which can be described as:

I(a, b) = min {a, b}

= a.b

= T {a, b}

(2.67)

which is a conjunction for inference. The rule aggregation is performed by the t-conorm:

S {a1, a2, . . . , an} = a1 ∗S a2 ∗S ∗S . . . ∗S an

=
n
S
i=1
{ai}

(2.68)

while the antecedent aggregation of each rule is performed by the t-norm:

T {a1, a2, . . . , an} = a1 ∗T a2 ∗T ∗T . . . ∗T an

=
n
T
i=1
{ai}

(2.69)

The theory presented bellow will focus on MISO systems, since a MIMO model can be
achieved by aggregating M MISO model. Consider a system with n inputs

u1, u2, . . . , un ∈ <

and one output y ∈ <, the rule base will be composed by C conditional rules:

R(k) :


IF u1 is Ak1 AND

u2 is Ak2 AND . . .

un is Akn AND
THEN y is Bk

(2.70)
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or in a matrix form:
R(k) : IF u is Ak THEN y is Bk (2.71)

with Ak = Ak1 × Ak2 × . . . × Akn, where Ak1, A
k
2, . . . , A

k
n are fuzzy sets with membership

functions µAki (ui), i = 1, . . . , n. Consider also input linguistic variables u ∈ U , output
linguistic variable y ∈ Y and fuzzy set Bk defined with membership function µBk(y)

with k = 1, . . . , C. The inference process is computed according next steps:

1. For all k compute the firing strength of each rule Rk according to (2.69):

τk(u) =
n
T
i=1

{
µAki (ui)

}
= µAk(u) (2.72)

2. For each rule compute the fuzzy set Bk and its associated membership function
according to (2.59) and (2.60). Note that when single tone fuzzifier is used equation
(2.60) can be reduced to:

B
k

= A′ ◦ (Ak → Bk)

µ
B
k = sup

u∈U

{
µA′(U) ∗T µAk→Bk(u, y)

}
= µAk→Bk(u, y)

= I(µAk(u), µBk(y))

(2.73)

using a Mandany inference equation (2.73) is reduced to a t-norm:

µ
B
k = Ieng(µAk(u), µBk(y))

= T {µAk(u), µBk(y)}
(2.74)

3. Aggregate all Bk for all rules to obtain using a Mandani approach:

B′ =

C⋃
k=1

B
k

µB′ =
C
S
k=1

µ
B
k(y)

(2.75)

The previous steps are valid both for a crip consequents (TS rule base system), with
µBk(y) according to (2.56), and for fuzzy consequents as it can be see in Figure 2.10.

2.3.4 Defuzzifier

This module is responsible to produce an output crisp variable based on aggregated out-
put membership functions µ′B , which were obtained according to the inference mod-
ule previously defined. From all existing defuzzification methods [12], solution to be
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achieved will be focused on the center of area method (COA), which is defined as:

y =

∫
Y

y.µB′(y)dy∫
Y

µB′(y)dy
(2.76)

The discrete form of COA is known as weighted average method (WAM):

y =

C∑
k=1

yk.µB′(y
k)

C∑
k=1

µB′(yk)

(2.77)

with k = 1, . . . , C, yk the center of rule k consequent membership function µBk(y). Usu-
ally this method assumes a symmetry on output fuzzy:

µBk(yk) = max
y∈ Y

{µBk(y)} (2.78)

Above method equals the defuzzification of a TS system [13] when consequent fuzzy set
is a singletone (2.57):

y =

C∑
k=1

yk.τk(u)

C∑
k=1

τk(u)

(2.79)

where τk(u) is defined as in (2.72). For above case the restriction of (2.78) has no meaning.

2.4 Conclusion

This chapter provided the reader with basic theory of fuzzy inference systems, which will
allow an easily understanding of all concepts and methodologies to be adopted during
the next sections. At this point reader should be capable of distinguish the main differ-
ences between fuzzy and crisp variables, understand the fuzzy reasoning process and
architectures using different inference solutions. Apart from presented theory, it is worth
mentioning other interesting topics which were not adopted. Among them it can be high-
lighted the concept of Type-2 fuzzy sets [14] precisely, interval valued type-2 fuzzy sets
which allows the introduction of uncertainty variables in the degrees of membership.
The given examples during the fuzzy inference section 2.3 regarding fuzzification and
inference process, were restricted to singletone membership functions. However, litera-
ture [4] provides more generic inference mechanisms for fuzzy relations projection into
Cartesian space.

29



2. FUZZY LOGIC SYSTEMS: THEORY AND CONCEPTS. 2.4. Conclusion

30



3
Fuzzy System Modelling

3.1 Introduction

Figure 3.1: Blackbox modelling problem

Current chapter presents several fuzzy system structuring possibilities, handling the
problem of “black box” system identification. Having no previous plant knowledge Fig-
ure 3.1, the identification process comprises the basic steps [15]:

1. Identification tests or experiments

2. Model order/structure selection

3. Parameter estimation

4. Model validation

In a first step, the planner must specify the sampling time, create an input signal for
process excitation, and then capture its output response. Secondly, a model parametric
structure must be defined, which could follow some well known parametrization struc-
tures. For instance:

ARX - The autoregressive with exogenous input model is widely used due to its ap-
plicability to least squares (LS) and recursive least squares (RLS) algorithms. The ARX is
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an nth order differential equation:

y(k) = −a1y(k − 1)− · · · − anay(k − n) + b1u(k − nk) + · · ·+ bmu(k −m) + e(k)

= ϕ(k)θ + e(k)

with

ϕ = [−y(k − 1)− · · · − y(k − n) + u(k − nk) + · · ·+ u(k −m)]

θ = [a1 · · · ana b1 · · · bm]T

where

m = nb − nk + 1

(3.1)
NARX - The nonlinear ARX is an ARX extension for the nonlinear case:

y(k) = f(ϕ(k), θ) + e(k) (3.2)

ARMAX - The ARMAX model as proposed by [16], consist on the following linear set of
differential equations:

y(k) =
B(q)

A(q)
u(k) +

C(q)

A(q)
e(k)

where

A(q) = 1 + a1q
−1 + · · ·+ anq

−n

B(q) = b1q
−1 + · · ·+ bnq

−n

C(q) = 1 + c1q
−1 + · · ·+ cnq

−n

(3.3)

where e(k) is white noise with zero mean and variance R. The output produced from
above methods, at each instance, is correlated with information from previous samples
in a “sliding window” basis. This property may turn model impractical if an enormous
amount of past data is considered, resulting in an enormous number of variables and
parameters.

State Space - Another method that not only allows higher numerical efficiency, but is
also suitable for Kalman filtering optimization methods, is known by subspace modelling
[15]. State space model design can be described by the following matrix form:

x(k + 1) = Ax(k) +Bu(k) + η(k)

y(k) = Cx(k) +Du(k) + e(k)
(3.4)

where w(k), v(k) are white noise with zero mean and variance Rη, Re respectively. Hav-
ing chosen the model structure, the third step comprises parameter identification. During
this stage, a model fitting problem based on a cost function minimization must be solved,
using and offline, online, or both approaches. The last step comprises model validation,
which can be conducted through a residual analysis and crossed validation methods. In
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order to include above defined parametrization methods in a fuzzy structure, most im-
portant fuzzy architectures have to be defined firstly.

3.2 Fuzzy Modelling

3.2.1 Fuzzy NARX Structure

Figure 3.2: Block schema of an NARX structure for a) series-parallel identification b)
series identification

Fuzzy modelling can be parametrized as a NARX structure Figure 3.2, where for each
iteration, fuzzy predictor output ŷ(k) is obtained trough a nonlinear function f(ϕ, θ),
composed by a regression vector ϕ and a parametrization vector θ according to (3.1). An
example of fuzzy NARX is the TSK approach, where rules consequents are structured
as an ARX parametrization. The output of a TSK FS, is obtained through a nonlinear
fuzzy combination of several ARX models. Consider the following MISO system with
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two inputs u1;u2 and one output y, with a fuzzy rule based constructed as follows:

R1 : IFϕ1 IS A
1
1 AND . . . ϕn IS A

1
n

THENy = ϕθ1

...

RC : IFϕ1 IS A
C
1 AND . . . ϕn IS A

C
n

THENy = ϕθC

with

ϕ = [−y(k − 1)− · · · − y(k − n) + u1(k − 1) + · · ·

+u1(k − nb1) + u2(k − 1) + · · ·+ u2(k − nb2)]

θ = [a1 · · · ana b1 · · · bnb1 b2 · · · bnb2 ]T

(3.5)

The total fuzzy output is computed as:

ŷ(k) =

C∑
i=1
τ i(ϕ,wi)ϕθi

C∑
i=1
τ i(ϕ,wi)

=
C∑
i=1

βiϕθ
i

where

τ i(ϕ,wi) =
n∏
j=1

µAij
(ϕ,wij)

βi =
τ i(ϕ,wi)
C∑
i=1
τ i(ϕ,wi)

(3.6)

with wij the membership functions parameters. To compute a MIMO model there are two
approaches, one is to create an augmented regression vector ϕA with the previous output
values from all output variables, i.e
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ϕu =



u1,(k−nk1)

...

u1,(k−nb1−nk1+1)

...

un,(k−nkn)

...

un,((k−nbn−nkn+1))



T

ϕy1 =

 y1,(k−1)

...

y1,(k−na1)


T

ϕym =

 ym,(k−1)

...

ym,(k−nam)


T

ϕA =


ϕTy1
· · ·
ϕTym
· · ·ϕTu


T

the augmented input vector is then included in the premise part. Fuzzy consequents are
then increased with new output functions which will have a new coefficient matrix θym ,
e.g:

Ri : IFϕA1 IS Ai1 AND . . . AND ϕAn IS A
i
n

THEN y1 =
[
ϕTy1 ϕ

T
u

]
θiy1 AND · · · AND ym =

[
ϕTym ϕTu

]
θiym

(3.7)

Augmenting the regression vector will increase the number of rules by a factor of
n∏
i=1
Pi,

with Pi the number of fuzzy partitions for each element of the augmented vector. An-
other approach is to use only one output for each consequent and create m sets of rules,
using for each set j the parametrization vector ϕSj =

[
ϕTyj ϕ

T
u

]
in the premise part, and

output yj = f(ϕSj , θSj ) in the consequent part. This will lead to a total number of rules
m∑
j=1

nj∏
i=1
Pi with nj the length of ϕSj . For both methods the number of rules increases dras-

tically with the number of variables. For practical cases using also a mandani inference
approach it is recommended theories presented in [17] and [18]. Another method for
fuzzy consequents local models design, is to use subspace methods to be introduced dur-
ing next section.

3.2.2 Fuzzy State Space

This section handles the FS structuring using fuzzy state space local models. A general
state space model representation is shown in Figure 3.3, where representation 3.3(b) is
sometimes preferable to 3.3(a) due to a better flow chart process understanding. Several
authors proposed fuzzy state space systems (FSS) for process identification and control.
From [19] it was considered a model reference adaptative fuzzy control (MRAFC) based
on a FSS system however, presentation only considered a phase variable in a state-space
form (direct conversion from an nth-order ODE). A stability analysis of a global-state FSS
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(a) State Space with input/output delay inside model

(b) State Space with input/output delay outside model

Figure 3.3: Block schema of a State Space representation

model considering a state feedback controller, was introduced by [20]. Also, [21] pre-
sented a stability analysis of fuzzy state space models in a closed (with controller) and
open loop (no controller). A similar approach was taken in [22], where it was tried to
incorporate a stabilization gain into a FSS model by solving a LMI problem. Presented
work will not introduce fuzzy stability theory which could be applied in proposed ar-
chitecture. This work will not contribute with any stability analysis although, for future
investigations regarding FSS stability, it is recommended as a starting point the theory
presented in [23]. The rule structure of a fuzzy system described in a state space fashion,
is projected according next example. For instance consider a SISO system with a state
matrix x = [x1 x2 . . . xn] and control input u, the FSS model is constructed as:

Ri : IFx1(k) IS N i
x1 AND . . . AND xn(k) IS N i

xn AND u(k) IS N i
u

THEN x(k + 1) = Aix(k) + Biu(k)
(3.8)
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the crisp state output is obtained through a WAM defuzzification introduced in previous
chapters:

x̂(k + 1) =

C∑
i=1
τ i(x, u,wi)

(
Aix(k) + Biu(k)

)
C∑
i=1
τ i(x, u,wi)

=

C∑
i=1

βi
(
Aix(k) + Biu(k)

)
where

ϕ = [x u]

τ i(ϕ,wi) =

n∏
j=1

µN i
j
(ϕj , w

i
j)

βi =
τ i(ϕi, w

i)
C∑
i=1
τ i(ϕ,wi)

(3.9)

using straight forward substitutions, the final FSS model becomes:

x̂(k + 1) = Ax(k) + Bu(k)

with

A =

C∑
i=1

βiAi

B =
C∑
i=1

βiBi

(3.10)

The plant output sensors are obtained by ŷ(k) = Cx̂(k), note that this output is computed
after fuzzy inference process. Other possibility is to include plant outputs during fuzzy
reasoning as proposed by [20] in this case, fuzzy local models are augmented with a new
function:

x̂(k + 1) = Ax(k) + Bu(k)

ŷ(k) = Cx(k)

with

C =

C∑
i=1

βiCi

(3.11)

Because most authors presented an analysis based on a closed loop approach, it is worth
presenting an overview of FSS feedback controllers. Proposed closed loop solution, was
based on theory presented in [20], where it was introduced restrictions which assures
not only a local but also a global asymptotically stable closed loop with no steady state
error. For instance, based on model of (3.11) a controller based on a state feedback, can
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be incorporated for each sub space partition:

x̂(k + 1) = Ax(k) + Bu(k)

ŷ(k) = Cx(k)

û(k) = −Kx(k) + gr(k)

with

K =
C∑
i=1

βiKi

(3.12)

It is assumed that both controller and model shares the same dimension partition includ-
ing their fuzzy set shapes. Local models from (3.12), can be designed in a canonical form,
which according to referenced authors, guarantees a local asymptotic stability for a lin-
ear time-varying system. Meanwhile, achieved RNFS solution will not be designed in
a canonical form. The purpose of such approach, is to easily extend model with MIMO
capabilities, by just augmenting matrix C.

3.3 Flexible Neuro Fuzzy Modelling

Considering previous chapters concepts, next will be described how a FS system can
evolve to a neuro fuzzy system, and how to compute the neuro fuzzy inference process.
Before describing the NFS architecture, it is important to first define the basic notions of
a neural network [24]:

Synapse - Represent the connections between neurons having an associated weightwr,i ∈
<.

Neuron - Is the principal element of a neural network, it is also referred as the network
processing element. Every neuron produces an output Or and receives at its input the
outputs from previous layers Oir−1 which are connected through synapses. The output
Or is obtained through a function Or = f(Or−1,W r, θr). In literature a neuron is com-
posed by two sub-processing elements, one responsible to aggregate inputs through a
propagation function, producing an output:

netr,j = fprop(Or−1,W r,j)

=

n∑
i=1

(
Oir−1 × wir,j

) (3.13)

where i is the subscript referring to a neuron in previous layers, and j is a subscript refer-
ring to a neuron in current layer. Other authors [25] described the propagation function
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as a generalized product neuron:

netr,j =
n∏
i=1

(
Oir−1 × wir,j

)
(3.14)

The second sub-processing element is referred as the activation function, producing out-
put

Or = fact(netr,j , θr,j) (3.15)

some well known functions which implement (3.15) exist, for instance the case of binary
threshold function, logistic function or tangent hyperbolic function. However, other defini-
tions can be done considering always the restriction of being differentiable, in order to
allow the use of back propagation algorithms. An example of a neuron is illustrated in
Figure 3.4.

Feedforward Network - In this type of network, all previous nodes are connected to
posterior nodes. These architecture also defines the use of an input layer, a hidden layer
which may aggregate several invisible layers, and an output layer. Connections are only
permitted from one layer to the adjacent downstream layer as represented in Figure 3.5.

Figure 3.4: A neuron j in layer r

Figure 3.5: A feedforward neural network

Recurrent Network - Recurrent networks introduce the concept of cycles, where a neu-
ron can be connected to itself over a weighted connection (direct recurrence), or all units
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of a layer can be connected with other units of other layers (indirect recurrence). Units
of the same layer can also be interconnected (lateral recurrence)[24]. Examples of recur-
rent networks are the Jordan network [26], Elman network [27] and Hopfield network as
presented in [28].

3.3.1 Mandani-Type Neuro Fuzzy System

A generic neuro fuzzy systems was presented in [4], where apart from previous concepts,
extra parameters where introduced featuring system with flexibility and robustness. Al-
though author presented a generic representation for all types of inferences, this work
will only consider the mandani case where “engineering” implications are used. Con-
sider the weighted fuzzy system:

µAk(x) =
n

T ∗
i=1

{
µAki

(xi), w
τ
i,k

}
µB′(y) =

C

S∗
i=1

{
µ
B
k(y), wagrk

} (3.16)

where wτi,k is the i-th input weight for the rule base k-th rule and T ∗ is a weighted t-norm
defined as

T ∗ {a1, . . . , an;wτ1 , . . . , w
τ
n} =

n
T
i=1
{1− wτi (1− ai)} (3.17)

where wagrk is the weight for the rule base k-th rule and S∗ is a weighted s-norm defined
as

S∗ {a1, . . . , an;wagr1 , . . . , wagrn } =
n
S
i=1
{wagri ai} (3.18)

for other definitions of S∗ and T ∗ it is recommended [4]. From previous defuzzification
method (2.77) flexible neuro fuzzy function is represented as:

y =

C∑
r=1

yr ·
C
S∗
k=1

{
I

(
n
T ∗
i=1

{
µAki

(xi), w
τ
i,k

}
, µBk(yr)

)
, wagrk

}
C∑
r=1

C
S∗
k=1

{
I

(
n
T ∗
i=1

{
µAki

(xi), wτi,k

}
, µBk(yr)

)
, wagrk

} (3.19)

Considering normal fuzzy sets where µBk(yr) = 1 and the boundary condition of t-norms
T (a, 1) = a for µBk , according to (2.74) it can be rewritten (3.16) for y = yr:

µB′(y
r) = S∗


(

n

T ∗
i=1

{
µAri (xi), w

τ
i,r

})
,
C

S∗
k=1
k 6=r

{
I

(
n

T ∗
i=1

{
µAki

(xi), w
τ
i,k

}
, µBk(yr)

)
, wagrk

}
(3.20)

Another assumption much times taken intro practice is to consider µBk(yr) ≈ 0 for k 6= r

reducing (3.20) to:

µB′(y
r) =

n

T ∗
i=1

{
µAri (xi), w

τ
i,r

}
· wagrk (3.21)
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Therefore, the crisp output for a simplified flexible mandani system is reduced to:

y =

C∑
r=1

yr ·
n
T ∗
i=1

{
µAri (xi), w

τ
i,r

}
· wagrr

C∑
r=1

n
T ∗
i=1

{
µAri (xi), w

τ
i,r

}
· wagrr

(3.22)

allowing the MISO neuro fuzzy representation as illustrated in Figure 3.6:

Figure 3.6: Simplified flexible neuro-fuzzy using mandani inference

3.3.2 Takagi-Sugeno Neuro Fuzzy System

TS fuzzy systems as already mention, can be seen as a mandani FS having a singletone
output fuzzy set denoted by a linear function. As in mandani case, “engineering” impli-
cations are also used in a TS approach. For a TS system (3.22) can be rewritten knowing
that yr = f (x, θr) and µBk according to (2.56):

y =

C∑
r=1

f(x, θr) ·
n
T
i=1

{
µAri (xi)

}
C∑
r=1

n
T
i=1

{
µAri (xi)

} (3.23)

From (3.23) it can be observed that a TS system is more robust than a simplified mandani
system, allowing to define for each rule a linear function rather than a simple constant
(apart from any possible optimization of fuzzy set centers). As mentioned in [14] one
of the most known neuro-fuzzy system using a TS Fuzzy Inference System (FIS) is the
Adaptative-Network-Based FIS method (ANFIS) [29]. In general an ANFIS structure is
composed by five layers three of them are hidden layers, for instance consider Figure 3.7
where: For a system with n inputs having each input Pi fuzzy partitions (membership
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Figure 3.7: A flexible ANFIS structure

functions) the total number of rules C will be:

C =
n∏
i=1

Pi (3.24)

Layer 1: Is responsible to assign a degree of membership to its inputs, the connections to
this layer are weighted with WA, which corresponds to the membership functions pa-
rameters. All other connections weights are assumed to be 1. Both neuron function and
the dimension ofWA depend on the type of membership functions considered.

Layer 2: This layer computes the truth value of each rule. The connections are weighted
withWB and a neuron in this layer will be denoted by following equations:

net2,j =

Ps∏
i=1

O1,i ×WBi2,j

O2,j = net2,j

with

Ps =

n∑
i=1

Pi

(3.25)

It is worth mention that although net2,j considers all connections from previous layers
i = 1, . . . , Ps, some of this connections does not exist in rule database, in this case planner
must not create them. Another method was adopted in proposed model.

Layer 3: This layer produces a normalized truth value for each rule, the connections
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weights are assumed to be 1 and a neuron in this layer will be denoted by following
equations:

net3,j =

C∑
r=i

O1,iW
i
3,j

O3,j =
O2,j

net3,j

W3,j = [1 · · · 1]T

(3.26)

Layer 4: This layer belongs to the consequent part of reasoning assigning local models to
each rule. The connections weights WC refer to the local model parameters, other con-
nection weights are assumed to be 1. A neuron in this layer will be denoted by following
equations as described by[30]:

net14,j = O3,jWC1
3,j

net24,j = O3,jWC2
3,j
i1

...

netn4,j + 1 = O3,jWCn+1
3,j

in

O4,j =

n+1∑
l=1

netl4,j

(3.27)

Layer 5: This layer belongs to the output layer of a standard feedforward neuro network,
each neuron in this layer computes the output of a crisp variable. The connections to this
neuron are weighted with WD which assigns an aggregation weight for each rule. The
neuron is defined with equations:

net5,j =
C∑
i=1

O4,iW3,ji (3.28)

From previous definitions it can be seen that no set of equations were defined for layer1
as defined by (3.13). It was mainly due to complexity of some membership functions,
although using sigmoidal MFs, in [31] layer1 was decomposed into four new layers. An-
other approach was taken in [30] using Gaussian MFs, meanwhile instead of using input
dimension partitioning, author implemented direct input space partitioning which compared
with ANFIS method, allows a reduced number of rules for the same level of accuracy.
That method will not be followed in this work as Gaussian MFs doesn’t satisfy a com-
monly used restriction (also adopted in this work):

µA(xj) =

Pj∑
i=1

µAi(xj) = 1 (3.29)

with µAi a normal fuzzy set. Restriction (3.29) is very important, since it allows to discard
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most fuzzy rules during online identification, this means that a constant number of rules

Cr =

n∏
i=1

min(Pj , 2) (3.30)

may have a truth value different than zero. For each input at each iteration, there are
only two MFs needing to be considered resulting in a membership degree greater than
zero. A similar approach although using local models with a state-space formulation,
was presented by [22]. It introduced an algorithm for parameter optimization based on a
particle swarm optimization algorithm (PSO), although the use of a flexible inference as
defined in section subsection 3.3.1 was not taken.

3.3.3 Recurrent Neuro Fuzzy System

Recurrent neuro networks (RNN) in comparison with feedforward networks, have the
advantage of incorporating information about past. In order to incorporate this capabil-
ity in former feedforward NFS, some authors proposed a combination of RNN with fuzzy
theory, which resulted in new models known as recurrent neuro-fuzzy networks (RNFS).
By analogy with the several RNN three main RNFS architectures were defined, they differ
in the layer where feedback is applied, i.e [32] developed a RNFS using a TSK approach
and selected the output layer as a start point of an indirect recurrence to the input layer.
Since the local models were defined with an ARX parametrization, the variables used for
feedback were the plant sensor outputs. Meanwhile [33] used the same layer for feed-
back although using a state-space approach and a mandani defuzzification method, also
a structure with and without incorporation of a controller was proposed, author also pre-
sented stability analysis. A lateral recurrence in the membership layer was studied by
[34] using a TSK inference, where parameter optimization was based on a back propa-
gation (BP) algorithm. Author also presented a controller based on a MRAFC scheme
including stability conditions based on restrictions imposed to the algorithm learning
rate. Finally [35] demonstrated the use of a RNFS with an indirect recurrence between
hidden and input layers, also a TSK inference was used and a genetic algorithm (GA)
developed for optimization purpose. We will not describe authors proposed RNFS archi-
tectures since they can be seen as the standard ANFIS structure with a indirect or lateral
recurrence.

3.4 Proposed Architecture for Process Identification and Control

3.4.1 Proposed RNFS Architecture for Process Identification

So far it was introduced basic theory of fuzzy sets including most commonly used in-
ference mechanisms and their associated rule base structure. The convergence of fuzzy
theory with neuro networks and their parametrization structure was also mentioned. As
it can be seen, several solutions for the problem of system identification and control can
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be taken. The choice of a certain structure depends on the problem to be solved and re-
spective optimization mechanisms. The list bellow presents some useful considerations
that must be taken before projecting a model and a controller:

1. Process input/output scheme, i.e MIMO/MISO/SISO/SIMO

2. Process complexity, i.e if highly nonlinear, almost linear, time varying.

3. Online vs offline identification

4. Possibility to project MRAFC controllers

5. Type of optimization procedure

The process under modelling and control is a nonlinear time varying MIMO process, this
way because it is time varying, the optimization procedure to be adopted must be han-
dled in a real time identification approach, allowing to track possible changes in process
dynamics. It is also intended the design of a controller using a MRAFC approach. Based
on previous considerations, the optimization procedure to be follow should be based on
a Kalman filter approach, due to its capabilities of recursive estimation and the possibil-
ity to consider process noise. As will be seen later, Kalman filter was developed to solve
a state-space optimization problem, despite the possibility of a non state space model be
reformulated some how to this form, it is better to develop a model that is by its nature
formulated in a state-space basis. Also the use of Kalman filters allows access to model
states being possible to develop a MRAFC controller using a state feedback approach.
This work proposes two similar structures for identification and control, both are based
on a recursive neuro fuzzy system structured with a state space parametrization. A TSK
inference type will be adopted due to its defuzzification simplicity in comparison with
other methods e.g a Mandani inference. Proposed RNFS model architectures are illus-
trated in Figure 3.8,Figure 3.9 and Figure 3.10 which were based on an modified Jordan
network along with an ANFIS NFS. The concept of flexibility was included by introduc-
ing input weights wτ and rule weights wagr as described in section subsection 3.3.1.

The major difference between architecture Figure 3.8 and Figure 3.9 is the rule base.
For the first case, state variables are included in rules premise serving as criteria for sub-
space creation, where in the second case, the estimated outputs are used instead. Models
Figure 3.9 and Figure 3.10 represents a series-parallel and a series structure as previously
defined for the NARX case. In practice, the last model in comparison with the first two,
may become more accurate and stable since any possible divergence in system states and
respective outputs does not lead to a wrong subspace partition. The number of rules will
depend on the number of output variables for the last two architectures, and on the num-
ber of states for the first architecture.
Analytically architecture of figures Figure 3.8,Figure 3.9 and Figure 3.10 can be described
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Figure 3.8: Proposed RNFS network with a state-space rule base
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Figure 3.9: Proposed series-parallel RNFS network

as follows:

x(k) =
C∑
i=1

βi
(
wAi (k)x(k − 1) + wBi (k)u(k − 1)

)
y(k) =

C∑
i=1

βiw
C
i (k)x(k); βi =

τ iwagri (k)
C∑
r=1

τ rwagrr (k)

τ i(ϕ,wµ, wτ ) =
n∏
j=1

T ∗
{
µN i

j
(ϕj , w

µ
j );wτj,i(k)

}
=

n∏
j=1

(
1− wτj,i(k)

(
1− µN i

j
(ϕj , w

µ
j (k))

))
(3.31)
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Figure 3.10: Proposed series RNFS network

ϕ = [x(k − 1) u(k − 1)] using architecture Figure 3.8

or

ϕ = [ŷ(k − 1) u(k − 1)] using architecture Figure 3.9

or

ϕ = [y(k − 1) u(k − 1)] using architecture Figure 3.10

(3.32)

The proposed RNFS structure contains eight layers where neurons are characterized with
the following operations:

Layer 1 - Is the input layer of the RNFS network, the neurons operation are:

net1,j = ϕj

O1,j = net1,j
(3.33)

The connections to this layer have a unitary weight value.
Layer 2 - This layer represents the fuzzification process of a FIS and belongs to the

hidden layer, it is denoted by the following operations were Pk is the number of mem-
bership functions defined for input ϕk and Ps is the total number of MFs for all inputs,
nx is the number of states, nu is the number of control inputs, C is the number of rules
and index wi,j means the weight from neuron i in previous layer to neuron j in current
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layer:
net2,j = µNj (O1,i, w

µ
j )

O2,j = net2,j

where

i =



1 if j ≤ P1

2 if P1 > j ≤ P2 + P1

...

n if j ≤
n∑
k=1

Pk

(3.34)

were µNj represents the neuron associated fuzzy set shape and wµj is the fuzzy set mem-
bership function parameters, note that although there exist only one connection having
wµj it does not constrain the number of parameters p per MF, it is assumed thatwµj ∈ <1×p.
Connections from previous layers are unitary (weight is one).

Layer 3 - In this layer the rules premise degrees of truth are computed, neurons in this
layer are denoted with the following operation:

net3,j =

Ps∏
i=1

(
1− wτi,j (1−O2,i)

)
O3,j = net3,j

(3.35)

This layer is similar to the one defined in (3.25), although it uses a t-norm T ∗ as defined
in (3.17). Although figure Figure 3.8 presented all possible connections from layeri

th

2 →
wτi,j

layerj
th

3 , it is possible to make these connections neutral in order to reflect the real rules
premises by considering wτi,j = 0.

Layer 4 - Taking the same approach as in (3.26), this layer produces a normalized
degree of truth for each premise, although another weighting parameter was introduced
allowing flexibility during s-norm S∗ computation according to (3.18). Layer is denoted
with:

net4,j =
C∑
i=1

O3,iw
agr
i,j

O4,j =
O3,jw(j, j)

agr

net4,j

(3.36)

Layer 5 - This layer can be seen as an input layer in a hidden layer, where the outputs
equal inputs:

net5,j = ϕj

O5,j = net5,j
(3.37)
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Layer 6 - The output of each neuron in this layer represents the local crisp models
attached to each rule, the function in this layer is characterized by:

net6,j =

nx∏
i=1

O5,iw
A
i,j +

n∏
i=nx+1

O5,iw
B
i−nx,j

O6,j = O4,jnet6,j

with

n = nx + nu = length(ϕ)

(3.38)

Layer 7 - This layer does the defuzzification of states aggregating all local models
produced from previous layer. Comparing with ANFIS structure this layer functionality
corresponds to its output layer (3.28), although in proposed model it is the last layer in
the hidden layer:

net7,j =

C∑
i=1

O6,nx(i−1)+j

O7,j = net7,j

(3.39)

Layer 8 - Is the output layer of proposed RNFS model, it also belongs to a fuzzy
domain although it performs a combination from previous defuzzified states producing
model sensor output values:

net8,j =
C∑
l=1

nx∑
i=1

O7,iw
C
i,j,l

O8,j = net8,j

(3.40)

Besides having presented three types of architectures, it will be used during implemen-
tation the architecture according to Figure 3.10. This way there is no need to constrain
system states to Universe of Discourse nor the system becomes dependent of output ac-
curacy for the case of architecture Figure 3.9.

3.4.2 Proposed MRAFC Control Architecture

This subsection aims to present a controller design which together with RNFS model
previously defined, will lead plant system outputs to a desired reference. The proposed
controller architecture was based on equations presented in (3.12) and on closed loop
diagram according to Figure 1.2. For the problem of output tracking, an optimization
algorithm Figure 1.3 with a cost function based on the error between desired and current
output values is going to be adopted. A model based controller will be adopted similar to
what was proposed by [36] although, this work will use a state space model approach as
presented in [22] with some major differences, i.e the used rules premisses match model
rules premisses and both a reference gain and a proportional error gain will be consid-
ered when computing next control action. Analytically, the proposed controller can be
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described by:

u(k) =

C∑
i=1

βi

(
−wKi (k)x(k) + wRi (k)yd(k) + wPi (k)

(
yd(k)− y(k)

))
τ i(ϕ,wµ(k), wτ (k)) =

n∏
j=1

T ∗
{
µN i

j
(ϕj , w

µ(k));wτi (k)
}

=
n∏
i=1

(
1− wτi (k)

(
1− µN i

j
(ϕj , w

µ(k))
))

βi =
τ iwagri (k)
C∑
r=1

τ rwagrr (k)

ϕ = [y(k) u(k)]

(3.41)
Controller premisses might be structured in two different ways:

• Premisses considering previous control actions u(k−1) and previous plant outputs
y(k − 1)

• Premisses considering actual desired outputs yd(k) and previous plant outputs
y(k − 1)

The first method has the advantage that only the model premisses (3.31) are optimized
decreasing computational effort although, controller stability might be affected by model
membership function optimization. Regarding the second method, the advantage of hav-
ing the reference (also known by desired outputs) instead of control actions in controller
premisses, dues to the rule selection for each iteration. In this case, controller rule selec-
tion will be driven by the reference allowing controllers to be more precise and stable
since any controller instability will not affect the rule selection. Meanwhile, the rule
switching of reference based controllers might become sharper and can lead to abrupt
changes in control actions. To overcome this effect, it is recommended a reference filter-
ing. Combining (3.31) with (3.41) will result in (3.42) and a RNFS closed loop diagram can
be represented by Figure 3.11. Figure pink area represents the premise evaluation, blue
area represents the model evaluation and green area respects the controller evaluation.
It should be highlighted that rule premise evaluation in case of controller, can have in-
stead of control actions u(k−1) a reference value yd(k) as already mentioned. Differences
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between both approaches will be handled during experimental results.

x(k) =

C∑
i=1

βi
(
wAi (k)x(k − 1) + wBi (k)u(k − 1)

)
y(k) =

C∑
i=1

βiw
C
i (k)x(k)

u(k) =

C∑
r=1

βi

(
−wKi (k)x(k) + wRi (k)yd(k) + wPi (k)

(
yd(k)− y(k)

))
(3.42)

From a block diagram point of view, identification process at each iteration k is repre-
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Figure 3.11: Proposed closed loop network diagram

 kRkykyˆkukxˆkWˆKkWˆRkWˆPkWˆ1kR

Figure 3.12: Proposed closed loop architecture,Ŵk is the model parameters, ŴK
k and ŴR

k

are controller parameters

sented in Figure 3.12, it is considered that a process output y(k) due to control action
u(k − 1) is already available. The algorithm sequence for process identification and con-
trol is described as:

1. At iteration k read the already available output sample from process sensors y(k)

2. Send next control action u(k)

3. At this time ŷ(k) is also available since previous iteration and a new ŷ(k+ 1) can be
computed

4. Optimize previous estimated x̂(k − 1) and Ŵ (k − 1) to produce x̂(k) and Ŵ (k)
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5. Using optimized values of x̂(k) and Ŵ (k) optimize controller gains WK(k − 1),
WR(k − 1) and WP (k − 1)

6. With all variables optimized compute next control action

u(k + 1) = f
(
x̂(k), Ŵ (k), ŴK,R,P (k), yd(k + 1)

)
Some authors i.e [36] stated that controller gains must be restricted to be Ŵ k ≥ 0 in order
to guarantee a negative state feedback for all states, meanwhile presented work will not
enforce constraints on controller parameters. In comparison with what was done in [36],
proposed controller contains an extra error gain allowing a faster controller response
when changing reference set points.

3.5 Conclusion

This chapter has shown the convergence between different modelling architectures. Firstly
it was presented the convergence of a standard fuzzy inference with a neuro network,
which together became known in literature by Neuro Fuzzy System. One use case of
RNF is the ANFIS structure which is widely used for the purpose of system identifica-
tion. Next it was demonstrated the fusion of NFS with State Space theory. State space
is one of the most known and studied theory with enormous applications including sta-
ble methods for identification and control, for instance the Kalman filter theory. Besides
existence of Kalman based theory algorithms that does not require model under opti-
mization to be in a state space formulation i.e UKF, it is always useful to have a state
space approach being possible to make use of controlling theory based on system states
feedback. Exploiting towards this direction, it was presented and proposed a new ar-
chitecture that aims to converge state space and NFS into SSNFS. Having architectures
defined, presented work proceeded with the identification of its structures and variables,
identifying which parameters were suitable for optimization. It was defined that mem-
bership functions, membership degrees, rule truth degrees and local state space models
weighting matrices were suitable for optimization. The next step towards a closed loop
system, was the introduction of a controller to be applied to the plant. Making use of the
Recursive Neuro Fuzzy modelling system (RNFMS) states, it was presented a controller
based on a retro propagation of predicted states. Also if only an offline optimization is to
be implemented, having a global controller might not work, since SSNFS dynamics are
not be kept constant depending on process working points. Based on this assumption,
it would be advantageous having a controller also dependent on process working points
so, why not make use of RNFS model dynamics and apply it to a state space neuro fuzzy
controller? Proposed Recursive Neuro Fuzzy Control System (RNFCS) used a MRAFC
approach making use of model rule base knowledge for rule selecting and weighting
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although, having its own local controller gains. Two different schemes were proposed re-
garding RNFCS premisses, one using the control actions other using the desired output
values. Using the last approach a new complete RNFCS inference must be computed.
Further theory regarding RNFMS and RNFCS stability, and the overall closed loop sta-
bility needs further study, since only empirical stabilization techniques and tips found in
literature were presented.
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4
Estimation Methods for Fuzzy

Structures Parameters

4.1 Introduction

This chapter presents an overview regarding the State of the Art algorithms for real time
identification. Several proposals already studied will be analysed and their usability will
be inspected for the optimization of both MF weights and rules consequents. From two
possible approaches i.e a Coupled Constrained Unscented Kalman Filter (CCUCF) and
a Decoupled Constrained Unscented Kalman Filter (DCUCF), presented work will only
follow the latest approach. Since in proposed RNFMS a difference rule subset might be
considered at each iteration, the use of CCUCF have no major benefits. For real-time
identification having a solution for the problem under optimization is time critical, it
must satisfy process sampling time requirements. Therefore this chapter presents a study
over most used on-line methods based on Kalman filter approach. Firstly it will start by
formulating Kalman Filter theory [37] and proceed with its reformulation by means of
an Unscented Transformation [38]. For a better understanding of Kalman concept it will
be presented an introduction regarding probability and statistical properties of random
variables RV s.
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4.2 The Kalman Filter

4.2.1 Major Statistical Properties

The Kalman filter is a "State" estimator for a linear dynamic system described as a State-
Space model perturbed by white noise, it exploits the statistical properties of Random
Variables (RV) and Random Process (RP) (also called Stochastic process). Consider a RV
X and x as a realization of X being a nonrandom independent variable or a constant,
then
The probability distribution function (PDF) of X is

FX(x) = P (X (t) ≤ x)

The Probability density function (pdf) of X is

fX(x) =
dFX (x)

dx

The moment of a random variable X is defined as:

ith moment of X = E(Xi)

ith central moment of X = E[(X − x)i]

The first moment of X is known as mean E[X] or for simplicity x and it can be computed
as

x(t) =

∫ ∞
−∞

xfX(x)dx

The variance σ2
X of a RV X is the second central moment of X and it can be computed as

σ2
X(t) =

∫ ∞
−∞

(x− x)2fX(x)dx

The standard deviation of X is σx which is the square root of the variance. The third cen-
tral moment is called skew and the forth central moment as Kurtosis. Now considering
a n−element RV X and an m-element RV Y define:
Correlation of two column vector RV X and Y

RXY = E(XY )T

=


E(X1Y1) · · · E(X1Ym)

...
. . .

...
E(XnY1) · · · E(XnYm)
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The covariance between X and Y

CXY = E[(X − x)(Y − y)T ]

The autocorrelation of the vector RV X

RX = E(XXT )

=


E(X2

1 ) · · · E(X1Xn)
...

. . .
...

E(XnX1) · · · E(X2
n)


The autocovariance of the vector RV X

CX = E[(X − x)(X − x)T ]

=


E[(X1 − x1)2] · · · E[(X1 − x1)(Xn − xn)T ]

...
. . .

...
E[(Xn −Xn)(X1 − x1)T ] · · · E[(Xn − xn)2]



=


σ2

1 · · · σ1n

...
. . .

...
σn1 · · · σ2

n


It is worth mentioning that both autocorrelation and auto-covariance matrix are always
symmetric and positive semidefinite. A stochastic process is a random variable X(t) that
is time dependent, in this case the RV is continuous with time although time is discrete.
For such cases, the stochastic process is defined as a continuous random sequence X(k)

k = 1, 2, . . .. Note that X(k0) is itself a random variable being or not vector valued with
x(k0) a realization of the RV X(k0). All statistical properties of a random variable can be
applied to a stochastic process.

The process covariance CX(k) of X(k) is defined as:

CX(k) = E
{

[X(k)− x(k)][X(k)− x(k)]T
}

=
∑

[x− x(k)] [x− x(k)]T f(x, k)

The autocorrelation of a stochastic process X(k) where X(k1) and X(k2) are two distinct
RVs:

RX(k1, k2) = E[X(k1)XT (k2)]

=


E[X1(k1)X1(k2)] · · · E[X1(k1)Xn(k2)]

...
. . .

...
E[Xn(k1)X1(k2)] · · · E[Xn(k1)Xn(k2)]
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Define the autocovariance of a stochastic process as:

CX(k1, k2) = E
{

[X(k1)− x(k1)][X(k2)− x(k2)]T
}

=


E[(X1(k1)− x1(k1))(X1(k2)− x1(k2))T ] · · · (X1(k1)− x1(k1))(Xn(k2)− xn(k2))T ]

...
. . .

...
E[(Xn(k1)− xn(k1))(X1(k2)− x1(k2))T ] · · · (Xn(k1)− xn(k1))(Xn(k2)− xn(k2))T



Considering two random processes X(k) as an n−vector and Y (k) as a m−vector it is
defined correlation and cross-covariance as an n×m matrix[39]:

E[X(k1)Y T (k2)], E {[X(k1)− x(k1)][Y (k2)− y(k2)]}

they are uncorrelated if:

E {[X(k1)− x(k2)][Y (k1)− y(k2)]} = 0,

and are orthogonal if their correlation matrix

E[X(k1)Y T (k2)] = 0.

Finally, a random process Xk is called uncorrelated if

E
{

[X(k1)− xk1 ][Xk2 − xk2 ]T
}

= Q(k1, k2)∆(k1 − k2),

where ∆(·) is the Kronecker delta function defined as:

∆(k) =

 1 if k = 0

0 otherwise

Although it was introduced the covariance definition according to [37], presented work
will refer to the autocovarianceCX of a RVX or a stochastic processX(k) as being simply
covariance matrix, as it was done in [39] during kalman formulation.

4.2.2 Algorithm Formulation

The Kalman filter formulation was mainly derived from the RLS algorithm [37], although
accounting for process noise and uncertainties. Consider the following linear stochastic
system (4.1)

xk = Fk−1xk−1 +Gk−1uk−1 + ηk−1

yk = Hkxk + ek
(4.1)
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Where ηk represents the process uncertainties and ek the measurement noise, with co-
variances Rηk and Rek respectively, both are uncorrelated and have a Gaussian Probability
Distribution Function PDF such that:

ηk ∼
(
0, Rηk

)
ek ∼ (0, Rk)

E
[
ηkη

T
j

]
= Rηk∆(k − j)

E
[
eke

T
j

]
= Rk∆(k − j)

E
[
ekη

T
j

]
= 0

(4.2)

Kalman filter algorithm can be used as:

x̂k|k+N = E [xk|y1, y2, ..., yk+N ] = smoothed estimation

x̂k|k−M = E [xk|y1, y2, ..., yk−M ] = predicted estimation

and is composed by to distinct phases, a time update phase computing:

x̂−k = E [xk|y1, y2, ..., yk−1] = a priori state estimate

P−k = E
[
(xk − x̂−k )(xk − x̂−k )T

]
= a priori estimation error covariance

and a measurement update phase computing:

x̂+
k = E [xk|y1, y2, ..., yk] = a posteriori estimate

P+
k = E

[
(xk − x̂+

k )(xk − x̂+
k )T

]
= a posteriori estimation error covariance

This way the Discrete Kalman filter set of equations for the dynamic system (4.1) are as
follows:

1. Initialization were k = 0:

x̂+
k = E(xk)

P+
k =∞I

= E[(xk − x+
k )(xk − x+

k )T ]

(4.3)

2. For each time step k = 1, 2, ...:
Time update equations

x̂−k = Fk−1x̂
+
k−1 +Gk−1uk−1

P+
k = Fk−1P

+
k−1 +Rηk−1

(4.4)
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Measurement update equations

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1

x̂+
k = x̂−k +Kk(yk −Hkx̂

−
k )

P+
k = (I −KkHk)P

−
k

(4.5)

The previous algorithm could be described as a predicted estimation problem with M =

1 for a stochastic process described as:

xk = Fk−1xk−1 +Gk−1uk−1 + ηk−1

yk−1 = Hk−1xk−1 + ek−1

(4.6)

in this situation xk represents a prediction of the system state having into account up to
yk−1 output measurements. Meanwhile as it will be seen later this approach can not be
done with UKF.

4.2.3 Divergence Phenomenon

Kalman filter algorithm may suffer from numerical stability problems due to computer
arithmetic accuracy and modelling errors which are then propagated through states [37].
From Kalman filter gain Kk equation (4.5) it is necessary to take P−k squared root forcing
P−k to be positive definite. This condition may not be achieved due to round off errors
or if Pk is ill-conditioned. Another issue is the covariance matrix symmetry, which may
or may not become symmetric. Somme approaches have been taken to overcome this
issues:

• To force symmetry implement Pk = (Pk + P Tk )/2

• For a positive definiteness problem use a square root filtering approach.

4.3 Unscented Kalman Filter

y = h(x) (4.7)

From previous sections it can be seen that Kalman filter formulation was developed for a
linear system model time or timeless dependent (4.1). Because most applications present
a non-linear system model (4.7), other algorithms based on standard Kalman filtering
theory have been proposed in literature. The first Kalman filter extension was the ex-
tended Kalman filter (EKF) which extended the use of Kalman filtering by linearising the
non-linear system [40], in this work EKF approach was not followed, for more details see
[41][42]. An earlier approach tries to approximate the system distribution rather than its
non-linear functions by means of an Unscented Transformation (UT) [38][43] as it will be
seen in the next sections.
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4.3.1 Principle of Unscented Transformation

Unscented transformation uses a set of so called sigma points with mean x̂ and covari-
ance Pk, those sigma points are then spread through the non-linear system capturing its
statistical properties. The new sigma points are then evaluated to compute the new mean
and covariance. Several UKF enhancements were developed, dealing with algorithm de-
grees of freedom like the number of sigma points l to be used, the way noise is injected
into system and constraints handling. From [38] a symmetric set of 2N + 1 sigma points
were present, in [44] a set of 2N sigma points were used and from [43] not only a set
of N + 1 sigma points were presented but also an overview over other possibilities and
how to exploit process higher order information. The scaled unscented transformation
(SUT) to be used in this work, was presented in [45] and an overview of most relevant
SUT methods was presented in [46]. Consider a N -dimensional random variable xk, its
mean x̂k and covariance Pk with a set of sigma points and their corresponding weights
Sl = {χk,l, wl; l = 1, ..., L}, the process to compute the initial symmetric scaled sigma
points with L = 2N + 1 is as follows:

χ0 = x̂

w
(m)
0 =

λ

N + λ

w
(c)
0 =

λ

N + λ
+ (1− α+ β)

i = 0

χi = x̂+ (
√

(N + λ)Px)i

w
(m)
i = w

(c)
i =

1

2(N + λ)

i = 1, ..., N

χi = x̂− (
√

(N + λ)Px)i

w
(m)
i = w

(c)
i =

1

2(N + λ)

i = N + 1, ..., 2N

(4.8)

with
λ = α2(N + k)−N (4.9)

After computing the initial set of sigma points they are then propagated through the
non-linear system (4.7) in order to compute the new mean and covariances:

1. Spread each sigma point through the process model to get a set of transformed
samples

Yi = g(χi) i = 1, ..., L (4.10)

2. Compute the predicted mean as

ŷk =

L∑
i=1

Wm
i Yi (4.11)
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3. Compute the predicted covariance as

Py =

L∑
i=1

W c
i (Yi − ŷ)(Yi − ŷ)T (4.12)

4. the predicted cross-covariance

Pxy =
L∑
i=1

W c
i (χi − x̂)(Yi − ŷ)T (4.13)

As it can be seen the transformation contains three degrees of freedom k, α and β. The
value of k affects the fourth and higher order moments of sigma points, it can be any
number in order to have N + k 6= 0. Meanwhile, negative numbers of k may lead to a
non-positive semi-definite covariance matrix when the system distribution is assumed
Gaussian, a good value is N + k = 3 [38]. Regarding α it controls the spread of sigma
points around x̂ and should be set to a small value in range 0 ≤ α ≤ 1. The value of β
should be β = 2 for Gaussian distributions, it adds a correction term to the covariance
concerning fourth and higher order information [43].

4.3.2 Unscented Kalman Filter Formulation

Non-linear state space model for an additive noise case:

xk = f(xk−1, uk−1) + ηk−1

yk = h(xk) + ek
(4.14)

Non-linear state space model for a correlated noise case:

xk = f(xk−1, uk−1, ηk−1)

yk = h(xk, ek)
(4.15)

Non-linear state space model with states and parameters for an additive noise case:
For joint estimation (augmented states)

xk = f(xk−1, uk−1;wk−1) + ηk−1

wk = wk−1 + rk−1

yk = h(xk;wk) + ek

(4.16)

For dual estimation [
xk

wk

]
=

[
f(xk−1, uk−1)

wk−1

]
+

[
ηk−1

rk−1

]
yk = h(xk;wk) + ek

(4.17)
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Non-linear state space model with states and parameters for a correlated noise case (same
approach as before for joint and dual formulation):

xk = f(xk−1, uk−1, ηk−1;wk−1)

wk = wk−1 + rk−1

yk = h(xk, ek;wk)

(4.18)

Non-linear state space model only with parameters for a correlated noise case:

wk = wk−1 + rk−1

yk = h(xk, ek;wk)
(4.19)

Non-linear state space model only with parameters for an additive noise case:

wk = wk−1 + rk−1

yk = h(xk;wk) + ek
(4.20)

The incorporation of Kalman filter theory into SUT was the next step towards recursive
estimation, two variants were defined for two different stochastic systems. One concerns
a system (4.15) with correlated noise [45] and other a system (4.14) with additive noise
used in a case study [47], both algorithms are summarized in [48] and [46]. In the first
case the sigma points χx are augmented with the noise variables to form χa = [χx χη χe],
concerning the second case which was adopted in this work, the noise is assumed purely
additive. The algorithm is computed as in Table 4.1 where an additional computation
of sigma points (4.22e-4.22f) was presented which according to [45] incorporates process
noise effects in model outputs. While step (4.22e) augments the sigma points with pro-
cess noise covariance for a total of 2L + 1 sigma points, the respective weights need to
be recalculated. Step (4.22f) does a completely recalculation of L sigma points, although
information concerning odd-moments captured by initial propagated sigma points are
rejected.

Instead of state variables some systems also include parameter variables Equation 4.16
as the case of neuro networks where the estimation of both parameters and states are
needed [49]. There are two methods for recursively estimate states and parameters, a
joint estimation and a dual estimation which applied to UKF algorithm becomes known
as joint-UKF and dual-UKF [46]. The dual-UKF computation can be seen as a two stage
algorithm were, in the first stage UKF algorithm is applied to parameters estimation and
the second stage UKF algorithm is applied again for states estimation. The joint-UKF is a
one stage process were the system states x̂ is augmented with the parameters x̂a = [x̂ ŵ].
This work presents a fuzzy system with a state space representation according to Equa-
tion 4.20, and will consider algorithm from Table 4.2. The complete closed loop optimiza-
tion solution will be implemented according to Figure 1.3. The parameters of RNFMS
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Initialization: x̂0 = E[x0], P0 = αI
For k ∈ 1, ...,∞ :

• compute the sigma points:

χ+
k−1 = [x̂+

k−1 x̂+
k−1 + γ

√
P+
k−1 x̂+

k−1 − γ
√
P+
k−1] (4.21a)

• Compute time-update steps:

χ∗−k = f(χ+
k−1, uk−1) (4.22a)

x̂−k =
L∑
i=1

W
(m)
i χ∗−i,k (4.22b)

P−k =

L∑
i=1

W
(c)
i (χ∗−i,k − x̂

−
k )(χ∗−i,k − x̂

−
k )T +Rηk−1 (4.22c)

option 1: χ−k = χ∗−k (4.22d)

option 2: χ−k = [χ∗−k χ∗−0,k + γ
√
Rηk−1 x̂−k − γ

√
Rηk−1] (4.22e)

option 3: χ−k = [x̂−k x̂−k + γ
√
P−k x̂−k − γ

√
P−k ] (4.22f)

Y −k = h(χ−k ) (4.22g)

ŷ−k =

L∑
i=1

W
(m)
i Y −i,k (4.22h)

• Compute the measurement-update equations:

Pỹkỹk =

L∑
i=1

W c
i (Y −i,k − ŷ

−
k )(Y −i,k − ŷ

−
k )T +Rek (4.23a)

Pxkyk =

L∑
i=1

W c
i (χ−i,k − x̂

−
k )(Y −i,k − ŷ

−
k )T (4.23b)

Kk = PxkykP
−1
ỹkỹk

(4.23c)

x̂+
k = x̂−k +Kk(yk − ŷ−k ) (4.23d)

P+
k = P−k +KkPỹkỹkK

T
k (4.23e)

with γ =
√
N + λ, L = 2N + 1, N is the state dimension, Rη is the process noise

covariance and Re is the measurement noise.

Table 4.1: UKF state estimation for additive noise case (system as Equation 4.14)
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Initialization:
ŵ0 = E[w0]

P0 = αI
(4.24)

For k ∈ 1, ...,∞:

• Compute time-update equations:

ŵ−k = ŵ+
k−1 (4.25a)

P−wk = P+
wk−1

+Rrk−1 (4.25b)

• Calculate sigma-points for measurement-update:

χ−k = [ŵ−k ŵ−k + γ

√
P−wk ŵ−k − γ

√
P−wk ] (4.26)

• Compute the measurement-update equations:

Y −k = g(xk, χ
−
k ) (4.27a)

option 1: d̂−k =
L∑
i=1

W
(m)
i Y −i,k (4.27b)

option 2: d̂−k = g(xk, ŵ
−
k ) (4.27c)

Pd̃k =
L∑
i=1

W c
i (Y −i,k − d̂

−
k )(Y −i,k − d̂

−
k )T +Rek (4.27d)

Pwkdk =
L∑
i=1

W c
i (χ−i,k − ŵ

−
k )(Y −i,k − d̂

−
k )T (4.27e)

Kk = PwkdkP
−1

d̃k
(4.27f)

ŵ+
k = ŵ−k +Kk(dk − d̂−k ) (4.27g)

P+
wk

= P−wk +KkPd̃kK
T
k (4.27h)

(4.27i)

with γ =
√
N + λ, L = 2N + 1, N is the parameters dimension, Rr is the process

noise covariance and Re is the measurement noise.

Table 4.2: UKF for parameter estimation considering additive noise case. (system as in
Equation 4.14)
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local state space models are only driven by the process noise rk−1. For a n−dimensional
system, parameters noise covariance Rr is a n× n matrix usually constrained to a diago-
nal matrix assuming no noise correlation between parameters. Thus, only noise variance
information will be added to the covariance matrix Pwk variance terms E[(wi,k − ŵi,k)2].
Both output error covariance Re and parameter error covariance Rr both for controller
and model should be predicted, allowing a convergence speed improvement of the iden-
tification algorithm Table 4.2. Although a fast convergence ofRe towards zero can lead to
overfitting and instability problems. The process to estimate Rrk−1 can be done by three
techniques [46]:

• Set to a constant value of
Rr0 = αRrI (4.28)

• Use as in RLS algorithm a forgetting factor λRLS ∈ (0, 1]:

Rr+k = diag(λ−1
RLSP

+
wk

) (4.29)

From above equation we can see that old data information will be incorporated on
next iteration being the amount of concerned past data proportional to λRLS

• Another possibility is estimating the innovations using a Robbins-Monro stochastic
approach:

Rr+k = diag([1− αr]Rr+k−1 + αRMKk[dk − ỹk][dk − ỹk]′K ′k) (4.30)

This method allows a fastest and more stable convergence when compared with
previous methods as it will be seen during simulation results.

Regarding the prediction of output noise covariances, no explicit formulation was found
in literature although, a new method was proposed an formulation can be found in at-
tached algorithms section A.1.

As in Kalman filter, the major UKF drawback is the computation of covariance matrix
square root

√
Pwk during sigma point calculation, such computation can be affected by

divergence phenomenons due to round off errors. A more reliable procedure is making
use of factorization methods to compute

√
Pwk , for instance a popular algorithm refer-

enced in literature is known as Cholesky factorization [37]. This method computes a
unique unit lower triangular matrix S such that Pwk = SST , S will always be symmetric
and definite due to physical principles meanwhile, Pwk must also be positive definite. A
different procedure other than Cholesky factorization, is to perform a LDL factorization
[50] which can be achieved if Pwk = LdLT is symmetric and nonsingular. The LDL fac-
torization also referred as UDU can also be written as Pwk = L

√
D
√
DLT = SST with

D a diagonal matrix, L a unit lower triangular matrix and LT its complex conjugate, if
all elements of D are positive then Pwk is positive definite. Based on above factorization
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methods other extensions to Kalman filter were developed and became known as square
root filtering and U-D filtering [37]. The extension of such methods to UKF algorithm
became known as SR-UKF [51] and UD-UKF [52].

4.3.3 Constrained Unscented Kalman Filter

Optimization takes an important role in system identification, not only because a com-
plete set of input-output data may not be available but also due to process internal states
variations along time. While in white box identification it might be observed that some
process states must be confined to a predefined range, in black box modelling that conclu-
sion may not be obvious since no previous knowledge is available. The need to consider
a constrained optimization in black box modelling may arise from model stability condi-
tions or from model architecture itself as the case of NFS where some intrinsic character-
istics restricts certain parameters to a subset of values as mentioned in previous chapters.
A variable x can be constrained by a system of linear equalities or inequalities (4.31) or by
a non-linear system of equalities or inequalities. This section will present some solutions
for the problem of constrained optimization using UKF when linear inequalities are con-
sidered although, before presenting them, it is worth mentioning an approach described
in [30] where instead of optimizing a bounded constrained variable 0 ≤ x ≤ 1, it was
optimized an unconstrained variable α ∈ < such that x = tanh(α)+1

2 . Another approach
is to use clipping methods [53] where outbound values are projected onto boundaries of
a feasible region. This method can also be applied to UKF as described in [54]. The clip-
ping approach in UKF [55] can lead to a sigma point symmetry lost around mean x̂+

k−1,
being difficult to capture state and parameters weighted mean x̂+

k−1 and covariance P+
k−1.

A general overview of constraints handling in UKF was presented in [56] which besides
describing seven different methods, not all are suitable for linear inequality constraints.

Ax ≤ B (4.31a)

lb ≤x ≤ ub (4.31b)

Aeqx = Beq (4.31c)

From all steps defined in algorithms Table 4.1 and Table 4.2, some of are suitable to handle
constraints. Starting with the calculation of sigma points, a new method similar to clip-
ping, although modified for UT use, was introduced in [57]. Author presented an interval
constrained unscented transformation (ICUT) Table 4.3 where posteriori sigma points are
projected onto a constrained surface by modifying their weights in an asymmetrical fash-
ion such that each sigma point verifies (4.31b). The extension of ICUT to UKF is described
in [56] as interval unscented Kalman filter (IUKF). Besides constraining sigma points, it is
not guaranteed that time update states are kept inside a constrained subspace. To accom-
plish this request another set of algorithms were proposed which extends the ICUT. An
unscented recursive nonlinear dynamic data reconciliation (URNDDR) was presented in
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To generate constrained sigma points χ ∈ [lb, ub] calculate sigma steps θ (k)[2N×1]:

• For any instance k compute:

χ− (k) =
[
x̂+ (k − 1)

x̂+ {k − 1} θ1 (k − 1)S:,1 · · · x̂+ {k − 1} θn (k − 1)S:,n

−x̂+ {k − 1} θn+1 (k − 1)S:,n+1 · · · θ2n (k − 1)S:,2n

] (4.32)

• For i = 1, . . . , N and j = 1, . . . , 2N compute sigma points distances

S =

[√
P+
x (k − 1) −

√
P+
x (k − 1)

]
(4.33a)

θj
∆
= min (Θ:,j) (4.33b)

Θi,j
∆
=


√
N + λ, if Si,j = 0,

min
(√

N + λ,
ubi(k−1)−x̂+i (k−1)

Si,j

)
, if Si,j ≥ 0,

min
(√

N + λ,
lbi(k−1)−x̂+i (k−1)

Si,j

)
, if Si,j ≤ 0,

(4.33c)

• Compute also respective weights for j = 1, . . . , 2N :

γ0
∆
= b, γj

∆
= aθj + b (4.34)

satisfying
2N∑
j=0

γj = 1, with

a
∆
=

2λ− 1

2 (N + γ)

(∑
j=1

θj − (2N + 1)
√
N + λ

) (4.35a)

b
∆
=

1

2 (N + λ)
− 2λ− 1

2
√
N + λ

(∑
j=1

θj − (2N + 1)
√
N + λ

) (4.35b)

Table 4.3: Formulation of ICUT

68



4. ESTIMATION METHODS FOR FUZZY STRUCTURES PARAMETERS 4.3. Unscented Kalman Filter

[57], where an optimization problem was computed for each sigma point. Such method
is also known as sigma-point interval unscented Kalman filter (SIUKF) as observed by
[56] where constraints were enforced in step (4.22a). A simplified version of SIUKF is
known as constrained interval unscented Kalman filter (CIUKF) [56] where also an op-
timization problem is computed although, instead of being computed for each sigma
point, it is achieved by enforcing constraints in steps (4.23d). Other UKF algorithms can
be combined with ICUT where the solution of an optimization problem is not required to
enforce constraints (4.31b). One method is to apply a pdf truncation as proposed in stan-
dard Kalman filter formulation [58], although applied in UKF the algorithm is known
as truncated UKF (TUKF), which in combination with ICUT becomes truncated interval
UKF (TIUKF) [56]. Instead of truncation, a projection of unconstrained estimates onto
constrained surface such that constraints are fulfilled, can also be applied. This method
is known as estimate projection [58] which applied to UKF becomes PUKF [56]. Pro-
jection is done by computing an optimization problem in step (4.23d), although with a
simplified cost function which can be derived by the maximum probability method or by
the mean square method as described in [59].

4.3.4 UKF Application Results from a Theoretical Model

Next will be illustrated the use of Unscented Kalman filter applied to a theoretical model
used as reference by other authors more precisely in [46]. For a better understanding of
UKF dynamics, it will be considered the error covariance ellipsoid which is computed
according to [60]:

[x−mx]T
−1∑
X

[x−mx] = K (4.36)

Equation (4.36) is a Mahalanobis distance of vector x to the mean mx and
∑−1

X is an error
covariance matrix. Considering K = 1, the plot algorithm will be similar to proposed
in[61]. For instance, consider the discrete non linear model "2-state CSTR" described as
[46] with system experiencing Gaussian Noise rk ∼ N (0, Rrk) ek ∼ N (0, Rek):

x1,k+1 =
x1,k

1 + 2kr∆tx1,k
+ r1,k

x2,k+1 = x2,k +
kr∆tx1,k

1 + 2kr∆tx1,k
+ r2,k

yk = [1 1]xk + ek

(4.37)

considering initial values:

∆t = 0.1 P0 =

[
62 0

0 62

]
Rrk =

[
0.0012 0

0 0.0012

]

Rek = 0.12 x0 =

[
3

1

]
x̂0 =

[
0.1

4.5

] (4.38)
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and using algorithm parameters (4.9) α = 1; β = 2; K = 0. The UKF response will be
analysed using the following extensions:

• Standard UKF formulation;

• UKF with clipping on sigma points (PUKF without optimization problem) (4.26)
and on predicted states, similar to Table A.5 but with clipping on sigma points
(4.27)g;

• UKF with constrained interval constrained unscented transformation (CIUKF) as in
Table 4.3 with a clipping on predicted states (4.27)g without solving optimization
problem, see proposed Table A.2.

Also the effect of lowering parameter α will be analysed. From Figure B.1 it can be seen
that for 100 samples the states slowly converge to the real states, this is due to the exis-
tence of some spread sigma points outside allowable region since system negative states
(i.e pressure) are non-physical.Considering constraints in algorithm it is observed from
Figure B.2 and Figure B.3 that state convergence is faster and notice an improvement
using CIUKF. Also error covariance decreases rapidly in comparison with the uncon-
strained version, meaning a faster convergence. Concerning a lower value for α it can be
noticed that convergence becomes compromised in constrained version. Besides smaller
values of α resulting in a lower spread of sigma points around mean, the sigma points
weights will become much more weighing, increasing the effect of neither PUKF nor
CIUKF capture true mean and covariance if sigma points are outside the feasible region.
The algorithm can even become unstable resulting in a non definite positive predicted
error covariance. For the unconstrained case, lowering α will have no major impact, this
way it is recommended the use of α ≈ 1 in order to decrease the weighing ωm0 on χ∗−k ,
lowering the effect of a wrong state mean prediction. The presented theoretical model
has a known error distribution, although this is not the case when using a stochastic pro-
cess where noise is assumed to be Gaussian with unknown covariance rk ∼ N (0, Rrk)

ek ∼ N (0, Rek). Based on this assumption noise covariances must be predicted at each it-
eration and an initial value must be chosen such that it allows system convergence. Next
will be presented the effect on convergence when predicting those variables. The system
to be used will be the same theoretical model, although it is assumed an unknown error
variance. The following set of tests will be conducted using α = 0.9, CIUKF formulation
and for initial values Rr0 = 0.1 and Re0 = 1:

• Forgetting factor λr = 0 for (0, Rrk) and λe = 0 for (0, Rek)

• Forgetting factor λr = 0 for (0, Rrk) and λe > 0 for (0, Rek)

• Forgetting factor λr > 0 for (0, Rrk) and λe = 0 for (0, Rek)

• Forgetting factor λr > 0 for (0, Rrk) and λe > 0 for (0, Rek)
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From results it can be observed that system states will not converge if considering forget-
ting factors λr = 0, λe = 0 and a high value for Rr+k , independently of chosen value for
Re+k as shown by Figure B.7 and Figure B.8. Also adopting a small value of Rr+k ≈ 0 will
result in a fast decrease of error covariance P+

k , increasing the probability of convergence
to a local minimum. Concerning output error covariance, the higher its value the lower
the convergence speed, working as a gain smoother. Using λe = 0 and a low initial value
might lead system to a local solution or even divergence and instability. Initial values for
states and output error covariances become more insignificant with the increasing of for-
getting factor values, as they will converge to computed innovations (4.30). For instance,
it can be observed a convergence improvement using λr = 0.2 and λe = 0.2 as shown in
Figure B.9 and Figure B.10, although from last figure state prediction becomes affected
by system noise if using a higher forgetting factor λe.

So far it has been presented results for the case of state estimation, meanwhile param-
eter estimation has also interesting dynamics which will be shown in next chapter using
a real stochastic process.

4.4 Proposed Algorithm for On-line Estimation of RNFMS and
RNFCM

4.4.1 RNFMS Variable Design

The proposed algorithm for optimization of proposed RNFS model is based on UKF
algorithm, where both membership functions and consequent parameters will be op-
timized reducing the error between predicted output and measured plant output. Be-
fore introducing algorithm computation, it is worth presenting a matrix formulation of
adopted RNFS. Consider a state vector x(k) = [x1(k) x2(k) · · · xnx(k)], control vector
u(k) = [u1(k) u2k · · · unu(k)] and an output vector y(k) = [y1(k) y2(k) · · · ym(k)] for
a MIMO system. The system inputs will be constructed based on a regression vector
ϕ = [y(k − 1) u(k − 1)] ∈ <1×n. Each input ϕi is denoted with Pi membership functions
each being parametrized by a vector wµi,j for i = 1, . . . , n and j = 1, . . . , Pi, it is consider
that all MFs parametrization vector will have the same dimension, i.e wµi,j ∈ <1×pmax .
Having a total number of rules C according to (3.24) it is possible to create the following
matrices:

M ξ ∈ {0, 1}n×Pmax×C

with

Pmax =
n

max
i=1

Pi

(4.39)

which represents a masking matrix reflecting the premises layout, this matrix is constant
for all iterations and only one element equal to one is allowed per row. Also a matrix
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containing all membership degrees for all inputs at each iteration:

Mσ(k) ∈ [0, 1]n×Pmax

Mσ(k) =


µ1

1(ϕ(1), wµ1,1) µ2
1(ϕ(1), wµ1,2) · · · µPmax1 (ϕ(1), wµ1,Pmax)

µ2
2(ϕ(2), wµ2,2) µ2

2(ϕ(2), wµ2,2) · · · µPmax2 (ϕ(2), wµ2,Pmax)
...

µ1
n(ϕ(n), wµn,2) µ2

n(ϕ(n), wµn,2) · · · µPmaxn (ϕ(n), wµn,Pmax)


(4.40)

if Pi < Pmax set µPji (ϕ(i), wµi,Pj ) = 0 ∀ j = Pi, Pi + 1, . . . , Pmax. Consider also a weighting
matrix which contains input weights for all rules:

wτ (k) ∈ [0, 1]n×C (4.41)

a weighting matrix that contains rule weights:

wagr(k) ∈ [0, 1]1×C (4.42)

and the consequents parameters matrices:

wA(k) ∈ <nx×nx×C

wB(k) ∈ <nx×nu×C

wC(k) ∈ <m×nx
(4.43)

then the inference process can be computed according to described neuron functions in
section subsection 3.4.1:

1) M1i,: = 1− diag(M ξ
:,:,iM

σ′(k))

2) M2i =
∏(

1− wτ:,i(k)M1i,:

)
3) M3i = M2iw

agr
i (k)

4) M4i = M3i∑
(M3)

5) M5:,i = wA:,:,i(k)x(k) + wB:, :, i(k)u(k)

6) M6:,i = M4iM5:,i

7) x(k + 1) =
∑
M6:,i

8) y(k + 1) =
∑
M4iw

C
:,:,i(k)x(k + 1)
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or in a compact form:

xk+1 =

C∑
i=1

∏(
1− wτ:,i;k

(
1− diag(M ξ

:,:,iM
σ′
k )
))(

wA:,:,i;kxk + wB:,:,i;kuk

)
wagri;k

C∑
i=1

∏(
1− wτ:,i;k

(
1− diag(M ξ

:,:,iM
σ′
k )
))

wagri;k

yk+1 =

C∑
i=1

∏(
1− wτ:,i;k

(
1− diag(M ξ

:,:,iM
σ′
k )
))
wC:,:,i;kxk+1w

agr
i;k

C∑
i=1

∏(
1− wτ:,i;k

(
1− diag(M ξ

:,:,iM
σ′
k )
))

wagri;k

(4.44)

The previous description referred to a complete inference analysis for each iteration,
meanwhile it is possible to evaluate only a subset of rules. One possibility is to discard
rules with firing strength lower than some predefined value (αrule) although, this strat-
egy creates a varying subset dimension of rules for α > 0. Other strategy was followed
by adopting normal fuzzy sets with membership functions verifying

Pi∑
j=1

µAj (xi) = 1 (4.45)

meaning that if a fuzzy variable full belongs to a normal set, it does not belong to any
other set. This restriction gives the possibility to find at each iteration a rule subset with
constant dimension Csub = 2n, meanwhile this restriction also imposes neighbour MFs
side symmetric. From a complete matrix M ξ it is possible to find a subset of it by:

1. construct M ξ starting from first input to last input, e.g

M ξ
:,:,1 =

[
1 0 0

1 0 0

]
M ξ

:,:,2 =

[
1 0 0

0 1 0

]
· · · M ξ

:,:,9 =

[
0 0 1

0 0 1

]
(4.46)

2. for all inputs the most left sided MF has index 1

3. at each iteration create a matrix Mµ ∈ {1, 2, · · · }n×2 containing for each input the
two membership functions index whose degrees are not zero, if a membership func-
tion as degree one, take a criteria to select the second, e.g select the second which
as the closest center to the first.

4. find the firing rules indexes iµ that includes the above two membership functions
for each input and create the rule subset masking matrix M ξ

= M ξ
:,:,iµ

5. create a reduced membership matrix Mσ
= Mσ

i,Mµ
i,:

6. compute reduced inference following the same procedure as in Equation 4.4.3

This way, for five inputs (including back propagated variables) each having five mem-
bership functions, instead of evaluating 3125 rules for each iteration it will be evaluated
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32, making a large system feasible. The main drawbacks using these technique during
the UKF optimization procedure is the need to use a variable covariance matrix. Since es-
timated variables indices may vary at each iteration, it is necessary to build a new covari-
ance matrix P k during each algorithm cycle (will be seen in the next sections). Because
for each instance k a distinct subset of rules are selected, the previous obtained covariance
matrix P+

k−1 might not reflect variables variance and their correlation if iµk−1 6= iµk leading
to system divergence. In order to maintain system stability it is proceeded as follows:

1. consider the existence of a local covariance matrix P+
k−1 ∈ <nk×nk used to compute

UKF algorithm, where nk is the number of variables to estimate for a rule subset;

2. consider the existence of a global covariance matrix P+
k−1 ∈ <

nk×C where nk is the
total number of variables for all C rules. This covariance matrix does not have to
be square since only variable variance values will be considered;

3. for each iteration k if iµk−1 6= iµk , P+
k−1 is a diagonal matrix whose elements are

obtained from P+
k−1 considering only parameters for current instance rule subset;

4. for each iteration k, P+
k elements are updated from P

+
k diagonal considering only

parameters for current instance rule subset.

From previous steps it can be concluded that P+
k−1 is a diagonal matrix every time a rule

subset changes, without correlated values between variables. This approach results from
the fact that setting P+

k−1 cross-covariance values (non diagonal values) from a possible
stored global matrix may provide algorithm with a wrong correlation information. Also
P

+
k−1 may become non-definite positive. The approach of a diagonal covariance matrix

was also presented in [30] where diagonal blocks were assumed to be dominant. Us-
ing these scheme not only system complexity was reduced by 1

2 , but also rejecting cross-
correlated values lead to an assumption of uncorrelated variables, diminishing algorithm
convergence speed. Besides considering only covariance diagonal values if rules subset
changes, a full covariance matrix P+

k−1 is kept constant if subset is also kept constant.
During this iterations, correlated values between all subset parameters will be consid-
ered. Meanwhile, during implementation it was found that correlating output matrix ωC

parameters with matrices ωA and ωB lead to a non convergence when using an excessive
number of states. This effect can be reduced when computing P

+
k if no correlation is

considered between output matrix parameters and other weighting matrices i.e ωA and
ωB . A minimum number of states which resulted in an acceptable predicted error will be
considered during implementation.

4.4.2 RNFMS Constrained Variable Handling

RNFS parameters concerns not only rules premise variables which involves membership
parameters wµ, input weights wτ and rule weights wagr but also consequent parameters
which incorporates local state space models parameters wA, wB and wC . Membership
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parameters depend on the type of adopted shaping functions and will consider restric-
tion of equation (4.45). It is recommended the use of sigmoidal (2.49), s-shaped (2.48),
z-shaped (2.50) and pi-shaped due to its continuous Gaussian shape. Other first order
MFs like trapezoidal or triangular could be preferable due to its simplicity although, dis-
continuities might compromise solution results. In order to verify imposed restriction
(4.45), MFs parameters must also be accomplished with some constraints. Take as exam-
ple the use of s(z)-shaped functions which in order to cover the universe of discourse, a
z-shaped must be the first MF mf1, s-shaped the last MF mfPi and pi-shaped MFs mfi in
between, such that right side of mfi−1 is symmetric to left side mfi. This approach also
diminishes the number of parameters under optimization being necessary to consider
only two parameters for each input. For instance consider three MFs:

zMF = f1(x, a1, b1) ⊆ U ∈ [lb, ub]

Πmf = f2(x, a2, b2, c2, d2) ⊆ U ∈ [lb, ub]

smf = f3(x, a3, b3) ⊆ U ∈ [lb, ub]

with

a1 = a2

b1 = b2

c2 = a3

d2 = b3

(4.47)

parameter optimization must be constrained to a range which can be represented by the
system:

Ax ≤ b with x =

[
a1

b1

]
A =

 0 1

−1 0

1 −1

 b =

 cr2 − δ
−cr1 − δ
−δ

 (4.48)

where cri is an extra parameter fixed along time representing the centre of ith MF and
δ > 0 is a user defined constant value which controls the MF maximum slope. Another
possibility is to consider just an upper and lower bound for parameters such that a1 ≤
b1 − δ, it is proposed:

cr1 + δ ≤a1 ≤
|cr1 − cr2|

2
− δ

|cr1 − cr2|
2

+ δ ≤b1 ≤ cr2 − δ
(4.49)

previous set of constraints simplifies algorithm, being possible to solve system using in-
terval constrained methods as described in subsection 4.3.3. Concerning parameters wτ ,
wagr they are constrained to subset [0, 1] ∈ <. For each iteration the number of antecedent
variables parameters regarding wµ, wτ and wagr are 2× 2n + n× 2n + 2n = (3 + n)2n.
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The optimization procedure will be based on algorithm Table 4.2 using a CIUKF, i.e
using ICUT for sigma points and a clipping of measured weights as described in section
subsection 4.3.4. Other approach like the projection of ω+

k into an unconstrained surface
using function:

ω+
k = arctanh

(
2ω+

k − ub− lb
ub− lb

)
∀ ub > lb ∧ lb < lb+ ε ≤ ω+

k ≤ ub− ε < ub (4.50)

and then applying UKF algorithm to the unconstrained ω+
k could also be used. This

method will be named as Unconstrained Projected UKF (UPUKF). Regarding consequent
parameters wA, wB and wC no restrictions are imposed. State estimation by itself can
be constrained or not depending on adopted RNFS topology, for the case were output
layer is used to feedback the input layer Figure 3.9 and Figure 3.10, no restrictions are
imposed over state estimation. On the other hand if feedback is taken from hidden layer
seven Figure 3.8 a restriction on states domain must be considered, the constraints to be
imposed are inequality constraints with lower and upper bounds depending on fuzzy
state variables x(x) universe of discourse Ux over which respective fuzzy sets Ax are
defined. The constrained problem solution is equal to the previously presented regarding
premise parameters, i.e an UPUKF or CIUKF approach can also be taken.

4.4.3 RNFCS Variable Design

Regarding controller variable mapping, from proposed architecture Figure 3.12 it can be
observed that model rules premisses will be used also for controller if control actions
are applied in premisses. Otherwise, a similar antecedent variable mapping must be
used and a new inference needs to be computed. In order to proceed with controller
optimization, local controllers parameters need to be defined. From (3.41) define:

ωK(k) ∈ <nu×nx×C

ωR(k) ∈ <nu×m×C

ωP (k) ∈ <nu×m×C
(4.51)

Having defined ωτ , ωagr, M ξ, Mσ, the inference process can be defined as:

1) M1i,: = 1− diag(M ξ
:,:,iM

σ′(k))

2) M2i =
∏(

1− wτ:,i(k)M1i,:

)
3) M3i = M2iw

agr
i (k)

4) M4i = M3i∑
(M3)

5) M5c:,i = wR:,:,i(k)yd(k) + wP:,:,i(k)
(
yd(k)−M8

)
6) M6c:,i = M4i

(
wK:,:,i(k)x(k + 1) +M5c:,i

)
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7) M7c =
∑
M6c:,i

8) u(k + 1) = M7c

or in a compact form:

uk+1 =

C∑
i=1

[∏(
1− wτ:,i;k

(
1− diag(M ξ

:,:,iM
σ′
k )
))

· · ·
· · ·

· · ·

(
wK:,:,i;kxk+1 + wR:,:,i;ky

d
k + wP:,:,i;k

(
ydk − ŷk

))
wagri,k

]
C∑
i=1

∏(
1− wτ:,i;k

(
1− diag(M ξ

:,:,iM
σ′
k )
))

wagri;k

(4.52)

One disadvantage of premise sharing between controller and model consist on the fact
that model MF optimization will use a cost function based on output error, meaning a
MF optimization concerning model parameters but not accounting for controller dynam-
ics. This will result in optimized MFs only regarding model, leading to a suboptimal
controlling solution. Controller proportional error terms, avoids during UKF optimiza-
tion a parameter divergence, since controller weights innovations proportionally depend
on error between reference and model outputs. It should be highlighted that a model
divergence will also result in a controller divergence.

4.4.4 Decoupled RNFS Estimation using UKF

This section handles the estimation procedure of the previously described RNFS vari-
ables both for model and controller. Decoupled estimation is divided into three distinct
identification processes i.e model parameters, states and controller parameters Figure 1.3.
Besides identification separation between model parameters and states, other separations
can be done regarding parameters. If covariance matrix Pk both for model and controller
is considered to be diagonal, no correlation between stochastic variables will be consid-
ered, being indifferent any possible parameter separation. Thus, independent procedures
can be taken to estimate wµ, wτ wagr, wA, wB , wC , wK , wP and wR. Proposed decoupled
UKF solution will only consider architecture as in Figure 3.9 and use a consequent pa-
rameter correlation defined by

Pψ;i;k = diag
(
PAψ;i;k, P

B
ψ;i;k, P

C
ψ;i;k

)
where i is the sub-rule index and,

PAψ,1···i;k ∈ <nx×nx×C
sub

PBψ,1···i;k ∈ <nx×nu×C
sub

PCψ,1···i;k ∈ <m×nx×C
sub
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this means that no correlation between rules are considered and matrices WA, WB, WC

for a given local model are also not correlated between them. For controller a different
correlation scheme was adopted, for a given rule subset in time k, correlate all parameters
if iµk−1 6= iµk meaning if current and previous subsets are equal, in this case Pct;k = Pct;k−1.
If rule subset changes controller parameter correlation will be reset and

Pct;k = diag
(
PKct,1···i;k, P

R
ct,1···i;k, P

P
ct,1···i;k

)
where

PKct,1···i;k ∈ <
nu.nx.Csub×1×1

PRct,1···i;k ∈ <
nu.mu.Csub×1×1

PPct,1···i;k ∈ <
nu.mu.Csub×1×1

with mu the plant output sensors which directly depend on control actions. Regarding
membership parameters, the correlation method also take the condition iµk−1 6= iµk where
if not fulfilled,

Pµ;k = diag
(
P ξ;n1

µ;k , · · · , P
ξ;nn
µ;k

)
with P ξ;n1

µ;k ∈ <2×1×1 considering ξ the two fuzzy sets for input n used in evaluation of
iµk . For input and rule weights a similar approach as in MFs can be used if rule subset
equality condition is not fulfilled

Pγ;k = diag
(
P
τ ;iµk
γ;k , P

agr;iµk
γ;k

)
where P agr;i

µ
k

γ;k ∈ <Csub×1×1 and P τ ;iµk
γ;k ∈ <2n×1×1. Optimization algorithm can be seen as

cascading of local optimizations defined as:

1) Consequents optimization:[
wψ(k), Pψ(k), Rrψ(k), Reψ(k)

]
= UKF

(
wψ(k − 1), Pψ(k − 1), Rrψ(k − 1), Reψ(k − 1)

)

2) Membership optimization:

[
wµ(k), Pµ(k), Rrµ(k), Reµ(k)

]
= CIUKF

(
wµ(k − 1), Pµ(k − 1), Rrµ(k − 1), Reµ(k − 1)

)

3) Rules degrees and input weights optimization:

[
wγ(k), Pγ(k), Rrγ(k), Reγ(k)

]
= CIUKF

(
wγ(k − 1), Pγ(k − 1), Rrγ(k − 1), Reγ(k − 1)

)
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4) State optimization:

[x(k), Px(k), Rrx(k), Rex(k)] = UKF (wx(k − 1), Px(k − 1), Rrx(k − 1), Rex(k − 1))

5) Controller optimization:

[
wCt(k), PCt(k), RrCt(k), ReCt(k)

]
= PUKF

(
wCt(k − 1), PCt(k − 1), RrCt(k − 1), ReCt(k − 1)

)

wherewψ = V EC
(
wA, wB, wC

)
,wγ = V EC (wτ , wagr) andwCt = V EC

(
wK , wR, wP

)
Parameter estimation separation gives the possibility to have different tuning values for
each process, being possible to control their convergence speed independently. Algo-
rithm formulation for UKF and CIUKF regarding parameter and state estimation is com-
puted according Table A.1 for consequents, Table A.2 for memberships, Table A.3 for
rules and input weights and Table A.4 for state estimation x+ (k). Before starting opti-
mization algorithm, RNFS for model RNFMS and RNFS for controller RNFCS need to
be initialized. Initialization of RNFMS can be done by creating a state space model pro-
ducing ωA0 , ω

B
0 , ω

C
0 and spreading that model to all RNFMS local models, using ωτ0 = 1

and ωagr0 = 1. Having global model matrices ωA0 , ωB0 and ωC0 , create a zero RNFCS

structure and select any local controller parametrization ωK0 , ω
R
0 , ωP0 , then using offline

data, apply PUKF algorithm to controller optimizing ωK0 , ω
R
0 , ω

P
0 . After optimizing the

local controller spread that value to all local models. From table Table A.4 it can be ob-
served that states are not constrained, although if they were used in rules premise as
described by Figure 3.8, a CIUKF approach should be taken similarly to MF parameter
optimization, confining states to [lbx, ubx] UD. The approach of recomputing new sigma
points as described in Table 4.1 (by option 1 and option 2) was not followed due to an
increase of computational cost, which is a constraint for a real time system identification
with small sampling times. Constraints handling in proposed CIUKF algorithm, are im-
plemented by, firstly constrain sigma points and their weights according to Equation 4.8,
ensuring a confined subspace during time update equations. Secondly, in order to guar-
antee weights inside a bounding limit, a direct projection of w+(k) is done according
to (A.10)g. Meanwhile, it can be observed in case of controller optimization that com-
puted control actions during UKF time update might be outside its allowable UD range.
To overcome this restriction, it is proposed a PUKF Table A.5 using a direct projection
of outside control actions during measurement update. In controller time update stage,
same constraints will be applied in order to correctly evaluate model response for each
controller sigma point solution, although no constraint will be defined when producing
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u−ref . The disadvantage of this method in comparison with CIUKF, relies on fact that con-
straints will not be reflected on measured covariance. A note should be highlighted re-
garding controller optimization algorithm, without evaluation of an intermediate sigma
point u−ref , controller weights innovation would depend on the error between reference
and sensor outputs. Since no constraints are used in time update stage, controller weights
would have a continuous gain until yd(k)− ŷ(k) 6= 0 even if sigma points started produc-
ing a saturated i.e u−(i) > 1 control action, once no constraints are handled in this stage.
Using a projection scheme during time update would result in a gain divergence due to
the fact of not being captured correct mean and covariance. A solution to this problem
was achieved with the introduction of an intermediary sigma point u−ref , whose mean
will be used as a reference for controller weights innovation evaluation.

4.5 Conclusion

This section presented the basic theory needed to understand the Unscented Transforma-
tion and its application to Kalman Filter theory. Due to nature of proposed RNFS archi-
tectures not all presented algorithms are suitable to be used, the set of algorithms are re-
stricted not only by the need of constraint handling both in parameters and state estima-

tion, but also by the loss of covariance matrix kalman continuity P+ (k)
k=k+1
6= P+ (k − 1)

due to possible rules subset change for each iteration. The need to evaluate at each iter-
ation a sub covariance matrix, makes square root methods difficult to implement since
in those methods a Cholesky innovation matrix containing Cholesky update factors are
estimated instead of a complete covariance matrix, being difficult to take a subspace ap-
proach and constraints using ICUT. Although a subspace of rules Csub are evaluated for
each iteration, its dimension is predefined and kept constant during identification pro-
cess. An approach of a constant sub covariance matrix P+ (k)

k=k+1
= P+ (k − 1) could be

followed, such approach however, can lead system to instability because variance values
of a rule subset may not reflect the accuracy of other subsets local models, resulting on
inappropriate initial gains leading to a large convergence time and increasing the prob-
ability of RNFS instability. To avoid a covariance matrix whose elements do not reflect
variable variances and cross-covariances leading to a wrong model confidence, a local
and a global covariance method was defined. Although this technique solved the wrong
parameter error variance assignment, it also required the use of rule dependent output
error covariancesRek. Otherwise, high gains during rule transition could be observed due
to a low value of Rek which might had being diminishing from a previous long term run
rule subset. Regarding constraint handling several authors proposed the computation of
quadratic problems during measurement update, however solving non linear quadratic
problems is time consuming critical in a real time identification process. Instead it was
proposed both an interval unscented transformation and a clipping method i.e a direct
projection of outsiders into subspace boundaries.
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5
Implementation

5.1 Introduction

This section will apply the proposed identification solution and its MRAFC to two dis-
tinct nonlinear stochastic processes. Firstly, it will be presented results regarding system
output prediction, its states and parameters evolution during identification process, then
will be presented proposed controller architecture. Before using method for online iden-
tification, an offline approach in order to find an acceptable initial solution will be con-
ducted. The plan can be described by the chart Figure 5.1. It is worth mention that initial
process dynamics are captured using an open loop, were an initial set of data must be
collected for offline estimation. To create input data vector, it is defined input set points
coupled with additive Gaussian noise were system is supposed to be stable (using mat-
lab idinput(PRBS)). After having an offline solution of both model and controller, chapter
proceeds with an online identification where plant dynamics are captured using a closed
loop architecture as shown in Figure 3.11 and Figure 1.2. Controller cost function is based
on error between model output and desired reference. Regarding offline identification, it
is computed a linear State Space model based on collected data using matlab identifica-
tion toolbox e.g

n4sid(IDDATA(datOut, datIn, 1), nx,′DisturbanceModel′,′None′,′Cov′,′None′)

where nx is the number of states. The obtained local model is then applied to all rules
consequents. The number of membership functions and their centers were designed to
match input setpoints. In case of uk and yk inputs it will be considered the universe of
discourse UD = [−1; 1] and the respective variable normalization. Input weightsW τ and
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(a) Data Collect Process (b) Offline Process (c) Online Process

Figure 5.1: Workflows for system identification and control

rule weightsW agr are set equal to unity. For controller, its fuzzy structure parameters will
be set in a first approach equal to model parameters, and then reference values will be
considered during RNFCS premise evaluation using default values. Controller rule con-
sequents WK , WR and WP will be set to zero as default value. For a best understanding
of online identification workflow 5.1(c), consider the following description:

1. Collect output yk

2. Send control action uk that will produce output yk+1 to be collected in next iteration

3. Optimize model parameters to produce

[
WM
k , x̂k, ukf

M
k

]
= f

(
uk−1, yk, yk−1,W

M
k−1, x̂k−1, ukf

M
k−1

)
, where WM = [W tau,agr,µ,A,B,C ] and ukfM are the covariances of proposed algo-
rithm Table A.2 for model optimization.

4. Based on optimized model premises and states, optimize controller parameters[
ukfCk ,W

K,R,P
k

]
= h

(
ukfCk−1,W

K,R,P
k−1 ,WM

k , x̂k, yk, Rk

)
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5. Compute next control action uk+1 = f
(
WK,R,P
k , uk, Rk, yk, x̂k

)
6. At this time we can already predict ŷk+1 = f

(
uk+1, yk,W

M
k , x̂k

)
7. Wait Ts − Tp to simulate process intrinsic delay respecting process sampling time,

where Ts is process sampling interval and Tp is time consumed during algorithm
processing.

Due to a large number of consequent variables, the display of results e.g covariance ma-
trices could become a hard and exhaustive process. To overcome this lack of scalability
it was introduced a data filter during representation keeping the number of variables
constant independently on the rule number. The rule filtering method is described as
follows:

1. The covariances regarding the two rules with higher membership degree will be
displayed

2. The covariances regarding the two rules having largest UKF gains will also be dis-
played, and computed as in (5.1)

3. A plot with rule weights will include

Two highest degrees of membership

Two highest UKF gain rules, and they degree of membership in comparison
with the two highest as described in (5.3)
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The following set of equations handles the consequent variance aggregation for each rule
to be used for a display analysis only.

χψ−A = reshape
(
χψ−(k), A

)
→ χψ−A ∈ <nx∗nx,Csub,L (5.1)

χA =

n2
x∑

i=1

χψ−A (i, j, k) , ∀j ∈
{

1, 2, ..., Csub
}

; k ∈ {1, 2, ..., L} → χA ∈ <C
sub,L

Rr−A = reshape
(
Rr−(k), A

)
→ Rr−A ∈ <

nx∗,nx,Csub

RrA =
1

n2
x

∗
n2
x∑
i

(
Rr+A (i, i, j)

)
, ∀j ∈

{
1, 2, ..., Csub

}
→ RrA ∈ <C

sub

ωψ−A = reshape
(
ωψ−(k), A

)
→ ωψ−A ∈ <nxnx,Csub

ωψA =

n2
x∑
i

ωψ−A (i, j), ∀j ∈
{

1, 2, ..., Csub
}

P−A =

L∑
i

(
χA(:, i)− ωψA

)
∗W (c)

i

(
χA(:, i)− ωψA

)′
+ diag (RrA)

K−A = reshape (K,A)→ K−A ∈ <
nx×nx,Csub

KA =

n2
x∑
i

K−A (i, j), ∀j ∈
{

1, 2, ..., Csub
}

PA = P−A −KAPd̃kK
′
A

P aA = PA(i)→ i are the indices of two most relevant rules from inference

P rA = PA(j)→ j are the indices of two rules with highest gains

(5.2)

Controller weights are computed in a similar process meanwhile, for membership func-
tions ωµ and states x̂ filtering is not needed, since they are rule independent. In order to
analyse system convergence, it is also needed a weighting reference regarding absolute
rules βa and relative rules βr computed as follows:

β(i) =

∏(
1− wτ:,i(k)

(
1− diag(M ξ

:,:,iM
σ′(k))

))
wagri (k)

C∑
i=1

∏(
1− wτ:,i(k)

(
1− diag(M ξ

:,:,iM
σ′(k))

))
wagri (k)

(5.3)

βaA = sort (β,Ascend, 2) ,→ βaA ∈ <2

∆PA = KAPd̃kK
′
A

βrA = sort (DeltaPA, Ascend, 2) ,→ βaA ∈ <2

RatioA =

∑
βrA∑
βaA

(5.4)
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Next will be presented results using a SISO and a MIMO process during offline (plant in
open loop) and online identification (plant in closed loop).

5.2 Process PT326

For the first process it was used a SISO Feedback PT326 thermal process Figure 5.2, were
the goal was to control the output air temperature using a sampling time of 100ms. Data
acquisition was done using a usb DaQ NI-USB6009, where input u and output y do-
mains {u|0 ≤ u ≤ 5} and {y| − 10 ≤ y ≤ 10} were projected to the normalized domains
{u| − 1 ≤ u ≤ 1} and {y| − 1 ≤ y ≤ 1} respectively.

Figure 5.2: Feedback PT 326 plant

5.2.1 Offline Identification results

In order to proceed with offline identification, it was firstly created an input set using the
script Table 5.1, obtaining process response according to Figure 5.3. The selected fuzzy
sets for input and output is according to Figure 5.4, where selected MF centers for input
were [0; 0.5; 0.9] for a total of 3 fuzzy sets. Regarding output MF centers it was selected
[0; 0.2; 0.5] for a total of 3 fuzzy sets. The complete set of rules cover all possible fuzzy sets
combinations resulting in a total of 9 rules. Consequents were initialized using a global
model obtained through the application of matlab identification toolbox i.e

[
ωA,B,C

]
= n4sid(datOut, datIn, nx,′DisturbanceModel′,′None′,′Cov′,′None′)

with nx = 1. The default RNFMS response to input data u is represented in Figure 5.4.
Since all local models have the same parameters, rules premises does not concern the fact
that either system outputs or model predicted outputs are applied, resulting in a same
model response for both architectures i.e a series parallel or parallel. This way, both had
a mean square error MSE(ŷ − y) = 1

n

∑
(ŷ − y)2 = 0.0016.

Due to effort and time constraints, it will not be presented results regarding rules weight
ωagr(k) and input weights ωτ (k), they will have a constant value equal to one. Having
model parameters initialized, it is proceeded with the offline identification using pro-
posed algorithm Table A.1 for parameter estimation and Table A.2 for state estimation,
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tam = 600;
spread = 0.04;
mean = 0.1;
u(1 : tam, 1) = idinput(tam,′ PRBS′, [00.7], [mean− spreadmean+ spread]);
mean = 0.5;
u(tam+1 : 2∗tam, 1) = idinput(tam,′ PRBS′, [00.7], [mean−spreadmean+spread]);
mean = 0.9;
u(2 ∗ tam + 1 : 3 ∗ tam, 1) = idinput(tam,′ PRBS′, [00.7], [mean − spreadmean +
spread]);

Table 5.1: PT326 input data script
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X: 1363
Y: 0.4896
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Y: 0.2278

X: 277
Y: 0.004151

output

Figure 5.3: PT326 Collected data

and considering algorithm parameters which had the best results:

Csub = 9 n = 2 nx = 2 nu = 1 p = 2 Pmax = 3

αrµ = 0.001 αrψ = 0.05 αrx = 0.2

αeµ = 0.1 αeψ;i = βi ∗ 0.01 αex = 0.3

αPµ = 1e− 2 αPψ = 1e2 αPx = 1e− 2

αRµ = 1e− 4 αRψ = 1e− 2 αRx = 1e− 2

αEµ = 1e− 2 αEψ = 1e2 αEx = 1e− 2

(5.5)

Where i = 1 · · ·Csub and βi the rule degree.

Presentation results will be split into three stages:

1) Rules consequent optimization only;

2) Rules consequent plus state optimization;

86



5. IMPLEMENTATION 5.2. Process PT326

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

UD

D
eg

re
e 

of
 M

em
be

rs
hi

p

Input Sets

 

 

mf1
mf2
mf3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

UD

D
eg

re
e 

of
 M

em
be

rs
hi

p

Output Sets

 

 

mf1
mf2
mf3

(a) RNFMS membership functions
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(b) Initial RNFMS state evolution for the case of
series parallel x̂SP and parallel x̂P
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(c) Initial RNFMS dynamic output, ŷSP concerns
the series parallel architecture, ŷP refers to par-
allel architecture. Mean square error between
system output and model predicted output is
MSE

(
ŷP − ŷ

)
= 0.0016

Figure 5.4: RNFMS membership functions

3) Rules consequent plus state plus membership optimization;

Proposed algorithm optimal parametrization may vary depending on plant sensitivity
and dynamics, selected solution was based not only on a trial and error approach, but
also accomplished with an understanding of UKF dynamics. For instance regarding this
specific process it can be noticed a parameter divergence and instability resulting in a
poor model Figure 5.5. The reason for this behaviour relates to the existence of high gains
due to a low forgetting factor for output error covariance Reψ, which will become lower
than parameter covariance Pψ. From all parameters, the output matrix WC is specially
the most critical when facing a high gain and if any correlation between its parameters
are considered. This way, for some systems one possible solution is to force correla-
tions to zero making PC a diagonal matrix with only variance values. Other possibility
would be the decrease of forgetting factor αeψ although, this might on other hand slow
the algorithm convergence. Using a diagonal matrix PC when computing equations a
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(d) ŷ RNFMS outputs

Figure 5.5: RNFMS with rules consequents optimized, WC divergence phenomenon.

system stability improvement as shown in Figure 5.6 was achieved. Having presented
model consequent optimization, it is proceeded with states estimation according to pro-
posed algorithm. Achieved results are described in Figure 5.7 With state optimization
it can be observed an output error decrease, although it increases model offline error.
This was expected since with optimized states a lower prediction error will be achieved.
Computed parameters innovations will also have lower gains. With states optimization,
consequents stability is increased since parameters are under a lower stress. Next step
towards completion of offline analysis, is the optimization of membership functions.

Membership function optimization will be optimized according proposed algorithm which
should be capable of constraint handling as defined in previous chapter. From Figure 5.8
it is observed an error increase for all architectures except the parallel. Comparing 5.8(e)
with 5.8(d), the latest has sharpened rule degrees since MF optimization increased fuzzy
sets core providing linguistic variables with a higher membership degree. MFs constraint
handling by proposed algorithm suffers from the fact that mean is wrongly measured in
the presence of outsiders. Since default MF parameters are set equal to their centers and
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ŷOnline

1

(d) ŷ RNFMS outputs; MSEonline = 3.4714e −
5;MSESP = 1.1913e− 4;MSEP = 1.3019e− 4
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Figure 5.6: RNFMS with rules consequents optimized, no divergence.

being those a boundary, it will as can be seen by 5.8(c) enlarge fuzzy set core. The con-
sequence of this behaviour might result in a wrong solution, although it is expected a
normal behaviour as soon as no outsiders are present. Apart from any possible lack of
confidence from proposed algorithm, MF optimization might have some drawbacks i.e:
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(b) RNFMS outputs along time

Figure 5.7: RNFMS with rules consequents and states optimized, MSE : ŷSP =
1.4834e−4; ŷP = 1.5641e−4; ŷ = 1.3318e−5

1. New rules with a higher degree but first time fired, if their local models fitting de-
gree is worst than a lower degree rule local model, MF optimization might wrongly
increase the lower rule degree.

2. Learning rate decrease of new rules, and also wrong MF core enlargement.

3. Old solutions for rules subset local models can be degraded

Considering previous statements regarding membership optimization, it is not advised
the use such method for online identification and control.
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Figure 5.8: RNFMS with rules consequents, states and MFs optimized, MSE : ŷSP =
1.5297e−4; ŷP = 1.5489e−4; ŷ = 1.3591e−5
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5.2.2 Online Identification results

NOTE:

In this subsection it will be handled UKF processing during online process identifica-
tion. Due to an unexpected problem on plant under consideration, it could not be used
during online experimentation. In order to maintain offline analysis it was decided to
work at this stage with a plant model. The model considered to replace the real process
was obtained in [62] where three state space models for three working points depending
on fan speed were obtained. In order to bring some non-linear properties, models will
be combined in a basic fuzzy model and an error variance with zero mean and Gaussian
distribution i.e

0.0007 ∗ randn(Samples, 1)

will be considered. The fuzzy model will have three MF functions for the fan speed
vfank linguistic variable, resulting in a total of three rules, each having as consequent a SS
model. The complete inference can be seen as:

MF1 = zmf
(
vfank + vkk , [0 0.5]

)
MF2 = pimf

(
vfank + vkk , [0 0.5 0.5 1]

)
MF3 = smf

(
vfank + vkk , [0.5 1]

)
Rule1 = if vfank in MF1 then x

1
k =

[
0.972 0.023

−0.040 0.899

]
x1
k−1 +

[
−7.5e−4

0.017

]
uk−1 + vwk

y1
k =

[
19.338 0.123

]
x1
k + vek

Rule2 = if vfank in MF2 then x
2
k =

[
0.956 0.024

−0.028 0.894

]
x2
k−1 +

[
−1.9e−4

0.023

]
uk−1 + vwk

y2
k =

[
11.469 0.050

]
x2
k + vek

Rule3 = if vfank in MF3 then x
3
k =

[
0.973 0.020

4e−4 0.847

]
x3
k−1 +

[
3.8203e−5

0.052

]
uk−1 + vwk

y3
k =

[
6.7227 −0.0860

]
x3
k + vek

(5.6)
It will be considered fan with speed regulator in position 0.4 which applying same of-
fline data produces a model response as in Figure 5.9. It can be noticed some differences
between fis model and offline process captured data, this might be related to different
conditions e.g environmental or even changes in setup. To overcome this differences, it
is needed to initialize RNFMS with new valid default local models. After collecting a
new data set from fis model, finding a new local default SS model (using ident Matlab
capabilities), applying this model to all local sub models and then apply UKF for conse-
quents and states optimization, it is expected a model response according to Figure 5.10.
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An analysis regarding MF optimization during real-time will not be handled in current
plant meanwhile, some results will be provided in during the process identification.
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Figure 5.9: Fis model dynamics
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(a) Default SS model output;RMSE = 3.1810e−5
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(b) RNFMS output; RMSEonline = 9.9667e−7;
RMSEseries = 5.3314e−5; RMSEparallel =
5.4364e−5

Figure 5.10: RNFMS dynamics for fis model

Comparing Figure 5.9 with Figure 5.10 a small error in proposed RNFMS in comparison
with offline case can be noticed. This dues the fact that nor all process dynamics nor its
error distribution can be included in fis model, which will have a much linear dynamic.
In order to proceed with online approach a controller must be defined since a closed loop
schema will be used.

Regarding controller, the proposed method is according to subsection 3.4.2 and opti-
mization algorithm defined by Table A.5. From proposed architecture (3.42) it will be
used in this process the reference for rule selection meanwhile, next section will handle
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both cases. Algorithm parametrization can be seen as follows:

αPCt = 1e1 αRCt = 1e−2 αECt;u = 1e−2 (5.7)

αECt;c = 1e2 αeCt;u = 0.05 αeCt;c = 0.01 αrCt = 0.05 (5.8)

Before starting online task, a suitable global controller default solution must be found
and spread to all rules local controllers. A global SS controller structure will be initialized
with zeros and then in an offline task, it is optimized using UKF. The optimized global
SS controller is then applied to all local RNFCS controllers. Since controller equation
depends on reference yd which is not available during offline process, it must be consid-
ered as reference the model output. This approach works for this particular process since
step raising time response is relatively fast in comparison with next process (DTS200).
Controller RNFCS response obtained during offline UKF computation is as described in
Figure 5.11. Continuing towards realtime identification, a new reference was created and
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Figure 5.11: Controller initialization (reference in RNFCS premise)

using all values achieved so far, the obtained closed loop response is described in Fig-
ure 5.11. From Figure 5.12 it can be noticed that controller successfully guided process
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Figure 5.12: Closed loop real-time experiments (reference in RNFCS premise)

output towards reference however, it shows an overshot increase when new reference set
points are used. This effect dues to a lower value of Re−Ct (k) and consequently on forget-
ting factor αeCt;u. A possible solution would be the decrease of αeCt;u although, it can lead
to a long raising time regarding the first samples, and would not solve the problem for a
long term run simulation. Another possibility is to do a reset of Re−Ct (k) to its initial value
each time a new set point is requested. Using this latest approach an improvement can
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be achieved as shown in Figure 5.13, overshot tend to decrease when new references are
considered.
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Figure 5.13: Closed loop real-time experiments using covariance reset (reference in RN-
FCS premise)
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5.3 Process Amira DTS200

The second plant to be used is a MIMO process known as Amira DTS 200. The plant is
composed by three tanks each having two manual valves, one to connect tank to its direct
neighbour other to drain water out from system, also two pumps are used to feed tank
1 and tank 2. The default layout is described by Figure 5.14, where is only considered
tank 1 and tank 2 connected to tank 3, having the latest an extra valve to drain water out
from system. Regardless default layout other valves will be used in order to introduce
disturbances, i.e tank 1 drain pump will be used as failure n?1 and tank 2 connection to
tank 3 will be closed to introduce failure n?2. The systems is characterized by a sampling
time of one second, and intensity of both sensors outputs and controller actions will be
normalized to the universe of discourse [−1; 1]. Proposed controller will not consider
tank 3, since no pump is directly used for water supply meanwhile, it will be considered
during an offline identification analysis.

Pump 1 Pump 2

H
m

ax

Figure 5.14: Amira DTS200 plant

5.3.1 Offline Identification results

Since from a starting point no controller is available, initial data for offline identifica-
tion was collected using an open loop approach Figure 5.15. The default values used
to initialize fuzzy consequents structure, were obtained through application of matlab
identification toolbox i.e

[
ωA,B,C

]
= n4sid(datOut, datIn, nx,′DisturbanceModel′,′None′,′Cov′,′None′)

with nx = 2, having default model response illustrated by Figure 5.16 with three fuzzy
sets for each input with centers in [0.3; 0.6; 0.9] for pumps and [0.1; 0.4; 0.6] for three tanks
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output sensors. Following same approach as in previous process:

Csub = 32 n = 5 nx = 2 nu = 2 p = 2 Pmax = 3

αrµ = 0.05 αrψ = 0.05 αrx = 0.2

αeψ;i = βi ∗ 0.01 αex = 0.3

αPψ = 1e2 αPx = 1e− 2

αRψ = 1e− 2 αRx = 1e− 2

αEψ = 1e2 αEx = 1e− 2

(5.9)

Where i = 1 · · ·Csub and βi the rule degree.
Results presentation will be divided into three stages:

1) Rule’s consequent optimization only;

2) Rule’s consequent plus state optimization;

3) Rule’s consequent plus state plus membership optimization;

Besides representation of ŷ which is obtained during UKF computation, optimized model
will also be exited for model validation purpose, using a series-parallel and series input
architectures Figure 3.9 and Figure 3.10 respectively. It will also be done an analysis re-
garding model loss when process tanks 3 is not considered since no pump is directly
connected to it. Using only consequents optimization it is observed Figure 5.17 a major
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Figure 5.15: Data for offline identification

improvement regarding default SS local model. Including state optimization achieved
results are according to Figure 5.18. A similar behaviour as in previous process was
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observed i.e an improvement of online prediction error at the expense of small offline
model error increase. Including RNFMS membership optimization Figure 5.19, it was
observed a minor improvement both for online predicted error, and for tank two an im-
provement also in offline model error. Similar to what was described in previous section,
it was noticed a rule degree concentration in stronger rules when comparing 5.19(e) with
5.19(f). As already mentioned previously, it is expected that inclusion of tank 3 will not
bring major advantages in model quality, since its information is implicitly included in
sensor T1 and T2. To validate this sentence consider Figure 5.20 where a full parameter
optimization was committed, showing an improvement for all tanks both of online and
offline model errors.
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Figure 5.16: Default local model response
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Figure 5.17: RNFMS response with optimized consequents
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Figure 5.18: RNFMS response with optimized consequents and states
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Figure 5.19: RNFMS response with optimized consequents, states and MFs, using all
plant sensors
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Figure 5.20: RNFMS response with optimized consequents, states and MFs, without us-
ing sensor T3
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5.3.2 Online Identification results

Online identification comprises both model fitting and controller optimization. Firstly a
default local controller must be defined as a starting point, apply it to all local models
and then start with the identification process. Based on offline input-output data, all
controller parameters were set to zero and then optimization algorithm Table A.5 was
applied using the following parametrization:

αPCt = 1e1 αRCt = 1e−2 αECt;u = 1e−2 (5.10)

αECt;c = 1e2 αeCt;u = 0.05 αeCt;c = 0.01 αrCt = 0.05 (5.11)

Because estimation data was collected in an open loop, a virtual reference needs to be
created since controller equation depends on it. Against what was done in previous pro-
cess, a virtual reference based on offline control actions was considered. Only model
outputs of tank one and two will be considered during controller optimization, since
only them reflect predicted control actions during algorithm computation. Offline con-
troller dynamics are represented in Figure 5.21. After obtaining a default local controller
and spreading it to all RNFCM consequents, the closed loop online identification can be
started. The initial parameters for all algorithms were considered equal to the ones al-
ready defined previously, and a new set of reference points around membership centers
were created.

Several simulations will be done to validate both controller and model optimization. First
it is considered the use of the three tanks with and without MF optimization. Also both
approaches of considering firstly control and then reference in rules premises will be fol-
lowed. The impact of considering all tanks against only tanks one and two will also be
analysed.

First experiment (Exp.1) Figure 5.22 and Figure 5.23 shows a poor controller performance
with matrix WK strongly unstable, also model errors where significantly increased in
comparison with offline solution. Next experiment (Exp.2) will not include MF optimiza-
tion, where purpose is to find some negative correlation in controller behaviour when
using it. From Figure 5.24 and Figure 5.25 it is noticed an improvement of controller
state gain matrix and a stabilization in control actions, also the error between output and
reference was decreased. It can be concluded this way, that membership parameters op-
timization can lead system to a non stable rule switching behaviour, having more impact
if using controller in premises other than reference, since latest is usually static for a pre-
defined time window. Several experiments where done in order to create a comparison
between several possibilities. To simplify result presentation, six distinct experiments
will be conducted whose results will be compared in Figure 5.26:

1. RNFCS with controller in premise, tank three and RNFMS with MF optimization;
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Figure 5.21: Offline local controller optimization
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ŷOnline

3

(c) y3 along time; MSEonline =
0.1655e−5;MSESP = 0.7575e−4;MSEP =
0.2270e−3

(d) Rule degrees along time

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

u1

u1

(e) uk along time

Figure 5.22: RNFCS with controller in premise, tank three and RNFMS with MF opti-
mization (Exp.1)
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Figure 5.23: Online RNFMS and RNFCM gain evolution. RNFCS with controller in
premise, tank three and RNFMS with MF optimization (Exp.1)
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Figure 5.24: RNFCS with controller in premise, tank three and RNFMS without MF opti-
mization (Exp.2)
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Ŵ
R

(b) WR evolution

0 100 200 300 400 500 600
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k

G
a
in

Ŵ
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Figure 5.25: Online RNFMS and RNFCS gain evolution. RNFCS with controller in
premise, tank three and RNFMS without MF optimization (Exp.2)

110



5. IMPLEMENTATION 5.3. Process Amira DTS200

Figure 5.26: Experimental results comparison

2. RNFCS with controller in premise, tank three and RNFMS without MF optimiza-
tion;

3. RNFCS with reference in premise, tank three and RNFMS with MF optimization;

4. RNFCS with reference in premise, tank three and RNFMS without MF optimiza-
tion;

5. RNFCS with reference in premise, no tank three and RNFMS with MF optimization;

6. RNFCS with reference in premise, no tank three and RNFMS without MF optimiza-
tion;

From table Figure 5.26 it can be concluded that using controller in premises drives worst
results and considering tank three will increase static and model errors. Also it is no-
ticed that controller performance is dependent on model performance. System response
for the best solution is depicted in Figure 5.27, where it is observed a static error con-
vergence to zero. Also the overshot increase was expected according to analysis done in
previous process, since it was not enforced a reset on covarianceRe−Ct (k) when rule subset
changes. Presented work will finish the experimentation with a simulation according to
experimental layout six, and accounting for system failures. In a first approach it will be
introduced a failure on tank one by half opening its water drain valve, being expected a
system online prediction convergence and a static error evolution towards zero. Failure
one will be introduce in sample 150 and will remain until end of experiment. Next sys-
tem will be reverted to its original layout and then, it is introduced a new failure on tank
two by half closing its connection to tank three. This latest failure will be introduced in
sample 150 and then be removed in sample 250, where it is expected both for predicted
and static errors a convergence to zero after failure insertion and removal. Observing
closed loop response under failures Figure 5.28 the expected behaviour was achieved. In
both situations, the static and predicted error converged towards zero although, for the
first failure the static error convergence seemed to stop. Offline model errors where com-
pletely degraded, the explanation dues the fact that not all rules were affected with the
new failure dynamics, and for those who have changed, when system was restored re-
mained with the wrong plant failure behaviour. This conclusion was only rational having
as pillars all acquired empirical understanding on proposed solution dynamics.
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Figure 5.27: RNFCS with reference in premise, no tank three and RNFMS without MF
optimization (Exp.6)
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ŷP

2
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Figure 5.28: Online closed loop response with plant failures. RNFCS with reference in
premise, no tank three and RNFMS without MF optimization
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5.4 Conclusion

Current chapter had successfully validated all major points proposed in this thesis, with
the exception of rule degrees and input weights which algorithm could not be validated.
However, from membership functions and from a basic reasoning, there are more dis-
advantages other than advantages when optimizing rule premise parameters regarding
fuzzy sets shape, rule degrees and input weights. Changing rule coverage, will also
change subspace partitioning whose local models might have been already optimized for
the old partitions. The subspace change for a given set of rules kept constant for a given
time window, will result in a wide number of local models, proportional to the input vec-
tor dimension, becoming inaccurate. However, it was seen that increasing a rule weight
will increase its local model convergence speed lowering the damage on its neighbours.
It remains for a future investigations a deeper analysis of advantages and disadvantages
when optimizing premise parameters. Focusing on controller, it was observed during
experiments the need to consider during optimization a correlation between all rules of a
given subset. Otherwise, controller would become unstable due to a constant gain switch
resultant from rule subset changes. Through proposed method such effect was reduced
but not fully eliminated being possible future occurrences. A study on theories regarding
controller switching and dwell times might be useful for future algorithm enhancements
and stability analysis.

Model increased complexity due to an excessive number of states, can increase the prob-
ability of zero pole cancellation decreasing controllability and observability. It is advised
a minimal number of state on which an acceptable estimation error is achieved. Also,
the correlation of RNFMS output layer parameters with the hidden layers parameters,
might also increase the non observability and divergence if a wrong gain is set to WC

overriding previous layers dynamics.
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Global Conclusions and Further

Research

With the need to control systems facing a complexity increase, white box modelling is
becoming to complex and sometimes impossible. The growth of grey box modelling the-
ories focusing on building a theoretical model as accurate as possible considering only
process inputs and outputs, allows a complete new wave of control and identification
methods. Although grey box modelling will never be as accurate as white box tech-
niques, for instance input and output data usually contains noise which creates drifts
on model dynamics. Also if process output is correlated with some form of non Gaus-
sian noise, it will produce undesired model biasing and wrong dynamics to be identified.
Also a model divergence or biasing will lead to a model based controller divergence and
consequently to a static error increase. The excessive model fitting will also increase the
effects of model and noise correlation, leading to so called over-fitting problems.

6.1 Global Conclusions

It is expected from this thesis not a precise control solution but a new promising method
for online adaptative control and identification capable of self tuning. From presented
proposals it is expected the provisioning of new vectors for recursive fuzzy modelling
and control, including a proof concept regarding Unscented Kalman Filter optimization
capabilities when using a RNFS architecture.

Better results could be achieved by fine tuning algorithm parameters, meanwhile to find
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a precise and robust solution based not only on empirical results but also on mathemat-
ical facts, a deep analysis of a global solution integration between UKF, recursive neuro
fuzzy and state space methodology needs to be done. Also stability and convergence
over long term simulations could not be assured, since only a small number of samples
were considered.

One of the major drawback regarding UKF robustness relates to the handling of con-
straints. For cases where the model parameter solution that minimises a constrained cost
function has a gradient towards a boundary, proposed algorithm will fail by constantly
moving parameters away from the boundary region. New methods need to be inves-
tigated in order to better handle constraints without making use of real-time quadratic
problems.

Achieved architecture and its solution followed a step by step approach, acquiring shape
throughout the state of the art investigation. Other solutions where on sight for instance,
it was tried to combine genetic algorithms for consequent optimization, where it was re-
alized a constraint regarding high processing times. Also, it was under and initial scope
the use of spline shaped membership function and clustering methods for fuzzy sets op-
timization. Although such theories would lead to an increase of system parameters to
be optimized during a real time basis. Regarding presented algorithms precisely UKF,
it was noticed a lack of stability analysis for instance the system behaviour when facing
non Gaussian noise.

To finalize, regardless non sleeping hours and for some times the feeling of "no possible
solution", it was a great pleasure to work with all my colleagues, sharing their commit-
ment and belief to create something innovative and new.

6.2 Further Research

The aim of proposed solution was to obtain a model whose statistical properties best
fit process statistical properties. Presented solution, apart from model fitting, should be
capable of handling the following problems:

• Patern recognition and classification, which is a well known capability from neuro
networks;

• Fault detection and diagnosis by creating rules to monitor model parameter evolu-
tion;

• Multi layer reasoning, by means of using low level model outputs to feed high level
models inputs.

Apart from new applications, some work was left undone:
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• Rules and input weights optimization analysis;

• Stability analysis analytical study;

• Study regarding impact of forgetting factors in UKF convergence;

• Long term simulation stability analysis;

• Use of different inference mechanisms, fuzzy relations and defuzzification meth-
ods;

• Improvement of constraint handling during constrained parameter optimization;

• Analysis regarding the use of different membership functions;

• Methods to discard useless rules from rule subset, turning real-time inference faster;

• Study the advantages of using local states instead of global states, i.e each local
model has its own state vector.

Above listed items relies only theoretical ideas raised during implementation and brain-
storming sessions. Although, some might open new windows towards computer reason-
ing enhancements.
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A
Proposed Algorithms

A.1 RNFMS consequents optimization algorithm

Initialization:

PA(0) = αPψ eye (nx ∗ nx, nx ∗ nx, C) RrA(0) = αRψeye (nx ∗ nx, nx ∗ nx, C)

Reψ(0) = αEψ eye (m,m,C)

PB(0) = αPψ eye (nx ∗ nu, nx ∗ nu, C) RrB(0) = αRψeye (nx ∗ nu, nx ∗ nu, C)

PC(0) = αPψ eye (m ∗ nx,m ∗ nx,C) RrC(0) = αRψeye (m ∗ nx,m ∗ nx,C)

(A.1)

For each iteration k:

• Get next iµk and set ϕ = [y(k − 1) u(k − 1)]

• Compute all layer M4 neurons output M
σ

=

M4

(
wτ,agr
iµk

(k − 1), wµ−
iµk

(k − 1), u(k − 1), iµk

)
• For each rule j in iµk

Compute time-update equations:

ŵψ(0) = RNFMS
iµk
[A,B,C] (k − 1) (A.2a)

⇒ P−ψ (k) = blkdiag
([

P
iµj;k
A (k − 1) P

iµj;k
B (k − 1) P

iµj;k
C (k − 1)

])
(A.2b)

⇒ Rr−ψ (k) = blkdiag
([

R
r,iµj;k
A (k − 1) R

r,iµj;k
B (k − 1) R

r,iµj;k
C (k − 1)

])
(A.2c)

⇒ Re−ψ (k) = R
e,iµj;k
ψ (k − 1) (A.2d)
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• Calculate sigma-points:

χψ− (k) =
[
ŵψ− (k) ŵψ− (k) + γ

√
P−ψ (k) ŵψ− (k)− γ

√
P−ψ (k)

]
(A.3)

For i = 1 : L

x (k) = f
(
χψ−A,B,i(k), x̂+(k − 1), ϕ,M

σ
, iµk

)
(A.4a)

Yi = g
(
χψ−C,i (k), x(k),M

σ
, iµk

)
(4.44) (A.4b)

• Compute the measurement-update equations:

ŵψ−(k) =

L∑
i=1

W
(m)
i χψ−i (A.5a)

d̂−(k) =

L∑
i=1

W
(m)
i Yj (A.5b)

P−ψ (k) =

L∑
i=1

W
(c)
i

(
ŵψ−i (k)− χψ−i (k)

)(
ŵψ−i (k)− χψ−i (k)

)T
+Rr−ψ (k) (A.5c)

Pd̃k =
L∑
i=1

W
(c)
i

(
Yi − d̂− (k)

)(
Yi − d̂− (k)

)T
+Re−ψ (k) (A.5d)

Pwkdk =

L∑
i=1

W
(c)
i

(
ŵψ−i (k)− χψ−i (k)

)(
Yi − d̂− (k)

)T
(A.5e)

K(k) = PwkdkP
−1

d̃k
(A.5f)

ŵψ+(k) = ŵψ−(k) +K(k)
(
d(k)− d̂−(k)

)
(A.5g)

P+
ψ (k) = Pψ− (k) +K(k)Pd̃kK(k)T (A.5h)

Rr+ψ (k) =
(
1− αrψ

)
Rr−ψ (k) + αrψK(k)

(
d(k)− d̂−(k)

)(
d(k)− d̂−(k)

)T
K(k)T

(A.5i)

Rr+ψ (k) = diag
(
diag

(
Rr+ψ (k)

))
(A.5j)

∆ =
(
d(k)− d̂−(k)

)(
d(k)− d̂−(k)

)T
(A.5k)

Re+ψ (k) = diag
(
diag

((
1− αeψ

)
Re−ψ (k) + αeψK(k)K(k)T∆

))
(A.5l)

• Update global Model parameters RNFMS
iµk
[A,B,C](k) with new local models.

• Save diagonals of local covariance matrices Pψ and Rr+ψ into global covariance ma-
trices PA,B,C(k) and RrA,B,C(k). In some cases considering only diag(PC) can return
best results.
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with γ =
√
N + λ, L = 2N + 1, parameter dimension N , process noise covariance

Rr, measurement noise Re and a low pass filter poles αeψ and αrψ. Sigma points W (m)

and W (c) are computed according (4.8).

Table A.1: RNFMS decoupled UKF consequents parameter estimation considering addi-
tive noise case. (system as in Equation 4.16)

A.2 RNFMS membership optimization algorithm

Initialization:

Pµ(0) = αPµ ones (2, (Pmax − 1), nu+m) Rrµ(0) = αRµ ones (2, (Pmax − 1), nu+m)

Reµ(0) = αEµ ones (m,m)
(A.6)

For each iteration k:

• Compute matrix Mµ containing the rules subset membership indexes

• Get next iµk and set ϕ = [y(k − 1) u(k − 1)]

• Get lb and ub bounding matrices for memberships Mµ

• Compute time-update equations:

ŵ
µ
(0) = wµ,M

µ
(k − 1) (A.7a)

if iµk 6= iµk−1 (A.7b)

⇒ P
−
µ (k) = diag

(
PM

µ

µ (k − 1)
)

(A.7c)

⇒ R
r−
µ (k) = diag

(
Rr,M

µ

µ (k − 1)
)

(A.7d)

⇒ Re−µ (k) = Re+µ (k − 1) (A.7e)

else (A.7f)

⇒ P
−
µ (k) = P

+
µ (k − 1) (A.7g)

⇒ R
r−
µ (k) = R

r+
µ (k − 1) (A.7h)

⇒ Re−µ (k) = Re+µ (k − 1) (A.7i)

• Calculate sigma-points:

χµ−(k) = ICUT
(
lb, ub, P

−
µ (k)

)
(A.8)

For j = 1 : L

M
σ

= M4

(
wτ,agr
iµk

(k − 1), χµ−j (k), ϕ, iµk

)
(A.9a)

x (k) = f
(
wψA,B(k − 1), x̂+(k − 1), ϕ,M

σ
, iµk

)
(A.9b)

Yj = g
(
wψ−C (k − 1), x(k),M

σ
, iµk

)
(4.44) (A.9c)
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• Compute the measurement-update equations:

ŵ
µ−

(k) =
L∑
i=1

W
(m)
i χµ−i (A.10a)

d̂−(k) =
L∑
i=1

W
(m)
i Yj (A.10b)

P
−
µ (k) =

L∑
i=1

W
(c)
i

(
ŵ
µ−
i (k)− χµ−i (k)

)(
ŵ
µ−
i (k)− χµ−i (k)

)T
+R

r−
µ (k) (A.10c)

Pd̃k =

L∑
i=1

W
(c)
i

(
Yi − d̂− (k)

)(
Yi − d̂− (k)

)T
+Re−µ (k) (A.10d)

Pwkdk =
L∑
i=1

W
(c)
i

(
ŵ
µ−
i (k)− χµ−i (k)

)(
Yi − d̂− (k)

)T
(A.10e)

K(k) = PwkdkP
−1

d̃k
(A.10f)

ŵ
µ+

(k) = max
(
min

(
ŵ
µ−

(k) +K(k)
(
d(k)− d̂−(k)

)
, ub
)
, lb
)

(A.10g)

P
+
µ (k) = P

µ−
(k) +K(k)Pd̃kK(k)T (A.10h)

R
r+
µ (k) =

(
1− αrµ

)
R
r−
µ (k) + αrµK(k)

(
d(k)− d̂−(k)

)(
d(k)− d̂−(k)

)T
K(k)T

(A.10i)

R
r+
µ (k) = diag

(
diag

(
R
r+
µ (k)

))
(A.10j)

∆ =
(
d(k)− d̂−(k)

)(
d(k)− d̂−(k)

)T
(A.10k)

Re+µ (k) = diag
(
diag

((
1− αeµ

)
Re−µ (k) + αeµK(k)K(k)T∆

))
(A.10l)

• Update membership function parameters with ŵψ+
(k).

• Save diagonals of local covariance matrices Pµ and Rr+µ into global covariance ma-
trices Pµ(k) and Rrµ(k)

with γ =
√
N + λ, L = 2N + 1, parameter dimension N , process noise covariance

Rr, measurement noise Re and a low pass filter poles αeµ and αrµ. Sigma points W (m)

and W (c) are computed as in Table 4.3

Table A.2: RNFMS decoupled CIUKF membership parameter optimization considering
additive noise case. (system as in Equation 4.16)
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A.3 RNFMS rule and input weights degree optimization algo-
rithm

Initialization:

Pτ (0) = αPγ ones (nu+m,C) Rrτ (0) = αRγ ones (nu+m,C)

Pagr(0) = αPγ ones (C) Rrγ(0) = αRγ ones (C)

Reγ(0) = αEγ ones (m,m)

(A.11)

For each iteration k:

• Get next iµk and set ϕ = [y(k − 1) u(k − 1)]

• Get lb and ub bounding matrices for ŵτ,agr

• Compute time-update equations:

ŵ
γ
(0) =

[
wτiµk

(k − 1) wagr
iµk

(k − 1)
]

(A.12a)

if iµk 6= iµk−1 (A.12b)

⇒ P
−
γ (k) = diag

(
P
iµk
τ (k − 1) P

iµk
agr(k − 1)

)
(A.12c)

⇒ R
r−
γ (k) = diag

(
R
r,iµk
τ (k − 1) R

r,iµk
agr (k − 1)

)
(A.12d)

⇒ Re−γ (k) = Re+γ (k − 1) (A.12e)

else ⇒ P
−
γ (k) = P

+
γ (k − 1) (A.12f)

⇒ R
r−
γ (k) = R

r+
γ (k − 1) (A.12g)

⇒ Re−γ (k) = Re+γ (k − 1) (A.12h)

Calculate sigma-points:

χγ−(k) = ICUT
(
lb, ub, P

−
γ (k)

)
(A.13)

For j = 1 : L

M
σ

= M4

(
χγ−j (k), wµ

iµk
(k − 1), ϕ, iµk

)
(A.14a)

x(k) = f
(
wψA,B(k − 1), x̂+(k − 1), ϕ, x+(k − 1),M

σ
, iµk

)
(A.14b)

Yj = g
(
wψ−C (k − 1), x(k),M

σ
, iµk

)
(4.44) (A.14c)
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• Compute the measurement-update equations:

ŵ
γ−

(k) =
L∑
i=1

W
(m)
i χγ−i (A.15a)

d̂−(k) =
L∑
i=1

W
(m)
i Yj (A.15b)

P
−
γ (k) =

L∑
i=1

W
(c)
i

(
ŵ
γ−
i (k)− χγ−i (k)

)(
ŵ
γ−
i (k)− χγ−i (k)

)T
+R

r−
γ (k) (A.15c)

Pd̃k =
L∑
i=1

W
(c)
i

(
Yi − d̂− (k)

)(
Yi − d̂− (k)

)T
+Re−γ (k) (A.15d)

Pwkdk =
L∑
i=1

W
(c)
i

(
ŵ
γ−
i (k)− χγ−i (k)

)(
Yi − d̂− (k)

)T
(A.15e)

K(k) = PwkdkP
−1

d̃k
(A.15f)

ŵ
γ+

(k) = max
(
min

(
ŵ
γ−

(k) +K(k)
(
d(k)− d̂−(k)

)
, ub
)
, lb
)

(A.15g)

P
+
γ (k) = P

γ−
(k) +K(k)Pd̃kK(k)T (A.15h)

R
r+
γ (k) =

(
1− αrγ

)
R
r−
γ (k) + αrγK(k)

(
d(k)− d̂−(k)

)(
d(k)− d̂−(k)

)T
K(k)T

(A.15i)

R
r+
γ (k) = diag

(
diag

(
R
r+
γ (k)

))
(A.15j)

∆ =
(
d(k)− d̂−(k)

)(
d(k)− d̂−(k)

)T
(A.15k)

Re+γ (k) = diag
(
diag

((
1− αeγ

)
Re−γ (k) + αeγK(k)K(k)T∆

))
(A.15l)

• Update rules and inputs degrees with ŵγ+
(k).

• Save diagonals of local covariance matrices P+
γ (k), and R

r+
γ (k) into global covari-

ance matrices Pτ,agr(k) and Rrτ,agr(k)

with γ =
√
N + λ, L = 2N + 1, parameter dimension N , process noise covariance

Rr, measurement noise Re and a low pass filter poles αeγ and αrγ . Sigma points W (m)

and W (c) are computed as in Table 4.3

Table A.3: RNFMS decoupled CIUKF rules and inputs degree optimization considering
additive noise case. (system as in Equation 4.16)
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A.4 RNFMS state optimization algorithm

Initialization:

x̂(0) = RNFMS
iµk
x0(k − 1) Px(0) = αPx eye(nx, nx)

Rrx(0) = αrxeye(nx, nx) Rex(0) = αexeye(m,m)
(A.16)

For each iteration k:

• Set ϕ = [y(k − 1) u(k − 1)]

• Compute Mσ
= M4

(
wτ (k − 1), wagr(k − 1), wµ

iµk
(k − 1), u(k − 1), iµk

)
• Compute time-update equations:

x̂−(k) = x̂+(k − 1) P−x (k) = P+
x (k − 1) (A.17a)

Rr−x (k) = Rr+x (k − 1) Re−x (k) = Re+x (k − 1) (A.17b)

• Calculate sigma-points:

χ− (k) =

[
x̂+ (k − 1) x̂+ (k − 1) + γ

√
P+
x (k − 1) x̂+ (k − 1)− γ

√
P+
x (k − 1)

]
(A.18)

For j = 1 : L

χ+
j (k) = f

(
wψA,B(k − 1), x̂+(k − 1), ϕ, χ−j (k),M

σ
, iµk

)
Yj = g

(
wψ−C (k − 1), χ+

j (k),M
σ
, iµk

)
(4.44)

(A.19)

• Compute the measurement-update equations:

x̂−(k) =

L∑
i=1

W
(m)
i χx+

i (k) (A.20a)

d̂−(k) =

L∑
i=1

W
(m)
i Yi (A.20b)

P−x (k) =
L∑
i=1

W
(c)
i

(
x̂−i (k)− χx+

i (k)
) (
x̂−i (k)− χx+

i (k)
)T

+Rr−x (k) (A.20c)

Pd̃k =

L∑
i=1

W
(c)
i

(
Yi − d̂− (k)

)(
Yi − d̂− (k)

)T
+Re−x (k) (A.20d)

Pwkdk =

L∑
i=1

W
(c)
i

(
x̂−i (k)− χx+

i (k)
) (
Yi − d̂− (k)

)T
(A.20e)

K(k) = PwkdkP
−1

d̃k
(A.20f)
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x̂+(k) = x̂−(k) +K(k)
(
d(k)− d̂−(k)

)
(A.21a)

P+
x (k) = P x−(k) +K(k)Pd̃kK(k)T (A.21b)

Rr+x (k) = (1− αrx)Rr−x (k) + αrxK(k)
(
d(k)− d̂−(k)

)(
d(k)− d̂−(k)

)T
K(k)T (A.21c)

Rr+x (k) = diag
(
diag

(
Rr+x (k)

))
(A.21d)

∆ =
(
d(k)− d̂−(k)

)(
d(k)− d̂−(k)

)T
(A.21e)

Re+x (k) = diag
(
diag

(
(1− αex)Re−x (k) + αexK(k)K(k)T∆

))
(A.21f)

with γ =
√
N + λ, L = 2N + 1, parameter dimension N , process noise covariance

Rrx, measurement noise Rex and a low pass filter poles αex and αrx. Sigma points W (m)

and W (c) are computed as in (4.8)

Table A.4: RNFMS decoupled UKF state estimation considering additive noise case. (sys-
tem as in Equation 4.16)

A.5 RNFCS controler optimization algorithm
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Initialization:

PK(0) = αPCtones (nx, nu, C) RrK(0) = αRCtones (nx, nu, Ct)

ReCt;u(0) = αECt;uones (m,m) ReCt;c(0) = αECt;cones (m,m)

PR(0) = αPCtones (nu,m) RrR(0) = αRCtones (nu,m)

PP (0) = αPCtones (nu,m) RrP (0) = αRCtones (nu,m)

(A.22)

For each iteration k:

• Get next iµk based on u(k − 1) and RNFMS(k − 1)

• Compute time-update equations:

ŵCt(0) = RNFCS
iµk
[K,R] (k − 1) (A.23a)

if iµk 6= iµk−1 (A.23b)

⇒ P−Ct(k) = diag
(
P
iµk
K (k − 1), P

iµk
R (k − 1), P

iµk
P (k − 1)

)
(A.23c)

⇒ Rr−Ct (k) = diag
(
R
r,iµk
K (k − 1), R

r,iµk
R (k − 1), R

iµk
P (k − 1)

)
(A.23d)

⇒ Re−Ct;u(k) = Re+Ct;u(k − 1) (A.23e)

⇒ Re−Ct;c(k) = Re+Ct;c(k − 1) (A.23f)

else (A.23g)
⇒ P−Ct(k) = P+

Ct(k − 1) (A.23h)
⇒ Rr−Ct (k) = Rr+Ct (k − 1) (A.23i)
⇒ Re−Ct;u(k) = Re+Ct;u(k − 1) (A.23j)

⇒ Re−Ct;c(k) = Re+Ct;c(k − 1) (A.23k)
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• Calculate sigma-points:

χCt− (k) =

[
ŵCt− (k) ŵCt− (k) + γ

√
P−Ct (k) ŵCt− (k)− γ

√
P−Ct (k)

]
(A.24)

For j = 1 : L

χu+
j = h1

(
χCt−j , x+(k), Ref(k),M

σ
, iµk

)
(3.42) (A.25a)

u = min
(
max

(
χu+
j , UD−

)
, UD+

)
(A.25b)

ϕ = [y(k) u] (A.25c)

iµ+
k = h2 (ϕ,RNFMS(k)) (A.25d)

M
σ

= M4

(
wτ (k), wagr(k), wµ(k), ϕ, iµ+

k

)
(A.25e)

x− (k + 1) = f
(
wψA,B(k), x̂+(k), ϕ,M

σ
, iµ+
k

)
(A.25f)

Yj = g
(
wψC(k), x−(k + 1),M

σ
, iµ+
k

)
(4.44) (A.25g)

• Compute the measurement-update equations:

ŵCt−(k) =

L∑
i=1

W
(m)
i χCt−i (A.26a)

û−ref (k) =
L∑
i=1

W
(m)
i χu+

i (A.26b)

d̂−(k) =
L∑
i=1

W
(m)
i Yj (A.26c)

P ux
d̃k

=

L∑
i=1

W
(c)
i

(
Yi − d̂− (k)

)(
Yi − d̂− (k)

)T
(A.26d)

P u
d̃k

= P ux
d̃k

+Re−Ct;u(k) (A.26e)

P uwkdk =
L∑
i=1

W
(c)
i

(
û−ref (k)− χu+

i (k)
)(

Yi − d̂− (k)
)T

(A.26f)

Ku(k) = P uwkdkP
u−1

d̃k
(A.26g)

u+
ref = min

(
max

(
û−ref (k) +Ku(k)

(
Ref(k + 1)− d̂−(k)

)
, 0
)
, 1
)

(A.26h)

Re+Ct;u(k) =
(
1− αeCt;u

)
Re−Ct (k) + αeCt;uK

uT (k)Ku(k)diag
(
diag

(
P ux
d̃k

))
(A.26i)

Re+Ct;u(k) = diag
(
diag

(
Re+Ct;u(k)

))
(A.26j)
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P−Ct(k) =
L∑
i=1

W
(c)
i

(
ŵCt−i (k)− χCt−i (k)

)(
ŵCt−i (k)− χCt−i (k)

)T
+Rr−Ct (k) (A.27a)

Pd̃k =
L∑
i=1

W
(c)
i

(
χu+
i − û

−
ref (k)

)(
χu+
i − û

−
ref (k)

)T
+Re−Ct;c(k) (A.27b)

Pwkdk =

L∑
i=1

W
(c)
i

(
ŵCt−i (k)− χCt−i (k)

)(
χu+
i − û

−
ref (k)

)T
(A.27c)

K(k) = PwkdkP
−1

d̃k
(A.27d)

ŵCt+(k) = ŵCt−(k) +K(k)
(
u+
ref − û

−
ref (k)

)
(A.27e)

P+
Ct;c(k) = PCt− (k) +K(k)Pd̃kK(k)T (A.27f)

Rr+Ct;c(k) = (1− αrCt)Rr−Ct (k)+ (A.27g)

+αrCtK(k)
(
u+
ref − û

−
ref (k)

)(
u+
ref − û

−
ref (k)

)T
K(k)T (A.27h)

Rr+Ct (k) = diag
(
diag

(
Rr+Ct (k)

))
(A.27i)

Re+Ct;c(k) =
(
1− αeCt;c

)
Re−Ct (k) + αeCt;cdiag

(
diag

(
K(k)TK(k)Pd̃k

))
(A.27j)

Re+Ct;c(k) = diag
(
diag

(
Re+Ct;c(k)

))
(A.27k)

• Update global controller parameters RNFCSi
µ
k

[K,R](k) with new local models.

• Save diagonals of local covariance matrices PCt and Rr+Ct into global covariance
matrices PK,R(k) and RrK,R(k)

• New control action u(k + 1) can be computed.

with γ =
√
N + λ, L = 2N+1, parameter dimensionN , process noise covarianceRr,

measurement noise Re and a low pass filter poles αeCt and αrCt. Sigma points W (m)

and W (c) are computed according (4.8).

Table A.5: RNFCS decoupled UKF parameter estimation considering additive noise case.
(system as in Equation 4.16)
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B
UKF application results
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B. UKF APPLICATION RESULTS

(a) Initial sigma points and covariance (b) Spread sigma points and resulting covariance

(c) P−k along time (d) Predicted state evolution

(e) Predicted output (f) Sigma points evolution, on left χ+
k−1, on right χ∗−k

Figure B.1: 2-state CSTR simulation using standard UKF, α = 1

138



B. UKF APPLICATION RESULTS

(a) Initial sigma points and covariance (b) Spread sigma points and resulting covariance

(c) P−k along time (d) Predicted state evolution

(e) Predicted output (f) Sigma points evolution, on left χ+
k−1, on right χ∗−k

Figure B.2: 2-state CSTR simulation using PUKF, α = 1
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B. UKF APPLICATION RESULTS

(a) Initial sigma points and covariance (b) Spread sigma points and resulting covariance

(c) P−k along time (d) Predicted state evolution

(e) Predicted output (f) Sigma points evolution, on left χ+
k−1, on right χ∗−k

Figure B.3: 2-state CSTR simulation using CIUKF, α = 1
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B. UKF APPLICATION RESULTS

(a) Initial sigma points and covariance (b) Spread sigma points and resulting covariance

(c) P−k along time (d) Predicted state evolution

(e) Predicted output (f) Sigma points evolution, on left χ+
k−1, on right χ∗−k

Figure B.4: 2-state CSTR simulation using standard UKF, α = 0.1
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B. UKF APPLICATION RESULTS

(a) Initial sigma points and covariance (b) Spread sigma points and resulting covariance

(c) P−k along time (d) Predicted state evolution

(e) Predicted output (f) Sigma points evolution, on left χ+
k−1, on right χ∗−k

Figure B.5: 2-state CSTR simulation using PUKF, α = 0.1

142



B. UKF APPLICATION RESULTS

(a) Initial sigma points and covariance (b) Spread sigma points and resulting covariance

(c) P−k along time (d) Predicted state evolution

(e) Predicted output (f) Sigma points evolution, on left χ+
k−1, on right χ∗−k

Figure B.6: 2-state CSTR simulation using CIUKF, α = 0.1
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B. UKF APPLICATION RESULTS

(a) P−k along time (b) Predicted state evolution

(c) Predicted output

Figure B.7: 2-state CSTR simulation using CIUKF, α = 0.9, λr = 0, λe = 0, Rr0 = 0.1 and
Re0 = 1
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B. UKF APPLICATION RESULTS

(a) P−k along time (b) Predicted state evolution

(c) Predicted output (d) Re−k along time

Figure B.8: 2-state CSTR simulation using IUKF, α = 0.9, λr = 0, λe = 0.2, Rr0 = 0.1 and
Re0 = 1
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B. UKF APPLICATION RESULTS

(a) P−k along time (b) Predicted state evolution

(c) Predicted output (d) Rr−k along time

Figure B.9: 2-state CSTR simulation using IUKF, α = 0.9, λr = 0.2, λe = 0, Rr0 = 0.1 and
Re0 = 1
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B. UKF APPLICATION RESULTS

(a) P−k along time (b) Predicted state evolution

(c) Predicted output (d) Rr−k along time

(e) Re−k along time

Figure B.10: 2-state CSTR simulation using IUKF, α = 0.9, λr = 0.2, λe = 0.2, Rr0 = 0.1
and Re0 = 1
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