
Bruno Fontes Barroca

Mestre em Engenharia Informática

Analysable Software Language Translations

Dissertação para obtenção do Grau de Doutor em
Engenharia Informática

Orientador : Dr. Vasco Miguel Moreira do Amaral,
Prof. Auxiliar, Universidade Nova de Lisboa

Júri:

Presidente: Prof. Doutor Luis Caires Marques da Costa Caires

Arguentes: Prof. Doutor Juan de Lara

Prof. Doutor João Carlos Pascoal Faria

Vogais: Prof. Doutor Hans Vangheluwe

Prof. Doutor Alberto Manuel Rodrigues da Silva

Prof. Doutora Carla Maria Gonçalves Ferreira

Prof. Doutor Vasco Miguel Moreira do Amaral

Janeiro, 2013

iii

Analysable Software Language Translations

Copyright c© Bruno Fontes Barroca, Faculdade de Ciências e Tecnologia, Univer-
sidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o di-
reito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação
através de exemplares impressos reproduzidos em papel ou de forma digital, ou
por qualquer outro meio conhecido ou que venha a ser inventado, e de a divul-
gar através de repositórios científicos e de admitir a sua cópia e distribuição com
objectivos educacionais ou de investigação, não comerciais, desde que seja dado
crédito ao autor e editor.

iv

Acknowledgements

Over the past five years, I have received support and encouragement from a great
number of individuals. In particular, Professor Vasco Amaral has been a mentor,
and a friend. With him, I have learned the complexity problems of software en-
gineering, and how models and modeling languages can be a powerful solution
to solve them. His guidance has made this a thoughtful and rewarding journey.
Also, Dr. Levi Lúcio gave me the pleasure to work with him during the most
important phase in my PhD research work. With him, I have learned how math
and set theory can be used to elegantly describe and study both the problems and
solutions we may find in computer science.

I would like to thank the SMV group at the Université de Genève, in par-
ticular to Dr. Matteo Risoldi, and Professor Didier Buchs for their teachings on
modeling, formalisms and verification techniques. I would also like to thank the
members of the Technical Advisory Committee of my PhD thesis for their pa-
tience and valuable insight about this research work: Professors Carla Ferreira,
and Hans Vangueluwe.

Finally, I would like to thank all the people that worked with me at CITI,
and gave valuable contributions to my PhD research work: Vasco Sousa, Roberto
Félix, and Cláudio Gomes.

A special thank-you goes to the Centro de Informática e Tecnologias de Infor-
mação (CITI), Portugal, the Department of Informatics of the Universidade Nova
de Lisboa, and the Fundação para a Ciência e a Tecnologia, Portugal that through
the grant SFRH/BD/38123/2007 supported me financially and organizationally
over all this time.

v

vi

Abstract

The most difficult tasks in the Software Language Engineering (SLE) process,
are the design of the semantics of a Domain Specific Modeling Language (DSML),
its implementation (typically in a form of a compiler), and also its verification
and validation. On the one hand, the choice of the appropriate level of abstrac-
tion when designing a DSML’s semantics, affects directly its usability, and the
potential for its analysis. On the other hand, in practice, not only the compiler’s
implementation, but also its verification and validation are performed manually,
while having as reference the DSML’s semantic models.

The challenge of this research work is to apply a complete model driven soft-
ware development approach in the tasks of designing a DSML’s semantics, im-
plementing, verifying and validating DSMLs’ compilers. This involves the choice
of the most appropriate abstraction levels, and the design and development of
adequate tools to support SLE practitioners on these tasks.

This thesis reports: i) the design and implementation of formal languages (and
associated tools) to support the task of DSML’s semantics design (i.e., DSLTrans
and SOS); ii) the automatic generation of DSMLs’ compilers based on translation
specifications; and iii) automated validation of DSMLs’ semantic designs based
on the analysis of translation specifications. Finally, the approach presented in
this thesis is illustrated with the design and implementation of a real life DSML.

Keywords: Translations, Model Transformations, Structured Operational Se-
mantics (SOS), Model Transformation Analysis

vii

viii

Resumo

As tarefas mais dificeis de executar no decorrer do processo de Engenharia de
Linguagens de Software (ELS), são o desenho da semântica de uma Linguagem
de Modelação de Domínio Específico (LMDE), a sua implementação, e também
a sua verificação e validação. Por um lado, a escolha do nível de abstração no
desenho da semântica da LMDE, afecta directamente a sua usabilidade, e o seu
potencial para ser analisada. Por outro lado, na prática, não só a implementação
do seu compilador, mas também a sua verificação e validação são executadas de
forma manual, tendo como referência modelos semânticos das LMDEs.

O desafio deste trabalho de investigação é aplicar de forma completa uma
abordagem de desenvolvimento de software baseada em modelos, nas tarefas
de desenho, implementação, verificação e validação de compiladores de LMDEs.
Isto envolve a escolha dos níveis mais apropriados de abstração, e o desenho
de desenvolvimento de ferramentas adequadas para suportar a prática da ELS
nestas tarefas em particular. Esta tese reporta: i) o desenho e implementação de
linguagens formais (e ferramentas associadas) para suportar a tarefa de desenho
de semânticas de LMDEs (DSLTrans e SOS); ii) a geração automática de com-
piladores de LMDEs com base em especificações de tradução; e iii) a validação
automática de desenhos de semânticas de LMDEs através da análise de especifi-
cações de tradução. Finalmente, a abordagem apresentada nesta tese é validada
com o desenho e implementação de uma LMDE usada na vida real.

Palavras-chave: Traduções, Modelos de Tradução, Semântica Operacional Es-
truturada (SOS), Análise de Modelos de Transformação

ix

x

Contents

1 Introduction 1

1.1 Research Question . 3

1.2 Challenges . 4

1.3 Research Topics . 6

1.4 Contribution Overview . 6

1.5 Structure of this Thesis . 8

2 Background 9

2.1 Models and Languages . 9

2.1.1 Descriptions and Prescriptions 10

2.1.2 Levels of Detail (Abstractions) 10

2.1.3 Model’s Quality . 11

2.1.4 Models expressed in a Language 12

2.1.5 (Syntactic) Model of a Language 14

2.1.6 Software Languages . 16

2.2 Software Language Engineering . 18

2.2.1 Decision and Domain Analysis of a Software Language . . . 19

2.2.2 Design Models of a Software Language 20

2.2.3 Implementation of a Software Language 22

2.2.4 Verification and Validation of a Language 23

2.2.5 Analysability of a Software Language 26

2.2.6 Model-driven development of Software Languages 26

2.2.7 Model Transformation Languages 31

2.2.8 Analysis of Model Transformation Languages 34

2.3 Summary . 36

xi

xii CONTENTS

3 Overview of the Approach 37
3.1 Syntax of Languages: State Machine and Petri Nets 38

3.2 Software Language Translations . 40

3.3 Operational Semantics of the Languages: State Machine and Petri
Nets . 41

3.4 Analyzing Software Language Translations 46

3.5 Conclusions and Outlook . 48

4 Models of Modeling Languages 49
4.1 Syntactic Models . 49

4.1.1 Typed Graphs . 50

4.1.2 Models and Metamodels . 54

4.2 Translational Semantics with the DSLTrans Language 62

4.2.1 DSLTrans Overview . 62

4.2.2 DSLTrans’ Syntactic Structures 65

4.2.3 DSLTrans’ Semantics . 69

4.2.4 DSLTrans’ Language Properties 75

4.2.5 DSLTrans’ Tool Support . 77

4.3 Operational Semantics with the SOS Language 81

4.3.1 The SOS Language Overview 82

4.3.2 The SOS Language’s Syntax 86

4.3.3 The SOS Language’s Semantics 87

4.3.4 The SOS Tool . 96

4.4 Conclusions . 100

5 Analysis of Translations 103
5.1 Structural Analysis . 103

5.1.1 State space . 112

5.1.2 Structural Checking . 115

5.1.3 DSLTrans’ Structural Analysis Tool 117

5.2 Semantic Analysis . 119

5.2.1 The Analysis Algorithm . 119

5.2.2 Methodology and Tool . 124

5.3 Conclusions and Related Work . 127

6 Case Study: A Language for Role Playing Games 129
6.1 Language Overview . 129

6.2 Experimental Report . 131

CONTENTS xiii

6.2.1 RPG’s Semantics Specification 131
6.2.2 RPG to Petri Nets Translation Analysis 136

6.3 Discussion of the Results . 139

7 Conclusions 141
7.1 Limitations and Future Work . 141
7.2 Final Remarks and Expected Impact 142

xiv CONTENTS

List of Figures

2.1 Feynman Diagrams . 13
2.2 The Eclipse’s GMF instantiation of the MOF’s architecture. 29
2.3 A transformation rule expressed in EMF Tiger. 31

3.1 The State Machine Language Metamodel 38
3.2 The PetriNet Language Metamodel 38
3.3 A State Machine Language sentence 39
3.4 A State Machine Language’s instance 40
3.5 A Petri Net sentence . 40
3.6 A Petri Net Language’s instance . 41
3.7 Transition System of a State Machine 43
3.8 Transition System of a Petri Net . 45
3.9 The approach diagram . 46
3.10 A framework for validating software language translations. 47
3.11 A framework for validating the State Machines to Petri Nets trans-

lation Model. 48

4.1 An example of a typed graph named x. 50
4.2 An example of two typed graphs (x and y), and their union. 51
4.3 Typed graph y is a typed subgraph of typed graph x. 52
4.4 Θ is a typed graph isomorphism between typed graphs x and y. . . 53
4.5 An example of a metamodel typed graph. 54
4.6 Inheritance partial order relation . 56
4.7 Vertex Satisfaction Example . 57
4.8 An example of a kind of an edge . 58
4.9 Model and Metamodel structures . 60
4.10 An example of a match apply model mam. 67

xv

xvi LIST OF FIGURES

4.11 An example of a transformation rule tr. 68

4.12 An example of a transformation rule tr and the result of applying
the strip function on it. 70

4.13 Example of a subgraph of a Match-Apply Model 71

4.14 An example of an application of the unfold function ↑ 73

4.15 The reference implementation of DSLTrans as a set of Eclipse plug-
ins. 78

4.16 The DSLTrans Metamodel. 79

4.17 A visual representation of the StateMachines to Petri Nets transla-
tion, presented in Listing 4.1. 80

4.18 A sentence expressed in the State Machine Language, and the re-
sulting transition system. 85

4.19 A sentence expressed in the Petri Net Language, and the resulting
transition system. 85

4.20 The reference implementation of SOS as a set of Eclipse plug-ins. . 97

4.21 The SOS Metamodel (all of the packages expanded). 98

4.22 The MProlog Metamodel. 99

4.23 The Text Metamodel. 99

5.1 An example of the Vertex Combinations relation 104

5.2 Example of a Transformation Rule Structure 108

5.3 Example of three collapsed transformation rules 110

5.4 An example of a Collapsed Transformation Rule. 113

5.5 Another example of a Collapsed Transformation Rule. 114

5.6 A framework for validating translations expressed in DSLTrans
based on the satisfaction of properties. 117

5.7 The reference implementation of the Structural Analysis Tool as a
set of Eclipse plug-ins. 118

5.8 An example of validating a collapsed transformation rule 124

5.9 Another example of validating a collapsed transformation rule . . . 124

5.10 The instantiation of the proposed framework for validating soft-
ware language translations. 125

5.11 The reference implementation of the Semantic Analysis Tool as a
set of Eclipse plug-ins. 126

6.1 The RPG Framework. 130

6.2 The RPG metamodel, and a sentence example. 131

LIST OF FIGURES xvii

6.3 An example of validating a collapsed transformation rule from the
translation of RPGs to Petri Nets . 137

6.4 An example of validating a collapsed transformation rule from the
translation of RPGs to Petri Nets (after correction) 139

xviii LIST OF FIGURES

List of Tables

2.1 Chomsky Grammars and their recognizers. 15

3.1 Translation table between State Machine Language and the Petri
Net Language. 41

4.1 State of the Art on Model Transformation Languages and Tools . . 100

6.1 Translation table between the RPG Language and the Petri Net
Language. 133

xix

xx LIST OF TABLES

1
Introduction

An increasing number of people, in all professional fields and knowledge areas,
rely on software systems to perform their daily routines and responsibilities. The
immersion of computer technology in a wide range of domains, leads to a situ-
ation where the users’ needs become demanding and complex; besides that, the
quality of the users’ interaction with this kind of technology is becoming of ut-
most importance. Consequently, the development of successful software systems
themselves becomes increasingly more complex.

Software engineers need to cope with the increasing complexity on develop-
ing, maintaining and evolving software solutions, which are consequently get-
ting increasingly costly and error prone. If we look carefully to the sources of
this complexity, we conclude that there is a class of complex problems from a
given domain, which are sometimes very complex to understand and learn, such
as the rules and technical jargon found in domains like the Physics Computing,
Financial Domain, among others. In other words, the essential complexity from a
given domain is definitely unavoidable [Jr.87]. However, besides having to pro-
vide solutions that effectively solve a given class of essential problems from a
given domain, the Software Engineer has also to deal with the accidental com-
plexity of the used computer technology—e.g., the use of low level abstraction
programming languages, while integrating a wide plethora of different tools and
libraries.

A promising ’divide-and-conquer’ idea to break down the increasing com-
plexity in software engineering is the concept of multi-paradigm modeling (MPM).

1

1. INTRODUCTION

The base idea of MPM [dLVA04] is to have multiple viewpoints to look at any ex-
isting (or intended) object in multiple perspectives simultaneously, without the
existence of logical contradictions between those viewpoints. Instead of trying to
express every system-related object using a general purpose modeling language
(GPML), MPM realizes each perspective (or viewpoint) by means of domain spe-
cific modeling languages (DSMLs) [KT08]. DSMLs provide the end-users —i.e.,
the modelers involved in a domain specific modeling (DSM) activity — with
a pragmatic and usable way to understand and write their descriptions. Each
DSML is supposed to capture the occurrence of the reusable programming pat-
terns of the given application domain where it is defined, while using a restricted
terminology limited to the perspective (or viewpoint) of its application domain.
Moreover, DSML solutions provide to the end-users in a given application do-
main, a pragmatic way to automatically apply these reusable programming pat-
terns in a controlled manner.

However, building a DSML from scratch is far from trivial. One of the most
crucial (and complex) steps while building a new software language, is to assign
its semantics by mapping its syntax onto a computational semantic domain. This
semantic assignment can be done formally in a platform independent way by
means of a set of rewrite rules which describes how each construct of the lan-
guage can be rewritten by an abstract machine. Each rewrite step usually repre-
sents a computation step—i.e., the typical computational semantics of a software
language. This formal model of the software language’s semantics (also called
as Operational Semantics) can then be used as a reference to build a compiler
for the language. A compiler is a program that basically translates the high level
constructs of the language onto constructs of a low level programming language
(supported by a particular platform) in such a way that they mimic all of the com-
putation steps described formally in the provided formal Operational Semantics
model. The hardest problem for a Language Engineer is then to prove that the
implementation of this compiler is indeed correct according to the language’s se-
mantics model [GS98]. Typically this proof is complex and requires extensive
testing phases, that usually hampers the speed of the language evolution. This
is due to the difficulty of finding pertinent tests to test the compiler, since a soft-
ware language usually produces an infinite amount of possible sentences, and
each sentence might produce an infinite amount of computation steps.

2

1. INTRODUCTION 1.1. Research Question

Yet, we are witnessing the adoption of DSMLs in the software industry: com-
panies are building languages for their domains, by using Language Workbenches
(e.g., MPS 1, MetaEdit+ 2, GMF 3, DSLTools 4, etc.). These Language Workbenches
apply the principles of using models (i.e., specifications at an appropriate level
of abstraction) during software engineering—also known as Model Driven De-
velopment (MDD)— by enabling the specification of both syntactic and semantic
models of the languages. Typically, on these Workbenches, the model of a DSML’s
syntax can be defined based on a meta-modelling language such as MOF 5, and
its computational semantics can be defined by means of a model transforma-
tion specification which in turn may be expressed in a Model Transformation
Language such as QVT 6. The main advantages of using these Language Work-
benches lies in the fact that they enable the automatic generation of any DSML
given that we provide both its syntactic and semantic models. For instance, based
on the defined syntactic model of the DSML, it is possible to automatically gen-
erate a prototype of the DSML’s editor. Moreover, if we specify the semantic
domain of a DSML by means of model transformations, we can automatically
generate an interpreter or a compiler for that DSML. The systematic use of meta-
models and model transformations is in the heart of MDD approaches, where
software development’s complexity is dealt in a systematic way, by its modular-
ization into several levels of abstraction, and the definition of automated transla-
tions between these levels, each of them having their own rules and restrictions
formalized in a particular DSML.

1.1 Research Question

During the PhD research work, we found that there were still no adequate method-
ologies (and supporting tools) to ease the development (and maintenance) of
DSMLs with a reasonable level of confidence and guarantees that they were cor-
rectly implemented. These guarantees are required not only in critical domains
(such as avionics or automotive), but also in conventional domains (such as soft-
ware game development). Moreover, the lack of these guarantees may be ham-
pering further adoption of DSMLs by the industry, and consequently hamper the
solution for the increasing complexity in software engineering.

1http://www.jetbrains.com/mps/
2http://www.metacase.com/mep/
3http://www.eclipse.org/modeling/gmp/
4http://www.microsoft.com/en-us/download/details.aspx?id=2379
5http://www.omg.org/mof/
6http://www.omg.org/cgi-bin/doc?ptc/2007-07-07

3

http://www.jetbrains.com/mps/
http://www.metacase.com/mep/
http://www.eclipse.org/modeling/gmp/
http://www.microsoft.com/en-us/download/details.aspx?id=2379
http://www.omg.org/mof/
http://www.omg.org/cgi-bin/doc?ptc/2007-07-07

1. INTRODUCTION 1.2. Challenges

The fundamental research question in this PhD research work, can be stated
as:

is it possible to effectively develop a DSML’s compiler (to an arbitrary
computational platform), while bringing with it more correctness

guarantees than extensive testing?

Following the principles of MDD, we concluded that a DSML’s compiler is in fact
a translation, and that the translations could be specified using the terminology
of a model transformation language and executed by means of a generic model
transformation engine. In fact, this generic model transformation engine acts as
a meta-compiler, since it is able to produce a software language compiler from
an existing translation specification. Each translation specification describes how
the syntactic constructs of the source language are mapped into the syntactic con-
structs of the target language of the translation. Therefore, in principle, it should
be possible to also analyse these specifications in order to validate them.

1.2 Challenges

The first challenge we stepped into, while tackling our research question, was
to find the appropriate model transformation languages (MTLs) in order to pro-
vide the quality properties required for any DSML compiler, such as compiler’s
termination, confluence, and analysability. For instance, one characteristic of
the existing MTLs is that they were designed for other purposes besides build-
ing compilers—they also may be used for refining models, synchronize them, or
manage their versions. Even in the SLE, these MTLs can be used in different ways
such as executing, simulating, verifying, or even animating models, typically by
specifying inplace 7 model transformations as definitions of the operational se-
mantics of the DSML in which these models are expressed. Moreover, we can
also build DSML compilers with these MTLs, by specifying outplace model trans-
formations as translations specifications that, when run, are able to automatically
translate models expressed in a source language into other models expressed in a
target language. This multi-purpose characteristic appears to have a negative im-
pact on the properties that we can analyse in a model transformation expressed

7When run, an inplace model transformation transforms a given model M and modifies it,
whereas an outplace model transformation takes as input a given model M and produces another
model M’.

4

1. INTRODUCTION 1.2. Challenges

in such kind of MTLs. In general, the more expressive an MTL is (e.g., if it can
express recursion), the more difficult it is to analyse their transformation specifi-
cations in a reasonable way, and in some cases reach the limits of undecidability.
In other words, if we take a model expressed in a given modeling language, we
may not find a generic function that takes an infinite sized analysis space and
reduce it into a finite one—of course this produces a great impact in the proper-
ties that we can observe (or prove) in that model, as for instance the termination
property [Plu98]. The main reason for this is that this generic reduction function
is often associated with the semantic complexity of the modeling language (i.e.,
the semantics of the provided entities and operations of the modeling language).

Intuitively, the simpler the language is, the easiest it is to analyse and assure its
quality. An example of such MTLs is EMF Tiger [BET08]. While using EMF Tiger,
the language engineer can rely on certain properties proved by construction—
such as termination or confluence—but only for a particular kind of model trans-
formation patterns—in the general use of EMF Tiger, those properties are not
guaranteed.

During the PhD research work, we found that there are many ways of validat-
ing model transformation specifications. Most of them rely on testing—i.e., exe-
cuting a given model transformation specification with a concrete source model,
and then evaluate the results. Again, this implies extensive testing and its cover-
age is not complete [BDtmM+06]. Therefore, we explored alternative approaches
to validate model transformation specifications. One of such ways is to symbol-
ically execute the transformation specification, and then evaluate the correspon-
dences between symbolic patterns from source language, with symbolic patterns
from the target language.

However, we soon realized that the high expressiveness in the existing MTLs,
was hampering the exploration of the proposed approach. In fact, if we analyze a
transformation specification expressed in one of the existing MTLs by means of a
symbolic execution, we might stumble into an infinite symbolic space, which may
be impossible to lead into a valid conclusion. Therefore, we concluded that we
had to first design and build a completely new MTL with less expressive power
than the others, but still able to be used to specify and build (or prototype) a
DSML’s compiler.

The main challenge was then to design a syntax-to-syntax model transforma-
tion language (MTL) to specify translations that could be automatically validated.
Of course, we had to ensure that the resulting MTL is still usefull in in an SLE
context—i.e., it is expressive enough to automatically derive compilers for any

5

1. INTRODUCTION 1.3. Research Topics

(realistic) DSML, from those translation specifications. Notice that these transla-
tion specifications are expressed as syntax-to-syntax model transformations be-
tween two software languages: the source DSML, and the target language, which
is usually a programming language. Not restricted to compilations that are par-
ticularly intended for execution, these translations can also enable the reuse of
the capabilities offered by different kinds of computational platforms, such as
efficient analysis algorithms and data structures, simulation and visualization ca-
pabilities, and so on.

1.3 Research Topics

In order to address the above referred challenges, we had to focus in three main
research topics. The first, was the existing research on modeling language’s de-
sign, in what matters to the expressiveness of DSMLs. Here, we focused not only
in the cognitive aspects of the syntax of DSMLs, which produces a significant
impact in their usability, but also on the semantic aspects, which produces a sig-
nificant impact in the tractability of the existing analysis algorithms (i.e., DSML’s
analysability). The second, can be considered as derived from the first one, was
the existing research on formal models and formal languages to express lan-
guage’s semantics. Here, we focused not only on languages to express syntax-to-
syntax translations (i.e., perhaps the most intuitive use of model transformation
languages), but also on languages to express operational (small step) semantic
definitions. Finally, the third one, was the existing research on verification of
model transformations. Here we focused on which kind of verification tech-
niques that could be used in order to validate model transformations specifica-
tions, and verify compiler implementations based on those specifications.

1.4 Contribution Overview

During this PhD research work, we designed and built a new language called
DSLTrans [BLA+10] and its associated tools (editors and execution engine). In
order to avoid possible infinite symbolic spaces, we had to make sure that all
of the expressible translations in DSLTrans were terminating and confluent: we
achieved this by restricting DSLTrans’ expressiveness (such as avoiding recur-
sion), while assuring that DSLTrans was still useful in an SLE context. These
properties were determinant to provide to the DSLTrans’ translations the abil-
ity to be analyzed due to the finite size of the resulting translation’s symbolic

6

1. INTRODUCTION 1.4. Contribution Overview

execution space.

The resulting symbolic space for each translation specification, can be used
to search for intended (or non-intended) correspondences between symbolic pat-
terns from both source and target languages. This analysis can determine what
are all the possible relations between syntactic structures expressed in the source
DSML, and what are their translated versions expressed on the target language.
Therefore, in [LBA10], we developed a verification method (and its associated
checker) so that we are able to check, on any given model transformation ex-
pressed in DSLTrans, that a given correspondence between syntactic structures
of a source and a target language holds, or not. Furthermore, this verification
method involved the design of a small language to express these correspondences,
and pass them to the checker.

In order to automate the validation process of a language translation, we had
then to build up a way to generate an oracle that could automatically determine
the validity of every existing correspondence in the whole symbolic execution
space of that translation. In other words, when generated this oracle is supposed
to be able to automatically decide if both the source and target models on an ex-
isting correspondence have the same meaning. In order to formally describe this
decision procedure, we had to provide a definition of a notion of semantic equiv-
alence between arbitrary source and target languages, namely the Bisimulation
Equivalence [Par81]. This notion uses the operational semantic definitions of
both the source and target DSMLs in order to be able to conclude that two sen-
tences expressed in each of the languages have the same computational meaning.
In order to specify DSML’s operational semantic definitions, we designed and
implemented a new language called SOS, which enables the language engineer
to specify a DSML’s operational semantics by means of an algebraic semantic
domain, and a set of step rules that are able to mimic the computation steps of
evaluating a DSML’s sentence, in a platform independent fashion.

Based on the notion of Bisimulation Equivalence, we then developed a verifi-
cation method (and associated checker) that is able to use the above mentioned
SOS specifications of both source and target languages in order to automatically
validate any given translation expressed in DSLTrans. This is done by automati-
cally verifying the Bisimulation Equivalence relation between the source and tar-
get patterns on every existing correspondences found in the whole symbolic exe-
cution space of DSLTrans translation under validation.

For the sake of clarity, we provide mathematical formalizations of all of the
developed languages and verification methods based on graph theory and set

7

1. INTRODUCTION 1.5. Structure of this Thesis

theory. We used these formalizations to define how the symbolic execution space
of an arbitrary translation can be explored in order to validate it in w.r.t. the
defined SOS semantic definitions of both source and target languages involved
in that translation. In other words, a given translation might be semantically
wrong if a model in the source language do not have exactly the same meaning
after being translated to the target language — intuitively, a translation is valid
if it preserves the semantics of all models expressible in the source language of
the translation. Therefore, we provide a formal definition of what is semantic
preservation, and an algorithm that is able to check this preservation on a given
translation.

Finally, for the sake of soundness, we illustrate our approach with the anal-
ysis of two translations expressed in DSLTrans. In order to ease the comprehen-
sion of the approach, we selected Petri Nets to be the target language of both the
translations. We define the operational semantics of the two source languages
(i.e., State Machines Language and the Role Playing Games Language) and also
of the target language (i.e., the Petri Nets Language) with respect to reachability
properties. This means that once these two translations are proved to be cor-
rect (using our approach), then we know that at least all the possible reachability
properties will be preserved during the translation. This analysis capability on
meta-compilers establishes an analysable bridge, hence promoting interoper-
ability between arbitrary software languages, where quality properties (such as
reachability, safety, etc.) can be effectively analysed using adequate languages
and their respective engines.

1.5 Structure of this Thesis

In Chapter 2, we describe the context of this research work, and present what
are the main research trends and challenges related to the work of this thesis. In
Chapter 3, we give a theoretical overview of the approach while introducing an il-
lustrating example that will be used in the following two Chapters. In Chapter 4
we present the formal definitions of models, languages and also their syntactic
and semantic models. In Chapter 5, we show how to mechanically validate trans-
lations by either checking properties or using operational semantic definitions as
oracles. In Chapter 6, we present a real life case study and discuss the results of
this approach. Finally, in Chapter 7 we conclude and present future evolution on
the research on this subject, and possible impact of the contributions presented
on this thesis.

8

2
Background

In this chapter, we introduce the basic notions and concepts that will be used
throughout this thesis. In order to fully understand the work in this thesis, one
must first understand the notions of models, and the notion of languages to ex-
press those models. We will also introduce concepts that are involved when we
study and design any kind of language, namely its syntax and its semantics.
Moreover, whenever we talk about software languages in this thesis, it will be im-
portant to understand the systematic approach to engineer software languages.
Therefore, we discuss the most suitable language development processes, and
what are the language models involved in those processes. Finally, we drill down
into the notion of model transformations, that we will use as a language model,
in particular to (i) design and specify a language semantics; (ii) implement its exe-
cution engine; and (iii) validate this implementation w.r.t. the designed language
model.

2.1 Models and Languages

Despite the fact that the use of models in software engineering is starting to
gain momentum as a valuable solution to deal with its complexity, the notion
of model and its use in engineering (not only in software engineering) is indeed
very old [Fav04]. However, it might be difficult to agree a common definition
of model with other fields of study (e.g., business, mathematicians, etc.), since in

9

2. BACKGROUND 2.1. Models and Languages

software engineering the word model usually refers to an artifact, formulated in
a modeling language such as the Unified Modeling Language (UML), which de-
scribes a system and preferably its environment. Moreover, as shown by Thomas
Kühne in his paper ’What is a Model’ [Küh04] there exists a lot of work trying to
capture the essential features of models—i.e., what features an artifact needs to
possess in order to be considered a model in every sense of the word.

For now, let us just follow the standard definition of model. One of the defi-
nitions of model that is generally accepted can be found in Oxford Dictionaries 1:
’a simplified description, especially a mathematical one, of a system or process, to assist
calculations and predictions’. It then adds an example: ’a statistical model used for
predicting the survival rates of endangered species’.

2.1.1 Descriptions and Prescriptions

The above definition says that a model is a sentence that describes a real object
(which might be a system or a process). This description is always a result of
an interpretation of the observed phenomena on the described object. However,
that object might not yet exist—a model for an object that is intended to exist in
the future is called prescription, a recipe, or a specification. An example of a
specification can be a design, sketch or plan of a bridge before its construction.
If we build an object out of a specification, and make a new description for that
object, then we can say that the object is complying with the specification if the
description is not contradictory with that specification.

2.1.2 Levels of Detail (Abstractions)

The dictionary’s definition also says that a model is a ’simplified’ description,
which implies some notion of abstraction. For example, instead of describing
a physical object, we may be interested to describe a particular aspect in a class
of physical objects. In this abstract example, the effort of completely describing
the physical object is somehow ’simplified’, and the resulting model does not only
refers to that object in particular, but instead to a set of objects that fit the studied
aspect. This kind of models are called theories—i.e., they are descriptions which
use some universal quantifiers such as ’for all’, or ’always’ when referring to the
studied aspects in the objects; or directly referring to the studied class of objects—
as in the dictionary’s definition ’endangered species’. Typically, scientists take ad-
vantage of using high levels of abstraction during a modeling activity, so that the

1http://oxforddictionaries.com/

10

http://oxforddictionaries.com/

2. BACKGROUND 2.1. Models and Languages

resulting models (theories) that can then be used (as devices for prediction) to (as
the dictionary’s definition also say) ’assist on calculations and predictions’ about the
described object.

Choosing an adequate level of abstraction gives the ability to the modeler to
cope with the complexity of the object’s representation. The more simplified a
model is, the more easy it is to be understood, and analysed. In fact, the modeling
activity always involves to choose what is the most suitable level of detail to de-
scribe a given object. This choice determines in a model what will be explicit, and
what will remain implicit (or hidden in a rather undefined interpretation context).
Moreover, while dealing with the increasing complexity of modern software sys-
tems (e.g., avionics), the modeler is forced to multiply these modeling activities
through several orthogonal aspects of the intended software system. One exam-
ple of such kind of orthogonal aspects, are the security requirements versus the
functional requirements of a software system. Therefore, it is usual that while
engaging on these modeling activities, the modeler is forced to know and use
several different formalisms. This idea of having multiple formalisms (i.e., lan-
guages) during system’s modeling, in what is called multi-paradigm modeling
(MPM), was firstly introduced in [Van00] and explored in [PJM04]. Indeed, years
before [Mil93], Milner also rejected the idea that there can be a unique formal-
ism for describing all aspects of something as large and complex as concurrent
systems modelling. Instead, modelers naturally need many orthogonal levels of
description, different theories, and languages to express them.

2.1.3 Model’s Quality

We just defined above some notion of quality between models, namely the com-
pliance relation between a specification of an object and a description of the same
object. But what can we say about the quality of models w.r.t. the described ob-
jects? What makes a good model? To answer to these questions we must look
into two fundamental aspects: correctness and adequacy.

Regarding to the first aspect, we usually assert the correctness of a model that
describes a given object (or class of objects), according to its soundness and com-
pleteness w.r.t. that object. A model is said to be sound, if all of its predictions
are indeed observed in the real object (i.e., there are facts that were observed in
the object that support and confirm the model). Notice that the guarantees of
this soundness will obviously depend on both the level of abstraction used in
that model, and on the precision of the measurement instruments used to con-
firm or otherwise disprove it. Conversely, we say that a model of an object is

11

2. BACKGROUND 2.1. Models and Languages

complete, if and only if all of the observed phenomena on that object confirms or
do not contradict what is predicted by that model. Again the guarantees of this
completeness will directly depend on both the level of abstraction used in that
model, and on the precision of the measurement instruments used to confirm or
otherwise disprove it.

Regarding to the second aspect, we usually assert the adequacy of a model by
evaluating if that model is expressed in a suitable formalism with the appropri-
ate level of detail to be easily understood, and/or analysed. In other words, we
must measure, in a given model, the impact of the choice of terms to be explicit or
remain implicit, in the reader’s ability to read it, analyse it, and use it for his/her
calculations. Models are intended (by definition) to be ’simplified descriptions’ of
objects in reality. And ’simplified’ means that a good model is able to cope with the
complexity of the object under study, by just focusing in the essential terms and
ignoring the irrelevant ones. The cognitive aspects of models and consequently
the cognitive aspects of modeling languages are emerging research topics where
both the DSL’s evaluation techniques and best practices in domain specific mod-
eling activities are being studied [BAGB11a, BAGB11c, BAGB12].

To summarize, to assert a model’s quality, we must study (i) its relation with
the object that is being described by it; and (ii) its relation with the person (or
entity) that is reading it (and/or analyzing it).

2.1.4 Models expressed in a Language

When the definition from the dictionary says ’especially a mathematical one’, it
refers to the fact that most of these theories are expressed using the same set of
patterns used by mathematicians to describe their theories. Moreover, it is com-
mon to use other mathematical theories (e.g., the set theory) to describe a new
one. This says that usually, instead of a natural language, models are rather ex-
pressed in some kind of an artificial ’formal’ language which usually has its own
particular notation, such as mathematics. We then select the most adequate lan-
guage to express models according to the level of abstraction that we desire for
them (i.e., we choose what will be explicit terms, and what will remain implicit
terms in that model). Even inside mathematics, we can find a huge plethora
of different languages founded in mathematical theories, which give their users
particular notations and operations that can be very useful to study and develop
new models out of reality. An intuitive evidence of this is the expressiveness and
power of calculus given by matrices to both express and solve equation systems.
One of such notations are the Feynman diagrams, which were developed and

12

2. BACKGROUND 2.1. Models and Languages

used by the Nobel Prize-winning American physicist Richard Feynman in 1948,
in order to describe several rather complex models of sub-atomic particle interac-
tions that are usually expressed by means of extensive physics equations. In fact,
not only due to their cognitive capabilities, but also due to their extraordinary
rigor and precision, they are still used today to describe this kind of models (see
Figure 2.1).

Figure 2.1: Particle interactions described using Feynman diagrams.

Languages are vehicles to express models as their sentences. Notice however
that the same model can be expressed in many languages. We have seen before
that there are two kinds of relations that we must consider in models: their rela-
tions with the users, and with the described objects. Essentially, a language is a
means for communication between peers. For instance, two persons can commu-
nicate with each other by exchanging sentences. These sentences are composed
by signs in a particular order. According to the context of a conversation, these
sentences can have different interpretations. If the context is not clear, we call
these different interpretations as being ambiguous.

Semiotics, as being the study of signs and communication, is divided into
three parts: Pragmatics, Semantics and Syntax. These impact directly with the
ability of the models expressed in a given language to perform the above men-
tioned relations. The Pragmatics of a language deals with the impact that the
Signs used in every sentence of a given language have in the People (humans)
that use them. For instance, the above referred cognitive capabilities of the Feyn-
man diagrams are properties that are included in the Pragmatics of that language.
With proper evaluation according to the target group of users, we can compare
which language is most adequate to express a given model, considering several
dimensions such as productivity and usability (which includes asserting all of
the expressible model’s readability, its learning curve, etc.). The Semantics of a
language deals with the relations between the Terms (or Concepts) used in every
model of a given language, and the described objects. Moreover, each one of these
relations describes (all, or part of) the meaning of each Concept by saying how

13

2. BACKGROUND 2.1. Models and Languages

they can be interpreted (i.e., mapped) into real objects. In general, with proper
evaluation, we can assert if (all, or part of) the expressible models in a given lan-
guage are sound and/or complete w.r.t. the respective described objects. Finally,
the Syntax of a language deals with the relations among Terms (or Concepts)
used in every model of a given language. In particular, (i) the Abstract Syntax
of a language defines its set of Concepts and their inter-relationships; and (ii) the
Concrete Syntax of a language (already mentioned as ’notation’) defines its set
of Signs (these are symbolic representations of the Concepts for the language’s
users) and their relationship with the defined language Concepts. Also note that
the choice of the set of Signs on a Concrete Syntax of a language can directly
impact both the capability of human interpretation of the sentences expressed in
that language (i.e., its Pragmatics), and the capability of machine analysis of the
sentences expressed in that language (i.e., its Semantics).

The above description of Semiotics holds for any kind of communication be-
tween cognitive entities—i.e., entities that are able to use language and symbols
in order to communicate. This, of course, may involve the communication be-
tween humans, or between machines, or even between humans and machines.
The first ones are called natural languages, and the second ones are usually called
protocols. However in this thesis, we are mostly interested in the communication
between humans and machines, since it is where our definition of DSMLs best
fits: a language to provide bidirectional communication (i.e., interaction) between
humans and computers. Therefore, in this sense: (i) DSML’s Pragmatics usually
refers to the cognitive capabilities of a DSML in w.r.t. the capability of human cog-
nitive interpretation of that DSML’s sentences; and (ii) DSML’s Semantics usually
refers to the meaning of that DSML’s sentences in a computer system.

2.1.5 (Syntactic) Model of a Language

Both the Abstract Syntax and the Concrete Syntax of a language can be defined
by means of a grammar, which is a mathematical device of some sort that can
be used for either producing or recognizing the sentences of the language under
analysis. Grammars are used to model and formalize the syntax of languages.
Also, we can expect that a given language might have several different gram-
mars that recognize it. In this case, all of the defined grammars will recognize the
same input, but however produce different parse trees. Parse trees are trees that
contain the Abstract Syntax Concepts as they were recognized from the input.
Depending on the expressiveness of each language, we can find different types of

14

2. BACKGROUND 2.1. Models and Languages

grammars. In fact, Chomsky defined a hierarchy of languages based on the na-
ture of their respective grammars [Cho56, CS63]. For instance Type-3, Type-2 and
Type-1 are three categories of grammars that belong to this hierarchy. This means
that languages that are recognized by Type-3 grammars are also recognized by
Type-2 grammars, and that languages that are recognized by Type-2 grammars
are also recognized by Type-1 grammars, but not the opposite. Table 2.1 shows
the different types of grammars identified by Chomsky, and their respective ex-
pressiveness which is directly related with the power to recognize languages in
each language family. The most expressive and hence complex family of lan-
guages is the Recursively Enumerable languages, which only Type-0 grammars
are able to express. These grammars are totally unrestricted, which means that
there is not any general form to express them. Moreover, in order to recognize this
kind of languages one needs to have the expressive power of a Turing Machine.
The least expressive of all the languages are the ones that can be recognized using
a Type-3 grammar, and they are called Regular Languages. According to Chom-
sky, in order to recognize this kind of languages one needs to have the expressive
power of a finite state machine (FSM).

Grammar Language Recognizer
Type-0 Recursively Enumerable Unbounded Turing Machine
Type-1 Context-Sensitive Linear Bounded Automaton (LBA)
Type-2 Context-Free Pushdown Automaton (PDA)
Type-3 Regular Deterministic Finite Automaton (DFA)

Table 2.1: Chomsky Grammars and their recognizers.

Intuitively, the more expressive power a language has, the more difficult it
is to guarantee the correctness of their parsers. For instance, we know from
the Table 2.1 that the parsing procedure of a sentence of any Finite Language
(i.e., a Regular Language containing only a finite number of words) will always
terminate—given that the parsing procedure is equivalent to an FSM. However
this property is, in general, not decidable for other kinds of Languages. Simi-
lar properties can be decided for Context-Free Languages expressed in Type-2
grammars—e.g., it is not possible to decide, in general, if a given Type-1 grammar
generates any terminal strings at all, although it is decidable for Type-2 grammars
expressed for instance in the Backus Normal Form (BNF).

Despite the fact that these syntactic models were originally developed to model
and formalize the syntax of natural languages (such as English, or Italian), the
above presented forms are mostly used to describe the syntactic models of Soft-
ware Languages such as programming languages.

15

2. BACKGROUND 2.1. Models and Languages

2.1.6 Software Languages

As mentioned above, in our research, we particularly focus in languages that are
used as communication interfaces between humans and computers—i.e., User
Interfaces (UIs). Examples of UIs range from compilers to command-shells and
graphical applications. In each of those examples we can deduce the language
that is being used to perform the communication between humans and comput-
ers: in compilers we may have a programming language; in a command-shell
we may have a scripting language supported by the underlying Operating Sys-
tem (OS) in order to perform OS related tasks; and in a graphical application we
may have an application specific diagrammatic language, and so on. Moreover,
we argue that any UI is actually a realization of a language [BAGB11a], where
in this context a language—we call them Software Languages from now on—is
considered to be a theoretical object which rules what are the allowed terms, and
how they can be composed into the sentences involved in a particular human-
computer interaction. Notice, that languages can be deduced in two directions—
human-to-computer and computer-to-human—since the feedback from the com-
puter has to be given in such a way that it can be correctly interpreted by the
humans.

The first Software Languages were the ones that could be used for the humans
to interact with the first computers. These are called Programming Languages,
and their users are called Programmers. There exist several Programming Lan-
guages using several programming paradigms. In the Imperative Paradigm, pro-
gramming languages such as Assembly, Basic, C, or Object-Oriented (OO) Pro-
gramming languages such as C++ and Java, describes the computation steps (or
set of instructions) that the computer machine has to perform in a pre-determined
order. When these instructions are executed, they typically change the memory
of the computer machine, and usually it is not easy to track back (or get control
of) all of the changes and side-effects in the internal memory resulting from all
of the possible evaluations of those instructions considering any state that the
computer machine might have at some point in time. In programming languages
that use the Functional Paradigm, such as Lisp, or CaML, the computation steps
are described by means of functions that when evaluated call other functions or
data values in their arguments—i.e., each function called as a parameter of other
function is evaluated and rewritten as a constant value which is then passed as an
argument in order to evaluate the other function. This avoids the side-effects in
the internal memory by only allowing the representation of the computer mem-
ory by means of function arguments. In programming languages that use the

16

2. BACKGROUND 2.1. Models and Languages

Declarative Paradigm, such as Prolog, the computation steps are described by
means of clauses (i.e, rewrite rules or simply facts), that the evaluation engine
must satisfy. In this case the program can be considered as a set of equations
or constraints, and the evaluation engine can be seen as a constraint solver, that
searches for the solutions on those equations. Again there are no side-effects on
the internal memory of the computer machine, and here there is not even any pre-
determined order from which the clauses are to be evaluated—i.e., it is said that
the evaluation order is non-deterministic. Even so, these languages that use this
Declarative Paradigm are still considered to be programming languages, because
they can be generally used to program a computer.

However, there exist languages, such as Modeling Languages [Küh06], that
no longer can be used to directly program a computer. Instead, these were built
in order to be able to express the models with adequate notations. There exist
Modeling Languages built and used for different purposes and reasons. Some,
General Purpose, cover a wide spectrum of applications, such as the Unified
Modeling Language (UML) or SysML, both proposed by the Object Management
Group (OMG 2), where the object of its descriptions is essentially software sys-
tems. Given the abstract level of these descriptions, and their general scope, it is
generally not possible to use these languages in order to automatically synthesize
a complete software system: in order to do so, one has to be able to include plat-
form information, which is done by means of a programming language. There-
fore, these descriptions can only be used as specification from a software architect
or designer to a programmer that will implement the software system using a
programming language (i.e., it can only be used as a means for human-to-human
communication).

Domain-Specific Modeling Languages (DSMLs), are Software Languages spe-
cially suited for the needs of a particular domain that needs specialized compu-
tational tool support— typically in order to increase the productivity in that do-
main, not only by means of a formal language—i.e., also as a means for human-to-
human communication, but also by means of their specialized analysers, check-
ers, simulators, automated code generators, etc.—i.e, as a means for human-
to-machine communication. This kind of languages emerged in order to cope
with the growing of both essential and accidental complexity in software engineer-
ing [Jr.75]. Besides having to provide solutions to solve a class of essential prob-
lems from a given domain (which are sometimes very complex to learn, such as

2http://www.omg.org

17

http://www.omg.org

2. BACKGROUND 2.2. Software Language Engineering

the rules and technical jargon found in domains like the Physics Computing, Fi-
nancial Domain, among others), the Programmer has also to deal with the acciden-
tal complexity of the used computer technology—e.g., the use of programming
languages (i.e., using a low level of abstraction in their sentences), while having
to integrate and manage a wide plethora of different tools and libraries. These
languages help realizing the MPM [PJM04] approach which follows the princi-
ples of User-Centered Design (UCD) [JIMK03]. This promising divide-and-conquer
idea tries to break down the increasing complexity in software engineering by
having multiple view points to look at any existing (or intended) object/artifact
in multiple perspectives simultaneously, while avoiding the existence of any logi-
cal contradictions between those viewpoints. These different viewpoints can then
be realized by means of several DSMLs, hence providing the end-users—i.e., the
modelers involved in a DSM activity—with a pragmatic and usable way to un-
derstand their descriptions w.r.t. their particular viewpoints. Each DSML cap-
tures the occurrence of reusable patterns in a given domain, while describing an
artifact in a particular perspective (i.e., limited to a given viewpoint or domain fo-
cus); and provides to the end-users with a pragmatic way to apply these reusable
patterns in a controlled manner.

2.2 Software Language Engineering

A good DSML is hard to build since it requires both domain knowledge and
language development expertise, and few people have both[MHS05]. The activ-
ity of DSML’s validation is not a trivial task, and it can be both expensive and
time consuming (mostly because it involves humans). Software Language En-
gineering (SLE) is the application of a systematic, disciplined and quantifiable
approach to the development, usage, and maintenance of software languages.
According to [MHS05] the Language life cycle consists of a set of phases, namely:
Decision; Domain Analysis; Design; Implementation, Verification and Validation.
In [HVV08] adds Deployment; and Maintenance to this process. SLE as a system-
atic approach to the construction of DSMLs is becoming a mature activity, build-
ing upon the collective experience of a growing community, and the increasing
availability of supporting tools [Kle09]. A typical SLE process starts with the De-
cision and Domain Engineering phases, in order to elicit the domain concepts.
The following step is to design the language, capturing the referred concepts and
their relationships. Then, the software language is implemented which involves

18

2. BACKGROUND 2.2. Software Language Engineering

implementing the editors of the language, the execution engines, debugging sys-
tems, type checkers, and so on. Then, the language is validated and verified, and
finally, the language is documented and deployed. Furthermore, as any software
engineering process, the language’s life cycle also includes the maintenance and
evolution, and retirement phases.

2.2.1 Decision and Domain Analysis of a Software Language

In the Decision phase, we also elicit the requirements of the to be built Software
Language in order to answer questions such as: Do we really need a new Software
Language? This does not differ so much from deciding if it is reasonable to build
a new product line, since we have to take into account the reuse factor of existing
products that can now (with a new software language) be automatically gener-
ated and verified, versus the whole cost of building a completely new software
language. The Domain Analysis phase involves a thorough research in the ter-
minology used in the domain, by looking into existing documentation such as
Problem and Solution Descriptions. The rules of the domain under study may be
either implicitly or explicitly defined, therefore we usually also need to perform
informal interviews with the experts of the domain, and a survey of the existing
tools such as: general purpose editors, simulators, compilers/interpreters, and
general purpose execution engines (e.g., Java Virtual Machine). This particular
kind of analysis, also called Co-Domain Analysis, involves the analysis of the
variability at the level of the implementation (target) platforms. Here, we study
the target platform variability, the same way we do for Software Product Lines.
This variability model can be expressed by means of Feature Models using a Fea-
ture Model language [CHE04].

Based on these kinds of analysis, we have different methods of designing a
DSML [Kle09]. That is, if we perform an analysis on the names of reusable com-
ponents (in reusable infrastructures), and the reusable data structures and meth-
ods from existing APIs, and figure out all of the possible ways to combine them
in a meaningful way, then we can infer our DSML from those reusable infrastruc-
tures. This is called the bottom-up method of designing DSMLs. This method
may however generate languages that lack generality in the capability of solv-
ing any other class of problems from that domain. A top-down method lies in
completing the domain analysis phase that is behind the existing reusable infras-
tructure, by discarding any existing implementation and focusing only on the
complete description and categorization of the class of problems from which the
users will use the DSML under design. In some domains this can be hard, since

19

2. BACKGROUND 2.2. Software Language Engineering

the domain of the problem might not be fully bounded (categorized)—i.e., there
may exist combinations of sentences which has no agreed meaning, or still un-
der research. The effectiveness of these design methods will therefore depend on
the domain under analysis. In practice, it is more usual that a DSML is designed
using some sort of a combination of both bottom-up and top-down approaches.

2.2.2 Design Models of a Software Language

Regardless of the used method, in the Design phase, the language engineer spec-
ifies both the syntax and the semantics of his/her language, given the previous
output resulting from both the Domain and Co-Domain Analysis. In what mat-
ters to the syntactic models of a Software Language, there exist several notations
and languages that enable the specification of the syntax of a language. In partic-
ular, the already mentioned Backus-Naur Form (BNF) is a formalism that allows
the specification of the structural shape of the language’s sentences by means of
a set of rewrite rules where we define the terminal and non-terminal symbols of
the language. These language symbols are manipulated only according to what
is allowed and specified in those rules, hence defining the syntax of the language
under design. Other notations such as the MOF-based metamodels also allows
the language engineer to specify the syntactic structure of his/her language. In
this case, the space of all possible instances of a given language—i.e., the space
of all of its valid sentences—is defined by means of an UML class-diagram like
model called metamodel. Since these metamodels only deal with instances, typ-
ically they are used to only define the abstract syntax of the language under
design. The metamodels can however be annotated with the required concrete
syntax symbols, which can be either textual or diagrammatic. Moreover, it is said
that the very syntax of the MOF 3 language which allows the specification of these
metamodels is also defined by means of a metamodel. There are several language
workbenches that use these notions of metamodels and conforming models. Per-
haps the most popular is the Eclipse Modeling Framework, which uses a variant
of these MOF-based metamodels called ECore4. In this tool, in particular, both
models and metamodels are expressed in the XML Metadata Interchange (XMI)
format, which is a standard also proposed by the OMG. The use of this format en-
ables the interoperability between different software applications, as happens in
integrated development environments (IDEs) such as software language editors.
Other important advantage of having explicit models (persisted in XMI or XML

3Meta-Object Facility is an OMG standard.
4http://www.eclipse.org/modeling/emf/?project=emf

20

http://www.eclipse.org/modeling/emf/?project=emf

2. BACKGROUND 2.2. Software Language Engineering

format) of software applications, is that it turns out to be more easy to inspect,
perform changes or manage the application’s data (i.e., its parameters) either
manually or by other applications. Moreover, these tools manage models as be-
ing graphs, while using either relational theory as in relational databases [Dat04],
or graph theory [Roz97]. Finally, from these syntactic definitions, these language
workbenches are able to automatically prototype either graphical or textual edi-
tors for the DSMLs under development, which gives to the SLE a nice validation
step during the design phase of a DSML.

In what matters to the semantic models of a Software Language, the Software
Language engineer has to perform several choices on his/her language design.
First of all, one has to choose what are the most appropriate computation mod-
els in order to define the meaning of the language under design’s sentences, and
for these there exists several models of computation [Fer09] such as sequential
computation, several concurrency models, etc. The choice of what is the most
appropriate computation model will depend on what is the ultimate purpose
of our DSML. We can build a language to serve multiple purposes such as ex-
ecution (which involves choosing from several possible execution platforms and
their respective programming languages), optimisation, simulation, and analysis
(which involves static analysis such as type checking, or dynamic analysis such
as model checking). For instance, if the intention is to design the execution se-
mantics of a language, then the chosen model of computation will have enough
detail to precisely explain what is the meaning of each sentence of the language
under design by means of computation steps. If otherwise, the intention is to
design a semantics for providing a sound analysis of a language, then we can
have courser models such as: (i) non-deterministic computation models, where
some computation choices are left underspecified, allowing for the analysis al-
gorithms to automatically explore all of the possible choices while searching for
possible inconsistencies or errors in the specified sentences; or (ii) stochastic com-
putation models, where we assign probability values to each possible choice in
our language, so that we are then able to automatically compute what are the
most probable outcomes of the computation of any given sentence expressed in
our language under design. Depending on the chosen computation model, the
software language engineer then chooses the most appropriate notation to give
semantics to his/her language. Again, there are several ways to assign semantics
to a software language. Perhaps the most intuitive way to describe the semantics
of a software language, is by presenting pertinent examples of the language, and
then explaining its meaning in an informal way (i.e., what is the computational

21

2. BACKGROUND 2.2. Software Language Engineering

effect of that particular example)—this is also called natural semantics. A more
precise way to specify language’s semantics is to formally describe by means of a
set of inference rules, the individual computation steps that the interpretation of
a given construct of the language will produce in a symbolic representation of the
current state of a virtual (abstract) computer—this is usually called the structural
operational semantics [Plo04], SOS, or also small-step semantics. Another for-
mal way to specify language’s semantics is called denotational semantics, where
each syntactic construct of the language is mapped into mathematical values by
means of a set of equations. This mapping is again conditioned on a symbolic
representation of the current state of a virtual (abstract) computation system. Al-
though formal and precise, these specifications are indeed models. In fact they
are abstract enough to provide some degree of platform independence, which
means that with this kind of specifications, we do not compromise the meaning
of the language under design with the programming language used in the under-
lying platform that will ultimately interpret, execute or analyse our language’s
sentences. However, there is a special version of denotational semantics, where
we map each syntactic construct of our language into syntactic constructs of an-
other language, instead of mathematics—this version is called source-to-source
translations.

2.2.3 Implementation of a Software Language

After the Design phase, the language engineer uses both of the defined syn-
tactic and semantic models to implement his/her Software Language. This is
done in what is called the Implementation phase. Usually, the implementa-
tion of a DSML can be divided into the implementation of the language’s edi-
tor, and the implementation of the language’s interpreter engine or a language’s
compiler. The language’s editor is a software program that allows the users to
specify DSML’s sentences, which can be textual, visual/diagrammatic, or both.
Moreover, the language’s editor implements the parser procedure that builds and
stores in memory an abstract syntactic tree (AST) that internally represents the in-
put sentence from the user. The language’s execution engine, is a program that
is able to dynamically process the internally stored AST and interpret it. Alterna-
tively, the language’s compiler can take this internally stored AST and generate
source code expressed in a programming language that can be later on executed.
Typically both of the language’s interpreter and the compiler is programmed by
the software language engineer using a programming pattern called the visitor
pattern. The idea here is to ’visit’ each part of the internally stored AST and call

22

2. BACKGROUND 2.2. Software Language Engineering

(at each node of the tree) some procedures according to the defined language’s
semantic definitions. Typically, with these procedures a compiler directly imple-
ments source-to-source translation definitions of a DSML, and the interpreter
directly implements the structural operational semantics definitions of a DSML.
In the end of the implementation, the language developer has to interpret these
semantic models and add additional details into it. These details are purely plat-
form dependent information, but also essential so that the interpreter (or the re-
sult of the compilation) is able to correctly execute the DSML’s sentences as de-
fined in its semantics definition. Therefore, depending on how abstract and un-
derspecified are these semantic models, there will be several degrees of freedom
in the language developer’s interpretation of these models.

The final phases of the language engineering process consists in the Valida-
tion and Verification phases. In the validation phase, the language engineer tries
to assert if the built DSML is the right one. To do so, he/she performs an experi-
mental evaluation of the built DSML’s expressiveness and usability, which in turn
involves to evaluate other aspects such as the productivity and effectiveness re-
sulting from using the DSML under evaluation. The results’ accuracy from this
evaluation strongly depends on the active participation of real users or domain
experts while actually using the DSML’s implementation [BAGB11a, BAGB11b].

2.2.4 Verification and Validation of a Language

In software engineering in general, the verification and validation phase can how-
ever occur during the software development process, and even at its early phases.
In particular, during the Design phase, the design models can be checked by
means of specialized model checking tools [JGP99]. With these tools it is pos-
sible to check if the design models comply with certain quality properties, such
as safety properties or reachability properties (i.e., the ability of the system to
reach some state), hence validating the system under development even before
its implementation.

Once the design model of a system is validated with respect to a set of qual-
ity properties, the software engineer must guarantee that the actual system im-
plementation still has these properties—this is called Software Verification—which
means that the software engineer asserts if he/she built the system correctly with
respect to its design model. Notice that saying that a software implementation
is verified does not mean that the product (as a whole, including its concepts,
and its end-use) is validated, which is something usually done according to the
end users. Hence, this is no different with DSMLs’ implementations as they are

23

2. BACKGROUND 2.2. Software Language Engineering

also software products. Nevertheless, software verification is one of the most
important activities in what respects to assuring the quality of software.

There are software development methodologies such as VDM [MB97] or the
B method [Abr96] that promotes the development of systems by successive re-
finements from design level models to implementation level models. The idea
is to perform a special kind of safe refinements on high-level design models into
lower-level models, so that the set of already proved quality properties on the ini-
tial design models are preserved. The proof of this preservation can be achieved
by construction with the help of theorem provers such as PVS [MB97]. These
methods can however be painful to be used in the practice of software engineer-
ing (and in particular in a SLE process), since they require special (formal) ex-
pertise from software engineers (which are usually programmers), and also due
to the fact that typically the ’already proven’ quality properties themselves have
also to be somehow refined.

In the practice of SLE, the validation of software languages is usually per-
formed by means of testing. However, if the SLE provides formal representa-
tion of the language’s requirements, then testing can be used in order to perform
its verification. For instance, based on the syntactic model of a language as the
language’s requirements, we can test the language’s editor. Intuitively, testing
involves stimulating a software implementation and observing its results while
comparing them with the language’s requirements. An oracle is an automatic
decider/procedure which is able to interpret the results observed in a given test,
and use the language’s requirements in order to automatically decide if that test
should either succeed or fail in a correct implementation. For instance, in or-
der to consider an implementation to be correct, tests that are supposed to fail
(e.g., failing tests that check safety properties) should not be observed by the or-
acle. However depending on both the size and the complexity of a system under
test (SUT), the required number of tests to be applied on it in order to be able
to give a reasonable decision about the SUT’s correctness, can easily be unfea-
sible to be generated or applied in practice of a typical system’s testing. Model
based testing (MBT) techniques are being developed and applied in order to solve
this problem with relative success in testing software systems in general. The
main idea is that, with these techniques, not all but pertinent tests (and/or re-
spective oracles) can be automatically generated (and/or automatically selected)
based on the specified models of the implementations (and/or models of their
requirements) [UL07]. These techniques are also being researched and applied
to test DSMLs’ implementations, in particular in order to test DSML’s editors

24

2. BACKGROUND 2.2. Software Language Engineering

with respect to their metamodel definitions [MPP08, MP10]. MBT techniques are
compatible to be used during the DSML’s verification since typically, the devel-
oped DSML is verified for functional problems by extensively testing both of the
language’s editor and interpreter engine (or compiler), based on their respective
syntactic and semantic models. In particular, in what respects to the language’s
editor, the testing activity verifies if the implemented editor is correct and com-
plies with respect to the defined syntactic models for that language. For testing
a DSML’s editor, the language engineer (or tester) uses the editor to express all
of the language’s syntactic constructs and some of its combinations that he/she
finds more relevant in order to find problems. Similarly, the implemented in-
terpreter engine (or compiler) is also verified in order to assess that it was im-
plemented according to the respective DSML’s semantic model. This verification
is also done by means of extensive testing. Again the language tester expresses
DSML’s sentences that contains all of the language’s syntactic constructs, and
then check if their behaviour on the system is what it was expected in the de-
fined DSML’s semantic model. Depending on how abstract and underspecified
are these semantic models, the more difficult is to assert its correctness.

Notice that any reasonable DSML produces an infinite amount of sentences,
therefore to perform exhaustive testing of both of the DSML’s editor and its in-
terpreter engine (or compiler), virtually means to generate an infinite amount of
tests—one for each sentence (which in practice it is simply not possible). More-
over, in order to test a single sentence, we must also observe its effect in a com-
puter machine (or system), so that we can decide about its correctness. However,
depending on the semantics of the DSML, there might be sentences which the
size of their effect in a computer can not be observed and compared, even in a
correct implementation. Nevertheless, this problem can be somehow diminished
in some kinds of software languages. For instance, given the large years of use
of general purpose programming languages such as Java and C, and the help of
large communities of their intensive users (i.e., programmers in the software in-
dustry), the applied test coverage on testing the implementations of this kind of
software languages can reach an acceptable rate.

25

2. BACKGROUND 2.2. Software Language Engineering

2.2.5 Analysability of a Software Language

Intuitively, the ability to analyse models with respect to a given property strongly
depends on the expressiveness of the underlying modeling language where we
express them. It is well understood that different languages have different ex-
pressive powers, and the quality properties that languages can offer in their gen-
eral use (e.g., confluence and termination) strongly depend on their expressive
power. For instance, studies in a particular kind of languages called the pro-
cess calculi algebras [Par08] indicate that while using recursion, process calculi
algebras present different properties depending on how and what we restrict (or
allow) them to express. However, the very use of powerful syntactic constructs
such as recursion can stop us to even be able to compare between languages. For
example, in general, formalizing translations between process calculi algebras is
far from trivial, and can in some particular cases even become impossible [Gor10].
Another example is the model checker SPIN which is more suitable for modeling
and verifying distributed systems, while the model checker PRISM is specifically
designed for probabilistic systems [ASMZS11]. Moreover, while some program-
ming languages provide type checking mechanisms that are able to automati-
cally validate if the specified concepts in the programs are consistent with each
other [Pie02], there exist modeling languages which modeling concepts can be
also typed, and enable the expression of design models which can then be stati-
cally checked by means of constraint solvers, according to a set of pre-established
design rules (expressed for instance in OCL 5, or Alloy [Jac06]).

2.2.6 Model-driven development of Software Languages

We defined the language engineering process, as being a process that inevitably
uses models—both syntactic models and semantic models—of the software lan-
guage under development. However, traditional methods used in software lan-
guage engineering as described in [Fow05], do not necessarily use the presented
notions of models of languages. For example, it is possible to build software
languages by: (i) extending from other languages, while implicitly reusing their
syntax or semantics (these are called internal DSLs); (ii) using macro definitions
in programming languages such as C; (iii) defining new type definitions and their
syntax in programming languages such as Ruby; (iv) using stereotyped UML as
language-type definitions.

5http://www.omg.org/technology/documents/modeling_spec_catalog.htm#
OCL

26

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL

2. BACKGROUND 2.2. Software Language Engineering

Nevertheless, traditional methods used in SLE that do use models, typically
also use grammar specifications of the software languages under development
as syntactic models [Fow05]. Then, based on the defined grammar, and using
parser generator tools (such as yacc 6 or javacc 7), the software language engi-
neer is able to automatically generate the code that implements a parser which
automatically process the input data (i.e., the input sentences) according to the
defined language’s grammar. As mentioned before in this section, the parser is
then able to build an internal abstract syntax tree (AST) in a program’s memory
based on the data read/loaded from an input stream. However, from here, the
SLE typically has to write his/her own AST processor from scratch.

The need to have tools that are able to automatically process this AST tree,
based on the semantic models of languages, was recognized by the research com-
munity that focus on Model-driven engineering (MDE). MDE is a software devel-
opment methodology that uses explicit interchangeable descriptions (models) of
the software artifacts as first class entities during the whole software engineering
process, hence promoting reusability and analysability of all the used software
artifacts and even their models. Moreover, MDE focuses on lowering the gap be-
tween domain specific models and computing (or algorithmic) concepts, by for
instance, providing explicit models of languages (i.e., both syntactic and semantic
models) instead of focusing directly on their implementations (i.e., their editors
and interpreter engines or compilers). The main advantage of using models to de-
scribe software artifacts during software engineering is to be able to reason and
analyse their correctness, at an appropriate level of abstraction. The reasoning
ability also enables important software management decisions, such as identi-
fying possible reuse strategies or refactoring, which can be an effective way of
lowering the complexity of the whole development process.

However, there is an associated cost in using models of software instead of
implementing it directly. For instance in the presented software engineering pro-
cess of languages, this cost comes directly from their specification in the Design
phase, to the challenge of implementing them in the Implementation phase, and
further verify that their implementation is correct with respect to them in the Ver-
ification phase. This happens due to the fact that there is a natural clash between
the formal definition of software languages, its concepts, and theorems—which

6http://www.techworld.com.au/article/252319/a-z_programming_
languages_yacc/

7http://javacc.java.net/

27

http://www.techworld.com.au/article/252319/a-z_programming_languages_yacc/
http://www.techworld.com.au/article/252319/a-z_programming_languages_yacc/
http://javacc.java.net/

2. BACKGROUND 2.2. Software Language Engineering

is usually done by mathematicians, computer scientists, or gurus—and their im-
plementation and verification—which is done by regular software engineers (de-
velopers and testers).

A similar software development methodology named Model Driven Devel-
opment (MDD) tries to completely get rid of this gap by first focusing on the soft-
ware design models [FR07], such as the ones presented for Software Languages
in the Design phase, and relying on the machine alone to completely generate the
implementation code from those design artifacts. In MDD, most decisions taken
in the code generation are specified by software designers (instead of software
developers) either directly in the source models, or by means of model transfor-
mations [Sel03].

The so called CASE (Computer-Aided Software Engineering) tools 8, consti-
tuted one of the first attempts of the software industry to lower this gap. These
tools enable the specification of the intended software systems by using general
purpose modeling languages (such as UML), and the automatic generation of
code based on those specifications 9. However, the effectiveness of these tools is
limited due to several reasons. On the one hand, most of these tools only generate
code skeletons (i.e., the class definitions and component interfaces, instead of the
full code). On the other hand, the class of software systems that can be targeted
by these tools is rather small.

In the particular case of Software Language Engineering process, there exists a
wide range of MDD tools for supporting Language editor’s implementation (also
known as language workbenches [Fow05]) that become specialized in the rapid
prototyping of textual and graphical/diagrammatic editors for DSMLs. For in-
stance, on the one hand, Language Workbenches such as Microsoft DSLTools, the
Eclipse’s Graphical Modeling Framework (GMF) 10, and Meta-Edit are special-
ized in automatically prototyping/generating graphical editors for DSMLs [VT11].
On the other hand, Language Workbenches such as the Meta Programming Sys-
tem (MPS) [PP08], or the Eclipse’s EMFText [HJK+09], to name a few, are special-
ized in automatically prototyping/generating textual editors for DSMLs. All of
the aforementioned language workbenches (among others) are able to automat-
ically generate/prototype the DSML’s editor implementations from high-level

8http://www.unl.csi.cuny.edu/faqs/software-enginering/tools.html
9http://ithandbook.ffiec.gov/it-booklets/development-and-acquisition/

development-procedures/software-development-techniques/
computer-aided-software-engineering.aspx

10http://www.eclipse.org/modeling/gmp/

28

http://www.unl.csi.cuny.edu/faqs/software-enginering/tools.html
http://ithandbook.ffiec.gov/it-booklets/development-and-acquisition/development-procedures/software-development-techniques/computer-aided-software-engineering.aspx
http://ithandbook.ffiec.gov/it-booklets/development-and-acquisition/development-procedures/software-development-techniques/computer-aided-software-engineering.aspx
http://ithandbook.ffiec.gov/it-booklets/development-and-acquisition/development-procedures/software-development-techniques/computer-aided-software-engineering.aspx
http://www.eclipse.org/modeling/gmp/

2. BACKGROUND 2.2. Software Language Engineering

syntactic descriptions of the languages such as BNF grammars or metamodels, with-
out any additional human intervention. Moreover, these language workbenches
are also called metamodeling tools. This means that they realize the four-layered
metamodeling architecture proposed by the Objects Management Group (OMG),
namely the Meta-Object Facility (MOF) 11. This modeling architecture is com-
posed of four layers: meta-metamodels, metamodels, models and data, where
the artifacts on the lower layers are instantiations of the immediate upper layers.

M3: Meta-Metamodel

M2: Metamodel

M1: Model

M0: Data

EMF’s
ECore

Petri Nets
DSML

p1 p2

p3 p4

t1

t2

p1=1
p2=1
p3=0
p4=0
t1=1
t2=0

p1=0
p2=0
p3=1
p4=1
t1=0
t2=1

«instanceOf»

«instanceOf»

«instanceOf»

«instanceOf»

UML

«instanceOf»

«instanceOf»

p1=0
p2=0
p3=0
p4=0
t1=0
t2=0

«instanceOf»«instanceOf» «instanceOf»

Figure 2.2: The Eclipse’s GMF instantiation of the MOF’s architecture.

As an example, Figure 2.2 depicts how the Eclipse’s GMF instantiates the
MOF’s architecture. The GMF is in turn, based on the Eclipse Modeling Frame-
work (EMF) where the meta-metamodel ECore is defined (see layer M3 in the
Figure 2.2). The ECore is a class diagram that rules the kind of well-formed meta-
models that one can use to define new DSMLs in the EMF. Thus, based on this
ECore specification, the EMF provides specific tools that allow the language en-
gineers to define metamodels for their DSMLs. Based on the specified ECore-
compliant metamodel for the DSML, the GMF is able to automatically generate
a graphical editor for that DSML. In the example of Figure 2.2, the language en-
gineer first specified the metamodel for the Petri Nets DSML [Mur89] (i.e., layer

11http://www.omg.org/spec/MOF/2.0/PDF/

29

http://www.omg.org/spec/MOF/2.0/PDF/

2. BACKGROUND 2.2. Software Language Engineering

M2), and then automatically generated a graphical editor that enabled the spec-
ification of a Petri Net model (see the diagram at layer M1), composed of four
places (labeled p1, p2, etc.), and two transitions (labeled t1 and t2). Finally, the
models edited by the graphical editor are regular XML/XMI files compliant with
the Petri Nets metamodel, and therefore they can be easily processed (i.e., loaded
and managed) by using the EMF’s Java API. In the example of Figure 2.2, the
language engineer built an interpreter to evaluate all the possible configurations
of all possible models expressed in the Petri Nets DSML. The result of this eval-
uation for the shown Petri Net model is shown in the boxes presented at layer
M0, where each configuration shows the number of tokens at each place, and the
enabled transitions are marked with ’1’, whereas the disabled ones are marked
with ’0’. Notice also that according to the OMG’s terminology, Figure 2.2 depicts
the instance of relations (by means of dashed arrows) between the different layers.
Throughout this thesis, we will refine this instance of notion, and use instead the
conforms to relation between model and metamodel (i.e., layers M1 and M2 re-
spectively), and provide a formal definition of an algorithm that is able to check
this relation.

In order to evaluate the DSML’s sentences, the language engineer can, instead
of building interpreters or compilers from scratch, benefit from help of special-
ized languages and supporting tools. Typically, code generation is best specified
using a general programming language by means of code generation APIs such
as the System.Reflection.Emit from the .NET’s C# 12. However, a pure MDD
process would even use models to describe the code generation of the DSML ed-
itor’s implementation in a declarative way [EEHT05]. For instance, code genera-
tion tools, such as XPand or JET 13 provide a template based language so that the
language engineer is able to specify transformations in order to produce textual
code from high level specifications.

An important evidence that the integration of these tools in a sound MDD
methodology can actually deal with the increasing software’s complexity was re-
alized with the BATICS project [RAB+09]. This project explored the MDD advan-
tages in what concerns to usability and model verification (by means of model
checking), and extensibility (by means of reuse of platform independent model
transformations) of DSMLs.

12http://msdn.microsoft.com/en-us/library/system.reflection.emit.aspx
13http://www.eclipse.org/modeling/m2t/

30

http://msdn.microsoft.com/en-us/library/system.reflection.emit.aspx
http://www.eclipse.org/modeling/m2t/

2. BACKGROUND 2.2. Software Language Engineering

2.2.7 Model Transformation Languages

Model Transformations are models that are able to manipulate other models in a
safe and structured way. They are able to describe code generation by means of
source-to-source translation specifications. Model transformations inherits their
expressiveness from the graph grammars theory [Roz97]. A model transforma-
tion describes which models are acceptable as input of the transformation, and
if appropriate what models it may produce as output of the transformation, by
means of a set of rules—called the transformation rules. In the Figure 2.3, we
present an example of such rule expressed in an MTL called EMF Tiger [BET08].
Acceptable input models are usually expressed as a pattern (written using the
concepts from the source language metamodel) called the match pattern, or also
the left-hand-side (LHS) of the transformation rule; and the produced output mod-
els are expressed as another pattern (written using the concepts from the target
language metamodel) called the apply pattern, or also the right-hand-side (RHS)
of the transformation rule. Additionally, one can also express negative application
conditions (NACs) that extend the expressiveness of match patterns by restricting
the match conditions of the input models. The rule shown in Figure 2.3, is actually
creating a new Petri Net transition for every next relation found on any element
of type ActivityDiagram, where both the NAC condition and the Edge element are
used in order to avoid infinite recursive application of the rule.

The authors of EMF Tiger provided a complete formalization of their language
(enabling further implementations in other platforms), including all concepts in-
volved in every transformation expressed in their MTL. Moreover, based on this
formalization, the authors were able to specify the particular kind of sentences in
which we can decide if they are terminating, or if their results are confluent.

Figure 5: The rule AddTransition

that the Next relation has not yet been converted. The LHS of this rule consists of four different
objects. If you want to match the diagram and let the rest of the match be completed automatically
you would enter the following code:

Vector mappings = new Vector();

mappings.add(null);

mappings.add(null);

mappings.add(fixedDiagramEObject);

mappings.add(null);

In this case AGG will try to find a match for the Next, ActivityDiagram and PetriNet objects
while keeping the Diagram fixed. You can also pass null for the whole vector so a random match
will be chosen. The last applyRule parameter Parameter is used to set the input parameters for
the rule as defined in the EMT file. Input parameter can be defined in the following way:

Parameter parameter = new Parameter();

parameter.addParameter(String name, EObject value, String type);

In case of primitive types, for example:

parameter.addIntParameter(String name, int value);

A valid code block for defining the input parameter for the rule AddTransition would look like
this:

Parameter parameter = new Parameter();

parameter.add("newName", "transition1", "String");

After defining the match and the input parameters, the rule can be applied by:

interpreter.applyRule(root, "AddTransition", mapping, parameter);

8

Figure 2.3: A transformation rule expressed in EMF Tiger.

31

2. BACKGROUND 2.2. Software Language Engineering

A model transformation may be written in a general purpose programming
language such as Java or C, however specialised model transformation languages
are also available. There exist a wide range of Model Transformation languages
(MTLs) and their supporting tools, such as Operational QVT, VIATRA2, and
ATL [VABKP11], among others, that are able to express such model transforma-
tions specifications and execute them automatically. Therefore, we can also use
these languages in order to automatically generate/prototype the DSML’s inter-
preter engine or compiler. However, there is still a conceptual gap on using the
available MTLs in order to describe DSML’s semantic specifications such as struc-
tured operational semantics or source-to-source translations. This is due the fact that
the available MTLs were not specifically developed to specify the DSML’s seman-
tics and automatically generate its implementations. Instead they were designed
to enable the specification of many kinds of model transformations that serve
many different purposes other than code synthesis, such as model refinement,
consistency or evolution.

In practice, according to their different purposes, MTL’s expressiveness change
dramatically as explored in [CH03] and also in [ADL+12]. For instance, if an
MTL supports code synthesis, then it is required for it to be at least unidirec-
tional, which means that it should be able to transform models from a source lan-
guage into models of a target language. However, if we want to express consis-
tency between models, or support model evolution by means of model transfor-
mations, then it is required for it to be bidirectional (or even multi-directional—
from many to many), so that models in both source and target languages can
accommodate arbitrary changes and trigger transformations in both directions—
i.e., from source to target languages, and/or vice-versa. If in a model transforma-
tion, the target language happens to be the same as the source language, then the
model transformation is said to be an endogenous transformation, and exoge-
nous if otherwise. Also if the execution of a model transformation is supposed
to load an input model and just change it (once, several times, or indefinitely),
then it is said to be an inplace transformation. If otherwise, the execution of a
model transformation is supposed to load an input model and create a new one
as its output model, then it is said to be an outplace transformation. Finally, if
both the inputs and outputs of a model transformation are on the same abstrac-
tion level, then it is said to be an horizontal model transformation, and vertical
if otherwise. Therefore, in an MTL that supports most of these features, some
special proficiency is required for a software language engineer in order to spec-
ify his/her DSML’s semantics, so that he/she is able to automatically implement

32

2. BACKGROUND 2.2. Software Language Engineering

its interpreter engine (or compiler). In particular, on the one hand, unidirectional,
endogenous, horizontal and inplace model transformations can be useful to describe
model refinement, or also the structured operational semantics of DSMLs, so that
it can automatically generate their respective interpreter engines. On the other
hand, unidirectional, exogenous, vertical and outplace model transformations can be
useful to describe source-to-source translations of DSMLs, so that it can automati-
cally generate their compilers.

MTLs are the most popular modeling languages to express the semantic mod-
els of DSMLs. These are usually capable to both express the translational se-
mantics of DSMLs, and their operational semantics. However, since these MTLs
are made for many purposes, they introduce a cognitive gap on their users—i.e.,
their users usually experience a learning curve while writing a new kind of se-
mantics, that is not reused among different semantics. Besides that these MTLs
have also a lack of model checking support for the verification and analysis of
the expressed model transformations. If we expect MTLs to be used in the con-
text of large and complex industrial software engineering projects such as the
development, certification and maintenance of a DSML’s compiler, then we will
also expect that the specified model transformations to also be large and complex
to understand and analyse—even with the help of specialized verification algo-
rithms. Although MTLs were made to help reducing the distance between the
translation model and implementation of a DSML’s compiler, there is still work
to be done in what matters to MTLs’ usability. In particular, while using these
tools in medium-sized projects, it is common that the language engineer loses the
big-picture of the model transformation rules that are being specified, which usu-
ally lead to error prone rules. The human interpretation of the transformation’s
syntax can be as complex as in general purpose programming languages due the
recurrent use of low-level concepts used on this kind of tools. Even so there is
some research trying to improve the usability of MTLs [SG12].

33

2. BACKGROUND 2.2. Software Language Engineering

2.2.8 Analysis of Model Transformation Languages

Kuster [Kus04] presented important guidelines and properties that need to be
checked during the validation of some model transformation are presented: Syn-
tactic correctness of both input and output models; Termination and confluence
(i.e., determinism and unique results of the transformation); Semantic equiv-
alence or semantics preservation; Safety or liveness (to ensure preservation of
structural or security properties). A valid model transformation is supposed to
satisfy all or some of these properties. However, the proof that a model transfor-
mation is valid for any possible model expressed in some source language of a
transformation expressed in the observed MTLs is in general not automatic and
not even easy to master for a quality engineer.

There are many examples of work on trying to analyse language transforma-
tions at the meta level by reaching proofs from the transformation rules [vBV09],
[BGL05]. For instance, in [vBV09] an encoding of lambda calculus to pi calcu-
lus (by three simple recursive rules) is presented, as well as the proof that some
semantic properties of lambda calculus are preserved after the encoding into pi
calculus. Although these languages are relatively small — even minimalist in
our context — the proof that these semantic properties hold between them, is
something still not trivial to perform by a language engineer. Also, the idea of
using a common (canonical) semantic representation for language sentences was
first introduced by Pnueli [PSS98] while trying to validate compiler translations
of general purpose programming languages. However the problem of validating
compilers for general purpose programming languages appears to be in some
sense a more general problem, and a more particular problem in some other
sense. In the one hand, as they do not use any structured/constrained way to
specify their translations, the resulting theories that we (as language engineers)
can write in existing theorem provers (such as Coq) in order to validate them can
be of any kind. This of course means that the validation of a given translation
will be limited to the expertise and knowledge that we have in the semantics of
the languages involved in the translation under analysis (besides the handling of
the theorem prover itself, which can be hard or impossible depending on the na-
ture of the semantics involved). For instance, in [Chl10], a compiler of an impure
functional language to an abstract assembly language is verified—the compiler
was itself recoded in Coq theorem prover, hence introducing a gap with the ac-
tual implementation. In the other hand, after all the effort done in both the com-
piler’s proof and implementation, the target languages of these compilations are
(mostly) restricted to very low-level (machine code) compilations—therefore the

34

2. BACKGROUND 2.2. Software Language Engineering

idea of validating translations by generating certificates as presented in [BG11] is
feasible, but lack generality for validating translations that are not directly target-
ing execution platforms (for instance analysis platforms).

In order to aid the construction of the proof of semantic preservation along
a set of transformation rules [ALL10] introduced a language to annotate those
rules with assertions. The idea is to then pass these annotations to a reasoning
framework that will derive, at the meta level, conclusions about the overall trans-
formation. The work presented in [ABK07] aims at validating a model transfor-
mation by using the Alloy tool. In this case, Alloy simulates the transformation
by generating a model example of the source language and then analyzing the
results of the transformation.

In [VP03], it is presented an example of automated verification of the semantic
preservation of a transformation between UML statecharts and Petri Nets. They
generate instances of the source language and use them to model check for some
dynamic property of UML statecharts, and then they again model check for the
same dynamic property on the transformed Petri Net. They found practical limi-
tations of this technique due to the state space explosion of the model checking.

The authors of [FHLN08] present a constructive fashion to automatically gen-
erate a valid transformation (the authors refers to transformations as ontology
alignment) which in principle would preserve the semantic properties of the in-
put and output models. This generation is done by using the Similarity Flooding
algorithm which is based on the quantification of a notion of distance between
source and target languages.

35

2. BACKGROUND 2.3. Summary

2.3 Summary

We have seen in this Chapter that the correct application of modeling activities
and a correct choice of modeling languages during these activities, in the soft-
ware engineering practice, can greatly improve its effectiveness by focusing on
its essential complexity and lowering its accidental complexity. We have also seen
that by itself, the task of developing a completely new DSML tailored to a spe-
cific application domain is far from trivial, therefore we need to provide well
founded (formalized) languages and tools in order to support the Software Lan-
guage Engineer in this task. Methodologies such as MDD can again be applied
in the context of SLE by providing adequate language workbenches that are able
to automatically prototype both the DSMLs editors and execution engines based
on the DSMLs syntactic and semantic models respectively.

More importantly, these language workbenches must be able to guarantee the
correctness of the generated execution engines. We have seen that, MTLs (and
supporting tools) are the most adequate MDD solutions to automatically gen-
erate DSMLs execution engines from DSMLs’ semantic models. The ability of
analysis (i.e., analyzability) of transformations expressed in these MTLs is still
under research, and is mostly dependent on the expressiveness of each MTL and
their properties.

36

3
Overview of the Approach

In order to illustrate our approach, we present as a running example a translation
between a toy language called State Machines and Petri Nets [Mur89]. On the
one hand, State Machines is a widely-known language typically used to specify
system’s behaviour. It is a usual language engineer’s choice to use such formal-
ism as part of his/her DSML, since this it is able to represent system states in
a declarative and diagrammatic fashion. On the other hand, the Petri Nets is
a more expressive language, since it can explicitly express most often complex
computation concepts such as non-determinism and concurrency. For the sake
of simplicity, we avoid the use of inhibitor arcs in our version of the Petri Nets
language. Therefore this example illustrates the usual case where we start from
a less expressive DSL and translate it into a more expressive language such as
programming language in order to make the DSL sentences executable.

Lets consider a scenario where a software language engineer develops his/her
DSML by starting from the State Machines as a sub-language. The software lan-
guage engineer first specified the State Machine language’s abstract and concrete
syntax, and then assigned its formal semantics by means of SOS. At some point
the language engineer finds some convenience to be able to automatically trans-
late the State Machine sentences into sentences expressed in the Petri Nets lan-
guage. In this particular case, this translation can be particularly useful since it
enables the reuse of the simulation facilities given by Petri Nets modeling tools—
for instance, these simulation tools are able to automatically explore the specified
non-determinism on the petri-net models in order to find inconsistencies or safety

37

3. OVERVIEW OF THE APPROACH 3.1. Syntax of Languages: State Machine and Petri Nets

problems.

Once the translation is specified, the final question then is how to assert that
the specified translation is indeed correct. If we are able to effectively answer this
question, then we will also know that a compiler (automatically derived from this
translation) will also be the intended one.

3.1 Syntax of Languages: State Machine and Petri Nets

In this case, both the State Machine Language and the Petri Nets Language’s
abstract syntax were defined by means of Ecore-based metamodels 1, as shown
in Figure 3.1 and Figure 3.2.

Figure 3.1: The State Machine Language Metamodel

Figure 3.2: The PetriNet Language Metamodel

1http://www.eclipse.org/modeling/emf/?project=emf

38

http://www.eclipse.org/modeling/emf/?project=emf

3. OVERVIEW OF THE APPROACH 3.1. Syntax of Languages: State Machine and Petri Nets

Once the abstract syntax of the language is defined, the language engineer
defines its concrete syntax and its semantics definition. The concrete syntax def-
inition of a language usually extends the existing abstract syntax with symbols
and usable metaphors that enable the domain experts to quickly understand the
sentences in that language. In our examples, for readability, we prefer to use the
concrete syntax versions of both State Machine and Petri Nets models. However
notice that since most of the existing model transformation languages use their
abstract syntax versions, we here present both versions. As a reference, we exem-
plify how the same sentences written in the State Machines Language look like by
using its concrete syntax definitions (shown in Figure 3.3), and its abstract syntax
version (shown in Figure 3.4). In the language engineers’ intuition this model
represents some computational behaviour of an hypothetical system which starts
on some start state. From there the system can change its state by means of a
transition named ’fire’ into another state named ’Running’ which represents that
the system is already in execution. Then the system has two possible choices to
evolve: either it changes its state into the state ’Stopped’ by means of the tran-
sition ’end’; or it changes its state into state ’Fault’ by means of the transition
’error’. From the state ’Fault’ it is possible to change the state of the system back
to the initial state named ’Start’ by means of the transition ’reset’.

{Start}

{Running}

{fire}

{Fault}

{error}

{Stopped}

{end}

{reset}

Figure 3.3: The standard visual representation of a State Machine using the State
Machine language’s concrete syntax.

This model can be expressed using the terminology of the Petri Nets Lan-
guage. We here show how it looks like by using its concrete syntax definitions
(shown in Figure 3.5), and its abstract syntax version (shown in Figure 3.6).

39

3. OVERVIEW OF THE APPROACH 3.2. Software Language Translations

StateMachine

Initial

name=Start

state

State

name=Running

state

State

name=Fault

state

State

name=Stopped

state
Transition

name=fire

transition

Transition

name=error

transition

Transition

name=reset

transition

Transition

name=end

transition

source target sourcetargettarget source source target

Figure 3.4: An internal hierarchical EMF representation of an instance model of
the State Machine Language’s metamodel as presented in Figure 3.1.

Start

fire

1

Running

errorend

Fault

reset

Stopped

1

1 1

1

1

1

1

Figure 3.5: The standard visual representation of a Petri Net using the language’s
concrete syntax.

3.2 Software Language Translations

In our running example, the software language engineer implemented a compiler
for his/her State Machine language. The compiler implements the translation
shown in Table 3.1. The patterns in both columns refer to elements and their
relations of the State Machine and Petri Net metamodels, respectively.

A correct implementation of this translation would in principle translate any kind of

instance models of the State Machine Language, such as the one shown in Figure 3.3, into

its correspondent instance model expressed in the Petri Net Language, such as the one

shown in Figure 3.5. In fact, the model shown in Figure 3.5 could be created from the

model shown in Figure 3.3 using the information presented in Table 3.1.

When we translate a model expressed in a source language into another model ex-

pressed in a target language, the first thing to consider while analysing its validity, is that

it preserves the semantics of all of the expressible models in the source language of that

translation.

40

3. OVERVIEW OF THE APPROACH 3.3. Operational Semantics of the Languages: State Machine and
Petri Nets

PetriNet

Place

name=Start

place

Place

name=Running

place

Place

name=Fault

place

Place

name=Stopped

place
Transition

name=fire

transition

Transition

name=error

transition

Transition

name=reset

transition

Transition

name=end

transition

InArc

weight=1

inArc

OutArc

weight=1

outArc

targetPlacesourcePlace

InArc

weight=1

inArc

OutArc

weight=1

outArc

targetPlace sourcePlace

InArc

weight=1

inArc

OutArc

weight=1

outArc

targetPlace sourcePlace

InArc

weight=1

inArc

OutArc

weight=1

outArc

targetPlacesourcePlace

token=1

Figure 3.6: An internal hierarchical EMF representation of an instance model of
the Petri Nets metamodel as presented in Figure 3.2.

State Machine Element Petri Net Element

StateMachine PetriNet

State Place with Token=0

Initial Place with Token=1

Transition Transition

StateMachine states−−−→ AbsState PetriNet places−−−−→ Place

StateMachine transitions−−−−−−−→ Transition PetriNet transitions−−−−−−−→ Transition

Transition source−−−−→ AbsState Transition outArc−−−−→ OutArc sourceP lace−−−−−−−→ Place(∗)

Transition target−−−−→ AbsState Transition inArc−−−→ InArc targetP lace−−−−−−−→ Place(∗∗)

(∗) Where OutArc.weight = 1
(∗∗) Where InArc.weight = 1

Table 3.1: Translation table between State Machine Language and the Petri
Net Language.

3.3 Operational Semantics of the Languages: State Ma-

chine and Petri Nets

For instance, in the Petri Nets version, the State Machine’s states are encoded into re-

sources (or ’Places’ in the Petri Nets terminology), and the transitions of the State Ma-

chine are transitions of the Petri Nets with outgoing and incoming arcs having weight =

1. Despite the fact that these models are expressed in different languages, in the language

engineer’s own intuition they actually have the same meaning, because implicitly both

specifications allow exactly the same ’moves’. But, how can we be sure of this?

Clearly, we need a way to explicitly define the meaning of both of these models —

which for now remains implicit in the language engineer’s intuition — so that we can

actually compare them and conclude that they indeed have the same meaning.

The implicit meaning of each and every model expressed in a software language can

be made explicit by means of formal mathematical descriptions such as the one proposed

by Plotkin [Plo04]). Plotkin proposed that all the computation steps of a valid computer

41

3. OVERVIEW OF THE APPROACH 3.3. Operational Semantics of the Languages: State Machine and
Petri Nets

program while running in a hypothetical computer system can be generically described

by means of a finite set of pre/pos condition rules. These rules form what we call the

Structural Operational Semantics (SOS) of a software language.

If we take a program expressed in a given software language, we can use these SOS

rules to collect all of its possible computation steps, and then build up a graph which

we call the program’s transition system. In this graph, each edge is a transition gener-

ated by the conclusion of an application of a SOS rule while symbolically executing that

program. These edges relates source and target vertices, where each vertex represents

the computation state (i.e., values in a hypothetical machine’s memory) before and after

that transition occurred in the symbolic execution. A path in a given transition system,

is called a symbolic execution trace. Note also that with these SOS rules, the implicit

meaning of a finite sentence cannot simply be made explicit because there may be a pos-

sible infinite amount of possible SOS rule applications (i.e., its transition system can be

infinite).

In this example, the language engineer defined two small (platform independent)

semantics using the SOS terminology: one for each language. The operational semantics
of the State Machine language is defined (for an arbitrary State Machine instance model

s), by the minimum set of transitions in a transition system TS that satisfies the following

rules:
(Transitions

source−−−−→ Initials) ∈ Es,

(Transitions
target−−−−→ AbsStates) ∈ Es

[cs(Initials)
Transitions.name−−−−−−−−−−−→ cs(AbsStates)] ∈ TSs

[cs(AbsStates)
Transitions.name−−−−−−−−−−−→ cs(AbsState′s)] ∈ TSs,

(Transitions
source−−−−→ AbsState′s) ∈ Es,

(Transitions
target−−−−→ AbsState′′s) ∈ Es

[cs(AbsState′s)
Transitions.name−−−−−−−−−−−→ cs(AbsState′′s)] ∈ TSs

These inference rules define a transition system for any particular sentence s ex-

pressed in the State Machine Language—the s symbol represents a symbolic instance

model which is conforming with the State Machine’s metamodel. A transition system is

a set of all the possible transitions Transitions.name−−−−−−−−−−−→ between current states of the specified

state machine s denoted as cs(_). For instance, as depicted in Figure 3.7, if we consider

a sentence s as being the state machine sentence depicted in Figures 3.3 and 3.4, then the

transition system TS inferred from the rules above will only have four transitions. With

the rules, it is easy to conclude that the transition system for any finite sentence s ex-

pressed in the State Machine Language is also finite—intuitively, given a particular state

machine, the value of the current state value will range on all the defined states, and the

number of Transitions.name−−−−−−−−−−−→ between the current states will be bounded by the number of

42

3. OVERVIEW OF THE APPROACH 3.3. Operational Semantics of the Languages: State Machine and
Petri Nets

transitions defined in that particular state machine.

cs({Running})

fire

cs({Fault})

error

cs({Stopped})

end

reset

cs({Start})

Figure 3.7: The transition system inferred from the State Machine rules when
considering the State Machine presented in both Figures 3.3 and 3.4.

The first inference rule says that if we have a Transition defined in a given State

Machine sentence s, which is connected to both a state Initials (by means of a source re-

lation), and to a stateAbsStates (by means of a target relation), then the transition system

TSs also contains a transition labeled Transitions connecting a state cs—which stores an

instance element of type Initial—to another state—cswhich stores an instance element of

typeAbsState. The second SOS rule says that, if (i) the current state of execution happens

to beAbsState′s (written cs(AbsState′s)), and (ii) there exists a State Machine’s Transition

pointing to another state named AbsState′′s (which by the way can be itself), then there

also exists a Transitions element in TSs which connects the current state cs(AbsState′s)

to the next state cs(AbsState′′s).

Notice that the interpretation of these rules strongly depend on what is actually de-

fined in the State Machine’s sentence s. The Transitions element is a syntactic construct

of the State Machine’s language defined in its metamodel as a meta-class with the same

name, as shown in Figure 3.1. Es represents the set of edges of the symbolic instance

model s—in other words, if we look to instance model s as a graph, then Es stores all

of the associations of the instance model s as edges. The arrows source−−−−→ and
target−−−−→ are

also syntactic constructs of the State Machine’s language defined in its metamodel as

(non-containment) associations. Notice that the name attribute selector Transitions.name−−−−−−−−−−−→
in the conclusion part of the rule refers to the value of the name attribute (defined in the

State Machine’s Transition’s meta-class) from the Transitions element which also satis-

fies the rule’s preconditions. Moreover, AbsStates represent elements of type AbsState

abstract states (which can be either State elements or Initial elements as defined in the

State Machine’s metamodel).

The transition system TSs for a given sentence s is therefore a set of transitions, where

each transition means that the specified state machine in s is able to move from a current

state of AbsStates towards another state AbsState′s. The labels of the transitions give

43

3. OVERVIEW OF THE APPROACH 3.3. Operational Semantics of the Languages: State Machine and
Petri Nets

the possibility to identify the reason of why the state machine changed its state. There-

fore, these two rules combined together gives the behavioural meaning to every possible

expressible sentence s in the State Machine Language. In particular all of the symbolic
execution traces for any expressible State Machine model s will start with a current state

cs that refers to an existing Initials element in model s.

The semantics of the Petri Net language is defined by the minimum set of transitions

in the transition system TSp that satisfies the following inference rules, which are defined

for an arbitrary instance model p of the Petri Net Language:

(initialp − pre(Transitionp)) ≥ 0

[initialp
Transitionp.name−−−−−−−−−−−→ pos(Transitionp) + (initialp − pre(Transitionp))] ∈ TSp

[prev
name−−−→ curr] ∈ TSp,

(curr − pre(Transitionp)) ≥ 0

[curr
Transitionp.name−−−−−−−−−−−→ pos(Transitionp) + (curr − pre(Transitionp))] ∈ TSp

In the above rules the semantic domain is defined by the notion of marking. A mark-

ing represents the number of tokens on each specified Place at some point in time during

the execution of Petri Net p. It is represented as being a pair Place× Token, where Place

is a Place element in p and Token ⊆ N represents the number of tokens in that Place

obtained from the respective attribute Place.token.

The transition system TSp for an arbitrary petri net p is therefore the set of all the

possible
Transitionp.name−−−−−−−−−−−→ transitions between marking states. For instance, as depicted in

Figure 3.8, if we consider a sentence s as being the state machine sentence depicted in

Figures 3.5 and 3.6, then the transition system TS inferred from the rules above will only

have four transitions. Notice that in this case there may be instance models q of the Petri

Net Language such that its transition system TSq may not be finite. For instance, con-

sider a Petri Net instance model which has one Place, one Transition and an InArc that

connects the Transition to the Place, then for each transition firing, we will have an in-

creasing number of tokens: in this situation there will be an infinite number of transitions

between markings, where each marking is a state in TSq.

Similarly to the State Machine semantics, the Petri Net semantics is also defined by

means of two rules: one for inferring the initial computational state of p, and another for

inferring the remaining computational states. The function initialp computes the initial

marking of the instance model p based on the token information of each specified Place.

The function pre(Transitionp) computes a marking where each Place that is connected

with a Transitionp by means of an OutArc, is mapped to a number which represents

44

3. OVERVIEW OF THE APPROACH 3.3. Operational Semantics of the Languages: State Machine and
Petri Nets

fire

errorend

reset

m({p(’Start’,1), .. 0})

m({p(’Running’,1), .. 0})

m({p(’Stopped’,1), .. 0}) m({p(’Fault’,1), .. 0})

Figure 3.8: The transition system inferred from the Petri Net inference rules when
considering the Petri Net presented in both Figures 3.5 and 3.6. In this exam-
ple we used the term m({p(′Fault′, 1), ..0}) as an abbreviation of marking =
{Place(′Start′, 0), .., P lace(′Fault′, 1)}—i.e., except the ’Fault’ place, all other
places have no tokens.

the weight of that OutArc. Similarly, the function pos(Transitionp) computes a marking

where each Place that is connected with a Transitionp by means of an InArc, is mapped

to a number which represents the weight of that InArc.

The arithmetic operations ’+’, ’-’ and ’≥ 0’ were defined for these markings. Adding

two markings A and B means the union of the pairs whose Places do not intersect, and

adding the token/weight values on the pairs whose Places do intersect. The ≥ 0 com-

parison returns true if for a given marking, all the pairs have a positive number of token

values. Finally, prev and curr are free variables also of type marking.

Despite the fact that the language sentences’ transition systems can be infinite, it is

still possible to use these SOS descriptions for comparing their meanings or proving that

two different sentences in a language have the same meaning or value, by establishing

a semantic equivalence relation between their transition systems. Examples of these re-

lations are the strong bisimulation-equivalence, or some other weaker forms such as

the simulation equivalence [Par81]. Intuitively, two transition systems are bisimilar-

equivalent if all of their possible moves (symbolic execution traces) match each other. In

our case, we will use a weaker notion of bisimulation-equivalence which discards the

labels on both states and transitions, and only considers both the shape of the transition

systems under comparison, and a starting marker which represents the initial state of

both transition systems.

45

3. OVERVIEW OF THE APPROACH 3.4. Analyzing Software Language Translations

Mmm

translationt- M ′
mm′

TSM

Semmm

? equivalencet- TSM ′

Semmm′

?

Figure 3.9: A commutative diagram illustrating the logical principles of our ap-
proach.

3.4 Analyzing Software Language Translations

We can therefore use these relations in order to validate software translations and their

implementations (the compilers). Which means that the transition systems of every

model expressed in the source language of a given valid translation, and of the transi-

tion system of its respective translated version (expressed in the target language) must

be bisimilar. In other words, to prove that a given translation is valid, we would need

to verify this equivalence between the transition systems of every possible sentence ex-

pressed in the source language, and of their counter-parts in the target language.

Since a language may produce an infinite amount of possible sentences, this proof

would never terminate. Clearly, we have to take a closer look on how the translation is

being specified, and extract from it a finite amount of relevant sentence pairs (from both

source and target language) in order to check the semantic equivalence of their transi-

tion systems. These relations are illustrated in the commutative diagram in the Figure

3.9. Here, M and M ′ are representative sentences from source and target languages of

the translation. By representative we mean that these sentences can be somehow ex-

tracted from a translation specification. Also, mm and mm′ are metamodels identifying

each language, Semmm and Semmm′ are each one a set of SOS rules defined for each

language, and finally TSM and TSM ′ are both the resulting transition systems from each

sentence M and M ′ respectively. In practice, there may be several ways of transversing

this diagram. However, in our running example we only show one operational method

to transversing it in a tractable way.

This approach is therefore based on the principles of model based testing, where in

this particular case, from a model of the translation under test, we are able to generate a

finite set of relevant test cases including their respective oracles. On the one hand, each

test case is formed by a pair stimulus (the source pattern) and its respective observation

(i.e., the respective target pattern). On the other hand, the oracle is a procedure that is

able to automatically compare (by means of a notion of bissimulation-equivalence) the

semantic values of both the source and target patterns.

46

3. OVERVIEW OF THE APPROACH 3.4. Analyzing Software Language Translations

Model
Transformation

Metamodel

Model
Transformation

Model

Source
Metamodel

Target
Metamodel

conforms to

refers to refers to

Source

model

Value

Target

model

Value

Source
Semantics

Target
Semantics

refers to refers to

Semantic
function

Semantic
function

conforms to conforms to

Source
pattern

Target
pattern

Symbolic state

Figure 3.10: A framework for validating software language translations.

Our hypothesis, is depicted in Figure 3.10. If our translation under analysis is ex-

pressed as a transformation model in a graph-based model transformation language,

then these ’relevant’ sentence pairs can be obtained from the model transformation itself

by analysing its rules and combining the source (match) and target (apply) patterns: the

left hand side and right hand side graphs respectively, on a graph-based transformation

language.

In other words, we should be able to execute any given model transformation with-

out having any particular input model, but by computing a symbolic input model from

the specified transformation rules. Notice that the relation of these ’relevant’ sentence

pairs with the translation under analysis is depicted in Figure 3.10 as being its ’Symbolic

States’. We call these pairs of relevant sentences as symbolic states of the translation, since

they represent intermediate or final relations between source and target sentences dur-

ing the translation’s execution. Following this line of reason, if we are able to compute a

finite amount of relevant combinations of rule applications, and multiply by all the pos-

sible combinations of composing or merging these patterns together, then we might get

a finite amount of relevant sentence pairs, hence giving the possibility to further check

their semantic equivalence.

However, this represents a difficult challenge, since depending on the expressivity

of the used model transformation language to express a given translation, it might be

even impossible to extract a finite number of relevant translation’s symbolic states from

it. Moreover, validating such a translation depends directly on validating this set of sym-

bolic states (given that it is a finite set). In order to do so, we have to find a way to

compare both the source and target patterns on each symbolic state. This means that we

have to find a way to compare sentences together in different languages. One approach

47

3. OVERVIEW OF THE APPROACH 3.5. Conclusions and Outlook

can be to provide a semantic function (defined by means of a Semantics model) that is

able to interpret each pattern into a unique canonical representation for its meaning, so

that we can compare them in a common ground (see bottom of the Figure 3.10).

3.5 Conclusions and Outlook

The hypothesis presented in this Chapter indicates that our research question can be an-

swered in a generic way by building a methodology (including its associated tools and

specialized modeling languages) that facilitates the instantiation of the framework shown

in Figure 3.10. By ’generic’, we mean that it should hold for any kind of software trans-

lation, involving any kind of DSMLs. In the next two Chapters, we use the presented

illustrating example in order to instantiate the framework shown in Figure 3.10 on this

concrete application, as depicted in Figure 3.11. In particular, we start by showing how

to express the translation shown in the Table 3.1 using a proper model transformation

language, which is able to automatically translate any model expressed in the State Ma-

chine Language into its respective representation in the Petri Nets Language. Then, we

show how to express the presented operational semantics, again using a proper language,

which is able to compute the meaning of any model expressed in both the State Machine

Language or the Petri Nets Language, into a canonical algebraic representation that en-

able their comparison. Finally, we validate this translation according to their respective

operational semantics definitions, by extensively comparing the canonical representa-

tions of both of the languages present in the symbolic execution space generated from

this translation.

Model
Transformation

Metamodel

State Machine to
Petri Nets

Model

State Machine
Metamodel

Petri Net
Metamodel

conforms to

refers to refers to

State Machine
Semantics

Petri Net
Semantics

refers to refers to

Semantic
function

Semantic
function

conforms to conforms to

State Machine

pattern

Symbolic state

Petri Net

pattern

Value Value’

Figure 3.11: A framework for validating the State Machines to Petri Nets transla-
tion Model.

48

4
Models of Modeling Languages

In this chapter, it is introduced the formal foundations of the notion of Language, in par-

ticular the models used to describe Modeling Languages. On the one hand, in order to

describe the syntax of DSMLs, we make use of the notion of models and metamodels.

On the other hand, in order to describe the semantics of DSMLs, we use two of the most

important types of semantic definitions for the purposes of our approach, namely trans-

lation semantics and operational semantics.

4.1 Syntactic Models

In our approach, models are first class entities. Models are descriptions of real life ar-

tifacts [MFBC10], and these descriptions are expressed in terms of some language (or

languages). Moreover, we use formal syntactic models of software languages called lin-
guistic metamodels, grammars (or just metamodels throughout this thesis), in order to

be able to decide if a given model is a syntactically valid expression of a given language.

This decision is realized by relating both the terms and their composition on a given

model, with the terms and their composition on a given metamodel.

For instance, if we look at the shapes of these models as being graphs (i.e., made

out of vertices and edges relating vertices), then we can relate the expressed sentences

with the metamodel of its language by means of an instance relation (also referred in the

literature as the conformance relation).

49

4. MODELS OF MODELING LANGUAGES 4.1. Syntactic Models

4.1.1 Typed Graphs

In order to clarify this formally, let us first define what is a typed graph.

Definition 4.1. Typed Graph
Let Σ = Σv ∪Σe be a finite set of symbols that uniquely identify a given type, where Σv is the

set of symbols for vertex types, and Σe is the set of symbols for the edge types.
A typed graph defined w.r.t. Σ is a 4-tuple 〈V,E, τv, τe〉 where:

1. V is a finite set of vertices (also called terms),

2. E ⊆ V ×Σe×V is a finite set of directed edges connecting the vertices (the tuple members
of this set are represented with an arrow label−−−→, where label ∈ Σe),

3. τv : V → Σv is a total typing non-injective function for labeling the vertices,

4. τe : E → Σe is an auxiliary function such that ∀y = (v1, label, v2) ∈ E . τe(y) = label,
where label ∈ Σe

The set of all typed graphs is called TG. Also, we denote V g, Eg, τ gv and τ ge to be the sets of
vertices, edges and the typing functions of the graph g = 〈V,E, τv, τe〉 ∈ TG, respectively.

Figure 4.1: An example of a typed graph named x.

In Figure 4.1, we show an example of a typed graph which we named x. The white

circles represents the vertices of graph x, and their labels represent the respective result

of the τv typing function when applied on them. Similarly, the arrows represent the edges

of graph x and their labels the respective result of the τe typing function when applied

on them.

Next we defined some of the common operations that we can perform with the set

TG.

50

4. MODELS OF MODELING LANGUAGES 4.1. Syntactic Models

Definition 4.2. Typed Graph Union
Let 〈V,E, τv, τe〉, 〈V ′, E′, τ ′v, τ ′e〉 ∈ TG be typed graphs.
The typed graph union is the function t : TG × TG → TG defined as: 〈V,E, τv, τe〉 t

〈V ′, E′, τ ′v, τ ′e〉 = 〈V ∪ V ′, E ∪ E′, τv ∪ τ ′v, τe ∪ τ ′e〉.
Also ∀x ∈ V, x′ ∈ V ′, if x = x′ then τv(x) = τ ′v(x′).
Similarly, ∀y ∈ E, y′ ∈ E′, if y = y′ then τe(y) = τ ′e(y

′).

Figure 4.2: An example of two typed graphs (x and y), and their union.

In the example shown in Figure 4.2, the graph named xty (presented in the bottom of

the Figure) represents the resulting graph of applying the typed graph union function t
to the graphs x and y (presented on the top of the Figure). Here, for simplicity, we assume

that vertices with the same type label are the same (i.e., have the same internal identifier),

which is not the general case. Therefore, since vertices labeled A, B, C, D, appear in both

graphs x and y with the same label, the typed graph union do not produce duplicate

vertices for each one of them. The same happens with the edges: the edge named ad

which appears in both x and y, appears only once in x t y. Notice however that this do

not happen with edges named bc and bc2 respectively: since they have different names,

they are considered to be different edges and therefore they will both appear in the union

graph x t y.

51

4. MODELS OF MODELING LANGUAGES 4.1. Syntactic Models

Definition 4.3. Typed Subgraph

Let g, h ∈ TG be two typed graphs.

The graph h can be called a typed subgraph of graph g, written h J g if and only if, V h ⊆ V g,
Eh ⊆ Eg, τhv = τ gv |V h , and τhe = τ ge |Eh .

Notice that τ gv |V h is a simplification of {(x → σ) ∈ τ gv | x ∈ V h ∧ σ ∈ Σg
v}, where Σg

v

is the set of symbols for vertex types from graph g. Similarly, τ ge |Eh is a simplification of

{(y → σ) ∈ τ ge | y ∈ Eh ∧ σ ∈ Σg
e}, where Σg

e is the set of symbols for edge types from

graph g.

Figure 4.3: Typed graph y is a typed subgraph of typed graph x.

In Figure 4.3, the typed graph named y is a subgraph of typed graph x, written y J x.

Here, for simplicity, we assume that vertices with the same type label are the same, which

is not the general case. It is trivial to see that all of y vertices and edges are subsets of the

vertices and edges of x respectively.

Definition 4.4. Typed Graph Isomorphism

Let g and h ∈ TG be two typed graphs.

A typed graph isomorphism is a bijective function Θ : V TG → V TG such that the following
conditions are satisfied:

1. for all x ∈ V g, it is true that τ gv (x) = τhv (Θ(x));

2. for all x ∈ V h, it is true that τhv (x) = τ gv (Θ−1(x));

3. for all eg = (x
lbl−→ x′) ∈ Eg, there exists eh = (Θ(x)

lbl′−−→ Θ(x′)) ∈ Eh;

4. for all eh = (x
lbl−→ x′) ∈ Eh, there exists eg = (Θ−1(x)

lbl′−−→ Θ−1(x′)) ∈ Eg;

52

4. MODELS OF MODELING LANGUAGES 4.1. Syntactic Models

Figure 4.4: Θ is a typed graph isomorphism between typed graphs x and y.

The presented notion of typed graph isomorphism only requires that the involved

typed graphs have the same shape, while using the bijective function Θ to map the ver-

tices types on both graphs. In the example shown in Figure 4.4, Θ is represented as the

following set of pairs:

{(xA, yA), (xB, yB), (xC , yC), (xD, yD)},

where xA..xD are vertices of typed graph x, yA..yD are vertices of typed graph y, the

typing functions for typed graphs x and y are respectively τxv = {(xA, A), .., (xD, D)}, and

τyv = {(yA, A), .., (yD, D)}.
Definition 4.4 extends the general notion of graph isomorphism. Trivially, this is still

an equivalence relation on typed graphs.

Definition 4.5. Typed Graph Equivalence
If there exists a typed graph isomorphism Θ defined for two typed graphs g, h ∈ TG, and the

following two conditions are satisfied:

1. for all eg = (x
lbl−→ x′) ∈ Eg there exists eh = (Θ(x)

lbl−→ Θ(x′)) ∈ Eh such that
τ ge (eg) = τhe (eh);

2. for all eh = (x
lbl−→ x′) ∈ Eh there exists eg = (Θ−1(x)

lbl−→ Θ−1(x′)) ∈ Eg such that
τhe (eh) = τ ge (eg);

then we say that g and h are equivalent, written: g ∼= h.

Definition 4.5 uses the notion of typed graph isomorphism, by also checking the types

of the edges of the vertices from both source and target graphs referred by the bijective

function typed graph isomorphism Θ.

53

4. MODELS OF MODELING LANGUAGES 4.1. Syntactic Models

4.1.2 Models and Metamodels

We will now define both models and metamodels as being a special kind of typed graphs.

Definition 4.6. Metamodel
A metamodel is a typed graph such that:

1. Σv ⊆ SymName× {abstract, concrete} is the set of vertex types, where SymName is
a finite set of possible names for symbols;

2. Σe ⊆ RelName×RelKind×RelCard is the set of relation types, where RelName is a
finite set of possible names for relations, RelCard = N× N, and
RelKind = { inheritance, attribute, reference, containment }.

The pair RelCard refers respectively to the meta-edge definition of the minimum

and maximum cardinality of occurences allowed for that particular edge type in a given

model. In some metamodeling frameworks the maximum cardinality in RelCard can

take the value of ?, representing an unbound number of values. In our formalization,

this symbol can be represented by the maximum number supported by a reference im-

plementation. The set of all metamodels is called MM .

(g,containment,(1,*))

Figure 4.5: An example of a metamodel typed graph.

The typed graph presented in Figure 4.5 is also called a metamodel. In this exam-

ple, the vertex types are pairs which are represented as records inside rectangles. For

the inheritance typed edges, both the name of the edge (i) and its cardinality (1, 1), are

54

4. MODELS OF MODELING LANGUAGES 4.1. Syntactic Models

irrelevant and could be removed or hidden, although we represent them in the Figure in

order to better illustrate the presented formalization. The vertex typed Int represents the

basic type of Integers, which are usually the types of the attributes. However, the design

decision of including basic types in a metamodeling framework strongly depends on its

implementation, and therefore we do not compromise with further details here.

Now we define some convenient functions over metamodels which will allow us to

easily extract/select the required information from the metamodel graph structures.

Definition 4.7. Metamodel Functions

Let mm ∈MM be a metamodel.

(i): The function Namemm : V mm → SymName is defined such that Namemm(x) = n

if and only if τmm
v (x) = (n, s), where x ∈ V mm and (n, s) ∈ Σmm

v — i.e., it returns the symbol
name for a given vertex x ∈ V mm;

(ii): The function Namemm : Emm → RelName is defined such that Namemm(x) = n if
and only if τmm

e (x) = (n, s,m), where x ∈ Emm and (n, s,m) ∈ Σmm
e — i.e., it returns the

symbol name for a given edge x ∈ Emm;

(iii): The functionKindmm : V mm → {abstract, concrete} is defined such thatKindmm(x)

= s if and only if τmm
v (x) = (n, s), where x ∈ V mm and (n, s) ∈ Σmm

v — i.e., it returns the
symbol kind for a given vertex x ∈ V mm;

(iv): The function Kindmm : Emm → RelKind is defined such that Kindmm(x) = s if and
only if τmm

e (x) = (n, s,m), where x ∈ Emm and (n, s,m) ∈ Σmm
e — i.e., it returns the symbol

kind for a given edge x ∈ Emm;

(v): The function MinCardmm : Emm → N is defined such that MinCardmm(x) = min if
and only if τmm

e (x) = (n, s, (min,max)), where x ∈ Emm and (n, s, (min,max)) ∈ Σmm
e —

i.e., it returns the minimum cardinality for a given edge x ∈ Emm;

(vi): The function MaxCardmm : Emm → N is defined such that MaxCardmm(x) = max

if and only if τmm
e (x) = (n, s, (min,max)), where x ∈ Emm and (n, s, (min,max)) ∈ Σmm

e

— i.e., it returns the maximum cardinality for a given edge x ∈ Emm;

Definition 4.8. Inheritance Partial Order Relation

Let mm ∈MM be a metamodel, and (Emm)∗ be the transitive closure of the edge set of mm.

(i): We say that the pair (τv(ys), τv(yt)) belongs to the Inheritance relation Inheritsmm ⊆
Σmm × Σmm, if and only if there exists y = (ys

label−−−→ yt) ∈ (Emm)∗ such that Kindmm(y) =

inheritance, where τv(ys), τv(yt) ∈ Σmm
v ;

(ii): The partial order relation ≤mm uses the above defined relation such that:
≤mm = (Inheritsmm)∗ ∪ { (τv(y), τv(y)) | y ∈ V mm},
having that if (a, b), (b, a) ∈ ≤mm then a = b (i.e., it must not have inheritance cycles);

(iii): We say that mm is a valid metamodel, if and only if the subgraph formed by
〈V mm, {y ∈ Emm|Kindmm(y) = inheritance}〉 is acyclic. From now on we refer to metamod-
els as being valid ones.

55

4. MODELS OF MODELING LANGUAGES 4.1. Syntactic Models

In the above definitions, we used the symbol ∗ to denote the transitive closure of

the defined binary relations. Notice also that with the defined conditions, it is trivial to

observe that≤mm is indeed a partial order relation: it is reflexive, transitive and antisym-

metric.

Figure 4.6: An example of a metamodel typed graph mm (on top), and the inher-
itance partial order relation ≤mm (on bottom) induced from metamodel mm.

In Figure 4.6, we show an example of the inheritance partial order relation induced

from the presented metamodel named mm (on top of the Figure). If xs is connected to xt
by means of an edge y, such that Kindmm(y) = inheritance, then we read that xs inherits
from xt, or xs is more concrete than xt, or xs is less or equal abstract than xt.

In the presented example, we can say that type C is less or equal abstract than A, or

itself. Notice however that in this example there is no direct relation between types C

and B (nor D).

Definition 4.9. Vertex-Wise Type Satisfaction
Let m ∈ TG be a typed graph, and mm ∈ MM be a metamodel, x ∈ V m be a vertex in the

vertices of m, and yt ∈ V mm be a vertex in metamodel mm.
The vertex-wise type satisfaction is a relation `mm: V ×MM × V , such that if x `mm yt

then it means that either:
(i): τmv (x) = Namemm(yt), and Kindmm(yt) = concrete;
or (ii): there exists ys ∈ V mm such that τmv (x) = Namemm(ys), τmm

v (ys) ≤mm τmm
v (yt)

and Kindmm(ys) = concrete.

56

4. MODELS OF MODELING LANGUAGES 4.1. Syntactic Models

Figure 4.7: An example of a metamodel typed graph mm (on top), and a typed
graph m, where the vertex typed B does not satisfy the metamodel mm.

In order to illustrate the relation vertex-wise type satisfaction defined on an arbitrary

metamodel mm (`mm), we present the example shown in Figure 4.7. Here we can easily

see that the `mm relation can be represented as the following set of pairs:

`mm = {(mA,mmA), (mC ,mmB), (mC ,mmC)},

wheremA,mB , andmC are vertices of typed graphm;mmA,mmB , andmmC are vertices

of metamodel mm; the typing function for typed graph m is τmv = {(mA, A), (mB, B),

(mC , C)}; and the typing function for metamodel mm is τmm
v = {(mmA, A), (mmB, B),

(mmC , C)}. Notice also that {(mB,mmB), (mB,mmC), (mB,mmA)} ∩ `mm= ∅, because

none of these pairs respect the two conditions defined in Definition 4.9, in particular due

to the fact that mB is an abstract vertex.

Definition 4.10. Kind of a Typed Graph Edge
Let m ∈ TG be a typed graph, and mm ∈MM be a metamodel.
The kind of an edge x = (xs

label−−−→ xt) ∈ Em w.r.t. the metamodel mm can be given by the
function Kindmm

m : E → RelKind, such that Kindmm
m (x) = kind if and only if there exists

y = (ys
label′−−−→ yt) ∈ Emm, where τme (x) = Namemm(y), Kindmm(y) = kind, xs `mm ys and

xt `mm yt.

In order to illustrate the function Kind, we present the example shown in Figure 4.8.

Here we considered that mA, and mC are vertices of typed graph m; mmA, mmB , and

mmC are vertices of metamodel mm; the typing function for typed graph m is τmv =

{(mA, A), (mC , C)}; and the typing function for metamodel mm is τmm
v = {(mmA, A),

(mmB, B), (mmC , C)}. It is trivial to notice that mA `mm mmA, and the naming function

Namemm(mmA
(h,containment,(0,∗))−−−−−−−−−−−−−→ mmB) = τme (mA

h−→ mC) = h. Therefore, if we con-

sider the inheritance relation between the elements typed B and C on metamodel mm,

then we can see that when we apply function Kind to the edge mA
h−→ mC , it is true that

Kindmm
m (mA

h−→ mC) = Kindmm(mmA
(h,containment,(0,∗))−−−−−−−−−−−−−→ mmB) = containment. This

57

4. MODELS OF MODELING LANGUAGES 4.1. Syntactic Models

Figure 4.8: In typed graph m (on the right), the Kind of the edge typed h w.r.t.
metamodel mm (on the left) is containment.

happens because mC `mm mmB . In other words, since the C element mC is a specializa-

tion of the B element, the defined h association on model m must be a containment w.r.t.

metamodel mm.

We will now define a model also as being a typed graph. However in our formaliza-

tion, a typed graph can only be considered a model in the context of a given metamodel.

Definition 4.11. Model
Let m ∈ TG be a typed graph, and mm ∈MM be a metamodel. m can be considered to be a

model if and only if the following conditions are satisfied:
(i) for all x ∈ V m, there exists y ∈ V mm such that τv(x) = Namemm(y) and Kindmm(y) =

concrete;
(ii) for all x = (xs

lbl−→ xt), x′ = (x′s
lbl′−−→ xt) ∈ Em,

Kindmm
m (x) = Kindmm

m (x′) = containment =⇒ xs = x′s. The idea here is that elements xt
can only be contained at most in one element.

A model being an instance of (or conforming to) a metamodel means that (i) every

concept in the sentence is also present in the metamodel of a given language, and (ii) ev-

ery relation between two concepts present in the model are also present in the metamodel

of that language relating those concepts.

Additional constraints can be introduced in order to distinguish the types of these

relations (e.g containment or reference relations), and their cardinalities (e.g one to one

associations, one to many, etc.).

58

4. MODELS OF MODELING LANGUAGES 4.1. Syntactic Models

The cardinality constraint can be formally defined as a satisfaction relation, as follows.

Definition 4.12. Cardinality Satisfaction
Let m ∈ TG be a typed graph, mm ∈MM be a metamodel, {xs, xt} ⊆ V m be vertices of m,

(xs
lbl−→ xt) ∈ Em be an edge in model m, and y = (ys

lbl′−−→ yt) ∈ Emm be an edge in metamodel
mm.

The cardinality satisfaction is a binary relation #m,mm : V × E, such that xs #m,mm y is
true if and only if:

MinCardmm(ys
lbl′−−→ yt) ≤

‖{(xs
lbl−→ xt) ∈ Em | τme (xs

lbl−→ xt) = Namemm(ys
lbl′−−→ yt) ∧ xs `mm ys ∧ xt `mm yt}‖

≤MaxCardmm(ys
lbl′−−→ yt)

In the above definition, the operator ‖‖ counts the size of a set (e.g., ‖{}‖ = 0). In-

tuitively, the above definition says that given a vertex xs from a model m, and an edge

y, from a metamodel mm, if the sum of all the outgoing edges of vertex xs that have the

same name as the name of the reference edge y lies within the range defined byMinCard

and MaxCard functions (when applied to that edge y), then we say that xs satisfies the

cardinality relation written: xs #m,mm y. Furthermore, we will use a relaxed version of

the Cardinality Satisfaction (written xs #m,mm dye), where we only check that the value

of the sum ranges instead between 0 and the maximum defined cardinality.

This relation between a vertex of a typed graph, and an edge from a metamodel is

useful to check in a given typed graph if the sum of all edges of a given type that connect

a given source vertex to any other vertices, is respecting the cardinality restrictions of

that edge type in the metamodel. In particular, this satisfaction relation is used on the

following satisfaction relation on edges.

Definition 4.13. Edge-Wise Type Satisfaction
Let m ∈ TG be a typed graph, mm ∈ MM be a metamodel, x = (xs

lbl−→ xt) ∈ Em be an
edge in the edges of m, and y = (ys

lbl′−−→ yt) ∈ Emm be an edge in metamodel mm.
The edge-wise type satisfaction is a relation `mm: E × E, such that x `mm y if and only if

the following conditions are satisfied:
(i): τme (x) = Namemm(y),
(ii): xs `mm ys,
(iii): xt `mm yt,
and (iv): xs #m,mm y.
Similarly, the relaxed version of edge-wise type satisfaction for an edge x of model m with an

edge y of metamodel mm, written x `mm dye, uses the relaxed version of cardinality satisfaction
xs #m,mm dye.

59

4. MODELS OF MODELING LANGUAGES 4.1. Syntactic Models

Let us now formally define the conformity relation.

Definition 4.14. Conformity Relation
Letmm ∈MM be a metamodel andm ∈ TG be a typed graph. We say thatm conforms with

the metamodel mm ∈MM (written m ` mm) iff all of the following conditions are satisfied:
(i): m is a model with respect to mm,
(ii): for all x ∈ V m, there must exist y ∈ V mm such that x `mm y,
(iii): for all z ∈ Em, there must exist w ∈ Emm such that z `mm w,
and (iv): for all w = (w1

lbl−→ w2) ∈ Emm, if MinCardmm(w) > 0, then for all z1, z2 ∈
Em · (z1 `mm w1) ∧ (z2 `mm w2) there must exist z = (z1

lbl′−−→ z2) ∈ Em · z `mm w;
The relaxed version of this conformity relation (written m `0 mm) is similar to the presented

conformity relation with the exception that condition (iii) is replaced by the following:
(iii) for all z ∈ Em, there exists w ∈ Emm such that z `mm dwe.

The set of all models m ∈ TG that conform with a given metamodel mm ∈ MM is

called Mmm.

Figure 4.9: An example of a metamodel typed graph mm (on top), a typed graph
m which conforms to mm (on the bottom left), and a typed graph m′ which do
not conforms to mm (on the bottom right).

60

4. MODELS OF MODELING LANGUAGES 4.1. Syntactic Models

We illustrate the above definitions with the example presented in Figure 4.9. There

are several reasons from which typed graph m′ do not conform to mm (or in other words

m′ 0 mm):

1. The B labeled vertex on typed graph m′ is marked as abstract in metamodel mm.

This violates the vertex-wise satisfaction shown in Definition 4.9.

2. The A labeled vertex on typed graph points to itself by means of an edge labeled s,

which is marked as being a containment edge in metamodel mm. This violates the

model definition shown in Definition 4.11, that says that the containment graph of

a model w.r.t. a metamodel must be acyclic.

3. There are two D labeled vertices on typed graph m′ connected to the same A la-

beled vertex (m′A) by means of two h labeled edges. This violates the cardinality

satisfaction defined in Definition 4.12: (m′A, (mmA
label−−−→ mmD)) /∈ #m′,mm because

MinCardmm(mmA
label−−−→ mmD) = MaxCardmm(mmA

label−−−→ mmD) = 1, where in

this case label = (h,containment,(1,1)). Also the sum of all edge labeled h starting in

m′A is 2. Consequently this also violates Definition 4.13.

4. The cardinality satisfaction #m′,mm is also violated when the D labeled vertex is

not connect to the B labeled vertex, and in the metamodel mm, the minimum car-

dinality for the o labeled edges should be at least 1.

These metamodels can in principle be used to generate sentences on a given language.

However, the complete set of models that conform to a metamodel of a language is typ-

ically infinite. Nevertheless, this conformance relation is merely syntactic, which means

that the referred metamodels corresponds to the so called abstract syntax of a language,

since they filter the structure and shape of valid expressions of that language by only

looking to their explicit structure regardless of their implicit value/meaning.

61

4. MODELS OF MODELING LANGUAGES 4.2. Translational Semantics with the DSLTrans Language

4.2 Translational Semantics with the DSLTrans Lan-

guage

In this section, we first introduce the language that we developed in order to define the

semantics of a language by means of translations. Then, we formally describe both of

its syntax and semantics. We conclude with implementation remarks on the tool support

developed for this language, and how this approach can be used in order to automatically

derive DSML compilers.

4.2.1 DSLTrans Overview

The translation presented in our motivating example, shown in Table 3.1, can be ex-

pressed using the DSLTrans language, as shown in Listing 4.1. DSLTrans, is a graph-

based model transformation language that enables the specification of translations. These

translations are expressed by means of groups of rules organized in a list of sequential

layers — this means that the group of rules belonging to the first layer of a DSLTrans

transformation is executed before every other groups, and so on. As in a regular graph-

based model transformation language, these rules are formed by a left-hand-side graph

(which we call the match model of the transformation rule), and by a right-hand-side

graph (which we call the apply model of the transformation rule).

A transformation expressed in DSLTrans is formed by a set of input model sources

called file-ports (′model/input.xmi′ in the Listing 4.1) and a list of layers (′Entities′ and
′Associations′ layers in the Listing 4.1). Both layers and file-ports are typed according to

metamodels. DSLTrans executes sequentially the list of layers of a transformation spec-

ification. A layer is a set of transformation rules, which executes in a non-deterministic

fashion. Each transformation rule is a pair (match,apply) where match is a pattern holding

elements from the source metamodel, and apply is a pattern holding elements of the target

metamodel. In this textual syntax of DSLTrans, attributes are defined inside class elements

as equations in the form attributename = attributevalue. We use the attribute name ′_′

to denote anonymous attributes. The anonymous attributes are intended to mark the

apply class elements to remember which match class elements are responsible for their

creation, in order to be further matched (in subsequent layers) by referenced apply class

elements in the ’restrictions’ section1. Notice that every element that is referenced in the

’restrictions’ section is being matched instead of being created.

1In the DSLTrans graphical notation, the links written in the ’restrictions’ section are repre-
sented as dashed lines (also called Backward Links or Restrictions) , and the links written in the
’subject to’ section are represented as simple lines (Apply Links).

62

4. MODELS OF MODELING LANGUAGES 4.2. Translational Semantics with the DSLTrans Language

Listing 4.1: Translation StateMa-
chine2PetriNet expressed in
DSLTrans

1 File
uri = ’model/input.xmi’
metamodel(

mmname = statemachine.Statemachine
uri = ’model/StateMachine.ecore’

6)
def ’Entities’: layer ’Entities’
previous = ’’ output = ’’
metamodel(

mmname = petrinet.Petrinet
11 uri = ’model/PetriNet.ecore’

)
rule’Transition’

match with
cl0:

16 any statemachine::Transition(at0 : name)
apply

cl1:
petrinet::Transition(

name= sameAs(at0)
21 _= ’Transition’

)
end rule

rule’State’
26 match with

cl2:
any statemachine::State(at1 : name)

apply
cl3:

31 petrinet::Place(
name= sameAs(at1)
token= ’0’
_= ’State’

)
36 end rule

rule’StateMachine’
match with

cl4:
41 any statemachine::StateMachine

apply
cl5:

petrinet::PetriNet(
_= ’PetriNet’

46)
end rule

rule’Initial’
match with

51 cl6:
any statemachine::Initial(at2 : name)

apply
cl7:

petrinet::Place(
56 name= sameAs(at2)

token= ’1’
_= ’Initial’

)
end rule

61
end def

def ’Associations’ : layer ’Associations’
previous = ’Entities’

66 output = ’model/output.xmi’
metamodel(

mmname = petrinet.Petrinet
uri = ’model/PetriNet.ecore’

)
71 rule’source’

match with
cl8:

any statemachine::Transition
cl9:

76 any statemachine::AbstractState
subject to
cl8 --(_source)-> cl9

apply
cl10:

petrinet::Transition
cl11:

5 petrinet::Place
cl12:

petrinet::OutArc(
weight= ’1’

)
10 subject to

cl10 --(outArc)-> cl12
cl12 --(sourcePlace)-> cl11

restrictions
cl10 derived from cl8

15 cl11 derived from cl9
end rule

rule’target’
match with

20 cl13:
any statemachine::Transition

cl14:
any statemachine::AbstractState
subject to

25 cl13 --(_target)-> cl14
apply

cl15:
petrinet::Transition

cl16:
30 petrinet::Place

cl17:
petrinet::InArc(

weight= ’1’
)

35 subject to
cl17 --(targetPlace)-> cl16
cl15 --(inArc)-> cl17

restrictions
cl15 derived from cl13

40 cl16 derived from cl14
end rule

rule’states’
match with

45 cl18:
any statemachine::StateMachine

cl19:
any statemachine::AbstractState
subject to

50 cl18 --(states)-> cl19
apply

cl20:
petrinet::PetriNet

cl21:
55 petrinet::Place

subject to
cl20 --(places)-> cl21

restrictions
cl20 derived from cl18

60 cl21 derived from cl19
end rule

rule’transitions’
match with

65 cl22:
any statemachine::StateMachine

cl23:
any statemachine::Transition
subject to

70 cl22 --(transitions)-> cl23
apply

cl24:
petrinet::PetriNet
cl25:

75 petrinet::Transition
subject to

cl24 --(transitions)-> cl25
restrictions

cl24 derived from cl22
80 cl25 derived from cl23

end rule

end def

63

4. MODELS OF MODELING LANGUAGES 4.2. Translational Semantics with the DSLTrans Language

In the example presented above, the language engineer wrote the first layer Entities
which specifies a direct 1 to 1 mapping between all the concepts of the State Machines lan-

guage with some significant ones from the Petri Nets’ language (e.g., in the rule ′State′,

from lines 25 to 36 on the left column, specifies that the State concept is to be translated

into Place). Then, the language engineer wrote the second layer Associations specifying

the translation between all the expressible (relevant) State Machine Language term com-

positions with Petri Net Language term compositions. These compositions may involve

the introduction of new concepts from the target language. For instance, in order to trans-

late the relation named source (see from line 71 on the left column to the line 16 on the

right column) between State and Transition, the language engineer had to introduce the

Petri Net concept of OutArc (i.e., outgoing arc) while setting its attribute weight value to

1.

In the transformation rule ′State′ in the ′Entities′ layer (see from lines 25 to 36 on

the left column in the Listing 4.1) the match pattern holds one ′State′ class from the
′statemachine′ metamodel — the source metamodel; the apply pattern holds one ′Place′

class from the ′petrinet′ metamodel — the target metamodel. This means that in every ex-

ecution of this transformation, all elements in the input source which are of type ′State′

of the source metamodel will be transformed into elements of type ′Place′ of the target

metamodel. Let us first define the constructs available for expressing transformation rules’

match patterns. We will illustrate the constructs by referring to the transformation in the

Listing 4.1.

1. Match Elements: are variables typed by elements of the source metamodel which can

assume as values elements of that type (or subtype) in the input model. In our

example, a match element is the ′State′ element in the ′State′ transformation rule of

layer ′Entities′ layer;

2. Attribute Conditions: conditions over the attributes of a match element. For instance,

in the Listing 4.1, one could specify in line 16 that the attribute ’at0 : name’ should

instead start by a string ’Sup’.

3. Direct Match Links: are variables typed by labelled relations of the source metamodel.
These variables can assume as values relations having the same label in the input

model. A direct match link is always expressed between two match elements. In the

textual syntax presented in the Listing 4.1, direct match links are presented in the

’subject to’ section inside the ’match with’ section—for instance, in line 77 and 78.

4. Indirect Match Links: or simply indirect links, are labelled relations similar to direct
match links, but there may exist a path of containment associations between the

matched instances. In our DSLTrans’ implementation, the notion of indirect links
captures only EMF containment associations;

64

4. MODELS OF MODELING LANGUAGES 4.2. Translational Semantics with the DSLTrans Language

5. Backward Links: backward links connect elements of the match and the apply mod-

els. They exist in our example in all transformation rules in the ′Associations′ layer,

shown in the ’restrictions’ section. Backward links are used to refer to elements cre-

ated in a previous layer in order to use them in the current one. Notice that in the

textual syntax presented in the Listing 4.1, each layer has a reference to a previous
layer, or empty (see previous =” in line 8 of the left column) if we are otherwise defin-

ing the first layer of the transformation. An important characteristic of DSLTrans is

that throughout all the layers, the source model remains intact as an input source.

Therefore, the only possibility to reuse elements created from a previous layer is to

reference them using backward links;

6. Negative Conditions: it is possible to express negative conditions over match ele-

ments, backward, direct and indirect match links. As these conditions are very similar

to the positive ones, for simplicity reasons, we will not detail these on this thesis.

For further details please consult the User Manual of the DSLTrans’ reference im-

plementation 2.

The constructs for building transformation rules’ apply patterns are:

1. Apply Elements and Apply Links: apply elements, as match elements, are variables

typed by elements of the target metamodel. Apply elements in a given transforma-

tion rule that are not connected to backward links will create elements of the same

type in the transformation output. A similar mechanism is used for apply links.

These output elements and links will be created as many times as the match model

of the transformation rule is instantiated in the input model. In our example, the

’transitions’ transformation rule of layer ′Associations′ takes the instances PetriNet

and Transition (belonging to the Petri Net language’s metamodel) which have to

be created before in a previous layer from existing instances of StateMachine and

Transition (from the StateMachine language’s metamodel), and connects them us-

ing a ′transitions′ relation;

2. Apply Attributes: DSLTrans includes a small attribute language allowing the com-

position of attributes of apply model elements from references to one or more match
model element attributes.

4.2.2 DSLTrans’ Syntactic Structures

The abstract syntax of the DSLTrans language is defined by the BNF production rules

shown in Listing 4.2. These production rules are able to produce/parse the sentences

2The DSLTrans manual is publicly available at: https://github.com/githubbrunob/
DSLTransGIT/blob/master/DSLTransManual/document.pdf?raw=true

65

https://github.com/githubbrunob/DSLTransGIT/blob/master/DSLTransManual/document.pdf?raw=true
https://github.com/githubbrunob/DSLTransGIT/blob/master/DSLTransManual/document.pdf?raw=true

4. MODELS OF MODELING LANGUAGES 4.2. Translational Semantics with the DSLTrans Language

shown before. Moreover, the non-terminal symbols ’ExistsMatchClass’ and ’Negative-

MatchAssociation’ were defined in the tool for the convenience of the DSLTrans’ users,

but are left from the formalization, and therefore are out of the scope of this thesis. It

is important to notice however that the claims and conclusions taken in this thesis are

not affected by these constraints, since they are considered to be particular cases of the

general ones that will be further defined.

Listing 4.2: The DSLTrans’ syntax expressed using the BNF notation
TransformationModel ::= AbsSource* ;

2 AbsSource ::= FilePort | Layer ;
FilePort ::= "File"

("id" "=" Id)?
("uri" "=" Id)?
MetaModelIdentifier ;

7
MetaModelIdentifier ::= "metamodel""("

("mmname" "=" Id)?
("uri" "=" Id)?

")" ;
12

Layer ::=
"def" (Id ":") ? ("layer" Id)?
("previous"= Id)?
("output" "=" Id)?

17 MetaModelIdentifier
(Rule)*
"end" "def";

Rule ::= "rule" (String)?
22 "match" MatchModel

"apply" ApplyModel
("restrictions" BackwardLinks+)?

"end" "rule";

27 MatchModel ::= "with" MatchClass* ("subject" "to" MatchAssociation*)?;
ApplyModel ::= ApplyClass* ("subject" "to" ApplyAssociation*)? ;

MatchClass ::= AnyMatchClass | ExistsMatchClass;
AnyMatchClass ::= String? (Id":")?

32 "any" Id "::" Id ("(" (MatchAttribute)+ ")")? ;
ExistsMatchClass ::= String? (Id":")?

"existing" Id "::" Id ("(" (MatchAttribute)+ ")")?;
NegativeMatchClass ::= String? (Id":")?

"not" Id "::" Id ("(" (MatchAttribute)+ ")")?;
37

ApplyClass ::= String? (Id":")? Id "::" Id ("(" (ApplyAttribute)+ ")")? ;

MatchAssociation ::= PositiveMatchAssociation | NegativeMatchAssociation |
PositiveIndirectAssociation | NegativeIndirectAssociation;

42 PositiveMatchAssociation ::= Id "--" "(" Id ")" "->" Id;
NegativeMatchAssociation ::= Id "!-" "(" Id ")" "->" Id ;
PositiveIndirectAssociation ::= Id "~~" "~>" Id;
NegativeIndirectAssociation ::= Id "!~" "~>" Id;

47 ApplyAssociation ::= Id "--" "(" Id ")" "->" Id;

MatchAttribute ::= (Id":")? Id ("=" Atom)? ;
ApplyAttribute ::= (Id":")? Id ("=" Term)? ;

52 BackwardLinks ::= PositiveBackwardLink | NegativeBackwardLink;
PositiveBackwardLink ::= Id "derived" "from" Id;
NegativeBackwardLink ::= Id "not" "derived" "from" Id;

Term ::= AttributeRef | Atom | Concat;
57 Atom ::= String;

AttributeRef ::= "sameAs" "(" Id ")" ;
Concat ::= "concat" "(" Term "with" Term ")";

For the sake of clarity and simplicity in the proofs, we will next introduce the follow-

ing syntactic structures based on graph abstractions, which constitute a simplification of

the ones presented above.

66

4. MODELS OF MODELING LANGUAGES 4.2. Translational Semantics with the DSLTrans Language

Definition 4.15. Match-Apply Model
A Match-Apply Model is a 7-tuple 〈V, E, τv, τe, MatchPart, ApplyPart, Bl〉, where

MatchPart = 〈Match, s〉 and ApplyPart = 〈Apply, t〉. Both s and t are metamodels, where
s is called the source metamodel and t the target metamodel. Also we require that Match =

〈V ′, E′,τ ′v, τ ′e〉 is a model w.r.t. s and Match `0 s. Similarly, Apply = 〈V ′′, E′′,τ ′′v , τ ′′e 〉 is also
a model w.r.t. t andApply `0 t. And finally, we require that 〈V,E\Bl, τv, τe〉 = MatchtApply.

It is always true that 〈V,E \ Bl, τv, τe〉 = Match t Apply. Edges Bl ⊆ V ′ × V ′′ ⊆ E are
called backward links, where for all b ∈ Bl, τe(b) = backwardlink.

The set of all Match-Apply models for a source metamodel s and a target metamodel t is called
MAM s

t .
Vertices in the Apply model which are not connected to backward links are called free ver-

tices.
The back : MAM s

t →MAM s
t function connects all vertices in the Match model to all free

vertices, by creating new backward link edges on the resulting Match-Apply model.

ba
ck

w
ar

dL
in

k

ba
ck

w
ar

dL
in

k

mms

mmt

Figure 4.10: An example of a match apply model mam.

In Figure 4.10, we show an example of a match apply model, which represents an

input graph of an A labeled vertex connected by an h labeled edge to a B labeled vertex.

It also represents an E labeled vertex and a D labeled vertex, connected by a c labeled

edge from the target output model. These vertices were previously created from the

vertices connected to them by means of backwardLinks. Also notice that Match `0 mms

and Apply `0 mmt, which means that here we do not require that these graphs comply

with the minimum cardinality requirements from both the source and target metamodels

of the transformation.

67

4. MODELS OF MODELING LANGUAGES 4.2. Translational Semantics with the DSLTrans Language

Definition 4.16. Transformation Rule
A Transformation Rule is a 8-tuple 〈V, E, τv, τe, MatchPart, ApplyPart, Bl, Il〉, where

MatchPart = 〈Match, s〉 and ApplyPart = 〈Apply, t〉.
Let MatchNoIl = 〈V ′, E′ \ Il,τ ′v, τ ′e〉 be a model w.r.t. s,

andMatchPartNoIl = 〈MatchNoIl, s〉, then it is true that 〈V, E\Il, τv, τe, MatchPartNoIl,

ApplyPart, Bl〉 ∈MAM s
t is a match-apply model.

It is also true thatMatch = 〈V ′′, E′′, τ ′′v , τ ′′e 〉, and the edges Il ⊆ E′′ ⊆ E are called indirect

links, which means that for all i ∈ Il it is true that τe(i) = τ ′′e (i) = indirectlink.
The set of all transformation rules is called TRs

t .
A Transformation Rule Specification is a relaxed version of a Transformation Rule, where we

no longer require that MatchPart = 〈Match, s〉 and ApplyPart = 〈Apply, t〉. The set of all
transformation rule specifications is called SpecTRs

t .

We have just defined a transformation rule as a kind of match-apply model which al-

lows indirect links only in the match pattern.

ba
ck

w
ar

dL
in

k

ba
ck

w
ar

dL
in

k

tr

mms

mmt

Figure 4.11: An example of a transformation rule tr.

As shown in Figure 4.11, the tr typed graph could be considered as a match apply

model except for the indirectLink labeled edge. We will further see that the edge labeled

indirectLink causes the match procedure to not only match (from a given input model)

A elements that are connected together by means of a containment edge, but also A ele-

ments that are connected to other elements (possibly of other types) in a chain of contain-

ment edges, ending (in this case particular) in another element of type A. Notice also that

despite the fact that element B is abstract, it can however be represented in the MatchPart

of th rule tr: the idea is that it will match all the elements from a given input model that

inherits from element B, namely elements of type C.

68

4. MODELS OF MODELING LANGUAGES 4.2. Translational Semantics with the DSLTrans Language

Definition 4.17. Layer
A layer is a finite set of transformation rule specifications tr ⊆ SpecTRs

t . The set of all layers
for a source metamodel s and a target metamodel t is called Layerst .

Definition 4.18. DSLTrans Transformation
Let dsltrans ∈MM be the DSLTrans’ metamodel. A DSLTrans Transformation m ∈ TG is

a model m ` dsltrans containing a finite list of layers denoted m = [l1 :: l2 :: . . . :: ln] where
lk ∈ Layerst and 1 ≤ k ≤ n. The set of all transformations for a source metamodel s and a target
metamodel t is called Transformationst .

In definition 4.18, we just defined DSLTrans’ metamodel as a mathematical concept

that aggregates all the DSLTrans’ syntactic structures defined also as mathematical con-

cepts. The mathematical semantics of these syntactic structures will be defined in the

next subsection, however, as further reference, the reader can take a look to Figure 4.16

where it is presented the metamodel used in DSLTrans’ actual implementation. This im-

plementation metamodel is coherent with both this mathematical conceptualisation and

the BNF form presented in Listing 4.2.

4.2.3 DSLTrans’ Semantics

We will now define the DSLTrans’ Semantics by using all the defined DSLTrans’ syntactic

structures presented above.

Definition 4.19. Strip Function
The strip : TRs

t → TRs
t function removes from a transformation rule all free vertices and

associated edges. Formally, the strip function is such that strip(
〈
V, E, τv, τe, 〈 〈 Vm, Em, τvm ,

τem〉, s〉, 〈 〈 Va, Ea, τva , τea〉, t〉, Bl, Il
〉
) =

〈
V ′, E′, τv, τe, 〈 〈 Vm, Em, τvm , τem〉, s〉, 〈 〈 V ′a,

E′a, τva , τea〉, t〉, Bl, Il
〉
, where the following conditions are satisfied:

1. V ′a ⊆ Va such that for all xt ∈ V ′a there exists at least one xs
backwardLink−−−−−−−−−→ xt ∈ Bl. This

means that all nodes in the apply model are connected to at least one node in the match
model by means of a backward link;

2. E′a = Ea|V ′a .

The strip function is illustrated in Figure 4.12, which when applied to transformation

rule tr (on the left) returns the transformation rule strip(tr) (on the right) by removing

all of the vertices from the ApplyPart that were not connected to MatchPart by means

of backwardLink labeled edges.

69

4. MODELS OF MODELING LANGUAGES 4.2. Translational Semantics with the DSLTrans Language

ba
ck

w
ar

dL
in

k

ba
ck

w
ar

dL
in

k

tr

ba
ck

w
ar

dL
in

k

ba
ck

w
ar

dL
in

k

strip(tr)

mms

mmt

mms

mmt

Figure 4.12: An example of a transformation rule tr and the result of applying the
strip function on it.

Definition 4.20. Subgraph of a Match-Apply Model
Let tr = 〈V, E, τv, τe, MatchPart, ApplyPart, Bl, Il〉 ∈ TRs

t be a transformation rule,
andmam = 〈V ′, E′, τ ′v, τ ′e, MatchPart′, ApplyPart′, Bl′〉 ∈MAM s

t be a match-apply model,
where MatchPart′ = 〈Match, s〉, and Match is a model w.r.t. metamodel s.

We define that tr is a subgraph of mam (written tr C mam) if and only if the following
conditions are satisfied:

1. 〈V,E \ Il, τv, τe〉 J 〈V ′, E′, τ ′v, τ ′e〉

2. for all xs
indirectLink−−−−−−−−→ xt ∈ Il, there exists exactly one x′s

lbl−→ x′t ∈ E∗c where τv(xs) =

τv(x′s), τv(xt) = τv(x′t) and E∗c is obtained by the transitive closure of Ec = {y = (ys
lbl′−−→

yt) ∈ E′|KindsMatch(y) = containment}.

As an example, in Figure 4.13, both tr and tr′ (on the bottom of the figure) are consid-

ered to be subgraphs of the presented match-apply graph mam (presented on the top of

the Figure). On the one hand, if we neglect the indirectLink edges, it is easy to see that

both tr and tr′ are typed subgraphs of typed graph mam, which satisfies the first con-

dition of Definition 4.20. On the other hand, in both tr and tr′, the indirectLink labeled

edge can be replaced by the transitive closure of s labeled edges in typed graph mam,

which satisfies the second condition of Definition 4.20.

70

4. MODELS OF MODELING LANGUAGES 4.2. Translational Semantics with the DSLTrans Language

ba
ck

w
ar

dL
in

k

ba
ck

w
ar

dL
in

k

tr

ba
ck

w
ar

dL
in

k

ba
ck

w
ar

dL
in

k

tr’

ba
ck

w
ar

dL
in

k

ba
ck

w
ar

dL
in

k

mam

mms

mmt

mms

mmt

mms

mmt

Figure 4.13: Both tr and tr′ transformation rules are subgraphs of match-apply
graph mam.

Definition 4.21. Match Function
Let m ∈MAM s

t be a model and tr ∈ TRs
t be a transformation rule. The match : MAM s

t ×
TRs

t → P(MAM s
t) is defined as follows:

matchtr(m) = remove
({
g | g Cm ∧ g ∼= strip(tr)

})
Due to the fact that the ∼= relation is based on the notion of graph isomorphism, permutations

of the same match result may exist in the
{
g | gCm∧g ∼= strip(tr)

}
set. Notice also that despite

g being a transformation rule (i.e., g ∈ TRs
t), the function match only returns a set of MAM s

t ,
which means that the indirect link information was implicitely removed. The — undefined —
remove : P(TRs

t)→ P(TRs
t) function is such that it removes such undesired permutations.

71

4. MODELS OF MODELING LANGUAGES 4.2. Translational Semantics with the DSLTrans Language

Definition 4.22. Apply Function

Let m ∈ MAM s
t be a match-apply model and tr ∈ TRs

t a transformation. The apply :

MAM s
t × TRs

t →MAM s
t is defined as follows:

applytr(m) =
⊔

g∈matchtr(m)

back(g t g∆)

where g∆ is such that g t g∆
∼= tr

The freshly created vertices of g∆ in the flattened applytr(m) set are disjoint.

Definitions 4.21 and 4.22 are complementary: the former gathers all subgraphs of a

match-apply graph which match a transformation rule; the latter builds the new instances

which are created by applying that transformation rule as many times as the number of

subgraphs found by the match function. The strip function is used to enable matching

over backward links but not elements to be created by the transformation rule. The back

function (defined in Definition 4.15) connects all newly created vertices to the elements

of the source model that originated them. Therefore, the apply function calls the match

function defined for transformation rule tr, and for each of the match results (g) it com-

putes what must be created (g∆) by looking again to the remaining information in the

transformation rule tr.

At the transformation level, the transformation rules have to be unfolded into sev-

eral ones according to the elements present in the match pattern and their inheritance

relations on their respective match metamodel.

Definition 4.23. Inheritance Unfold

Let tr = 〈V,E, τv, τe〉 ∈ SpecTRs
t be a transformation rule specification. The function

↑: SpecTRs
t → P(TRs

t) is such that ↑tr={〈V, E, τ ′v, τe〉 ∈ TRs
t}, where the new typing function

on the vertices τ ′v ∈ P(V → Σv) is such that each

τ ′v =
{

(vi → Names(xi)) | τv =
n⋃

i=1

(vi → ti) ∧(
∃ xi, yi ∈ V s . (Names(yi) = ti) ∧

(xi ≤s yi) ∧

(Kinds(xi) = concrete)
)}
,

where n is the number of tuples in the function τv.

Let l ∈ Layerst be a layer. We define the function ↑: Layerst → P(TRs
t) such that:

↑l=
⋃
tr∈l
↑tr

72

4. MODELS OF MODELING LANGUAGES 4.2. Translational Semantics with the DSLTrans Language

ba
ck

w
ar

dL
in

k

ba
ck

w
ar

dL
in

k

spectr

G

ba
ck

w
ar

dL
in

k

ba
ck

w
ar

dL
in

k

tr0

G

ba
ck

w
ar

dL
in

k

ba
ck

w
ar

dL
in

k

tr1

G

... trn

mms

mmt

mms

mmt

mms

mmt

Figure 4.14: The unfold function ↑when applied to spectr returns a set of n trans-
formation rules, where no abstract classes are found in both Match and Apply
patterns.

Note that the new typing function do not possess anymore the ability to reference

abstract classes, which means that our unfolded rules will only have concrete classes in

both match and apply parts. Moreover, the result is a set of transformation rules, which

means that each one of the MatchPart and ApplyPart have now to be conforming with

the respective source and target metamodels of the transformation—in particular to the

relaxed version of the conformity relation; MatchPart = Match `0 s and ApplyPart =

Apply `0 t.

The application of the ↑ function is illustrated in Figure 4.14. Here we applied the ↑
function to an abstract transformation rule called spectr. The result is a set of n transfor-

mation rules, where all of the vertices from both of the Match and Apply typed graphs

have concrete labels w.r.t. their respective metamodels mms and mmt. Notice that in

general there might be several combinations of this unfolding. The ↑ function explores

73

4. MODELS OF MODELING LANGUAGES 4.2. Translational Semantics with the DSLTrans Language

all of the possible combinations of turning abstract labels into concrete labels.

Definition 4.24. Layer Step Semantics
Let l ∈ P(TRs

t) be a finite set of transformation rules. The layer step relation
layerstep→ ⊆

MAM s
t ×MAM s

t ×P(TRs
t)×MAM s

t is defined by the minimum set that satisfies the following
rules:

〈m,m′, ∅〉 layerstep−−−−−−→ m tm′

tr ∈ l, applytr(m) = m′′′, 〈m,m′′ tm′′′, l\{tr}〉 layerstep−−−−−−→ m′

〈m,m′′, l〉 layerstep−−−−−−→ m′

where {m,m′,m′′} ⊆MAM s
t are match-apply models.

The freshly created vertices in m′′′ are disjoint from those in m′′.

For each layer we go through all the transformation rules and build for each one of

them the set of new instances created by their application. These instances are built using

the apply function in the second rule of definition 4.24. The new instance results of the

apply function for each transformation rule are accumulated until all transformation rules

are treated. Then, the first rule of definition 4.24 will merge all the new instances with the

starting match-apply model. The merge is performed by uniting (using the non-disjoint

t union) match-apply graphs including the new instances with the starting match-apply

model.

Definition 4.25. Transformation Step Semantics
Let [layer :: R] ∈ Transformationst be a Transformation, where layer ∈ Layerst is a Layer

and R a list. The transformation step relation
trstep→ ⊆MAM s

t ×
Transformationst ×MAM s

t is defined as follows:

〈m, []〉 trstep−−−→ m

〈
m, 〈∅, ∅, ∅, ∅, ∅, ∅, ∅〉, ↑layer

〉 layerstep−−−−−−→ m′′, 〈m′′, R〉 trstep−−−→ m′

〈m, [layer :: R]〉 trstep−−−→ m′

where {m,m′,m′′} ⊆MAM s
t are match-apply models.

A model transformation is a sequential application of transformation layers to a match-

apply model containing the source model and an empty apply model. The transforma-

tion output is the apply part of the resulting match-apply model.

74

4. MODELS OF MODELING LANGUAGES 4.2. Translational Semantics with the DSLTrans Language

Definition 4.26. Model Transformation
Let {s, t} ⊂ MM be metamodels, ms ∈ Ms and mt ∈ Mt be models and also let tr ∈

Transformationst be a transformation.
A model transformation transf→ ⊆Ms × Transformationst ×Mt is defined as follows:

〈ms, tr〉
transf−−−−→ mt ⇔

〈〈V,E, τv, τe, 〈ms, s〉, 〈∅, t〉, ∅〉, tr〉
trstep−−−→ 〈V ′, E′, τ ′v, τ ′e, 〈ms, s〉, 〈mt, t〉, Bl〉

Notice that in Definition 4.26, the match apply graph 〈V,E, τv, τe..〉 (recall Defini-

tion 4.15) induced from ms is changed after the execution of the transformation tr into

another match apply graph 〈V ′, E′, τ ′v, τ ′e..〉which now includes the output modelmt, de-

spite the fact that the source input model ms remains intact. Also by Definition 4.15 we

know that we always start executing the transformation tr knowing that ms `0 s (i.e., it

is conformant with), and in the end of the transformation execution we also know that

mt `0 t.

4.2.4 DSLTrans’ Language Properties

We now present two important properties about DSLTrans’ transformations, and their

respective proofs.

Proposition 4.27. Confluence
Every model transformation is confluent regarding typed graph equivalence.

Proof. (Sketch) We want to prove that for every transformation tr ∈ Transformationst
having as input a model ms ∈ Ms, if 〈ms, tr〉

transf−−−−→ mt and 〈ms, tr〉
transf−−−−→ m′t then

mt
∼= m′t. Note that we only have to prove typed graph equivalence between mt and m′t

because the identifiers of the objects produced by a model transformation are irrelevant.

If we assume ¬(mt
∼= m′t) then this should happen because of non-determinism points in

the rules defining the semantics of a transformation:

1. in definition 4.22 g∆ is non-deterministic up to typed graph equivalence, which

does not contradict the proposition;

2. in definition 4.24 transformation rule tr is chosen non-deterministically from layer

l.

Thus, the order in which the transformation rules are treated is non-deterministic. How-

ever, the increments to the transformation by each rule of a layer are united using t,

which is commutative and thus renders the transformation result of each layer determin-

istic. Since there are no other possibilities of non-determinism points in the semantics

of a transformation, ¬(mt
∼= m′t) provokes a contradiction and thus the proposition is

proved.

75

4. MODELS OF MODELING LANGUAGES 4.2. Translational Semantics with the DSLTrans Language

Proposition 4.28. Termination
Every model transformation terminates.

Proof. (Sketch) Let us assume that there is a transformation which does not terminate. In

order for this to happen there must exist a section of the semantics of that transformation

which induces an algorithm with an infinite amount of steps. We identify three points of

a transformation’s semantics where this can happen:

1. if definition 4.25 induces an infinite amount of steps. The only possibility for this

to happen is if the transformation has an infinite amount of layers, which is a con-

tradiction with definitions 4.17 and 4.18;

2. if definition 4.24 induces an infinite amount of steps. The only possibility for this

to happen is if a layer has an infinite amount of transformation rules, which is a

contradiction with definition 4.16;

3. if the result of the matchtr(m) function in definition 4.21 is an infinite set of match-

apply graphs. The match-apply graph m is by definition finite, thus the number of

isomorphic subgraphs of m is infinite only if the transitive closure of containment

edges ofm is infinite. The only possibility for this to happen is if the graph induced

by the containment edges of m has cycles, which contradicts definition 4.1.

Since there are no more points in the semantics of a transformation that can induce an

infinite amount of steps, the proposition is proved.

It is important to notice that these two properties (Confluence and Termination) could

also be achieved using other model transformation languages such as EMF Tiger or ATL.

In such languages one could for instance devise an analysis algorithm that checks these

conditions. Our approach in DSLTrans is that these properties are necessary conditions

for the analysability of model transformation specifications and therefore they should be

enforced by construction in the model transformation language itself. Moreover in the

perspective of the model transformation engineer, it is much more convenient to spec-

ify analysable model transformations by construction using DSLTrans than to reengineer

an existing ATL model transformation in order to make it analysable. Clearly, the en-

forcement of these properties by construction in DSLTrans brings along drastic conse-

quences on its expressiveness. While comparing the expressiveness of DSLTrans with

other model transformation languages such as ATL, we conclude that on the one hand

with ATL we can design the same translation in much more different ways than we could

by using DSLTrans—in this case however we can say that DSLTrans specifications are

more straightforward and easier to understand/read; and on the other hand there are

some translations that despite the fact of being expressible in ATL, are simply not ex-

pressible using a single DSLTrans specification. In some cases we needed to devise a

76

4. MODELS OF MODELING LANGUAGES 4.2. Translational Semantics with the DSLTrans Language

chain of several DSLTrans specifications, or even use another language to perform the

translation—e.g., when we need to perform complex calculations while interpreting the

meaning of values of the syntactic structures of the source model, or when we need to

generate unique identifiers on the target model.

4.2.5 DSLTrans’ Tool Support

The implementation of the DSLTrans language, involved the implementation of several

supporting tools, ranging from edition tools, to execution engines and analysis tools.

Moreover, all of the described tools were implemented and deployed as Eclipse plugins

based on the Eclipse Modeling Framework (EMF). At this point, we will only describe

the DSLTrans’ editors and the DSLTrans’ execution engine 3, and leave the developed

analysis tools to be described in the following Chapter. Figure 4.15 shows how one of

the DSLTran’s visual editors interacts with the DSLTrans’execution engine in order to

translate input models into output models, where the depicted numbers inside circles

denote a logical order of events in time. Here we consider two different actors: (i) the

software language engineer (SLE) produces a DSLTrans model of his/her DSL using the

DSLTrans Editor; and (ii) the DSL user that writes his/her models expressed in the built

DSL.

In what matters to the edition tools, two different editors for the DSLTrans language

were implemented: a visual editor and a textual editor. Both of the editors were automat-

ically generated based on a common description of the language syntax (i.e., its abstract

syntax) expressed by means of an EMF metamodel as shown in Figure 4.16.

In particular, the DSLTrans visual editor plugin, was automatically generated using

an Eugenia/GMF project 4 by annotating the metamodel presented in Figure 4.16 with

visual concrete syntax directives. The definition of these directives allowed for instance

to define which entities will be nodes, and which entities will be arrows, in the generated

diagrammatic edition panel of the DSLTrans visual editor.

The DSLTrans visual editor allows the edition of syntax-to-syntax translations ex-

pressed in DSLTrans in a graphical way. Figure 4.17 shows an example of the graphical

view of the transformation from StateMachines Language to the Petri Nets Language

presented in Listing 4.1.

Moreover, the DSLTrans textual editor plugin was automatically generated using

an EMFText 5 Project, also by annotating the metamodel presented in Figure 4.16 with

textual concrete syntax directives. In this case, the annotations were expressed in the

Concrete Syntax Specification Language (CS), which is a language very similar to BNF

3All of the DSLTrans tools are publicly available at: https://github.
com/githubbrunob/DSLTransGIT/blob/master/DSLTrans-Release/
DSLTrans-Suite-06062k12.zip?raw=true

4http://www.eclipse.org/epsilon/doc/eugenia/
5http://www.emftext.org/index.php/EMFText

77

https://github.com/githubbrunob/DSLTransGIT/blob/master/DSLTrans-Release/DSLTrans-Suite-06062k12.zip?raw=true
https://github.com/githubbrunob/DSLTransGIT/blob/master/DSLTrans-Release/DSLTrans-Suite-06062k12.zip?raw=true
https://github.com/githubbrunob/DSLTransGIT/blob/master/DSLTrans-Release/DSLTrans-Suite-06062k12.zip?raw=true
http://www.eclipse.org/epsilon/doc/eugenia/
http://www.emftext.org/index.php/EMFText

4. MODELS OF MODELING LANGUAGES 4.2. Translational Semantics with the DSLTrans Language

conforms to

DSLTrans
Metamodel

DSLTrans
Model

use

SLE
edits

DSLTrans
Editor

Eugenia/GMF
Generates

DSLTrans
Engine

loads

Transformation
Database Facts

populates

Input
Model

conforms to

Source
Metamodel

SWI-Prolog
Engineloads &

updates

1

2

3

4

5

6

refers to refers to

DSL
User

edits

Figure 4.15: The reference implementation of DSLTrans as a set of Eclipse plug-
ins.

strongly typed with the types of the referenced metamodel (in our case the DSLTrans

metamodel). The resulting textual editor has already (by default) the syntax-highlighting

capabilities deduced from the .cs specification, and enabled the edition of the example

presented in Listing 4.1.

Both of these edition plugins have an additional (by default) capability of producing

an XML/XMI version of the edited translations expressed in DSLTrans, regardless if they

are textual or visual.

In what matters to the DSLTrans’ execution, the DSLTrans’ transformation engine plu-

gin was fully coded in Java while using both of the EMF, and the SWI-Prolog API. On the

one hand, the EMF API was used in order to read the XML/XMI files corresponding

to the transformation specification expressed in DSLTrans; and in order to read/write

the XML/XMI files corresponding to the inputs and outputs of the model transforma-

tion. The transformation specification expressed in DSLTrans (in an XMI/XML format)

is parsed (using the EMF API), and instantiates in memory an abstract syntax tree (AST)

which class definitions were also previously automatically generated from the DSLTrans

metamodel. While in execution, the input models referenced in the AST, are then loaded

(currently only EMF based XMI/XML formats are supported) into memory, and con-

verted into an internal relational representation. On the other hand, the SWI-Prolog API

was used in order to instantiate the SWI-Prolog engine in an embedded prolog program.

The internal relational representation of the input models, is then converted to prolog

78

4. MODELS OF MODELING LANGUAGES 4.2. Translational Semantics with the DSLTrans Language

Fi
gu

re
4.

16
:T

he
D

SL
Tr

an
s

M
et

am
od

el
.

79

4. MODELS OF MODELING LANGUAGES 4.2. Translational Semantics with the DSLTrans Language

Figure 4.17: A visual representation of the StateMachines to Petri Nets transla-
tion, presented in Listing 4.1.

facts that are loaded into the instantiated prolog program’s facts base. The match patterns

specified in the AST leafs (corresponding to the match rules of the specified translation)

are also translated into prolog clauses representing queries to be further applied on the

instantiated prolog program’s facts base.

The problem of executing the matches in a DSLTrans translation specification can

therefore be mapped into a constraint satisfaction problem, where the prolog engine is

left to find the solutions. For each solution found, the respective apply pattern in the

associated translation rule is executed by instantiating the specified output classes from

the target metamodel in memory. Notice that the definitions of the target classes were au-

tomatically generated by using the information in the target metamodel. Currently, only

EMF-XML/XMI versions of both of the inputs and outputs are supported in DSLTrans

implementation—the main limitation here is that both of the source language and target

language editors, should be able to produce and deliver files in this particular format, in

order to be processed by this transformation engine.

Concluding, the DSLTrans execution engine is able to execute any translation specifi-

cation expressed in DSLTrans, in an equivalent way such as a DSML compiler would do

80

4. MODELS OF MODELING LANGUAGES 4.3. Operational Semantics with the SOS Language

if it would be implemented based on the very same syntax-to-syntax translation specifi-

cation. This results from the fact that this execution engine was implemented having the

reference semantic model of DSLTrans. Moreover, since we know that this reference se-

mantic model have the properties of confluence and termination (i.e., for any given input

model, every execution run will eventually terminate, returning a finite and unique out-

put model), we also know that the implemented DSLTrans execution engine also shares

these properties.

4.3 Operational Semantics with the SOS Language

In this section, we first introduce the language that we developed in order to define the

operational semantics of a language. The main goal to achieve in this part of the research

work is to produce a language where software language engineers are able to design

the meaning of the sentences of his/her own DSL in an appropriate and comprehensive

way. In other words we should strictly follow the principles of domain specific modeling

in the design and development of this language that we will call SOS, which stands for

Structured Operational Semantics.

However there are already many ways of designing the operational semantics of lan-

guages, we still have the need to have a domain specific SOS language that is able to to

express the operational semantics of DSLs. On the one hand, amongst the MDD com-

munity, MTLs are the the most popular languages to express and devise the operational

semantics of languages, typically by means of rewriting in-place transformation rules

that manipulate inputs as graphs (i.e., transformation rules based on graph grammars)—

depending on the used MTLs, these specifications can be used in order to for instance

animate and simulate the computational behaviour of a given sentence expressed in the

specified DSL. Here we can argue that MTLs are used for so many different things that

a software language engineer can have serious problems understanding the intent and

meaning of a given operational semantics specification using that MTL. Moreover, it is

not easy to extract properties about the language under design just by analysing a spec-

ification written in an MTL which was designed to specify arbitrary model transforma-

tions. On the other hand, programming language gurus and theoreticians are already

used to use mathematical algebraic/set theory and inference rules in order to specify

the operational semantics of their languages. Despite the fact that these specifications

can be used to manually derive proofs about the properties of the DSL in question, they

can serve only as a reference model to possible implementations by means of compilers

or interpreters—i.e., there is a gap between the semantic models of the DSLs and their

actual implementations. Furthermore, in the next chapter, we will use as oracles the

specifications expressed in the SOS language, in order to be able to automatically decide

about the semantic correctness of a given language translation expressed in DSLTrans.

81

4. MODELS OF MODELING LANGUAGES 4.3. Operational Semantics with the SOS Language

In the remaining of this Chapter we formally describe both syntax and semantics of

the SOS language for operational semantics, and conclude with implementation remarks

about the tool support developed for this language.

4.3.1 The SOS Language Overview

The SOS language is able to specify the operational semantics definitions presented in

Chapter 3. In particular, the SOS rules presented for the State Machine Language are

shown in Listing 4.3. A typical SOS specification is composed by a set of rules in the form

Assuming, Then, and Where. The rule preconditions are placed in the Assuming section and

typically refer to the source metamodel syntactic structures or to the current execution

state of the abstract machine that is interpreting a given input model. The rule post-

condition (also called conclusion) is placed in the Then section, and it defines what is

the next current state of the interpreting abstract machine. Therefore, on each execution,

these rules rewrite the current state of the machine into a new one, while creating a new

transition in the Transition System.

Listing 4.3: SOS definition for the
State Machine Language

1 Assuming
in(@t,Model)=true,

in(@i,Model)=true,
in(@s0,Model)=true,
in(@t -> source -> @i, Model)=true,

6 in(@t -> target -> @s0, Model)=true
Then
initial(@i) ->> buildString(@t.name) ->>
state(@s0) in Transition_System

Where
11 i : class("statemachine","Initial");

s0 : class("statemachine","AbstractState");
t : class("statemachine","Transition");

Assuming
16 state(@s0) ->> @nameX ->>

state(@s1) in Transition_System,
in(@t,Model)=true,
in(@s1,Model)=true,
in(@s2,Model)=true,

21 in(@t -> source -> @s1, Model)=true,
in(@t -> target -> @s2, Model)=true
Then
state(@s1) ->> buildString(@t.name) ->>
state(@s2) in Transition_System

26 Where
s0 : class("statemachine","AbstractState");
s1 : class("statemachine","AbstractState");
s2 : class("statemachine","AbstractState");
t : class("statemachine","Transition");

31 nameX : string;

Listing 4.4: SOS ADT definition for
the State Machine Language’s se-
mantic domain
ADT CurrState
Sorts cs
Generators

4 state : class("statemachine","State") -> cs;
initial: class("statemachine","Initial") -> cs;

Operations
equals: cs cs -> bool;

Axioms
9 equals(@x1 @x1) = true;

(@x1 != @y1) => equals(@x1 @y1) = false;
Where
x1:cs;
y1:cs;

The state values of the interpreting abstract machine are defined as abstract algebraic

data types defined on the ADT section in the form Generators, Operations, Axioms, and

Where. While the generators define the syntactic structure of the defining type, the de-

fined operations are functions that can be used to manipulate the defined structures. The

axioms are rewrite rules that are used to define the meaning of operations—i.e., how can

a given operation be rewritten in order to properly perform its intended function.

82

4. MODELS OF MODELING LANGUAGES 4.3. Operational Semantics with the SOS Language

Listing 4.5: SOS definition for the
Petri Net Language
Assuming

2 in(@t,Model)=true,
positive(subtract(

build(pre(@t))
build(initial)

))=true
7 Then

build(initial) ->>
buildString(@t.name) ->>

add(
build(pos(@t))

12 subtract(
build(pre(@t))
build(initial)

)
) in Transition_System

17 Where
t : class("petrinet","Transition");

Assuming
@oldmarking ->> @nameX ->>

22 @newmarking in Transition_System,
in(@t,Model)=true,
positive(subtract(build(pre(@t)) @newmarking))=true

Then
@newmarking ->>

27 buildString(@t.name) ->>
add(
build(pos(@t))
subtract(
build(pre(@t))

32 @newmarking
)

) in Transition_System
Where
newmarking : markingsort;

37 oldmarking : markingsort;
t : class("petrinet","Transition");
nameX : string;

ADT Tokens
42 Sorts token

Generators
p : class("petrinet", "Place") rel -> token;
Operations
pre: class("petrinet","Transition") -> Set(token);

47 pos: class("petrinet","Transition") -> Set(token);
initial: -> Set(token);
Axioms
pre(@t) = { p(@p1 suc^@outarc.weight(zero)) |
in(@p1, Model)=true,

52 in(@outarc, Model)=true,
in(@t -> outArc -> @outarc, Model)=true,
in(@outarc -> sourcePlace -> @p1, Model)=true

};
pos(@t) = { p(@p1 suc^@inarc.weight(zero)) |

57 in(@p1, Model)=true,
in(@inarc, Model)=true,
in(@t -> inArc -> @inarc, Model)=true,
in(@inarc -> targetPlace -> @p1, Model)=true

};
62 initial = { p(@p1 suc^@p1.token(zero)) |

in(@p1,Model)=true };
Where
t : class("petrinet","Transition");
outarc : class("petrinet", "OutArc");

67 inarc : class("petrinet", "InArc");
p1 : class("petrinet", "Place");

ADT Marking
2 Sorts markingsort

Generators
e:->markingsort;
marking: token markingsort -> markingsort;

Operations
7 build: Set(token) -> markingsort;

member: token markingsort -> bool;
add: markingsort markingsort

-> markingsort;
subtract: markingsort markingsort

12 -> markingsort;
positive: markingsort -> bool;
remove: token markingsort -> markingsort;
equals: markingsort markingsort -> bool;

Axioms
17 // build axiom

(existsIn(@m, @s)=true) =>
build(@s) =
marking(@m build(Excluding(@s, @m)));

build({}) = e;
22 // member axiom

member(@m e) = false;
member(@m marking(@m @mark1)) = true;
(@m != @m1) =>

member(@m marking(@m1 @mark1)) =
27 member(@m @mark1);

// add
(member(p(@p1 @n2) @mark2) = true) =>
add(marking(p(@p1 @n1) @mark1) @mark2)
= marking(

32 p(@p1 plus(@n1 @n2))
add(@mark1
remove(p(@p1 @n2) @mark2)));

(member(p(@p1 @n2) @mark2) = false) =>
add(marking(p(@p1 @n1) @mark1) @mark2)

37 = marking(p(@p1 @n1) add(@mark1 @mark2));
add(e @mark1) = @mark1;

// subtract
(member(p(@p1 @n2) @mark2) = true) =>
subtract(marking(p(@p1 @n1) @mark1)

42 @mark2) = marking(p(@p1 minus(@n2 @n1))
subtract(@mark1
remove(p(@p1 @n2) @mark2)));

(member(p(@p1 @n2) @mark2) = false) =>
subtract(marking(p(@p1 @n1) @mark1)

47 @mark2) = marking(p(@p1 @n1)
subtract(@mark1 @mark2));

subtract(e @mark1) = @mark1;
positive(e) = true;
(leq(@n1 pred(zero)) = false) =>

52 positive(marking(p(@p1 @n1) @mark1)) =
positive(@mark1);

(leq(@n1 pred(zero)) = true) =>
positive(marking(p(@p1 @n1) @mark1)) =
false;

57 // remove
remove(@m e) = e;
remove(@m marking(@m @mark1))=
remove(@m @mark1);

(@m != @m1) =>
62 remove(@m marking(@m1 @mark1))=

marking(@m1 remove(@m @mark1));
// equals

equals(e e) = true;
(member(@m @mark2) = true) =>

67 equals(marking(@m @mark1) @mark2) =
equals(@mark1 remove(@m @mark2));

(member(@m @mark2) = false) =>
equals(marking(@m @mark1) @mark2) =
false;

72 Where
m : token;
m1 : token;
mark1: markingsort;
mark2: markingsort;

77 s : Set(token);
n1: rel;
n2: rel;
p1 : class("petrinet", "Place");

The first rule shown in Listing 4.3 (from lines 1 to 12) refers to the first SOS rule

83

4. MODELS OF MODELING LANGUAGES 4.3. Operational Semantics with the SOS Language

for the State Machine Language shown in Chapter 3, which creates semantic transitions
Transitions.name−−−−−−−−−−−→ for the initial states. Similarly, the second rule shown in Listing 4.3 (from

lines 14 to 29), refers to the second SOS rule for the State Machine Language shown in

Chapter 3, which creates semantic transitions Transitions.name−−−−−−−−−−−→ for AbstractStates given

that there exists already some matching semantic transition in the transition system TSs

(this dependency is expressed in line 15). Here we define the semantic domain called cs

which is composed by the terms state() and initial() is defined by means of an algebraic

data type called CurrState, defined also using the SOS language (see Listing 4.4). The

equals operation is the minimum required operation on an SOS data type: it is used so

that the SOS engine knows when we have reached a fixed-point in our symbolic execu-

tion.

The SOS rules for the Petri Nets language presented in Chapter 3, can also be ex-

pressed using the SOS language. The presented SOS rules are shown in the Listing 4.5.

The first rule shown in Listing 4.5 (from lines 1 to 18 on the left column) refers to the

first SOS rule for the Petri Net Language shown in Chapter 3, which creates semantic

transitions Transitions.name−−−−−−−−−−−→ for the initial marking initialp. Similarly, the second rule

shown in Listing 4.5 (from lines 20 to 40 on the left column), refers to the second SOS

rule for the Petri Net Language shown in Chapter 3, which creates semantic transi-

tions Transitions.name−−−−−−−−−−−→ for the subsequent Transitions given that there exists already some

matching semantic transition in the transition system TSs (in particular, this dependency

is expressed in lines 21-23).

Notice that the semantic domain markingsort is defined by means of an algebraic

data type called Marking, defined also using the SOS language (see Listing 4.5 on the

right column). Here it is important to be sure that these rewrite rules are converging in

terminal values, or otherwise they will enter an infinite loop, which would eventually

break the SOS engine.

As referred before in Chapter 3, a marking is a set of pairs of type Place and number

of tokens. In our SOS definition, both the token ADT and the marking ADT are defined

in Listing 4.5 (the remaining lines on the left column, and the whole right column re-

spectively). We defined token in ADT Tokens, as a pair p of elements of type Place and

a relative number rel which is an extension of an algebraic natural numbers that also

considers negative numbers. For the sake of simplicity we will not include the rel type

defined in the ADTRelatives, however note that it has the following generators: zero for

the base case, suc to represent the successor of a relative number, and pred to represent

the predecessor of a relative number. We then use this definition of token, in order to

define the markingsort in ADT Marking as being a list of tokens:

marking : token markingsort -> markingsort.

In our SOS language implementation, the resulting SOS’s transition systems (if fi-

nite) can be visualized by means of a dot file supported by the Graphviz language 6.

6http://www.graphviz.org/

84

http://www.graphviz.org/

4. MODELS OF MODELING LANGUAGES 4.3. Operational Semantics with the SOS Language

For instance, in the Figure 4.18, we present a State Machine sentence (on the top of the

Figure) and its respective transition system (on bottom of the Figure). This transition

system was produced by the SOS engine execution when applied to the semantics pre-

sented in Listing 4.3 and the given State Machine model which conforms to the presented

StateMachine metamodel. Similarly, we also present a Petri Net sentence (on top of the

Figure 4.19), and its respective transition system (on the bottom of the Figure 4.19), this

one by using the semantics presented in Listing 4.5.

id1id4

id2

id3

cs(id1)id4

cs(id2)

id3

Figure 4.18: A sentence expressed
in the State Machine Language, and
the resulting transition system.

id1

id2

id3

1

1

id5

id4

1

1

id3

id4

m({(id1,0),
 (id2,1),
 (id5,0)})

m({(id1,0),
 (id2,0),
 (id5,1)})

m({(id1,1),
 (id2,0),
 (id5,0)})

Figure 4.19: A sentence expressed in
the Petri Net Language, and the re-
sulting transition system.

By these examples at the instance level, we can clearly see that despite the fact that the

two presented languages do share similar concepts, their semantics are very different in

nature. However, when the language engineer considers to specify a translation between

them, there is some assumption of semantic compatibility between them. In other words,

the language engineer assumes that there exists a translation where every state machine,

and its translated version in petri nets, have exactly the same behaviour. Therefore every-

thing meaningful that we can express in the State Machines language should also have

the same meaning in the Petri Nets Language—i.e., in the sense of equivalence taken in

this thesis, the later should accept the same execution traces of the former, regardless of

their values.

85

4. MODELS OF MODELING LANGUAGES 4.3. Operational Semantics with the SOS Language

4.3.2 The SOS Language’s Syntax

The abstract syntax of the SOS language is defined by the BNF production rules shown

in Listing 4.6. These rules are able to produce the sentences shown before. For instance,

it is easy to observe that the production rules for expressing the SOS algebraic data types

(i.e., the ADT non-terminals from lines 10 to 25) are able to produce the sentences shown

in Listings 4.4 and 4.5 (on the right column). Similarly, the rules for expressing the whole

SOS specification (i.e., the Semantics non-terminals from line 1 to 24) are able to produce

the sentences shown in Listings 4.3 and 4.5 (on the left column).

Listing 4.6: The SOS syntax expressed using the BNF notation
SOS ::= "Semantics" (Rule | ADT)*;
Rule ::= ("Assuming" PremisseList "Then" Conclusion |

"Fact" Conclusion)
("Where" Variable+)?;

5 PremisseList ::= Condition ("," PremisseList)?; .
AlgebraicConditionList ::= "(" AbsEquation ")"

("," AlgebraicConditionList)?;
Conclusion ::= Term "->>" Term "->>" Term

"in" "Transition_System";
10 Condition ::= Conclusion | "(" AbsEquation ")";

ADT ::= "ADT" Id
("Sorts" SortDeclaration+)?
("Generators" Generator+)?

15 ("Operations" Operation+)?
("Axioms" Axiom+)?
("Where" Variable+)?;

Generator ::= AbsOperation;
Operation ::= AbsOperation;

20 AbsOperation ::= Id ":" Sort* "->" Sort ";";
Variable ::= Id (":" Sort)? ";";
Axiom ::= CondEquation;
CondEquation ::= ("(" AbsEquation+ ")" "=>")? Equation ";";
VariableRef ::= "@"Id;

25 CTerm ::= Id("^" (Integer | Term))? ("(" Term+ ")")?;
AbsEquation ::= Equation | Inequation;
Equation ::= Term "=" Term;
Inequation ::= Term "!=" Term;
SortDeclaration ::= Id;

30 AtomicSort ::= Id;

ModelSet ::= "Model";
SetConstructor ::= "{" (Term ("|"

AlgebraicConditionList)?)? "}";
35 ForAllIn ::= "in" "(" Term "," Term ")";

ExistsIn ::= "existsIn" "(" Term "," Term ")";
Union ::= "Union" "(" Term "," Term ")";
Excluding ::= "Excluding" "(" Term "," Term")";
Intersection ::= "Intersect" "(" Term "," Term ")";

40 ModelRelation ::= VariableRef "->" Id "->" VariableRef;
ModelClassAttribute ::= VariableRef "." Id;
ModelSort ::= "class" "(" String "," String ")" ;
Set ::= "Set" "(" Sort ")";

45 Sort ::= ModelSort | Set | AtomicSort;

Term ::= VariableRef | CTerm |
ModelRelation | ModelClassAttribute |
ModelSet | ForAllIn | ExistsIn | Union |

50 Excluding | Intersection | SetConstructor;

We will use these syntactic constructs in order to define the operational semantics of

the SOS language.

86

4. MODELS OF MODELING LANGUAGES 4.3. Operational Semantics with the SOS Language

4.3.3 The SOS Language’s Semantics

In addition to the defined syntactic constructs we define a construct to store the interme-

diate interpretation results while computing a given semantics. The following definitions

are part of the SOS Language operational semantics. Notice that we could also define the

operational semantics of the SOS Language using the SOS Language, however for read-

ability reasons we prefer to refer to a mathematical formalism, hence avoiding confusions

between the SOS’s syntactic and semantic structures. Here, similar to the SOS language,

the preconditions of the defined inference rules should be read from top to bottom, from

left to right—i.e., the bound variables resulting from the evaluation of the first precon-

ditions are naturally propagated to the evaluation of the next ones. Also for readability

reasons, we will denote SOS syntactic textual expressions inside double brackets ’JK’.

Definition 4.29. Environment
The Environment ⊆ (V ariable×Term), is a set of pairs of variables and their correspond-

ing values. Also these values must be closed terms (i.e., without variables).

The environment is used to store the intermediate values of a set of variables, during

a given abstract computation. Therefore, for each variable identifier, we will store its

respective value which must be a Term (containing no variables), and which sort must be

defined in the ADT section.

Definition 4.30. SOS Match Term Relation
Let {T0, .., TN , T

′
0, .., T

′
N} ⊂ Term be SOS Terms, and {env0, .., envN} ⊂ Environment

be environments. Also let sos ∈ SOSmm be a semantics for a language whose metamodel is
mm ∈MM , and a model m ∈Mmm defined according to that metamodel.

The match→ ⊆ Environment× Term× Term×Sort×Semantics× TG×Environment
relation is defined by the minimum set that satisfies the following rules:

a) Match of two CTerms

∃ AbsOperationsos · AbsOperationsos = JId : S0..SN → SK,

〈env, JT0K, JT ′0K, JS0K, sos,m〉
match−−−−→ env0,

. . .

〈envN−1, JTN K, JT ′N K, JSN K, sos,m〉 match−−−−→ envN

〈env, JId(T0..TN)K, JId(T ′0..T
′
N)K, JSK, sos,m〉 match−−−−→ envN

b) Match of a CTerm with a Variable

∃ AbsOperationsos · AbsOperationsos = JId : S0..SN → SK,
∃ V ariablesos · V ariablesos = JId′ : SK,
env′ = env ∪ {(Id′, Id(T0..TN))}

〈env, JId(T0..TN)K, J@Id′K, JSK, sos,m〉 match−−−−→ env′

87

4. MODELS OF MODELING LANGUAGES 4.3. Operational Semantics with the SOS Language

c) Match of a Variable with a CTerm

∃ V ariablesos · V ariablesos = JId′′ : SK,
∃ AbsOperationsos · AbsOperationsos = JId′ : S0..SN → SK,
(Id′′, Id(T0..TN)) ∈ env,
〈env, JId(T0..TN)K, JId′(T ′0..T

′
N)K, JSK, sos,m〉 match−−−−→ env′

〈env, J@Id′′K, JId′(T ′0..T ′N)K, JSK, sos,m〉 match−−−−→ env′

d) Match of two Variables

∃ V ariablesos · V ariablesos = JId′′ : SK,
∃ V ariablesos · V ariablesos = JId′ : SK,
(Id′′, Id(T0..TN)) ∈ env,
env′ = env ∪ {(Id′, Id(T0..TN)))}

〈env, J@Id′′K, J@Id′K, JSK, sos,m〉 match−−−−→ env′

The evaluation of a given algebraic data type Term strictly depends on the axioms

(also called rewriting rules) defined for that ADT. Therefore, while evaluating a given

Term, we have to perform a match on the defined rewriting rules for that Term.

Intuitively, the definition of the match relation for two sets of SOS Terms says that

it inserts in the environment the values of the variables with its respective closed terms,

considering that they have compatible sorts. In particular, rule a) says that two CTerms

have compatible sorts (namely S) if they have the same name (namely Id), the same num-

ber of composed arguments (namely N), and each of them have also compatible sorts,

respectively. Each evaluation of the match relation produces a new (possibly changed)

environment. This can be explained in rule b), where the matching of a closed term with

a variable copies both the variable and the term as its value into the new environment.

Rule d) is similar to b), where the term value (i.e., Id(T0..TN)) from one variable is copied

and associated with another variable, in a new environment. Finally, rule c), just checks

if a term value (namely, Id(T0..TN)) associated with a variable in a given environment, is

compatible with another given term value (i.e., Id’(T0..TN)) .

We further use this match relation in order to evaluate Terms that can be either re-

solved to ADT generators, or (in the case of operators) rewritten into other Terms accord-

ing to the defined rewrite axioms.

88

4. MODELS OF MODELING LANGUAGES 4.3. Operational Semantics with the SOS Language

Definition 4.31. SOS Term and AbsEquation Evaluation

Let {T0, .., TN , T
′
0, .., T

′
N} ⊂ Term be SOS Terms, {env0, .., envN} ⊂ Environment be

environments, sos ∈ SOSmm be a semantics for a language whose metamodel is mm ∈ MM ,
and a model m ∈Mmm defined according to that metamodel.

The evaluation relation on SOS terms and AbsEquations eval→⊆ Environment× {Term ∪
AbsEquation}×SOS×Mmm×Environment×{Term ∪ AbsEquation} is defined by the
minimum set that satisfies the following rules:

a) CTerm with Generator

∃ Generatorsos · Generatorsos = JId : S0..SN → SK,

〈env, JId(T0..TN)K, JSK, sos,m〉 match−−−−→ env′,

〈env′, JT0K, sos,m〉
eval−−→ 〈env0, JT ′0K〉,

. . .

〈envN−1, JTN K, sos,m〉 eval−−→ 〈envN , JT ′N K〉

〈env, JId(T0..TN)K, sos,m〉 eval−−→ 〈envN , JId(T ′0..T
′
N)K〉

b) CTerm with Axioms

∃ Operatorsos · Operatorsos = JId : S0..SN → SK,
∃ Axiomssos · Axiomssos = JAbsEquation0 .. AbsEquationK => Id(T ′0..T

′
N) = RTermK,

〈env, JId(T0..TN)K, JId(T ′0..T
′
N)K, JSK, sos,m〉 match−−−−→ env′,

〈env′, JAbsEquation0K, sos,m〉
eval−−→ 〈env0, JK〉,

. . .

〈envK−1, JAbsEquationKK, sos,m〉 eval−−→ 〈envK , JK〉,
〈envK , JRTermK, sos,m〉 eval−−→ 〈env′′, JRTerm′K〉

〈env, JId(T0..TN)K, sos,m〉 eval−−→ 〈env′′, JRTerm′K〉

c) Equation
〈env, JLTermK, sos,m〉 eval−−→ 〈env′, R〉,
〈env′, JRTermK, sos,m〉 eval−−→ 〈env′′, R〉

〈env, JLTerm = RTermK, sos,m〉 eval−−→ 〈env′′, JK〉

d) Inequation

〈env, JLTermK, sos,m〉 eval−−→ 〈env′, R〉,
〈env′, JRTermK, sos,m〉 eval−−→ 〈env′′, R′〉, R 6= R′

〈env, JLTerm ! = RTermK, sos,m〉 eval−−→ 〈env′′, JK〉

89

4. MODELS OF MODELING LANGUAGES 4.3. Operational Semantics with the SOS Language

e) ForAllIn with a ModelSort Variable

∃ V ariablesos · V ariablesos = JId : class(PackageName,ClassName) K,
∀ x ∈ V m · τmv (x) = JPackageName.ClassNameK,
env′ = env ∪ {(Id, x)}

〈env, Jin(@Id,Model)K, sos,m〉 eval−−→ 〈env′, JxK〉

f) ExistsIn with a ModelSort Variable

∃ V ariablesos · V ariablesos = JId : class(PackageName,ClassName) K,
∃ x ∈ V m · τmv (x) = JPackageName.ClassNameK,
env′ = env ∪ {(Id, x)}

〈env, JexistsIn(@Id,Model)K, sos,m〉 eval−−→ 〈env′, JxK〉

g) ForAllIn with a ModelRelation

∃ x, x′ ∈ V m · (Id, x), (Id′, x′) ∈ env,
∀ (x

Label−−−→ x′) ∈ Em · τme ((x
Label−−−→ x′)) = Label

〈env, Jin(@Id� Label� @Id′,Model)K, sos,m〉 eval−−→ 〈env, J(x Label−−−→ x′)K〉

h) ExistsIn with a ModelRelation

∃ x, x′ ∈ V m · (Id, x), (Id′, x′) ∈ env,
∃ (x

Label−−−→ x′) ∈ Em · τme ((x
Label−−−→ x′)) = Label

〈env, JexistsIn(@Id� Label� @Id′,Model)K, sos,m〉 eval−−→ 〈env, J(x Label−−−→ x′)K〉

where Label is of type String.

i) ModelClassAttribute

∃ x, x′ ∈ V m · (Id, x) ∈ env,
∃ (x

Id′−−→ x′) ∈ Em · τme ((x
Id′−−→ x′)) = Id′

〈env, J@Id.Id′K, sos,m〉 eval−−→ 〈env, Jx′K〉

90

4. MODELS OF MODELING LANGUAGES 4.3. Operational Semantics with the SOS Language

j) SetConstructor

T = {R | 〈env, Term, sos,m〉 eval−−→ 〈env′, R〉,
〈env′, AbsEquation0, sos,m〉

eval−−→ 〈env0, JK〉
. . .

〈envN−1, AbsEquationN , sos,m〉
eval−−→ 〈envN , JK〉

}

〈env, J{Term | AbsEquation0 .. AbsEquationN}K, sos,m〉
eval−−→ 〈envN , JT K〉

k) Free Algebraic Variable

(Id, _) /∈ env,
∃ V ariablesos · V ariablesos = JId : SK,
∀ Generatorsos · Generatorsos = JId′ : ?→ SK,
env′ = env ∪ {(Id, Id′)}

〈env, J@IdK, sos,m〉 eval−−→ 〈env′, JId′K〉

l) Bounded Algebraic Variable

(Id, T) ∈ env

〈env, J@IdK, sos,m〉 eval−−→ 〈env, JT K〉

m) Union
〈env, JT K, sos,m〉 eval−−→ 〈env′, JRK〉,
〈env′, JT K, sos,m〉 eval−−→ 〈env′′, JR′K〉

〈env, JUnion(T, T ′)K, sos,m〉 eval−−→ 〈env′′, JR ∪ R′K〉

n) Intersection

〈env, JT K, sos,m〉 eval−−→ 〈env′, JRK〉,
〈env′, JT K, sos,m〉 eval−−→ 〈env′′, JR′K〉

〈env, JIntersection(T, T ′)K, sos,m〉 eval−−→ 〈env′′, JR ∩ R′K〉

o) Excluding

〈env, JT K, sos,m〉 eval−−→ 〈env′, JRK〉,
〈env′, JT K, sos,m〉 eval−−→ 〈env′′, JR′K〉

〈env, JExcluding(T, T ′)K, sos,m〉 eval−−→ 〈env′′, JR \ R′K〉

91

4. MODELS OF MODELING LANGUAGES 4.3. Operational Semantics with the SOS Language

Note that the operational semantics described above is similar to the semantics of tra-

ditional algebraic data types. In particular, rule a) evaluates a given term named Id by

matching a compatible generator using the match relation, and evaluating its arguments

using the eval. We stress that by ’compatible’, we mean having the name and the same

number of arguments (i.e., N) with compatible sorts respectively. Similarly, rule b) eval-

uates a given term named Id by matching a compatible left hand side of an axiom the

match relation, and using the eval, it checks all of the conditions (i.e., from AbsEquation0

to AbsEquationK), and evaluates its respective right hand side, which is the returned

value of the evaluated term. Rules c) and d) are intuitive and complementary: the eval-

uation of a given equation succeeds if and only if the evaluation of both of its left and

right hand sides have the same result (namely R); conversely, the evaluation of a given

inequation succeeds if and only if the evaluation of both of its left and right hand sides

have the different results. The value of successfully evaluated equations (or inequations)

is always an empty term.

However, we extended it with syntactic constructions to enable both the definition of

arbitrary sets on defined algebras, and on a given model; and also to use these definitions

by means of powerful universal and existential quantifiers. In particular, rules e) and f)
define the semantics of the above described quantifiers when applied to variables which

sorts are defined on the metamodel of the language under specification as a pair of names

PackageName and ClassName. Moreover, the values related with this evaluation result di-

rectly from the formal meaning of (respectively) universal and existential quantification

of these kind of terms identified by this pair, inside a given input model (i.e., m), instance

of the language under specification. Similarly, rules g) and h) define the semantics of both

universal and existential quantifiers when applied to relations which names are defined

on the metamodel of the language under specification. Again, the values related with

this evaluation result directly from the (quantified) query in a given input model (i.e., m
which is instance of the language under specification) for associations (e.g., containment

or simply references) identified by its name (i.e., Label), considering the values found for

both the source and target model elements, Id and Id’ respectively. In what matters to

attributes (see rule i)), since in every input model (i.e., m which is instance of any lan-

guage under specification), they are uniquely identified by its name (in this case Id’), we

only defined the case of existential semantics for querying these attributes within a given

model entity (namely Id). Rule j) formally describes the meaning of the SetConstructor
when applied to a term Term, and a set of AbsEquation: it can be rewritten as a set T of R’s

such that R is the evaluation value of Term, and all of the defined AbsEquation evaluations

are successful. Notice, that each evaluation produces a new environment propagating

the variable’s values from environment env to envN . Rules k), and l) are complementary:

they describe the meaning of evaluating a variable which can be either free or bounded

respectively. In the former rule, the variable Id under evaluation do not exists in the en-

vironment, so the evaluation uses all of the generators which have the same sort S of the

92

4. MODELS OF MODELING LANGUAGES 4.3. Operational Semantics with the SOS Language

variable Id in order to instantiate its possible value, and introduces it in the environment.

In the latter, the variable Id under evaluation do not exists in the environment, so the

environment is maintained and the value of the evaluation is the value associated with

that variable in the environment. Finally, the last three rules m), n) and o) describe the

meaning of the Union, Intersection and Excluding operators, directly from the mathemati-

cal formal definitions of set theory.

For the sake of readability, in the above definition, we do not formally describe how

the exponentiation of terms is evaluated. Intuitively, we write an IdK(T) as an abbrevia-

tion of Id(..Id(IdK(T))..), where the first sequence ’Id(..Id’ and the final ’)..)’ are both of

size K. For instance, having K = 3, and N = 2, we have that the expression Id3(T) can be

rewritten into the following: Id(Id(Id(T))).

In order to complete the description of the semantics of the SOS language, we need to

provide its semantic domain, which is a transition system. That is, given a SOS semantic

definition of a language, and a given sentence expressed in that language, the semantics

of that sentence results in a transition system which represents a symbolic execution of

the sentence in a virtual/abstract machine.

Definition 4.32. SOS Transition System

A semantic transition SemTransition is a 3-tuple 〈PreState, 〈Label, V 〉, PosState〉 where
PreState, Label, PosState are Terms with no variable references, and V is a set of vertices. A
set of semantic transitions is called a TransitionSystem, and the set of all TransitionSystem
is called TS.

This transition system is generated by the evaluation of the defined SOS Rules when

applied to a concrete model m. As shown before, a SOS Rule consists in a set of assump-

tions (or conditions) and a conclusion. The assumptions can either be algebraic equations

(or inequations), or conclusions from previous rule applications.

Definition 4.33. SOS Condition Evaluation Semantics

Let mm ∈ MM be a metamodel, m ∈ Mmm be a model both defined w.r.t. metamodel mm,
and {env, env′, env′′} ⊆ Environment are environments.

The evaluation relation on a conditions evalCondition→ ⊆ Environment× TS × Condition×
SOS ×Mmm × Environment is defined by the minimum set that satisfies the following rules:

a) A previous Conclusion

〈env, Pre, sos,m〉 eval−−→ 〈env′, P re′〉,
〈env′, Label, sos,m〉 eval−−→ 〈env′′, Label′〉,
〈env′′, Pos, sos,m〉 eval−−→ 〈env′′′, Pos′〉,
transition = 〈Pre′, 〈Label, V 〉, Pos′〉,
transition ∈ ts

〈env, ts, JPre� Label� PosK, sos,m〉 evalCondition−−−−−−−−−→ env′′′

93

4. MODELS OF MODELING LANGUAGES 4.3. Operational Semantics with the SOS Language

b) An Abstract Equation

〈env, JAbsEquationK, sos,m〉 eval−−→ env′,

〈env, ts, J(AbsEquation)K, sos,m〉 evalCondition−−−−−−−−−→ env′

For each successful rule application (meaning that all of its assumptions are satis-

fied), we will evaluate its respective condition and generate a transition in the resulting

transition system, as we show in the following definitions.

Definition 4.34. SOS Conclusion Evaluation Semantics

Let mm ∈ MM be a metamodel, m ∈ Mmm be a model both defined w.r.t. metamodel
mm, transition ∈ TransitionSystem a semantic transition, and {env, env′, env′′, env′′′} ⊆
Environment are environments.

The evaluation relation on a conclusion evalPos→ ⊆ Environment ×Conclusion ×SOS
×Mmm× TransitionSystem is defined by the minimum set that satisfies the following rule:

〈env, Pre, sos,m〉 eval−−→ 〈env′, P re′〉,
〈env′, Label, sos,m〉 eval−−→ 〈env′′, Label′〉,
〈env′′, Pos, sos,m〉 eval−−→ 〈env′′′, Pos′〉,
transition = 〈Pre′, 〈Label, V 〉, Pos′〉

〈env, JPre� Label� PosK, sos,m〉 evalPos−−−−−→ transition

where {Pre, Label, Pos, Pre′, Lbl′, Pos′} ⊆ Term are terms, and
V = {v ∈ V m |

〈
var, 〈v, SD〉

〉
∈ (env′′ \ env′)}, is the set of vertices from model m that were

read while evaluating the label terms Pre, Label, Pos into Pre′, Label′, Pos′ respectively, and
also SD ∈ Sorts is the sort of the ModelTerm.

Definition 4.35. SOS Evaluation Semantics

Let mm ∈ MM be a metamodel, m ∈ Mmm be a model both defined w.r.t. metamodel mm,
transition ∈ TransitionSystem be a semantic transition, and {env, env′} ⊆ Environment

are environments.

The evaluation relation on an arbitrary SOS rule specification eval→ ⊆ TS × Rule × SOS ×
Mmm × TransitionSystem is defined by the minimum set that satisfies the following rules:

a) Fact Evaluation

〈{}, Conclusion, sos,m〉 evalPos−−−−−→ transition

〈ts, JFact ConclusionK, sos,m〉 eval−−→ transition

94

4. MODELS OF MODELING LANGUAGES 4.3. Operational Semantics with the SOS Language

b) Sequent Evaluation

〈{}, ts, Condition0, sos,m〉
evalCondition−−−−−−−−−→ env0,

. . .

〈envN−1, ts, ConditionN , sos,m〉
evalCondition−−−−−−−−−→ envN ,

〈envN , Conclusion, sos,m〉
evalPos−−−−−→ transition

〈ts, JAssuming Condition0..ConditionN Then ConclusionK, sos,m〉 eval−−→ transition

Definition 4.36. SOS Fixpoint Semantics
Let mm ∈ MM be a metamodel, sos ∈ SOSmm be a SOS specification, m ∈ Mmm be a

model both defined w.r.t. metamodel mm, Rule ∈ RuleSpec be a rule specification, ts ∈ TS be a
transition system, and transition ∈ TransitionSystem be a semantic transition.

The fixpoint relation fixpoint→ ⊆ TS × SOSmm ×Mmm × TransitionSystem is defined by
the minimum set that satisfies the following rules:

Rule ∈ Rulesos,
〈Rule, sos,m〉 eval−−→ transition,

transition /∈ ts

〈ts, sos,m〉 fixpoint−−−−−→ transition

Rule ∈ Rulesos,
〈Rule, sos,m〉 eval−−→ transition,

transition /∈ ts,
〈ts ∪ {transition}, sos,m〉 fixpoint−−−−−→ transition′,

transition′ /∈ ts

〈ts, sos,m〉 fixpoint−−−−−→ transition′

We also define the rule to compute the initial relation initial→ ⊆ TS × SOSmm × Mmm ×
TransitionSystem is defined by the minimum set that satisfies the following rule:

Rule ∈ Rulesos,
〈Rule, sos,m〉 eval−−→ transition

〈{}, sos,m〉 initial−−−−→ transition

95

4. MODELS OF MODELING LANGUAGES 4.3. Operational Semantics with the SOS Language

Definition 4.37. Fix Point Functions

The function computeF ixPoint : SOSmm ×Mmm → TS uses the relation fixpoint in
order to return a TransitionSystem based on a SOS specification and a model w.r.t. mm, such
that:

computeF ixPoint(sos,m) = {st ∈ TransitionSystem | 〈{}, sos,m〉 fixpoint−−−−−→ st}

We also define the function computeInitial : SOSmm × Mmm → TS uses the relation
initial in order to return a TransitionSystem based on a SOS specification and a model w.r.t.
mm, such that:

computeInitial(sos,m) = {st ∈ TransitionSystem | 〈{}, sos,m〉 initial−−−−→ st}

Intuitively, the above functions can be used to compute the semantics of any sentence

in a given language, assuming that we have an SOS semantics definition for that same

language. We will further use both of these functions in order to validate translations

between two different arbitrary languages.

4.3.4 The SOS Tool

The implementation of the SOS language, involved the implementation of both of its

editor and its execution engine. Moreover, these were also deployed as Eclipse plugins

based on the Eclipse Modeling Framework (EMF) 7.

Figure 4.20 shows how the SOS textual editor interacts with the SOS’ (execution) en-

gine in order to produce graphical representations of the semantic values of every model

conforming to an arbitrary language. Also, the depicted numbers inside circles denote a

logical order of events in time. Notice that this interaction involves the intensive use of

model transformations expressed in DSLTrans (here denoted as translations in light-grey

boxes), namely in steps 3, 5, 7 and 9. Notice also that Ecore to DSLTrans translation is an

high-order transformation (from now on denoted as high-order translation).

The SOS textual editor plugin was automatically generated by creating an EMFText 8

Project, where we annotated the metamodel presented in Figure 4.21 with textual con-

crete syntax directives. Notice that, the complete metamodel of the SOS language con-

sists of several packages which are metamodels themselves—in this Figure, we present

the whole version, with all of its internal packages expanded. The concrete syntax an-

notations were expressed in a CS (Concrete Syntax Specification Language) file, using

7 All of the tools associated with the SOS language are included in the DSLTrans
toolset, available publicly at: https://github.com/githubbrunob/DSLTransGIT/blob/
master/DSLTrans-Release/DSLTrans-Suite-06062k12.zip?raw=true

8http://www.emftext.org/index.php/EMFText

96

https://github.com/githubbrunob/DSLTransGIT/blob/master/DSLTrans-Release/DSLTrans-Suite-06062k12.zip?raw=true
https://github.com/githubbrunob/DSLTransGIT/blob/master/DSLTrans-Release/DSLTrans-Suite-06062k12.zip?raw=true
http://www.emftext.org/index.php/EMFText

4. MODELS OF MODELING LANGUAGES 4.3. Operational Semantics with the SOS Language

conforms to

SOS
Metamodel

use

SOS
Editor

EMFText
Generated

SOS to MProlog

Translation

Some
Model

conforms toSOS
Model

Lang.
Metamodel

1

2

3

4

5

6

MProlog
Model

conforms to

Metamodel
MProlog

Mprolog to Text

Translation

Text
Model

conforms to

Metamodel
Text

Ecore to DSLTrans

Translation

7

Lang. to MProlog

Translation
9

10

SOS
Engine (.pl)

11
serializes to

Semantics
Graphviz13

8

12

SLE
edits

Figure 4.20: The reference implementation of SOS as a set of Eclipse plug-ins.

the types defined in the presented SOS metamodel. The resulting textual editor has al-

ready (by default) the syntax-highlighting capabilities deduced from the .cs specification,

and enabled the edition of the example presented in Listings 4.3 and 4.5. Furthermore,

this edition plugin have an additional (by default) capability of producing an XML/XMI

version of the edited operational semantic specifications expressed in SOS.

In what matters to the execution of SOS semantics specifications, the SOS execution

engine plugin was first fully coded in prolog, and then interfaced with the Eclipse plugin

development API and EMF API. The development of this interface with prolog involved

the design of a metamodeled version of the prolog language called MProlog, which meta-

model is presented in Figure 4.22.

The MProlog language captures all of the concepts present in the prolog language.

Furthermore, a new language called Text was also developed, which metamodel is pre-

sented in Figure 4.23. The Text language captures all of the concepts required to output

structured text into files and directories—structured text means that text can be organized

into blocks composed of lines.

The semantics of the Text language is implemented by means of a small compiler

written in java, that reads the Text specification and outputs a set of files in the specified

directories. The semantics of the MProlog language was defined by means of a DSLTrans

translation which was developed in order to automatically translate sentences expressed

in this MProlog language, into sentences expressed in the Text Language, which is then

97

4. MODELS OF MODELING LANGUAGES 4.3. Operational Semantics with the SOS Language

Figure
4.21:The

SO
S

M
etam

odel(allofthe
packages

expanded).

98

4. MODELS OF MODELING LANGUAGES 4.3. Operational Semantics with the SOS Language

Figure 4.22: The MProlog Metamodel.

able to automatically produce the equivalent prolog in textual form (i.e., in .pl files).

Figure 4.23: The Text Metamodel.

Also, a DSLTrans high-order translation was developed in order to take any kind of

metamodel specification (i.e., from any language) expressed in Ecore (i.e., a language that

is used to express metamodels), in order to produce another DSLTrans translation that is

able to take any sentence expressed in that language and produce a relational version of

it expressed in the MProlog Language. Notice that a translation that produces another

translation is called an high-order translation.

Moreover, we also defined a translational semantics for the SOS language by means

of a DSLTrans translation, that is able to translate any SOS files in the format XML/XMI

99

4. MODELS OF MODELING LANGUAGES 4.4. Conclusions

(i.e., conforming to the SOS metamodel presented in Figure 4.21), and produce its repre-

sentation in the MProlog Language. In this translation, SOS constructions are translated

into MProlog constructions whose evaluation procedures mimics the same evaluation

procedures as defined in the SOS language semantics definition. For instance, the speci-

fied axioms of an ADT are translated into special clauses, that the SOS execution engine

(written in prolog) is able to process. Another example is the SOS rules that are also

translated into prolog clauses named rule, with a particular signature, so that the execu-

tion of the SOS execution engine is able to process it in such a way that it mimics what

was defined in the SOS language semantics definition.

In conclusion, the SOS execution engine will take (i) a relational version of a sentence

(conforming to any kind of metamodeled language) expressed in prolog; and (ii) a SOS

specification also expressed in prolog (after the translations to MProlog, and Text); and

produces a graph (representing the effect of the input sentence in an abstract computation

system) in a file expressed in the dot language 9.

4.4 Conclusions

Based on the mathematical notions of graphs and sets, we defined theories for both mod-

els, and syntactic models of DSMLs. Then we reused the same notions in order to define

two languages for enabling the specification of the semantics models of DSMLs.

In particular, we first defined and implemented a model transformation language

called DSLTrans that can be used to define the translational semantics of DSMLs, and

automatically generate DSML compilers based on them. There are many model trans-

formation tools available, such as GReAT[AKS03], EMF Tiger[BET08], Moflon[AKRS06],

Kermeta[DFF+09], IBM’s MTF [IBM07] or ATL[JK05]. Some of them are already starting

to be used in the industry. These tools are presented in Table 4.1.

Tools Editor Expressiveness Guarantees EMF
Textual Visual Layers Allows Recursion Confluence Termination Compatible

EMF Tiger X X X X∗ X∗ X
Great X X
ATL X X X

Moflon X X
IBM Rational X X X

Kermeta X X X X
DSLTrans X X X X X X

Table 4.1: State of the art model transformation tools and languages. For EMF
Tiger, the proven guarantees are valid only for a particular shape of transforma-
tion rules.

While comparing these tools with DSLTrans, only EMF Tiger and GReAT present a

9The Graphviz application available online at http://www.graphviz.org/ is able to con-
sume dot specifications and automatically render the contained graph in a pdf file

100

http://www.graphviz.org/

4. MODELS OF MODELING LANGUAGES 4.4. Conclusions

syntactic structure based on layers to specify its rules.

Then, we also defined and implemented an original language called SOS that can be

used in order to define the operational semantics of languages, and automatically convert

any SOS sentence into a graphical representation in the .dot language. While the former

language (DSLTrans) is totally platform dependent, and is most useful for the DSML’s

implementation phase (i.e., the generation of the DSML’s compiler), the SOS language is

purely platform independent, and it seems to be useful for debugging DSMLs’ design at

the DSML’s validation phase.

In the next Chapter, we combine the defined languages in the definition and imple-

mentation of several analysis methods, so that we are able to provide some guarantees

of correctness for the software language engineer while using them. Intuitively, we can

use a DSML’s specification expressed in one of the languages (SOS), in order to vali-

date another specification of the same DSML but expressed in the other language (i.e.,

DSLTrans).

101

4. MODELS OF MODELING LANGUAGES 4.4. Conclusions

102

5
Analysis of Translations

In this Chapter, we describe how can we analyse a given translation expressed in DSLTrans

in order to assert about its validity. Namely what are the conclusions that we can take

about translation’s correctness. We start by describing how to symbolically execute a

translation and how we can search the symbolic execution space for properties that we

want to analyse. Then, we describe how to use the SOS definitions of both the languages

involved in a given translation as oracles, in order to automatically validate each sym-

bolic state in the symbolic execution space of a translation expressed in DSLTrans. Finally,

we present the related work on translation validation, and detail the contributions of this

research work on this particular subject.

5.1 Structural Analysis

Let us now define some useful functions for the construction of a transformation’s sym-

bolic space.

Definition 5.1. Vertex Combinations
Let {m,m′} ⊆ TG be two typed graphs, pairset ∈ P(V ×V) be a set of vertex pairs. Also,

let V ⊆ V m and V ′ ⊆ V m′ be sets of vertices contained in the vertices of m and m′ respectively.
The relation on Vertex Combinations is defined for typed graphs m and m′ as a relation

between two sets of vertices and a sets of pairs of those vertices vc→⊆ TG×TG×V ×V ×P(V ×V):
(i)

〈V, V ′〉
vc〈m,m′〉−−−−−→ { }

103

5. ANALYSIS OF TRANSLATIONS 5.1. Structural Analysis

(ii)
x ∈ V, y ∈ V ′, τmv (x) = τm

′
v (y)

〈V, V ′〉
vc〈m,m′〉−−−−−→ { (x, y) }

(iii)
x ∈ V, y ∈ V ′, τmv (x) = τm

′
v (y),

〈V \ {x}, V ′ \ {y}〉
vc〈m,m′〉−−−−−→ pairset

〈V, V ′〉
vc〈m,m′〉−−−−−→ { (x, y) } ∪ pairset

The relation Vertex Combinations computes for two typed graphs, all the possible com-

binations of pairing together zero, two or more than two nodes. In order for the pairing

to occur, the selected vertices have to have the same type.

Figure 5.1: The Vertex Combinations relation between the vertices a1, a2 and a3
from typed graph a, and the vertices b1 and b2 from a typed graph b, given that
they all have the same type.

For instance, consider two typed graphs named a and b. Typed graph a has three

vertices: a1, a2, and a3. Typed graph b has two vertices: b1 and b2. Consider also that all

104

5. ANALYSIS OF TRANSLATIONS 5.1. Structural Analysis

of these vertices have the same type. In other words: τav (a1) = τav (a2) = τav (a3) = τ bv(b1)

= τ bv(b2). In this conditions, the Vertex Combinations relation between all of these vertices

is shown in Figure 5.1. The presented graph shows the effect of the application of each

of the rules defined above. The first rule (i) encodes the possibility of no pairing for any

two sets of vertices V and V ′. The second rule (ii) encodes the possibility of pairing one

pair of vertices arbitrarily chosen from both vertex set V and V ′. In our example, we can

see that with rule (ii) there are six different choices of pairing up two vertices from each

of the typed graphs a and b. Finally, the third rule (iii) encodes the possibility of pairing

together two vertices (one from each of the vertex sets V and V ′) and recursively pair an

arbitrary number of additional vertices from the same sets without having the possibility

to select the same ones. In our example, we can see that starting with a previous choice,

we can apply rule (iii) and get in total more six different choices of pairing up two vertices

from each of the typed graphs a and b. Therefore, in the presented example, the relation

Vertex Combinations vc〈a,b〉 contains a total of thirteen different combinations of vertices of

typed graphs a and b.

Proposition 5.2. Maximum Number of Possible Pairs
Let {t, t′} ⊆ TG be two typed graphs, and V ⊆ V t and V ′ ⊆ V t′ be two sets of vertices

belonging to each of graphs’ vertex sets V t and V t′ . Also let n = max(|V |, |V ′|) be the number
of elements of the largest vertex set: either V or V ′; and m = min(|V |, |V ′|) be the number of
elements of the smallest vertex set: either V or V ′.

The maximum number of possible pairs on two typed graphs (written ξ〈m,m′〉) is calculated
on the assumption that all the vertices from both graphs are of the same type, and therefore they
can be paired up together. The following sum reflects this calculation:

ξ〈t,t′〉 = 1 + Σm
p=1

n!×m!

p!× (n − p)!× (m − p)!

Proof. Given a vertex set V of size n elements, a vertex set V ′ of size m elements, lets try

to select p elements such that p ≤ m ≤ n. In this case, we can divide both sets V and V ′

by p, which means the number of possible p selections from the multiplication of the size

of the elements from both sets — in other words, the number of possible combinations

from the second rule:
n×m
p

After this, we have to remove the one element from each of the sets (as shown in the third

rule), and select p − 1 elements from each of the sets:

(n − 1)× (m − 1)

p − 1

105

5. ANALYSIS OF TRANSLATIONS 5.1. Structural Analysis

Multiplying the results of all of the combinations from both of these rules will give

the result of selecting p elements from each of the sets:

n×m
p
× (n− 1)× (m− 1)

p− 1
. . .

(n− (p− 1))× (m− (p− 1))

p− (p− 1)

Clearly, we can express the denominator in terms of factorial p!, and also express the

numerator in terms of n! × m! and cancel out the the remainder of the multiplications

n − (p − 1) to 1 and m − (p − 1) to 1 by dividing them using the factorials (n − p)!

and (m − p)! respectively. Therefore, the number of combinations of selecting p elements

from both sets of size n and m respectively is given by the following expression:

n!×m!

p!× (n − p)!× (m − p)!

Then, we have to sum all of the possible combinations for an arbitrary number of p

bounded to m, that since we cannot remove from a set more elements that its size, this

will be the minimum of the sets: m. Therefore, each sum of the m-bounded series Σ

reflects the number of combinations of selecting p elements from each of the sets, and

pairing them together. Finally, we add the possibility of not pairing any element from

both of the sets.

Definition 5.3. Transformation Rule Vertex Pairs
Let {tr0, tr1} ⊆ TRs

t , be two transformation rules, and {pairset,mpairset, applypairset}
⊆ P(V × V) be sets of vertex pairs.
The function RulePairs : TRs

t× TRs
t →P(P(V × V)) is such that:

RulePairs(tr0, tr1) =
{
pairset ∈ P(V × V) |

〈VMatchtr0
, VMatchtr1〉

vc〈Matchtr0,Matchtr1〉−−−−−−−−−−−−−→ mpairset ∧

mpairset =

n⋃
i=1

(xi, yi) ∧

pairset =

n⋃
i=1

(
(xi, yi) ∪ applypairset(xi,yi)

)}
,

where applypairset(xi,yi) is a set of pairs of vertices that is related with the following sets of
vertices:

V 0i = {v0i | (xi
backwardLink−−−−−−−−−→ v0i) ∈ Bltr0}

and
V 1i = {v1i | (yi

backwardLink−−−−−−−−−→ v1i) ∈ Bltr1},

106

5. ANALYSIS OF TRANSLATIONS 5.1. Structural Analysis

by means of the Vertex Combinations relation on the apply parts of both transformations. In
particular:

〈V 0i, V 1i〉
vc〈Applytr0,Applytr1〉−−−−−−−−−−−−−→ applypairset(xi,yi)

∧

|applypairset(xi,yi)| = min(|V 0i|, |V 1i|).

with the additional restriction that we only select the set of pairs applypairset with a number of
pairs equal to the minimum number of vertices from both of the sets V 0i and V 1i.

The intuition of this function is, for a given pair of transformation rules, to collect

the set of all combinations of pairing together the match vertices from both transforma-

tion rules that have the same type. For instance, with the transformation rules x and y

presented in Figure 5.2, we can pair up the vertex Ax
1 (vertex A1 from graph x) with the

vertex Ay
1 (vertex A1 from graph y), or pair up the vertex Bx

1 with the vertex B1y, or both

pairings. In Definition 5.3, all of these pairings are collected in the set named mpairset.

For each of these pairs, also we compute the set named applypairset from the respective

apply vertices which are connected from the vertices in these pairs by means of backward

links. For instance, in the Figure 5.2, the vertex Ax
1 has no apply vertices, and the vertex

Ay
1 has one apply vertex called Cy

3 . Since the minimum of the apply vertices from each

of the A1 match vertices is zero, the set applypairset on this case will be empty (see the

first line in the bottom of the Figure 5.2). In the case where we pair together B1 match

vertices from both graphs, the minimum of the apply vertices from those B1 match ver-

tices is two—namely |{Cx
1 , C

x
2 }| = 2—hence all sets applypairset will have exactly two

pairs. Moreover, in total there will be six different combinations of pairing together ex-

actly two of their respective apply vertices (see the remaining lines in the bottom of the

Figure 5.2). The idea to fix the size of these sets applypairset is to avoid useless and inap-

propriate pair combinations where the apply vertices of the transformation rule with the

smallest ApplyPart is not completely paired up together with the ApplyPart of the other

transformation rule.

Proposition 5.4. Maximum Number of Possible Transformation Rule Pairs
Given two transformation rules {tr0, tr1} ⊆ TRs

t , we observe that the maximum number
of possible vertex pairs on those transformation rules (written Ξ〈tr0,tr1〉) results directly from the
multiplication of the number of combinations from their match parts, and the number of combina-
tions from their apply parts:

Ξ〈tr0,tr1〉 = ξ〈Matchtr0,Matchtr1〉 ×
n!× p!

p!× (n − p)!

where p = min(|V Applytr0 |, |V Applytr1 |) is the size of the smallest vertex set from the apply
parts of both transformation rules, and n = max(|V Applytr0 |, |V Applytr1 |) is the size of the largest
vertex set from the apply parts of both transformation rules.

107

5. ANALYSIS OF TRANSLATIONS 5.1. Structural Analysis

mA1 B1

C1 C2

B1 A1

C3C1 C2

applypairset = {}
applypairset = {(C ,C),(C ,C)}1 1 2 2

applypairset = {(C ,C),(C ,C)}1 2 2 1

applypairset = {(C ,C),(C ,C)}1 1 2 3

applypairset = {(C ,C),(C ,C)}1 3 2 1

applypairset = {(C ,C),(C ,C)}1 2 2 3

applypairset = {(C ,C),(C ,C)}1 3 2 2

(A , A)
x y

(B , B)
x y

x y

x y

x y

x y

x y

x y

x y

x y

(B , B)

(B , B)

(B , B)
x y

x y

x y

x y
(B , B)

(B , B)

mms

mmt

mms

mmt

1 1

1 1

x y
1 1

x y
1 1

x y
1 1

x y
1 1

x y
1 1

Figure 5.2: On top, two transformation rules named x and y. The backward links
are represented as dashed arrows. Vertices of the same type are indexed with
additional numbers. Both the transformation rules share the same source and
target metamodels. On the bottom, the elements from the Vertex Combination
relation w.r.t. pairing together B1 elements from graphs x and y, are pairs of
vertices.

Proof. The first part of the multiplication can be deduced from the maximum number of

vertex combinations from the vc relation on the match vertices of both transformation

rules. The second part corresponds to maximum number of vertex combinations again

from the vc relation on the apply vertices of both transformations rules, but now we only

select combinations of vertex pairs which size equals to the size of the smallest vertex set.

This means that on the vertex combination calculation we only select p where p = m =

min(|V Applytr0 |, |V Applytr1 |) in the sum

Σm
p=m

n!×m!

p!× (n − p)!× (m − p)!
.

108

5. ANALYSIS OF TRANSLATIONS 5.1. Structural Analysis

Definition 5.5. Collapse Rule Pairs
Let {tr0, tr1} ⊆ TRs

t be transformation rules, and pairset ∈ P(V × V) be a set of vertex
pairs. The function
CollapseRulePairs : TRs

t × TRs
t → P(TRs

t) is defined for a pair of transformation rules such
that

CollapseRulePairs(tr0, tr1) =
{
〈V,E, τv, τe〉

}
,

where for any pairset ∈ RulePairs(tr0, tr1) we have

1. V = (V tr0 ∪ V tr1) \ {y | (x, y) ∈ pairset},

2. E = (Etr0|V ∪Etr1|V)∪
{

(w, x) | (w, y) ∈ Etr1 ∧ (x, y) ∈ pairset
}
∪
{

(x,w) | (y, w) ∈
Etr1 ∧ (x, y) ∈ pairset

}
∪
{

(x, x) | (y, y) ∈ Etr1 ∧ (x, y) ∈ pairset
}

,

3. τv = τ tr0
v |V ∪ τ tr1

v |V ,

4. τe = τ tr0
e |E ∪ τ tr1

e |E .

The intuition of the function CollapseRulePairs, is to generate a new transformation

rule from each set of pairs computed by the RulePairs function. For instance, the trans-

formation rules named x and y presented before in Figure 5.2 are now used to generate

a finite set of transformation rules according to the finite set of pairs computed by the

RulePairs function. In Figure 5.3, we present three of those combinations. On the top

is the transformation rule generated from the case where all of the vertices are paired up

except for C_1 which refers to the Cy
1 vertex from transformation rule y. On the middle

is the transformation rule generated from the case where all of the vertices are paired up

except for C_2 (namely Cy
2). On the bottom of the Figure, is the transformation rule gen-

erated from the case where all of the vertices are paired up except for A1_ (namely Ax
1),

A_1 (namely Ay
1) and C_3 (namely Cy

3).

Proposition 5.6. Maximum Number of Possible Collapsed Transformation Rules from a Pair of
Transformation Rules

Given two transformation rules {tr0, tr1} ⊆ TRs
t , it is trivial to observe that the maximum

number of possible collapsed transformation rules computed with the function
CollapseRulePairs in definition 5.5 results directly from the maximum number of possible
pairset ∈ RulePairs(tr0, tr1) — i.e.,

|RulePairs(tr0, tr1)| = Ξ〈tr0,tr1〉.

109

5. ANALYSIS OF TRANSLATIONS 5.1. Structural Analysis

m

A11 B11

C12 C23C_1

m

A11 B11

C_2 C13C21

m

A_1 B11

C22 C_3C11

A1_

mms

mmt

mms

mmt

mms

mmt

x y{ } RulePairs(x,y)(A ,A),(B ,B),(C ,C),(C ,C) ,x y x y x y
1 1 1 1 1 2 2 3

x y{ } RulePairs(x,y)(A ,A),(B ,B),(C ,C),(C ,C) ,x y x y x y
1 1 1 1 1 3 2 1

x y{ } RulePairs(x,y)(B ,B),(C ,C),(C ,C) ,x y x y
1 1 1 1 2 2

Figure 5.3: Three transformation rules, each one generated from a result of the
RulePairs function when applied to the transformation rules x and y presented
in Figure 5.2.

Definition 5.7. Collapse of a Set of Transformation Rules

Let {past, tlayer, clayer, nlayer} ⊆ P(TRs
t), be sets of transformation rules, and {tr1, . . . tri} ⊆

TRs
t be transformation rules, where 1 ≤ i ≤ n.

The function Λ : P(TRs
t)→ P(TRs

t) is recursively defined for a set of rules. In the case of a
set with only one transformation rule:

(i) Λ({tr0}) = {tr0},

and in the case of a set with more than one transformation rule:

(ii) Λ(

n⋃
i=1

tri) =
⋃

trj∈Λ(
⋃n

i=2 tri)

CollapseRulePairs(tr1, trj),

110

5. ANALYSIS OF TRANSLATIONS 5.1. Structural Analysis

where tr1 ∈ TRs
t is the first transformation rule of the transformation rule set (given that we

decomposed it into a ordered set union of n elements), and trj ∈ Λ(
⋃n

i=2 tri)) is one of the results
from the recursive computation of the function Λ on the remainder of the transformation set. It
is trivial to observe that the transformation set monotonically decreases in the recursions, leading
inevitably to the recursion base case on line (i).

The intuition of this function, is that we can collapse any set of transformation rules

by collapsing together any pair of transformation rules, and further collapsing the results

of those collapses with another rule of the initial transformation rule set, until there is no

more rules to collapse.

Proposition 5.8. The result of function Λ is finite

Proof. We only have to prove that when we apply the function Λ to a set of transformation

rules bigger than one—i.e., case (ii). From proposition 5.6 we know that the function

CollapseRulePairs will return a maximum number of possible collapse rules, and it is

trivial to observe that this number is always finite. Therefore if the set of transformation

rules has two elements, then the result is also finite. Since the function Λ is recursively

defined as a union of finite results from the function CollapseRulePairs, where on each

step of the recursion the set
⋃n

i=1 tri, then we know that when we apply the function Λ to

a set of transformation rules bigger than two, that the recursion will eventually stop, and

the global number of collapsed rules returned by that function will also be finite.

Definition 5.9. Symbolic Execute
The function SymExecute : P(TRs

t) × TRs
t → P(TRs

t), is defined for a given set of rules
past ∈ P(TRs

t) and one transformation rule trc ∈ TRs
t which is supposed to be the result of

the Λ function. Here, we have to consider two cases. In the case where the set of backward links
from the transformation rule trc is empty — i.e., Bltrc = ∅— then SymExecute(past, trc) =

{trc}. Otherwise, in the case where the set of backward links from the transformation rule trc is
not empty — i.e., Bltrc 6= ∅— then:

SymExecute(past, trc) = {g∆ tg t h∆ | pasti ∈ past ∧ g C pasti|Blpasti ∧ g ∼= trc|Bltrc},

where g∆ is such that (g∆ t g) ∼= trc, and h∆ is such that (h∆ t g) ∼= pasti.

111

5. ANALYSIS OF TRANSLATIONS 5.1. Structural Analysis

5.1.1 State space

Definition 5.10. Collapse Function
Let {past, tlayer, clayer, nlayer} ⊆ P(TRs

t), be sets of transformation rules. The function
Collapse : P(TRs

t)×P(TRs
t)→ P(TRs

t) computes the complete set of collapsed transformation
rules from an existing set of transformation rules such that:

Collapse(past, tlayer) = {future ∈ TRs
t |

clayer ∈ P(tlayer),

nlayer ∈ Λ(clayer),

future ∈ SymExecute(past, nlayer)}

Proposition 5.11. Finiteness of the result of the Collapse function
Let {past, tlayer} ⊆ P(TRs

t), be sets of transformation rules. The result of the function
Collapse(past, tlayer) is always a finite set of graphs, where each graph in that set have a finite
set of nodes.

Proof. We first need to prove that clayer ∈ P(tlayer) is finite: this is trivial since the

powerset of a finite set is also a finite set. Then we need to prove that nlayer ∈ Λ(clayer)

is also finite, which can be directly concluded by the result of proposition 5.8. Finally,

we need to prove that future ∈ SymExecute(past, nlayer) is finite, which can also be

directly observed since by definition 5.9, this function is based on both the subgraph on

transformation rules and typed graph equivalence relations, which are by Definition 4.5

and Definition 4.20 relations between finite graphs.

We now build the symbolic space for a transformation by gathering all the combina-

tions of transformations for each layer, the result of collapsing them, and building the

state space.

Definition 5.12. Symbolic Space
Let {past, tlayer, nlayer, trset} ⊆ P(TRs

t), be sets of transformation rules, tr ∈ TRs
t be a

transformation rule, and trans ∈ Transformationst be a transformation. The transformation
symbolic space
SymSpace ⊆ P(TRs

t) ×Transformationst ×P(TRs
t) is the least set that satisfies the follow-

ing rules:

〈past, []〉 SymSpace−−−−−−→ {}

nlayer = back(Collapse(past, tlayer)),

〈nlayer,R〉 SymSpace−−−−−−→ trset

〈past, [tlayer :: R]〉 SymSpace−−−−−−→ nlayer ∪ trset

112

5. ANALYSIS OF TRANSLATIONS 5.1. Structural Analysis

The function computeSymSpace : Transformationst → P(TRs
t) uses the above relation

in order to compute the symbolic space of transformation trans:

computeSymSpace(trans) = {tr ∈ TRs
t | 〈{}, trans〉

SymSpace−−−−−−→ trset ∧ tr ∈ trset}

In this case the back : P(TRs
t) → P(TRs

t) function is applied recursively for each

transformation rule in clayer by creating new backward links that connect together all

match nodes of each transformation rule with its free apply nodes, in such a way that

simulates the application of the whole layer on an arbitrary model. Notice also that since

clayer is a set of transformation rules where each one results from the union of several

other transformation sub-rules, the back function is applied on each sub-rule while pre-

serving the sub-rule individuality.

When we apply the above defined computeSymSpace function to the transformation

specification presented in Listing 4.1, we get a set of around 11k collapsed transformation

rules. Examples of those collapsed transformation rules generated from this transforma-

tion specification are shown in Figure 5.4 and Figure 5.5. It is easy to observe which trans-

formation rules of the transformation specification presented in Listing 4.1 were used in

order to compose the presented examples, by means of the dashed horizontal lines that

connects the elements from the Statemachine sentences with PetriNet sentences.

The computeSymSpace function explores all of the relevant combinations of the pat-

terns defined in the transformation specification. We will further analyse all of these

combinations using both of the semantics definitions of the StateMachine and PetriNet

Languages, in order to validate the presented transformation.

id1
id4

id2

id3

id1

id2

id4 1

id3

1

1

1

source

target

source

Transition

target

Transition

Initial

State

Figure 5.4: An example of a collapsed transformation rule from the transforma-
tion specification presented in Listing 4.1. The left side of the Figure represents
the match part of the transformation rule, and the right side of the Figure rep-
resents the apply part of the transformation rule. This collapsed transformation
rule is a result of the collapse of the nodes from the all of the following transfor-
mation rules: Initial+(2× Transition)+State+(2× source)+(2× target).

113

5. ANALYSIS OF TRANSLATIONS 5.1. Structural Analysis

id1

id2

id3

id1

id2

id3

1

1
target

source

Transition

Initial

State

id5

id4

id5

id4

1

1
target

source

Transition

State

Figure 5.5: An example of a collapsed transformation rule from the transforma-
tion specification presented in Listing 4.1. The collapsed transformation rule is
a result of the collapse of the nodes from the all of the following transformation
rules: Initial+(2× Transition)+(2× State)+(2× source)+(2× target).

Proposition 5.13. Finiteness of the transformation symbolic space
Let [l1 . . . ln] ∈ Transformationst be a transformation. The result of the computation of the

transformation symbolic space computeSymSpace([l1 . . . ln]) is finite.

Proof. Let us start by proving by induction on the inference rules of definition 5.12 that

the amount of states produced for each layer l1 . . . ln is finite. The state space is recur-

sively computed using these inference rules, where in each step of the recursion, we take

the head of the list (i.e., tlayer) and compute the set of collapsed transformation rules

nlayer, which size is (as shown in proposition 5.11) a finite number. Therefore, the recur-

sion will eventually stop in a finite amount of steps. Since a finite union of finite sets is

also a finite set, the transformation symbolic space computeSymSpace([l1 . . . ln]) is also

finite.

The result in proposition 5.13 is crucial since by definition model checking can only

be performed on finite state spaces.

114

5. ANALYSIS OF TRANSLATIONS 5.1. Structural Analysis

5.1.2 Structural Checking

One of the uses for the symbolic space generated by the rules of definition 5.12 is to check

structural properties.

Definition 5.14. Property
A Property is a 8-tuple 〈V, E, τv, τe, MatchPart, ApplyPart, Bl, Il〉, whereMatchPart =

〈Match, s〉 and ApplyPart = 〈Apply, t〉.
A property is in fact a match-apply model with a special kind of edges labeled as indirectLink

in both the match and apply parts. On the one hand, if we remove these edges, we have that
MatchNoIl = 〈V 1, E1 \ Il,τ1

v , τ
1
e 〉 is a model w.r.t. s, MatchPartNoIl = 〈MatchNoIl, s〉,

ApplyNoIl = 〈V 2, E2 \ Il,τ2
v , τ

2
e 〉 is a model w.r.t. t and ApplyPartNoIl = 〈ApplyNoIl, t〉.

Therefore 〈V, E\Il, τv, τe, MatchPartNoIl, ApplyPartNoIl, Bl〉 ∈MAM s
t is a match-apply

model. On the other hand, Match = 〈V 3, E3, τ3
v , τ

3
e 〉, Apply = 〈V 4, E4, τ4

v , τ
4
e 〉, and the edges

Il ⊆ E3 or Il ⊆ E4 are called indirect links, which means that for all i ∈ Il it is true that either
τe(i) = τe(i)

3 = indirectlink or τe(i) = τe(i)
4 = indirectlink.

The set of all properties having source metamodel s and target metamodel t is calledPropertyst .

The language to describe properties is in fact very similar to the language to express

transformations, with the additional possibility of expressing indirect links in the apply

pattern—thus allowing more abstract patterns than the ones expressed in transforma-

tions. This is natural given that the properties of a transformation can be more abstract

than the rules implementing them. A property can be satisfiable, unsatisfiable or non prov-
able. We start with the definition of a state in a state space (formally defined as a trans-

formation) being model of a property. As a reminder, each state of the state space is a

symbolic representation of a set of models given as input to the transformation being

validated and their corresponding transformations. In fact, a state holds a set of patterns

that should be instantiated in the input model — the match part of the state — as well

as in the output model — the apply part of the state. By validating a property at the

level of the symbolic states, we validate it for the whole set of input and output mod-

els of a given transformation. Despite the fact that structural checking is an important

feature to be explored and delivered to the software language engineer while verifying

his/her translation, in this thesis we will not focus our attention on this feature. Further

references and examples of structural checking on DSLTrans translations can be found

in [LBA10].

115

5. ANALYSIS OF TRANSLATIONS 5.1. Structural Analysis

Definition 5.15. Model of a Property
A transformation rule tr = 〈V tr, Etr, τ trv , τ

tr
e , Matchtr, Applytr, Bltr, Iltr〉 ∈ TRs

t is a
model of a property p = 〈V p, Ep, τpv , τ

p
e ,Matchp, Applyp, Blp, Ilp〉 = P ∈ Propertyst , written

tr �s p if:

1. 〈V p, Ep \ Ilp, τpv , τpe 〉 J∼= 〈V tr, Etr, τ trv , τ
tr
e 〉

2. if xp indirectLink−−−−−−−−→ yp ∈ Ilp then there exists xtr label−−−→ ytr ∈ (Etr)∗ where τpv (xp) =

τ trv (xtr), τpv (yp) = τ trv (ytr) and (Etr)∗ is obtained by the transitive closure of Etr.

Definition 5.16. Satisfiable Property
Let trans = [l1 :: . . . :: ln] ∈ Transformationst be a transformation, and tr ∈ TRs

t be a
transformation rule computed from the transformation analysis.

The transformation trans satisfies property p ∈ Propertyst , written trans � p, where:
trans � p⇔ ∃ tr ∈ computeSymSpace(trans) · tr �s p

Definition 5.17. Unsatisfiable Property
Let trans = [l1 :: . . . :: ln] ∈ Transformationst be a transformation, and tr ∈ TRs

t be a
transformation rule computed from the transformation analysis.

The transformation trans do not satisfies property p ∈ Propertyst , written trans 2 p,
where:

trans 2 p⇔ ∃ tr ∈ computeSymSpace(trans) · tr �s match(p) ∧ tr 2s p

Note that the projection function match returns the match pattern of a property. In-

formally, the property’s match pattern is found in a given symbolic state, but the apply

pattern of the property is not satisfied.

Definition 5.18. Non Provable Property
Let trans = [l1 :: . . . :: ln] ∈ Transformationst be a transformation, and tr ∈ TRs

t be a
transformation rule computed from the transformation analysis.

Property p ∈ Propertyst is non provable w.r.t. transformation trans, written trans 3 p,
where:
trans 3 p⇔ @ tr ∈ computeSymSpace(trans) · tr �s match(p)

Again informally, the match pattern can never be found in any state of the symbolic

space of trans.

116

5. ANALYSIS OF TRANSLATIONS 5.1. Structural Analysis

5.1.3 DSLTrans’ Structural Analysis Tool

This approach for validating translations expressed in DSLTrans is depicted in Figure 5.6.

Since the number of symbolic states is a finite number, we can query the symbolic space

resulting from the symbolic execution of the translation. The structural properties ex-

pressed (at the bottom of the Figure) are queried on the resulting (finite) symbolic state

of a given DSLTrans Transformation. The satisfaction procedure then follows the formal-

ization just presented: if the source pattern of a structural property is found included in

a given symbolic state, then the corresponding apply pattern should also be included in

the respective apply pattern of that symbolic state.

DSLTrans
Metamodel

DSLTrans
Model

Source
Metamodel

Target
Metamodel

conforms to

refers to refers to

Source
pattern

Target
pattern

conforms to conforms to
Symbolic state

Source
pattern

Target
pattern

Satisfies

Property p

Figure 5.6: A framework for validating translations expressed in DSLTrans based
on the satisfaction of properties.

Given the fact that DSLTrans is a metamodeled language (which means that its syn-

tactic model is expressed by means of a metamodel), the implementation of this structural

analysis tool also explored this fact. This is shown in Figure 5.7, where it is shown the in-

teraction between both DSLTrans and Properties Editors with the structural analysis tool

in order to assert the validity of the defined translations by generating their symbolic ex-

ecution space, and using the defined properties as oracles. The depicted numbers inside

circles denote a logical order of events in time. Notice that the Properties Language ex-

tends the DSLTrans Language by introducing the capability of expressing indirect links

in the apply model—the syntax of DSLTrans was slightly extended in order to allow in-

direct links on the apply patterns—this allowed the expression of properties, and their

checking.

As we can see, the structural analysis tool was modeled and implemented solely by

means of a translation that converts every construct in the extended version of DSLTrans

117

5. ANALYSIS OF TRANSLATIONS 5.1. Structural Analysis

conforms to

DSLTrans
Metamodel

DSLTrans
Editor

Property to MProlog

Translation

DSLTrans
Model

1

2

3

4

5

MProlog
Model

conforms to

Metamodel
MProlog

Mprolog to Text

Translation

Text
Model

conforms to

Metamodel
Text

6

Analysis
Engine (.pl)

10
serializes to

Yes/No

Counter-Example1211

conforms to

Property
Metamodel

Property
Editor

Property
Model

7

8

9

extends

SLE
edits

SLE
edits

Figure 5.7: The reference implementation of the Structural Analysis Tool as a set
of Eclipse plug-ins.

(denoted Properties) into prolog clauses so that they can then be manipulated freely in

a relational fashion (i.e., DSLTrans’ constructs are encoded into relational entities, and

their associations are encoded in to relational relations). Furthermore, this translation is

in fact called an high-order transformation (as previously defined in [TCJ10]), since it was

also specified in DSLTrans and transforms DSLTrans transformation models into a meta-

modeled version of prolog called MProlog and further translated into the Text language,

which is already very close to textual code (in this case prolog code). In our reference

implementation, the relational version of DSLTrans is then manipulated in a program

written in prolog (denoted Analysis Engine), that closely follows the rules described in

the presented formalization.

118

5. ANALYSIS OF TRANSLATIONS 5.2. Semantic Analysis

5.2 Semantic Analysis

In this section, we start by presenting the formal definitions of the analysis algorithm of

DSLTran’s translations using both of the source and target language semantics expressed

in SOS specifications, and then we explain how the analysis algorithm was realized in a

tool, and how this tool is integrated in the overall MDD methodology for DSML com-

piler’s design, implementation, verification and validation.

5.2.1 The Analysis Algorithm

We now define what is a bisimulation relation between semantic domains of two different

languages. We will then use this relation in order to validate a given translation.

Definition 5.19. Mapper Function and its inverse
Let tr ∈ TRs

t be a transformation, X ⊆ V and Y ⊆ V are finite sets of vertices.
The mapper : TRs

t → (P(V)→ P(V)) function, is such that
mapper(tr) =

{(X → Y) | X ⊆ VMatchtr ∧ ∀x ∈ X · (x backwardLink−−−−−−−−−→ y) ∈ Bltr =⇒ y ∈ Y }

Its inverse is the function mapper−1 : TRs
t → (P(V)→ P(V)) such that

mapper−1(tr) =

{(Y → X) | Y ⊆ V Applytr ∧ ∀y ∈ Y · (x backwardLink−−−−−−−−−→ y) ∈ Bltr =⇒ x ∈ X}

Informally the mapper function converts any transformation into a mapping function

such that for a given set of match vertices it returns their correspondent apply vertices,

according to the defined backward links in that transformation. Conversely, the inverse

of the mapper function converts any transformation into a mapping function such that

for a given set of apply vertices it returns their correspondent match vertices, according

to the defined backward links in that transformation.

Definition 5.20. Notion of Bisimulation Relation
Let g ∈ TG be a typed graph, tsg ∈ TS be a transition system, where tsg = P(〈PreState,

〈Label, V 〉, PosState〉), {p, q, PreState, Label, Label′, PosState, PosState′ } ⊆ Term are
arbitrary terms with no variable references, and V, V ′ ⊆ V g are finite sets of vertices of typed
graph g.

The Bisimulation is a relation written ∼tsg ⊆ TS × Term × Term between terms which
were defined on a particular transition system tsg. If we pick arbitrary p and q, we can say that
p ∼tsg q if and only if all of the following conditions are satisfied:

1. there exists either 〈p, 〈Label, V 〉, PosState〉 ∈ tsg or 〈PreState, 〈Label′, V ′〉, p〉 ∈ tsg,
or both.

119

5. ANALYSIS OF TRANSLATIONS 5.2. Semantic Analysis

2. there exists either 〈q, 〈Label, V 〉, PosState〉 ∈ tsg or 〈PreState, 〈Label′, V ′〉, q〉 ∈ tsg,
or both.

3. for all 〈p, 〈Label, V 〉, PosState〉 ∈ tsg, there exists 〈q, 〈Label′, V ′〉, PosState′〉 ∈ tsg,
and PosState ∼tsg PosState′.

4. for all 〈q, 〈Label, V 〉, PosState〉 ∈ tsg, there exists 〈p, 〈Label′, V ′〉, PosState′〉 ∈ tsg,
and PosState ∼tsg PosState′.

The first two conditions basically say that p and q are terms belonging to the states of

the transition system tsg. The third condition says that given that p and q are bisimilar

related, then for every move (i.e., every outgoing transition in the transition system tsg)

starting from p there must also be a matching move starting from p. The matching move

is written in the above definition as: the next term state PosState starting from p must be

also bisimilar related with the next term state PosState′ starting from q. Finally, the forth

condition is similar to the third one but now it says that all the possible moves starting

from q should also be matched with moves starting from p.

Definition 5.21. General Bisimulation Relation

Let tr ∈ TRs
t be a transformation defined for metamodels s ∈ MM and t ∈ MM , and

let {g, g′} ⊆ TG be two models, such that g ` s and g′ ` t. Also let {tsg, tsg′} ∈ TS be their
respective transition systems produced according to some operational semantics, {p, q, PreState,
P0, P1, Label, Label

′, PosState, PosState′ } ⊆ Term are arbitrary terms with no variable
references, and X,V ⊆ V g is a finite set of vertices of typed graph g, and V ′, Y ⊆ V g′ is a finite
set of vertices of typed graph g.

The General Bisimulation is a relation written ∼(tsg ,tsg′ ,tr) ⊆ TS × TS × TRs
t × Term ×

Term between terms which were defined on the two transition systems tsg and tsg′ .
p ∼(tsg ,tsg′ ,tr) q means that all of the following conditions are satisfied:

1. there exists either 〈p, 〈Label, X〉, PosState〉 ∈ tsg or 〈PreState, 〈Label′, X ′〉, p〉 ∈ tsg,
or both.

2. there exists either 〈q, 〈Label, Y 〉, PosState〉 ∈ tsg′ or 〈PreState, 〈Label′, Y ′〉, q〉 ∈ tsg′ ,
or both.

3. for all x0 ∈ { P0 | 〈P0, 〈Label, V 〉, PosState〉 ∈ computeInitial(tsg) }, there exists an
y0 ∈ { P1 | 〈P1, 〈Label′, V ′〉, PosState′〉 ∈ computeInitial(tsg

′
) },

such that x0 ∼(tsg ,tsg′ ,tr) y0.

4. for all x0 ∈ { P0 | 〈P0, 〈Label, V 〉, PosState〉 ∈ computeInitial(tsg
′
) }, there exists

an y0 ∈ { P1 | 〈P1, 〈Label′, V ′〉, PosState′〉 ∈ computeInitial(tsg) },
such that x0 ∼(tsg ,tsg′ ,tr) y0.

120

5. ANALYSIS OF TRANSLATIONS 5.2. Semantic Analysis

5. for all 〈p, 〈Label, X〉, PosState〉 ∈ tsg, there exists a
〈q, 〈Label′, mapper(tr)(X)〉, PosState′〉 ∈ tsg′ , such that
PosState ∼(tsg ,tsg′ ,tr) PosState′.

6. for all 〈q, 〈Label, Y 〉, PosState〉 ∈ tsg′ , there exists a
〈p, 〈Label′, mapper−1(tr)(Y)〉, PosState′〉 ∈ tsg, such that
PosState ∼(tsg ,tsg′ ,tr) PosState′.

The General Bisimulation Relation, extends the notion of Bisimulation Relation by

using a transformation tr in order to relate together two different transition systems as

they were two parts of the same transition system. Notice that the Bisimulation rela-

tion presented in Definition 5.20 is a relation between two (possibly disjoint) parts of the

same transition system tsg. Here the two different transition systems (i.e., one from each

language) are brought together by means of the mapper and mapper−1 functions pro-

duced from the transformation tr. Notice that these functions take a transformation as a

parameter and return mapping functions from sets of vertices to sets of vertices.

Lemma 5.22. Reflexivity, Symmetry, and Transitivity ∼
The General Bisimulation relation ∼ between different languages is an equivalence relation.

Proof. To be an equivalence relation it has have the following properties: reflexivity, sym-

metry and transitivity. We will follow show each one these properties:

1. Reflexivity: Lets assume that we have a typed graph g ∈ TG, a transition system

defined on that graph tsg ∈ TS an identity transformation id ∈ TRs
t , such that

∀V ⊆ V g · mapper(id)(V) = mapper−1(id)(V). Within these conditions it is trivial

to observe that the identity relation R = {(s, s) | (〈s, 〈Label, X〉, PosState〉) ∈
tsg ∨ (〈PreState, 〈Label, X〉, s〉) ∈ tsg} is a bisimulation relation for (tsg, tsg, id).

In other words since R satisfies all of the six conditions on definition 5.21, then

R ⊆ ∼(tsg ,tsg ,id).

2. Symmetry: Lets assume that we have two typed graphs {g, g′} ⊆ TG, two tran-

sition systems defined on those graphs respectively {tsg, tsg′} ⊆ TS, and tr ∈
TRs

t . Also, lets assume that R ⊆ ∼(tsg ,tsg′ ,tr). If we consider the relation R−1 =

{(s′, s) | (s, s′) ∈ R}, which is obtained by swapping the states of any pair in

R, and tr−1 ∈ TRt
s which is also obtained by swapping the match vertices with

the apply ones on the given transformation rule tr — i.e., mapper(tr−1)(V) =

mapper−1(tr)(V) and conversely mapper−1(tr−1)(V) = mapper(tr)(V) — then

R−1 ⊆ ∼(tsg′ ,tsg ,tr−1) is also a bisimulation relation because (i) the first four condi-

tions on definition 5.21 are obviously true, and (ii) the last two conditions are true

by their symmetric nature.

121

5. ANALYSIS OF TRANSLATIONS 5.2. Semantic Analysis

3. Transitivity: Let assume that both R1,2 ⊆ ∼(tsg ,tsg′ ,tr1,2) and R2,3 ⊆ ∼(tsg′ ,tsg′′ ,tr2,3)

are bisimulations. Then, in this case, we need to prove that there also exists a

relation R = {(s1, s3) | ∃ (〈s2, 〈Label, X〉, PosState〉 ∈ tsg
′ ∨ 〈PreState, 〈Label, X〉,

s2〉 ∈ tsg
′
) · (s1, s2) ∈ R1,2 ∧ (s2, s3) ∈ R2,3} which is also a bisimulation. In

other words, R ⊆ ∼(tsg ,tsg′′ ,tr1,3), where tr1,3 is such that for any V ⊆ V g it is true

that mapper(tr1,3)(V) = mapper(tr2,3)(mapper(tr1,2)(V)), and for any V ′′ ⊆ V g′′ it

is true that mapper−1(tr1,3)(V ′′) = mapper−1(tr1,2)(mapper−1(tr2,3)(V ′′)).

This can be demonstrated by checking all of the conditions for a bisimulation. The

first two conditions of definition 5.21 are true by definition. For the next two con-

ditions, lets first consider for any initial state s1 ∈ { PreState | (〈PreState,
〈Label, V 〉, PosState〉) ∈ computeInitial(tsg) }. Then on the one hand, since R1,2

is a bisimulation, we know that there exists a s2 ∈ { PreState | (〈PreState,
〈Label, V 〉, PosState〉) ∈ computeInitial(tsg

′
) } such that (s1, s2) ∈ R1,2. And,

on the other hand, since R2,3 is also a bisimulation, we know that there exists a

s3 ∈ { PreState | (〈PreState, 〈Label, V 〉, PosState〉) ∈ computeInitial(tsg
′′
) }

such that (s2, s3) ∈ R2,3. Therefore, in w.r.t. this condition we can say that (s1, s3)

∈ R1,3. In the same line of thought, we can also say that for any s3 ∈ { PreState |
(〈PreState, 〈Label, V 〉, PosState〉) ∈ computeInitial(tsg′′) }, there is an initial state

s1 ∈ { PreState | (〈PreState, 〈Label, V 〉, PosState〉) ∈ computeInitial(tsg) }
such that (s1, s3) ∈ R1,3. Finally, for the last two conditions, if we assume that

(s1, s3) ∈ R1,3, then on the one hand, since (s1, s2) ∈ R1,2, it follows that (〈s1,

〈Label, X〉, s′1〉) ∈ tsg, and there exists (〈s2, 〈Label′, mapper(tr1,2)(X)〉, s′2〉) ∈ tsg
′
,

where s′1 ∼(tsg ,tsg′ ,tr1,2) s′2; and on the other hand, since (s2, s3) ∈ R2,3 and

we consider that Y = mapper(tr1,2)(X), then it follows that (〈s2, 〈Label′, Y 〉,
s′2〉) ∈ tsg

′
, and there exists (〈s3, 〈Label′′, mapper(tr2,3)(Y)〉, s′3〉) ∈ tsg

′′
, where

s′2 ∼(tsg′ ,tsg′′ ,tr2,3) s′3. Therefore, it is true that s′1 ∼(tsg ,tsg′′ ,tr1,3) s′3 or in other

words: (s′1, s
′
3) ∈ R1,3. The proof for the last condition is similar to this one, using

the function mapper−1.

Definition 5.23. Semantic Validity of a Translation
Let m ∈ Transformationst be a transformation defined for metamodels {s, t} ⊆MM . Also

consider soss ∈ SOSs to be an operational semantics definition for language s, sost ∈ SOSt to be
an operational semantics definition for language t, {P0,P1, Label, Label

′, PosState} ⊆ Term

are arbitrary terms with no variable references, and V, V ′ are finite sets of vertices. We say that
the transformation m is a valid translation if and only if for all tr ∈ computeSymSpace(m),
there exists a relation x0 ∼(tsMatchtr ,tsApplytr ,tr) y0, where

1. tsMatchtr
= computeF ixPoint(soss,Matchtr);

2. tsApplytr = computeF ixPoint(sost, Apply
tr);

122

5. ANALYSIS OF TRANSLATIONS 5.2. Semantic Analysis

3. x0 ∈ { P0 | 〈P0, 〈Label, V 〉, PosState〉 ∈ computeInitial(tsMatchtr
) };

4. y0 ∈ { P1 | 〈P1, 〈Label′, V ′〉, PosState〉 ∈ computeInitial(tsApplytr) };

Informally, the checking algorithm to validate a particular translation m will first

compute the symbolic space of the translation for each of the match and apply patterns

specified in m. The algorithm will compute their respective transition systems, and fi-

nally check the general bisimulation relation on their initial states. There can be several

options on the implementation of this algorithm, for instance, instead of computing the

whole transition system for each one of the languages, one could compute individual

states on both languages and check the bisimilarity relation starting from the initial states

on both languages’ transition systems. Notice that the computation of the complete tran-

sition system may not terminate — e.g., in the Petri Nets example shown in Section 4.3

we might have infinitely many relations between markings.

Back to our running example, the checking algorithm will in this case compute the

transformation symbolic space using the computeSymSpace function as shown in Fig-

ures 5.4 and 5.5. Then for each collapsed transformation rule, it will unfold the transi-

tion system of both its match and apply patterns using the function computeF ixPoint

resulting in the transition systems shown in the bottom of both Figures 5.8 and 5.9. For

readability purposes, we used on the one hand the term m({(id1, 1), (id2, 0)}) as an ab-

breviation of marking(p(id1, suc(zero)), marking(p(id2, zero), e)) in Figure 5.8, and on

the other hand the term m({(id1, 1), (id2, 0), (id5, 0)}) as an abbreviation for the alge-

braic value marking(p(id1, suc(zero)), marking(p(id2, zero), marking(p(id5, zero), e))).

The final step is then to check if these transition systems are bisimilar. In the example

from Figure 5.8 we can note that the mapper function is formed by the set:

{({id1}, {id1}),

({id2}, {id2}),

({id1, id2, id3}, {id3}),

({id1, id1, id4}, {id4})}

Also, in the example from Figure 5.9 the mapper function is formed by the following set:

{({id1}, {id1}),

({id2}, {id2}),

({id1, id2, id3}, {id3}),

({id2, id5, id4}, {id4}),

({id5}, {id5})}

123

5. ANALYSIS OF TRANSLATIONS 5.2. Semantic Analysis

id4

id2

id3

id4 1

id3

1

source

target

source

Transition

target

Transition

Initial

State

id1 id1

id2

1

1

cs(id1)id4

cs(id2)

id3

id4

id3

m({(id1,1),
 (id2,0)})

m({(id1,0),
 (id2,1)})

Figure 5.8: An example of a col-
lapsed transformation rule from
the transformation specification pre-
sented in Listing 4.1 (on top), and
their respective transition systems
(on bottom).

id1

id2

id3

id1

id2

id3

1

1
target

source

Transition

Initial

State

id5

id4

id5

id4

1

1
target

source

Transition

State

cs(id1)

cs(id2)

id3 id3

cs(id5)

id4 id4

m({(id1,0),
 (id2,1),
 (id5,0)})

m({(id1,0),
 (id2,0),
 (id5,1)})

m({(id1,1),
 (id2,0),
 (id5,0)})

Figure 5.9: An example of a col-
lapsed transformation rule from
the transformation specification pre-
sented in Listing 4.1 (on top), and
their respective transition systems
(on bottom).

5.2.2 Methodology and Tool

The general framework proposed for our validation approach presented in Chapter 3, in

particular in Figure 3.10, can now be instantiated in Figure 5.10. The framework is in-

stantiated with two languages: DSLTrans for expressing software language translations,

and SOS for expressing the abstract semantics of the involved languages in a platform

independent way.

This instantiation specifically supports a particular kind of methodology, where the

software language engineer defines both the syntax and semantics of all of the involved

languages in the most platform independently way, namely, by means of metamodels

(syntax) and SOS model (semantics). During the language development, the language

engineer might feel the need to translate towards a particular platform which already has

a language with appropriate level of abstraction, and most importantly, both the syntax

and semantics of this language is also completely defined in a similar way, namely, by

124

5. ANALYSIS OF TRANSLATIONS 5.2. Semantic Analysis

Source
Metamodel

Target
Metamodel

conforms to

refers to refers to

Source
Pattern TS

Target
Pattern TS

Source
SOS Model

Target
SOS Model

refers to refers to

produced by

conforms to conforms to

Source
Pattern

Target
Pattern

Symbolic state

SOS
Metamodel

conforms to conforms to

produced by

produced by produced by

DSLTrans
Metamodel

DSLTrans
Model

SLE

edits

SLE

edits

edits

SLE

edits

edits

Analysis
Engine

Figure 5.10: The instantiation of the proposed framework for validating software
language translations.

means of metamodels (syntax) and SOS model (semantics). If this translation can be

also suitably formalized/expressed using a DSLTrans Model, then the semantic analysis

tool can use both of the involved language’s semantic definitions in order to validate the

translation, before it is automatically realized in a DSML compiler.

As shown in Figure 5.11, this methodology is also aligned with the goals of Model

Driven Development (MDD) of tackling complexity (e.g., platform dependency) by hav-

ing several intermediate levels of abstraction and small (and most importantly analysable)

translations between them. Here it also important that each intermediate level of abstrac-

tion is completely formalized by means of languages in what respects to their syntax and

semantics, preferably in the most platform independent way—so that these specifications

can be effectively reused among platforms. Notice that the depicted numbers inside cir-

cles denote a logical order of events in time. Also notice that in the Figure 5.11, the arrows

labeled as step 3 (serializes to), are in fact hiding all the intermediate translation events

described before in Figures 4.15 and 4.20. Moreover, these events must occur simultane-

ously in order to produce the input parameters of the implemented analysis engine in

prolog.

The semantic analysis tool 1 internally uses the semantic definitions of both the source

and target languages (expressed in the SOS language) involved in a DSLTrans’ translation

1The DSLTrans’ analysis tool is an open-source project available publicly at: https://
github.com/githubbrunob/DSLTransGIT/tree/master/dsltransAnalysis

125

https://github.com/githubbrunob/DSLTransGIT/tree/master/dsltransAnalysis
https://github.com/githubbrunob/DSLTransGIT/tree/master/dsltransAnalysis

5. ANALYSIS OF TRANSLATIONS 5.2. Semantic Analysis

conforms to

DSLTrans
Metamodel

DSLTrans
Editor

DSLTrans
Model

1

3
Analysis

Engine (.pl)

Yes/No

Counter-Example

conforms to

SOS
Metamodel

Source
Model

conforms to

Target
Model

serializes to

Source
Metamodel

Target
Metamodel

4

SOS
Editor

2

3serializes to 3serializes to

SLE
edits

SLE
edits

Figure 5.11: The reference implementation of the Semantic Analysis Tool as a set
of Eclipse plug-ins.

under analysis in order to produce, for each source and target pattern on each symbolic

state of that translation, their respective canonical representations as transition systems

(TS), and compare them in a common ground. According to the languages involved this

comparison procedure may not reach a valid conclusion as we will further discuss in

Chapter 7.

Furthermore, the presented semantic analysis tool itself was also developed following

the principles of MDD. Firstly, the translation under analysis is itself translated into a

relational representation expressed as prolog facts. Secondly, the SOS specifications of

both of the source and target languages referred in the translation, are also translated

into a similar relational representation expressed as prolog facts. The checking program

is completely written in prolog, and it manipulates the translation under analysis and

the SOS specifications as graphs, in a very similar ways as presented in the formalization

described in this Chapter. Actually, the main concern was to provide a proof of concept

by means of an implementation that is very close to the formalization, hence tackling

soundness and eventual computation problems that typical mathematical formalizations

usually neglect. However, the aspect of computational performance was not addressed—

i.e., the analysis process might need a huge amount of both time and memory, in order

to return a satisfactory result.

Notice that all of the described translations were expressed in DSLTrans. Given that

we used a metamodeled version of prolog (named MProlog) as target of all of our de-

scribed translations, we can ultimately analyse this high-order transformation by the

same means—it is just a question of providing a suitable well-understood semantics of

126

5. ANALYSIS OF TRANSLATIONS 5.3. Conclusions and Related Work

prolog. These translation is however quite trivial, and therefore no further analysis pro-

cedure was taken.

5.3 Conclusions and Related Work

We have introduced a language (DSLTrans) for expressing translations which do not al-

low the expression of any kind of recursion on its syntax—here we presented a similar

formalization to what was published in [BLA+10]. This restriction in the language and

the identification of its properties (i.e., confluence and termination) allowed the design of

a verification mechanism for this kind of translations, and its associated model checking

tool [LBA10]—here we presented a slightly different formalization based on the imple-

mentation of the verification mechanism in prolog.

Similarly to our approach, the authors of [NK08] enable the declaration of a syntac-

tic structural correspondence between terms in source and target languages. However,

they use this structural correspondence to automatically verify the results at the end of

each transformation. With this approach, the quality engineer will only realize that the

transformation is invalid when some pair of models input/output violates the declared

structural correspondence.

Finally, we also provide a framework with its respective languages and tools to au-

tomatically validate translations expressed in DSLTrans w.r.t. both the source and target

operational semantics [BA11]. The authors in [AvdBE12] also present a similar frame-

work. However they do not present any concrete implementation. Instead, the presented

framework can be used as a reference to further implementations of specialized theorem

provers that are able to symbolically validate a translation. Therefore they did not felt the

computation problems associated with model transformations’ validation, nor the need

to restrict their MTL in order to avoid them.

In our framework, we are able to use any DSML’s semantic specification expressed in

SOS, as an oracle, in order to validate another specification of the same DSML expressed

in DSLTrans. The reason to do so, and not the other way around (i.e., using DSLTrans, to

validate SOS specifications) is that DSLTrans have properties (i.e., termination and con-

fluence) that makes it analysable. In this particular case, the analysability property comes

from the fact that the resulting symbolic execution space of any DSLTran’s translation is

finite. The analysability of the SOS language is however a topic under research: one

could find a way to, for instance, restrict the expressiveness of SOS in order to make it

also analysable.

Nevertheless, the validation of model transformations (and in particular language

translations) is a very difficult task to be performed by a software language engineer.

Therefore, the software language engineer has a recognized need for well founded (for-

malized and language-based) tool support for SLE specify translations, automatically

127

5. ANALYSIS OF TRANSLATIONS 5.3. Conclusions and Related Work

validate them, and generate their respective compilers.

However, the success of the presented methodology mostly depends on an optimal

implementation of the presented analysis tool. The next Chapter tries to analyze and

evaluate the expected success of presented methodology in light of a concrete case study.

128

6
Case Study: A Language for Role

Playing Games

In order to demonstrate how the presented methodology can be used in practice, we will

introduce a concrete case study with a realistic application, and then discuss the limi-

tations and borders of the validation method in the application context of the language

engineering of Domain Specific Modeling Languages (DSMLs) in general.

6.1 Language Overview

We selected as a case study the DSML for Role Playing Games (RPG). The RPG DSML

introduced in [MBB+12] was specifically designed to enable game designers to specify

their RPGs, analyse their correctness by means of powerful analysis algorithms and data

structures, and finally automatically deploy them in a given computational platform. Fig-

ure 6.1, details the RPG framework that provides both execution and analysis support to

the RPG game designers: the Corona Framework 1, and the Algebraic Petri Nets (APN)

language used in the AlPiNA framework [HML+12], respectively. Notice that this in-

volved several intermediate translations between intermediate levels of abstraction. The

model to model transformations (denoted in the Figure as ’M2M’) were originally ex-

pressed in the ATL transformation language 2, and the model to code transformations

(denoted in the Figure as ’M2C’) were expressed using the XPand 3 language. Here the

1http://www.anscamobile.com/corona/
2http://www.eclipse.org/atl/
3http://wiki.eclipse.org/Xpand

129

http://www.anscamobile.com/corona/
http://www.eclipse.org/atl/
http://wiki.eclipse.org/Xpand

6. CASE STUDY: A LANGUAGE FOR ROLE PLAYING GAMES 6.1. Language Overview

authors distinguish ’code’ from ’model’ whenever we generate artifacts that are no longer

in the XMI format nor conforming with an EMF metamodel. Notice also that having or-

thogonal transformations towards different platforms naturally brings the need to assure

the overall consistency of the framework—i.e., how do we prove that the APN analy-

sis model is semantically equivalent with the generated code in the Corona Framework?

In [ABC12], it is presented a vision of the methodology that tries to solve this challeng-

ing question by specifically using both DSLTrans and the associated verification methods

presented in this thesis.

RPG Model
µRPG
Model

APN

µFramework
Model

Corona
Framework

M2M

M2M M2M

M2C

Model Verification

Product

Figure 6.1: The RPG Framework as introduced in [MBB+12]

The language itself is small and simple, having only the necessary concepts to spec-

ify an RPG: the game map (which includes scenes that contain cells inside), the hero,

agents (which can be friendly or enemies), items (which can be keys, doors, etc), dia-

logues (with multiple choice conditions on the answers), and challenges or goals. For the

sake of clarity, we restricted our case study by focusing only on the translations related

to the Model Verification (i.e., the horizontal transformation path depicted in Figure 6.1).

Also instead of using the APN language, we used the Petri Nets language defined before

in Chapter 3. Notice that the Petri Nets language was developed as the simplification

of APNs specifically to be presented in this thesis, while maintaining all of the essential

features of APNs. Finally, instead of starting directly from the RPG language, we instead

start from the language depicted in Figure 6.1, which is a smaller version of the RPGs

restricted to the relevant set of concepts that are to be analysed in the APN analysis plat-

form. For instance, in order to analyse the possible paths of the players during a given

game, we focus on concepts such as the hero, the doors, the keys to open doors, and their

cell positions. Therefore, the RPG language metamodel that we present in Figure 6.2,

only presents Cells, Keys, Doors and Heros as the main concepts of the language—for

instance, Challenges are not represented.

130

6. CASE STUDY: A LANGUAGE FOR ROLE PLAYING GAMES 6.2. Experimental Report

a

c

b

b

a

c

Figure 6.2: The metamodel of the RPG Language (on the left). An RPG sentence
expressed in a simple visual editor (on the right), representing a maze with cells,
doors, keys, and the hero’s initial position.

6.2 Experimental Report

In this Case Study, we want to evaluate the presented methodology by applying it on the

above presented RPG DSML and its translation to Petri Nets. In particular, we want to

observe: i) if the DSLTrans language is able to specify the translation from RPGs to Petri

Nets; ii) if the SOS language is able to specify both the RPG and Petri Nets languages;

and finally iii) if the presented verification tool is able to effectively determine the va-

lidity of the DSLTrans Translation. Therefore, after specifying the RPG’s semantics (both

operational and by translation to the Petri Nets language), we show the results of the

verification tool when applied to the specified translation.

6.2.1 RPG’s Semantics Specification

The operational semantics of the RPG language (when restricted to these concepts) can

be described using our SOS language, as shown in Listing 6.1. The semantic domain

(i.e., the algebraic structure that we used to represent the states in the resulting transition

system) is a pair containing the Cell which represents where the Hero currently is, and

the set of Keys that the Hero currently have.

The first rule (from lines 10 to 27 on the left column) says that the hero can always

move left (denoted as the transition labeled as al) if its current Cell is adjacent with an-

other one on the left, and there is no Door occupying it. Also note that the new state

maintains the same set of keys for the hero. Similarly, the second rule (from lines 28 to 44

on the left column) says the same for the top movement, where the transition was in this

case labeled as at.

131

6. CASE STUDY: A LANGUAGE FOR ROLE PLAYING GAMES 6.2. Experimental Report

Listing 6.1: SOS semantic definition
of the RPG Language
Semantics

ADT RGPState
Sorts rpgstate

5 Generators
hero: class("rpg","Cell")

Set(class("rpg","Key"))
-> rpgstate;

10 Assuming
@state ->> @movement ->> hero(@c1 @keyset)

in Transition_System,
in(@c1,Model)=true,
in(@c1 -> left -> @c2,Model)=true,

15 in(@d,Model)=true,
in(@d -> occupies -> @c2,Model)=false

Then
hero(@c1 @keyset) ->> al ->> hero(@c2 @keyset)

in Transition_System
20 Where

state: rpgstate;
c1: class("rpg","Cell");
c2: class("rpg","Cell");
d: class("rpg","Door");

25 movement: char;
keyset: Set(class("rpg","Key"));

Assuming
@state ->> @movement ->> hero(@c1 @keyset)

30 in Transition_System,
in(@c1,Model)=true,
in(@c1 -> top -> @c2,Model)=true,
in(@d,Model)=true,
in(@d -> occupies -> @c2,Model)=false

35 Then
hero(@c1 @keyset) ->> at ->> hero(@c2 @keyset)

in Transition_System
Where

state: rpgstate;
40 c1: class("rpg","Cell");

c2: class("rpg","Cell");
movement: char;
d: class("rpg","Door");
keyset: Set(class("rpg","Key"));

45
// skipping: the same for bottom and right movements

Assuming
@state ->> @movement ->> hero(@c1 @keyset)

50 in Transition_System,
in(@k,@keyset)=true,
in(@k -> opens -> @d,Model)=true,
in(@c1 -> left -> @c2,Model)=true,
in(@d -> occupies -> @c2,Model)=true,

55 in(@d -> exits -> @c3,Model)=true
Then

hero(@c1 @keyset) ->> al ->> hero(@c3 @keyset)
in Transition_System

Where
60 state: rpgstate;

c1: class("rpg","Cell");
c2: class("rpg","Cell");
c3: class("rpg","Cell");
movement: char;

65 d: class("rpg","Door");
k: class("rpg","Key");
keyset: Set(class("rpg","Key"));

2 Assuming
@state ->> @movement ->> hero(@c1 @keyset)

in Transition_System,
in(@k,@keyset)=true,
in(@k -> opens -> @d,Model)=true,

7 in(@c1 -> top -> @c2,Model)=true,
in(@d -> occupies -> @c2,Model)=true,
in(@d -> exits -> @c3,Model)=true

Then
hero(@c1 @keyset) ->> at ->> hero(@c3 @keyset)

12 in Transition_System
Where

state: rpgstate;
c1: class("rpg","Cell");
c2: class("rpg","Cell");

17 c3: class("rpg","Cell");
movement: char;
d: class("rpg","Door");
k: class("rpg","Key");
keyset: Set(class("rpg","Key"));

22
// skipping: the same for bottom and right movements

Assuming
27 @state ->> @movement ->> hero(@c1 @keyset)

in Transition_System,
in(@k,Model)=true,
in(@k -> occupies -> @c1,Model)=true

Then
32 hero(@c1 @keyset) ->> ak ->>

hero(@c1 Union({@k}, @keyset))
in Transition_System

Where
state: rpgstate;

37 c1: class("rpg","Cell");
movement: char;
k: class("rpg","Key");
keyset: Set(class("rpg","Key"));

42 Assuming
in(@hero,Model)=true,
in(@c1,Model)=true,
in(@hero -> occupies -> @c1,Model)=true,
in(@c1 -> left -> @c2,Model)=true,

47 in(@d,Model)=true,
in(@d -> occupies -> @c2,Model)=false

Then
hero(@c1 @keyset) ->> al ->> hero(@c2 @keyset)

in Transition_System
52 Where

state: rpgstate;
hero: class("rpg","hero");
c1: class("rpg","Cell");
c2: class("rpg","Cell");

57 d: class("rpg","Door");
movement: char;
keyset: Set(class("rpg","Key"));

Assuming
62 in(@hero,Model)=true,

in(@c1,Model)=true,
in(@hero -> occupies -> @c1,Model)=true,
in(@c1 -> top -> @c2,Model)=true,
in(@d,Model)=true,

67 in(@d -> occupies -> @c2,Model)=false
Then

hero(@c1 @keyset) ->> at ->> hero(@c2 @keyset)
in Transition_System

Where
72 state: rpgstate;

hero: class("rpg","hero");
c1: class("rpg","Cell");
c2: class("rpg","Cell");
movement: char;

77 d: class("rpg","Door");
keyset: Set(class("rpg","Key"));

// skipping: the same for bottom and right movements

Notice that for the sake of brevity we omitted the bottom and right movements as

132

6. CASE STUDY: A LANGUAGE FOR ROLE PLAYING GAMES 6.2. Experimental Report

RPG Element Petri Net Element

RPG PetriNet

Cell with no Hero Place with Token=0

Cell with Hero Place with Token=1

Key in some Cell
TransitiongetKey

outArc−−−−→ OutArc sourceP lace−−−−−−−→ PlaceCell,

TransitiongetKey
inArc−−−→ InArc

targetP lace−−−−−−−→ PlaceKey
(∗)

Cell (a) is adjacent to Transitionmove
outArc−−−−→ OutArc sourceP lace−−−−−−−→ PlaceCell(a) ,

another Cell (b) without a Door Transitionmove
inArc−−−→ InArc

targetP lace−−−−−−−→ PlaceCell(b)

Cell (a) is adjacent to Transitionmove
outArc−−−−→ OutArc sourceP lace−−−−−−−→ PlaceCell(a) ,

another Cell (b) with a Door Transitionmove
outArc−−−−→ OutArc sourceP lace−−−−−−−→ PlaceKey,

that exits to Cell (c) Transitionmove
inArc−−−→ InArc

targetP lace−−−−−−−→ PlaceCell(c)
(∗∗)

(∗) The place PlaceKey stores the key as a token.
(∗∗) Transitionmove is created between Places from Cells (a) and (c) and their respective InArc

and OutArc, and also an InArc and OutArc connecting this transition with the Place
associated with the Key that opens the referred Door.

Table 6.1: Translation table between the RPG Language and the Petri Net Lan-
guage.

they are similar to the top and left movements. The third and fourth rules (respectively

the remaining lines in the left column, and from lines 1 to 22 on the right column) say

that there can be a movement al (or at in the case of the fouth rule) if the current Cell of

the Hero is adjacent with another one on the left (or top), and there is a Door occupying,

then as long as the Hero has the Key that opens it, the Hero will move to the Cell where

the Door exits. The fifth rule (from lines 26 to 40) say that if the Hero is currently on a

Cell that has a Key, then it can pick it up and put it in its set of keys—the transition is

labeled as ak. The remaining rules refer to the initial movements of the Hero (i.e., when

we do not require to have already a transition before in the Transition System).

The presented semantic description constitutes a formal reference for the operational

semantics of the RPG language, which then can be used as a model for a compiler, or in

the case we will now present, for a translation to a PetriNet language.

The informal description of the transformation between the RPG Language and the

PetriNet Language is presented in Table 6.1. Note also that in this informal description,

it is implicit that all InArcs and OutArcs have the same weight = 1, and also that all

the generated Places and Transitions will be contained inside the PetriNet model. The

actual transformation expressed in DSLTrans is then presented in Listing 6.2. This trans-

formation specification is formed by two layers (the ’Entities’ and ’Associations’) which

basically implements what was informally presented in Table 6.1.

133

6. CASE STUDY: A LANGUAGE FOR ROLE PLAYING GAMES 6.2. Experimental Report

Listing 6.2: The first version of
the DSLTrans transformation from
RPG Language to PetriNets Lan-
guage (Entities Layer).
File

id = _
3 uri = ’models\\RPG.xmi’

metamodel(
mmname = rpg.Rpg
uri = ’models\\RPG.ecore’

)
8 def ’Entities’ : layer ’Entities’

previous = ’’
output = ’’
metamodel(

mmname = petrinet.Petrinet
13 uri = ’models\\PetriNet.ecore’

)
rule’Cell Free’

match with
cl0:

18 any rpg::Cell(at0: name at1: x at2: y)
cl1:

any rpg::Hero
subject to

cl1 !-(occupies)-> cl0
23 apply

cl2:
petrinet::Place(

self = ’Cell’
name= concat(sameAs(at0) with

28 concat(sameAs(at1) with
sameAs(at2)))

token= ’0’
)

end rule

rule’Key’
2 match with

cl3:
any rpg::Key(at3 : name)

apply
cl4:

7 petrinet::Place(
self = ’Key’
name= sameAs(at3)

)
cl5:

12 petrinet::Transition(
self = ’Key’
name= sameAs(at3)

)
cl6:

17 petrinet::InArc(
weight= ’1’

)
subject to

cl6 --(targetPlace)-> cl4
22 cl5 --(inArc)-> cl6

end rule

rule’RPG’
match with

27 cl7:
any rpg::RPG

apply
cl8:

petrinet::PetriNet(
32 self = ’RPG’

)
end rule

rule’Cell Occupied’
37 match with

cl9:
any rpg::Cell(at4: name at5: x at6: y)

cl10:
any rpg::Hero

42 subject to
cl10 --(occupies)-> cl9

apply
cl11:

petrinet::Place(
47 self = ’Cell’

name= concat(sameAs(at4)
with concat(sameAs(at5)
with sameAs(at6)))

token= ’1’
52)

end rule

end def

134

6. CASE STUDY: A LANGUAGE FOR ROLE PLAYING GAMES 6.2. Experimental Report

Listing 6.3: The first version of
the DSLTrans transformation from
RPG Language to PetriNets Lan-
guage (Associations Layer).
def ’Associations’ : layer ’Associations’

previous = ’Entities’
output = ’models\\pn.xmi’

4 metamodel(
mmname = petrinet.Petrinet
uri = ’models\\PetriNet.ecore’

)
rule’hasCell’

9 match with
cl12:

any rpg::RPG
cl13:

any rpg::WorldMap
14 cl14:

any rpg::Scene
cl15:

any rpg::Cell
subject to

19 cl12 --(hasWorldMap)-> cl13
cl13 --(hasScene)-> cl14
cl14 --(hasCell)-> cl15

apply
cl16:

24 petrinet::PetriNet
cl17:

petrinet::Place
subject to

cl16 --(places)-> cl17
29 restrictions

cl16 derived from cl12
cl17 derived from cl15

end rule

34 rule’hasObject’
match with

cl18:
any rpg::RPG

cl19:
39 any rpg::Key

subject to
cl18 --(hasObject)-> cl19

apply
cl20:

44 petrinet::PetriNet
cl21:

petrinet::Transition
cl22:

petrinet::Place
49 subject to

cl20 --(transitions)-> cl21
cl20 --(places)-> cl22

restrictions
cl20 derived from cl18

54 cl21 derived from cl19
cl22 derived from cl19

end rule

rule’left’
match with

cl23:
4 any rpg::Cell

cl24:
any rpg::Cell

cl25:
not rpg::Door

9 cl26:
any rpg::RPG
subject to

cl23 --(left)-> cl24
cl25 !-(occupies)-> cl24

14 apply
cl27:

petrinet::Place
cl28:

petrinet::Place
19 cl29:

petrinet::Transition(
name= ’moveLeft’

)
cl30:

24 petrinet::InArc(
weight= ’1’

)
cl31:

petrinet::OutArc(
29 weight= ’1’

)
cl32:

petrinet::PetriNet
subject to

34 cl31 --(sourcePlace)-> cl27
cl30 --(targetPlace)-> cl28
cl29 --(inArc)-> cl30
cl29 --(outArc)-> cl31
cl32 --(transitions)-> cl29

39 restrictions
cl27 derived from cl23
cl28 derived from cl24
cl32 derived from cl26

end rule
44

\\ skipping right, top and bottom:
\\ same as left

135

6. CASE STUDY: A LANGUAGE FOR ROLE PLAYING GAMES 6.2. Experimental Report

rule’leftDoor’
3 match with

cl63:
any rpg::Cell

cl64:
any rpg::Cell

8 cl65:
any rpg::Door

cl66:
any rpg::Cell

cl67:
13 any rpg::Key

cl68:
any rpg::RPG
subject to

cl63 --(left)-> cl64
18 cl65 --(occupies)-> cl64

cl65 --(exit)-> cl66
cl67 --(opens)-> cl65

apply
cl69:

23 petrinet::Place
cl70:

petrinet::Place
cl71:

petrinet::Transition(
28 name= ’moveLeft’

)
cl72:

petrinet::InArc(
weight= ’1’

33)
cl73:

petrinet::OutArc(
weight= ’1’

)
38 cl74:

petrinet::Place
cl77:

petrinet::PetriNet
subject to

43 cl73 --(sourcePlace)-> cl69
cl72 --(targetPlace)-> cl70
cl71 --(inArc)-> cl72
cl71 --(outArc)-> cl73
cl77 --(transitions)-> cl71

48 restrictions
cl69 derived from cl63
cl70 derived from cl66
cl74 derived from cl67
cl77 derived from cl68

53 end rule

\\ skipping rightDoor, topDoor and bottomDoor:
\\ same as leftDoor

rule’getKey’
3 match with

cl123:
any rpg::Cell

cl124:
any rpg::Key

8 subject to
cl124 --(occupies)-> cl123

apply
cl125:

petrinet::Place
13 cl126:

petrinet::Transition
cl127:

petrinet::InArc(
weight= ’1’

18)
cl128:

petrinet::OutArc(
weight= ’1’

)
23 subject to

cl128 --(sourcePlace)-> cl125
cl127 --(targetPlace)-> cl125
cl126 --(inArc)-> cl127
cl126 --(outArc)-> cl128

28 restrictions
cl125 derived from cl123
cl126 derived from cl124

end rule

33 end def

6.2.2 RPG to Petri Nets Translation Analysis

At this point, with the presented translation specification, we can use it in order to con-

figure the DSLTran’s execution engine to work as a compiler of the RPGs language to

the target language of Petri Nets. However, the truth is that in the end, we are never

sure if there is some conceptual mistake in the informal description itself, or in its inter-

pretation into the translation specification expressed in DSLTrans. In fact, after apply-

ing the validation method over the specified translation presented in Listings 6.2 and

6.3, it returns the following counter-example shown in Figure 6.3. In this case it re-

sulted from the collapse of the following transformation rules: ′RPG′ + (4×′ hasCell′) +

(2×′hasObject′) + ′CellOccupied′ + (3×′CellFree′) + ′right′ + ′top′ + ′bottom′ + ′leftDoor′

+ ′getKey′. If we compare their transition systems (in the bottom of the Figure), it is

136

6. CASE STUDY: A LANGUAGE FOR ROLE PLAYING GAMES 6.2. Experimental Report

easy to see that they are not bisimilar, given that the mapper function is the following

set: {({id4}, {id4}), ({id2}, {id2}), ({id5}, {id1}), ({id3}, {id3}), ({id2, id4, id6}, {id6}),
({id2, id5, id9}, {id9}), ({id2, id5, id8}, {id8}), ({id3, id4, id2, idd, idk}, {id7}), ({idk}, {id5,

id10}) }. Note that for readability, we omitted the elements RPG, WorldMap, Scene,

and also did not assign any identifiers to the PetriNet InArcs and OutArcs. After careful

analysis, we concluded that the main problem with the above transformation specifica-

tion was that the Hero could pass through the Door even without having its respective

Key.

id2

id3

1

hero(id2,{})

hero(id5,{})

ab

hero(id5,{idk})

ak

id4

1

1
1

id1

1
1

1 1

id5

1
1

id6

id7

id9

id8

id10

Cell

Hero

Cell

Door

Key

Cell

occupies (id10)

occupies (id12)
bottom (id8)

top (id9)

occupies (id11)

Cell

left (id7)

exit (id13)right (id6)

id2

id4

id3

id5

at

hero(id2,{idk})

at
ab

hero(id3,{idk})

al

m({(id2,1) }), .. 0

id8

id10

id9

id9
id8

id7

m({(id1,1) }), .. 0

m({(id1,1),(id5,1) }), .. 0

m({(id2,1),(id5,1) }), .. 0

m({(id3,1),(id5,1) }), .. 0

m({(id3,1), .. 0})id7

idk

idh

idd

opens (id14)

1

Figure 6.3: An example of a collapsed transformation rule from the transforma-
tion specification presented in Listings 6.2 and 6.3 (on top), and their respective
transition systems (on bottom). In this example we used the term m({(id1, 1), ..0})
as an abbreviation of marking(p(id1, suc(zero)),marking(p(id2, zero), .., e)..)—
i.e., all the other places are empty.

The corrected version is then presented in Listing 6.4, which for the sake of brevity

we only present the affected rules with the new lines denoted with the plus sign. In other

words, the Place associated with the Key is now being connected with the Transition

associated with the movement (top, bottom, right or left) by means of an InArc and an

137

6. CASE STUDY: A LANGUAGE FOR ROLE PLAYING GAMES 6.2. Experimental Report

OutArc of weight = 1. This will protect the Transition associated with the Door, to be

fired if there is no Token in the Place associated with the Door’s Key.

Listing 6.4: The corrected version of
the DSLTrans transformation from
RPG Language to PetriNets Lan-
guage. The rules ’leftDoor’

rule’leftDoor’
2 match with

cl63:
any rpg::Cell

cl64:
any rpg::Cell

7 cl65:
any rpg::Door

cl66:
any rpg::Cell

cl67:
12 any rpg::Key

cl68:
any rpg::RPG
subject to

cl63 --(left)-> cl64
17 cl65 --(occupies)-> cl64

cl65 --(exit)-> cl66
cl67 --(opens)-> cl65

apply
cl69:

22 petrinet::Place
cl70:

petrinet::Place
cl71:

petrinet::Transition(
27 name= ’moveLeft’

)
cl72:

petrinet::InArc(
weight= ’1’

32)
cl73:

petrinet::OutArc(
weight= ’1’

)

cl74:
petrinet::Place

4 + cl75:
+ petrinet::OutArc(
+ weight= ’1’
+)
+ cl76:

9 + petrinet::InArc(
+ weight= ’1’
+)

cl77:
petrinet::PetriNet

14 subject to
cl73 --(sourcePlace)-> cl69
cl72 --(targetPlace)-> cl70
cl71 --(inArc)-> cl72
cl71 --(outArc)-> cl73

19 + cl76 --(targetPlace)-> cl74
+ cl75 --(sourcePlace)-> cl74
+ cl71 --(inArc)-> cl76
+ cl71 --(outArc)-> cl75

cl77 --(transitions)-> cl71
24 restrictions

cl69 derived from cl63
cl70 derived from cl66
cl74 derived from cl67
cl77 derived from cl68

29 end rule

\\ skipping rightDoor, topDoor and bottomDoor:
\\ same as leftDoor

34 end def

Finally, the Figure 6.4 shows the same collapsed transformation rule, and its associ-

ated transition systems. It is now easy to observe that their transition systems (in the

bottom) are in fact bisimilar. Although notice that in both versions of the translation,

there seems to be a strange Place (id4) which is always empty (i.e., without Tokens), but

our analysis was unable to detect this problem. Moreover, computationally speaking,

this Place (id4) adds no additional computational behaviour to the presented Petri Net,

and therefore it can be removed without affecting the analysis result.

138

6. CASE STUDY: A LANGUAGE FOR ROLE PLAYING GAMES 6.3. Discussion of the Results

id2

id3

1

hero(id2,{})

hero(id5,{})

ab

hero(id5,{idk})

ak

id4

1

11

id1

1
1

1 1

id5

11

id6

id7

id9

id8

id10

Cell

Hero

Cell

Door

Key

Cell

occupies (id10)

occupies (id12)
bottom (id8)

top (id9)

occupies (id11)

Cell

left (id7)

exit (id13)right (id6)

id2

id4

id3

id5

at

hero(id2,{idk})

at
ab

hero(id3,{idk})

al

m({(id2,1) }), .. 0

id8

id10

id9

id9
id8

id7

m({(id1,1) }), .. 0

m({(id1,1),(id5,1) }), .. 0

m({(id2,1),(id5,1) }), .. 0

m({(id3,1),(id5,1) }), .. 0

idk

idh

idd

1
1

opens (id14)

1

Figure 6.4: An example of a collapsed transformation rule from the transforma-
tion specification presented in Listing 6.2 (on top), and their respective transition
systems (on bottom). In this example we used the term m({(id1, 1), ..0}) as an ab-
breviation of marking(p(id1, suc(zero)),marking(p(id2, zero), .., e)..)—i.e., all the
other places are empty.

6.3 Discussion of the Results

We applied the described methodology in the engineering of a more realistic DSML called

RPG (Role Playing Games). This DSML was specifically designed to enable game de-

signers to specify their RPGs, analyse their correctness by means of powerful analysis

algorithms and data structures (in a Petri Net model checker called AlPina 4), and fi-

nally automatically deploy them in a given computational platform. In this case study,

both DSLTrans and SOS were expressive enough to specify both the denotational and

operational semantics of the RPG DSML. Also, with the later specification, we were able

to effectively validate the defined translation. However, given the size of this case study,

4http://alpina.unige.ch/

139

http://alpina.unige.ch/

6. CASE STUDY: A LANGUAGE FOR ROLE PLAYING GAMES 6.3. Discussion of the Results

we observed that the checking procedure is not computationally efficient: the verification

technique has to be optimized in order to be applicable in the practice of SLE, namely it

has to be faster (i.e., in the scale of) hours instead of days) and also take less amount of

memory (i.e., less than 4 Gigabyte).

140

7
Conclusions

In this PhD research work, we explored the application of the MDD approach as a solu-

tion to build DSML compilers with guarantees of correctness. We developed a language

engineering methodology and its supporting languages that enables language engineers

to specify and analyse language translations w.r.t. (i) a given property, or (ii) both the

source and target language’s semantics specifications. Moreover, with these specifica-

tions, the language engineer can automatically translate any expressible model in the

source language into its respective in the target language.

In other words, in this research work, almost every designed languages and tools

were designed and implemented following an MDD approach, which was shown to be

an effective way to validate the soundness of the resulting work. Therefore, the MDD ap-

proach of lowering the gap between software models and their implementations during

the software engineering process was also validated during this research work. In par-

ticular, with the tight connection between the formalization of the proposed conceptual

framework (for the automatic validation of language translations), and its implementa-

tion.

7.1 Limitations and Future Work

One important limitation while using this approach is that it will only work properly, in

the practice of software language engineering, if we are able to check semantic equiva-

lence relations between the transition systems of each model on each pair provided by

the analysis of the given translation. It is intuitive that, depending on the kind of seman-

tic equivalence that we are trying to prove, if the source language enables sentences can

141

7. CONCLUSIONS 7.2. Final Remarks and Expected Impact

have infinite sized transition systems, we can no longer use this method to assert the cor-

rectness of that translation — note that the source language of RPGs (or StateMachines)

— as some other DSMLs — did had a finite transition system. Notice that we do not re-

quire that the transition systems of all sentences in the target language of a translation to

be finite — this is due the fact that our translations are not (by definition) bi-directional,

and our assumptions rely only on that.

Besides that, having the fact that DSMLs’ semantics are usually realized by means

of code generators without any use of operational semantics, it is questionable the use

of this technique in practice. However, this technique could already be applied if the

software language engineer builds up an appropriate intermediate DSML based on com-

ponent models, and then generate code from it — i.e by making the generated code con-

forming with a component language, and by using its associated SOS semantics.

Further enhancements of this technique will involve the definition of general eval-

uation rules for the evaluation of SOS rules. With these general rules we could be able

to predict the sizes of the resulting transition systems. Therefore, we could be able to

automatically decide the adequacy of this technique, and instruct/guide the Software

Language Engineer to design its DSML with expressiveness concerns while remaining

inside the borders of analysability.

In what respects to the analysis tool itself, future work will rely on finding efficient

ways of both generating the symbolic execution space of translations on the fly and check

them using the involved SOS semantics. In order to do so, it might involve the use of ex-

isting state-of-the-art model checkers and constraint solvers, specialized on performing

such kind of computations, namely combinatorial search. For instance, there exists sym-

bolic techniques, such as the ones explored in the model checking tool AlPiNa [HML+12],

that could be adapted in order to reason in symbolic state spaces constituted by com-

pact/comprehensive representations of combination sets, instead of having an extensive

set of individual combinations as we just presented in this thesis.

7.2 Final Remarks and Expected Impact

The described technique is able to take advantage of any kind of MDD implementations

based on DSLTrans’ translations, namely in order to provide more guarantees about their

correctness. As an example, in the implemented analysis tool, a complete formalisation of

the operational semantics of MProlog (using the SOS language) could be provided in or-

der to certify the DSLTrans translation between SOS and MProlog. Therefore, we believe

that further improvements of this technique and its application in the current practice of

software engineering, will greatly increase the quality of MDD based implementations

based on translations or other similar analysable specifications.

The presented work has been capturing the interest of the research community from

142

7. CONCLUSIONS

the emerging research field of software language engineering, while presenting it in re-

lated forums such as the DSM-TP 1 Summer School. We envision, in the near future,

the development of a robust and sound software language engineering supported by

meta-modeling tools and language workbenches that can give to the Software Language

Engineer the capacity to easily prototype new software languages, and have some level

of correctness guarantees about not only the developed language (e.g., the language as

a product, where we evaluate its usability, its cognitive adequacy to the experts of the

domain, etc.), but also all of its products (e.g., the language as a product line, where we

evaluate each product’s implementation in a target platform, etc.).

From this, we believe that the results from this PhD research work constitutes an

important advance in the research field of Software Language Engineering. On the one

hand, this work can be helpful to further devise design guidelines of DSMLs where their

analysis is an important issue. On the other hand, the explored nature of the best mod-

els of computation (e.g., with termination and confluence guarantees, cognitive aspects,

usability, etc.) that should be used in the context of software language engineering (and

software engineering in general sense), is still a challenge to be explored in the future

research work.

1www.dsm-tp.org

143

www.dsm-tp.org

7. CONCLUSIONS

144

Bibliography

[ABC12] Vasco Amaral, Bruno Barroca, and Paulo Carreira. Towards a robust solu-

tion in Building Automation Systems: supporting rapid prototyping and

analysis. In 8th International Conference on the Quality of Information and
Communications Technology. IEEE, 9 2012.

[ABK07] Kyriakos Anastasakis, Behzad Bordbar, and Jochen Küster. Analysis of

Model Transformations via Alloy. In B. Baudry, A. Faivre, S. Ghosh, and

A. Pretschner, editors, Proceedings of the workshop on Model-Driven Engineer-
ing, Verification and Validation (MoDeVVA 2007), Nashville, TN (USA), pages

47–56, Berlin/Heidelberg, October 2007. Springer.

[Abr96] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge Univer-

sity Press, New York, NY, USA, 1996.

[ADL+12] Moussa Amrani, Juergen Dingel, Leen Lambers, Levi Lùcio, Gehan Selim,

Eugene Syriani, and Manuel Wimmer. Towards a Model Transformation

Intent Catalog. In Proceedings of the 1st Workshop on the Analysis of Model
Transformations. ACM, 2012.

[AKRS06] Carsten Amelunxen, Alexander Königs, Tobias Rötschke, and Andy

Schürr. MOFLON: A Standard-Compliant Metamodeling Framework

with Graph Transformations. In ECMDA-FA, pages 361–375, 2006.

[AKS03] Aditya Agrawal, Gabor Karsai, and Feng Shi. Graph Transformations

on Domain-Specific Models. Technical report, Institute for Software In-

tegrated Systems, Vanderbilt University, 2003.

[ALL10] Mark Asztalos, Laszlo Lengyel, and Tihamer Levendovszky. Towards Au-

tomated, Formal Verification of Model Transformations. In ICST 2010: Pro-
ceedings of the 3rd International Conference on Software Testing, Verification and
Validation, pages 15–24. IEEE Computer Society, 2010.

145

BIBLIOGRAPHY

[ASMZS11] Pathiah Abdul Samat, Abdullah Mohd Zin, and Zarina Shukur. Analysis

of the model checkers’ input languages for modeling traffic light systems.

Journal of Computer Science, pages 225–233, 2011.

[AvdBE12] Suzana Andova, Mark G. J. van den Brand, and Luc Engelen. Reusable

and Correct Endogenous Model Transformations. In ICMT, pages 72–88,

2012.

[BA11] Bruno Barroca and Vasco Amaral. Asserting the Correctness of Transla-

tions. In Proceedings of the 6th Workshop on Multi-paradigm Modeling - MOD-
ELS 2011. EASST, 10 2011.

[BAGB11a] Ankica Barisic, Vasco Amaral, M. Goulao, and Bruno Barroca. How to

reach a usable DSL? moving toward a Systematic Evaluation. In Pro-
ceedings of the 6th Workshop on Multi-paradigm Modeling - MODELS 2011.

EASST, 10 2011.

[BAGB11b] Ankica Barisic, Vasco Amaral, M. Goulao, and Bruno Barroca. Qual-

ity in Use of Domain Specific Languages: a Case Study. In Pro-
ceedings of the PLATEAU 2011 Workshop on Evaluation and Usability
of Programming Languages and Tools - SPLASH 2011. ACM, 10 2011.

URL=http://http://dx.doi.org/10.1145/2089155.2089170.

[BAGB11c] Ankica Barisic, Vasco Amaral, M. Goulão, and Bruno Barroca. Quality

in Use of Domain Specific Languages: a Case Study. In Proceedings of the
PLATEAU 2011 Workshop on Evaluation and Usability of Programming Lan-
guages and Tools - SPLASH 2011. ACM, 10 2011.

[BAGB12] Ankica Barisic, Vasco Amaral, M. Goulão, and Bruno Barroca. Evaluating
the Usability of Domain-Specific Languages. IGI Global, 09 2012.

[BDtmM+06] Benoit Baudry, Trung Dinh-trong, Jean marie Mottu, Devon Simmonds,

Robert France, Sudipto Ghosh, Franck Fleurey, and Yves Le Traon. Model

Transformation Testing Challenges. In In Proceedings of IMDT workshop in
conjunction with ECMDA’06, 2006.

[BET08] Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. Precise Seman-

tics of EMF Model Transformations by Graph Transformation. In MOD-
ELS’08: Proceedings of ACM/IEEE 11th International Conference on Model
Driven Engineering Languages and Systems, pages 53–67, Berlin, Germany,

2008. Springer.

[BG11] Jan Olaf Blech and Benjamin Grégoire. Certifying compilers using higher-

order theorem provers as certificate checkers. Form. Methods Syst. Des.,
38(1):33–61, February 2011.

146

BIBLIOGRAPHY

[BGL05] Jan Olaf Blech, Sabine Glesner, and Johannes Leitner. Formal Verification

of Java Code Generation from UML Models. In Formal Verification of Java
Code Generation from UML Models. Fujaba Days, september 2005.

[BLA+10] Bruno Barroca, Levi Lucio, Vasco Amaral, Vasco Sousa, and Roberto Fe-

lix. DSLTrans: A Turing Incomplete Transformation Language. In Proc.
3rd International Conference on Software Languages Engineering - SLE 2010.

Springer-Verlag, 2010.

[CH03] Krzysztof Czarnecki and Simon Helsen. Classification of Model Transfor-

mation Approaches. In OOPSLA’03 Workshop on Generative Techniques in
the Context of Model-Driven Architecture, 2003.

[CHE04] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged config-

uration using feature models. In Software Product Lines: Third International
Conference, SPLC 2004, pages 266–283. Springer-Verlag, 2004.

[Chl10] Adam Chlipala. A verified compiler for an impure functional language. In

POPL, pages 93–106, 2010.

[Cho56] Noam Chomsky. Three models for the description of language. IRE Trans-
actions on Information Theory, 2:113–124, 1956. http://www.chomsky.

info/articles/195609--.pdf – last visited 14th January 2009.

[CS63] Noam Chomsky and Marcel Paul Schützenberger. The Algebraic Theory of

Context-Free Languages. In P. Braffort and D. Hirshberg, editors, Computer
Programming and Formal Systems, Studies in Logic, pages 118–161. North-

Holland Publishing, Amsterdam, 1963.

[Dat04] Chris J. Date. An Introduction to Database Systems. Pearson Addison-Wesley,

Boston, MA, 8. edition, 2004.

[DFF+09] Zoé Drey, Cyril Faucher, Franck Fleurey, Vincent Mahé, and Didier Voj-

tisek. Kermeta language - Reference Manual. Institut de Recherche en Infor-

matique et Systèmes Aléatoires, France, April 2009.

[dLVA04] Juan de Lara, Hans Vangheluwe, and Manuel Alfonseca. Meta-modelling

and graph grammars for multi-paradigm modelling in AToM3. Software
and Systems Modeling, 3:194–209, 2004. 10.1007/s10270-003-0047-5.

[EEHT05] Karsten Ehrig, Claudia Ermel, Stefan Hänsgen, and Gabriele Taentzer. To-

wards Graph Transformation Based Generation of Visual Editors Using

Eclipse. Electron. Notes Theor. Comput. Sci., 127(4):127–143, April 2005.

147

http://www.chomsky.info/articles/195609--.pdf
http://www.chomsky.info/articles/195609--.pdf

BIBLIOGRAPHY

[Fav04] Jean-Marie Favre. Foundations of Model (Driven) (Reverse) Engineering

: Models - Episode I: Stories of The Fidus Papyrus and of The Solarus. In

Language Engineering for Model-Driven Software Development, 2004.

[Fer09] Maribel Fernndez. Models of Computation: An Introduction to Computability
Theory. Springer Publishing Company, Incorporated, 1st edition, 2009.

[FHLN08] Jean-Rémy Falleri, Marianne Huchard, Mathieu Lafourcade, and Clé-

mentine Nebut. Metamodel Matching for Automatic Model Transforma-

tion Generation. In Krzysztof Czarnecki, Ileana Ober, Jean-Michel Bruel,

Axel Uhl, and Markus Volter, editors, Model Driven Engineering Languages
and Systems, 11th International Conference, MoDELS 2008, Toulouse, France,
September 28 - October 3, 2008. Proceedings, volume 5301 of Lecture Notes in
Computer Science, pages 326–340. Springer, 2008.

[Fow05] Martin Fowler. Language workbenches: The Killer-App for Domain Spe-

cific Languages?, 2005.

[FR07] Robert France and Bernhard Rumpe. Model-driven Development of Com-

plex Software: A Research Roadmap. In 2007 Future of Software Engineer-
ing, FOSE ’07, pages 37–54, Washington, DC, USA, 2007. IEEE Computer

Society.

[Gor10] Daniele Gorla. Towards a unified approach to encodability and separation

results for process calculi. Inf. Comput., 208(9):1031–1053, September 2010.

[GS98] Wolfgang Goerigk and Friedemann Simon. Towards Rigorous Compiler

Implementation Verification. In Proc. of the 1997 Workshop on Programming
Languages and Fundamentals of Programming, pages 62–73. Springer, 1998.

[HJK+09] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and

Christian Wende. Derivation and Refinement of Textual Syntax for Mod-

els. In Proceedings of the 5th European Conference on Model Driven Architecture
- Foundations and Applications, ECMDA-FA ’09, pages 114–129, Berlin, Hei-

delberg, 2009. Springer-Verlag.

[HML+12] Steve Hostettler, Alexis Marechal, Alban Linard, Matteo Risoldi, and Di-

dier Buchs. High-Level Petri Net Model Checking with AlPiNA. Funda-
menta Informaticae, 113(3-4):229–264, 2012.

[HVV08] Zef Hemel, Ruben Verhaaf, and Eelco Visser. WebWorkFlow: An

Object-Oriented Workflow Modeling Language for Web Applications.

In Krzysztof Czarnecki, Ileana Ober, Jean-Michel Bruel, Axel Uhl, and

148

BIBLIOGRAPHY

Markus Völter, editors, 11th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS 2008), volume LNCS 5301, pages

113–127, Toulouse, France, 2008. Springer.

[IBM07] IBM. IBM Model Transformation Framework, 2007. http://www.

alphaworks.ibm.com/tech/mtf.

[Jac06] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The

MIT Press, 2006.

[JGP99] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model Check-
ing. The MIT Press, 1999.

[JIMK03] T. Jokela, N. Iivari, J. Matero, and M. Karukka. The standard of user-

centered design and the standard definition of usability: analyzing ISO

13407 against ISO 9241-11. In Proceedings of the Latin American conference on
Human-computer interaction, pages 53–60. ACM, 2003.

[JK05] Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL. In Pro-
ceedings of the Model Transformations in Practice Workshop at MoDELS 2005,

Montego Bay, Jamaica, 2005.

[Jr.75] Frederick P. Brooks Jr. The mythical man-month - Essays on Software-
Engineering. Addison Wesley, 1975.

[Jr.87] Frederick P. Brooks Jr. No Silver Bullet - Essence and Accidents of Software

Engineering. IEEE Computer, 20(4):10–19, 1987.

[Kle09] A.G. Kleppe. Software language engineering: creating domain-specific lan-
guages using metamodels. Addison-Wesley, 2009.

[KT08] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling. Wiley-

IEEE Computer Society Press, March 2008.

[Küh04] Thomas Kühne. What is a Model? In Language Engineering for Model-Driven
Software Development, 2004.

[Küh06] Thomas Kühne. Matters of (Meta-)Modeling. Software and System Modeling,

5(4):369–385, 2006.

[Kus04] Jochen M. Kuster. Systematic Validation of Model Transformations. In

Essentials of the 3rd UML Workshop in Software Model Engineering (WiSME
2004), 2004.

[LBA10] Levi Lucio, Bruno Barroca, and Vasco Amaral. A Technique for Auto-

matic Validation of Model Transformations. In ACM/IEEE MoDELS 2010.

Springer-Verlag, 10 2010. URL=http://models2010.ifi.uio.no/.

149

http://www.alphaworks.ibm.com/tech/mtf
http://www.alphaworks.ibm.com/tech/mtf

BIBLIOGRAPHY

[MB97] Savi Maharaj and Juan Bicarregui. On the Verification of VDM Specifica-

tion and Refinement with PVS. In Proof in VDM: Case Studies, FACIT (For-
mal Approaches to Computing and Information Technology) , chapter 6, pages

157–190. Springer-Verlag, 1997.

[MBB+12] Eduardo Marques, Valter Balegas, Bruno Barroca, Vasco Amaral, and An-

kica Barisic. The RPG DSL: a case study of language engineering using

MDD for Generating RPG Games for Mobile Phones. In Proceedings of the
12th Workshop on Domain-Specific Modeling at OOPSLA/SPLASH. ACM Dig-

ital Library, 10 2012.

[MFBC10] Pierre-Alain Muller, Frédéric Fondement, Benoit Baudry, and Benoit

Combemale. Modeling Modeling Modeling. Journal of Software and Sys-
tems Modeling (SoSyM), 2010.

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to

Develop Domain-Specific Languages. ACM Computing Surveys, 37(4):316–

344, 2005.

[Mil93] Robin Milner. Elements of Interaction - Turing Award Lecture. Commun.
ACM, 36(1):78–89, 1993.

[MP10] Janne Merilinna and Juha Pärssinen. Verification and validation in the

context of domain-specific modelling. In Proceedings of the 10th Workshop
on Domain-Specific Modeling, DSM ’10, pages 9:1–9:6, New York, NY, USA,

2010. ACM.

[MPP08] Janne Merilinna, OlliPekka Puolitaival, and Juha Pärssinen. Towards

Model-Based Testing of Domain-Specific Modelling Languages. In Pro-
ceedings of the 8th Workshop on Domain-Specific Modeling, DSM ’08, pages

19–20, 2008.

[Mur89] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4):541–580, April 1989.

[NK08] Anantha Narayanan and Gabor Karsai. Verifying Model Transformations

by Structural Correspondence. ECEASST, 10, 2008.

[Par81] David Park. Concurrency and Automata on Infinite Sequences. In Proceed-
ings of the 5th GI-Conference on Theoretical Computer Science, pages 167–183,

London, UK, 1981. Springer-Verlag.

[Par08] Joachim Parrow. Expressiveness of Process Algebras. Electr. Notes Theor.
Comput. Sci., 209:173–186, 2008.

150

BIBLIOGRAPHY

[Pie02] Benjamin C. Pierce. Types and programming languages. MIT Press, Cam-

bridge, MA, USA, 2002.

[PJM04] Hans Vangheluwe Pieter J. Mosterman. Computer Automated Multi-
Paradigm Modeling: An Introduction. Simulation: Transactions of the Society
for Modeling and Simulation International. Society for Modeling and Simu-

lation International, 2004.

[Plo04] Gordon D. Plotkin. A structural approach to operational semantics. J. Log.
Algebr. Program., 60-61:17–139, 2004.

[Plu98] D. Plumpf. Termination of graph rewriting is undecidable. Fundam. Inf.,
33(2):201–209, 1998.

[PP08] Michael Pfeiffer and Josef Pichler. A Comparison of Tool Support for Tex-

tual Domain-Specific Languages. In Proceedings of the 8th OOPSLA Work-
shop on Domain-Specific Modeling, pages 1–7, October 2008.

[PSS98] A. Pnueli, M. Siegel, and F. Singerman. Translation Validation. pages 151–

166. Springer, 1998.

[RAB+09] Matteo Risoldi, Vasco Amaral, Bruno Barroca, Kaveh Bazargan, Didier

Buchs, Fabian Cretton, Gilles Falquet, Anne Le Calvé, Stéphane Ma-

landain, and Pierrick Zoss. A Language and a Methodology for Proto-

typing User Interfaces for Control Systems. In Human Machine Interaction,

pages 221–248. Springer-Verlag, 2009.

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing
by Graph Transformations, Volume 1: Foundations. World Scientific, 1997.

[Sel03] B. Selic. The pragmatics of model-driven development. Software, IEEE,

20(5):19–25, 2003.

[SG12] Eugene Syriani and Jeff Gray. Challenges for Addressing Quality Factors

in Model Transformation. In ICST, pages 929–937, 2012.

[TCJ10] Massimo Tisi, Jordi Cabot, and Frédéric Jouault. Improving higher-order

transformations support in ATL. In Proceedings of the Third international
conference on Theory and practice of model transformations, ICMT’10, pages

215–229, Berlin, Heidelberg, 2010. Springer-Verlag.

[UL07] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Ap-
proach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[VABKP11] Marcel Van Amstel, Steven Bosems, Ivan Kurtev, and Luís Ferreira Pires.

Performance in model transformations: experiments with ATL and QVT.

151

BIBLIOGRAPHY

In Proceedings of the 4th international conference on Theory and practice of
model transformations, ICMT’11, pages 198–212, Berlin, Heidelberg, 2011.

Springer-Verlag.

[Van00] Hans Vangheluwe. Multi-formalism modelling and simulation. PhD thesis,

Ghent University, 2000.

[vBV09] Steffen van Bakel and Maria Grazia Vigliotti. A logical interpretation of the

Lambda-Calculus into the Pi-Calculus, Preserving Spine Reduction and

Types. In CONCUR 2009 - Concurrency Theory - Lecture Notes in Computer
Science, volume 5710, pages 84–98. Springer Berlin / Heidelberg, 2009.

[VP03] Dániel Varró and András Pataricza. Automated Formal Verification of

Model Transformations. In Jan Jürjens, Bernhard Rumpe, Robert France,

and Eduardo B. Fernandez, editors, CSDUML 2003: Critical Systems Devel-
opment in UML; Proceedings of the UML’03 Workshop, number TUM-I0323 in

Technical Report, page 63–78. Technische Universität München, Technis-

che Universität München, September 2003.

[VT11] Naveneetha Vasudevan and Laurence Tratt. Comparative Study of DSL

Tools. Electron. Notes Theor. Comput. Sci., 264(5):103–121, July 2011.

152

	Introduction
	Research Question
	Challenges
	Research Topics
	Contribution Overview
	Structure of this Thesis

	Background
	Models and Languages
	Descriptions and Prescriptions
	Levels of Detail (Abstractions)
	Model's Quality
	Models expressed in a Language
	(Syntactic) Model of a Language
	Software Languages

	Software Language Engineering
	Decision and Domain Analysis of a Software Language
	Design Models of a Software Language
	Implementation of a Software Language
	Verification and Validation of a Language
	Analysability of a Software Language
	Model-driven development of Software Languages
	Model Transformation Languages
	Analysis of Model Transformation Languages

	Summary

	Overview of the Approach
	Syntax of Languages: State Machine and Petri Nets
	Software Language Translations
	Operational Semantics of the Languages: State Machine and Petri Nets
	Analyzing Software Language Translations
	Conclusions and Outlook

	Models of Modeling Languages
	Syntactic Models
	Typed Graphs
	Models and Metamodels

	Translational Semantics with the DSLTrans Language
	DSLTrans Overview
	DSLTrans' Syntactic Structures
	DSLTrans' Semantics
	DSLTrans' Language Properties
	DSLTrans' Tool Support

	Operational Semantics with the SOS Language
	The SOS Language Overview
	The SOS Language's Syntax
	The SOS Language's Semantics
	The SOS Tool

	Conclusions

	Analysis of Translations
	Structural Analysis
	State space
	Structural Checking
	DSLTrans' Structural Analysis Tool

	Semantic Analysis
	The Analysis Algorithm
	Methodology and Tool

	Conclusions and Related Work

	Case Study: A Language for Role Playing Games
	Language Overview
	Experimental Report
	RPG's Semantics Specification
	RPG to Petri Nets Translation Analysis

	Discussion of the Results

	Conclusions
	Limitations and Future Work
	Final Remarks and Expected Impact

