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Abstract 

 

The purpose of this Work Project is to build a yield curve model for the German 

Government yield curve containing latent variables (Level, Slope and Curvature), 

macroeconomic variables (German IFO and Inflation Rate) and a stock market variable 

(German Stock Index DAX), while studying the yield curve dynamics. 

The model incorporates the Nelson and Siegel (1987) factor model under a 

State-Space framework and the estimation results provided a good fitting of the 

historical yield curve. Additionally, after doing a Variance Decomposition analysis, this 

project proves the existence of an interaction between the yield curve and the German 

Macroeconomy/Stock Market. 
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1. Introduction 

The term structure of the interest rates (yield curve) is one of the most important 

financial instruments, as it is used for fixed income securities valuation, for the 

development of no-arbitrage models, and it is also a good proxy of future spot and 

inflation rates. 

The purpose of this Work Project is to build a model to fit the German 

Government yield curve. The choice of this yield curve is mainly due to the availability 

of data. However, instead of using a model containing only latent factors, this Work 

Project will use a model that can incorporate known variables, namely macroeconomic 

and stock market variables. In Section 2 of this project, a brief literature review of the 

existing fitting models will be presented. 

This Work Project will follow the Diebold, Rudebusch and Aruoba (2004) 

framework to build and analyze the dynamics of the German Government yield curve. It 

uses the traditional Nelson and Siegel (1987) term structure model under a state-space 

framework that allows the incorporation of macroeconomic and stock market variables. 

Since, the Diebold, Rudebusch and Aruoba (2004) model is an improvement over 

Diebold and Li (2002), it will be mandatory to use Diebold and Li (2002)’s approach to 

obtain some of the necessary inputs of the model. All of these procedures will be 

described in detail in Section 3. 

The main reason for choosing this model is that it allows the incorporation of 

known factors, meaning exogenous variables. Moreover, since one of this project 

purposes is to describe the dynamics of the yield curve, the literature suggests that a 

factor model was more appropriate to use.  
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Section 4 will be dedicated to the Data, namely the gathering process and some 

of the Data descriptive statistics. During the analysis (Section 5), the yield data will be 

used according to Diebold and Li (2002)’s approach to analyze the dynamics of the 

estimated Level, Slope and Curvature factors (Section 5.1). 

 In Section 5.2, the state-space framework will be used to estimate a “Latent 

Model”, under the Diebold, Rudebusch and Aruoba (2004) assumptions, and to obtain 

the dynamics of the latent factors. Subsequently, and in the same section, an “Extended 

Model” containing the macroeconomic variables will be built and estimated. A 

comparison between these two models will be made, while determining how the yield 

curve dynamics are affected by the latent (unobserved) factors and the macro/stock 

market (observed) factors. In other words, in addition to the fitting of the yield curve, 

this Work Project’s purpose is to see if, and how, the Macroeconomy and Stock Market 

influence the yield curve dynamics. 

 In section 6, conclusions and final remarks will be presented. 

 

2. Brief Literature Review 

One of the main characteristics of the fitting models should be their smoothness 

and flexibility; as Jabbour and Mansi (2002) put it, “Smoothness in this case is defined 

as the ability of the model to remove noise from the data and to accommodate various 

bends in the term structure”. 

We may have Parametric or Non-Parametric models that estimate the yield 

curve. Parametric models assume a functional form of the yield curve, with determined 

parameters, like “level”, “slope” and “curvature” from Nelson and Siegel (1987), while 

the Non-Parametric models use polynomial functions that are linked through a number 
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of “knot points”. The main advantages of Parametric Models are the avoidance of 

problems regarding the selection of “optimal knot points” and they also force “the 

interpolated (forward) rate at the long end of the curve to a horizontal asymptote” 

(Jabbour and Mansi (2002)). 

Using Nelson and Siegel (1987), a dynamic model was developed by Diebold 

and Li (2002), where they “distill the entire yield curve, period-by-period, into a three-

dimensional parameter that evolves dynamically” and interpret these time-varying 

parameters as factors. 

Additionally, there are models which adopt the equilibrium approach or the no-

arbitrage approach. The no-arbitrage approach wants to assure that the yield curve is 

fitted such that there are no arbitrage opportunities, while, as in Rotondi (2005), “the 

equilibrium approach focuses on modeling the dynamics of the instantaneous rate 

typically using affine models”. Some of the most famous equilibrium approach models 

are the Vasicek (1997) and Cox, Ingersoll and Ross (1985) and no-arbitrage models are 

Duffie and Kan (1996). 

All of these models capture the dynamics of the yield curve through linear 

functions of latent factors, but they fail to identify the shocks to the yield curve from 

other outside sources, like macroeconomic factors. 

Arturo Estrella (2005), in his paper, gives a good insight on the existing 

evidence regarding the relationship between the “term-spread” and real economic 

activity; “various spreads between long and short-term rates tend to be low at the start 

of recessions”. The difference between the ten-year and three-month Treasury rates 

became a rule of thumb when predicting future recessions, as well as yield curve 

inversions. Estrella and Mishkin (1998) compare “the term structure as a predictor of 
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recessions with a large number of alternative indicators and find that it is among the 

best in tests of statistical significance”.  

A large group of the studies point, however, that the predictability is highly 

related to monetary policy credibility. It is common sense that “expected future short-

term rates are important determinants of current long-term rates” (Arturo Estrella 

(2005)). A tighter monetary policy will have a negative impact on the economy and may 

flatten the yield curve, but “monetary policy is not likely to be the single determinant of 

the predictive power” of the yield curve. 

The last two decades have shown a huge development of yield curve models 

containing other macroeconomic variables, namely the Nelson and Siegel and affine no-

arbitrage dynamic latent factor models. On one hand, Diebold, Rudebusch and Aruoba 

(2004) incorporate the dynamic Nelson and Siegel factor model of Diebold and Li 

(2002) into a State-Space framework using a Vector AutoRegression. Additionally, they 

incorporate real activity, monetary policy instrument and inflation together with the 

three latent factors (level, slope and curvature).  On the other hand, Ang and Piazzesi 

(2001) developed “A No-arbitrage Vector Auto Regression of Term Structure Dynamics 

with Macroeconomic and Latent Variables”, which is an affine model imposing no-

arbitrage and the independency between policy interest rate and inflation, as well as real 

economic activity. 

Finally, Rudebusch and Wu (2003) incorporate inflation and capacity utilization 

along with latent factors in a model that allows bi-directional feedback between 

macroeconomic variables and latent factors. Therefore, like stated in Arturo Estrella 

(2005), the yield curve may be a predictor of the future economic activity, but “in 
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principle there could be influences in the opposite direction, from economic activity to 

the yield curve”. 

 

3. Methodology 

As said before, Diebold, Rudebusch and Aruoba (DRA (2004)) framework will 

be used to do the fitting and analysis of the dynamics of the German Government yield 

curve. This model follows some of the assumptions of Diebold and Li (DL (2002)), as 

they interpret the Nelson and Siegel (Equation (1)) “in a dynamic fashion as a latent 

factor model in which β1, β2 and β3 are time-varying level, slope and curvature factors 

and the terms that multiply these factors are the factor loadings” (Equation (2)).  

 

                  (1) 

 

                  (2) 

 

Where β1, β2 and β3 and  are parameters and, on the Equation (2), Lt, St and Ct are time 

varying β1t, β2t and β3t. The parameter   is the decay parameter of the Nelson and Siegel 

function; “small values of   produce slow decay and can better fit the curve at long 

maturities, while large values of , produce fast decay and can better fit the curve at 

short maturities”. 

In order to forecast the Nelson and Siegel Level, Slope and Curvature, DL(2002)  

estimate β1, β2 and β3 through Ordinary Least Squares for each available period, and, 

secondly, do a AR(1) and VAR(1) process to forecast the factors. On the contrary, DRA 
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(2004) adopted the following State-Space model to estimate and forecast the same 

factors, while assuming a VAR (1) of the dynamics of Lt, St and Ct: 

 

- (3) Transition Equation 

 

       (3) 

 

- (4)Measurement Equation 

 

 

                   (4) 

  

 

 

Where “τ” stands for maturity in months 

Vector notation: 

                (5) 

                        (6) 

The transition equation (3) states the dynamics of the state vector; as we can see, 

t follows a First-Order Autoregressive Process, maintaining the same assumption as in 

DL (2002). This is in line with the statement that “ARMA state vector dynamics of any 

order may be readily accommodated in state-space form” DRA (2004). Vector t  is the 

disturbance vector of the transition equation. 
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The measurement equation (4) represents the common Nelson and Siegel 

structure: Yt is the set of historical yield curves along the sample period and they are 

related to the three latent factors, vector t , whose behavior is described by the 

measurement equation. Matrix   is the matrix containing the loadings of the 

unobserved factors for the N given maturities. Similarly to the transition equation t  is 

the vector of the disturbances of the measurement equation. 

Together, these two equations form a state-space model and, as an assumption, 

“the white-noise transition and measurement disturbances must be orthogonal to each 

other and to the initial state” DRA (2004): 

 

               (7) 

                         (8) 

 

During my analysis, like in DRA (2004), the H matrix will be assumed as 

diagonal, implying that the errors of the different maturities are uncorrelated. 

Nevertheless, Q matrix will be non-diagonal to allow shocks to the three term structure 

factors to be correlated. 

This state-space model is an improvement to the DL (2002) model, because it 

allows the estimation of all parameters simultaneously via the Kalman Filter, delivering 

“maximum-likelihood estimates and optimal filtered and smoothed estimates of the 

underlying factors” DRA (2004). Moreover, in just one procedure, it is possible to 

obtain the estimated factors for all the data periods. Nevertheless, the analysis (Section 

5) will begin by the estimation of the latent factor series, as in DL (2002), (Section 5.1), 

because they are required for the state-space model specification (Section 5.2). 
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4. The Data 

4.1. Yield Data 

Despite being a state-space approach, the Nelson and Siegel (1987) model will 

still require historical data on the German yield curve. The German historical yield 

curves were obtained, through Bloomberg, using Bund STRIPS of the following 

maturities: 3 Months (3M), 6 Months (6M), 1 Year (12M), 2 Years (24M), 3 Years 

(36M), 4 Years (48M), 5 Years (60M), 6 Years (72M), 7 Years (84M), 8 Years (96M), 

9 Years (108M) and 10 Years (120M). 

The Bund STRIPS are “zero-coupon securities and, as a result, provide direct 

observation of spot rates” (Jabbour and Mansi (2002)). Additionally, STRIPS are 

available for a large number of maturities and fungible. One inconvenient for using the 

STRIPS is that they may have liquidity problems due to limited supply, which lead to 

the exclusion of the 15 Years and 30 Years maturities from my sample. 

All of these spot interest rates, which range from March 1995 to 2010, were 

obtained on a Monthly Basis collected at the end of the month and are bid-ask averages. 

(Bloomberg tickers are GETΒ1, GETΒ2 and GDBR1-10). Table 1 contains some of 

their descriptive statistics. 

 

 

 

 

Table 1 – Historical Yields descriptive statistics (numbers in %). 
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4.2. Macroeconomic and Stock Market Data 

 The exogenous variables, collected from Bloomberg, are the German IFO, the 

German Inflation Rate and the German Stock Index DAX. The first two are important 

macroeconomic fundamentals and the last one represents the stock markets. 

 Since the Gross Domestic Product has a quarterly basis, a monthly proxy could 

improve the estimation. The German IFO represents German Business Expectations and 

is it commonly used as a proxy for Gross Domestic Product growth (the correlation 

between the GRIFPEX (German IFO) and the growth rates of GRGDEGDP Index 

(German GDP), using quarterly data from 1995-2009, is 0.65). The German Inflation 

Index used to compute the monthly inflation rate is the Consumers Price Index using the 

2005 prices. The monthly inflation rate will be called “INFL”. 

Unlike the other variables, the DAX data from March 1995 until 2010 was 

obtained on a daily basis and afterwards a monthly average was computed. This had the 

purpose of avoiding price miss-specification at the end of the month due to “behavioral 

finance” issues. The monthly average growth rate of the DAX is the variable that will be 

used during my project and will be called “DAX”. Table 2 contains the descriptive 

statistics of the chosen variables.  

 

 

 

 

 

 

 

Table 2 – IFO, INFL (%) and DAX (%) descriptive statistics. 
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5. Analysis  

5.1. The Nelson and Siegel Dynamic Framework 

Being a factor model, the Nelson and Siegel (1987) follows the “parsimony 

principle” and, according to Diebold, Piazzesi and Rudebusch (2005), it is “the broad 

insight that imposing restrictions – even those that are false and may deteriorate in-

sample fit – often helps both to avoid data mining and to produce good forecasting 

models”. 

If we look at the loadings of the model, at a certain fixed  , on β1 loading is 

always 1 and the one on β2 starts at 1 and converges to 0. Finally, the loading on β3 

starts at 0 and, after increasing, begins to converge to 0 again. This behavior of the 

loadings are displayed in Figure 1 using  =0.0609 as used in DL (2002). As 

recommended by DL (2002), will be fixed at 0.0609 for all the remaining work. 

 

 

 

 

 

Figure 1 – Nelson and Siegel (1987) Factor Loading, with constant  =0.0609. 

Subsequently and, due to the factor loadings behavior, one of the most 

interesting points of this model is also the possibility of interpreting its latent factors; β1 

is commonly referred as the long-term factor, β2 the short-term factor and β3 the 

medium term factor. Moreover, they are commonly known to be closely related to the 
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level, slope and curvature of the yield curve. As in DL 2002, “Level” is defined as the

 Myt 120 , “Slope” as    MyMy tt 3120   and “Curvature” as

     MyMyMy ttt 3120242  . Level, Slope and Curvature were obtained, using the 

historical yield curves, and some of their statistics are presented in Table 3. Like in DL 

2002, the factors are not highly correlated; corr(level, slope)= -0,32, corr(level, 

curvature)= 0,23 and corr(slope, curvature)= -0,57. 

 

 

 

 

 

 

Table 3 – Level, Slope and Curvature Descriptive Statistics. 

 

From a dynamic perspective, DL (2002) showed that the Nelson and Siegel 

model may be rewritten as in Equation (2). Therefore, using the Ordinary Least Squares 

for all the data periods it is possible to obtain a series of 181 β1, β2 and β3. Table 4 

contains the descriptive statistics of these series. 

 

 

 

 

 

Table 4 – β1, β2 and β3 Descriptive Statistics. 
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In order to assess the quality of the German yield curve fit, using the dynamic 

Nelson and Siegel model, Figure 2 contains the plot of the average actual yield curve 

along with the average fitted yield curve, which are very close to each other. 

 

 

 

 

 

 

 

 

 

Figure 2 – Actual Average Yield Curve versus Average Fitted Yield Curve. 

 

Additionally, it is useful to compare the estimated Level, Slope and Curvature 

(β1, β2 and β3) with the actual Level, Slope and Curvature from the historical yield 

curves Figures 3, 4 and 5); an almost perfect match is visible. 

 

 

 

 

 

 

 

Figure 3 – Estimated B1 versus Historical “Level” (as in DL 2002). 
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Figure 4 – Estimated -B2 versus Historical “Slope” (as in DL 2002). 

 

 

 

 

 

 

 

 

Figure 5 – Estimated 0.3*B3 versus Historical “Curvature” (as in DL 2002). 

 

Finally, the correlations between them made me conclude that the estimates of 

β1, β2  and β3 are good proxies of Level, Slope and Curvature factors for the German 

Yield Curve; corr(β1, level)=0.946, corr(β2 , slope)=-0.99, corr(β3, curvature)=0.99. 

 

5.2. Fitting the Yield Curve using a State Space Approach 

The previous section explained the dynamics of the Nelson and Siegel model 

and the interpretation of the latent factors. The previously estimated latent factors (β1, β2 
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and β3) will also be used under the context of the DRA (2004) state-space approach, 

which consists of this new section. 

Two state-space models will be built. The first one will estimate the yield curve 

using only the latent factors and will be followed by an extended version containing the 

macroeconomic variables (IFO and INFL) as well as the stock market variable (DAX). 

 

5.2.1. Latent Factors Model Specification (“Latent Model”) 

Using Equations (3) and (4), it is possible to build the following state-space 

model adapted to all my assumptions: 

Transition Equation: 

 

                  (9) 

 

or 

Measurement Equation: 

 

(10) 

                 

 

 

or 

Error Distribution:              (11) 

 

On the measurement equation (10), vector Yt  is the dependant variable 

containing all the historical yields whose maturities range from 3, 6, 12, 24, 36, 48, 60, 
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72, 84, 96, 108 and 120 months. Matrix   contains the loadings related to the yield 

curve factors “Level”, “Slope” and “Curvature” (vector βt), where  equals 0.0609. 

Overall, a total of 30 parameters must be estimated: vector μt contains 3 

parameters to estimate, the transition matrix ɸ has 9 parameters to be estimated, matrix 

Q has 6 parameters to be estimated (3 variances and 6 covariances) and matrix H has 12 

variances to be estimated. 

Before starting the estimation, it is necessary to compute some start up 

parameters. Therefore, matrix ɸ is initialized as the coefficient matrix of an Unrestricted 

VAR(1) between the time varying β1, β2, and β3 from Section 5. Vector μt is the mean-

vector of the same factors. Finally, the initial state-vector and variances/covariances are 

computed through a diffuse maximum likelihood process (Harvey (1989)). 

The estimation of the optimal yields and latent factors (state-vector βt) is made 

through a multivariate Kalman Filter, using the Broyden, Fletcher, Goldfarb and Shanno 

(BFGS) technique. Matrices Q, H and ɸ parameters were obtained with a non-linear 

parameter search with maximum likelihood function. 

 

5.2.2. Extended Latent Factors Model (“Extended Model”) 

The Dynamic Nelson and Siegel model under state-space framework allows the 

inclusion of exogenous variables, which was not possible using the DL (2002). 

Consequently, together with the usual latent factors β1, β2, and β3, the following model 

uses the IFO, INFL and DAX historical values in order to estimate the optimal yield 

predictions. 

The extended model goes as follows: 
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Transition Equation: 

 

             (12) 

 

 

or 

Measurement Equation: 

 

 

                (13) 

 

 

or 

 

Error Distribution:              (14) 

 

As we can see, the structure of the model remains unchanged, but some of the 

vectors/matrices have now increased dimensions. On the measurement equation (13), 

matrix  is now 12x6, because its associated state-vector is now 6x1. Notice that, “the 

three rightmost columns contain only zeros, so that the yields still load only on the yield 

curve factors” (DRA 2004). 

In this extended model, a total of 75 parameters must be estimated: vector μt 

contains 6 parameters to estimate, the transition matrix ɸ has 36 parameters to be 

estimated, matrix Q has 21 parameters to be estimated (6 variances and 15 covariances) 

and matrix H has 12 variances to be estimated. 
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The initialization and estimation procedures are the same as in Section 6.1, with 

the exception of the initial matrix ɸ, which is now the coefficient matrix of the 

Unrestricted VAR(1) of estimated β1, β2, β3 (from Section 5) and the additional IFO, 

INFL and DAX historical values. 

 

5.2.3. Estimation Results: Assessing the Fit 

The two previous models were used to obtain the optimal yield curve prediction 

along the period between March 1995 and 2010. While the Latent Model only estimates 

the time series of β1, β2, β3, the Extended Model also estimates the time series of IFO, 

INFL and DAX. Regarding the parameter estimation, the final values of vector μt , 

matrices ɸ, Q and H, for both models, are presented in Appendix 1 and 2. 

In order to assess the fit of the models in relation to the historical yield curves, 

the measurement errors were computed as 𝑦𝑡 𝜏𝑖 − 𝑦 𝑡 𝜏𝑖  (in basis points), for both 

models, and some statistics regarding the estimated yields were obtained (Table 5). 

 

 

 

 

 

Table 5 – Statistics of the Estimated Yields from both state-space models (in basis points). 

 

The table above suggests that the quality of the fit is similar in both models and 

that both of them provide a good fit of the historical yield curves; the quadric mean 

errors are low as well as the error standard deviation for the different maturities. Finally, 
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just like in Section 5, the estimated latent factors (β1, β2, β3), from both models, are 

plotted along with the actual “Level”, “Slope” and “Curvature” (Figures 6, 7 and 8). 

 

 

 

 

 

 

Figure 6 – Estimated B1 versus Historical “Level” (as in DL 2002). 

 

 

 

 

 

 

 

Figure 7 – Estimated -B2 versus Historical “Slope” (as in DL 2002). 

 

 

 

 

 

 

 

 

Figure 8 – Estimated 0.3*B3 versus Historical “Curvature” (as in DL 2002). 
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Despite small level differences, the behaviors of β1, β2 and β3 series are almost 

equal to “Level”, “Slope” and “Curvature”; both models perfectly match the dynamics 

of the Nelson and Siegel (1987).  

It is important to notice that the Extended Model required the estimation of 75 

parameters, while the Latent Model required only the estimation of 30 parameters. Even 

so, the quality of the fit is very similar, meaning that the Extended Model is also a good 

approach. 

 

5.2.4. Variance Decompositions 

In this section, the estimated time series “Level”, “Slope” and “Curvature” (β1, 

β2 and β3), from both models, are going to be used in order to explain the forecast 

variance of the 3, 60 and 120 Months yields (representing the short, medium and long 

terms of the yield curve, respectively). For this purpose, a Variance Decomposition 

analysis will be done for the given yields.  

The VAR, as in Stock and Watson (2001), “expresses each variable as a linear 

function of its own past values, the past values of all other variables being considered 

and a serially uncorrelated error term”. Subsequently, the Variance Decompositions 

may be extracted from the VAR; “the forecast error decomposition is the percentage of 

the variance of the error made in forecasting a variable due to a specific shock at a given 

horizon” Stock and Watson (2001). 

This kind of analysis will show the variation of a certain interest rate is 

explained by itself, the latent factors and the additional IFO, INFL and DAX variables. 

Thus, for each maturity (3, 60 and 120 months), there will be two Variance 

Decomposition analysis: one containing only the estimated latent factors (from the 



Page 22 of 28 
 

Latent Model) and another containing estimated latent factors (from the Extended 

Model) together with IFO, INFL and DAX historical series. The results will tell how are 

the dynamics of the short, medium and long terms of the yield curve explained by the 

latent factors and the macro/stock market variables. 

 

Variance Decomposition of 3 Months Interest Rate 

 

Table 6 – V.D. of 3M, up to 60 months forecast, using β1, β2, β3 from Latent Model. 

 

Table 7 – V.D. of 3M, up to 60 months forecast, using β1, β2, β3 from Extended Model. 

 

Under the Latent Model, Table 6, the 3M variation is mostly explained by itself 

(75%), at the horizon of 5 months, while the remaining variance is explained mostly by 

β3 (85,5%). However, at longer horizons, its remaining variation is largely explained by 

the latent factors β2 (34,5%)and β3 (62,5%). Following Nelson and Siegel (1987), this is 

empirical evidence of β2 as the “short term factor”, the “Slope”. 
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On the Extended Model, Table 7, with an horizon of 60 months, the IFO is the 

variable that explains the most of 3M variation (32,045), whether β2 and β3 contributions 

(11,127 and 13,412) are close to the DAX (12,115). Therefore, in the short-term of the 

yield curve, the variation of the interest rates is mostly due to the GDP growth (since 

IFO is a GDP growth proxy). Similarly to all the following Variance Decompositions, 

the Inflation Rate does not seem to influence the variation of the interest rates, for the 

selected maturities. 

 

Variance Decomposition of 60 Months Interest Rate 

 

Table 8 – V.D. of 60M, up to 60 months forecast, using β1, β2, β3 from Latent Model. 

 

Table 9 – V.D. of 60M, up to 60 months forecast, using β1, β2, β3 from Extended Model. 

 

From both tables, it is clear that the most part of the 60M variation is due to 

itself (almost 100% on the Latent Model, Table 8, and more than 55% at the Extended 

Model, Table 9). 
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Nevertheless, the remaining variance under the Latent Model is always 

explained by β3 at a percentage superior to 60%. Being β3 the “Curvature” factor, this 

makes sense since the 60M rate is a medium maturity rate. 

However, on the Extended Model analysis, it is the IFO, β1, and DAX that are 

responsible for the majority of the remaining variance (44,9%, 25,8% and 20,3%, 

respectively) and it is important to notice that, as the horizon increases, the remaining 

variance is also increasing. 

 

 

Variance Decomposition of 120 Months Interest Rate 

 

Table 10 – V.D. of 120M, up to 60 months forecast, using β1, β2, β3 from Latent Model. 

 

Table 11 – V.D. of 120M, up to 60 months forecast, using β1, β2, β3 from Extended Model. 

 

In both models, at the longest horizon, β1 is the one that explains the major part 

of the remaining variance (66,2% Latent Model and 35,1% Extended Model), which is 

understandable since the 120M yield is a long-term yield and β1 represents the long 

term factor, “Level”. For all horizons, the DAX explains better the variation of the 
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120M yield than the IFO variable, suggesting that the stock market has more influence 

over the long term of the yield curve than the GDP. 

 

6. Conclusion 

 In this Work Project, a yield curve factor model containing latent, 

macroeconomic (IFO and INFL) and stock market (DAX) variables was specified and 

estimated, which was called “Extended Model”. Similarly to DRA (2004), this model 

followed a state-space approach as it allows the incorporation of exogenous variables 

along with the traditional latent factors of Nelson and Siegel (1987) and, as expected, 

provided a good fit of the yield curve.  

The Variance Decomposition analysis showed that the IFO, INFL and DAX, 

together, explain the majority of the remaining variance of the yields, for all of the 

forecasting horizons. This suggests that the yield curve dynamics are better explained 

by the macroeconomic variables and stock market variables than explained by the latent 

factors. 

 From the same analysis, the IFO turned to be the overall most important factor 

influencing the yield curve dynamics, providing evidence for the strict relationship 

between the yield curve and GDP growth referred in the literature. 

Finally, in the long-term of the yield curve, it is the DAX the variable 

responsible for the large majority of the yield remaining variation, which is consistent 

with the relationship between the stock and the bond markets; typically, rising interest 

rates lead to a decrease in stock prices (and vice-versa). That is why bonds are 

considered to be an important indicator of the stock market. 
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Appendix 

Matrix H 

 

 

 

 

 

 

Matrix Q              Matrix ɸ and Vector μ 

 

 

 

Appendix 1 – Latent Model final values of Matrix H, Q, Φ and μ. 

 

Matrix H 

 

 

 

 

 

 

Matrix Q                           Matrix ɸ and Vector μ 

 

 

 

 

Appendix 2 – Extended Model final values of Matrix H, Q, Φ and μ. 


