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Resumo 

A utilização de líquidos iónicos (LIs) no pré-tratamento de biomassa lenhocelulósica oferece 

novas possibilidades de fraccionamento de biomassa, permitindo a valorização de uma matéria-prima 

de baixo custo. Este trabalho tem como principal objectivo o estudo do pré-tratamento e 

fraccionamento de diferentes tipos de biomassa lenhocelulósica nas suas principais fracções 

constituintes (celulose, hemicelulose e lenhina), utilizando LIs. As biomassas utilizadas foram a palha 

de trigo, o bagaço de cana-de-açúcar, a palha de arroz e a triticale. Inicialmente procedeu-se ao 

desenvolvimento e optimização de uma metodologia de fraccionamento tendo como base duas 

metodologias descritas na literatura. O método desenvolvido permitiu obter amostras com elevada 

pureza e uma recuperação eficiente do LI. Este método permitiu ainda demonstrar a possibilidade de 

reutilização do LI, revelando o grande potencial deste método. O pré-tratamento de diferentes 

biomassas confirma a versatilidade e eficiência da metodologia optimizada, visto que não só permite 

uma dissolução macroscópica completa de cada biomassa, mas também permite efectuar um 

processo de fraccionamento eficaz. O pré-tratamento de bagaço de cana-de-açúcar e de triticale 

permitiram a obtenção de amostras ricas em celulose com um teor em carbohidratos de 90 % (p/p).  

A fim de se verificar a potencial aplicabilidade das fracções ricas em carbohidratos, e avaliar a 

eficácia do pré-tratamento, as amostras ricas em celulose foram submetidas a uma hidrólise 

enzimática. Os resultados demonstraram uma elevada digestibilidade das amostras ricas em 

celulose, revelando um rendimento elevado de glucose para a metodologia de pré-tratamento 

desenvolvida. O bagaço de cana-de-açúcar e a triticale apresentaram o rendimento mais elevado de 

glucose com 79,9 % (p/p) e 78,5 % (p/p), respectivamente e o menor rendimento foi obtido para a 

palha de arroz, com 68,7 % (p/p). 

As amostras obtidas após o pré-tratamento com LIs foram analisadas qualitativa e 

quantitativamente através de Infravermelho por Transformada de Fourier (FTIR). Após o pré-

tratamento, a pureza dos LIs recuperados foi avaliada através de espectroscopia de ressonância 

magnética nuclear (RMN). Os resultados da hidrólise enzimática foram analisados através de HPLC 

(High-Performance Liquid Chromatography). 
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Abstract 

The pre-treatment of biomass by ionic liquid (IL) is a method opening new possibilities of 

biomass fractionation for further valorisation of low value feedstock. This work is dedicated to study on 

the pre-treatment and fractionation of different types of lignocellulosic biomass into its major 

constituent fractions (cellulose, hemicellulose and lignin), using ILs. The biomass tested was: wheat 

straw, sugarcane bagasse, rice straw and triticale. Initially, the optimised methods were development 

basing on two methodologies described in the literature. This method allows the separation into high 

purity carbohydrate-rich (cellulose and hemicellulose) and lignin-rich fractions and permits an efficient 

IL recovery. The possibility of IL reuse was confirmed, demonstrating the great potential of the 

established method. The pre-treatment of various biomasses confirms the versatility and efficiency of 

the optimised methodology since not only the complete macroscopic dissolution of each biomass was 

achieved but also the fractionation process was successfully performed. Pre-treatment of sugarcane 

bagasse and triticale allowed to obtained cellulose samples rich in carbohydrate up to 90 wt %.         

In order to verify the potential further applicability of the obtained carbohydrate-rich fractions, as 

well as to evaluate the pre-treatment efficiency, the cellulose-rich fraction resulting from 1-ethyl-3-

methylimidazolium acetate ([emim][OAc]) pre-treatment was subjected to enzymatic hydrolysis. 

Results showed a very high digestibility of the cellulose-rich samples and confirmed a high glucose 

yield for the optimised pre-treatment methodology.  

The samples obtained after the pre-treatment with ILs were qualitatively and quantitatively 

analysed by Fourier Transform Infrared Spectroscopy (FTIR). After the pre-treatment, the purity of the 

recovered ILs was evaluated through Nuclear Magnetic Resonance spectroscopy (NMR). The 

enzymatic hydrolysis results were analysed by High-Performance Liquid Chromatography (HPLC).        
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1. Introduction  

1.1. Biorefinery concept  

As a result of the increasing cost and diminishing supplies of fossil fuels, in addition to their 

damaging effects on the environment, there is currently a growing need to explore alternative energy 

sources.
1
 Thus, is in this context that the concept of biorefinery emerges.  

A biorefinery is an overall concept of an integrated and diversified processing plant that aims to 

make a sustainable and full use of biomass feedstocks to produce fuels, power, a wide range of value-

added products and others materials, with a zero waste approach (figure 1.1).
2-5

 The biorefinery 

concept is analogous to today's petroleum refineries, which produce multiple fuels and products from 

petroleum.
6
 Overall profitability and productivity of all energy related products are potentially improved 

by integrating production of higher value bioproducts into biorefinery’s fuel and power output.
2
 In order 

to increase the productivity and efficiency it is also important to perform operations that decrease the 

overall energy intensity of biorefinery’s unit operations, maximizing the use of all feedstock 

components, byproducts and waste streams, and using scale-up economies, common processing 

operations, materials, and equipment to drive down all production costs.
2,7,8

  

The biorefinery platforms are defined according to the raw materials and the technological 

processes used as well as the products obtained.
2
 Although biorefinery was divided into different 

platforms, these always end up interconnected. There are two main biorefinery platforms: 

 Biochemical plataform - based on biochemical conversion processes and focuses on 

fermentation of sugars extracted from biomass feedstocks;
9
 

 Thermochemical plataform - based on thermochemical conversion processes and focuses on 

gasification of biomass feedstocks and resulting by-products.
9
 

 

 

Figure 1.1. Biorefinery concept.
2
 

                                                 
Currently, in research and development are favored three biorefinery systems. First, the whole-

crop biorefinery, which uses raw materials such as cereals or maize. Second, the green biorefinery, 

which uses naturally, wet biomass, such as green grass, lucerne, clover, or immature cereal. Third, 

the lignocellulose feedstock (LCF) biorefinery, which uses naturally dry raw materials such as 

cellulose-containing biomass and wastes.
5
  



 

4 
 

Among the potential large-scale industrial biorefineries, the LCF biorefinery will probably be the 

one with highest success. On the one hand, the raw material situation is optimal (straw, reed, grass, 

wood, paper-waste, etc.) and, on the other hand, conversion products have a good position within 

both the traditional petrochemical and the future biobased product markets. An important point for the 

utilization of biomass as a chemical raw material is the relatively low cost of raw materials. In figure 

1.2 is illustrated an overview of the potential products of a LCF biorefinery.
5
 

 

 

Figure 1.2. Lignocellulosic feedstock biorefinary (LCF biorefinary).
5
 

1.2. Lignocellulosic biomass 

Biomass can be defined as any organic matter that is available on a renewable or recurring 

basis (excluding old-growth timber), including dedicated energy crops and trees, agricultural food and 

feed crop residues, aquatic plants, wood and wood residues, animal wastes, and other waste 

materials.
5
    

Lignocellulose is a class of biomass, relatively inexpensive and is the most abundant renewable 

resource on earth.
10

 This biomass has a worldwide annual production of 1x10
10

 million tonnes and can 

be used in the production of biofuels and other valuable chemicals such as: proteins, enzymes, 

biopolymers, organic acids, furfural and its derivatives.
11-13

 Lignocellulosic biomass is widely 

distributed and can be grown and harvested on a billion ton scale.
14

 Contrary to starch-based 

substrates this biomass does not compete with the food chain and the production cost is lower.
12,14

 

Another important advantage is that the fuels and materials derived from it are potentially “carbon-

neutral” or can even help to sequester carbon dioxide.
13

 These are some advantages that make 

lignocellulose a suitable feedstock for future large-scale biorefineries. However, the extensive 

pretreatment required to release the carbohydrates and other components from the resistant cell wall 

matrix is the main disadvantage in using this feedstock, since it increases the process complexity and 

the costs.
14

  



 

5 
 

1.2.1. Composition 

Lignocellulosic biomass is mainly composed by cellulose, hemicellulose, lignin and also by 

minor amounts of proteins, pectins, extractives and ash.
10

 The typical percentages of dry weight are 

35–50 % cellulose, 20–35 % hemicellulose, and 5–30 % lignin.
12

 These percentages may vary from 

species to species, across different parts in the same plant and can also be influenced by geography 

or environmental factors.
1
 All this components are intertwined in a complex matrix which results in the 

final structure.
1
   

 

 

Figure 1.3. Representation of lignocellulosic biomass structure from wood.
15

 

1.2.1.1. Cellulose  

Cellulose is a homopolysaccharide composed of β-D-glucopyranose units which are linked 

together by (1→ 4)-glycosidic bonds, and is mainly located in the secondary cell wall.
16

 Commonly, 

cellulose is considered as a polymer of glucose since cellobiose consists of two molecules of glucose. 

The chemical formula of cellulose is (C6H10O5)n.
11

 Figure 1.4 presents the chemical structure of this 

polysaccharide. Cellulose exists in both the crystalline and the non-crystalline structure.
11

 The 

crystalline structure of cellulose is obtained when the coalescence of several polymer chains leads to 

the formation of microfibrils, which in turn are united to form fibrils and finally cellulose fibers.
11,16

 

Cellulose fibers are surrounded by intra- and intermolecular hydrogen bonds which makes cellulose 

insoluble in water and in the most organic solvent.
2,4,5

  

 

 

Figure 1.4. Chair conformation representation of the chemical structure of cellulose. As indicated the 
dimeric unit repeated is cellobiose. 
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The degree of polymerization (DP) of cellulose, i.e. the number of glucose units that make up 

one polymer molecule, has a great influence in many properties of this compound. This number differs 

depending on the cellulose origin. In general, this number can be between 800-10000 glucose units 

per cellulose chain.
17

 The cellulose solubility is strongly affected by the DP which could become a 

drawback for industrials applications. Note that, although being insoluble in water, cellulose is a 

relatively hygroscopic material absorbing 8-14 % water under normal atmospheric conditions.
11

  

1.2.1.2. Hemicellulose  

Similarly to cellulose, hemicellulose function as supporting material in the cell walls and as a 

reserving substance. The main feature that differentiates this compound from cellulose is that, 

hemicellulose is a heteropolysaccharide, which contains shorter and amorphous branches consisting 

of different sugars. These monosaccharides include pentoses (D-xylose and L-arabinose), hexoses 

(D-glucose, D-mannose, and D-galactose), uronic acids (e.g., 4-O-methyl-D-glucuronic, D-glucuronic, 

and D-galactouronic acids) and small amounts of desoxyhexoses (L-rhamnose and L-fucose). Figure 

1.5 illustrates the hexoses and pentoses found in hemicellulose. The backbone of hemicellulose 

consists of β-D- xylopyranose units, linked by (1→ 4)-bonds.
18,19

  

 

 

Figure 1.5. Chair conformation representation of the hexoses and pentoses typically found in 
hemicellulose.

19
 

 

In contrast to cellulose, the polymers present in hemicelluloses are easily hydrolysed under mild 

acid or alkaline conditions. Note that, the amorphous nature of this compound makes it partially 

soluble in water at elevated temperatures, and the presence of an acid helps to greatly improve its 

solubility.
1,11,16,18

 

Hemicellulose extracted from plants possesses a high degree of polydispersity, polydiversity 

and polymolecularity (a broad range of size, shape and mass characteristics) that may vary with the 

source material and the pre-treatment use. However, the degree of polymerization does not exceed 

the 200 monomers.
11

  

1.2.1.3. Lignin  

Lignin is the most complex natural aromatic polymer and in addition to providing mechanical 

strength to wood by holding the fibers together between the cell walls also provides a protective shield 

from enzymatic attack for cellulose and hemicelluloses.
1,11

 It is an amorphous three-dimensional 

polymer, which predominant building blocks are phenylpropane units. These units are three 

monolignol precursors with various degrees of oxygenation/substitution on the aromatic ring, namely 

coniferyl alcohol, sinapyl alcohol and p-coumaryl alcohol, in order of abundance.
11,20

 Once 
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incorporated into the lignin polymer, the units are identified by their aromatic ring structure and 

therefore called guaiacyl, syringyl and p-hydroxyphenyl units, respectively.
19,20

 Figure 1.6 presents a 

chemical structure of the three monolignols involved in the lignin structure. Depending of the 

lignocellulosic material, the composition of lignin differs. For example, softwood consists almost 

exclusively of guaiacyl units while hardwood also contains a large number of syringyl units.
19

  

 

 

Figure 1.6. Structure of a lignin fragment with various C-O and C-C linkages. The chemical structure 
of the three monolignols that composed lignin is also illustrated.

21
  

 

Lignin polymer contains a wide range of linkages. The most common linkage is the β-O-4 ether 

bond. Roughly 50 % of all inter-subunit bonds are of this type.
22

 The β-O-4 ether bonds lead to a linear 

elongation of the polymer. Other C-O and C-C linkages are present in lower abundance, and 

branching occurs when lignification is advanced.
19

 

Lignin is the most recalcitrant component of the plant cell wall, and the higher the proportion of 

lignin, the higher the resistance to chemical and enzymatic degradation. Generally, softwoods contain 

more lignin than hardwoods and most of the agriculture residues. There are chemical bonds between 

lignin and hemicellulose and even cellulose.
18

 Lignin is one of the drawbacks of using lignocellulosic 

materials in fermentation, as it makes lignocellulose resistant to chemical and biological degradation.
22

 

1.2.1.4. Extractives  

Extractives constitute a large number of organic and inorganic compounds that can be extracted 

from the biomass by means of polar and nonpolar solvents such as hot or cold water, ether, benzene, 

methanol, or other solvents that do not degrade the biomass structure.
23,24

 These compounds can be 

regarded as soluble nonstructural materials, almost exclusively composed of extracellular and low-

molecular-weight compounds.
16,25

 Terpenes, fats, waxes, proteins, phenolic compounds, 

hydrocarbons and sugars are examples of organic extractives. Inorganic extractives include, for 

example, certain sodium and potassium salts.
15

 The amount and types of extractives present are 

entirely dependent upon the biomass nature.
24
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1.2.2. Types of biomass used 

Any type of lignocellulosic biomass can be used. However, the biomasses selected will 

preferentially not compete with food and feed industries, will be those that are produced in large 

quantities and that are readily available (or can be made readily available) in the places with the 

greatest demand for the chemicals, biobased fuels and alternative fuels to be synthetised from the 

biomass.
26

 In this work, the types of biomasses studied were wheat straw, sugarcane bagasse, rice 

straw and triticale.  

1.2.2.1. Wheat straw 

Wheat straw is an agricultural by-product that results from wheat production. Wheat (Triticum 

spp.) is a cereal grain from the Family of Poaceae and its cultivation has been made for more than 

5000 years. This cereal is a major staple food crop in many parts of the world in terms of both 

cultivation area and prevalence as a food source.
27

 It is widely grown throughout the temperate zones 

and in some tropical/sub-tropical areas. The main centres were wheat is produced are Europe, the 

former USSR, North America, China and India.
25

  

In 2010, wheat was the third most-produced cereal with a world production of 651 million 

tonnes, after maize with 844 million tonnes and rice with 672 million tonnes.
28

 During the period of 

2001 – 2011, the world population increased from 6.16 to 6.92 billion (12.34 % increase). In this same 

period, although the global wheat production fluctuated and lacked behind the population growth, it 

increased from 589.3 to 694.5 million tonnes (17.84 % increase) as shown in figure 1.7.
29,30

 For every 

1.3 kg of wheat grain produced is generated about 1 kg of straw, hence the importance of valuing this 

residue.
31

 According to more recent data, the world wheat production was 661.8 million tonnes, on 7 

March 2013.
29

 Figure 1.7 illustrates the world wheat production in million tonnes in the period 2002 – 

2013.  

 

                                                                                              
29

 

 

 

 

Figure 1.7. World wheat production, during 2002 - 2013.  
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1.2.2.2. Sugarcane bagasse 

Sugarcane bagasse is a fibrous residue obtained after the extraction of the juice from 

sugarcane (Saccharum officinarum) in the sugar production process.
32

 This residue is one of the major 

lignocellulosic materials found in great quantities, especially in tropical countries such as Brazil,
33,34

 

India,
33,35

 Cuba,
33

 China,
33,36

 México,
34

 Indonesia
37

 and Colombia.
38

 In general, 1 ton of sugarcane 

produces 280 kg of bagasse, and 5.4 × 10
8
 dry tons of sugarcane is processed annually throughout 

the world.
39

 About 50 % of this residue is stockpiled and the remainder is used in distillery plants as a 

source of energy.
40

 Sugarcane bagasse is mainly composed by 20 – 30 % of lignin, 40 – 45 % of 

cellulose and 30 – 35 % of hemicelluloses.
41

 Due to its lower ash content (1.9 %),
42

 bagasse offers 

numerous advantages compared with other agro-based residues such as rice straw (14.5 %)
43

 and 

wheat straw (9.2 %).
44,45

 

1.2.2.3. Rice straw 

Rice straw is a by-product that results from the rice grain industry.
46

 Rice is a type of grass and 

belongs to a family of plants that includes other cereals such as wheat and corn. It is commonly used 

as human food. The most important rice species used for human consumption are: Oryza sativa, 

grown worldwide; and Oryza glaberrima, grown in parts of West Africa. Relatively to the others cereals 

rice is unique because it can grow in wet environments that other crops cannot survive in. Across 

Asia, this wet environments where rice is grown, are very abundant. Irrigated lowland rice, which 

makes up three-quarters of the world rice supply, is the only crop that can be grown continuously 

without the need for rotation and can produce up to three harvests a year—literally for centuries, on 

the same plot of land. Farmers also grow rice in rainfed lowlands, uplands, mangroves, and deepwater 

areas.
47

 

The growth of rice occurs in more than a hundred countries producing more than 700 million 

tonnes annually, with a total harvested area in 2009 of approximately 158 million hectares. Asia is the 

region with the highest production of rice in the world (about 90 % of rice, which corresponds at nearly 

640 million tonnes). Sub-Saharan Africa had a production of about 19 million tonnes and Latin 

America some 25 million tonnes. Note that, in Asia and sub-Saharan Africa, almost all rice is grown on 

small farms of 0.5−3 hectares. Rice grows in a wide range of environments and in contrast with other 

crops is productive in many situations. Rice-growing environments are based on their hydrological 

characteristics and include irrigated, rainfed lowland, and rainfed upland.  The estimative made until 7 

March 2013 reveal a production of about 488.6 million tonnes of rice. In figure 1.8 is present the world 

rice production in million tonnes in the period 2002 – 2013. 
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Figure 1.8. World rice production, during 2002 - 2013.
29

 

1.2.2.4. Triticale 

Triticale is a crop species produced in 1875 by crossing two distinct species: wheat (Triticum 

aestivum L.) and rye (Secale cereale L). The name triticale combines the scientific names of the two 

genera involved. According to the vision of early scientists, triticale should combine the best 

characteristics of both parents. It presents the grain quality, productivity, and disease resistance of 

wheat and the robustness of rye for adaptability to difficult soils, drought tolerance, cold hardiness, 

disease resistance and low-input requirements. This is the first cereal produced by man, with 

significant economic impact.
48

  

This cereal can be mainly used as a feed supplement in the dairy industry, as a component 

ingredient in beef feedlots and as a constituent of compound rations for intensive livestock (pigs and 

poultry) rations. Note that, as generating companies have identified triticale as an efficient source of 

energy, the rapidly expanding biofuel sector predicts an increase in demand for this crop. In addition to 

its high energy content, the high lysine content presented provides a distinct nutritional advantage 

over other cereals. 

Until the middle of 1980s the evolution of triticale as a commercial crop was slow (figure 1.9). 

After this date, it was verify an increase in triticale production at an average rate of 150 000 

tonnes/year (about 18 % increase per year), reaching nearly 11 million tonnes in 2002.
48

 

Comparatively, in this same year the world production of sorghum, oat, millet and rye was 

approximately 54, 25, 23 and 21 million tonnes, respectively. Although the world production of these 

crops is higher than triticale, they have decreased in the last fifteen years, and the trend seems to be 

continuing. Since 1985 the average annual increase in triticale production per hectare, at the world 

level, has been nearly 100 kg/ha/year, which is notable compared to 45, 39, 28 and 21 kg/ha/year for 

maize, rice, wheat and barley, respectively, in the same period.
48
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Figure 1.9. World triticale production, during 1974 - 2002 (adapted from Mergoum M. et al, 2004).
48

 
 

Triticale is cultivated in many countries of the world but the major producers are in Europe. In 

2002, approximately 88 % of triticale was produced in Europe, 9 % in Asia and 3 % in Oceania. In 

Europe, the major producers were Germany, Poland and France, whereas most of the Asian 

production was in China. In this same year, the total hectares of triticale planted in the world were 75 

% in Europe, 16 % in Asia and 9 % in Oceania, mostly in Australia.
48

 

Concluding, the development of this crop may not appear be consistent with the initial 

expectations. However, comparing with the thousands years necessary to the present major crops 

(like wheat and rice) have evolved under domestication, the few years and modest effort devoted to 

triticale reveal that the results are quite notable.
48

 

1.3. Ionic liquids 

1.3.1. Definition and physicochemical properties 

Ionic liquids (ILs) are salts with melting point below 100 ºC. Usually, they are constituted by an 

organic cation associated with an anion that can be organic or inorganic. The combination between 

cation and anion is vast, making possible to synthesize a wide diversity of ILs. There are 10
18

 possible 

combinations. The most common ILs studied are constituted by imidazolium, pyridinium, ammonium 

and phosphonium cations (figure 1.10).
49

 Some examples of possible anions are presented in figure 

1.11.  

N+

N

imidazolium

N+

pyridinium

R1

R2
R

N+
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Figure 1.10. Chemical structure of imidazolium, pyridinium, ammonium and phosphonium cations. 
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Figure 1.11. Chemical structure of some commonly used anions. 
 

The main physicochemical properties that confers the typical unique characteristics of ILs are:  

negligible vapor pressure, high thermal stability and highly solvating capacity either for polar or 

nonpolar compounds, large electrochemical window and high conductivity.
50-52

 Their very low vapour 

pressure reduces the risk of exposure that is a clear advantage relatively to the classical volatile 

organic compounds (VOCs). Since it is possible to perform a large number of cationic and anionic 

combinations, the physicochemical properties desired for a particular process can be easily tuned.
53

 

Simply by changing the structure of either the anion or the cation, properties such as solubility, 

density, refractive index, viscosity and others can be adjusted to meet the intended requirements.
54,55

 

For these reason, ILs are designated as “designer solvents”.
56-58

  

The information about the toxicity and biodegradability of ILs is scarce and therefore, they need 

to be treated with the same caution as any other chemical with a limited data about their properties. It 

is notable that toxicity of the ionic liquids is mainly ascribed to the alkyl chain and that the toxicity of 

imidazolium and pyridinium ILs increases with their cation chain length.
58

The water content in ILs can 

be considered as an impurity since it was found that decreases the solubility of carbohydrates.
59

 

1.3.2. Main applications 

The outstanding properties of ILs make them applicable to several areas. Properties such as 

non-flammability, high ionic conductivity, electrochemical and thermal stability of ILs make them ideal 

electrolytes in electrochemical devices like in batteries, capacitors, fuel cells, photovoltaics, actuators, 

and electrochemical sensors.
60

 Besides these applications, ILs can also be used in various chemical 

processes such as in organic synthesis, in catalysis, extraction of heavy metals in water, in the field of 

effluent treatment and more recently in the areas of Physical Chemistry, Analytical Chemistry and 

Biotechnology. In this way, it is possible to reduce the amount of volatile organic compounds (VOC's) 

used in industry. In the context of green chemistry, the use of ILs has been increasing, not only due to 

their low vapor pressure, but also because of the possibility of being recycled, which makes them 

more environmentally clean and efficient. 
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1.4. Lignocellulosic biomass pre-treatments 

In order to make full use of biomass, it must be selectively fractionated into its major constituent 

fractions (cellulose, hemicellulose and lignin). The main problem in using lignocellulosic biomass is 

due to not only the presence of covalent bonds between lignin and carbohydrates in the cell walls of 

plants but also the crystallinity of cellulose.
18

 Therefore, lignin is the major barrier to enzymatic 

hydrolysis of cellulose, contributing to the recalcitrance of the lignocellulosic material. In this way, to 

access the carbohydrates in the biomass for biological conversion, an additional deconstruction step 

(also commonly called pre-treatment) is an essential prerequisite to bring the sugar polymers into a 

form suitable for hydrolysis and subsequent fermentation to convert lignocellulosic biomass into fuels 

and chemicals.
19

 After the pretreatment the surface area available for enzyme binding and microbial 

attack greatly increases, making the transformation into fermentable sugars easier. An effective pre-

treatment must meet the following requirements:  

1) to improve subsequent biomass hydrolysis to liberate fermentable sugars; 

2) to avoid significant degradation or loss of carbohydrates, and; 

3) to avoid the formation of byproducts that are inhibitory to the subsequent hydrolysis and 

fermentation processes.
18

  

Several pre-treatment technologies are currently employed to overcome the recalcitrance of 

lignocellulose, increase hydrolysis efficiency and improve the yields of monomeric sugars.
61

 Note that, 

the result is a high recovery of all carbohydrates or/and require low capital and operational costs are 

some of the features, which should be taken into account in the selection of the pre-treatment 

method.
62

,  

In general, pre-treatment methods can be divided into conventional and alternative methods. 

However, since this thesis is based on alternative methods, namely ILs, only a brief introduction to 

conventional methods is presented below. 

 

 

Figure 1.12. Schematic representation of the pre-treatment effect in lignocellulosic biomass.
18
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1.4.1. Conventional methods 

Conventional pre-treatment methods are usually classified as physical (e.g. milling, grinding and 

irradiation), chemical (e.g. alkali, dilute acid, oxidizing agents and organic solvents), physicochemical 

(e.g. steam pretreatment/autohydrolysis, hydrothermolysis) and biological.
63

 The selection of the 

feasible pre-treatment method for a specific process configuration take into account many factors and, 

which can be optimal for one process is not necessarily optimal for another process. It is also 

important to point out that none of these pre-treatments is highly selective and efficient. The main 

disadvantages of these methods are: insufficient separation of cellulose and lignin (which reduces the 

effectiveness of subsequent enzymatic cellulose hydrolysis), formation of by-products that inhibit 

ethanol fermentation (e.g. acetic acid from hemicellulose, furans from sugars and phenolic compounds 

from lignin), high use of chemicals and/or energy, and considerable waste production.
64,65

 Therefore, 

the search for new green methodologies is crucial. A possible solution to overcome these problems 

may be the use of ILs. Table 1.1 shows the comparison between some conventional methods for the 

fractionation of lignocellulosic materials. 

 

Table 1.1. Types of conventional pre-treatment methods (adapted from Mohammad et al., 2008 
22

; 

Carolina et al., 2012 
66

). 

1.4.2. Alternative methods: ionic liquids 

In the last decade, innumerable studies focused on the dissolution of biogenic polymers in ILs 

demonstrates a great potential of ILs as solvents.
67-69

 Cellulose was one of the most studied 

biopolymers exhibiting a high solubility in a variety of ILs. A wide range of carbohydrate solubilities 

was scrutinised using different ILs, presenting that one of the main benefits of using ILs to dissolve 

carbohydrates is that ILs can be tailored to accomplish dissolution or functionalisation of these 

polymers.
70

 

Pre-treatment Examples of Process Effect 

Biological Fungi and actinomycetes Delignification 

Physical 
Milling 

Irradiation 

Increase surface area and pores size; 
Partial depolymerize of lignin; 

Disrupts plan cell; 
Partial hydrolysis of hemicelluloses. 

Chemical 

Alkaline Hydrolysis (Na
+
, K

+
, Ca

+
 

and NH
4+

 hydroxides) 
Acid Hydrolysis (H2SO4, HCl and 

HNO3) 
Organosolv (ethanol, acetone) 

Decrease cellulose crystallinity; 
Partial or complete hydrolysis of 

hemicellulose; 
Delignification. 

Physical-Chemical 

Steam Explosion (autohydrolysis, 
SO2 addition) 

Liquid hot water (LHW) 
Ammonia fiber explosion (AFEX) 

Combination of all effects referred to 
above. 
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1.4.2.1. Influence of ionic liquids in the dissolution of biomass 

The ability of ILs to dissolve carbohydrates and lignin is considered as an effective disruption of 

the intricate network of non-covalent interactions between these polymers. Remsing et al. using 
13

C 

and 
35/37

Cl NMR demonstrated that the interaction between the carbohydrate and the anion of an IL is 

predominant compared to the interactions of carbohydrate with the cation. It was reported that the 

dissolution of carbohydrates in [bmim][Cl] involves the formation of hydrogen bonds between chloride 

ions of the IL and hydroxyl protons of sugar units from carbohydrates in a 1:1 stoichiometry.
71

 The IL 

cation has also some influence on the dissolution by interacting with cellulose hydroxyl oxygen 

groups.
34

 In the case of lignocellulose dissolution the principle is the same, once the main fraction of 

these materials comprises carbohydrates.
72

 However, the presence of lignin and extractives in 

lignocellulose restricts the solubility and the appearance of a brownish viscous mixture solution is 

observed during the process.
12

 The selection of ILs for lignocellulosic biomass dissolution is difficult, 

due to the different physical and chemical properties that IL presents. It was referred that ILs 

constructed by bulky cation and halide anion may decrease the concentration of active chloride ion 

and thus the solvating capacity for both cellulose and lignin is reduced.
69

 The comparison of the 

efficiency of [emim][Cl] and [bmim][Cl] in the dissolution of sugarcane bagasse allows to notice that 

[emim] cation as smaller sized than [bmim] cation might be more effective in interacting with cellulose 

macromolecule.
65

 A smaller anion is also preferable to be able to diffuse faster within the 

lignocellulosic matrix as in the case of chloride anion. Nevertheless, the improvements in 

lignocellulose dissolution are related with the hydrogen bond basicity of the IL anion as referred 

above. ILs with a strong hydrogen bond basicity are effective in weakening the hydrogen-bonding 

network of the polymer chains.
14,73

 For example the increased basicity of the [emim][OAc] anion 

makes it more efficient at disrupting the inter- and intramolecular hydrogen bonding in biopolymers 

than Cl anion.
74

 Generally, increased hydrogen bond basicity of the anion leads to the incorporation of 

water molecules in the IL structure, which reduces the solubility of carbohydrates.
75

 Therefore, drying 

of the IL prior to use is required. However, not only hydrogen basicity of IL is important but also its 

structure affects the dissolution process. The viscosity of ILs is also an important parameter, because 

it can impact the mixing and mass transfer of lignocellulose and IL itself. It was also reported that ILs 

with an adequate polarity and a low viscosity demonstrate good ability to extract polysaccharides in a 

short time. Abe et al. showed that the low viscosity and highly polar IL, [emim][PO(O)H2], allows for 

rapid extraction of cellulose and other carbohydrates from bran under mild conditions.
73

 The lower 

melting point of [emim][OAc] in comparison with [emim][Cl] and [bmim][Cl] also facilitate the 

dissolution of biomass and handling of the mixture, which makes [emim][OAc] a better solvent than 

chloride-based ILs in biomass processing.
74,76

  

1.4.2.2. Biomass pre-treatment with ionic liquids  

The subject of the biomass processing using ILs is very recent. The pre-treatment with ILs 

allows to: (i) alter the physicochemical properties of the biomass macromolecular components; (ii) 

extract a specific macromolecular component that is provided by the property of ILs; (iii) perform 

different fractionation approaches after biomass dissolution in ILs. The pre-treatment is dependent on 



 

16 
 

IL, lignocellulosic biomass (type, moisture, size and load), temperature, time of pre-treatment and 

precipitating solvent used.
76

  

In relation to the particle size of lignocellulosic biomass, the results in literature are quite 

contradictory. In general, as reported by Sun et al. (2009)
74

, smaller particles have larger superficial 

areas, which causes more efficient dissolution. However, Viell et al. (2011)
113

 when studied the 

disintegration and dissolution kinetics of different particle sizes of beech and spruce wood in 

[emim][OAc], concluded that the dissolution is size-independent. 

Generally, the temperature accelerates swelling and dissolution rates of lignocellulose in 

ILs.
12,14,74,77

 This phenomenon is possible due to destabilisation of the hydrogen bonds by increasing 

the temperature that tightened the three-dimensional structure of cellulose.
20

 In fact, some studies 

showed higher regeneration yields at higher temperatures.
78,79

 

The pre-treatment duration time is related to the applied temperature in order to accomplish an 

efficient pre-treatment. It can be assumed that good results are expected with a simultaneous short 

duration of time and high temperatures or using prolonged treatments at relatively low temperatures.
76

 

Yoon et al. (2012)
78

 pre-treated the sugarcane bagasse with [emim][OAc] and proposed a model 

based on Response Surface Methodology (RSM) to predict the reducing sugar yield by changing 

temperature, time and biomass loading. It was observed an improvement in reducing sugar yield at 

longer pre-treatment duration when lower temperature was applied (120 
o
C). However, prolonged pre-

treatment used could lead to decrease in reducing sugar yield under higher temperatures (more than 

135 
o
C), explained by depolymerisation process of biomass components. 

The degree of biomass recalcitrance varies as a function of the biomass itself (i.e., grass, 

softwood, and hardwood), and is influenced by inherent variations in terms of age, harvest method, 

extent of drying and storage conditions.
80

 Furthermore, the lignocellulosic biomass comprises different 

chemical and physical characteristics, such as composition of cellulose, hemicellulose and lignin, 

accessible surface area, crystallinity, degree of polymerisation, and others.
81

 All these features affect 

the pre-treatment efficiency, thus a special attention is recommended regarding the type and 

concentration of biomass to be used in ILs to proceed with the pre-treatment.
76

 

1.4.2.3. Ionic liquid used: [emim][OAc] 

Until now, [emim][OAc] seems to be the most suitable IL for the pre-treatment of lignocellulosic 

biomass, since it possesses good solvent power for these materials and hence it is also referred to in 

the most studies of this research field. For example, several studies were performed focused on the 

evaluation of the pre-treatment behavior of different hardwood and softwood species with 

[emim][OAc].
57,74,82,83,113

 More specifically Sun et al. (2009)
74

 reports [emim][OAc] for dissolution of 

cellulose due to its desirable properties such as low toxicity, viscosity and corrosiveness, low melting 

point (< -20°C) and favorable biodegradability.  In figure 1.13, the chemical structure of [emim][OAc] is 

presented.  

In summary, as referred above the small size of both cation and anion as well as the high basicity of 

the anion of this IL contributes to its high suitability in the dissolution of lignocellulosic biomass.    
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N+N

O

O-
 

Figure 1.13. Chemical structure of [emim][OAc]. 

1.5. Enzymatic hydrolysis 

The enzymatic hydrolysis consists in the conversion of the components (cellulose and 

hemicellulose) in the lignocellulosic materials to fermentable reducing sugars, after the pre-treatment 

step.
18

 Note that, through enzymatic hydrolysis is possible to evaluate the efficiency of the pre-

treatment process. The following criteria lead to an improvement in enzymatic hydrolysis of 

lignocellulosic material: 

 Increase in the surface area and porosity; 

 Modification of lignin structure; 

 Removal of lignin; 

 (Partial) depolymerization of hemicellulose; 

 Removal of hemicellulose; 

 Reduction of the crystallinity of cellulose.
11

  

The pretreatment of cellulose using ILs has been shown to be an effective method to improve 

the enzymatic hydrolysis of cellulose. This technique affords a fast and complete saccharification of 

cellulose into reducing sugars.
1,84
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2. Experimental 

2.1. Materials  

In this work, different types of lignocellulosic biomass, namely wheat straw, sugarcane bagasse, 

rice straw and triticale were tested. Wheat straw was supplied by Estação Nacional de Melhoramento 

de Plantas (Elvas, Portugal). The dry matter content was 92 % (w/w).
85

 Sugarcane bagasse was 

provided by Inbicon in the framework of PROETHANOL2G project. The dry matter content was 92 % 

(w/w). Rice straw was acquired from Orivárzea, SA (Foros de Salvaterra) and the dry matter content 

determined was 95 % (w/w). Triticale was supplied by ICSO "Blachownia” Poland and the dry matter 

content was 94 % (w/w). All the feedstock material was grounded with a knife mill to particles smaller 

than 0.5 mm, homogenized in a defined lot, and stored in plastic containers at room temperature. 

The IL ([emim][OAc]) used has a purity higher than 95 % and was purchased from Io-li-tec 

GmbH (Heilbronn, Germany). IL was prior to use in the pre-treatment, dried under (0.1 Pa) at room 

temperature for at least 24 h. The water content in [emim][OAc] was 2800 ppm and was determined 

by a volumetric Karl–Fischer titration. 

In pre-treatment experiments the following reagents were used: 0.1 M and 3 % (w/w) NaOH 

aqueous solutions prepared from NaOH pellets (99 % purity) supplied by Eka Chemicals/Akzonobel  

(Bohus, Sweden), 1 M and 4 M HCl aqueous solutions prepared from  fuming HCl 37 % (w/w) with a 

purity grade for analysis (Merck – Darmstadt, Germany). Ethanol 96 % (v/v) and acetonitrile of HPLC-

gradient purity for analysis (Carlo Erba Group – Arese, Italy) and acetone (98 % purity) was supplied 

by Valente & Ribeiro, Ltda - Belas, Portugal. For the preparation of NaOH and HCl solutions distilled 

water (17 MΩcm
-1

) and ultrapure water (18.2 MΩcm
-1

) both produced by the PURELAB Classic of Elga 

system were used. For filtration, paper and glass microfiber filters (Whatman GE Healthcare Bio-

Sciences Corp. – Piscataway, NJ, USA) and nylon filters, 0.45 μm HNPW (Merck Millipore – Billerica, 

MA, USA) were used. 

The solution of sulfuric acid 1.2 % for acid hydrolysis of lignocellulossic materials was prepared 

with sulfuric acid 98 % (Merck – Darmstadt, Germany). 

Acid hydrolysed wheat straw (130ºC, 150 minutes and 1.5 % H2SO4), with known composition 

(62.6 % glucan, 29.9 % lignin, 7.5 % ash and others content) was used for the purpose of FTIR 

calibration curves. All FTIR samples were prepared with KBr (≥ 99 % trace metals basis) purchased 

from Sigma-Aldrich Co. (St. Louis, MO, USA). The cellulose standard was Cellulose powder MN 300 

acc. for thin layer chromatography bought from Macherey, Nagel & Co., Düren (Germany). 

Samples of IL for NMR spectroscopy were prepared using chloroform-D (D, 99.8 %) + Silver 

Foil (Cambridge Isotope Laboratories, Inc. – Andover, MA, USA). 

For the enzymatic hydrolysis experiments a 0.1 M sodium citrate buffer of pH = 4.8, prepared 

from citric acid monohydrate (99.7 % purity) and tris-sodium citrate (>99 % purity) (both from VWR 

International Ltd. - Leicester, England), a 2 % (w/w) sodium azide solution, prepared from sodium 

azide (99 % purity; Merck - Darmstadt, Germany) and the enzymes Celluclast
®
 1.5L (60 FPU g

-1
; 

activity 100.57 FPU mL
-1

) and β-glucosidase Novozym 188 (64 NPGU g
-1

; activity 436.64 pNPGU 

mL
-1

) both purchased from Novozymes  (Bagsvaerd, Denmark) were used. 
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2.2. Equipment  

The biomass was grounded to particles of 1.5 mm with the knife mill FRITSCH (Germany) and 

to particles ≤ 0.5 mm with the knife mill IKA
®
 WERKE, MF 10 basic (Germany). The pH of the samples 

was adjusted with the pH meter CRISON, GLP 21 (Barcelona, Spain). The solvents were evaporated 

in the rotavapor Büchi R-210 (Switzerland). Centrifugations performed in B method were done in the 

Sigma 2-16K Sartorius, SciQuip centrifuge (Shropshire, UK). The oven used to dry all the samples 

obtained by the pre-treatment of biomass with [emim][OAc] was Cassel ES.6 (Amadora, Portugal). To 

calculate the moisture of the different biomass used it was used the oven Memmert UL-40 (Germany). 

Acid hydrolysis was performed in the autoclave A. J. Costa (Irmãos), LDA (Lisboa, Portugal). The ash 

of each types of untreated and biomass treated by acid hydrolysis was determined using the muffle 

Heraeus D-6450 (Germany). The total quantity of protein in the raw-material was determined using a 

protein semi-automatic analyser Kjeltec, Tecator (Sweden). For the quantitative acid hydrolysis it was 

used the thermostated bath Memmert (Germany). Enzymatic hydrolysis was made in the incubator 

Optic ivymen
®
 system (Spain).  

All spectra of samples were scanned using FTIR spectrometer Spectrum BX, Perkin Elmer, Inc. 

(San Jose, CA, USA). This instrument was equipped with DTGS detector and KBr beam splitter. The 

operating system used was Spectrum software (Version 5.3.1, Perkin Elmer, Inc., San Jose, CA, 

USA). 

1
H NMR and 

13
C NMR spectra were recorded on a Bruker ARX of 400 MHz spectrometer at 

REQUIMTE, Associated Laboratory, Universidade Nova de Lisboa, Faculdade de Ciências e 

Tecnologia, Departamento de Química, Caparica, Portugal 

The quantification of monosaccharides (D-glucose, D-xylose and L-arabinose) was done by 

HPLC using Agilent 1100 series HPLC system (Santa Clara, CA, USA) equipped with a Bio-Rad 

Aminex HPX-87H column (Hercules, CA, USA) using a 5 mM sulphuric acid mobile phase.  

2.3.  Biomass pre-treatment with [emim][OAc] and fractionation 

The pre-treatment procedure was optimised based on two methodologies presented in the 

literature.
74,86,87

 In this work, these two methods are denominated as the A and B methods. Note that 

the biomass used in the optimisation process was wheat straw and was already characterized. 
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 The A method allowed only the fractionation of biomass in carbohydrate- and lignin-rich 

materials through the addition of a 0.1 M NaOH aqueous solution after biomass dissolution in 

[emim][OAc]. In the B method, acetone was used instead of a NaOH aqueous solution in the 

regeneration step, which allowed to fractionate the regenerated material subsequently into cellulose-, 

hemicellulose- and lignin-rich fractions. From the liquid stream, acetone soluble lignin was extracted 

and recovered. From the combination of A and B methodologies an optimised pre-treatment and 

fractionation procedure, the C method was developed. According to the A method, a 0.1M NaOH 

aqueous solution was used to regenerate the carbohydrate-rich material, which was later fractionated 

by the same procedure as in the B method. Moreover, from the obtained liquid stream in the 

regeneration step (filtrate 1) not only lignin-rich material but also a residual hemicellulose-rich material, 

which was simultaneously extracted by the alkaline regeneration solution (0.1 M NaOH), was 
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recovered. In all experiments biomass/IL ratio was 5 % (w/w) except for the B method, where the ratio 

was 2 % (w/w). The studied methods are described in detail below.  

The pre-treatment experiments made with the different types of biomasses were performed with 

the optimised C method and using the same IL ([emim][OAc]). All pre-treatment experiments were 

made at least in duplicate.  

2.3.1.  The A method  

The A method was developed based on procedures described before.
74,86

 A mixture of 5.00 g of 

[emim][OAc] and 0.25 g of wheat straw (5 % (w/w) of solid/liquid ratio) was heated at 120 ºC for 6 

hours under continuous stirring. After complete dissolution 0.1 M NaOH was added and the mixture 

was stirred rigorously to precipitate the carbohydrate-rich material. The mixture was then transferred 

to a 100 mL Erlenmeyer. The total volume of 0.10 M NaOH used was 40 mL, which was added with 

continuous agitation. The carbohydrate-rich material was collected by vacuum filtration and washed 

with ultrapure water, until the pH of the washing water was neutral. The filtrate was acidified to pH = 

2.0 with 1M HCl to precipitate the lignin-rich material. This solution was next heated at 70 ºC for 30 

minutes to obtain further precipitation of lignin that was then separated by hot filtration. The recovered 

lignin was washed with 10 mL of ultrapure water. The carbohydrate- and lignin-rich materials were 

dried at 60 ºC for 24 hours. For [emim][OAc] recovery, the remaining filtrate was neutralised by the 

addition of NaOH pellets, then water was removed by evaporation and a solid containing NaCl and IL 

was formed. Subsequently, 130 mL of acetonitrile were added to dissolve the IL, leaving NaCl as an 

insoluble residue, which was later removed by filtration. Acetonitrile was evaporated under reduced 

pressure and the recovered IL was dried under vacuum for at least 24 hours. Figure 2.1 depicts a 

simplified schematic process of the A method. 

 

 

Figure 2.1. The A method pre-treatment procedure. 
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2.3.2.  The B Method 

The B method was based on the procedure presented by Lan et al.
87

 with further optimisations 

performed. The complete dissolution of 0.10 g of wheat straw in 5.00 g of [emim][OAc] (2 % (w/w) of 

solid/liquid ratio) was performed at 110 ºC for 4 hours under continuous stirring. Then, an 

acetone/water mixture (9:1, v/v) was added and the solution was centrifuged at 4000 rpm, 22 ºC for 15 

minutes. The total volume of acetone/water (9:1, v/v) used was 40 mL. After this centrifugation the 

carbohydrate-rich material (pellet) was washed with 35 mL of acetone/water (1:1, v/v) and then 

centrifuged at 9000 rpm, 4 ºC for 30 minutes. The resulting solid residue was washed with 35 mL of 

ultrapure water and centrifuged again at 9000 rpm, 4 ºC for 30 minutes. These two washes were 

necessary to eliminate [emim][OAc] efficiently. The supernatants were collected in the same flask and 

filtered to remove any traces of the solid fraction. Then, 5 mL of ultrapure water were added to the 

centrifuge tube with the pellet, which was also filtered to the same filtering flask. The solid 

carbohydrate-rich material was dried in the oven at 60 ºC for at least 18 h, before further use. The 

filtrate was concentrated under reduced pressure by removing acetone and pH was adjusted to 2.0 

with 1M HCl, to precipitate the lignin-rich material (acetone soluble lignin). Subsequently, the latter 

was filtered and washed with 10 mL of HCl 0.01 mol L
-1

. The dried carbohydrate-rich material was 

treated with a 3 % (w/w) NaOH aqueous solution with a solid/liquid ratio of 1:25 (g mL
-1

), at 50 ºC for 

45 minutes under continuous stirring. The insoluble residue (cellulose-rich fraction) was collected by 

filtration and washed with ultrapure water. The filtrate was adjusted to pH 6.8 with 4 M HCl and then 

precipitated with 3 volumes of 96 % (v/v) ethanol under continuous stirring. The resulting solid 

(hemicellulose-rich fraction) was filtered and repeatedly rinsed with 96 % (v/v) ethanol. The obtained 

filtrate (filtrate 4) was concentrated under reduced pressure in order to remove ethanol and then 

adjusted to pH 2.0 with HCl (0.01 mol L
-1

) to precipitate the residual lignin. After filtration the residual 

lignin was washed with a 10 mL HCl (0.01 mol L
-1

). All recovered solids were dried at 60 ºC for 24 

hours. The IL recovery was performed as described in the A method, but pH of the liquid stream 

containing the IL was adjusted to 9.0. The schematic representation of the B method is shown in 

Figure 2.2. 
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Figure 2.2. The B method pre-treatment procedure. 

2.3.3.  The C Method 

A new methodology was developed based on the A and B methods, as referred above.
88,89

  

A mixture of 5.00 g of [emim][OAc] and 0.25 g of wheat straw (5 % (w/w) of solid/liquid ratio) 

was heated at 120 ºC for 6 hours under continuous stirring. To regenerate the carbohydrate-rich 

material, 0.1 M NaOH was added. A total of 40 mL of 0.1 M NaOH was used, which was added under 

continuous stirring. The carbohydrate-rich material was collected by filtration and washed with distilled 

water, until the pH of the washing water was neutral. The solid material was dried at 60 ºC for at least 

18 hours, before further use. 

The remaining filtrate (filtrate 1) was reduced in volume by evaporation of water, the pH was 

then adjusted to 6.8 with 4 M HCl and 1 M HCl. The formed solid was precipitated in 3 volumes of 96 

% (v/v) ethanol under continuous stirring. The resulting solid (residual hemicellulose-rich fraction) was 

filtered and repeatedly rinsed with distilled water. Ethanol from the filtrate (filtrate 2) was evaporated 

under reduced pressure and pH was adjusted to 2.0 with 4 M and 1M HCl to precipitate lignin-rich 

material. Subsequently, this solution was heated for 30 minutes at 70 ºC to precipitate further lignin 

and filtered without cooling. The filtered lignin was washed with HCl 0.01 mol L
-1

 (pH 2.0). The dried 

carbohydrate-rich material was treated with a 3 % (w/w) NaOH aqueous solution at a solid/liquid ratio 

of 1:25 (g mL
-1

), and was kept at 50 ºC for 45 minutes under continuous stirring. The insoluble residue 

(cellulose-rich fraction) was separated by filtration and washed with distilled water. The filtrate (filtrate 

4) was adjusted with an aqueous HCl to pH 6.8 and then three volumes of 96 % (w/w) ethanol were 

added to precipitate the hemicellulose. The recovery of the hemicellulose- and the residual lignin-rich 

fractions from the filtrates was carried out using the same procedure as described in the B method. 
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The IL recovery was performed as described in the A method. The schematic presentation of the C 

method is depicted in Figure 2.3. 

 

Figure 2.3. The C method pre-treatment procedure. 

2.3.4.  Reuse of [emim][OAc] 

The reuse of the IL was examined using the A method. In the first process 5.00 g of pure 

[emim][OAc] were used and after the pre-treatment, the IL was recovered as described in the A 

method. The remaining volatile fractions were removed from the IL applying high vacuum and the 

obtained IL was reused in a new pre-treatment process maintaining a solid (biomass)/liquid (IL) ratio 

of 5 % (w/w). The same IL was used in seven pre-treatment processes (once pure and six times 

reused).  

2.4. Conventional pre-treatment: dilute-acid hydrolysis  

In order to compare the enzymatic digestibility of the biomass pre-treated with a conventional 

pre-treatment (acid hydrolysis) and using ILs it was necessary to do the acid hydrolysis of wheat 

straw, sugarcane bagasse, rice straw and triticale. In the case of wheat straw it was used a sample 

supplied by LNEG, in which the acid hydrolysis conditions used were 1.5 % (w/w) H2SO4, 150 

minutes, 130 ºC, RLS = 7 (w/w). The remaining biomasses were subjected to the following acid 

hydrolysis conditions:  1.2 % (w/w) H2SO4, 150 minutes, 130 ºC, RLS = 7 (w/w). 

The untreated material was placed inside the autoclave in 250 mL Schott flaks (Germany), 

closed with Schott screw caps GL45 (maximum allowable temperature 200 ºC). After the reaction time 

had elapsed, sample was cooled down to 90 ºC. The hydrolysate and the solid phase were recovered 

by filtration (Whatman no. 1 filter paper). The solid phase was washed with distilled water and dried at 

60 ºC for at least 24 hours. The hydrolysate was stored in the refrigerator. All experiments were made 

in duplicate.   
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2.5. Enzymatic hydrolysis 

The maximum possible extent of digestibility of original biomass, acid hydrolysed biomass and 

cellulose-rich materials from the IL pre-treatment was evaluated by enzymatic hydrolysis and 

subsequent HPLC sugar analysis of the hydrolysates, based on the standard NREL procedure.
90

 

Samples were prepared in 30 mL vials by adding 5.0 mL of 0.1 M sodium citrate buffer (pH 4.8) and 

100 µl of a 2 % (w/w) sodium azide solution to prevent growth of organisms. Distilled water was added 

taking into account the volume of enzyme and sample needed to complete in each vial a total volume 

of 10.0 mL. Celluclast
®
 1.5L and Novozym 188 enzyme solutions were added at last. A reaction blank 

was prepared for the substrate. The substrate blank contains buffer, water, and the identical amount of 

substrate in 10.0 mL volume. Enzyme blanks were prepared for Celluclast
®
 1.5 L and Novozym 188 

with buffer, water, and the identical amount of the enzyme. The enzymatic hydrolyses were performed 

in a shaking incubator at 150 rpm and 50 ºC for 72 hours. After hydrolysis the reaction vials were 

placed in an oil bath and boiled for 5 minutes. Each sample was filtrated through Millipore
®
 filters with 

a pore diameter of 0.45 µm to remove insoluble solids and, stored in a refrigerator. Then, these 

filtrates were used to measure reducing sugar concentrations by HPLC analysis. The column 

temperature was 50 ºC, the flow rate 0.6 mL min
-1

; the injection volume 5 µL and the acquisition time 

15 minutes for standards and 30 minutes for samples. Glucose and xylose standards were prepared in 

distilled water at concentrations of 0.25, 0.5, 1.0, 2.5, 5.0 and 10 mg mL
-1

 to construct the calibration 

curve. The cellulose and xylan contents were calculated from glucose and xylose contents multiplied 

by conversion factors of 0.90 and 0.88, respectively.
90

,
91

 All samples were made at least in duplicate. 

Note that all solutions and the biomass are assumed to have a specific gravity of 1.000 g mL
-1

. 

Thus, if 0.200 g of biomass is added to the vial, it is assumed to occupy 0.200 mL and 9.733 mL of 

liquid is to be added, for example. The calculation of the water volume is done as follows: 

 

Water = 10 mL – m (sample, g) – 0.1mL (azide) –  mL (Celluclast) –   mL (Novozym) – 5 mL (buffer) 

2.6.  Chemical characterization of the original and acid hydrolysed raw material  

2.6.1.  Determination of the moisture content 

Firstly, 0.5 g of the raw material was weighted in the previously dried nickel plates. This sample 

was placed in the oven at 105 ºC ± 1 ºC for at least 16 hours, cooled down to room temperature in a 

desiccator for 1 hour and weighted on an analytical balance. This procedure was done in duplicate. 

2.6.2.  Determination of the polysaccharides (glucan, xylan and arabinan) and acetyl 

groups content  

For the determination of polysaccharides, lignin and acetyl groups the samples were subjected 

to a quantitative acid hydrolysis according with the method described by Browning and according to 

the protocol of National Renewable Energy Laboratory.
92

 The main objective of quantitative acid 

hydrolysis is to determine the composition of the feedstock. Therefore, differently from acid hydrolysis, 
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the conditions used are more severe in order to disrupt the lignocellulose structure converting 

polysaccharides in its monomeric subunits. In a test tube, 5 mL of H2SO4 72 % (w/w) was added to 0.5 

g of raw-material and the mixture was incubated at 30 ± 1 ºC in a thermostated bath for 1 hour, with 

occasional stirring with a glass rod. Then, the entire content of the test tube was transferred to 250 mL 

Schott flaks with distilled water, in an amount sufficient to give a concentration of 4 % (w/w) H2SO4. 

This mixture was placed in the autoclave at 121 ºC for 1 hour. In order to determine if there were any 

losses during processing, the Schott flaks were weighted before and after the autoclave (note that 

after the autoclave, the Schott flaks were weighted after they were properly cooled to room 

temperature). The mixture was filtered through fritted filters (Schott) of porosity 3.  

After the hydrolysis, the resulting solid residue corresponds to the Klason lignin and the 

aqueous phase corresponds to the hydrolysis products of polysaccharides. The solid residue was 

washed with distilled water (50 mL). The components of the aqueous phase were filtered through 

filters of 0.45 µm and were analysed by HPLC. The calculation of the percentage of polymers and 

acetyl groups was made considering the concentration of glucose, xylose, arabinose and acetic acid 

present in the hydrolysate.      

2.6.3.  Klason lignin and ash determination 

1 g of the solid residue obtained after acid hydrolysis was placed in the previously dried 

porcelain crucibles. This sample was placed in the oven at 105 ºC ± 1 ºC for at least 16 hours. 

Subsequently, these crucibles were cooled in the dessicator for 1 hour and weighted on an analytical 

balance. The acid-insoluble residue was considered as Klason lignin, after correction for the acid-

insoluble ash (determined by igniting the contents at 550 ºC for 5 hours). This procedure was made in 

duplicate. 

2.6.4.  Determination of the total quantity of protein 

The total protein content in the feedstock was estimated according with Kjedahl method by a 

protein semi-automatic analyser. The conversion factor used was N x 6.25. This methodology is 

described in detail in A appendix.  

2.7. Analytical methods 

2.7.1.  FTIR spectroscopy characterization 

Calibration curve 

For FTIR calibration curve it was used acid hydrolysed wheat straw (130 ºC, 150 minutes and 

1.5 % (w/w) H2SO4), with known composition. In the case of the other lignocellulosic biomass it was 

used untreated biomass grounded with a knife mill to particles smaller than 0.5 mm.  
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Sample preparation 

For the quantitative analysis, 1 mg of carbohydrate-rich material (regenerated material, 

hemicellulose- and cellulose-rich samples) or 0.5 mg of lignin-rich material were mixed with 50 mg of 

KBr and grinded in a mortar, until a homogeneous mixture was obtained. The milling time was 10 

minutes and the samples were placed in the press with 8.5 tonnes for 5 minutes. This sample 

preparation methodology was performed for all the samples equally to minimise the experimental 

errors associated with the FTIR sample preparation. 

 

FTIR Spectra Acquisition 

FTIR spectra were acquired at region of 4000-400 cm
−1

, with a total of 64 scans and a 

resolution of 4 cm
-1

 with strong apodization. These spectra were subtracted against the background of 

air spectrum and were recorded as absorbance values. 

 

Lignocellulosic material quantification 

The quantitative FTIR analysis was performed by the construction of two separate calibration 

curves, for each type of feedstock. One of this curves permits to quantify the carbohydrates content 

and the other permits to determine the lignin content.  The calibration curve for wheat straw was 

prepared using acid hydrolysed pre-treated wheat straw with known composition as a standard.
85

 For 

the others biomasses it was used an untreated sample of the raw material. To minimise the 

experimental error, samples were scanned at least three times and an average value was considered 

for the calibration curve. The obtained spectra exhibited a linearity of absorptions in characteristic 

regions of carbohydrates and lignin. Therefore, the spectrum regions with maximum linearity were 

selected for quantification. Namely, the band at 898cm
-1

 for carbohydrate and the range at 1503-

1537cm
-1

 for lignin were selected. The quantification was made through the measurement of the total 

area (abs cm
-1

) in the selected regions. Note that the measurement was made in absorbance instead 

transmittance. The others content present in the biomass was determined by difference since the 

carbohydrates and lignin content is known. In the calibration curve of carbohydrates the value on the x 

axis represents the integral of the band at 898 cm
-1

 (abs cm
-1

) and the value on the y axis corresponds 

to the carbohydrate content (%). In the calibration curve of lignin the value on the x axis represents the 

integral of the range 1503-1537 cm
-1

 (abs cm
-1

) and the value on the y axis corresponds to the lignin 

content (%).The calibration curves were validated regularly before each series of analysis. The 

quantification of the experimental samples was performed in the same way as described above.   

2.7.2.  NMR 

To record the spectra, the IL was dried in vacuum pump (0.1 Pa) for at least 24 hours at room 

temperature and then, was weighed approximately 30 mg of IL for a NMR tube and it was added 500 

µL of chloroform-D (CDCl3). 
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2.7.3.  HPLC 

All samples were previously filtered through Millipore
®
 filters with a pore diameter of 0.45 µm. D-

glucose, D-xylose, L-arabinose and acetic acid was analysed by an Aminex HPX-87H (Bio-Rad, EUA) 

column with an IR detector. The determination of the concentration of the analysed compouds were 

made through calibration curves traced from standard solutions of 0.25, 0.5, 1, 2.5, 5, 7.5, and 10 g/L 

GXA (glucose, xylose, and arabinose).   

Table 2.1. Characteristics of chromatograph Agilent 1100 Series. 

Equipment Name Model 

Automatic Injector ALS G1313 

Quaternary pump Quat Pump G1311A 

Degassing Degasser G1379A 

Furnace Colcom G1316A 

Diode array detector DAD G1315 

Detector of refractive index RID G1362A 

 

Table 2.2. Operating conditions for HPLC analysis 

Designation HPX-87H column 

Mobile phase H2SO4 5.0 mM 

Flow 
0.4 mL.min

-1
 (Characterization of the raw material 

and solid residues) 
0.6 mL.min

-1
 (others) 

Column temperature 50 ºC 

IR detector temperature 45 ºC 

Wavenumber 280 nm 

Sample volume 20 µL (0.4 mL.min
-1

) or 5 µL (0.6 mL.min
-1

) 

2.7.4.  FTIR measurement of cellulose crystallinity 

To evaluate changes of cellulose structure in regenerated wheat straw as well as in cellulose-

rich samples, two infrared ratios were calculated, namely crystallinity index (CI – A1437 cm-1/A898 cm-1) 
93

 

also designated as lateral order index (LOI)
94

 and total crystallinity index (TCI – A1376 cm-1/A2900 cm-1).
95

 

For the calculations, the total height of the band was considered. 

2.8. Experimental error analysis 

For all obtained results standard deviation errors (u) were determined. The applied temperature 

in pre-treatment experiments demonstrated an u(T) = 1 ºC. All mass determinations present an u(m) = 

0.1 mg. The pre-treatment errors were given as total loss materials for each experiment. For FTIR 

quantitative analysis, an arbitrary error of 5 % of the experimental value was established. 
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3. Results 

3.1. Original lignocellulosic biomass composition  

The chemical composition of a dry weight of original wheat straw, sugarcane bagasse, rice straw 

and triticale is shown in table 3.1. It is important to point out that the composition of each feedstock 

may vary depending on the variety and climacteric cultivation conditions.  

 

Wheat straw  

Wheat straw was selected for the pre-treatment optimisation with ILs. This biomass contains 8.0 

% (w/w) of moisture. It contains 18.0 % (w/w) of Klason lignin and approximately 60.0 % (w/w) of total 

polysaccharides, among which 38.9 % (w/w) is cellulose and 23.5 % (w/w) is hemicellulose. The 

percentage of hemicellulose corresponds to the sum of acetyl groups, xylose and arabinose 

compounds.  

 

Sugarcane bagasse 

Sugarcane bagasse contains approximately 8.1 % (w/w) of moisture. The percentage of 

cellulose is similar to this of wheat straw (38.7 % (w/w)) but this biomass has more hemicellulose and 

lignin (30.5 % (w/w) and 20.1 % (w/w), respectively).  

 

Rice straw  

The moisture content of original rice straw is at the level of 4.8 % (w/w). This biomass has 40.9 

% (w/w) of cellulose, 24.2 % (w/w) of hemicellulose and 14.4 % (w/w) of lignin. Comparing with the 

composition of the other biomasses used it can be seen that rice straw contains less lignin. The 

amount of hemicellulose is at the similar level as in wheat straw and slightly lower than in sugarcane 

bagasse. The content of cellulose is similar to two biomasses aforementioned.  

 

Triticale 

Triticale has a moisture content of about 6.2 % (w/w). It contains 41.7 % (w/w) of cellulose, 26.2 

% (w/w) of hemicellulose and 20.5 % (w/w) of Klason lignin. Comparing with the other feedstocks, 

triticale contains similar quantity of cellulose of the other biomasses. Hemicellulose is similar to wheat 

straw and rice straw but is slightly lower than in sugarcane bagasse. The amount of Klason lignin is 

similar to sugarcane bagasse but in relation to wheat straw and rice straw this quantity is slightly 

higher.  
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Table 3.1. Average macromolecular composition of original wheat straw, sugarcane bagasse, rice 
straw and triticale (% of dry weight). 

 
Dry weight (% (w/w)) 

Component Wheat straw
85

 Sugarcane bagasse Rice straw Triticale 

Cellulose
a
 38.9 ± 0.2 38.7 ± 0.4 40.90 ± 0.05 41.7 ± 0.3 

Hemicellulose 23.5 30.5 24.2 26.2 

Xylan 18.1 ± 0.3 21.2 ± 0.6 20.5 ± 0.2 20.1 ± 0.4 

Arabinan 3.0 ± 0.2 2.7 ± n.d. 3.4 ± 1.0 2.2 ± 3.2 

Acetyl groups 2.5 ± 0.1 6.6 ± 3.3 0.4 ± 5.6 3.9 ± 8.7 

Klason lignin 18.0 ± 0.5 20.1 ± 0.2 14.4 ± 5.0 20.5 ± 0.3 

Ash 9.70 ± 0.03 - 4.04 ± 0.03 - 

Protein 4.5 ± 0.5 - 2.5 ± n.d. - 

Extractives - - 9.5 - 

Others (by difference) 5.5 
 

4.4 
 

a
 Measured as glucan ; n.d. – not determined 

3.2. Acid hydrolysed lignocellulosic biomass composition 

The chemical composition of dry weight of acid hydrolysed wheat straw, sugarcane bagasse, 

rice straw and triticale is presented in table 3.2.  

 

Wheat straw  

Acid hydrolysed wheat straw presents a moisture content of approximately 5.7 % (w/w). This 

biomass is free of hemicellulose and has 62.6 % (w/w) of cellulose and 29.9 % (w/w) of lignin. 

  

Sugarcane bagasse 

The moisture content of acid hydrolysed sugarcane bagasse is about 5.5 % (w/w). Acid 

hydrolysed sugarcane bagasse is mainly composed by 61.5 % (w/w) of cellulose, 6.7 % (w/w) of 

hemicellulose and 33.4 % (w/w) of lignin.  

 

Rice straw  

Acid hydrolysed rice straw has a moisture content of about 3.9 % (w/w). The cellulose, 

hemicellulose and Klason lignin content of this biomass is about 52.0 % (w/w), 7.0 % (w/w) and 24.0 

% (w/w), respectively.  

 

Triticale 

The moisture content of acid hydrolysed triticale is 4.7 % (w/w). Triticale is mainly composed by 

58.0 % (w/w) of cellulose, 8.0 % (w/w) of hemicellulose and 33.0 % (w/w) of Klason lignin.    

  



 

35 
 

Table 3.2. Average macromolecular composition of acid hydrolysed wheat straw, sugarcane bagasse, 
rice straw and triticale (% of dry weight). 

 
Dry weight (%( w/w)) 

Component Wheat straw Sugarcane bagasse Rice straw Triticale 

Cellulose
a
 62.6 ± 0.3 61.5 ± 0.2 52.4 ± 3.0 58.4 ± 0.2 

Hemicellulose 0.0 6.7 7.3 8.0 

Xylan 0.0 4.1 ± n.d. 5.6 ± n.d. 6.5 ± 4.5 

Arabinan 0.0 1.4 ± n.d. 1.7 ± n.d. 1.5 ± n.d. 

Acetyl groups 0.0 1.2 ± 8.5 0.0 0.0 

Klason lignin 29.9 ± 0.6 33.4 ± 0.1 24.4 ± 0.7 33.0 ± 0.3 

Ash 7.5
 b
 - 13.4 1.6 

Protein - - 3.9 2.9 
a
 Measured as glucan; 

b Ash & others; n.d. – not determined 

3.3. Optimisation study of wheat straw pre-treatment using [emim][OAc]  

The pre-treatment procedure was optimised based on two methodologies presented in the 

literature.
74,86,87

 In this work these two methods are denominated as the A and B methods. For the 

optimisation of the pre-treatment time different reaction times (1, 6 and 16 hours) were tested at 

constant temperature (120 ºC) and biomass loading (5 % (w/w)). The complete macroscopic 

dissolution of wheat straw was observed for a 6-hour and 16-hour processing. Both pre-treatments 

produced dark brown solutions; however, an addition of antisolvent (0.1M NaOH) in the case of the 

16-hour process caused formation of a jelly (regenerated) material and prolonged process time led to 

product and IL degradation. Therefore, the 6-hour process was found to be the best among the tested 

conditions as a complete macroscopic dissolution of biomass was guaranteed and an efficient 

recovery of the carbohydrate-rich fraction was achieved. The results are presented in Table 3.3. 

 
Table 3.3. Results obtained for the study of the reuse of [emim][OAc] using A method. 

    
SF LF 

 
IL Recovery 

Exp. Time (h) WS (mg) Dried WS (mg) RM (mg) RY (% w/w) Lignin
a
 (mg) ML (% w/w) (% w/w) pH 

1 1 103.2 94.9 63.0 66.4 2.6 30.9 - - 

3 16 250.4 230.4 119.2 51.7 6.6 45.4 76.3 7.0 

4 6 250.5 230.5 120.8 52.4 4.8 45.5 88.2 7.0 

WS – wheat straw; RM – regenerated material; RY – regeneration yield; ML – material lost; IL – ionic liquid   

a 
Lignin-rich material 

 

The A method 

After the optimisation of the pre-treatment time it was made an experiment with different 

amounts of biomass weighed and with different volumes of 0.1 M NaOH. These results are shown in 

table 3.4. Comparing the results of A1 and A2 experiments, it was verified that is more advantageous 

to use 250 mg of biomass instead of 125 mg since the amount of the recovery lignin in A1 experiment 

is very low to perform the subsequent FTIR analysis. Hereafter, it was tested if increasing the volume 

of 0.1 M NaOH will improve the separation of carbohydrates from lignin. In A2 experiment was used 
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40 mL of 0.1 M NaOH and in A4 experiment was used 80 mL. As showed in table 3.4 the increased in 

the volume of 0.1 M NaOH does not improved the separation between carbohydrates and lignin 

because the A4 regeneration yield is lower than A2 regeneration yield. For that reason, in the next 

experiments it was used 40 mL of 0.1 M NaOH instead of 80 mL. The comparison between A3 and A1 

experiments reveal that the use of 50 mL of 0.1 M NaOH is not advantageous since, although the A3 

regeneration yield is slightly higher than A1 experiment, the material lost is very similar. The highest 

regeneration yield was observed for A2 experiment and the highest material lost was observed for A1 

experiment. The recovery percentage of the IL in these experiments is about 71 – 77 % (w/w).   

 

Table 3.4. Results obtained using A method with different amounts of biomass (A1, A2, A3) and 
different volumes of 0.1 M NaOH. 

   
Solid fraction Liquid fraction 

 
IL Recovery 

Exp. WS (mg) Dried WS (mg) RM (mg) RY (% w/w) Lignin
a
 (mg) ML (% w/w) (% w/w) pH 

A1
b
 125.4 115.3 62.1 53.8 10.3 37.3 75.2 7.0 

A2
b
 250.6 230.5 159.7 69.3 18.6 22.7 71.2 7.0 

A3
c
 125.6 115.6 65.6 56.7 8.3 36.1 76.8 7.0 

A4
d
 250.6 230.5 127.7 55.4 34.3 29.7 76.4 7.0 

WS – wheat straw; RM – regenerated material; RY – regeneration yield; ML – material lost; IL – ionic liquid   

a 
Lignin-rich material; 

b 
Addition of 40 mL of 0.1 M NaOH to precipitate the regenerated material; 

c
 Addition of 50 

mL of 0.1 M NaOH to precipitate the regenerated material; 
d
 Addition of 80 mL of 0.1 M NaOH to precipitate the 

regenerated material 

 

The B method 

In this method it was used a pre-treatment time of 4 hours instead of 6 hours, a mixture of 

acetone/water (9:1, v/v) instead of 0.1 M NaOH to regenerate carbohydrate-rich material and a 2 % 

(w/w) solid/liquid ratio instead of 5 % (w/w). Contrary to A method, this method permits the separation 

of lignocellulosic biomass in cellulose-, hemicellulose- and lignin-rich materials. In table 3.5 and 3.6 

the results for the two experiments performed are presented. The difference between these two 

experiments is in the regeneration step of carbohydrate-rich material. In B1 experiment it was used a 

mixture of acetone/water (9:1, v/v) and in B2 experiment besides this mixture it was also used an 

acetone/water (1:1, v/v) mixture and water to wash the precipitated fraction. This modification was 

made due to the low recovery percentage of IL obtained in B1 experiment. As shown in table 3.5, 

besides the improvement in the recuperation process of IL, the regeneration yield increased, it has 

been recovery a slightly higher quantity of lignin and the material lost decreased. Note that, B3 

experiment is a duplicate of B2 experiment. B3 experiment has the highest regeneration yield and the 

lowest material lost. B2 experiment has the highest amount of lignin-rich material recovered and the 

highest percentage of IL recovered. The results obtained for the fractionation of the carbohydrate-rich 

material (solid fraction) are displayed in table 3.6. The percentage of cellulose-rich material recovered 

is very similar for the three experiments (between 61-63 % (w/w)). B2 experiment has the highest 

percentage of hemicellulose-rich material recovered (about 32 % (w/w)) and B1 experiment has the 

highest percentage of residual lignin-rich material recovered (about 6 % (w/w)). Note that these results 
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show that carbohydrate-rich material is namely composed by cellulose and is slightly contaminated 

with lignin.  

 

Table 3.5. Results obtained using the B method for the liquid and solid fractions. 

   
Solid fraction Liquid fraction 

 
IL Recovery 

Exp. WS (mg) Dried WS (mg) RM (mg) RY (% w/w) Lignin
a
 (mg) ML (% w/w) (% w/w) pH 

B1 99.8 91.8 55.7 60.7 7.8 30.9 53.3 9.0 

B2 100.8 92.7 64.5 69.6 10.4 19.2 93.6 9.0 

B3 100.2 92.2 68.8 74.7 9.8 14.7 91.8 9.0 

WS – wheat straw; RM – regenerated material; RY – regeneration yield; ML – material lost; IL – ionic liquid   

a 
Lignin-rich material 

 

Table 3.6. Results obtained with the B method for the fractionation of the regenerated material. 

  
RM fractionation 

 

Exp. RM load (mg) Cellulose (mg)
a
 Hemicellulose (mg)

b
 Lignin

c
 (mg) ML (% w/w) 

B1 50.8 31.9 12.9 3.2 5.6 

B2 60.4 36.8 19.0 2.9 2.8 

B3 42.4 26.8 11.6 2.0 4.8 

RM – regenerated material; ML – material lost 
a 

Cellulose-rich material; 
b 

Hemicellulose-rich material; 
c 
Residual lignin-rich material 

 

The C method 

From the combination of A and B methodologies an optimised pre-treatment and fractionation 

procedure, the C method was developed. According to the A method, a 0.1M NaOH aqueous solution 

was used to regenerate the carbohydrate-rich material, which was later fractionated by the same 

procedure as in the B method. Moreover, from the obtained liquid stream in the regeneration step 

(filtrate 1) not only lignin-rich material but also a residual hemicellulose material, which was 

simultaneously extracted by the alkaline regeneration solution (0.1 M NaOH), was recovered. The 

results of the C pre-treatment method are indicated in table 3.7 and 3.8. 

Comparing the results obtained for the three experiments (table 3.7), it was verified that the 

regeneration yield for C1 and C3 experiments are very similar. In the case of C2 experiment, it was 

not possible to determine the regeneration yield because the recovered carbohydrate-rich material 

was not dried in the oven. Instead, in this case was used wet regenerated material. As in C1 

experiment the regenerated material was dried in the oven for 24 hours, an attempt was made to 

decrease the process time, which in turn would contribute to reduce the process energy costs. 

However, this modification has the disadvantage of increasing the volumes of solvents used, namely 

ethanol. Consequently, in C3 experiment instead of 24 hours, the regenerated material was dried for 

18 hours since this time is sufficient to remove the water. Note also that, C1 experiment has the 

highest recovery of residual hemicellulose-rich material and has a negative value for the material loss 

percentage. The highest quantity of the recovered residual hemicellulose can be due to the combined 

precipitation of NaCl with hemicellulose, when ethanol was added to the liquid fraction. Therefore, in 



 

38 
 

this experiment was not obtained more hemicellulose, but a higher amount of salt has precipitated 

together with residual hemicellulose. As a result, a negative value of material loss was obtained since 

the total amount of the fractions recovered (residual hemicellulose and lignin) is higher than the real 

mass that could be recovered. In order to overcome this problem, in C2 and C3 experiments the 

precipitated residual hemicellulose was washed with distilled water. By this means, the addition of 

distilled water enables the NaCl solubilisation, remaining in the solid phase mainly the residual 

hemicellulose. The amount of residual hemicellulose-rich material is very similar for C2 and C3 

experiments, as is given in table 3.7. Relatively to the percentage of the IL recovery, C1 experiment 

has the lowest percentage and the percentage for C2 and C3 experiments are very close.  

Table 3.8 shows the results obtained after the fractionation of the regenerated material in 

cellulose-rich, hemicellulose-rich and residual lignin-rich materials. The amount of cellulose-rich 

material is very similar for the three experiments. Experiment C2 has the highest recovery of 

hemicellulose-rich material and has the lowest recovery of lignin-rich material. Note that, as mentioned 

above due to the precipitation of NaCl with hemicellulose, C1 experiment has the lowest percentage of 

material lost. The determination of the material lost percentage for C2 experiment was not possible 

because the weight of the regenerated material is not known since it was not dried in the oven.    

 

Table 3.7. Results obtained using C method for the liquid and solid fractions. 

   
Solid fraction Liquid fraction 

 
IL Recovery 

Exp. WS (mg) Dried WS (mg) RM (mg) RY (% w/w) Lignin
a
 (mg) Hemicellulose

b
 (mg) ML (% w/w) (% w/w) pH 

C1 249.7 229.7 133.2 58.0 18.5 128.4 33.9 78.2 7.0 

C2 250.4 230.4 - - 15.3 38.9 - 89.1 9.0 

C3 250.6 230.5 131.1 56.9 15.1 38.3 36.6 86.2 7.0 

WS – wheat straw; RM – regenerated material; RY – regeneration yield; ML – material lost; IL – ionic liquid   

a 
Lignin-rich material; 

b 
Residual hemicellulose-rich material 

 

Table 3.8. Results obtained with C method for the fractionation of the regenerated material. 

  
RM fractionation 

 

Exp. RM load (mg) Cellulose
a
 (mg) Hemicellulose

b
 (mg) Lignin

c
 (mg) ML (% w/w) 

C1 123.1 94 22.2 3.6 2.8 

C2 - 83.5 30.2 1.2 - 

C3 119.7 87.3 18.4 3.0 9.2 

RM – regenerated material; ML – material lost 
a 

Cellulose-rich material; 
b 

Hemicellulose-rich material; 
c 
Residual lignin-rich material 

3.4. Different biomass pre-treatment using [emim][OAc] 

In order to test the versatility and efficiency of the fractionation process of the optimised 

methodology development, pre-treatment of different types of biomasses has been performed. 

Besides wheat straw, sugarcane bagasse (CA), rice straw (CB) and triticale (CC) were tested. For all 

the experiments it was macroscopically verified the entire dissolution of biomass in the IL. The results 
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obtained for each biomass pre-treatment are shown in table 3.9 and 3.10. Note that, each experiment 

was made in duplicate but only the mean values are presented. 

The highest regeneration yield was obtained for the pre-treatment of sugarcane bagasse (77.0 

% (w/w)) and the regeneration yield for rice straw and triticale pre-treatment were at the similar level 

(70.8 % (w/w) and 70.1 % (w/w), respectively). Triticale was the biomass with the highest recovery of 

lignin and residual hemicellulose-rich materials. The experiment with the lowest percentage of IL 

recovery was triticale and the experiment with the highest was sugarcane bagasse (93.5 % (w/w)).  

Results obtained after the fractionation of the regeneration material in cellulose-, hemicellulose- 

and lignin-rich materials are displayed in table 3.10. The biomass with the highest recovery of 

cellulose-rich material was sugarcane bagasse (121.1 mg) and rice straw presented the lowest one 

(106.3 mg). Rice straw shown the highest recovery of residual lignin-rich material (7.1 mg) and triticale 

presented the lowest (3.9 mg). Note that, triticale was the only biomass with the recovery of two 

fractions of hemicellulose because after the filtration, in the liquid fraction, remained a white precipitate 

that was filtered again for a new filter. Finally, rice straw revealed again the highest material loss in the 

fractionation process of the regenerated material (6.8 mg).      

 

Table 3.9. Results obtained for the liquid and solid fractions from the pre-treatment of sugarcane 
bagasse (CA), rice straw (CB) and triticale (CC). 

   
Solid fraction Liquid fraction 

 

IL 
Recovery 

Exp. 
WS 
(mg) 

Dried WS 
(mg) 

RM (mg) RY (% w/w) 
Lignin

a
 

(mg) 
Hemicellulose

b
 

(mg) 
ML (% w/w) (% w/w) 

CA 250.4 210.1 161.7 77.0 11.2 19.9 8.2 93.5 

CB 250.3 226.5 160.3 70.8 16.8 15.8 14.8 72.7 

CC 250.4 219.2 153.6 70.1 25.3 27.0 6.1 73.5 

WS – wheat straw; RM – regenerated material; RY – regeneration yield; ML – material lost; IL – ionic liquid   

a 
Lignin-rich material; 

b 
Residual hemicellulose-rich material 

 

Table 3.10. Results acquired for the fractionation of the regenerated material obtained after the pre-
treatment of sugarcane bagasse (CA), rice straw (CB) and triticale (CC). 

  
RM fractionation 

 

Exp. RM (mg) 
Cellulose

a 

 (mg) 
Hemicellulose

b
  

(mg) 
Hemicellulose

c
  

(mg) 
Lignin

d
  

(mg) 
ML (%w/w) 

CA 161.7 121.1 - 30.1 5.6 3.0 

CB 140.0 106.3 - 17.2 7.1 6.8 

CC 153.6 114.7 12.2 17.8 3.9 3.1 

RM – regenerated material; ML – material lost 

a 
Cellulose-rich material; 

b 
Residual hemicellulose-rich material;

 c 
Hemicellulose-rich material; 

d 
Residual lignin-rich 

material 

3.5. FTIR qualitative and quantitative analysis 

The FTIR spectroscopy was chosen to characterise all solid samples recovered from the 

biomass pre-treatment processes. The main chemical bond vibrations of lignocellulosic materials are 

detected in the region of 1800-800 cm
-1

. Therefore, this region was selected for the analysis of all 
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samples considered in this work. The complete spectra are illustrated in B appendix. Note that, the 

identification of some absorption bands is a little controversial in literature. The characterization of all 

the absorption bands identified is summarized in C appendix.      

3.5.1.  FTIR characterization of wheat straw  

The FTIR spectrum of untreated wheat straw is illustrated in figure 3.1. The bands at 1376, 

1250, 1161, 1106, 1051 and 898 cm
-1

 are attributed to carbohydrates in native wheat straw. The band 

at 1376 cm
-1

 is related to O-H bending from hydroxyl groups. The broad absorption at 1250 cm
-1

 is 

originated by the C-O stretching of acetyl groups present in hemicellulose molecular chains. The C-O 

anti-symmetric bending is assigned to the band 1161 cm
-1

 and the arabinosyl side chains are assigned 

to 1051 cm
-1

. The band at 898 cm
-1

 corresponds to the absorption of glycosidic C1 – H deformation 

with ring vibration contribution, characteristic of β-glycosidic linkages between glucose in 

carbohydrates. Finally, the bands at 2852 and 2920 cm
-1

 are assigned to asymmetric and symmetric 

C-H stretching of CH, CH2 and CH3 groups. These bands can be seen in the complete spectrum 

present in B appendix and are also characteristic of carbohydrates.  

The main characteristics bands of lignin are 1508, 1458 and 1420 cm
-1

 and are assigned to 

aromatic skeletal vibrations. The C=C stretching vibration is attributed to 1508 cm
-1

 band and the C-H 

deformations (CH and CH2) in aromatic rings is attributed to 1458 cm
-1

 band. The symmetric bending 

vibrations of C-H bonds in methoxyl groups of syringil and guaiacyl units correspond to 1420 cm
-1

 

band. The band at 1734 cm
-1

 is attributed to ester linkages in acetyl, feruloyl and p-coumaroyl groups 

between hemicellulose and lignin and the band at 1637 cm
-1

 is associated with the bending mode of 

absorbed water.  

 

Figure 3.1. FTIR spectrum of original wheat straw. 
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3.5.2.  FTIR characterization of fractions obtained by A, B and C methods  

The A Method  

This method allowed the fractionation of wheat straw into carbohydrate- and lignin-rich 

materials. Figure 3.2 illustrates the FTIR spectrum of carbohydrate-rich sample. In addition to the 

bands identified in the spectrum of wheat straw it is also possible to observe the appearance of new 

bands. The bands at 2918, 1637, 1376, 1161, 1066, 1046, 997 and 896 cm
-1 

are characteristic of 

carbohydrates. The new bands that appear at 1066 and 997 cm
-1

 are assigned to the ether linkage C-

O-C skeletal vibration of both pentose and hexose unit contribution and to the arabinosyl side chains, 

respectively. Comparing this spectrum with wheat straw it is possible to observe a better resolution of 

the carbohydrates characteristic bands, present in the 1200 – 850 cm
-1

 region. Instead of the band at 

1051 cm
-1

, the bands at 1066 and 1046 cm
-1

 appears and the absorbance at 896 cm
-1

 increased. In 

the range of 1600 – 1300 cm
-1

, it also can be observed a slight decrease in the absorbance bands at 

1508, 1458 and 1420 cm
-1

, revealing a lower contamination of the carbohydrate-rich material with 

lignin. It is important to note that, the band responsible for the hemicellulose-lignin interaction (1735 

cm
-1

) decrease considerably compared to the band present in wheat straw.   

 

Figure 3.2. FTIR spectrum of regenerated material obtained by A method. 
 

The spectrum acquired for lignin-rich material is illustrated in figure 3.3. In this figure it can be 

seen that the lignin characteristic bands are 3500-3100, 2928, 1596, 1508, 1458, 1420, 1364, 1340, 

1262, 1228, 1157, 1125, 1083 and 1034 cm
-1

. The band present in the range of 3500-3100 cm
-1

 is OH 

stretching vibrations. The symmetric and asymmetric ѵCH of methylene and methyl (methoxyl included) 

groups corresponds to the band at 2928 cm
-1

. The band at 1596 cm
-1

 is assigned to aromatic skeletal 

vibrations and C=O stretching. Comparing with wheat straw spectrum the bands at 1508, 1458 and 

1420 cm
-1

 have strong absorptions due to the higher purity of lignin-rich material. The symmetric 

deformation vibrations of C-H in metoxyl groups are attributed to the band 1364 cm
-1

. The absorption 

at 1340 cm
-1

 is due to C-O and C-H deformation of syringy aromatic ring and phenolic hydroxyls. The 

bands at 1262 and 1228 cm
-1

 are attributed to C-O-C stretching vibration in methoxyl groups of 

guaiacyl and syringil ring. Deformation vibrations of the C-H bonds on benzene rings and C-O 
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asymmetric vibration in ester linkages are assigned to 1157 cm
-1

. The absorption at 1125 cm
-1

 is 

typical of three types of vibrational absorptions, namely methoxyl group and C-H in-plane deformation 

in syringyl units as well as secondary alcohols present in lignin. The band at 1083 cm
-1

 corresponds to 

C-O deformations of secondary alcohols and aliphatic ethers linkages present in lignin and the band at 

1034 cm
-1

 is assigned to aromatic C-H in-plane deformation for guaiacyl monomers.  

 

 

Figure 3.3. FTIR spectrum of lignin-rich sample obtained by A method. 
 

The B method 

This method allowed the fractionation of wheat straw in cellulose-, hemicellulose-, acetone 

soluble lignin- and alkaline lignin-rich (residual lignin) materials. Note that the spectra of the 

regenerated material and alkaline lignin-rich material obtained with B method are very similar to the 

spectra obtained using A method. The spectra of these compounds are present in B appendix. It can 

be verified some significant differences in the FTIR spectra range 1200 - 850 cm
-1

 that allows the 

characterization and differentiation of carbohydrate compounds. This region is dominated by ring 

vibrations overlapped with stretching vibrations of C–OH side groups and the C–O–C glycosidic bond 

vibration. 

For cellulose-rich material spectra it was identified some bands that are described in literature, 

namely the bands at 1161, 1112, 1061 and 1035 cm
-1

. All this bands are related to pyranosyl rings and 

are indicated in figure 3.4. The band 1112 cm
-1

 is assigned to C-OH skeletal vibration and 1035 cm
-1

 

band is associated with C-O stretching vibration typical of cellulose. The existence of arabinose 

(arabinosyl side chains) is indicated by the band at 998 cm
-1

, appearing as smooth shoulder. The band 

at 1319 cm
-1

 was produced by C-C and C-O skeletal vibrations. Note that the absorbance band at 

1376 cm
-1

 is very pronounced compared with native wheat straw. The band 897 cm
-1

 is also present 

since it is very characteristic for carbohydrate. The absorbance bands at 1508, 1459 and 1421 cm
-1 

are less intense comparing to those of the spectrum of regenerated material obtained with A method, 

revealing the higher purity of this sample. Beside the three bands mentioned above, it could be also 

observed almost imperceptibles bands at 1264 and 1235 cm
-1

.  
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Figure 3.4. FTIR spectrum of cellulose-rich material obtained by B method 
 

Comparing the spectrum of hemicellulose-rich material (figure 3.5) with the spectrum of 

cellulose-rich material (figure 3.4) it could be verified the existence of significant differences between 

them. The bands characteristic for hemicellulose-rich material are 1388, 1253, 1163, 1079, 1043 and 

993 cm
-1

. The strong band at 1043 cm
-1

 is associated to glycosidic linkages C-O-C contributions in 

xylans. The C-O stretching is assigned to the band 1388 cm
-1

 and the band at 1253 cm
-1

 reveals the 

presence of acetyl groups in hemicellulose structure. The presence of the arabinosyl side chains is 

characterized by two weak tails at 1163 and 993 cm
-1

 and the changes of intensity for these two bands 

suggested an arabinosyl substituent contribution. It is also possible to identify a less intense band at 

1079 cm
-1

 associated to galactan side chains (figure 3.5).  

 

Figure 3.5. FTIR spectrum of hemicellulose-rich material obtained by B method. 
 

The characteristics absorption bands of alkaline lignin-rich material are 2927, 1596, 1508, 1458, 

1420, 1363, 1330, 1264, 1225, 1127, 1091 and 1032 cm
-1

. The spectrum of this lignin is very similar to 

the spectrum of lignin obtained in the A method. The only difference is the absence of band 1157 cm
-1
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in the spectrum of alkaline lignin-rich material of the B method and the presence of band 896 cm
-1

 in 

lignin-rich material obtained with the A method. In B appendix is illustrated the spectrum of this lignin.  

For acetone soluble lignin-rich material, the characteristics bands are 2919, 1508, 1458, 1420, 

1364, 1340, 1262, 1125 and 1080 cm
-1

. Figure 3.6 illustrates the FTIR spectrum of this lignin. As for 

the alkaline lignin-rich material the bands attribution is similar to that of the A method. Acetone soluble 

lignin-rich material differs from alkaline lignin-rich material since the band at 1225 cm
-1

 is not present 

and the bands at 1125 and 1262 cm
-1

 are relatively smaller than the bands of alkaline lignin-rich 

material. In this spectrum is also possible to observe the presence of carbohydrates since the 

absorption bands at 1125, 1080, 1046 and 898 cm
-1

 are present.    

 

Figure 3.6. FTIR spectrum of acetone soluble lignin-rich material obtained by B method. 
 

The C method  

This method allowed the fractionation of wheat straw in cellulose-, hemicellulose-, residual 

hemicellulose-, alkaline lignin- and residual alkaline lignin-rich materials. 

The spectrum of cellulose-rich material is presented in B appendix and is similar to the 

spectrum of cellulose-rich material fractionated by the B method, revealing however small differences.  

Hemicellulose- and residual hemicellulose-rich materials spectra are identical to the spectrum of 

hemicellulose-rich material from the B method. The spectra of these samples are shown in B 

appendix. 

Figure 3.7 illustrates the spectrum of alkaline lignin-rich material and figure 3.8 shows the 

spectrum of residual alkaline lignin-rich material obtained by the C method. These lignins are very 

similar. The main differences between them are the absence of the bands 1598, 1364 and 1091 cm
-1

  

in residual lignin-rich material and, in general an increased intensity of all bands in residual lignin-rich 

material except in the case of band 1654 cm
-1

 that shows an decreased intensity relatively to lignin-

rich material. Note also that the band 1702 cm
-1

 assigned to unconjugated C=O stretching (ketones 

and carbonyl groups) is only present in the spectrum of residual lignin-rich material.   
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Figure 3.7. FTIR spectrum of alkaline lignin-rich material obtained by C method. 

 

Figure 3.8. FTIR spectrum of residual alkaline lignin-rich material obtained by C method. 

3.5.3.  FTIR characterization of fractions obtained after the IL pre-treatment of different 

biomasses 

As aforementioned in order to verify the efficiency of the optimised pre-treatment methodology, 

various types of biomasses namely sugarcane bagasse, rice straw and triticale were tested. The 

spectra of the samples obtained for each biomass were compared with the spectra of wheat straw.  

 The spectra of the regenerated material from the pre-treatment of rice straw and triticale are 

very similar. Figure 3.9 presents the spectrum of the regenerated material from rice straw and, in B 

appendix the spectrum of the regenerated material from triticale is present. Comparing this spectrum 

with the regenerated material obtained from wheat straw pre-treatment (figure 3.2) it is possible to 

observe significant differences. The shape of the bands and the presence of bands such as 1060 and 

1036 cm
-1

 suggest that this sample is rich in cellulose. However the presence of a less intense band at 

1253 cm
-1

 discloses also the presence of hemicellulose. The spectrum of the regenerated material 

from sugarcane bagasse (figure 3.10) has significant differences relatively to the spectra of other 
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biomasses and relatively to the spectrum of regenerated material from wheat straw. This spectrum 

reveals that the sample is rich in hemicellulose due to the presence of bands at 1044 and 994 cm
-1

, for 

example. But this sample also contains cellulose due to the presence of a small band at approximately 

1376 cm
-1

. 

The presence of bands at 1508, 1458 and 1420 cm
-1

 expose that sugarcane bagasse, rice 

straw and triticale are slightly contaminated with lignin.     

 

Figure 3.9. FTIR spectrum of regenerated material from rice straw pre-treatment. 
 

 

Figure 3.10. FTIR spectrum of regenerated material from sugarcane bagasse pre-treatment. 
 

The spectra of cellulose-rich material from sugarcane bagasse, rice straw and triticale pre-

treatments are shown in B appendix. The spectrum of cellulose-rich material from rice straw and 

triticale contains pronounced bands characteristic for cellulose and they are very similar to the 

spectrum of cellulose-rich material from wheat straw pre-treatment. The only significant difference is 

almost complete disappearance of the band at 998 cm
-1

. In the case of cellulose from sugarcane 

bagasse, the bands are not as well defined as in the case of previous samples. The bands at 1060 

and 1035 cm
-1

 detected in the cellulose-rich material of rice straw and triticale are slightly deviated in 
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the cellulose-rich material sample of sugarcane bagasse. In this sample the bands are 1064 and 1023 

cm
-1

. Note that all these samples are slightly contaminated with lignin due to the presence of a band at 

1508 cm
-1

. Comparing the spectrum of cellulose-rich material with the respective spectrum of 

regenerated material it can be seen that there is a slight increase in the purity but it is not as 

pronounced as in the case of wheat straw samples. 

The spectra of hemicellulose- and residual hemicellulose-rich samples are presented in B 

appendix. Hemicellulose- and residual hemicellulose-rich materials from sugarcane bagasse are 

identical; the difference lies in the definition of the bands. Residual hemicellulose bands are better 

resolved. However, as in the filtrate remained some white flocks another filtration was made and the 

FTIR spectrum of the recovered solid was traced. In B appendix the spectrum of this compound is 

present. The absorption bands present in this spectrum indicate that this compound is rich in lignin 

instead of hemicellulose. FTIR spectra of hemicellulose- and residual hemicellulose-rich material from 

rice straw show some differences. The residual hemicellulose-rich sample spectrum is very similar to 

hemicellulose-rich samples from sugarcane bagasse. However, the presence of the high absorption 

bands at 1325 and 782 cm
-1

 in residual hemicellulose-rich sample reveal that this sample is 

contaminated with silica.
96

 In the case of triticale three FTIR spectra were traced because, as in the 

case of sugarcane, in the filtrate remained some white flocks. All the three spectra are very similar. 

Hemicellulose rich-samples have the bands more defined but, in the case of residual hemicellulose-

rich sample recovered after filtration, the bands between 1653-1300 cm
-1

 have a higher absorption 

relatively to the others hemicellulose-rich samples. Another difference between these samples is the 

absence of the 986 cm
-1

 band in residual hemicellulose-rich sample, recovered from the liquid fraction. 

The FTIR spectra of hemicellulose- and residual hemicellulose-rich materials from the different pre-

treatments are similar to the hemicellulose samples from wheat straw. The differences that can be 

noticed are the disappearance of some bands. The three tested biomasses do not present the bands 

at 1112 and 993 cm
-1

. Hemicellulose-rich material from rice straw and triticale do not present the band 

at 1163 cm
-1

 and rice straw does not present the band at 1253 cm
-1

. Comparing all the hemicellulose 

spectra from the different biomasses, residual hemicellulose-rich material from triticale is the one with 

more defined bands.       

The analysis of FTIR spectra of lignin-rich samples is a little more complex than the analysis of 

carbohydrate-rich samples due to the higher intricacy of this lignocellulosic component. In general, all 

the samples have the same bands but the intensity differs with the sample. 

Lignin- and residual lignin-rich materials from sugarcane bagasse are very similar. Figure 3.11 

shows the spectrum of residual lignin-rich material from sugarcane bagasse and the spectrum of 

lignin-rich material is present in B appendix. Comparing this spectrum to this of lignin-rich samples 

from wheat straw, the spectrum of residual lignin-rich material is very similar to the lignin samples of 

wheat straw but in the case of lignin-rich material some differences can be noticed. The most 

significant differences are much higher intensity of the band at 1654 cm
-1

 relatively to the spectra of 

lignin-rich samples from sugarcane bagasse and much higher intensity of the band at 1127 cm
-1
 

comparing to lignin-rich material from wheat straw. The intensity of the rest of the bands of lignin-rich 

sample from wheat straw is lower than lignin-rich samples from sugarcane bagasse. 
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Figure 3.11. FTIR spectrum of residual lignin-rich material from sugarcane bagasse pre-treatment. 
 

Lignin spectra from rice straw are very different between them. Figure 3.12 and 3.13 illustrates 

the spectrum of lignin-rich material and residual lignin-rich material from rice straw, respectively. 

Residual lignin-rich sample spectrum is totally different from lignin spectra from wheat straw and 

sugarcane bagasse. Although it is visible that this sample contains some lignin (band at 1508 cm
-1

), 

the presence of a strong absorption band at 1094 cm
-1

 reveals that this sample was contaminated. 

Lignin-rich sample is more similar to the spectrum of lignin-rich sample from wheat straw, namely in 

the region between 1800-1250 cm
-1

. 

 

Figure 3.12. FTIR spectrum of lignin-rich material from rice straw pre-treatment. 
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Figure 3.13. FTIR spectrum of residual lignin-rich material from rice straw pre-treatment. 
 

Lignin spectra of residual lignin-rich and lignin-rich samples from triticale are practically 

identical. The spectrum of lignin-rich sample is present in figure 3.14 and the spectrum of residual 

lignin-rich sample is shown in B appendix. However, it is important to note that lignin-rich material 

obtained from the other duplicate pre-treatment of triticale has a different spectrum comparing with the 

above samples. The main differences can be seen in the region of 1300-900 cm
-1

 and the spectrum is 

present in B appendix. Comparing with the lignin-rich samples from the biomasses mentioned above, 

these lignin samples reveals more similarities with residual lignin-rich material from wheat straw.  

 

Figure 3.14. FTIR spectrum of lignin-rich material from triticale pre-treatment. 
 

Note that in carbohydrate-rich samples it is important to analyse the presence of the band at 

1734 cm
-1

 since when this band is present represents that some hemicellulose still remained bounded 

to lignin. As in all the samples rich in carbohydrates the band at 1734 cm
-1

 is too small, can be 

concluded that these samples do not have hemicellulose bounded to lignin and the separation was 

efficient. The small band at 1734 cm
-1

 can be attributed to noise of FTIR spectrometer.  
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The FTIR spectra of original and acid hydrolysed biomasses used are shown in B appendix. 

Comparing the four original biomasses tested it could be seen that they present some similarities 

namely they have identical absorption bands but their intensity may vary with the composition of each 

biomass. Another important comparison is between the original biomass and the samples obtained 

after IL pre-treatment. The differences are very visible and reveal that the separation of lignocellulosic 

biomass in their main constituents was achieved. Note also that original biomasses have a strong 

absorption band at 1734 cm
-1

, revealing that in carbohydrate-rich samples practically all the linkages 

between hemicellulose and lignin were broken.           

3.5.4.  FTIR quantification of fractions obtained by A, B and C methods  

The quantification of the composition of each sample obtained was made by measuring the total 

area of the absorbance bands characteristic of carbohydrates- and lignin-rich materials. In the case of 

carbohydrates the quantification is made in the band 898 cm
-1

 and for lignin is made in the range 

1503-1537 cm
-1

. In order to convert absorbance in concentration a calibration curve with acid 

hydrolysed wheat straw (130 ºC, 150 minutes and 1.50 % of H2SO4) was performed. Note that the 

composition of each sample was determined as carbohydrate (cellulose and hemicellulose together) 

and lignin content. Thus, in the case of cellulose- and hemicellulose-rich samples is not possible to 

determine the contamination of cellulose with hemicellulose and vice versa since the absorbance band 

is the same (898 cm
-1

). The composition of other compounds that could be present was calculated by 

difference. FTIR quantification was done for a selected experiment of each method. The experiments 

selected were: A2, mean between B2 and B3 and C3. Table 3.11-3.13 shows the quantification results 

for the samples obtained by each method.  

Note that the composition of dried acid hydrolysed wheat straw was determined by HPLC. 

 

The A method 

Table 3.11 shows the quantification results of the samples obtained using A method. After the 

pre-treatment of wheat straw it could be observed an enrichment of about 20 % in the carbohydrate 

content of regenerated material sample. However this sample is a little contaminated by lignin (9 % wt 

content) and by other compounds (12 % wt content). In the case of lignin-rich material the purity 

percentage is approximately 70 % wt. This sample is contaminated by 6 % wt of carbohydrates and by 

24 % wt of other compounds. The percentage of other compounds is slightly higher comparatively to 

regenerated material sample and is similar to dried wheat straw.  

 

Table 3.11. FTIR quantification of wheat straw pre-treated with A method. 

 
Total Carbohydrates Lignin Others 

Sample mg mg wt% mg wt% mg wt% 

Dried WS 230.5 143.8 62 41.5 18 45.4 20 

RM 159.7 126.4 79 13.9 9 19.3 12 

Lignin
a
 18.6 1.1 6 13.1 70 4.42 24 

WS – wheat straw; RM – regenerated material 

a 
Lignin-rich material 
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The B method 

The quantification results of wheat straw pre-treated using the B method is present in table 

3.12. Contrary to the A method, the percentages of regenerated material sample and dried wheat 

straw are very similar. This method permits to separate regenerated material in cellulose-, 

hemicellulose- and residual lignin-rich materials. Cellulose-rich material has 82 % wt of carbohydrate 

content, showing a contamination with 10 % wt of lignin and 7 % wt of other compounds. The purity of 

hemicellulose-rich material is similar to the purity of cellulose-rich sample (80 % wt). The 

contamination with lignin is also similar (9 % wt) to cellulose-rich sample but the contamination with 

other compounds is slightly higher (11 % wt). The residual lignin contained in the regenerated material 

evidence a high purity (98 % wt), and it is free of carbohydrates and has a low contamination with 

other compounds (2 % wt). Unfortunately the quantity recovered of this lignin was very low. Although 

in the case of acetone soluble lignin the quantity recovered was higher, the purity percentage is very 

low (57 % wt).  

      

Table 3.12. FTIR quantification of wheat straw pre-treated with B method. 

   
Total Carbohydrates Lignin Others 

Sample 
  

mg mg wt % mg wt % mg wt % 

Dried WS 
 

92.4 57.7 62 16.6 18 18.2 20 

Solid RM 
 

66.7 42.7 64 9.3 14 14.7 22 

fraction 
 

Cellulose
a
 41.2 34.0 82 4.2 10 3.1 7 

  
Hemicellulose

b
 19.8 16.0 80 1.8 9 2.1 11 

  
Lignin

c
 3.2 0.0 0 3.1 98 0.1 2 

Liquid Lignin
d
 

 
10.1 0.8 8 5.8 57 3.5 35 

fraction 
         

WS – wheat straw; RM – regenerated material 

a
 Cellulose-rich material; 

b
 Hemicellulose-rich material; 

c
 Residual lignin-rich material; 

d
 Lignin-rich material 

 

The C method 

The quantification of each sample obtained by C method is present in table 3.13. Comparing 

with A method is possible to see that the composition of regenerated material is, as expected, very 

similar since the fractionation process is the same. Note that in relation with B method, this method 

has an additional step to remove the residual hemicellulose that still connected to lignin. The cellulose- 

and hemicellulose-rich samples have a percentage of carbohydrates slightly higher than the samples 

obtained with B method, 85 and 86 % wt respectively. The contamination of these samples with lignin 

is about 4 % wt lower than those obtained with B method and the contamination with other compounds 

is similar. Unfortunately, was not possible to make a comparison between the residual lignin-rich 

samples because the sample had a different consistency that difficult its recuperation and therefore 

the quantity recovered was very low to perform FTIR quantification. The lignin-rich sample is free of 

carbohydrates and has a purity percentage much higher (87 % wt) than the lignin obtained using B 

method (57 % wt). Although, this sample is also contaminated with other compounds, the percentage 

is much lower (13 % wt) than the lignin of B method (35 % wt). Finally, the residual hemicellulose-rich 
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sample has a purity (71 % wt) lower than the hemicellulose present in the solid fraction of B and C 

methods (80 % and 85 % wt, respectively) and is less contaminated with lignin (3 % wt), showing a 

higher contamination with other compounds (26 % wt).    

 

Table 3.13. FTIR quantification of wheat straw pre-treated using C method. 

   

Total  Carbohydrates  Lignin  Others 

Sample     mg mg wt % mg wt % mg wt % 

Dried WS    230.5 142.9 62 41.5 18 46.1 20 

Solid 
fraction 
  
  

RM   131.1 106.2 81 7.9 6 17.0 13 

 

Cellulose
a
 95.6 82.2 86 5.7 6 7.6 8 

 

Hemicellulose
b
 20.2 17.2 85 1.0 5 2.0 10 

  Lignin
c
 3.2 NQ NQ NQ NQ NQ NQ 

Liquid Lignin
d
 

 
15.1 0.0 0 13.1 87 2.0 13 

fraction Hemicellulose
e
   38.3 27.2 71 1.1 3 10.0 26 

WS – wheat straw; RM – regenerated material 

a
 Cellulose-rich material; 

b
 Hemicellulose-rich material; 

c
 Residual lignin-rich material; 

d
 Lignin-rich material; 

e
 

Residual hemicellulose-rich material 

3.5.5.  FTIR quantification of fractions obtained after the pre-treatment of different 

biomasses  

All the samples obtained after the pre-treatment of the different biomasses with the optimised 

method were also quantified using FTIR spectroscopy. Table 3.14-3.16 illustrates the results obtained 

for sugarcane bagasse, rice straw and triticale pre-treatment, respectively. 

After the pre-treatment of sugarcane bagasse, the regenerated material obtained has much 

lower lignin content than the original biomass (6 % wt) but the content of other compounds increased 

for 25 % wt and the content of carbohydrates is the same. The fractionation process allowed to obtain 

cellulose- and hemicellulose-rich samples with high purity (approximately 90 % wt). Although lignin- 

rich samples do not present carbohydrates, the purity percentage is low (about 66 % wt) because the 

contamination with others compounds is relatively high (approximately 34 % wt).     
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Table 3.14. FTIR quantification of fractionated samples from sugarcane bagasse pre-treated using the 
C method. 

   
Total Carbohydrates Lignin Others 

Sample 
  

mg mg wt % mg wt % mg wt % 

Dried SB 
  

230.2 158.8 69 46.0 20 25.3 11 

Solid RM 
 

161.7 111.6 69 ± 4 9.7 6 ± 0.5 40.4 25 

fraction 
 

Cellulose
a
 121.1 109.0 90 ± 9 8.5 7 ± 0.4 3.6 3 

  
Hemicellulose

b
 30.1 28.0 93 ± 9 1.8 6 ± 0.5 0.3 1 

  
Lignin

c
 5.6 - - 3.7 65 ± 5 2.0 35 

Liquid Lignin
d
 

 
11.2 - - 7.4 66 ± 5 3.8 34 

fraction Hemicellulose
e
 19.9 17.9 90 ±  8 1.2 6 ± 0.5 0.8 4 

SB – sugarcane bagasse; RM – regenerated material 

a
 Cellulose-rich material; 

b
 Hemicellulose-rich material; 

c
 Residual lignin-rich material; 

d
 Lignin-rich material;  

e
 Residual hemicellulose-rich material 

 

FTIR quantification of fractionated samples from rice straw pre-treatment revealed that FTIR 

method although very reliable presents some errors. An example of this fact is that purity of some 

samples were higher than 100 % however, lower than 110 % therefore it can be acceptable due to 

errors associated to the used method. The purity of all carbohydrate-rich samples is relatively high. 

Regenerated material-rich sample has a carbohydrate content higher than 91 % wt and a lignin 

content of about 10 % wt. Comparing with the original biomass an enrichment in carbohydrates and a 

decrease in lignin content was obtained. The fractionation process permits to obtain a cellulose-rich 

material with more than 95 % wt of carbohydrates and approximately 6 % wt of lignin. Hemicellulose- 

rich samples have more than 83 % wt of carbohydrates and between 3 and 7 % wt of lignin. Note that 

from the two hemicellulose-rich samples recovered, residual hemicellulose-rich material is the one 

with higher purity. Unfortunately, FTIR quantification of lignin-rich samples was not possible, because 

the samples were contaminated. 

 

Table 3.15. FTIR quantification of fractionated samples from rice straw pre-treated using C method. 

   
Total Carbohydrates Lignin Others 

Sample 
  

mg mg wt % mg wt % mg wt % 

Dried RS 
  

238.4 154.9 65 33.4 14 47.7 21 

Solid RM 
 

160.3 161.9 101 ± 10 16.0 10 ± 0.2 - - 

fraction 
 

Cellulose
a
 121.8 129.1 106 ± 11 7.3 6 ± 0.6 - - 

  
Hemicellulose

b
 19.7 17.9 91 ±  8 1.2 6 ± 0.6 0.6 3 ± 9 

  
Lignin

c
 8.1 NQ NQ NQ NQ NQ NQ 

Liquid Lignin
d
 

 
16.8 NQ NQ NQ NQ NQ NQ 

fraction Hemicellulose
e
 15.8 15.8 100 ± 10 0.5 3 ± 1 - - 

RS – rice straw; RM – regenerated material 

a
 Cellulose-rich material; 

b
 Hemicellulose-rich material; 

c
 Residual lignin-rich material; 

d
 Lignin-rich material;  

e
 Residual hemicellulose-rich material 
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In the case of triticale pre-treatment, the regenerated material obtained has a relatively high 

purity. The regenerated material was enriched in approximately 16 % wt of carbohydrates and the 

lignin content decreased in about 13 % wt. In general, cellulose- and hemicellulose-rich fractions have 

a high content in carbohydrates (about 90 % wt) and the lignin content in general decreased 

comparatively to original biomass and regenerated material sample. The only exception is the 

hemicellulose-rich sample derived from regenerated material with approximately 10 % wt of lignin. 

Note that residual hemicellulose-rich samples have the carbohydrate content lower than regenerated 

material, cellulose- and hemicellulose-rich samples but residual hemicellulose separated from the 

liquid fraction has the lowest lignin content. The lignin-rich samples do not present carbohydrates in its 

constitution but the contamination with others compounds is relatively high (29 % wt) and have a lignin 

content of about 71 % wt.   

 

Table 3.16. FTIR quantification of fractionated samples from triticale pre-treated using C method. 

   
Total Carbohydrates Lignin Others 

Sample 
  

mg mg wt % mg wt % mg wt % 

Dried Triticale 
  

234.8 159.6 68 49.3 21 25.8 11 

Solid RM 
 

153.6 129.0 84 ± 7 12.3 8 ± 2 12.3 8 ± 9 

fraction 
 

Cellulose
a
 114.7 103.3 90 ± 8 6.9 6 ± 2 4.6 4 ± 10 

  
Hemicellulose

b
 17.8 16.1 90 ±  8 1.8 10 ± 1 - - 

  
Hemicellulose

c
 12.2 9.4 77 ±  5 0.9 7 ± 2 2.0 16 ± 7 

  
Lignin

d
 3.9 - - 2.9 75 ± 12 1.0 25 ± 12 

Liquid Lignin
e
 

 
25.3 - - 18.0 71 ± 12 7.3 29 ± 12 

fraction Hemicellulose
f
 27.0 18.9 70 ± 4 1.1 4 ± 3 7.0 26 ± 7 

RM – regenerated material 

a
 Cellulose-rich material; 

b
 Hemicellulose-rich material; 

c
 Residual hemicellulose-rich material; 

d
 Residual lignin- 

rich material; 
e
 Lignin-rich material;

 f
 Residual hemicellulose-rich material 

3.5.6.  FTIR evaluation of cellulose crystallinity of carbohydrate-rich fractions 

Cellulose crystallinity of fractions obtained by the A, B and C methods  

The crystallinity indexes TCI and LOI of fractions obtained with A, B and C methods are present 

in table 3.17. These indexes reveal that a crystallinity change in cellulose structure after pre-treatment 

with [emim][OAc] occurs. The decrease of LOI value of samples obtained after IL pre-treatment 

relatively to standard cellulose, original and acid hydrolysed wheat straw is more evident than the 

decrease of TCI value. The sample with the highest LOI and TCI values is original wheat straw and 

cellulose-rich material from C method has the lowest LOI and TCI values.     
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Table 3.17. Crystallinity indexes of original and acid hydrolysed wheat straw, standard cellulose, 
regenerated material from A, B and C methods and cellulose-rich samples from B and C methods. 

 
Crystallinity index 

Sample LOI TCI 

Original wheat straw 1.74 1.13 

STD cellulose 1.69 1.12 

AH wheat straw 1.68 1.07 

RM A 1.38 1.02 

RM B 1.40 1.07 

RM C 1.36 1.02 

Cellulose B 1.41 1.05 

Cellulose C 1.34 1.02 

LOI - lateral order index; TCI - total crystallinity index; STD – standard; 

AH - Acid hydrolysed; RM - regenerated material 

 

Cellulose crystallinity of fractions obtained from the pre-treatment with different biomasses 

Table 3.18 illustrates the crystallinity indexes TCI and LOI of the fractions obtained from 

sugarcane bagasse, rice straw and triticale IL pre-treatment. As expected, the samples with the 

highest LOI and TCI values are the original biomasses. Regenerated material and cellulose-rich 

samples have similar LOI and TCI values but for regenerated material samples these values are 

relatively lower.  

 

Table 3.18. Crystallinity indexes of original and acid hydrolysed biomasses (sugarcane bagasse, rice 
straw and triticale), regenerated material and cellulose-rich samples obtained from different biomasses 

IL pre-treatments. 

 
Crystallinity index 

Sample LOI TCI 

Sugarcane 1.57 1.18 

Rice straw 1.76 1.15 

Triticale 1.74 1.14 

Sugarcane AH 1.58 1.05 

Rice straw AH 1.60 1.10 

Triticale AH 1.81 1.01 

RM CA 1.27 1.04 

RM CB 1.45 1.10 

RM CC 1.55 1.08 

Cellulose CA 1.31 1.07 

Cellulose CB 1.46 1.11 

Cellulose CC 1.59 1.10 

LOI - lateral order index; TCI - total crystallinity index; 

AH - Acid hydrolysed; RM - regenerated material; CA – sugarcane bagasse; CB – rice straw; CC - triticale 
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3.6.  Study of the reuse of the IL: [emim][OAc] 

In order to verify the potential of IL reuse, seven consecutive experiments were performed. In 

these experiments, wheat straw was pre-treated with [emim][OAc] using the A method. Note that as 

some quantity of IL is lost in the experimental process, the initial biomass weighted was determined so 

that the solid/liquid ratio was 5 % (w/w) for all the experiments. Table 3.19 illustrates the results 

obtained in this study.  

The regeneration yields are very similar, approximately 60 % (w/w) for all the pre-treatments. 

This study shows that the percentage of the IL recovered is always above 80 % (w/w) and the 

maximum recovery percentage that was achieved was approximately 95 % (w/w).  

 

Table 3.19. Results obtained for the study of the reuse of [emim][OAc] using A method. 

   

Solid 
fraction 

Liquid fraction 
  

Exp. 
WS 
(mg) 

Dried WS 
(mg) 

RY         
(% w/w) 

Lignin
a
 

(mg) 
ML 

(% w/w) 
IL recovered 

(% w/w) 

1 250.1 230.1 58.1 6.0 39.3 85.2 

2 203.8 187.5 57.5 13.0 35.6 79.5 

3 159.7 146.9 62.9 6.0 33.0 94.9 

4 143.7 132.2 61.2 8.9 32.1 92.8 

5 127.6 117.4 60.3 8.2 32.7 90.8 

6 103.0 94.8 64.3 6.0 29.4 86.9 

7 77.3 71.1 63.0 4.2 31.1 83.7 

WS – wheat straw; RM – regenerated material; RY – regeneration yield; ML – material lost; IL – ionic liquid   

a 
Lignin-rich material 

3.7. Enzymatic Hydrolysis 

The enzymatic digestibility of each sample was determined as glucose yield (% w/wbiomass) and 

total sugar yield (% w/w). Note that the calculation of glucose yield corresponds to the ratio of the 

mass of cellulose digested and the mass of biomass weighed. On the other hand, the total sugar yield 

corresponds to the ratio of the sum of total sugars (glucose and xylans) and the total sugars present in 

the weighed biomass. The determination of total sugars present in each sample was made through 

FTIR quantification. 

 

The A, B and C methods  

To evaluate the enzymatic digestibility of the samples obtained by the three pre-treatment 

methods, the enzymatic hydrolysis of regenerated material from the A method and cellulose from the 

B and C methods was made. Enzymatic hydrolysis of original wheat straw, acid hydrolysed wheat 

straw and standard cellulose was also performed to comparison. In table 3.20 are displayed the 

enzymatic hydrolysis results.  

The sample with the highest glucose yield was pure cellulose (97.2 % (w/wbiomass)) and the 

sample with the lowest glucose yield was original wheat straw (19.7 % (w/wbiomass)). Acid hydrolysed 

wheat straw has a glucose yield (37.7 % (w/wbiomass)) higher than original wheat straw and lower than 
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the regenerated material from A method (49.1 % (w/wbiomass)) and cellulose from the B and C methods 

(70.2 % (w/wbiomass) and 76.0 % (w/wbiomass), respectively).   

Cellulose samples obtained with the B and C methods as well as pure cellulose sample had a 

complete enzymatic hydrolysis of carbohydrates (set of cellulose and hemicellulose). Only 41.9 % 

(w/w) of carbohydrates were hydrolysed in original wheat straw sample and 64.0 % (w/w) was 

achieved for acid hydrolysed wheat straw. For the A method regenerated material the total sugar yield 

obtained was 89.9 % (w/w).   

 

Table 3.20. Enzymatic hydrolysis results for original wheat straw, acid hydrolysed wheat straw, 
standard cellulose, regenerated material obtained with A method and cellulose obtained from B and C 

methods. 

Sample 
Biomass 
weighed 

(mg) 

Total 
sugars 

(mg) 

[Glucose] 
(mg/mL) 

Cellulose 
digested 

(mg) 

[Xylose] 
(mg/mL) 

Xylans 
digested 

(mg) 

Glucose 
yield (% 

w/wbiomass) 

Total sugar 
yield 

(% w/w) 

WS 150.0 93.6 3.3 29.5 1.1 9.7 19.7 41.9 

WS "AH" 149.9 93.9 6.3 56.6 0.4 3.5 37.7 64.0 

RM A 29.7 23.5 1.6 14.5 0.8 6.6 48.8 89.9 

Cellulose B 29.6 24.3 2.3 20.8 0.4 3.8 70.2 101.4 

Cellulose C 30.3 26.1 2.6 23.0 0.4 3.5 76.0 101.7 

Cellulose STD 30.1 30.1 3.2 29.2 0.2 1.5 97.2 102.1 

 

Pre-treatment of different biomasses 

The results for the enzymatic hydrolysis of samples obtained after pre-treatment of the different 

biomasses studied are presented in table 3.21. Enzymatic hydrolysis of original and acid hydrolysed 

biomasses was also performed for comparison and the results as well displayed in table 3.21. As 

expected the samples with the lowest glucose and total sugar yield were native biomasses and those 

with the highest were cellulose-rich samples. Between original and acid hydrolysed biomasses, 

sugarcane bagasse is the one with the lowest glucose and total sugar yield (glucose yield of 4.6 % 

(w/wbiomass) and 19.4 % (w/wbiomass) and total sugar yield of 8.5 % (w/w) and 32.1 % (w/w) for original 

and acid hydrolysed biomass, respectively) and triticale present the highest values (glucose yield of 

11.9 % (w/wbiomass) and 37.2 % (w/wbiomass) and total sugar yield of 23.3 % (w/w) and 64.2 % (w/w) for 

original and acid hydrolysed biomass, respectively). However, after IL pre-treatment cellulose-rich 

material from rice straw has the lowest glucose and total sugar yield (68.7 % (w/wbiomass) and 75.8 % 

(w/w), respectively), cellulose-rich material from sugarcane bagasse has the highest glucose yield 

(79.9 % (w/wbiomass)) and cellulose-rich material from triticale has the highest total sugar yield (103.2 % 

(w/w)).           
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Table 3.21. Enzymatic hydrolysis results for original and acid hydrolysed sugarcane bagasse, rice 
straw, triticale and cellulose-rich samples obtained after the IL pre-treatment of the different 

biomasses aforementioned. 

Sample 
Biomass 
weighed  

(mg) 

Total 
sugars 

(mg) 

[Glucose] 
(mg/mL) 

Cellulose 
digested 

(mg) 

[Xylose] 
(mg/mL) 

Xylans 
digested 

(mg) 

Glucose 
yield (% 

w/wbiomass) 

Total sugar 
yield 

(% w/w) 

SB 149.9 95.3 0.8 6.9 0.1 1.2 4.6 8.5 

RS 149.7 92.8 1.7 15.6 0.0 0.0 10.4 16.8 

Triticale 150.2 95.7 2.0 17.9 0.5 4.4 11.9 23.3 

SB "AH" 150.1 94.2 3.2 29.1 0.1 1.1 19.4 32.1 

RS "AH" 150.3 86.3 5.9 53.3 0.0 0.0 35.5 61.8 

Triticale "AH" 150.0 94.9 6.2 55.8 0.6 5.1 37.2 64.2 

Cellulose CA 30.0 27.3 2.7 24.0 0.3 2.8 79.9 98.1 

Cellulose CB 28.5 30.2 2.2 19.6 0.4 3.3 68.7 75.8 

Cellulose CC 30.0 27.0 2.6 23.5 0.5 4.3 78.5 103.2 

3.8. NMR analysis   

The purity of the IL after the different pre-treatment procedures was verified using 
1
H- and 

13
C-

NMR techniques. The determined chemical shifts of pure [emim][OAc] were as follows: [emim][OAc] 

1
HNMR (400 MHz; CDCl3) δ(ppm): 1.54 (t, 3H, NCH2CH3); 1.92 (s, 3H, CH3COO); 4.05 (s, 3H, NCH3); 

4.36 (q, 2H, NCH2CH3); 7.29 (d, 2H, NCHCHN); 10.63 (s, 1H, CH3COOH). 
13

CNMR (CDCl3) δ(ppm): 

15.58 (NCH2CH3); 24.92 (CH3COO); 36.39 (NCH3); 45.07 (NCH2CH3) 121.50 (NCHCHN); 123.36 

(NCHCHN); 138.26 (NCHN) and 177.57 (CH3COO). The NMR spectra of ILs are illustrated in D 

appendix.  
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4. Discussion 

4.1. Optimisation study of wheat straw pre-treatment using [emim][OAc] 

Study of pre-treatment conditions 

In this work, three methods were performed in order to achieve an optimised pre-treatment 

methodology.  

Initially it was tested the influence of time and volume of antisolvent (0.1 M NaOH) used in the 

first precipitation step. These tests were realised using A method. After 1 hour pre-treatment time it 

was verified an incomplete dissolution of the biomass since biomass particles were still observed. The 

complete dissolution of lignocellulosic material was verified after 6 hours and 16 hours pre-treatment 

times. However, after 16 hours pre-treatment time the addition of 0.1 M NaOH results in the formation 

of a dark brown and very viscous gum. This gum difficult the separation between carbohydrates and 

lignin. For this reason, 16 hour pre-treatment time is not advantageous. On the other hand, after 6 

hour pre-treatment time it was verified a complete dissolution of biomass and there was no formation 

of a viscous gum, after the addition of NaOH 0.1 M. Comparing with literature, for longer pre-treatment 

time, similar results are obtained.
78

 Note that it is also reported that long pre-treatment times 

contribute to degradation of biomass compounds and of IL.
77

 However, some results are contradictory 

with the literature. Li et al. affirmed that 1 hour pre-treatment time of wheat straw with [emim][OAc] 

was sufficient to achieve macroscopic complete dissolution. But Singh et al. based on microscopic 

observations, reported that [emim][OAc] was capable to dissolve switchgrass completely after 3 hours 

at 120 ºC.
72

 Relatively to the increased of the volume of 0.1 M NaOH used it was verified that the 

duplication of the volume, does not improved the separation of carbohydrates from lignin since the 

regeneration yield obtained is practically the same. This mean that higher volumes of 0.1 M NaOH 

contribute to a higher concentration of dissolved compounds, which in turn results in lower 

regeneration yields. The volume of 0.1 M NaOH used has also impact in the amount of lignin and IL 

recovered. Higher quantities of 0.1 M NaOH results in higher amount of lignin recovered (A4 

experiment). However, as illustrate in figure 4.1, this lignin is more contaminated by hemicellulose 

relatively to the lignin recovered from A2 experiment. The bands at 897, 1042, 1079 and 1158 cm
-1

 are 

characteristic of the presence of hemicellulose. These bands are also present in the spectrum of 

lignin-rich sample from A2 experiment but the bands intensity is lower. For this reason, the use of 40 

mL 0.1 M NaOH solution is more advantageous since the regeneration yield of carbohydrate-rich 

sample and the purity of lignin-rich sample are higher than those obtained when 80 mL 0.1 M NaOH 

solution is used. Relatively to the IL recovery percentage, it was verified that A2 experiment has a 

lower recovery percentage than A4 experiment. Probably, the higher viscosity and concentration of the 

IL solution may contribute to the IL entrapment and loss. Therefore, for the A method the optimised 

conditions defined was 6 hours pre-treatment time and 40 mL of 0.1 M NaOH.   
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Figure 4.1. FTIR spectra of lignin-rich samples from A2 and A4 experiments. 
 

Besides the pre-treatment time and antisolvent, another factor that affects the dissolution 

process is the biomass loading. In this work, the complete macroscopic dissolution was achieved at 

120 ºC after 6 hours with 5 % (w/w) biomass loading (A and C methods) as well as at 110 ºC in a 4-

hour process with a 2 % (w/w) biomass loading (B method). Analysis of the obtained results reveals a 

relation between the regeneration yield, applied conditions (biomass loading, temperature and time) 

and the used antisolvent. In the case of A and C methods, the regeneration yields observed are very 

similar (60.9 % (w/w) and 57.5 % (w/w), respectively) since the applied conditions and the antisolvent 

(NaOH) used were the same. For the pre-treatment B method the much higher regeneration yield 

(72.1 % (w/w)) can be attributed to the use of a different antisolvent (acetone/water mixture) and 

partially to differences in temperature, pre-treatment time and biomass loading. Thus, it can be 

concluded that the antisolvent used in the pre-treatment is an important factor that affects the yield of 

the regenerated material.
74,82,97,98

 On the other hand, NaOH provided a lower regeneration yield, which 

means that it is inferior in this respect to the acetone/water antisolvent. However, the purity of the 

carbohydrate fractions from the regenerated material obtained with the antisolvent acetone/water was 

generally lower relatively to the antisolvent NaOH. This indicates that NaOH is a more selective 

antisolvent than the acetone/water solution used in the B method. Similar observations were reported 

for 0.1M NaOH and acetone/water antisolvents.
74,86,87

 Using 0.1M NaOH as antisolvent after pre-

treatment of sugarcane bagasse with [emim][Abs] (1-ethyl-3-methylimidazolium 

alkylbenzenesulphonate) resulted in 46-55 % of regenerated material.
86

 Rice straw pre-treatment with 

cholinium lysinate and 0.1M NaOH gave 55.9 % of regenerated material. In the case of acetone/water 

solution in sugarcane bagasse pre-treatment with 1-butyl-3-methylimidazolium chloride the 

regeneration yield was higher (84.34 % (w/w)) and acetone soluble lignin constituted only 6.54 % 

(w/w) of the used biomass.
87

 Note that, as initially the B method was based on the methodology 

described by Lan W. et al., the antisolvent used was only acetone. However, it was verified that 

[emim][OAc] was not miscible with this solvent, what has caused the low recovery of the IL in B1 

experiment. Therefore, to improve the percentage of IL recovered, in the regeneration step of B2 and 
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B3 experiments was added a mixture of 9/1 (v/v) of acetone/water, followed by a mixture of 1/1 (v/v) 

acetone/water and finally a solution of water. 

4.2. FTIR qualitative and quantitative analysis 

All the samples obtained by each method were analysed by FTIR spectroscopy. This technique 

permits to realise a qualitative and quantitative analysis. However, note that for quantitative analysis, 

this technique is not rigorous and the results obtained are seen as estimated values.  

A method only permits the separation of lignocellulosic material in carbohydrate- and lignin-rich 

materials. B and C methods allow the fractionation in cellulose-, hemicellulose- and lignin-rich 

materials.   

A method permits to fractionate wheat straw into a 54.8 % (w/w) carbohydrate-rich sample and 

a 5.7 % (w/w) lignin-rich sample. In the case of the B method, the wheat straw was fractionated into a 

44.4 % (w/w) cellulose-rich material, a 21.3 % (w/w) hemicellulose-rich material and a total of 13.5 % 

(w/w) of lignin-rich materials (acetone soluble lignin + residual lignin). Better results of fractionation 

with lower losses of initial biomass were obtained in this work when compared to the available 

literature data.
87

 With the C method, an optimised process based on the A and B methods, the overall 

fractionation of wheat straw gave 41.8 % (w/w) cellulose, a 25.4 % (w/w) of total hemicellulose 

(hemicellulose + residual hemicellulose), and 8.0 % (w/w) of total lignin (lignin + residual lignin). The 

obtained results show that the recovery of the residual hemicellulose from the liquid stream increased 

the total hemicellulose content which is counterbalanced by a lower recovery of cellulose and lignin 

compared to the results of the B method. It is interesting to point out that a similar fractionation 

process to as the C method was performed by Yang et al. before,
64

 although only the regenerated 

product was fractionated, leaving the liquid stream only for IL recovery. In this process, the overall 

recovery of biomass (cellulose, two fractions of hemicellulose and two fractions of lignin) was only 

40.26 % (w/w) of the initial biomass input. It can be concluded that the C method, although 

characterised by a slightly lower biomass recovery than the B method, provide much higher recovery 

of biomass than other similar methods reported in the literature
64

 with higher purity as discussed 

above. Furthermore, the results of the C method demonstrate the importance to fractionate the liquid 

stream after the regeneration process as there is still a significant amount of hemicellulose and lignin 

that can be recovered, which is essential for the development of an industrial feasible pre-treatment 

and fractionation process. A big amount of biomass is dissolved in the IL, but it is also soluble in the 

antisolvent. Therefore, this biomass can later be recovered and the contamination of the recovered IL 

can be simultaneously reduced.  

In order to facilitate the comparison between the fractions obtained by each method, the spectra 

of some samples were superimposed.  

Figure 4.2 depicts the FTIR spectra of standard cellulose (spectrum a) and original wheat straw 

(spectrum d) in comparison to the regenerated material (spectrum e), cellulose (spectrum b) and 

hemicellulose (spectrum c) fractions obtained after the IL pre-treatment. Qualitatively it is visible that 

the regenerated material obtained from the A method (spectrum e) consists in a mixture of cellulose 

and hemicellulose and is slightly contaminated with lignin. The presence of the bands at 1066 and 
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1046 cm
-1

 are indicative of this mixture. Comparing with the spectrum of original wheat straw, the 

similarities are evident. The difference is that, the bands of regenerated material from A method are 

more defined and this sample contains less lignin than original wheat straw. Comparing with the 

spectra of cellulose- and hemicellulose-rich samples from the C method, it can be seen that, in the 

case of the regenerated material, the bands present in the region of 1250-835 cm
-1

, are not as well 

defined as those of cellulose- and hemicellulose-rich samples and the contamination with lignin is 

higher. The spectra of standard and fractionated sample of cellulose demonstrated great similarities 

especially for the characteristic region 1035-1061 cm
-1

. Therefore, it is possible to affirm that no 

cellulose derivatisation occurred during the pre-treatment with [emim][OAc] as often reported.
99

 For 

the hemicellulose spectrum there are clearly visible differences in the carbohydrate finger print region 

presenting a very strong absorption band at 1043 cm
-1

. This vibration which is not observed in the 

cellulose spectrum is characteristic of the presence of xylans. Furthermore, the hemicellulose 

spectrum demonstrated the absence of the band at 1734 cm
-1

, indicating the successful cleavage of 

ester linkages between hemicellulose and lignin in the pre-treatment process. A very low lignin content 

or almost complete absence of lignin in both cellulose- and hemicellulose-rich fractions could be 

confirmed by the negligible band at 1508 cm
-1

. Furthermore, the absence of the characteristic 

cellulose band at 1320 cm
-1

 confirms the purity of the hemicellulose-rich fraction. Similarly, the 

cellulose fraction was found to be of a high purity too, because the acetyl groups characteristic of 

hemicellulose (1251 cm
-1

) were not observed, and a less pronounced arabinan band at 993 cm
-1

 was 

detected. Additionally, it is important to emphasise that the acetyl groups (1251 cm
-1

) in the 

hemicellulose-rich fraction were less noticeable. This indicates that, acetyl groups from the 

hemicellulose chains were partial degraded e.g. hydrolysed in the pre-treatment.  

 

Figure 4.2. FTIR spectra (1800-800cm
-1

) of standard cellulose (spectrum a), original wheat straw 
(spectrum d), regenerated material (spectrum e), cellulose- (spectrum b) and hemicellulose-rich 

(spectrum c) fractions obtained after the IL pre-treatment. 
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Lignin as a more complex compound can give different products depending on the pre-

treatment process. The obtained lignin samples also demonstrated successful fractionation. The figure 

4.3 depicts the comparison of spectra of the lignin-rich material from acetone/water mixture from the B 

method (spectrum a), lignin-rich material from C method (spectrum c) and residual lignin-rich material 

from C method (spectrum b). Significant differences between the three lignin samples presented here 

were noticed. First, a less purified lignin was obtained by acetone/water (B method) extraction, which 

can be determined by the presence of carbohydrates and confirmed by the vibrational absorptions at 

898, 1046 and 1080 cm
-1

. Furthermore, the multiple small absorptions in region 1200-1600 cm
-1

 

indicated the presence of other compounds. In fact, acetone as a hydrophobic organic solvent is able 

to dissolve long chain hydrocarbons
100

 that can lead to a significant increase of absorption intensities 

at 2852 and 2920 cm
-1

 as observed in the complete spectrum of acetone soluble lignin-rich material 

(see B appendix). These absorptions are attributed to C-H stretching vibrations that are characteristic 

of CH, CH2 and CH3 groups present in hydrocarbon molecules. The two other lignin-rich samples (b 

and c spectra) can be considered as carbohydrate-free lignin since characteristic bands at 898, 1046 

and 1080 cm
-1

 were not observed. One of main differences between these three lignin spectra is with 

respect to the band at 1127cm
-1

 that was not detected for acetone soluble lignin spectrum and 

appeared as strong absorption bands in the two other spectra. As described in literature this band 

corresponds to C=O stretching of syringyl units as well as secondary alcohols present in lignin.
101

 

Therefore, it can be assumed that acetone soluble lignin was found to be free from the syringil unit. 

Furthermore, the reduction of the intensity of the band at 1654 cm
-1

 can be noticed in the presented 

figures. This band characteristic of conjugated para-substituted aryl ketones was observed in the 

residual lignin-rich material spectrum. This reduction can be caused by a stronger deformation of the 

carbonyl group existing in the side chains of lignin structural units and by modification of functional 

groups in the side chains. Additionally, the band at 1330 cm
-1

 indicates the condensation in lignin 

structure (syringyl and guaiacyl). The lignin condensation phenomenon is usually generated by high 

heating temperatures during the pre-treatment.  
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Figure 4.3. FTIR spectra (1800-800cm
-1

) of acetone soluble lignin-rich material from the B method 
(spectrum a), lignin-rich material from the C method (spectrum c) and residual lignin-rich material from 

the C method (spectrum b) pre-treatment experiments. 
 

The FTIR quantitative analysis permitted to have a clear perspective of sample purities and 

allowed to compare not only the recovery of each compound but also the efficiencies of the tested 

methodologies. Figures 4.4, 4.5 and 4.6 shows the FTIR quantification results obtained with A, B and 

C methods, respectively.  

With the A method, a carbohydrate content of 79 % wt was obtained for the regenerated 

material, although the extracted lignin with a 70% wt purity still contained 6 % wt of carbohydrates 

(Figure 4.4). Regarding a maximal exploitation of biomass in the biorefinery concept it can be stated 

that this methodology has a limited utilisation due to a relatively poor fractionation of the original 

biomass compared to other presented methods.  

 

Figure 4.4. Quantitative FTIR results for fractionation of wheat straw with [emim][OAc] using A 
method. 
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The B method make possible to overcome the problem raised by A method since permits the 

fractionation of the regenerated material into cellulose- and hemicellulose-rich fractions. Furthermore, 

the residual lignin retained in carbohydrate-rich material after the regeneration process was recovered 

ensuring a more efficient fractionation process. In fact, cellulose- and hemicellulose-rich materials 

were recovered with a high carbohydrate content reaching 82 % wt and 80 % wt, respectively (figure 

4.5). Simultaneously, the reduction of lignin content was observed from 18 % wt of dried wheat straw 

to 14 % wt in the regenerated material, followed by cellulose and hemicellulose fractionation 

containing a 10 % wt and 9 % wt lignin content, respectively (figure 4.5). Additionally, it was possible 

to obtain an extremely high pure residual lignin (98 % wt purity). However, it has to be pointed out that 

the main lignin fraction coming from the liquid stream in the fractionation process was strongly 

contaminated, showing only 57 % wt purity. Secondly, the obtained regenerated material had a similar 

composition to the original biomass what affected the following fractionation.  

 

Figure 4.5. Quantitative FTIR results for fractionation of wheat straw with [emim][OAc] using B 
method. 

 

The optimised C method proved to be the most efficient pre-treatment process as it produced 

fractions with the highest purity among the studied methods. The fractionation process realised with 

this method provided a reduction from 18 % wt lignin content in the initial biomass to 6 % wt for the 

regenerated material just in a one-step extraction. The regenerated material was then fractionated and 

the lignin content was maintained in the cellulose fraction and decreased to 5 % wt in the 

hemicellulose fraction. Herein the lignin extracted by a 0.1M NaOH antisolvent demonstrated to be 

carbohydrate-free. For the treatment of southern yellow pine (68.2 % wt carbohydrates and 31.8 % wt 

lignin) with [emim][OAc] (16 hours, 110 
o
C) a fractionation into a nearly pure lignin (~100 % wt) and a 

regenerated carbohydrate-rich material with 76.5 % wt carbohydrate and 23.5 % wt lignin contents 

was reported.
74

 FTIR analyses confirmed that the lignin was carbohydrate-free, but the presence of 

other components expected to be in sample was not studied. In contrast, the results obtained in this 
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study with the C method resulted also in a carbohydrate-free lignin but with the contamination of 

nearly 13 % wt of other compounds. Another literature example, that can be mentioned, is the pre-

treatment of switchgrass, composed of 64.5 % wt carbohydrate and 21.8 % wt lignin, with [emim][OAc] 

(3 hours, 160 
o
C) permitted to obtain a carbohydrate-rich material with 79.5 % wt carbohydrates, 13.6 

% wt lignin plus a remaining content of ash and other compounds.
80

 As it is depicted in Figure 4.6 the 

regenerated material from the C method shows a higher carbohydrate content than that for 

switchgrass with only 6 % wt lignin. It should also be emphasised that a better delignification occurred 

with the C method that is associated with the use of NaOH which has a well-known good potential for 

lignin extraction.
82

 Considering the presented results it can be concluded that NaOH is superior to 

deionised or distilled water commonly used for lignin extraction.
64,78

 

 

Figure 4.6. Quantitative FTIR results for fractionation of wheat straw with [emim][OAc] using C 
method. 

4.3. Different biomass pre-treatment using [emim][OAc] 

The regeneration yields obtained for each one of this pre-treated biomass are relatively higher 

than the regeneration yield obtained for wheat straw. This can be explained by the fact that depending 

on the type of lignocellulosic material, the composition of biomass varies (table 3.1). Therefore, as 

wheat straw has the lowest carbohydrate content (62.4 % (w/w)), the regeneration yield is also the 

lowest (table 3.10). The biomass with the highest regeneration yield is sugarcane bagasse since it 

presents the highest carbohydrate content (69.2 % (w/w)). Rice straw was the biomass with the 

highest material loss. Depending of the nature of biomass, the precipitation of carbohydrates-rich 

material with 0.1 M NaOH and the precipitation of lignin-rich material with HCl can be more or less 

easier. If the linkages between the compounds of the sample are relatively stronger is normal that the 

fractionation process became more difficult. As stated by Taherzadeh M. et al. the best method and 

conditions of pre-treatment depend greatly on the type of lignocellulosic biomass.
22

 For example, the 

pre-treatment with a dilute-acid process of bark from poplar tree or corn leaf seems to be promising, 
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but in the case of the pre-treatment of bark from sweetgum or corn stalks this method is not as 

efficient.
22,58,102 

Relatively to materials recovered from the liquid fraction, triticale presented the highest 

recovery of lignin and residual hemicellulose-rich materials (table 3.10). This lignin regeneration yield 

is consistent with the fact that triticale is composed with the highest percentage of lignin comparing to 

other tested biomasses. However, triticale is not the one composed with the highest amount of 

hemicellulose. An explanation could be in the quantity of hemicellulose that remains bounded to lignin 

after the precipitation with 0.1 M NaOH. In this case, more hemicellulose could remain bounded to the 

lignin which contributes to the increase of this material in the liquid fraction. The results obtained after 

the fractionation of the regeneration material into cellulose-, hemicellulose- and lignin-rich materials 

(table 4.1) reveal that sugarcane bagasse and wheat straw have the highest amounts of recovered 

cellulose-rich material. However, of the four tested biomasses this two show the lowest cellulose 

percentage in their composition. This make evident that the cellulose-rich sample recovered is not 

pure and other compounds precipitated together with cellulose. The biomass with the lowest recovery 

of cellulose-rich material is rice straw. Again this result is not consistent with the composition of 

original rice straw since, this biomass is the second with the highest percentage of cellulose. 

Relatively to the hemicellulose-rich sample, triticale was the only biomass with the recovery of two 

fractions of hemicellulose due to remain in the liquid fraction, a white precipitate that was filtered again 

to a new filter. This additional recovered hemicellulose makes the total quantity of hemicellulose 

recovered similar to the one recovered from sugarcane bagasse. Sugarcane bagasse is the biomass 

with the highest hemicellulose percentage in their composition and triticale has the second highest 

percentage. Therefore, in this case the amounts recovered are relatively consistent with the biomass 

composition. The biomass with the highest recovery of residual lignin-rich material was rice straw and 

the one with the lowest was triticale. This reveal that in case of triticale the initial fractionation process 

was efficient since the major amount of lignin remains in the liquid fraction and a little part remained 

bounded with carbohydrates, precipitating together when 0.1 M NaOH was added. For rice straw the 

fractionation process was not as efficient since a relatively high amount of lignin remained bounded 

with carbohydrates. Another fact that supports this is the highest material loss after the fractionation of 

regenerated material presented by rice straw.  

The FTIR qualitative analysis of the samples obtained after the pre-treatment of each biomass 

shows that although the similarities between most samples, some of them reveal some differences 

comparatively to the samples obtained from wheat straw. The spectra of the regenerated material 

from rice straw and triticale are very similar. However, when compared with regenerated material 

spectrum from wheat straw, they are different. The presence of the bands such as 1060 and 1036 cm
-

1
 suggest that this sample is rich in cellulose. But hemicellulose is also present due to the presence of 

a small band at 1253 cm
-1

. The regeneration yield of the samples obtained from the fractionation of the 

regenerated material shows that the regenerated material derived from rice straw and triticale have a 

higher percentage of cellulose (76.0  % and 78.6 %, respectively) relatively to the regenerated 

material from wheat straw (72.9 %). Comparatively to the percentage of hemicellulose in the 

regenerated material, triticale has a percentage almost identical to wheat straw (15.3 % and 15.4 %, 

respectively) but rice straw has a lower percentage of hemicellulose (12.3 %). Therefore, the higher 
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percentage of cellulose in the regenerated material from rice straw and triticale can contribute to the 

appearance of bands that are more characteristic of cellulose. Contrary, the spectrum of the 

regenerated material from sugarcane bagasse presented bands, such as 1044 and 994 cm
-1

, which 

indicates that this sample is rich in hemicellulose. Comparatively, with wheat straw, rice straw and 

triticale, the regenerated material of this biomass has more percentage of hemicellulose than the 

others. This fact can justify the predominance of this compound in the FTIR spectra. Note that, the 

small band at approximately 1376 cm
-1

 shows that this sample also contains cellulose. The spectra of 

all the regenerated material from sugarcane bagasse, rice straw and triticale are slightly contaminated 

with lignin, since the bands at 1508, 1458 and 1420 cm
-1

 are present. The regeneration yield of 

residual lignin-rich material from sugarcane bagasse, rice straw and triticale are 3.5 %, 5.1 % and 2.3 

%, respectively.  

 

Table 4.1. Regeneration yield (% w/w) of the samples obtained from the fractionation of regenerated 
material for sugarcane bagasse (CA), rice straw (CB) and triticale (CC) pre-treatments. 

 
RY (% w/w) 

Experiment Cellulose Hemicellulose Lignin
a
 

CA 74.9 18.6 3.5 

CB 76.0 12.3 5.1 

CC 78.6 15.3 2.3 
a 

Residual lignin-rich material 

 

   After the fractionation process of regenerated material from each biomass, the qualitative and 

quantitative analysis of the spectrum of each sample reveals that the separation was successful and 

cellulose-rich sample is predominantly composed by cellulose, hemicellulose-rich sample is 

predominantly composed by hemicellulose and lignin-rich sample is predominantly composed by 

lignin. The quantitative results determined by FTIR spectroscopy for sugarcane bagasse and triticale 

are illustrated in figure 4.7 and 4.8, respectively. The results for rice straw were not presented since 

the quantification of cellulose-rich sample was higher than 100%.       

The spectrum of cellulose from rice straw and triticale evidence pronounced bands 

characteristic of cellulose and are very similar between them. On the other hand, cellulose from 

sugarcane bagasse is very similar to the spectrum of cellulose from wheat straw pre-treatment. But in 

the case of these two last samples, the bands are not as well defined as the previous samples. These 

are supported by the quantitative results determined. The purity percentage of cellulose-rich material 

from rice straw (106 ± 11 % wt) is the highest and therefore the bands in the spectra are more defined. 

However, in the case of cellulose-rich sample from triticale this percentage (90 ± 8 % wt) is similar to 

the cellulose-rich sample from sugarcane bagasse (90 ± 9 % wt) whose bands are less defined. The 

only way to clarify this situation is through enzymatic hydrolysis. Cellulose-rich material from wheat 

straw and sugarcane bagasse has lower purity percentages (86 % and 90 ± 9 % wt, respectively), and 

then the spectra bands are less defined. All these samples are slightly contaminated with lignin due to 

the presence of a small band at 1508 cm
-1

. The FTIR quantification reveals that the percentage of 

lignin present in each sample is 6 % wt for wheat straw, rice straw and triticale samples and 7 % wt for 
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sugarcane bagasse sample. Note also that the spectrum of cellulose-rich material has a slightly 

increase in the purity comparatively with the respective spectrum of regenerated material, but it is not 

as pronounced as in the case of wheat straw samples. This is due to the regenerated material from 

sugarcane bagasse, rice straw and triticale presented bands that are indicative of the predominance of 

hemicellulose (sugarcane bagasse) or cellulose (rice straw and triticale) instead of bands that reveal a 

mixture of cellulose and hemicellulose (wheat straw). 

Hemicellulose- and residual hemicellulose-rich materials from sugarcane bagasse are identical, 

but the bands of residual hemicellulose are more defined. The purity percentage of these samples is 

relatively similar. Hemicellulose-rich sample presents 93 ± 9 % wt of hemicellulose and residual 

hemicellulose-rich sample presents 90 ± 8 % wt. This result may appear a little contradictory because 

normally when the bands are more defined, the purity is higher. However, as the FTIR quantification 

method of hemicellulose and cellulose samples is made in the same band, this method does not 

differentiate these two samples. Therefore, if the sample contains a little more cellulose, and even the 

characteristic bands of hemicellulose are less defined, the purity percentage could increase relatively 

to other hemicellulose-rich samples that have the bands more defined. As in the filtrate, resulting after 

the filtration of residual hemicellulose-rich material, remained some white flocs another filtration was 

made. The FTIR analysis of the recovered material reveals that this precipitate is rich in lignin instead 

of hemicellulose.  The FTIR spectra of hemicellulose and residual hemicellulose from rice straw 

present some differences. The bands of the hemicellulose-rich fraction are more defined than residual 

hemicellulose-rich fraction. Besides, the presence of the high absorption bands at 1325 and 782 cm
-1

 

in residual hemicellulose-rich sample reveals that this sample is probably contaminated with silica.
96

 

Again comparing with the FTIR quantitative results, the sample with the bands less defined presents a 

higher purity percentage. Hemicellulose-rich sample has 91 ± 8 % wt of hemicellulose and residual 

hemicellulose-rich sample has 100 ± 10 % wt. Similarly to what was explained above, the relatively 

high absorption of another compound (silica) can contribute to increase the absorption of the band 

used in the quantification of carbohydrates. For triticale three FTIR spectra were traced, since some 

white flocs remained in the filtrate, after filtration of hemicellulose-rich fraction. The spectra of these 

samples are very similar but, hemicellulose-rich sample has the bands more defined. Therefore, this 

sample is the purest but has more lignin than the others. The other two samples have a smaller purity, 

and as are less contaminated with lignin which means that the contamination with other compounds is 

higher. Note that from these two residual hemicellulose-rich materials, the one recovered from the 

regenerated material has a higher purity. The FTIR quantification results supports this since the 

hemicellulose-rich sample is composed by 90 ± 8 % wt of carbohydrates and 10 ± 1 % wt of lignin, 

residual hemicellulose-rich samples recovered from the liquid fraction has 70 ± 4 % wt of 

carbohydrates and 4 ± 3 % wt of lignin and residual hemicellulose-rich samples recovered from the 

regenerated material has 77 ± 5 % wt of carbohydrates and 7 ± 2 % wt of lignin. Comparing with the 

FTIR spectrum of hemicellulose samples from wheat straw, the spectra of hemicellulose- and residual 

hemicellulose-rich materials from the different pre-treatments are relatively similar. The quantification 

results for hemicellulose- and residual hemicellulose-rich materials from wheat straw are 85 % wt of 

carbohydrates and 5 % wt of lignin and 71 % wt of carbohydrates and 3 % wt of lignin, respectively. 
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Comparing all the hemicellulose spectra from the different biomasses, residual hemicellulose-rich 

material from triticale is the one with more defined bands and as reveal the FTIR quantification results 

is the one with the highest purity.    

The FTIR spectra of the recovered lignin-rich samples are relatively similar but the intensity of 

some absorption bands may differ from sample to sample. These differences can occur due to the 

difference in the local of the cleavage of the chemical bonds of samples.
103

 Analysing each spectra it 

can be seen that all the lignin-rich samples recovered are free of carbohydrates due to the absence of 

the band at approximately 898 cm
-1

. Note that the residual lignin-rich sample from rice straw is 

contaminated with a compound with a high absorption band at 1094 cm
-1

. In this spectrum, the region 

characteristic of lignin has an absorption relatively low comparatively to the others lignin-rich samples. 

Note also that both lignin-rich samples from triticale and rice straw are a little different from the others 

lignin samples.   

Contrary to carbohydrates-rich samples, compare purities of lignin-rich samples analysing only 

qualitatively the spectra is very difficult because, most samples are free of carbohydrates and is not 

possible to see the contamination with other compounds unless the contamination is too high. 

Therefore, this comparison is only possible after FTIR quantification. The quantitative results obtained 

reveal that lignin-rich sample from wheat straw is the purest (87 % wt) and the residual lignin-rich 

sample from sugarcane bagasse has the lowest percentage purity (65 % wt). Unfortunately, was not 

possible to determine the purity of lignin samples from rice straw because the samples were highly 

contaminated with other compound. The presence of the bands at 1094, 966, 800 and 468 cm
-1

 in the 

residual lignin-rich sample, and the bands at 1091, 965 and 468 cm
-1

 in the lignin-rich sample may 

reveal that this compound could be silica.
96

 An possible explanation to this occur could be that, as 

original rice straw is composed by a higher amount of extractives comparatively to the other 

biomasses, the step of water washing does not allow the complete removal of this compound that 

seems to precipitates with the addition of ethanol. It is noteworthy that rice straw was the only biomass 

that reveals this problem in the FTIR spectra and consequently the quantification results were 

affected. Note also that, in the case of residual lignin-rich sample from wheat straw, the quantification 

was not possible since the quantity recovered was too low.  
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Figure 4.7. Quantitative FTIR results for fractionation of sugarcane bagasse with [emim][OAc] using C 
method. 

 

 

Figure 4.8. Quantitative FTIR results for fractionation of triticale with [emim][OAc] using C method. 

4.4.  [emim][OAc] recovery and reuse and NMR analysis 

The IL recovery studied in the three pre-treatment methods was found to be 92.7 % (w/w) for 

the B method compared to those from the A (71.2 % (w/w)) and C (86.2 % (w/w)) methods (table 4.2). 

The principle difference observed is a modestly higher recovery of IL with the B method where an 

acetone/water solution was used as an antisolvent instead of NaOH used in A and C methods. In the 

experiments performed with NaOH as antisolvent it was visually observed that a higher quantity of 

NaCl salt was generated as the neutralisation is needed for the recovery of IL. The acetone/water 

solution leads to an extensive precipitation of carbohydrates and all impurities and consequently 

results in a lower amount of impurities present in the liquid stream (confirmed by NMR analysis) and a 
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high recovery of IL. Summarising, yields of IL recovery obtained in this work are similar to those 

published in the literature.
100,104

 It is crucial to state that although various studies are performed, a 

more deep analysis and research are needed to develop a reliable and versatile method for IL 

recovery and to enhance the economic viability of the IL-based processes.  

Considering this aspect, the feasibility of IL for the reuse in the further pre-treatments was 

examined in this work. Seven consecutive reactions were performed. The results obtained for the 

study of the reuse of [emim][OAc] are presented in table 3.19. As the regeneration yield was 

approximately the same in each experiment, means that the reused [emim][OAc] still able to 

fractionate efficiently wheat straw in carbohydrates- and lignin-rich materials. The 
1
H- and 

13
C- NMR 

spectra of pure and recovered [emim][OAc] is shown in D appendix. Comparing the spectra is possible 

to see that in the spectrum referred to the IL reuse appear new peaks. These peaks demonstrate that 

some contaminants accumulate in the IL during the pre-treatment. However, as the peaks are so 

small, this contamination is negligible. 

 

Table 4.2. IL recovery percentage for pre-treatments performed using A, B, and C methods. 

Method % IL 

A 71.2 

B 92.7 

C 86.2 

4.5. Enzymatic hydrolysis 

The A, B and C methods 

To evaluate the pre-treatment efficiency of the developed methods using the IL the enzymatic 

hydrolysis of the untreated wheat straw, acid hydrolysed wheat straw, pure cellulose, carbohydrate-

rich material obtained with the A method and cellulose-rich fractions obtained with B and C methods 

(table 3.20) was performed. The worst result was observed for the hydrolysis of native wheat straw 

(19.7 % w/wbiomass), which has to be attributed to the low accessibility of the carbohydrates within the 

lignocellulosic matrix of wheat straw since this material does not suffer any pre-treatment. The native 

intricate structure of wheat straw as well as the presence of lignin, hemicellulose and other 

compounds are known to hinder the access of cellulases to the cellulosic substrate, resulting thus in 

poor hydrolysis performance.
72,44,105

 As expected the enzymatic hydrolysis of a high purity standard 

cellulose without pre-treatment resulted in complete hydrolysis (97.2 % w/wbiomass). Comparing the 

results of the regenerated material from A method with cellulose from B and C methods we see that 

the glucose yield of the regenerated material is the lowest (49.1 % w/wbiomass) not only due to the 

presence of hemicellulose but also due to the higher amount of lignin present. This result 

demonstrates the importance to fractionate the regenerated material further into a more cellulose 

enriched fraction to achieve higher glucose yields after the enzymatic hydrolysis step. The highest 

glucose yield (76.0 % w/wbiomass) after hydrolysis was obtained with the optimised pre-treatment C 

method, which allowed a more efficient fractionation of cellulose than the B method. Finally, the results 

of enzymatic hydrolysis permits to confirm the higher efficiency of IL pre-treatment relatively to acid 
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hydrolysis. Although the glucose and total sugar yield of acid hydrolysed wheat straw is higher than 

the untreated feedstock, revealing the importance of a previous biomass pre-treatment, these values 

are lower than the carbohydrate-rich samples obtained after the IL pre-treatment. The analysis of the 

hydrolysates of cellulose hydrolysis demonstrated that in apart from glucose also xylose was detected. 

This result indicates that the cellulase mixture Celluclast 1.5L plus β-glucosidase Novozyme 188 

exhibits along with cellulose activities also xylanase and β-xylosidase activities, which is in agreement 

with previous reports.
106

 For the cellulose standard negligible although detectable quantities of xylose 

were released during the enzymatic hydrolysis and a complete carbohydrate hydrolysis was observed 

for cellulose samples reaching 100 % (w/w) of total sugar yield. In the case of the native wheat straw 

hydrolysis, as expected, less than 50 % of the carbohydrates were converted to sugars. As mentioned 

before, for the regenerated material an incomplete hydrolysis was observed, which is attributed to the 

still relatively high hemicellulose content in the sample (after native wheat straw is the sample with the 

higher content of xylans) that could hinder the enzyme activity.
107

 This limitation could be overcome by 

the supplementary addition of xylanases and β-xylosidases with a higher activity in order to achieve 

complete conversion; however, it would make the process more costly.
108

 The degree of conversion 

obtained in enzymatic hydrolysis experiments allows to estimate the cellulose purity of the 

carbohydrate-rich fractions. Thus, cellulose obtained by the B and C methods showed cellulose 

contents of 85.6 % wt and 88.4 % wt from the total carbohydrate content quantified by FTIR, 

respectively. These data indicate that the C method is a more adequate procedure for biomass pre-

treatment and fractionation process. 

 

Figure 4.9. Glucose and total sugar yield of untreated wheat straw, acid hydrolysed wheat straw, 
carbohydrate-rich material obtained with the A method, cellulose-rich fractions obtained with B and C 

methods and pure cellulose. 
 

Ionic liquid pre-treatment of various biomasses 

In order to evaluate the enzymatic digestibility of cellulose-rich samples obtained after the pre-

treatment of the different biomasses as well as of original and acid hydrolysed biomasses, the 

enzymatic hydrolysis of these samples was performed. In figures 4.10, 4.11, 4.12 is illustrated the 

glucose and total sugar yield for sugarcane bagasse, rice straw and triticale samples, respectively. As 
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expected the samples with the lowest glucose and total sugar yield are the original biomasses. From 

the biomass tested, sugarcane bagasse is the one with the lowest percentages (4.6 % w/wbiomass of 

glucose yield and 8.5 % w/w of total sugar yield) and wheat straw is the one with the highest 

percentage (19.7 % w/wbiomass of glucose yield and 41.9 % w/w of total sugar yield). This means that 

the cellulose from native wheat straw is more easily accessible to the enzyme. As expected as well, 

the samples with the highest glucose and total sugar yield are cellulose-rich samples recovered after 

the IL pre-treatment. Cellulose-rich sample from sugarcane bagasse has the highest glucose yield 

(79.9 % w/wbiomass) and cellulose-rich sample from triticale has the highest total sugar yield (103.2 % 

w/w). Although this last sample has less cellulose, the content in xylans is higher, which contributes to 

the higher total sugar yield. Note that, the untreated and acid hydrolysed sugarcane bagasse presents 

the lowest glucose yield but the IL pre-treatment increased considerably this percentage. These mean 

that the IL made possible the transformation of a difficult digestible feedstock into an easily digestible 

material. However, depending on the nature of the lignocellulosic material the interaction with the IL 

and the consequent transformation can be more or less efficient. The results for acid hydrolysed 

samples indicate that the IL pre-treatment is more efficient than acid hydrolysis. Relatively to the 

untreated biomasses, the glucose and total sugar yields of acid hydrolysed samples increase, but 

comparatively to the IL pre-treated samples, the percentages are lower. From the acid hydrolysed 

samples, wheat straw and triticale presents the highest glucose and total sugar yields (in the case of 

wheat straw 37.7 % w/wbiomass and 64.0 % w/w and for triticale 37.2 % w/wbiomass and 64.2 % w/w, 

respectively). On the other hand, acid hydrolysed sugarcane bagasse has the lowest glucose and total 

sugar yields (19.4 % w/wbiomass and 32.1 % w/w, respectively). Therefore, this pre-treatment is less 

selective than the IL pre-treatment since like is illustrated in B appendix, the sample recovered after 

acid hydrolysis has a relatively high quantity of lignin. The presence of lignin limits the enzymatic 

susceptibility of cellulose and hemicellulose components of the feedstock.
109

 Comparing these results 

with the results from FTIR quantification it can be seen that they seem to be a little contradictory. 

According with FTIR quantification, rice straw is the sample with the highest percentage of cellulose. 

But, as said before, the FTIR quantification does not allow the differentiation between cellulose and 

hemicellulose. Therefore, the absorption of the both compounds will contribute to increase the purity 

percentage. The enzymatic hydrolysis reveals that this sample presents more hemicellulose than the 

cellulose-rich sample from sugarcane bagasse, which can justify partially the higher purity percentage 

determined by FTIR spectroscopy. However, cellulose-rich sample obtained from triticale has a higher 

amount of hemicellulose than rice straw, and contrary to the expected, the glucose and total sugar 

yield are higher than rice straw. Therefore, this explanation does not totally justify the results obtained 

by the two quantification methods used. Another justification may be in the homogeneity of the sample 

prepared for FTIR analysis. If the sample is not sufficient homogenous, the form of the spectrum can 

be influenced.
110

 For this reason, the FTIR quantification methodology defined is not versatile enough 

when certain parameters are different. 

The cellulose purity of cellulose-rich fractions obtained after sugarcane bagasse, rice straw and 

triticale pre-treatment can be estimated by knowing the degree of conversion obtained in enzymatic 

hydrolysis experiments. Thus, cellulose-rich sample obtained by sugarcane bagasse, rice straw and 
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triticale showed cellulose contents of 87.9 wt %, 64.9 wt % and 87.0 wt % from the total carbohydrate 

content quantified by FTIR, respectively. These data indicate that cellulose-rich fraction derived from 

sugarcane bagasse is the purest.     

 

 

 

Figure 4.10. Glucose and total sugar yield of untreated sugarcane bagasse, acid hydrolysed 
sugarcane bagasse and cellulose-rich sample obtained from sugarcane bagasse fractionation. 

 

 

 

Figure 4.11. Glucose and total sugar yield of untreated rice straw, acid hydrolysed rice straw and 
cellulose-rich sample obtained from rice straw fractionation. 
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Figure 4.12. Glucose and total sugar yield of untreated triticale, acid hydrolysed triticale and cellulose-
rich sample obtained from triticale fractionation. 

4.6. Crystallinity of regenerated cellulose fractions 

Cellulose crystallinity is considered to be an important factor to evaluate the accessibility of 

cellulose to cellulase enzymes. In general, a lower crystallinity index seems to be related to an 

enhancement of the enzymatic hydrolysis of cellulose.
104,105

 Among a limited set of ILs tested, 

[emim][OAc] was found to be highly selective for the extraction of lignin from lignocellulosic biomass 

and reduce simultaneously the crystallinity of cellulose.
82

 It is known that lignin hinders the enzymatic 

hydrolysis and an extensive delignification should be attained to improve hydrolysis.
111,112

 In the wood 

flour pre-treatment with [emim][OAc], 40 % of lignin was removed and the cellulose crystallinity index 

decreased, resulting in more than 90 % of the cellulose to be hydrolysed by cellulase.
82

 In the 

presented work, the total sugar released for all tested samples was higher than 90 % and the lignin 

content decreased drastically in the pre-treated samples. The regenerated material from the A method 

contained 50 % less lignin than the original feedstock and with B and C methods 44 % and 67 % of 

lignin removal was obtained, correspondingly. Beside the partial delignification achieved with methods 

used in this work, an additional reduction in cellulose crystallinity was achieved. The crystallinity index 

LOI decreased in all pre-treated samples in comparison to native and acid hydrolysed wheat straw as 

well as to standard cellulose. The crystallinity index TCI also decreased but the change was less 

substantial. These results are in agreement with the results obtained by the enzymatic hydrolysis of 

these substrates as the reduction in cellulose crystallinity led to a better performance of the enzymatic 

hydrolysis of cellulose. However, standard cellulose, that was completely hydrolysed (100 % total 

sugar yield), presented a crystallinity index similar to native wheat straw, that was only partially 

hydrolysed (45 % total sugar yield; table 3.17). Moreover, incomplete carbohydrate hydrolysis was 

verified for regenerated material from the A method even with crystalline structures similar to 

cellulose-rich fractions obtained from pre-treatments with B and C methods. Therefore, it may be 

concluded that besides the cellulose crystallinity, the presence of lignin and hemicellulose also affects 

the results of enzymatic hydrolysis. High purity cellulose-rich samples such as those obtained with the 

pre-treatment C method, are highly desirable for further processing to bioethanol or conversion into 

added value products within the biorefinery concept. 
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Relatively to the different biomass pre-treated, the regenerated material and cellulose-rich 

samples have similar LOI and TCI values but for regenerated material samples these values are 

relatively lower. Once again, the samples with the highest LOI and TCI values are the original 

biomasses. Relatively to the acid hydrolysed samples it can be seen that the LOI and TCI values are 

lower than the original biomasses values and higher than the regenerated material and cellulose-rich 

samples values. Comparing with the enzymatic hydrolysis results, the samples with the lowest 

crystallinity index, namely cellulose-rich samples has a higher enzymatic digestibility. On the other 

hand, the samples with the highest crystallinity index have a lower enzymatic digestibility, as is the 

case of original biomasses. The enzymatic digestibility of acid hydrolysed samples is higher than 

original biomasses and is lower than cellulose-rich samples, agreeing with the determined crystallinity 

indexes. As the enzymatic hydrolysis of the regenerated material was not realised, a comparison with 

the crystallinity indexes is not possible.    
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5. Conclusions 

In this work, the pre-treatment of wheat straw using [emim][OAc] was successfully performed by 

three different methods. The A method allowed the fractionation of wheat straw into a carbohydrate- 

and lignin-rich portions. The B and C methods allowed the fractionation into cellulose-, hemicellulose- 

and lignin-rich fractions. The maximal exploitation (maximum biomass recovery) of the wheat straw 

feedstock was achieved by the B method. However, the C method, which was developed and 

optimised based on the procedures of A and B methods, afforded regenerated solid fractions of higher 

purity. The improved performance of this method was demonstrated by the high carbohydrate content 

of the cellulose and hemicellulose fractions determined to be 86 % wt and 85 % wt, respectively. 

Additionally, lignin was recovered after extraction by an aqueous 0.1M NaOH solution and with 87 % 

wt purity.  

The studies on the IL recovery and reuse performed with the A method, confirm that IL can be 

reused without losses in the biomass pre-treatment efficiency. Therefore, pre-treatment with ILs could 

be advantageous when the feasibility of the process is guaranteed.  

Relatively to the results of the pre-treatment of different types of lignocellulosic biomass is 

important to point out that, several factors can influence the efficiency of the process. The main factors 

are: the chemical composition of each biomass and the nature of the linkages between the 

compounds of the feedstock. In terms of global mass balance, the biomass with the higher amount of 

total mass recovered was triticale, with 6.1 % of material loss. On the other hand, rice straw was the 

biomass with the highest material loss (14.8 %). The analysis of FTIR results reveals that, sugarcane 

bagasse and triticale presents similar quantification results namely, in terms of carbohydrate- and 

lignin-rich fractions. These two biomasses have the highest purity percentages of recovered fractions. 

Note that, the results obtained for rice straw do not permit the comparison between the others 

biomasses since they are over-quantified.  

The enzymatic hydrolysis of the carbohydrate- and cellulose-rich materials regenerated after IL 

pre-treatment resulted in total sugar release. The pre-treatment with [emim][OAc] was capable to 

perform a partial although sufficient delignification of wheat straw and caused changes in the cellulose 

structure that facilitated the access of the enzymes to its substrates, enhanced hydrolysis and led 

complete hydrolysis into reducing sugars within 72 hours. Comparing the results of enzymatic 

hydrolysis of the samples from the A, B and C methods it can be seen that, the C method is the most 

efficient since its cellulose-rich sample presents the highest glucose yield. The enzymatic hydrolysis 

results of cellulose-rich samples from the different biomasses pre-treatment support the FTIR 

quantification results. The biomasses with the highest content of carbohydrates in cellulose-rich 

samples (sugarcane bagasse and triticale) also present the highest glucose and total sugar yield.It 

can be concluded that the quantitative analysis of relatively pure compounds by FTIR spectroscopy is 

viable. However, when contaminants are present, the results could be over-quantified. The enzymatic 

hydrolysis results also reveal that the IL pre-treatment is more efficient than the conventional acid 

hydrolysis pre-treatment. Thus, hydrolysed reducing sugars from cellulose-rich samples could be 

further applied in fermentation systems to produce bioethanol and other value added products within 

the frame of the biorefinery concept. 
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The crystallinity indexes were also determined in this work. In general, lower crystallinity 

indexes are associated with to an enhancement of the enzymatic hydrolysis of cellulose. However, in 

some cases the presence of lignin and hemicellulose also affects the results of enzymatic hydrolysis..  
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6.  Perspectives 

The IL technology on biomass processing is relatively recent and has demonstrated several 

advantages relatively to the conventional pre-treatments methods. However, a vast research is still 

strongly required in this field since the majority of the studies are relatively to the dissolution of 

carbohydrates in ILs and the majority of the biomass pre-treatments only permits to obtain 

carbohydrate- and lignin-rich fractions. Only few studies report the complete separation of 

lignocellulosic biomass constituents, namely cellulose, hemicellulose and lignin.  

In this work, it was possible to fractionate various lignocellulosic biomass into cellulose, 

hemicellulose and lignin samples characterized by high purities.  

In order to verify the feasibility for a future application in industry, the scale-up of the optimised 

method should be achieved. The major limitation in the use of ILs in an industrial scale is associated 

with their high cost, comparatively to the conventional pre-treatment agents (e.g. ammonia and 

sulphuric acid). Therefore, the optimisation of the recovery process of ILs is a crucial factor for the 

economic feasibility of the pre-treatments with ILs.  

Another important study that should be performed is the fermentation of the reducing sugars 

released after enzymatic hydrolysis and the evaluation of needs of hydrolysate detoxification to 

confirm the influence of the IL on the production of bioethanol and value added products after pre-

treatment and enzymatic hydrolysis.  

Note also that, due to the price of ILs it would be more advantageous and feasible to focus the 

study on the production of value added products. The majority of works dealing with this subject 

focuses on the further processing of cellulose that can be easily converted to cellulosic ethanol widely 

used as biofuel. However, the two other fractions, hemicellulose and lignin are even more rarely 

considered as important to treat. The probable reason for this is a great diversity of both fractions that 

on one hand makes process more difficult but on the other opens the room for variety of commodities 

that can be obtained. The valorisation of these two diverse fractions constituted by different 

compounds depending on the raw material is especially important as it allows obtaining products with 

high commercial value (e.g. xylitol, oligosaccharides, polyphenols, etc.) which may contribute to the 

economic feasibility of the whole process. 
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A appendix: determination of the total quantity of protein 

The total protein content was estimated according with Kjedahl method. Kjeldatherm digestion 

block was preheated to 390 º. Initially, 50 mL of sample, 10 mL of H2SO4 and one piece of Kjeltabs 

were added to digestion tubes. The digestion tubes were placed in Kjeldatherm digestion block and 

digested until white smokes come off (approximately 1 hour). The digestion tubes were removed from 

Kjeldatherm digestion block and cooled for 1 hour. Then, 15 ml of deionized water was added to 

dissolve all crystallized material. The digestion tubes were attached to distillation head of Vapodest 

VAP 30. The delivery tubes were placed in 250 mL Erlenmeyer flask which contains 25 mL of boric 

acid indicator solution. Next, 60 mL of NaOH solution was added to the digestion tubes and the 

distillation process started (10 minutes at 75 % steam pressure). When distillation was complete, a 

burette to the mark was filled with HCl 0.2 N and titrated to purple endpoint. Finally, is necessary to do 

the correction with the reagent blank. For the blank test, the same procedure was made, replacing the 

sample mass with distilled water. In table A1, the reagents used are described. Note that, all the 

reagents should be reagent grade and nitrogen-free.   

 

Table A1. Reagents used for the determination of the total quantity of protein. 

Reagents 

Sulfuric acid concentrated 
(H2SO4) 

95-98 % (w/w) 

Sodium hydroxide solution 
(NaOH) 

50 % (w/v) 
 

Hydrochloric acid (HCl) 0.2 N 

Methylene blue indicator 

200 mg of methyl red were dissolved in 100 mL 
of ethyl alcohol. In a separate beaker, 200 mg of 
methylene blue were dissolved in 100 mL of ethyl 
alcohol and 2 volumes of methyl red were mixed 
with 1 volume of methylene blue. 

Boric acid indicator 
solution (H3BO3) 

20 g of H3BO3 were dissolved in 800 mL of 
deionized water. 10 mL of methyl red/methylene 
blue indicator solution were added and diluted to 
one liter with deionized water. 

Kjeltabs - 

 

The total percentage of nitrogen is determined using the following expression: 

 

                        
      

 
 

 

Where,  

 

V = Volume (mL) of 0.1N HCl solution used in the titration.  

V0 = Volume (mL) of 0.1N HCl solution used in the titration of the blank test. 

A = Mass of sample (dry mass).  
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B appendix: FTIR spectra 
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Original sugarcane bagasse (4000-400 cm
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Acid hydrolysed rice straw (4000-400 cm
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Acid hydrolysed triticale (4000-400 cm
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Regenerated material from A method (4000-400 cm
-1

) – wheat straw 

 

 

 

Regenerated material from A method (1800-800 cm
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) – wheat straw 
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Lignin-rich material from A method (4000-400 cm
-1

) – wheat straw 

 

 

 

Lignin-rich material from A method (1800-800 cm
-1
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Regenerated material from B method (4000-400 cm
-1

) – wheat straw 

 

 

 

Regenerated material from B method (1800-800 cm
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) – wheat straw 
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Cellulose-rich material from B method (4000-400 cm
-1

) – wheat straw 

 

 

 

Cellulose-rich material from B method (1800-800 cm
-1

) – wheat straw 
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Hemicellulose-rich material from B method (4000-400 cm
-1

) – wheat straw 

 

 

 

Hemicellulose-rich material from B method (1800-800 cm
-1

) – wheat straw 
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Acetone soluble lignin-rich material from B method (4000-400 cm
-1

) – wheat straw 

 

 

 

Acetone soluble lignin-rich material from B method (1800-800 cm
-1

) – wheat straw 
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Residual lignin-rich material from B method (4000-400 cm
-1

) – wheat straw 

 

 

 

Residual lignin-rich material from B method (1800-800 cm
-1

) – wheat straw 
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Regenerated material from C method (4000-400 cm
-1

) – wheat straw 

 

 

 

Regenerated material from C method (1800-800 cm
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) – wheat straw 
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Cellulose-rich material from C method (4000-400 cm
-1

) – wheat straw 

 

 

 

Cellulose-rich material from C method (1800-800 cm
-1

) – wheat straw 
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Hemicellulose-rich material from C method (4000-400 cm
-1

) – wheat straw 

 

 

 

Hemicellulose-rich material from C method (1800-800 cm
-1

) – wheat straw 
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Residual hemicellulose-rich material from C method (4000-400 cm
-1

) – wheat straw 

 

 

 

Residual hemicellulose-rich material from C method (1800-800 cm
-1

) – wheat straw 
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Lignin-rich material from C method (4000-400 cm
-1

) – wheat straw 

 

 

 

Lignin-rich material from C method (1800-800 cm
-1

) – wheat straw 

 

 

 



 

118 
 

Residual lignin-rich material from C method (4000-400 cm
-1

) – wheat straw 

 

 

 

Residual lignin-rich material from C method (1800-800 cm
-1

) – wheat straw 
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Regenerated material from C method (4000-400 cm
-1

) – sugarcane bagasse 

 

 

 

Regenerated material from C method (1800-800 cm
-1

) – sugarcane bagasse 
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Cellulose-rich material from C method (4000-400 cm
-1

) – sugarcane bagasse 

 

 

 

Cellulose-rich material from C method (1800-800 cm
-1

) – sugarcane bagasse 
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Hemicellulose-rich material from C method (4000-400 cm
-1

) – sugarcane bagasse 

 

 

 

Hemicellulose-rich material from C method (1800-800 cm
-1

) – sugarcane bagasse 
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Residual hemicellulose-rich material from C method (4000-400 cm
-1

) – sugarcane bagasse 

 

 

 

Residual hemicellulose-rich material from C method (1800-800 cm
-1

) – sugarcane bagasse 
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Residual lignin-rich material (solid recovered after the filtration of residual hemicellulose-rich material) 

from C method (4000-400 cm
-1

) – sugarcane bagasse 

 

 

 

Residual lignin-rich material (solid recovered after the filtration of residual hemicellulose-rich material) 

from C method (1800-800 cm
-1

) – sugarcane bagasse 
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Lignin-rich material from C method (4000-400 cm
-1

) – sugarcane bagasse 

 

 

 

Lignin-rich material from C method (1800-800 cm
-1

) – sugarcane bagasse 
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Residual lignin-rich material from C method (4000-400 cm
-1

) – sugarcane bagasse 

 

 

 

Residual lignin-rich material from C method (1800-800 cm
-1

) – sugarcane bagasse 

 

 

 

 

 

 



 

126 
 

Regenerated material from C method (4000-400 cm
-1

) – rice straw 

 

 

 

Regenerated material from C method (1800-800 cm
-1

) – rice straw 
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Cellulose-rich material from C method (4000-400 cm
-1

) – rice straw 

 

 

 

Cellulose-rich material from C method (1800-800 cm
-1

) – rice straw 
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Hemicellulose-rich material from C method (4000-400 cm
-1

) – rice straw 

 

 

 

Hemicellulose-rich material from C method (1800-800 cm
-1

) – rice straw 
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Residual hemicellulose-rich material from C method (4000-400 cm
-1

) – rice straw 

 

 

 

Residual hemicellulose-rich material from C method (1800-800 cm
-1

) – rice straw 
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Lignin-rich material from C method (4000-400 cm
-1

) – rice straw 

 

 

 

Lignin-rich material from C method (1800-800 cm
-1

) – rice straw 
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Residual lignin-rich material from C method (4000-400 cm
-1

) – rice straw 

 

 

 

Residual lignin-rich material from C method (1800-800 cm
-1

) – rice straw 
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Regenerated material from C method (4000-400 cm
-1

) – triticale 

 

 

 

Regenerated material from C method (1800-800 cm
-1

) – triticale 
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Cellulose-rich material from C method (4000-400 cm
-1

) – triticale 

 

 

 

Cellulose-rich material from C method (1800-800 cm
-1

) – triticale 
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Hemicellulose-rich material from C method (4000-400 cm
-1

) – triticale 

 

 

 

Hemicellulose-rich material from C method (1800-800 cm
-1

) – triticale 
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Residual hemicellulose-rich material from C method (4000-400 cm
-1

) – triticale 

 

 

 

Residual hemicellulose-rich material from C method (1800-800 cm
-1

) – triticale 
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Lignin-rich material from C method (4000-400 cm
-1

) – triticale 

 

 

 

Lignin-rich material from C method (1800-800 cm
-1

) – triticale 
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Residual lignin-rich material from C method (4000-400 cm
-1

) – triticale 

 

 

 

Residual lignin-rich material from C method (1800-800 cm
-1

) – triticale 
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C appendix: FTIR characterization of the absorption bands 

Table C1. Characteristic FTIR absorption bands for cellulose, hemicellulose and lignin.
76

 

Absorptions 
/cm

-1
 

Description Cellulose Hemicellulose Lignin 

2918-2920 Asymmetric and symmetric C-H stretching of CH, CH2 and CH3       

2900 CH and CH2 stretching   - - 

2850-2852 Asymmetric and symmetric stretching of CH, CH2 and CH3       

1734 
Ester-linked acetyl, feruloyl and p-coumaroyl groups between 
hemicellulose and lignin 

-     

1718 C=O stretching in unconjugated ketone, carbonyl and ester groups - -   

1654 C=O stretching in conjugated para-substituted aryl ketones - -   

1597-1598 Contribution of the aromatic skeletal and C=O vibrations - -   

1508 C=C stretching vibration in phenol rings - -   

1458 C-H deformations (CH and CH2) in phenol rings - -   

1437 CH2 scissoring motion   - - 

1420 C-H deformations (CH and CH2) in phenol rings - -   

1388 C-O stretching -   - 

1376 Bending of C-H   - - 

1320 C-C and C-O skeletal vibrations   - - 

1262-1265 Guaiacyl methoxyl groups - -   

1251 C-O stretching of acetyl groups -   - 

1228-1235 C-O stretching vibrations of syringil - -   

1161 C-O asymmetric band   
 

- 

1127 
Contribution of C-H in a plane deformation, C=O stretching of syringyl 
units and secondary alcohols 

- -   

1107-1112 C-OH skeletal vibration in pyranosyl ring     - 

1091 C-O deformations of secondary alcohols and aliphatic ether linkages - -   

1080 Galactan side chains -   - 

1061-1066 
C-O-C ether linkage of the skeletal vibration of both pentose and hexose 
unit contribution 

    - 

1158 C-O asymmetric bridge stretching in ester linkages - -   

1043-1049 Contribution of C-O stretching and C-O-C glycosidic linkage in xylan -   - 

1035 C-O stretching vibration characteristic for cellulose   - - 

1033-1034 Aromatic C-H in-plane deformation for guaiacyl units - -   

993-998 Arabinosyl side chains -   - 

896-898 
Vibration of β-glycosidic C-H deformation with a ring vibration 
contribution (hexoses/pentoses) characteristic of glycosidic bonds 

    - 

840 Out-of-plane deformation vibrations of C-H bond  - -   
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D appendix: NMR spectra 

 

13
C NMR Pure [emim][OAc] 

 
1
H NMR Pure [emim][OAc] 

 



 

140 
 

 

 

 

13
C NMR [emim][OAc] – Method CA1 

 
13

C NMR [emim][OAc] – Method CA2 
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1
H NMR [emim][OAc] – Method CA2 

 
 

 

13
C NMR [emim][OAc] – Method CB1 
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13
C NMR [emim][OAc] – Method CB2 

 
 

 

1
H NMR [emim][OAc] – Method CB2 
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13
C NMR [emim][OAc] – Method CC1 

 
 

 

1
H NMR [emim][OAc] – Method CC1 
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13
C NMR [emim][OAc] – Method CC2 

 
 

 

1
H NMR [emim][OAc] – Method CC2 

 


