
André Brás Simões

Licenciado em Engenharia Informática

Expressiveness Improvements of OutSystems
DSL Query Primitives

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Orientadores : Hugo Lourenço, Senior Software Engineer,
OutSystems
Hugo Torres Vieira, Assistant Professor,
Universidade de Lisboa
João Costa Seco, Assistant Professor,
Universidade Nova de Lisboa

Júri:

Presidente: Prof. Pedro Duarte de Medeiros

Arguente: Prof. André Leal Santos

Vogal: Prof. João Costa Seco

Março, 2013

iii

Expressiveness Improvements of OutSystems DSL Query Primitives

Copyright c� André Brás Simões, Faculdade de Ciências e Tecnologia, Universidade
Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

To my father Aurélio,
my mother São,

my sisters Vera and Ângela,
my brother David,
my nephew Filipe

and my love Tânia.
I owe you more than I can ever say.

vi

Acknowledgements

“The future belongs to those who believe in the beauty of their dreams.”

— Eleanor Roosevelt

The dissertation that I present here was the result of five years of dedication, hard
work and effort to conquer a goal, and specially a dream. Dream that I was not able to
achieve without the contribute of many people.

So, I would like to express my heartfelt gratitude to my advisors Hugo Vieira and
Hugo Lourenço for the guidance, support, quality and because they always put me in
the right track. I present them my thanks for the dedicated hours and several headaches
that my work caused them. But without you would it would not have been possible.

I am equally grateful to Professor João Costa Seco and António Melo for their con-
tribute as well as to Faculdade de Ciências e Tecnologia from Universidade Nova de Lisboa
for the financial support and for the articulation between OutSystems that allowed me to
develop the study that is the basis of this thesis.

I also would like to thank to Professor Vitor Teodoro, for reading the thesis and pro-
viding precious feedback.

Thanks to Lúcio Ferrão and to his critical thought, to Hélio Dolores, José Caldeira,
and other wonderful R & D team elements that received me so well and acquainted me
about OutSystems Agile Platform as well as other new technologies for me.

And, because, five years were made not only of study but also with academic life and
friendship, I want to thank to Miguel Alves and Nuno Grade ("Os três da vida airada") and
to Stefan Alves, Pedro Almeida, Sérgio Silva, Miguel Pinheiro, Sérgio Casca and, more
recently, Tiago Almeida. Also, I would like to say that I am very grateful to have know
you, Kinga and Heidi, during our Erasmus experience.

A huge thank you to São Brás and Aurélio Simões for being the best parents that I
could ever wish. For being a model and a life example to achieve. I want to thank them
for giving me wings to fly, for being always there to catch me if I need, for their constant
love and immeasurable sacrifice.

vii

viii

I also acknowledge to my sisters and brother Vera, Ângela and David Simões. We are
part of a whole and I have got in you all the dreams from the entire world. I would not
forget my pesky little nephew, Filipe, and my brothers-in-law Flávio Ferreira and Joel
Cruz. To my uncle Luis for being more than a uncle, for being a friend – thank you.

Last but not least, I want to express my eternal debt towards Tânia, my precious love,
for her enduring love, for believing in me long after I would lost belief in myself, and for
sharing my wish to reach the goal of completing this task but caring enough to love me
even if I never achieved it.

All errors and limitations remaining in this thesis are mine alone.

Abstract

In the ever more competitive market, companies are forced to reduce their opera-
tional costs and innovate. In order to do that, some companies successfully adopted new
approaches, some of them using domain specific languages (DSL), building their entire
system and all the respective layers in less time and more focused in their business. Fre-
quently, the application business layer interacts with the data layer through SQL queries,
in order to obtain or modify data. There are some products in the market that try to make
life easier for developers, allowing them to get the data using the features of visual query
builders, also available in standard SQL. However, it is not expectable that every possible
query can be written through these visual query builders, which leads us to the follow-
ing questions "What should and what can easily be supported by visual query builders?". These
questions are relevant in order to help improving the experience of developers and save
them time.

This work aims to study and analyse techniques that help detecting patterns in struc-
tured data and, afterwards, propose a suitable way to view and manage the visualization
of the occurrence of such detected patterns. In order to help identify the most frequent
patterns and thus contribute to solve the above questions, with this conjunction of topics
we expect to provide a way to improve the experience of understanding a large amount
of data in a particular context. Once understood some patterns that could be present in
the data and their importance, we are ready to propose a new model in the context of
OutSystems Agile PlatformTM , in terms of their visual query builder, aiming to increase its
value, improve its expressiveness and offer a powerful visual way to build queries.

Keywords: Database query languages, Visual query builders, Structure mining

ix

x

Resumo

No mercado actual, cada vez mais competitivo, as empresas sentem-se forçadas a
reduzir os seus custos operacionais e a inovar. Para tal, algumas destas empresas têm
optado com sucesso por novas abordagens, algumas optando por linguagens de domí-
nio específico, construindo todo o seu sistema e todas as respectivas camadas em menos
tempo e mais focadas aos seus negócios. Frequentemente, a camada de lógica da apli-
cação interage com a camada de dados através de consultas SQL, de forma a obter ou
modificar esses dados. Existem produtos no mercado que procuram facilitar a vida dos
programadores permitindo-lhes obter a informação das base de dados através de "cons-
trutores visuais de consultas"usando propriedades que também se encontram disponí-
veis no SQL comum. Contudo, nem tudo é possível fazer através destes construtores
visuais, surgindo assim as questões "O que deverá e o que poderá ser suportado por estes cons-
trutores visuais de consultas?". Estas duas questões são importantes na medida que visam
ajudar a melhorar a experiência dos programadores e poupar-lhes tempo.

Com este trabalho pretende-se estudar e analisar técnicas que visem ajudar na de-
tecção de padrões em dados estruturados. Posto isto, apresentar uma forma adequada
para visualizar e gerir a visualização da ocorrência dos padrões detectados. De modo a
ajudar a identificar os padrões mais frequentes e então contribuir para responder às ante-
riores questões, conjugando estes tópicos referidos espera-se apresentar uma forma que
melhore a experiência de compreender um determinado grande conjunto de dados inse-
ridos num contexto em particular. Uma vez percebidos alguns dos padrões que possam
estar presentes nos dados e as respectivas importâncias, encontram-se reunidas as condi-
ções necessárias para propor o novo modelo no contexto da OutSystems Agile PlatformTM ,
relativamente ao seu construtor visual de consultas, com o objectivo de aumentar o seu
valor, melhorar a sua expressividade e oferecer uma poderosa forma visual para construir
consultas.

Palavras-chave: Linguagens de consulta para bases de dados, Construtores visuais de

xi

xii

consultas, Análise de estruturas

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Work Description . 3
1.3 Contributions . 6
1.4 Outline . 6

2 OutSystems Agile Platform
TM 9

2.1 Agile PlatformTM& Service Studio . 9
2.2 Visual Programming Language . 9

2.2.1 Query primitives . 11
2.3 Discussion . 13

3 Analysis 15
3.1 Pre-analysis - Extraction . 15
3.2 Advanced SQL Term Histogram . 17
3.3 SQL Parser . 17
3.4 Searching for Patterns using XPath . 21

3.4.1 Query Languages . 22
3.5 Specific Domain OutSystems . 23

3.5.1 Common patterns . 24
3.5.2 First case study - Complex Joins . 26
3.5.3 Second case study - specific use of Outer Join followed by Inner Join 30

3.6 Clustering Phase . 34
3.6.1 Implementation of the Clustering Algorithm 35
3.6.2 Execution of the Clustering Algorithm 39
3.6.3 Visual Analysis . 43
3.6.4 Results . 44
3.6.5 Discussion . 55

3.7 Visualization Manager . 55

xiii

xiv CONTENTS

3.7.1 Visualization Tool . 55
3.7.2 Statistical Graphics . 58

3.8 Use of SQL in Industrial Applications . 61
3.9 Discussion . 62

4 Model Proposal 65
4.1 Most Frequent Identified Patterns . 65

4.1.1 Selection of Columns . 66
4.1.2 IN Operator . 66
4.1.3 Complex Joins . 67
4.1.4 Distinct Values . 67
4.1.5 Aggregate Functions . 68
4.1.6 Append Literals . 69
4.1.7 Group By Columns . 69

4.2 Defining an Order of Implementation . 70
4.2.1 Dependencies . 70
4.2.2 Heuristic . 70
4.2.3 Order of Implementation . 71

4.3 Extending the Model . 75
4.3.1 Selection of Columns . 75
4.3.2 Distinct Values . 79
4.3.3 Aggregate Functions . 80
4.3.4 Complex Joins . 82
4.3.5 IN (List of Values or @Parameter) 85
4.3.6 Group By Clause . 87

4.4 Suggestion Mechanism . 88
4.5 Discussion . 89

5 Prototype 91
5.1 Usability tests . 92

5.1.1 Scenario . 92
5.1.2 Script . 93
5.1.3 Feedback . 93
5.1.4 Top Issues . 97

5.2 Discussion . 97

6 Final Remarks 99
6.1 Conclusions . 100
6.2 Future Work . 101
6.3 Discussion . 101

CONTENTS xv

A Appendix 107
A.1 Glossary . 107
A.2 Patterns Detected on Clusters Visual Analysis 109

xvi CONTENTS

List of Figures

1.1 Chart with occurrence frequency of each common pattern 4
1.2 Mockup - extending Simple Queries with the first new feature 5

2.1 Development environment of Service Studio 10
2.2 Example of an Action Flow . 10
2.3 Example of a Simple Query . 11
2.4 Example of an Advanced Query . 12

3.1 Extraction process - 1st stage . 16
3.2 Extraction process - 2nd stage . 16
3.3 Getting distinct queries . 17
3.4 Advanced SQL Term Histogram . 18
3.5 Extraction process - 3rd stage . 19
3.6 Gold Flow . 19
3.7 Entities Diagram used as example in the next presented cases 24
3.8 Data from each entity used in the example 24
3.9 Discovering the different roots from our dataset 25
3.10 Chart with occurrence frequency of each common pattern 25
3.11 Simple Query using Outer Join with one condition in On Clause 27
3.12 Simple Query using Outer Join changed to Implicit Join by Service Studio . . 27
3.13 Advanced Query using Outer Join with multiple conditions on On Clause . 28
3.14 Chart with occurrence frequency of pattern Complex Join 30
3.15 Simple Query from Service Studio . 31
3.16 Advanced Query to force the Joins order . 31
3.17 Screen showing the result of Simple Query and Advanced Query 32
3.18 Simplified XML and S-graph from query1 36
3.19 S-graph from query2 and query3 . 36
3.20 Graph from query before performing changes on the XML structure 40
3.21 Graph from query after performing changes on the XML structure 40

xvii

xviii LIST OF FIGURES

3.22 Graph from query after performing new changes on the XML structure . . 41
3.23 Clustering algorithm - distribution of queries per cluster 42
3.24 Example of a colored graph from a cluster 43
3.25 Example of a Hot nodes graph from a cluster 44
3.26 Hot nodes graph from Cluster 1 . 45
3.27 Hot nodes graph from Cluster 2 . 46
3.28 Hot nodes graph from Cluster 3 . 46
3.29 Colored graph from Cluster 4 . 47
3.30 Colored graph from Cluster 5 . 48
3.31 Colored graph from Cluster 6 . 48
3.32 Hot nodes graph from Cluster 7 . 49
3.33 Hot nodes graph from Cluster 8 . 50
3.34 Hot nodes graph from Cluster 9 . 50
3.35 Hot nodes graph from Cluster 10 . 51
3.36 Overview of the clustering method . 53
3.37 Screenshot from the tool running the example of Titanic dataset 56
3.38 Screenshot from the tool running our dataset of queries 57
3.39 Minard’s Figurative Chart of Napoleon’s 1812 campaign 59
3.40 Flow visualization feature from Google Analytics 60
3.41 Example of representation of Select statement visualization 61

4.1 Dependencies between identified features 71
4.2 Model proposal process . 71
4.3 Heuristic - extending Simple Queries with the first new feature 72
4.4 Heuristic - extending Simple Queries with the second new feature 72
4.5 Heuristic - extending Simple Queries with the third new feature 73
4.6 Heuristic - extending Simple Queries with the fourth new feature 73
4.7 Heuristic - extending Simple Queries with the fifth new feature 74
4.8 Heuristic - extending Simple Queries with the sixth new feature 74
4.9 Heuristic - extending Simple Queries with the seventh new feature 75
4.10 Heuristic - tree defining the complete path to follow during the implemen-

tation . 76
4.11 Mockup - extending Simple Queries with the first new feature (first approach) 77
4.12 Output Attribute Syntax . 78
4.13 Mockup - extending Simple Queries with the first new feature (final approach) 78
4.14 Mockup - extending Simple Queries with the second new feature 80
4.15 Output Attribute Syntax - with Aggregate functions 81
4.16 Mockup - extending Simple Queries with the third new feature 81
4.17 Mockup - extending Simple Queries with the third new feature (expression

editor) . 82
4.18 Join Condition Syntax - current model . 82

LIST OF FIGURES xix

4.19 Mockup - extending Simple Queries with the fourth new feature (expression
editor) . 83

4.20 Join Condition Syntax - new model . 84
4.21 Mockup - extending Simple Queries with the fifth new feature (parameter

definition) . 86
4.22 Mockup - extending Simple Queries with the fifth new feature (query con-

dition editor) . 87
4.23 Mockup - extending Simple Queries with the sixth new feature 88
4.24 Mockup - extending Simple Queries with the sixth new feature (Group By

column) . 89

5.1 Output Attribute Syntax in Prototype . 91
5.2 Prototype - Output Attributes from Simple Query 92
5.3 Prototype - message to aware developers about new functionalities of Sim-

ple Query . 96

xx LIST OF FIGURES

List of Tables

A.1 Summary table containing the patterns from clustering results 109

xxi

xxii LIST OF TABLES

Listings

1.1 SQL example with a pattern not supported in the current Simple Query model 4
3.1 SQL example with a pattern that cannot be detected using term histograms 17
3.2 SQL example to test the generation of a parse tree 20
3.3 XML parse tree resulted from a Select statement 20
3.4 Example of query using a Complex Join . 26
3.5 XML parse tree from query using On clause 28
3.6 XPath expression to filter of queries with a Complex Join 30
3.7 Example of query using Outer Joins and Inner Joins 30
3.8 SQL generated by the Simple Query produced 31
3.9 XML parse tree from query using Outer Joins and Inner Joins 32
3.10 XPath expression to filter particular queries using Outer and Inner Joins . . 34
3.11 Pseudocode of Clustering Algorithm - variant of S-Grace 38
3.12 Query representing the graph from Figure 3.22 41
3.13 SQL structure from visual analysis of Cluster example 44
3.14 SQL structure from visual analysis of Cluster 1 45
3.15 SQL structure from visual analysis of Cluster 2 46
3.16 SQL structure from visual analysis of Cluster 3 47
3.17 SQL structure from visual analysis of Cluster 4 47
3.18 SQL structure from visual analysis of Cluster 5 47
3.19 SQL structure from visual analysis of Cluster 6 48
3.20 SQL structure from visual analysis of Cluster 7 49
3.21 SQL structure from visual analysis of Cluster 8 49
3.22 SQL structure from visual analysis of Cluster 9 51
3.23 SQL structure from visual analysis of Cluster 10 51
4.1 Examples of SQL queries Selecting specific values to retrieve 66
4.2 Example of SQL query using IN operator 67
4.3 Example of SQL query using Complex join 67
4.4 Example of SQL query selecting Distinct values 68
4.5 Example of SQL query from scenario using Aggregate functions 68

xxiii

xxiv LISTINGS

4.6 Example of SQL query using Append literals 69
4.7 Example of SQL query using Group By . 69

1
Introduction

In the ever more competitive market, caused by the present economy, companies are
forced to reduce their operational costs and innovate, trying to increase their annual
profits. Among many solutions, companies try to take into account the new applica-
tions needed in the near future and the best ways to getting them. It is important never
forget some relevant points, such as:

• Time to market;

• High productivity;

• Easy integration;

• Technical fit and flexibility;

• Final price.

As the creation of the software is a very abstract process, it would be great to know
exactly what we are obtaining up front, but unfortunately a software project cannot be
predicted like that.

In the last years, some new methodologies appeared some more effective than others:
among them Agile Software, the software development paradigm related to the work
presented in this dissertation. Agile Software emerged to face some of the aspects listed
above, in such a way that we are dealing with:

• Implemented requirements can be seen fast - it lets developers the possibility to see what
was implemented and show it to the business owner, in a short time;

1

1. INTRODUCTION 1.1. Motivation

• Fast Delivery - allowing the companies to have their customized products delivered
on-time and on-budget, faster and more cost effectively, rather than with other al-
ternatives;

• Acceptance to changes - Agile processes accept the reality of change without rigid
specifications. Although there are domains where requirements cannot change, the
great majority of projects have changing requirements;

• Constant communication - communication between developers and the business owner
is essential. The business owner can follow the development of specifications and
provide feedback that will be considered during constant iterations aiming at im-
proving the product.

Taking advantage of such characteristics of Agile Software and with the same prob-
lems to solve, OutSystems Agile PlatformTM [Out12] (see Chapter 2) appeared in the market.

Since design is as important as functionality, Agile PlatformTM provides tools allowing
to create modern and easy to use Enterprise Applications.

Predictable Projects is another characteristic associated with the Agile PlatformTM . The
two main risks on a project involve going over budget and not delivering what the busi-
ness really needs. However, they are overcome by doing fixed-cost projects that count
on business client participation to ensure that the application is built according to what
is really needed. Moreover, it is Ready to Grow in order to adapt the product to the new
company and market needs.

1.1 Motivation

Software companies attempt not to forget the usability and the market trends in their
products, trying to develop them with some topics in mind, such as nice interfaces, avail-
able features and maintainability.

Some development decisions are taken on the very beginning of the product devel-
opment. After some years, these decisions may have to be reviewed in order to adapt the
new needs of users to the product itself. In this context, it is essential not to forget the
new impact these changes and needs imply, which requires careful study and a focused
analysis.

One of the main goals of OutSystems Agile PlatformTM is to ease the development of
Enterprise Applications, and once known that for inexperienced users it is simpler to use
its visual query builder instead of the common SQL. Our motivation is to improve the
expressiveness of this visual query builder, i.e. allow to write more queries with it, and
there will be less reasons to use common SQL.

We want to guaranty that all the changes on the current model are the ones that will
bring more benefits to OutSystems users, i.e. the ones that are really reflecting the needs
of the users of Agile PlatformTM . There are some different ways to accomplish this final

2

1. INTRODUCTION 1.2. Work Description

goal – our approach will be performed through an analysis over a large set of queries
with the help of a tool. This set of queries is the result from the last 2 years of work in the
context of OutSystems, involving 10 clients, totalizing 27,000 distinct queries. Then, the
new model proposal regarding the visual query builder of Agile PlatformTM will take into
account this analysis performed over the data since the analysis aims to identify the main
features that should be supported by the model. Nevertheless, it is important to refer that
this abstract model may help in other contexts, since the identified essential features are
expected to be general enough to fit in other contexts whenever visual query models are
of use.

Next, we depict the work description of this thesis, going deep into this context.

1.2 Work Description

This work is carried out in the context of the company OutSystems and is part of a pro-
cess of improving Agile PlatformTM expressiveness regarding the way it interacts with
databases.

Considering that the graphical Domain Specific Language (DSL)1 of OutSystems is
idealized for creation and maintenance of web and mobile web applications, its primitives
that allow the user to query/search data are of the highest importance. On this moment,
there are two relevant features in the language to query/search data:

• Simple Queries - with advantages mainly around usability and validation, mostly
due to the visual builder and the TrueChangeTM;

• Advanced Queries - more powerful but not so controlled, since they allow the user
to write the queries SQL code [SKS10].

OutSystems offered the possibility to carry out this master thesis work with the chal-
lenge of proposing a new design with the advantages of Simple Queries and the expres-
siveness closer to Advanced Queries. With this in mind, we aim to allow a developer to
use more often the Simple Queries during all the development stages avoiding the usage
of Advanced Queries, as well as writing SQL code. Since Simple Queries have a valida-
tion system integrated, as much as they are used, more will be the validation support
provided to users.

To understand the source of lack of expressiveness on Simple Query model we need to
analyse the dataset of queries extracted from the applications of OutSystems clients, that
will support our decisions. At first sight, as depicted in Figure 1.1, we can see that the
dataset is mainly composed by Select statements, which will be the focus of our analysis
since the selection of data is the purpose of Simple Queries.

However, these patterns are too simple and nowadays development teams need to
understand other more complex patterns such as the use of Distinct keyword, use of

1A Domain Specific Language is a programming language or executable specification language designed
to express solutions to problems from a particular domain.

3

1. INTRODUCTION 1.2. Work Description

0%

25%

50%

75%

100%

Common Patterns

Select_Stm ! (84.04%)
Delete_Stm ! (7.93%)
Update_Stm ! (6.72%)
Insert_Stm ! (0.68%)
QueryList ! (0.57%)
Truncate_Stm (0.05%)
Query (0.01%)

Figure 1.1: Chart with occurrence frequency of each common pattern

Complex Join conditions or even the Group By clause. These patterns are reflected in the
structure of a query and can be dependents between them. This lead to a thorough anal-
ysis over all the dataset of queries extracted focusing on their structure, trying to point
out what are the most frequent patterns on the dataset that are missing on Simple Queries.

The analysis is divided in several stages, from the creation of a tool to explore the
dataset using XPath expression (since a query is well structured as an XML tree [HM04]
and a XPath expression represents a pattern), to a clustering algorithm applied on the
dataset that grouped the queries depending on their structure leading us to the creation
of a method to analyse each one of the clusters.

The mentioned method is composed by three different kinds of analysis: a visual
analysis based on a colored graph that represents the elements stated on the cluster (each
node from the graph is colored depending on its frequency inside that cluster); an anal-
ysis on the histogram of SQL terms created during the clustering (here we can perceive
not only the frequency of a term on that specified cluster but also on the global dataset of
queries); last but not least, an analysis over the queries composing that cluster (e.g. it can
help to distinguish if an And operator is used on a Join condition or on the Where clause,
when the visual analysis creates this doubt).

Combining these three distinct analysis we are able to understand and discover some
interesting patterns and, in the majority of the cases, to quantify the occurrence frequency
of such patterns (see Chapter 4). Listing 1.1 displays an example of a query that shows
out one of the identified frequent patterns during the visual analysis, exposing one of the
sources for the lack of expressiveness on Simple Queries.

Listing 1.1: SQL example with a pattern not supported in the current Simple Query model
1 SELECT {User}.FirstName, ’’ , {User}.LastName,

2 FROM {User}

4

1. INTRODUCTION 1.2. Work Description

Currently, if we would like to apply this query from Listing 1.1, we would need to
perform it using an Advanced Query since Simple Queries have some limitations. The limi-
tation visible in this particular case is the fact that it is not possible to define a specific set
of columns to be selected, or even to assign a particular value to a field (in the case of the
example, an empty string). This case usually occurs when a developer needs to get some
data from entities to send to be consumed by a Web Service, since the Web Service imposes
the structure of the data to consume, which in the context of OutSystems implies to use
an Advanced Query, since Simple Queries do not allow to select only some columns from
an entity (all the columns need to be selected) nor allow to assign values for a particular
field.

After identifying the set of most frequent patterns, referred in the model context as
features, we propose a new Simple Query model extending the current one with these set
of features. Defining an order of implementation of these features becomes necessary,
once in the software businesses / real markets although predictable it is impossible to
precise how many features can be implemented in a specific period of time. This con-
straint is due to several variables that can change over the time such as potential unex-
pected problems that may arise, the need to focus human resources in other tasks, among
others.

Once the order of implementation is defined, we have the challenge of starting to
propose a new model of Simple Queries with the specific pattern reflected on Listing 1.1,
and we discover that this feature could reduce the use of Advanced Queries in almost 18%.
Then, after discussing with the R & D team and iterating several times our proposal to
extend this feature, we come across an interface proposal for Simple Queries as shown in
Figure 1.2.

Figure 1.2: Mockup - extending Simple Queries with the first new feature

5

1. INTRODUCTION 1.3. Contributions

This interface partially increases the expressiveness of Simple Queries from Service Stu-
dio since it refers to the addition of only one feature, however we are looking for even
more expressiveness which guide us to propose also the extension of model with the
other features from the set of most frequent features defined.

1.3 Contributions

When we intend to drive a study, we need to consider the knowledge and applicabil-
ity which may arise from that, i.e. the contributions of the study. Regardless that our
main contribution is directly related with our primary goal of identify the key features of
a new visual query model, we have also done contributions in the field of analysis and
presentation of results. Next, we will present all the contributions that we have identified.

Develop an automatic analysis process to extract patterns from a large set of queries
exploiting some of the studied techniques, adapting these techniques to our context, and
provide a proof of concept prototype tool that realizes the process. The input of the tool
is a specific grammar file (with rules similar to standard SQL) and a set of queries that
obey the rules of this grammar.

Present the results of the automatic process. These results are composed by a list of the
patterns detected out of the set of queries and the due frequency of each pattern. It is
important to visualise these results to the development process as OutSystems designers
may use the tool to take more informed decisions on the sort of queries that should be
supported by the OutSystems Agile PlatformTM in the future.

Identify the key features of a new Simple Query model in the context of OutSystems
Agile PlatformTM based on the most frequent query patterns singled out by the automatic
process, and on the feasibility of supporting the development of such query patterns us-
ing simple intuitive interactions. As everything behind this is somehow SQL, we expect
that the identified key features at the basis of the model will be general enough to fit other
contexts whenever visual query models are of use.

1.4 Outline

In this Chapter we introduced the motivation of our work, including the respective in-
volved context, followed by our work description with some hints for the proposed so-
lution as well as the contributions we have identified.

In Chapter 2 we give an overview of OutSystems Agile PlatformTM as well as some
relevant elements from the visual language that it uses. These elements are related with
the query primitives that allow Agile PlatformTM to interact with the data layer. One of

6

1. INTRODUCTION 1.4. Outline

these primitives will be the focus of our main goal, which is to identify the key features
that should extend this primitive in order to improve its expressiveness.

Afterwards, in Chapter 3 we display the work carried out to help us taking supported
decisions in terms of features to extend the model and some technical details of our tool
that will allow us to look for specific patterns in a dataset. This dataset will appear with
the help of OutSystems R & D team that provided thousands of applications from their
clients, allowing to build the dataset of distinct queries to be analysed.

Our new model proposal based on the results from the analysis is described in Chap-
ter 4. This propose consists in stating some new features that would extend the current
Simple Query model from OutSystems Agile PlatformTM , and also propose the interface that
would be able to support each feature in the Platform.

Thereupon, in Chapter 5 we depart from a medium-fidelity prototype and present a
high-fidelity prototype submitted to usability tests. Then, we present the scenario created
on the usability tests coupled with feedback from testers, as well as a list of the top issues
extracted from the feedback.

Finally, in Chapter 6 we take some conclusions from our work. Besides, we present
several proposes to be addressed as future work fitting in the same topic.

7

1. INTRODUCTION 1.4. Outline

8

2
OutSystems Agile Platform

TM

In this chapter we present OutSystems flagship product, Agile PlatformTM , as well as some
important aspects from it once that the thesis is inserted in the context of this product.
During the explanation, we also present in detail the existing query primitives that are at
the core of this thesis work.

2.1 Agile PlatformTM& Service Studio

OutSystems Agile PlatformTM is composed by several heterogeneous parts that contribute
to integrate all the deployment and evolution cycle of web applications; focusing on a
specific component called Service Studio since it is there that are available the query prim-
itives to communicate with the data layer.

In OutSystems a web application project is known as an eSpace and the format used to
save eSpaces to disk is the OML that stands for OutSystems Markup Language (represented
by files .oml). Service Studio is the OutSystems Integration Development Environment
(IDE) that allows editing an eSpace as well as publishing it to a development environment,
to be tested and analysed, or publishing it to a production environment. Figure 2.1 shows
the development environment of Service Studio.

2.2 Visual Programming Language

A Domain Specific Language (DSL) [MHS05, vDKV00] is a programming language or ex-
ecutable specification language designed to express solutions to problems of a particular
domain, through appropriate notations and abstractions.

9

2. OutSystems Agile Platform
TM

2.2. Visual Programming Language

Figure 2.1: Development environment of Service Studio

Service Studio implements a graphical DSL designed to create web applications with
a high-level of abstraction. The constructions provided ease the interaction with the data
layer, the manipulation of data, and the definition of user interfaces. There are four main
high-level elements of the language, Web Screens and Web Blocks which define the inter-
face of an application, Action Flows that define the business logic needed to manipulate
data, and Entities that define the data model.

Web Screen and Web Blocks are elements of the eSpace used to produce HTML pages
where the user can interact through links, buttons, and forms.

Action Flows are designed using a collection of elements that graphically represent
the behaviour of an action. The elements available are assignments, queries, conditional
expressions, and loop statements. Figure 2.2 shows an example of an Action Flow which
retrieves to a Web Screen the list of Users stored in the database as well as their computed
average salary.

Figure 2.2: Example of an Action Flow

10

2. OutSystems Agile Platform
TM

2.2. Visual Programming Language

Hereupon, we present the language constructions provided in Service Studio from Ag-
ile PlatformTM that will be the focus of our work although there are much more construc-
tions:

• Simple Query Allows the developer to visually build an executable database query
(GetUsers node from Figure 2.2).

• Advanced Query Also allows the interaction with the data layer. However, instead
of a visual query builder, the developer writes its own query (GetAvgSalary node
from Figure 2.2). Both query primitives are explained in detail on the next section.

For more detailed information about the language constructions and Service Studio
please refer to Chapter Designing Actions in [Hel12].

2.2.1 Query primitives

As we have stated, currently, there are two ways in Agile PlatformTM to interact with the
data layer that we now explain further. Following the concept of its graphical DSL,
OutSystems provided its product with Simple Query, an easy, intuitive and visual fea-
ture to produce queries selecting data. The Simple Queries have advantages mainly in
what concerns usability and validation, mostly due to the visual query builder and the
TrueChangeTM 1.

Figure 2.3: Example of a Simple Query

Figure 2.3 shows an example of a Simple Query that queries the data model for a spe-
cific department with a given Id. Note the left side of the Simple Query window where

1TrueChange
TM

is an available feature that is automatically executed while the developer is designing the
application. It is responsible to check for errors and possible warnings in order to validate the eSpace, just
allowing the developer to Run or Publish the eSpace after it is valid.

11

2. OutSystems Agile Platform
TM

2.2. Visual Programming Language

the structure of the query is defined, like input parameters, involved entities, conditions
to limit the result, and sorting.

However, we can identify some limitations on Simple Queries, i.e. actions that are not
possible to do using the current Simple Query model, such as:

• Definition of columns from the output of the query is not supported;

• Use of aggregate functions is also not supported (as well as Group by clause), ex-
cluding Count function;

• Arrange the execution order of joins;

• Use complex join conditions, composed by more than one condition for example.

Another way to interact with data layer is through an Advanced Query. This query
primitive allows the developers to write their own queries with all the needed expres-
siveness, using standard SQL (roughly). The difference to the standard SQL is mainly
around the curly brackets surrounding each entity, in order to ease the identification of
entities from the query by Agile PlatformTM . The query built on example from Figure 2.3
can also be expressed as an Advance Query as we can see on Figure 2.4. Note the folder
Output Structure, it restricts the SQL query written since the selected columns on the
query need to be consistent with the attributes from the entity or structure that is selected
on the Output Structure folder.

Figure 2.4: Example of an Advanced Query

It is possible to state that every imaginable SQL query can be done as Advanced Query,
however not so easily comparing with Simple Queries and since it demands knowledge

12

2. OutSystems Agile Platform
TM

2.3. Discussion

about SQL. Furthermore, it is not possible to have validation system so strict as in Simple
Queries which can lead users to produce queries with errors not trackable on the fly.

2.3 Discussion

In this Chapter we have presented an overview over OutSystems product, OutSystems Ag-
ile PlatformTM , as well as some important aspects of this product. We focused on its main
component, Service Studio, that is the IDE that allows developers to build applications
composed by different modules.

Afterwards, we have displayed some important facts of OutSystems DSL, visual lan-
guage used on Service Studio. This language has several kinds of nodes but we lay empha-
sis on the query primitives since they are the core of our development so as to improve
the expressiveness of Agile PlatformTM , more specifically on its way of interacting with the
data layer.

In the next Chapter, we introduce the analysis process that we need to carry out in
order to understand what patterns are reflected in the dataset of queries from our study.

13

2. OutSystems Agile Platform
TM

2.3. Discussion

14

3
Analysis

This chapter starts to present a pre-analysis stage called Extraction where we explain how
to obtain the dataset of queries through the extraction of distinct queries from several ap-
plications from different OutSystems clients. The remaining sections focus on the detailed
analysis over the dataset and the respective obtained results, where we start with an ad-
vanced SQL term histogram that is not powerful and structured enough for our purpose
and lead us to the SQL parser.

After developing the parser, we use it to help us searching for patterns via a tool cre-
ated for that purpose. The parser allow us also to search for specific patterns previously
identified and mentioned by OutSystems Research and Development (R&D) team as well
as other interesting patterns. However, we want to go deeper trying to find unidentified
patterns and we propose to follow a clustering algorithm from [LCMY04] that allows to
group queries from the dataset regarding their structure. Once the queries are grouped,
we are ready to analyse some clusters through a visual analysis and we can also present
the respective results.

Moreover, we reveal a possible way to analyse the initial global dataset via a chart
tool and we point out some aspects that can be extracted from the charts. Finally, we
present some previous studies related with the use of SQL in industrial applications.

3.1 Pre-analysis - Extraction

To support building a model based on the percentage of queries that have certain pattern
we need to have a dataset. Our test set is obtained as an outcome of the process illustrated
in Figure 3.1.

15

3. ANALYSIS 3.1. Pre-analysis - Extraction

1st stage

DB DB

Query
Collector

(OutSystems App)

OML file XML text

2nd stage

DB DB
XML text Distinct queriesDistinct

Query
Collector
(C# Program)

3rd stage

DB
Parse TreeSQL

Parser
(C# Program)

Distinct query

File

DB

Figure 3.1: Extraction process - 1st stage

In the first stage (Figure 3.1) we create an OutSystems Application called Query Col-
lector that given an OML file, and using an extension previously provided by OutSystems
R & D team, stores in the database the XML text, that results as output of the OML file
conversion. This XML is not more than all the elements needed in the corresponding Ap-
plication, from data model entities to all the actions that are presented in the application,
through all the queries used.

1st stage

DB DB

Query
Collector

(OutSystems App)

OML file XML text

2nd stage

DB DB
XML text Distinct queriesDistinct

Query
Collector
(C# Program)

3rd stage

DB
Parse TreeSQL

Parser
(C# Program)

Distinct query

File

DB

Figure 3.2: Extraction process - 2nd stage

In the second stage of the process (Figure 3.2), we are dealing with each XML text
correspondent to an eSpace, and we create a C# program called Distinct Query Collector
that treats the XML text and obtains just the relevant nodes, i.e. the nodes corresponding
to Advanced Queries. After having all the nodes, we look at each one (composed by query
name, query key, SQL code, parameters, etc.) and if we have already this query in the
database we ignore it and go to the next one. To distinguish the queries we use the criteria
illustrated in Figure 3.3.

Essentially, we compare the query with all the queries belonging to the same eSpace
that have the same key. If the SQL code is not the same we have interest in storing this
new query because some change happened over time.

Then, after all this previous process occurs, we obtain a filled table with all the queries
from our dataset.

16

3. ANALYSIS 3.2. Advanced SQL Term Histogram

Figure 3.3: Getting distinct queries

3.2 Advanced SQL Term Histogram

This analysis addresses the occurrence of terms and involves a C#-based program to pro-
duce a term histogram. This term histogram is important to have an idea about the fre-
quency of a specific term. We count both total occurrences and total queries with at least
one occurrence of the term. These terms can be single words or composed by more than
one word, such as Group By, Order By, any kind of Joins, among others.

With this histogram it is possible to get values closer to the real ones, since we can
catch some words that using the method contains() from a string we could miss. Fig-
ure 3.4 shows the obtained histogram to some terms that we consider important (inter-
esting/more frequent).

However, the figure shown are not enough and as precise as we need, since we cannot
determine the number of occurrences of some specific pattern, e.g. two Inner Joins in
a row in the same query, or the frequency of queries with inner queries/subqueries with
precision. The query from Listing 3.11 has a pattern that can not be distinguished and
detected using this approach in order to determine the number of occurrences of that
pattern.

Listing 3.1: SQL example with a pattern that cannot be detected using term histograms
1 SELECT * FROM {User}

2 Inner Join {EntityA} on ({User}.EntityAId = {EntityA}.Id)

3 Inner Join {EntityB} on ({User}.EntityBId = {EntityB}.Id)

4 WHERE {User}.Id = 10

One of the patterns present in the query is the use of two successive Inner Joins. To
discover that, we need to follow a different approach from the term histogram, therefore
we chose to use a Parser that we go on to explain with detail in the following section.

3.3 SQL Parser

In this section we introduce the SQL Parser that we use on the third stage of the extraction
process.

1Note that the queries presented have some differences from the common SQL (using a variant of SQL),
mainly around the definition of tables since these tables are surrounded by curly brackets. It happens to
help the compiler to easier recognize the tables.

17

3. ANALYSIS 3.3. SQL Parser

Total&queries&in&the&test/set 100% 27439

Term Number&of&queries&with&this&term Total&occurences
from 92% 25169 40030
where 89% 24462 35997
select 86% 23600 37947
and 61% 16841 83344
on 51% 13872 56511
order9by 38% 10353 10826
inner9join 37% 10055 30353
and9(32% 8681 37379
or 31% 8543 41130
select9(22% 5980 7498
where9(21% 5770 7352
left9join 18% 4963 14901
count 17% 4587 5849
like 16% 4292 11945
in 15% 4201 6287
on9(14% 3890 11730
distinct 14% 3882 4670
in9(14% 3775 5625
as 14% 3714 21039
null 13% 3653 7923
not 12% 3316 4803
is 11% 3041 6032
or9(11% 2898 9304
from9(10% 2704 5020
end 9% 2503 6893
then 9% 2494 9231
case 9% 2491 6896
else 9% 2398 6087
join 8% 2320 9375
group9by 8% 2251 2972
delete 8% 2213 3148
sum 8% 2115 5728
case9when 7% 2033 5097
set 7% 2012 2117
update 7% 1970 2123
|| 6% 1685 8453
a 5% 1280 1646
union 5% 1249 2290
exists 5% 1247 1892
exists9(4% 1211 1765
id 4% 1117 2066
desc 4% 1067 1458
when 4% 1000 4141
asc 4% 963 1291
join9(3% 902 1463
rownum 3% 879 936
top 3% 857 1616
max 3% 813 1464

Figure 3.4: Advanced SQL Term Histogram

18

3. ANALYSIS 3.3. SQL Parser

1st stage

DB DB

Query
Collector

(OutSystems App)

OML file XML text

2nd stage

DB DB
XML text Distinct queriesDistinct

Query
Collector
(C# Program)

3rd stage

DB
Parse TreeSQL

Parser
(C# Program)

Distinct query

File

DB

Figure 3.5: Extraction process - 3rd stage

In the third stage exposed in Figure 3.5, we start getting the distinct queries from
the database and parsing them using the SQL Parser. The result of the parse process is
a parse tree, and to get a better performance during the analysis in real time we need
to choose between storing it in the database or save it in memory during the analysis
execution. Since we were dealing with much better results in terms of time response if
we have the tree stored in the database, reducing from minutes to seconds (between 10
and 20 seconds), this was our choice (also referred in Section 3.4).

Now, regarding the parser per se, we start with the SQL Parser (LALR - LookAhead LR
parser) used in Service Studio that uses a generic Gold Parser Engine (that it is explained
better below). The goal is try to find a way to build a parse tree, more precisely using
XML as the final output of this parse.

The Gold Parser is a free parsing system, and it can be used by anyone to develop
their own programming languages, scripting languages and interpreters. Day after day,
it tries to be a development tool that can be used with various programming languages
and on multiple platforms [Coo12]. It is composed by three logical components, the
Builder, the Engine and a Compiled Grammar Table file (.cgt) definition which acts as an
intermediary between the Builder and the Engine (Figure 3.6) [Wik12].

Figure 3.6: Gold Flow

In the Gold website we have some Gold Parser Engines available to a numerous pro-
gramming languages that can be freely used. So, after taking a look at all available En-
gines and according to our needs, we find Calitha C# Gold Parser Engine. It is an engine
that “can be used to parse text and construct a parse tree that can be traversed in an object
oriented manner” [Cal09]. It is possible to integrate it with some tool, using GOLD Parser
Builder (downloadable from the Gold Parser website) to construct a grammar following

19

3. ANALYSIS 3.3. SQL Parser

their syntax and after that, create a compiled grammar table file (.cgt)2. Afterwards, such
file can be loaded into the Calitha Gold Parser Engine and tested with some input that
follows the specified grammar [Cal09].

The primary output obtained from the parser, not doing any change, is a nonterminal
token. Each nonterminal token contains several properties such as the rule that caused
the reduction, the symbol that it represents and, maybe the most important, an array
of tokens that can be terminals or nonterminals too, representing the tokens that are re-
duced. This last property mentioned is crucial afterwards to build the XML structure that
we intend to each query.

So, at first sight, we would like to have a root node directly related with the nonter-
minal token returned as parser output. After that, we can add their children and grand-
children depending if they are terminal or nonterminal tokens, recursively.

According to our needs, we dump the nonterminal token from output into an XML
tree. As example, in Listing 3.33 we present the XML tree generated after using our
program to parse the query from Listing 3.2.

Listing 3.2: SQL example to test the generation of a parse tree
1 SELECT * FROM {User} WHERE id > 5

Listing 3.3: XML parse tree resulted from a Select statement
1 <Select_Stm>

2 <Terminal symbol="SELECT" value="SELECT">

3 </Terminal>

4 <Restriction>

5 </Restriction>

6 <Column_Source>

7 <Terminal symbol="*" value="*">

8 </Terminal>

9 </Column_Source>

10 <Into_Clause>

11 </Into_Clause>

12 <From_Clause>

13 <Terminal symbol="FROM" value="FROM">

14 </Terminal>

15 <Table_Alias>

16 <Terminal symbol="VirtualTable" value="{User}">

17 </Terminal>

18 <ExpandInline>

19 </ExpandInline>

20 </Table_Alias>

21 </From_Clause>

22 <Where_Clause>

2Compiled grammar table file is platform and programming language independent, allowing it to be
loaded by any Engine implementation, and after that it is possible to use its information.

3Note that each time we parse a query to show as example, or even as case study, we use a grammar from
OutSystems and related to the set of queries in study

20

3. ANALYSIS 3.4. Searching for Patterns using XPath

23 <Terminal symbol="WHERE" value="WHERE">

24 </Terminal>

25 <Pred_Exp>

26 <Simple_Id>

27 <Terminal symbol="SimpleId" value="id">

28 </Terminal>

29 </Simple_Id>

30 <Terminal symbol=">" value=">">

31 </Terminal>

32 <Value>

33 <Terminal symbol="IntegerLiteral" value="5">

34 </Terminal>

35 </Value>

36 </Pred_Exp>

37 </Where_Clause>

38 <Group_Clause>

39 </Group_Clause>

40 <Having_Clause>

41 </Having_Clause>

42 <Order_Clause>

43 </Order_Clause>

44 </Select_Stm>

At this moment, since we are able to parse the dataset of queries and get structured
data representing the query, we can start understanding and questioning our dataset
using a tool that we have created to look for patterns. We go on to explain some details
about this search for patterns in the following section.

3.4 Searching for Patterns using XPath

As we previously shown our dataset of queries is structured as XML trees, thus we can
use XPath to do searches over XML trees since it is a powerful and advanced way to look
for specific nodes or sequence of nodes in a XML tree. Then, we need to adapt our tool
by adding a search feature that accepts an XPath expression, and after that looks over all
the dataset of queries for XML trees that match such expression. Note that a sequence
of XML nodes is considered a pattern, which means that a XPath expression can also
represent a pattern. In the end, we obtain not only the set of queries matching with such
expression, but also the percentage of queries (occurrence frequency) from the dataset
that contains such pattern.

From the beginning, we knew about the possibility to face some problems and the
need to take into account the performance of the operation of searching on the complete
dataset of queries. And, as expected, after trying to analyse all the queries at runtime
(parse them and apply the XPath), we get a problem. Performance improvements are
mandatory since we are getting a timeout during the HTTP Request due to iterate all the
list of queries, around 27,000.

21

3. ANALYSIS 3.4. Searching for Patterns using XPath

So, the next step is to identify if we can and where we can improve this process of
parse the query and analyse its XML tree against the XPath.

Then, we conclude, once again as expected, that the most of time of all the process
execution is spent to parse the query and return the XML tree (getting around 80 seconds
to parse 7,000 queries, from the total of 81 seconds to parse and test the XPath of the same
set).

Therefore, we change the database to store the XML parse tree, so the parsing only has
to be done once for each query, distinguishing if it has some syntax error or not. When
it has a syntax error, instead of storing an XML parse tree, we store "Syntax error", as it is
useful when we want to collect just the ones syntactically correct.

The result of this development option is an interesting ⇡15 seconds of response time
(which means that this time there is no HTTP Request timeout), executing the XPath
expression and analysing it against all the XML parse trees from the database.

Since XPath is not the only query language that currently exists, we present in the
next section a brief overview over different query languages that could allow to perform
searches looking for patterns on the dataset (all related with XML since we have the
queries presented as XML trees). Besides, we also introduce some information about
SQL since it can also be considered as a query language, and it is directly related with
our dataset.

3.4.1 Query Languages

SQL [SKS10] is a programming language designed for managing data in relational databases
and has several parts such as Data-definition language (DDL), providing commands to
define and modify relation schemas and to delete relations; Data-Manipulation Lan-
guage(DML), the reason for SQL to be inserted in this section, that includes a query
language based on both relational algebra and the tuple relational calculus (offering oper-
ations to insert, delete and modify rows from the database); View definition; Transaction
control; Embedded and dynamic SQL, in order to be able to integrate it with other pro-
gramming languages; Integrity, defining constraints that data from the database have to
satisfy; and Authorization, specifying access rights to relation and views.

XPath [HM04, Sim02] has the main goal to provide a common syntax and semantics for
functionality shared between XSL Transformations and XPointer. Furthermore, through
the writing of expressions it allows to identify parts of XML documents, e.g. some par-
ticular element that we are looking for. These expressions allow to apply conditions in
order to filter the result as detailed as desired, looking for a sequence of elements with a
specific attribute value for example.

XQuery [Wal07] arose with the expansion of the XML databases and data stored in struc-
tured XML documents. Furthermore, it appears to address some issues that XPath can

22

3. ANALYSIS 3.5. Specific Domain OutSystems

not deal with such as to allow to use functions and recursion, join XML nodes in the re-
sult, structure the result set of some executed query, providing expression for iteration,
for binding variables to intermediate results, for ordering, among others.

TQL [CGA+02, CG04] is another query language that can be used to query semistruc-
tured data, such as XML files. It emerged aiming to combine the expression of types,
constraints, and queries in just one language, and to use this union of features for opti-
mization and error-checking purposes. TQL queries are more "declarative" than queries
in comparable languages, making some of them much easier to express and allowing the
adoption of better optimization techniques. Although the authors conclude that the ex-
pression of queries which involve recursion, negation, or universal quantification, keeps
in TQL a clear declarative nature (against other languages that are forced to adopt a more
operational approach), there is still one important issue that could be addressed in the fu-
ture, the fact that TQL is based on an unordered nested multisets data model.

Relation with our approach Our dataset is composed by queries written using a syntax
closer to SQL. XPath or XQuery could be interesting possibilities to be used in the tool to
find the specific patterns that we are looking for and as is explained in previous section.
TQL could be also a possible approach to follow to query the dataset for patterns, how-
ever what it has to offer is much more that what we need since it could be used to check
properties, extract tags that satisfy a property, query a document to get some specific el-
ement, among others. Hereupon, the best solution could be a simplest language in terms
of what we can achieve with it, in order to turn the tool easier to use.

In the next section we navigate to the specific domain OutSystems where we have
the need to look for specific patterns that are known due to, for example, development
choices taken on an early phase of implementation of the product, OutSystems Agile
PlatformTM .

3.5 Specific Domain OutSystems

In the specific domain of OutSystems, they have some concerns and interest about spe-
cific patterns that are reported by some customers that could be useful on Simple Queries
or some particular details reported by OutSystems developers during the development
stage or even when reviewing some past development choices. Then, in the following
sections we present the common patterns from the dataset as well as two specific cases
from OutSystems explaining the path that we should follow to get the answer to them. All
the presented examples are related with the entities from Figure 3.7 and their respective

23

3. ANALYSIS 3.5. Specific Domain OutSystems

data is depicted in Figure 3.8. This example was created to simplify the way to under-
stand the patterns that we are looking for, and also because we cannot explicitly present
data from OutSystems due to privacy policies.

Figure 3.7: Entities Diagram used as example in the next presented cases

UsersUsersUsersUsers

Id Name RoleId DepartmentId

1 Serge 1 null

2 JCC 1 1

3 LC 2 1

4 LNG null 3

PK FK FK

RolesRolesRoles

Id Name Description

1 Teacher Should give pratical and
theoretical lessons

dfvbrewerewrewertrewertygf
dsdfghtrtft2 President Manages all directors

3 Director Manages all teachers from a
specific department

PK

DepartmentsDepartments

Id Name

1 Informatic

2 Mathematics

3 Physic

PK

UsersUsersUsersUsers

Id Name RoleId DepartmentId

1 Serge 1 null

2 JCC 1 1

3 LC 2 1

4 LNG null 3

PK FK FK

RolesRolesRoles

Id Name Description

1 Teacher Should give pratical and
theoretical lessons

dfvbrewerewrewertrewertygf
dsdfghtrtft2 President Manages all directors

3 Director Manages all teachers from a
specific department

PK

DepartmentsDepartments

Id Name

1 Informatic

2 Mathematics

3 Physic

PK

UsersUsersUsersUsers

Id Name RoleId DepartmentId

1 Serge 1 null

2 JCC 1 1

3 LC 2 1

4 LNG null 3

PK FK FK

RolesRolesRoles

Id Name Description

1 Teacher Should give pratical and
theoretical lessons

dfvbrewerewrewertrewertygf
dsdfghtrtft2 President Manages all directors

3 Director Manages all teachers from a
specific department

PK

DepartmentsDepartments

Id Name

1 Informatic

2 Mathematics

3 Physic

PK

Figure 3.8: Data from each entity used in the example

3.5.1 Common patterns

Since we can use XPath to analyse all the trees generated from our dataset of queries, it is
possible to check what are the most simple patterns there. After finding a pattern, we can
check other patterns excluding the ones that we have found, and if we do this pattern by
pattern, we isolate them and we can present the frequency for each one.

In Figure 3.9 is shown how we have done this process of getting all the common pat-
terns contained in the dataset. We started looking for all the queries contained in the
dataset excluding the ones with Select_Stm as root element, and we got a set of queries
that are a fragment of the dataset. Then, we looked inside this fragment and we found
queries with Update_Stm as root element, which lead us to another search over the com-
plete dataset using the tool, and excluding this time queries with Select_Stm and Up-
date_Stm as root elements obtaining a new set of queries. And so on, until we perform a
search looking for queries excluding all the different root elements found until then and
we get an empty set.

Once we already have each one of the root elements (common patterns) that compose
our dataset, we can analyse the occurrence of each one using in our tool a simple XPath
query started with "/" and followed by the name of the element, e.g. /Select_Stm. Then,
Figure 3.10 depicts the corresponding occurrence frequency.

24

3. ANALYSIS 3.5. Specific Domain OutSystems

Select_Stm
Update_Stm

Insert_Stm

Delete_Stm...

/* /*[not(..=/Select_Stm)]

✓Select_Stm

Update_Stm
Insert_Stm

Delete_Stm
...

Insert_Stm

Delete_Stm
...

✓Select_Stm
✓Update_Stm

/*[not(..=/Select_Stm) and
not(..=/Update_Stm)]

...

✓Select_Stm
✓Update_Stm
✓Insert_Stm
✓Delete_Stm
✓QueryList
✓Query
✓Truncate_Stm

∅

/*[not(..=/Select_Stm) and ... and
not(..=/Truncate_Stm)]

Starting with this
XPath expression

Test-set

Figure 3.9: Discovering the different roots from our dataset

0%

25%

50%

75%

100%

Common Patterns

Select_Stm ! (84.04%)
Delete_Stm ! (7.93%)
Update_Stm ! (6.72%)
Insert_Stm ! (0.68%)
QueryList ! (0.57%)
Truncate_Stm (0.05%)
Query (0.01%)

Figure 3.10: Chart with occurrence frequency of each common pattern

25

3. ANALYSIS 3.5. Specific Domain OutSystems

In Figure 3.10 is shown that Select statements are the most used during the writing
of SQL code on Advanced Queries in Service Studio with around 84% from 25,081 queries
without Syntax error. Other queries with a meaningful frequency are the Delete and Up-
date statements, with 7.9% and 6.8% respectively. The other shown patterns together have
less than 2% of occurrences, which means that they are really uncommon to use.

3.5.2 First case study - Complex Joins

The first situation that the R & D team exposes is related with a specific kind of join, since
in the Simple Queries if we try to change the default join condition introducing another
condition(s) or even with just one condition that is not an equality (or if it is an equal-
ity, it is not a Entity.Column = Entity2.Column equality), Service Studio automatically
changes it from the chosen Join to an implicit join where the previous condition is changed
to a condition in the Where Clause (this is the concept of an implicit join, where the tables
on the query are separated by commas and joined through the conditions presented in
the Where Clause). So, it introduces some constraints on the Simple Queries, particularly
on Outer Joins with more than one condition (on Inner Joins it is not a problem since, in
Service Studio, Inner Joins can be easily represented as Implicit Joins).

We can use the query from Listing 3.4 as example to this case, that should return all
the users with Teacher’s Role (RoleId = 1) and all the other kind of Roles (just the roles,
not the users with those roles).

Listing 3.4: Example of query using a Complex Join
1 SELECT {Users}.*, {Roles}.* FROM {Roles}

2 left outer join {Users}

3 on ({Users}.[roleId] = {Roles}.[Id] and {Roles}.[Id] = 1)

So, if we are trying to present it on Service Studio, we start building a query with a
Left Join, Figure 3.11. After that, we try to alter the condition from the Outer Join, and, as
it is possible to see in Figure 3.12, Service Studio changes from Join to Condition, and also
that the SQL generated is different from the desired, using the Implicit Join as explained
before.

To accomplish what was intended, the user is forced to use the Advanced Query as
Figure 3.13 depicts.

Therefore, this particular case generates the question “What is the occurrence fre-
quency of a query with On clauses from an outer join that are composed by more than
one comparison or have just one comparison but that it is not a equality between values
from two columns of distinct Entities?”

The answer to this question it is not simple and needs to be further studied, and since
we already can execute XPath queries to our dataset of XML trees, we need to understand
how to migrate the previous formulated question to an XPath expression. And, nothing
better to study this practical case that starting with an example. The XML parse tree from
Listing 3.5 was generated after parse the query example in Listing 3.4.

26

3. ANALYSIS 3.5. Specific Domain OutSystems

Figure 3.11: Simple Query using Outer Join with one condition in On Clause

Figure 3.12: Simple Query using Outer Join changed to Implicit Join by Service Studio

27

3. ANALYSIS 3.5. Specific Domain OutSystems

Figure 3.13: Advanced Query using Outer Join with multiple conditions on On Clause

Listing 3.5: XML parse tree from query using On clause
1 <Select_Stm>

2 <Terminal symbol="SELECT" value="SELECT"/>

3 <Restriction/>

4 <Column_Source>

5 <Terminal symbol="*" value="*"/>

6 </Column_Source>

7 <Into_Clause/>

8 <From_Clause>

9 <Terminal symbol="FROM" value="FROM"/>

10 <Simple_Join>

11 <Table_Alias>

12 <Terminal symbol="VirtualTable" value="{USER}"/>

13 <ExpandInline/>

14 </Table_Alias>

15 <Join_Type>

16 <Terminal symbol="LEFT" value="left"/>

17 <Outer>

18 <Terminal symbol="OUTER" value="outer"/>

19 </Outer>

20 <Join_Hint/>

21 <Terminal symbol="JOIN" value="join"/>

22 </Join_Type>

23 <Table_Alias>

24 <Terminal symbol="VirtualTable" value="{ROLE}"/>

25 <ExpandInline/>

26 </Table_Alias>

27 <Terminal symbol="ON" value="on"/>

28 <Value>

29 <Terminal symbol="(" value="("/>

30 <And_Exp>

31 <Pred_Exp>

32 <Id>

33 <Terminal symbol="ComposedId" value="{USER}.[roleId]"/>

34 </Id>

28

3. ANALYSIS 3.5. Specific Domain OutSystems

35 <Terminal symbol="=" value="="/>

36 <Id>

37 <Terminal symbol="ComposedId" value="{ROLE}.[id]"/>

38 </Id>

39 </Pred_Exp>

40 <Terminal symbol="AND" value="and"/>

41 <Pred_Exp>

42 <Id>

43 <Terminal symbol="ComposedId" value="{USER}.[col3]"/>

44 </Id>

45 <Terminal symbol="=" value="="/>

46 <Id>o

47 <Terminal symbol="ComposedId" value="{ROLE}.[col3]"/>

48 </Id>

49 </Pred_Exp>

50 </And_Exp>

51 <Terminal symbol=")" value=")"/>

52 </Value>

53 </Simple_Join>

54 </From_Clause>

55 <Where_Clause/>

56 <Group_Clause/>

57 <Having_Clause/>

58 <Order_Clause/>

59 </Select_Stm>

As we can see inside <Simple_Join>, we have always a couple of nodes and, particu-
larly, an <Outer> node inside <Join_Type> if we are dealing with an (Left, Right or Full)
[Outer] Join, the presence of this <Outer> node is enough to understand that the query
has a Left, Right or Full Outer Join or a Left, Right or Full Join, regardless if it is or is not
child (this happens due to the rules from the used grammar). So, one of the conditions to
have in mind is the presence of a <Simple_Join> as parent of a <Join_Type> and, in its
turn, being this last node parent of an <Outer> node.

Another important point that should be kept in mind is the presence or not of paren-
theses after the On clause, therefore we should be looking for trees with an <And_Exp>
element optionally preceded by a Value node (if we have this node it means that we are
facing a On clause surrounded by parentheses), inside <Simple_Join> element.

Last but not least, the second half of the question related with the occurrence of
queries with an On clause with just a comparison that is not a equality. To confirm
that, we need to access the value from the symbol attribute of the <Terminal> child of
<Pred_Exp>, as this value represents the comparison operator used in the comparison
expression, and it should be different from "=" or in the case that it is equals to ’=’, there
should be also an element <Value> that is child of <Pred_Exp>. If the element <Value>
is there it means that the equality is between a column from an entity (majority of the
cases) and a parameter or an integer value (which is different from the equality between
two columns of different entities).

29

3. ANALYSIS 3.5. Specific Domain OutSystems

After the previous analysis, it is possible to define the XPath expression from List-
ing 3.6 that retrieves the answer to what we are looking for.

Listing 3.6: XPath expression to filter of queries with a Complex Join
1 /Select_Stm/From_Clause//Simple_Join

2 [Join_Type/Outer and

3 ((And_Exp or Value/And_Exp) or (Or_Exp or Value/Or_Exp) or

4 (Pred_Exp/Terminal/@symbol!=’=’ or Value/Pred_Exp/Terminal/@symbol!=’=’) or

5 (Pred_Exp/Terminal/@symbol=’=’ and Pred_Exp/Value) or

6 (Value/Pred_Exp/Terminal/@symbol=’=’ and Value/Pred_Exp/Value))]

Figure 3.14 presents the obtained result from this XPath expression in terms of relative
frequency. About 1,525 queries follow this specific pattern which is a meaningful amount,
6.09% from the total queries of the dataset without syntax error (25,081), and 7.24% from
the total Select queries (21,077) .

0%

2.00%

4.00%

6.00%

8.00%

Relative frequency to all Select queries (7.24%)
Relative frequency to all queries from dataset (6.09%)

Figure 3.14: Chart with occurrence frequency of pattern Complex Join

3.5.3 Second case study - specific use of Outer Join followed by Inner Join

Other situation that cannot be done simply using the Simple Queries on Service Studio is to
define the order that we want the joins to occur as we show on the next figures.

If we would like to do the query from Listing 3.7 using the Simple Query feature
available, it would seem to be easy. However, in this feature, the order that we see in the
section Conditions (see Figure 3.15 and compare with the generated SQL, Join with Role
in the conditions come first however it is the last join in the SQL) from the window does
not matter since every time that the query is executed in Service Studio the Inner Joins have
priority over other kind of joins.

Listing 3.7: Example of query using Outer Joins and Inner Joins
1 SELECT * FROM {USER}

2 right outer join {ROLE} on ({USER}.[roleId] = {ROLE}.[id])
3 inner join {DEPARTMENT} on ({USER}.[depId] = {DEPARTMENT}.[id])

30

3. ANALYSIS 3.5. Specific Domain OutSystems

Figure 3.15: Simple Query from Service Studio

Instead of the intended SQL code (from Listing 3.7), the Simple Query in Figure 3.15
generates the SQL from Listing 3.8.

Listing 3.8: SQL generated by the Simple Query produced
1 SELECT * FROM {USER}

2 inner join {DEPARTMENT} on ({USER}.[depId] = {DEPARTMENT}.[id])

3 right outer join {ROLE} on ({USER}.[roleId] = {ROLE}.[id])

Actually, the only way to do this is through the use of an Advanced Query, expressing
there the exact code from Listing 3.7, as we do on Figure 3.16.

Figure 3.16: Advanced Query to force the Joins order

In some particular cases (e.g. presence of null values), the result can obviously be
different since we have a query with a Right Outer Join and the left table from this join is
used in a subsequent Inner Join (Figure 3.17).

31

3. ANALYSIS 3.5. Specific Domain OutSystems

Figure 3.17: Screen showing the result of Simple Query and Advanced Query

Then, another emerging question appears, “What is the occurrence frequency of a
query with Left (Right) Joins succeeded by Inner Joins where the Right (Left) Join in-
volved entity is also used in the On clause of the Inner Joins, in such a way that the
joins’ order will matter during query processing?”.

To look for the correct XPath expression to this particular case we focus in the example
from Listing 3.7. Below follows the XML tree resulted from the parse of that SQL query.

Listing 3.9: XML parse tree from query using Outer Joins and Inner Joins
1 <Select_Stm>

2 <Terminal symbol="SELECT" value="SELECT"/>

3 <Restriction/>

4 <Column_Source>

5 <Terminal symbol="*" value="*"/>

6 </Column_Source>

7 <Into_Clause/>

8 <From_Clause>

9 <Terminal symbol="FROM" value="FROM"/>

10 <Simple_Join>

11 <Simple_Join>

12 <Table_Alias>

13 <Terminal symbol="VirtualTable" value="{USER}"/>

14 <ExpandInline/>

15 </Table_Alias>

16 <Join_Type>

17 <Terminal symbol="RIGHT" value="right"/>

18 <Outer>

19 <Terminal symbol="OUTER" value="outer"/>

20 </Outer>

21 <Join_Hint/>

22 <Terminal symbol="JOIN" value="join"/>

23 </Join_Type>

24 <Table_Alias>

32

3. ANALYSIS 3.5. Specific Domain OutSystems

25 <Terminal symbol="VirtualTable" value="{ROLE}"/>

26 <ExpandInline/>

27 </Table_Alias>

28 <Terminal symbol="ON" value="on"/>

29 <Value>

30 <Terminal symbol="(" value="("/>

31 <Pred_Exp>

32 <Id>

33 <Terminal symbol="ComposedId" value="{USER}.[roleId]"/>

34 </Id>

35 <Terminal symbol="=" value="="/>

36 <Id>

37 <Terminal symbol="ComposedId" value="{ROLE}.[id]"/>

38 </Id>

39 </Pred_Exp>

40 <Terminal symbol=")" value=")"/>

41 </Value>

42 </Simple_Join>

43 <Join_Type>

44 <Terminal symbol="INNER" value="inner"/>

45 <Terminal symbol="JOIN" value="join"/>

46 </Join_Type>

47 <Table_Alias>

48 <Terminal symbol="VirtualTable" value="{DEPARTMENT}"/>

49 <ExpandInline/>

50 </Table_Alias>

51 <Terminal symbol="ON" value="on"/>

52 <Value>

53 <Terminal symbol="(" value="("/>

54 <Pred_Exp>

55 <Id>

56 <Terminal symbol="ComposedId" value="{USER}.[depId]"/>

57 </Id>

58 <Terminal symbol="=" value="="/>

59 <Id>

60 <Terminal symbol="ComposedId" value="{DEPARTMENT}.[id]"/>

61 </Id>

62 </Pred_Exp>

63 <Terminal symbol=")" value=")"/>

64 </Value>

65 </Simple_Join>

66 </From_Clause>

67 <Where_Clause/>

68 <Group_Clause/>

69 <Having_Clause/>

70 <Order_Clause/>

71 </Select_Stm>

In this case, it is not possible to apply directly XPath to get an answer at this mo-
ment since we need to get some attribute values from particular nodes and use them to

33

3. ANALYSIS 3.6. Clustering Phase

compare with other attribute values from different nodes. This means that something
additional is needed on the tool such as variables to assign the values, for example.

The closer XPath expression that is possible to build is the one that we present in
Listing 3.10, which retrieves all the queries that have Outer Joins succeeded by Inner Joins.

Listing 3.10: XPath expression to filter particular queries using Outer and Inner Joins
1 /Select_Stm//Simple_Join

2 [Simple_Join/Join_Type/Outer and Join_Type/Terminal/@symbol="INNER"]

The sub-set that we intend to get is embedded in the set of queries obtained with the
previous expression. Thus, a possible next approach is to understand which tables are
involved in the Outer Join and check if they are used in the succeeded Inner Joins.

Discussion on the case studies

As shown, the dataset is mainly composed by Select statements, and it is the base of our
case studies. The case studies and the subsequent analysis aim to improve the expres-
siveness of the visual query builder, and it only regards the selection of data.

In terms of the question that came from the first case study and taking into account
the current version of our tool, we can get the answer about the occurrence frequency
of queries with Complex Joins, a specified kind of On clause condition from an Outer Join.
This Complex Join pattern present a relevant frequency on the dataset, then it is a potential
target to integrate the list of features that will extend the new model of the visual query
builder.

However, the XPath feature provided in our tool is not enough to answer the second
case study since it does not allow us to identify some aspects occurring after a specific
element. This creates an opportunity for future work since the tool could be improved,
however it is need to find a suitable solution to overcome XPath limitations and to find a
proper answer.

These case studies were presented by OutSystems regarding decisions taken a few
years ago, in a early phase of the development of the Agile PlatformTM product. At the
time these decisions were taken, they were good approaches according to the market and
user needs. However, at this moment, R & D team starts questioning if such decisions
still make sense, if they are or are not limiting too much the expressiveness of Simple
Queries and if such decisions need to be reviewed.

3.6 Clustering Phase

In this section we explain in detail the clustering phase. To this phase we have defined as
our main goal to automatically discover new patterns.

In order to properly cluster our data, we studied several algorithms and decided ini-
tially to implement a simplified variant of the algorithm described in [LCMY04]. The

34

3. ANALYSIS 3.6. Clustering Phase

authors describe and show it as efficient and scalable, which is exactly what we need in
our context since we are dealing with a large dataset.

3.6.1 Implementation of the Clustering Algorithm

[LCMY04] presents an efficient and scalable algorithm for clustering XML documents by
structure. It combines a similarity metric with a clustering algorithm, partitioning a large
collection of XML documents into groups according to their structural characteristics.

The similarity between XML documents can be defined using various concepts de-
pending on how the documents are seen. Since XML documents can often be modeled
as node-labeled trees, one option is to use tree distance to measure their similarity.

To better understand the algorithm presented in [LCMY04] there is some need to
know relevant concepts. The first concept involves to understand what is a graph and
what are the elements that compose it since as we will explain in the next sections, the
XML tree representing each query will be converted to a graph. Note that a graph is a
representation of a set of nodes where some pairs of nodes are connected by edges.

The second concept involves to understand how the distance between XML docu-
ments/graphs can be measured and it is explained in the following section.

3.6.1.1 Similarity between XML Documents

Definition For two XML documents C1 and C2, the distance between them is defined by

dist(C1, C2) = 1� |sg(C1) \ sg(C2)|
max{|sg(C1)|, |sg(C2)|}

where sg(C1) and sg(C2) is the representation in graph of the XML documents C1 and
C2, respectively, |sg(Ci)| is the number of edges in sg(Ci), i 2 {1, 2} and sg(C1) \ sg(C2)

is the set of common edges of sg(C1) and sg(C2).

If the number of common element-subelement relationships between C1 and C2 is
large, the distance between the graphs will be small, and vice versa. In Figures 3.18 and
3.19, we have the graphs of three different XML documents from our context. If we use
the metric from definition stated above, we would have dist({query2}, {query3}) = 0.15

and dist({query1}, {query2}) = dist({query1}, {query3}) = 0.64. A clustering algorithm
based only on the distance between documents (and depending on the similarity thresh-
old given as input, in this example case greater or equal than 0.15) would merge query2

and query3, and leave query1 alone. With this example is shown that the metric is effec-
tive in separating documents that have a different structure.

3.6.1.2 Framework for Clustering XML Documents

The purpose of the algorithm is to cluster XML files based on their structure. It can be
done after summarizing their structure in s-graphs and using the metric defined in the
previous section. This approach is implemented in two steps:

35

3. ANALYSIS 3.6. Clustering Phase

<Select_Stm>
 <Terminal symbol=”SELECT” value=”SELECT” />
 <Column_Source>
 <Terminal symbol=“*“ value=“*” />
 </Column_Source>
 <From_Clause>
 <Terminal symbol=”FROM” value=”FROM” />
 <Table_Alias>
 <Terminal symbol=”VirtualTable” value=”{User}” />
 </ Table_Alias>
 </ From_Clause>
 <Where_Clause/>
 <Order_Clause>
 <Terminal symbol = “ORDER” /> <Terminal symbol = “BY” />
 <Order_List>
 <Simple_Id><Terminal /></ Simple_Id>
 <Order_Type/>
 </ Order_List>
 </Order_Clause>
</ Select_Stm>

Figure 3.18: Simplified XML and S-graph from query1

Figure 3.19: S-graph from query2 and query3

36

3. ANALYSIS 3.6. Clustering Phase

• Step 1. Extract and encode structural information: In this step, the documents are
scanned, their s-graphs computed and encoded in a data structure.

• Step 2. Perform clustering on the structural information: In this step is applied a
suitable clustering algorithm on the encoded information to generate clusters.

Extract and encode structural information

In this first step that can be called pre-clustering, we are visiting each element of an XML
document, creating the representative vertex in a new graph. When we have visited all
the elements of the XML, we completed the correspondent graph.

In this graph, also known as structured-graph (s-graph), the edges between vertices
represent that the elements are related in the XML with a parent-child relationship ([From
parent vertex] -> [To child vertex]). Once the graph is built, we are ready to store it in
a data structure and process the next XML document until we have all the collection
processed. Furthermore, we associate each graph to an Id from the query that generated
the XML document responsible for that graph. After process all the collection, we are
ready to go to the next step.

Perform clustering on the structural information: S-Grace Algorithm

In order to perform clustering on our structural information, we follow one of the studied
algorithms, S-Grace Algorithm from [LCMY04], explaining what changes we do during
its implementation to better fit in our context.

At the beginning, we start to compute the distance between all graphs, and store them
as neighbours or not. So as to understand if they are neighbours or not, it is used a metric
that help us to define such relationship. In this case, and as proposed on [LCMY04], we
use the definition presented in the previous Section 3.6.1.1 that allow us to calculate the
distance between graphs. After compute this distance, we just need to compare it with a
similarity threshold (✓) defined by us before start the execution of the algorithm (possible
to tune), and if the distance between two graphs is less or equal than the threshold it
means both graphs are neighbours/similar.

Afterwards, we need to deal with clusters, however we have to create them first.
Initially, each graph represents a cluster, which means that if we have N graphs we start
the algorithm with N clusters. Each cluster has some properties that characterize it such
a graph, a local heap that we will explain its purpose later on, and, indirectly, a list of all
query Ids linked to that cluster.

After determining all distances between documents, it is time to fill a new structure
called Link. This structure is responsible for store the number of common neighbours
between a pair of clusters.

Then, we fill the local heap from each cluster. Local heap refers to a max heap of
a cluster, and it stores all the existent relationships between it and other clusters. The

37

3. ANALYSIS 3.6. Clustering Phase

value that defines the storage order on the heap is the number of common neighbours
computed on the previous stage and that is stored on Link structure.

As soon as all the local heaps are filled, all the conditions are satisfied in order to start
building the global heap. Global heap refers to a max heap and is there that are stored
the number of common neighbours between two clusters and one of these clusters. This
global heap defines the merge order of clusters, since in our case we are looking for
clusters that have a high number of common neighbours in order to group them in a
new cluster. This resulting cluster is defined by the union of each one of the graphs that
represented the clusters to be merged, as well as the union of their local heaps.

Once all the previous data structures are filled, the algorithm starts iterating in order
to reduce the number of clusters, through a merging process. The pairs of clusters with
higher linkage between them start to be merged, until there are no more clusters with any
linkage or the algorithm reaches K clusters, and here is mainly where this variant differs
from S-Grace algorithm since they propose a different condition to stop the merging pro-
cess starting once again the algorithm depending also on other parameters. The K value
mentioned is also given as input parameter of this clustering algorithm alongside ✓.

All the previous explanation can be translated to the pseudocode presented on List-
ing 3.11.

Listing 3.11: Pseudocode of Clustering Algorithm - variant of S-Grace

1 /

*

Input D: our dataset of XML documents

*

/

2 /

*

Input ✓: similarity threshold

*

/

3 /

*

Input K: a control parameter for the number of clusters

*

/

4

5

6 ListOfSGraphs = preClustering(D);

7 Distance = computeDistance(ListOfSGraphs);

8 Link = computeLink(Distance, ListOfSGraphs, ✓);

9

10 LocalHeaps = initialize();

11 for each s 2 ListOfSGraphs do {

12 LocalHeaps[s] = buildLocalHeap(Link,s);

13 }

14

15 GlobalHeap = initialize();

16 GlobalHeap = buildGlobalHeap(Link,s);

17

18 while GlobalHeap.isNotEmpty() and GlobalHeap.size > K do {

19 u = GlobalHeap.extractMax();

20 v = LocalHeap[u].getMax();

21 GlobalHeap.delete(v);

22

23 w = mergeClusters(u,v);

24 for each x 2 LocalHeap[u] [LocalHeap[v] do {

25 Link[x,w] = Link[x,u] + Link.get[x,v];

26

38

3. ANALYSIS 3.6. Clustering Phase

27 LocalHeap[x].delete(u);

28 LocalHeap[x].delete(v);

29 LocalHeap[x].insert(w,commonNeighbours(x,w));

30 LocalHeap[x].insert(x,commonNeighbours(x,w));

31

32 GlobalHeap.update(x,LocalHeap[w]);

33 }

34 }

3.6.2 Execution of the Clustering Algorithm

Due to physical restrictions we need to take into account the memory consumption when
filling the data structures, e.g. by releasing data structures as soon as we no longer need
them.

Regarding the execution times, they are not as good as expected at first sight since in
[LCMY04] they present their worst preprocessing time as around 1,360 seconds against
ours 14 seconds. On the other hand, we spend much more time on clustering: they
present times of around 1 hour and 15 minutes, against ours almost 3 hours of execution.
However, we can try to point out a plausible explanation to justify such gap. We notice
the number of s-graphs that they are dealing with in their worst-case scenario is around
7,700 against ours 21,000.

To understand the algorithm results when the execution is finished, we decide to
dump all the final clusters into files. Each file is related to a cluster and contains its s-
graph, a list of queries grouped inside that cluster, and the total number of queries to
analysis effects. This total number of queries per cluster can help us to build a histogram
with the distribution of queries per cluster. The purpose of this histogram is to allow us
to analyse algorithm results with specific input parameters. In the end, we are trying to
get an interesting distribution over all clusters that allow us to start the analysis looking
for patterns. From our point of view, an interesting distribution is characterized by a
uniform distribution of queries per clusters trying to avoid clusters with few queries. In
the case of such thing is not possible, we try to minimize their differences on distribution.

The first problem that we notice in the obtained distributions is that the first 3 clusters
have an astonishing difference in terms of number of queries, since the first cluster has
around 10,000 queries against 415 queries on the second bigger cluster and 400 queries on
the third one (see Figure 3.23(a), at this point we are just testing the algorithm with 12,500
queries and different types of queries, not only Select statements). We will try to prevent
this algorithm behaviour, seeking for closer number of queries between them and better
distributions, and focusing only on the set of Select statements (21,077 queries).

3.6.2.1 First change - Modifications on the XML tree

To accomplish better distributions, there are only few factors that we are able to man-
age. First of all, we look to the XML structure, since after parse the queries we have

39

3. ANALYSIS 3.6. Clustering Phase

stored the XML as it was and there are some nonterminal elements that can be removed
once they are without any child in the tree. Without dealing with this problem we could
have queries in the same cluster that should not be. For example, if one query is using
the Where clause with just one condition and another is not even using it, they could be
inserted in the same cluster depending on the similarity threshold since both XML rep-
resentations have an element Where Clause. Figures 3.20 and 3.21 depict two different
graphs converted from the same XML document (i.e. same query), however Figure 3.20
represents the graph before the modification on the XML and Figure 3.21 represents the
graph after the modification on the XML.

Figure 3.20: Graph from query before performing changes on the XML structure

Figure 3.21: Graph from query after performing changes on the XML structure

3.6.2.2 Second change - Modifications on the XML tree

Another factor that can be managed is once again related with the XML structure, more
precisely, the terminal elements. At this moment, these elements are considered a prob-
lem in terms of efficiency during the clustering, since they are not specific enough when
presented in the s-graph not allowing to understand what kind of query elements they
really represent. The problem is that all the terminal elements are mapped into a vertex
called Terminal, which means that, at some point, all vertices from s-graphs will point
to a Terminal vertex, what can be seen as an ambiguity. The solution is to rename each
terminal element, starting to get the value from @symbol attribute of the XML terminal

40

3. ANALYSIS 3.6. Clustering Phase

element. As an example, if we have initially an element:

< Terminal @symbol = ”Distinct” ... / >

After this modification we interpret it as the following element:

< Distinct ... / >

and create the respective s-graph vertex named Distinct. In Figure 3.22 is depicted the
final graph obtained after perform all the changes mentioned above on the initial XML
structure, note that a generic query is readable on this new graph representation, to this
particular graph we have a query similar to the one from Listing 3.12.

Figure 3.22: Graph from query after performing new changes on the XML structure

Listing 3.12: Query representing the graph from Figure 3.22

1 SELECT DISTINCT {Entity}.[Column] FROM {Entity}

3.6.2.3 Third change - Tune of Similarity Threshold

Our last move to get better distributions is related with the similarity threshold ✓, since
it is an input parameter that can easily be changed. This parameter can vary from 0 to 1,
if the value is closer to 0 it means that we are squeezing the comparison between docu-
ments, and the documents need to have much more in common in structural terms to be
considered neighbours comparing when using values closer to 1. At the beginning, we
use ✓ as 0.25, and we start reducing this value in order to try to distribute the queries over
all clusters. We stop reducing on 0.10 with a much better distribution. In Figure 3.23(b)
is shown the best distribution that we obtain after all the mentioned changes.

As we can see, the clustering algorithm returns the dataset of queries distributed over
a total of 4,095 clusters, with the similarity threshold ✓ = 0.10 and all the adjustments that
we have made on the XML.

41

3. ANALYSIS 3.6. Clustering Phase

Cluster Percentage-of-queries
C1 80.89%
C2 3.32%
C3 3.19%
C4 2.77%
C5 0.84%
C6 0.77%
C7 0.70%
C8 0.45%
C9 0.22%
C10 0.22%

...
C297 0.01%
C298 0.01%
C299 0.01%

(a) Initial distribution - before per-
forming changes

Cluster Percentage-of-queries
C1 10.33%
C2 3.28%
C3 2.24%
C4 2.01%
C5 1.44%
C6 1.34%
C7 1.10%
C8 1.02%
C9 1.00%
C10 0.91%
C11 0.86%
C12 0.82%
C13 0.78%
C14 0.71%

...
C100 0.01%
C101 0.01%
C102 0.01%

...
C4093 0.00%
C4094 0.00%
C4095 0.00%

</
</
</

≈/
≈/
≈/

(b) Final distribution - after per-
forming changes

Figure 3.23: Clustering algorithm - distribution of queries per cluster

42

3. ANALYSIS 3.6. Clustering Phase

The biggest cluster is now covering more than 10% of the entire dataset. If we focus
the analysis on the first 10 clusters, and we will, we are considering a coverage of 25%
which is a significant value. In terms of cost/benefit relationship, the analysis of the
biggest 10 clusters is enough since to analyse a bigger percentage of coverage we would
have to analyse much more clusters guiding us to possible time issues, e.g. to get almost
50% of coverage we would need to analyse all the first 100 clusters.

Thus, we focus our analysis on these first 10 clusters and we need to specify a way to
understand the patterns contained in each one of this clusters (characteristics that identify
the cluster), which lead us to the visual analysis that we present in the next section.

3.6.3 Visual Analysis

As previously mentioned, a cluster is represented – albeit not exclusively – by an s-graph,
that is the union of the s-graphs of each query linked to that cluster. Therefore, it is
possible to quantify the number of occurrences of each vertex in the context of one cluster,
which lead us to a treatment that we made to the s-graph that represent a cluster. We
verify the occurrence of each vertex and, depending on that, we assign it a color. To
better understand this procedure, Figure 3.24 shows the s-graph from one of the first 10
clusters.

high frequency low frequency

Figure 3.24: Example of a colored graph from a cluster

In this particular case from Figure 3.24, it is possible to conclude that this cluster is
mainly characterized by:

• List of columns selected from the involved entity, confirmed by the hot node <

Column_List >

• All the selected data comes from only one entity, which means there are no joins
on all the queries of that cluster. It can be corroborated with the non existence of
any < Simple_Join > node on the graph.

• Only one condition on the Where clause, since there is no nodes representing the
< AND > or < OR > operator.

43

3. ANALYSIS 3.6. Clustering Phase

If we think about these characteristics and try to decode them to SQL code, we can
point out Listing 3.13 as a query that defines the cluster.

Listing 3.13: SQL structure from visual analysis of Cluster example
1 SELECT [Col1],[Col2],...,[ColN] FROM {Table}
2 WHERE [Col] = Value

However, the majority graphs are composed by much more vertices, which can diffi-
cult the distinction between the relevant vertices and the others. So, we decide to build
also an s-graph to each cluster that represent only the hot nodes - red vertices - so it is eas-
ier to perceive the characteristics of that cluster. Figure 3.25 illustrates the s-graph from
the previous example, although only with the hot nodes, and as it is possible to see the
principal information that were the basis of our previous analysis regarding the charac-
teristics of the cluster still remaining there. We define this kind of s-graphs as hot nodes
graphs.

Figure 3.25: Example of a Hot nodes graph from a cluster

Beyond the visual analysis, it is possible to complement the cluster analysis by in-
specting the set of queries that are linked to a cluster, and also to the histogram of terms
that we built in the end of the clustering execution. The histogram of terms is interesting
since it allows us to see when a specific term is relevant or not, not only in the context
of a cluster but also on the entire dataset. Therefore, both analyses are helpful since they
can help to confirm characteristics found during visual analysis but also help to find new
ones.

The next section presents the results from visual analysis, always supported by query
analysis inside each cluster and also by the advanced SQL terms histogram.

3.6.4 Results

In the previous section we explained how visual analysis works, and now we present the
analysis results for the first 10 clusters. Note that the clusters are named according their

44

3. ANALYSIS 3.6. Clustering Phase

position in the histogram of distribution of queries per cluster, which means the biggest
cluster is referred as Cluster 1, second biggest cluster is referred as Cluster 2, and so on.

For each Cluster we start to present its hot nodes graph since the majority of the colored
graphs are oversized, although when it is possible we present the colored graphs. After
that, the graph is followed by its visual analysis and we finish with an example of a
generic query belonging to that Cluster.

Cluster 1 (10.3%)

Figure 3.26: Hot nodes graph from Cluster 1

As shown in Figure 3.26, Cluster 1 is defined by select different columns from the
involved entities (hot-node Column_List). In terms of entities, it is noticeable that there are
at least one join on each query from the cluster (hot-node Simple_Join). In the Where clause
there is at least one And operator (hot-node And_Exp), which means that it has always
more than one condition. Furthermore, the results use to be ordered by only one column
(hot-node Order_Clause that reflects the existence of Order clause, and after analyse the
set of queries from the cluster we can see that the order is, in the majority, by only one
column). Listing 3.14 shows the possible generic structure of a query from Cluster 1.

Listing 3.14: SQL structure from visual analysis of Cluster 1
1 SELECT [Col1],[Col2],...,[ColN] FROM {Table} JOIN {Table2} ON (JoinCond)

2 WHERE Condition AND Condition2 ...

3 ORDER BY [Column]

Cluster 2 (3.3%)

As Figure 3.27 depicts, Cluster 2 is also defined by select different columns from the
involved entities (hot-node Column_List). In terms of entities, is noticeable that the results
are coming from at least two entities since there are a minimum of one Join per query
(hot-nodes Simple_Join and Join_Type). After take a look to the complete colored graph we

45

3. ANALYSIS 3.6. Clustering Phase

Figure 3.27: Hot nodes graph from Cluster 2

can also conclude that the referred join is mainly an Inner Join, although the node Inner
is not an hot-node it is highly frequent. Moreover, in the Where clause there is no And
operator, in other words it has one, and only one, condition (there is not any hot-node
And_Exp). Listing 3.15 shows a possible generic structure of a query from Cluster 2.

Listing 3.15: SQL structure from visual analysis of Cluster 2

1 SELECT [Col1],[Col2],...,[ColN] FROM {Table} INNER JOIN {Table2} ON (JoinCond)

2 WHERE Condition

Cluster 3 (2.2%)

Figure 3.28: Hot nodes graph from Cluster 3

46

3. ANALYSIS 3.6. Clustering Phase

As presented in Figure 3.28, Cluster 3 is distinguished by the use of a function on
the selection (Select_Stm node is connected to hot-node FunctionValue). This function can
be Count() (occurs in 70% of the cases), Sum() (in 29% of the cases), Avg(), Min(), or
Max(). There are always two entities involved on each query with an Inner Join (hot-
nodes Simple_Join and INNER). The Where clause has at least two conditions (hot-node
And_Exp). Listing 3.16 shows a possible structure of a query from Cluster 3.

Listing 3.16: SQL structure from visual analysis of Cluster 3
1 SELECT function(...) FROM {Table} INNER JOIN {Table2} ON (JoinCond)

2 WHERE Condition AND Condition2

Cluster 4 (2.0%)

Figure 3.29: Colored graph from Cluster 4

After analyse Figure 3.29 it is possible to assert that Cluster 4 is also characterized
by a function on the selection, once again these function can be Count(), Sum(), Avg(),
Min(), or Max() (hot-node FunctionValue). Furthermore, there is only one entity on the
From clause (From_Clause node connected to hot-node Table_Alias) and one condition on
the Where clause (there is not any And_Exp node). Listing 3.17 shows the structure of a
query from Cluster 4.

Listing 3.17: SQL structure from visual analysis of Cluster 4
1 SELECT function(...) FROM {Table}
2 WHERE Condition

Cluster 5 (1.4%)

As Figure 3.30 shows, Cluster 5 has the same properties that Cluster 4 (hot-node Function-
Value and no Joins), although the Where clause is composed by at least two conditions
linked with an And operator (Where_Clause node connected to hot-node And_Exp). List-
ing 3.18 shows a possible structure of a query from Cluster 5.

Listing 3.18: SQL structure from visual analysis of Cluster 5
1 SELECT function(...) FROM {Table}
2 WHERE Condition AND Condition2

47

3. ANALYSIS 3.6. Clustering Phase

Figure 3.30: Colored graph from Cluster 5

Cluster 6 (1.3%)

Figure 3.31: Colored graph from Cluster 6

As Figure 3.31 presents, one of the properties from Cluster 6 is the selection of differ-
ent columns from the involved entities (hot-node Column_List). In terms of entities, it is
noticeable that the results are coming only from one entity (From_Clause node connected
to hot-node Table_Alias). Moreover, in the Where clause there is just one condition (there is
not any And_Exp node). In Listing 3.19 is shown a possible generic structure of a query
from Cluster 6.

Listing 3.19: SQL structure from visual analysis of Cluster 6
1 SELECT [Col1],[Col2],...,[ColN] FROM {Table}
2 WHERE Condition

Cluster 7 (1.1%)

Cluster 7 is also characterized by select different columns from the involved entities.
Through visual analysis of the completed graph with all vertices and the histogram of
terms for this cluster, it was also possible to note that the Distinct clause is very frequently

48

3. ANALYSIS 3.6. Clustering Phase

Figure 3.32: Hot nodes graph from Cluster 7

used, not only on this cluster but also in all the dataset, with an occurrence higher than
17%. As depicted in Figure 3.32, in terms of entities, there is always at least one Inner Join
on the From clause (hot-node INNER and JOIN). The Where clause has several conditions,
where always one of them is checking if a specific column value is In a list of values
returned from a sub-query (hot-node IN along with analysis on the set of queries that
belongs to this cluster). To complete, all the queries from this cluster are ordering the
data to retrieve by one column (hot-node Order_List connected to Id). Listing 3.20 shows a
possible generic structure of a query from Cluster 7.

Listing 3.20: SQL structure from visual analysis of Cluster 7
1 SELECT Distinct [Col1],[Col2],...,[ColN]

2 FROM {Table} INNER JOIN {Table2} ON (JoinCond)

3 WHERE Condition AND ... AND [ColA] IN (SELECT ...)

4 ORDER BY [ColB]

Cluster 8 (1.0%)

This cluster brings some interesting and different patterns, once all the set of queries
that composed it follows the syntax from Listing 3.21, that is the proper syntax from
Oracle SQL Server to limit the maximum number of records to be retrieved (which can
currently be done on Agile PlatformTM using Simple Queries). The selection is managed
in order to select a specific list of columns, and according Figure 3.33 there are only
one involved entity (hot-node From_Clause connected to Table_Alias). Query conditions
from Where clause are mainly linked with And operator, however it is also noticed the
presence of Or operator (hot-node Or_Exp) but always with both conditions surrounded
by parenthesis.

Listing 3.21: SQL structure from visual analysis of Cluster 8
1 SELECT * FROM (

49

3. ANALYSIS 3.6. Clustering Phase

Figure 3.33: Hot nodes graph from Cluster 8

2 SELECT [Col1],[Col2],...,[ColN] FROM {Table}
3 WHERE (Condition AND condition2) AND ... AND
4 (ConditionM OR ConditionN)

5 ORDER BY [ColB])

6 WHERE ROWNUM = @MaxRecords

Cluster 9 (1.0%)

Figure 3.34: Hot nodes graph from Cluster 9

Figure 3.34 shows that majority of queries are selecting a list of columns from differ-
ent entities (hot-node Column_List), which lead us to at least one Join per query (hot-nodes
Join_Type and Join). With the analysis of the set of queries composing this Cluster, there
is one characteristic which stands out and can distinguish it from the others, once a rele-
vant frequency of its queries (almost 55%) are using a Complex Join (see Section 3.5.2). In

50

3. ANALYSIS 3.6. Clustering Phase

terms of type of Joins, we can not mention a specific one since the occurrence frequency
is distributed between Inner and Outer Joins. The Where clause is composed by only one
condition (there is not any hot-node And_Exp). Listing 3.22 shows the syntax of a query
from this cluster.

Listing 3.22: SQL structure from visual analysis of Cluster 9
1 SELECT [Col1],[Col2],...,[ColN]

2 FROM {Table} JOIN {Table2} ON (JoinCond AND JoinCond2)

3 WHERE Condition

Cluster 10 (0.9%)

Figure 3.35: Hot nodes graph from Cluster 10

Once again, as shown in Figure 3.35, we have a cluster where prevails the use of
an aggregate function such as Count(), Sum(), Avg(), Min(), or Max() (Select_Stm node
is connected to hot-node FunctionValue). Inner Joins present high frequency in terms of
occurrence on the set of queries from this cluster (hot-node INNER and JOIN). Regarding
to query conditions from Where clause, it is noteworthy that these conditions are always
at least two equalities (hot-node ’=’) linked with an AND (hot-node And_Exp). Listing 3.23
shows the syntax of a query from Cluster 10.

Listing 3.23: SQL structure from visual analysis of Cluster 10
1 SELECT function(...)

2 FROM {Table} INNER JOIN {Table2} ON (JoinCond)

3 WHERE EqualityCondition and EqualityCondition2 ...

51

3. ANALYSIS 3.6. Clustering Phase

In summary In the Appendix Chapter is presented Table A.1, it shows all the charac-
teristics that we saw over all these previous clusters. The sequence of such characteristics
can be considered the patterns that we were looking for.

Discussion on the Visual Analysis Results

Regarding the features still not being supported by Agile PlatformTM , it seems reasonable
to lay emphasis on the possibility to manage columns to be selected and the ability to use
the aggregate function Sum().

Select specific columns as output from the query would not be a problem to Sim-
ple Queries if the data retrieved would be used in the context of a Web Screen, since the
platform optimizes such queries in order to select only what will be used on the screen.
However, it is a problem if the target to consumption of the retrieved data is a Web Ser-
vice, and if its exposed actions need to receive a list of records (or even a single record)
from certain type, usually, from a specific Structure Reference or Entity Reference that is also
exposed by the Web Service.

It is interesting to see that some queries from the analysed clusters could actually be
written as Simple Queries, which can lead to the question "Why were these queries created as
Advanced Queries instead of using the visual query builder from Simple Queries?". Although
it is not possible to have 100% sure about a particular answer, we can already try to
discuss some ideas on it. The first idea that arises is related with the fact that OutSystems
Agile PlatformTM did not support some functionalities that would be needed in the query
such as the Count() function that just started to be supported after Version 4.2, or even for
the simple fact that the developer was not used to the Simple Query builder and continued
preferred to write queries using SQL.

Coming out of context of OutSystems but still referring to visual query builders, we
can say exactly the same. If a query is specified with the writing method but however
it could have been done using the visual query builder, it can be due to the fact that the
query builder is a novelty for developers and they do not want to lose time seeing that
new environment and will do it afterwards, or because it is easier for them to do it with
the writing approach. Regarding the features that should be supported by these visual
query builders at a first sight on the clusters, we can also refer to the freedom to choose
what developers want to select on the query (Selection of columns), as well as the support
for Aggregate functions.

Besides the presented clustering algorithm there were other approaches using differ-
ent algorithms or techniques over structured data that could be followed. Next section
refers to some of these related topics.

Sequential Pattern Mining for Structure-Based XML Document Classification

[GMT06] presents a supervised classification technique for XML documents which relies
only on its structure, to show the relevance of using only structured information in order

52

3. ANALYSIS 3.6. Clustering Phase

to detect different "structural families of documents". Each XML document is seen as an
ordered labeled tree, represented only by its tags. Their method is composed by three
steps, each one represented by its number in the figure 3.36.

Very Frequent Tags

1

3

2

SP1 SP2 SPn

...

Cluster 1 Cluster 2 Cluster n

Reduction

Data Mining
Sequences Sequences Sequences

XML Documents
to Cluster

Document
Matching

Figure 3.36: Overview of the clustering method

The first step consists in performing a clean over the XMLs in which the frequent tags
embedded in the collection are stored. The main goal is to remove some of the most
frequent tags since some of them can be considered irrelevant since they do not help
separating the documents.

The second is to carry out a data mining step on each cluster from the collection,
intending to transform each one of the XML documents belonging to the cluster in a
sequence. After this, a mapping operation is carried in order to define which tag exists
at some point and in which level of the tree it is located. At the same time this mapping
operation occurs, the frequent tags extracted from the previous step (1) are removed. In
order to conclude this step, it is necessary to perform another data mining move over the
set of sequences produced to extract the sequential patterns. For each cluster Ci, they are
provided with the set of frequent sequences collected (SPi) that characterizes Ci.

Finally the step number 3, where they match each document of the collection with
each cluster which is characterized by a set of frequent structural subsequences. The
matching technique consists in computing the average matching between the test docu-
ment and the set of sequential patterns which describes a cluster.

They prove the efficiency of their approach with experiments on a set of XML doc-
uments with data describing movies from IMDB database, following the process from

53

3. ANALYSIS 3.6. Clustering Phase

Figure 3.36 and computing the score between each cluster in order to understand the
similarity between them. Furthermore, they want to improve the method to better accept
certain types of XML documents with similar frequent patterns.

Relation with our approach The extraction process described in this work is related
to our approach. First of all, each time we parse a query from our dataset we obtain
a structured result (see Section 3.3). Then, we can translate it in runtime to a sequence
with the nodes properly mapped as they describe in [GMT06]. After that, it is possible to
perform an operation to extract sequential patterns from our dataset. Finally, we could
follow the process applying the matching techniques to find queries related with the
extracted patterns.

Although web usage mining is distant from our work, there are some similarities
in what concerns the different stages from the analysis process. In the next section we
describe these similarities.

Web Usage Mining

Web usage mining is one of the categories of web mining, it allows the collection of Web
access information for Web pages, taking into account information from server logs such
as users history, in order to understand user behaviour and web structure and better
serve the needs of Web-based applications.

Web usage mining is divided in three different phases. In [SCDT00], each one of the
phases are described as presented below:

• Preprocessing - necessary for the purpose of pattern discovery to convert all the in-
formation of the usage, content, and structure in several data sources available into
the data abstractions.

• Pattern discovery - several methods and algorithms like statistics, data mining, ma-
chine learning and pattern recognition could be applied to identify user patterns.
This phase is divided in 6 sub-stages, where we would like to highlight some of
them such as Statistical Analysis, Clustering and Sequential Patterns.

• Pattern analysis - this phase targets to filter out uninteresting rules or patterns from
the set found during the previous phase. Thereafter, it aims to understand, visualize
and provide interpretation to these interesting patterns. Visualization techniques
could be used to help during the analysis and highlight overall patterns or trends
in the data.

[SCDT00] tried to provide a survey about the fast growing area of the Web Usage min-
ing, once the interest in analyse Web usage data is growing as well to better understand
the Web usage and apply the knowledge to better serve users.

54

3. ANALYSIS 3.7. Visualization Manager

Relation with our approach In terms of process, the three steps described before could
be a good starting point in order to find interesting patterns. The middle phase Pattern
discovery has the part of Statistical Analysis that we will have in mind too, the Clustering
part can be related with the first grouping that we have in Section 3.5.1. Finally, the
Sequential Pattern part where we can attempt to find patterns in our the dataset.

3.6.5 Discussion

In this Clustering Phase section we gave an overview on the clustering algorithm that
we studied and implemented, as well as we presented the results obtained using the
clustering algorithm. Then, we needed to understand these results and that is the reason
why we propose a new method of analysis, the visual analysis through colored graphs.

After explaining with detail how this visual analysis works, we present the analysis
for the first 10 biggest clusters focusing on the patterns presented in each one. We work
around these first 10 clusters since they cover 25% of the queries, which can be considered
relevant to be the target of the analysis.

In the end, we also presented some interesting work related with this subject, cluster-
ing, and we also tried to connect it to our approach. In the next section will be presented
another interesting subject related with visualization of datasets to understand them.

3.7 Visualization Manager

3.7.1 Visualization Tool

The visual understanding of the data that we will work with during the analysis is also
an important aspect that should not be forgotten since it can help to understand in a
somewhat more general way that data.

Thereby, after searching for different ways to visually understand the data, we found
a tool that would allow it through parallel graphics, called parallel-sets. This tool was
majority created by Robert Kosara and Caroline Ziemkiewicz [Eag12a] and leverages a
Javascript library D3.js [Dav12, Bos12], and it is an open source program, which means
that the program code is freely available [Eag12b]. Since we have access to the code, we
were able to debug the tool and understand why some errors where occurring when we
where trying to visualize our data, and then we fixed them.

Hereupon, to be able to visualize the charts related with our dataset, we need to de-
fine what will be the dimensions that should be in the chart as well as the attributes
that compose each one of the dimensions. In order to better understand the concept of
dimension and attribute of dimension we can present a particular example.

To analyse the accident occurred on the Titanic we can define dimensions such as
Sex, Class, Age, Survivor. Each one of the previous dimensions would be composed
by attributes, which must be mutually exclusive between them on the same dimension.
The dimension Sex would be composed by attributes Male and Female, dimension Class

55

3. ANALYSIS 3.7. Visualization Manager

would be composed by First, Second, Third and Crew. On the other hand, Age would
be comprised by Adult and Child, and the last dimension, Survived would be only com-
prised by the two attributes Yes and No. Figure 3.37 depicts the complete parallel-set of
this particular example.

Figure 3.37: Screenshot from the tool running the example of Titanic dataset

Note that all the dimensions and attributes are draggable which will ease the action
of question the graphic, since it is easy to do it moving the attribute of each dimension to
the left and then we just need to put the pointer over the connection that we are looking
for the answer. In the case of Figure 3.37, we are asking "How many men (Adult and Male)
survived that had a 1st Class ticket?" and we see that the answer is 57 people, or we can also
understand the percentage, that in this case is 2%.

Once understood the concepts of dimensions and attributes with the previous exam-
ple we are ready to present how we have decided, together with R & D team, decompose
our dataset.

We have decided to analyse only the Select statements in order to understand what
should be the simplest patterns to have on the Visualization Manager that would allow to
later understand the dataset and explore it. Then, we concluded that the patterns should
be organized with the dimensions and attributes as we show below.

• Use of Select statements with selection of: just columns, any aggregate or built-
in functions, arithmetic expressions with operators (such as addition, subtraction,
multiplication operator or division operators), Inner Selects, CASE expressions

• Use of Expand Inline parameters : Yes, No

• Use of DISTINCT clause: Yes, No

• Number of tables involved on the From clause: 1, 2-7, 8+

56

3. ANALYSIS 3.7. Visualization Manager

• If there is any Inner Join, Outer Join or Full Outer Join: each dimension with
attributes Yes and No

• Use of subqueries on the FROM clause: Yes, No

• Use of IN, OR, NOT or NULL on the WHERE clause: each one with attributes Yes
and No

• If there is a HAVING on the select statement: Yes, No

• The query is Ordered by: Column, Using an Aggregate function or simply Not
ordered

• If there is any kind of restrictions in terms of the number of records to retrieve: Yes
or No

Since the dimensions and their attributes are already defined, we need to adapt our
tool to export a file that can be read by the tool in order to be possible to import our
dataset. Figure 3.38 presents a simplified parallel-set from our dataset of queries, since
there are only three dimensions selected to be on the chart. Such thing is possible due to
this tool that allow us to check what dimensions and attributes we would like to consider
for the current chart, using the tree from the left side panel Dimensions.

Figure 3.38: Screenshot from the tool running our dataset of queries

Follows some results that we can get through a deep exploration of the data using
parallel-sets and selecting also other dimensions:

• Around 61% of the Advanced Queries (Select statements in this case) are not con-
cerned with the order of the result, whereas 38% of Select queries are ordered by
columns and the last 1% ordered using an aggregate function

57

3. ANALYSIS 3.7. Visualization Manager

• In terms of number of tables on From clause, 41% have just one table, 51% have
from 2 to 7 tables, and the last 8% are the Selects with 8 or more tables involved

• 30% use Aggregate functions on the selection

• 30% of Select queries use OR operator for disjunction of conditions from the Where
clause

• 23% of Select statements use at least one Expand Inline parameter

• 13% use an IN on the Where clause

• 9% of Select statements use a subquery on their From clause

• Less than 1% of these queries are using a Having clause in order to filter the result
applying conditions using aggregate functions. Which match with the conclusions
of the study presented on Section 3.8 that the Having clause started to no longer be
used.

Although this tool can be a great help to have an initial idea about what is present in
the dataset, it does not give the freedom that we would like to have to explore the data,
once all the dimensions and attributes need to be predefined.

In the next section, we present some other works related with the visualization of data
trying to relate them with our work.

3.7.2 Statistical Graphics

As it was previously described, visualization techniques could be used to help during the
analysis and to highlight some relevant aspects from a specific data. For this reason we
decided to investigate it further and we present some conclusions, explaining how this
techniques could be applied in our approach.

In [Tuf01] they present the principles of Graphical Excellence that we list below.

• Graphical Excellence is the well-designed presentation of interesting data - a matter
of substance, of statistics, and of design;

• It consists of complex ideas communicated with clarity, precision and efficiency,
telling the truth about the data, which means it should be easy to understand and
visualize;

• It should provide to the viewer the greatest number of ideas in the shortest time
with the least ink in the smallest space;

• And, last but not least, it is nearly always multivariate.

Figure 3.39 (taken from [Tuf01]) is one of the best show cases of Graphical Excellence,
and it shows the evolution of successive losses in men of the French Army in the Russian

58

3. ANALYSIS 3.7. Visualization Manager

Figure 3.39: Minard’s Figurative Chart of Napoleon’s 1812 campaign

59

3. ANALYSIS 3.7. Visualization Manager

Campaign (1812-1813). We can see that the army starts the campaign with 422,000 men,
and reached Moscow with 100,000 (due to the fact that it was sacked and deserted). Dur-
ing the march back to Poland, caused by bad weather conditions the army starts to lose
more men and arrived back to Poland with only 10,000 men remaining.

Thus, this chart from Figure 3.39 shows time, motion and, at the same time, tells a
story with a lots of information that allows the "reader" to easily understand all the facts
involving the static data.

Based on it and another Sankey Diagrams4 [Phi07], and also trying to solve the problem
visualization of flow in the web that works with dynamic data, Google launched a new
feature to Google Analytics, the Flow Visualization (Figure 3.40) presented during the
event [Goo11]. This feature allows the Webmaster to better understand how people are
moving around website’s pages.

Figure 3.40: Flow visualization feature from Google Analytics

Since we are talking about visualizing lots of data it could not be an easy task to get
an answer to the previous problem, in order to allow someone to cosily visualize the web
flow. Figure 3.40 illustrates the Visitors Flow view from Google Analytics that provides
a graphical representation of visitors flow through the site by traffic source (or any other
dimensions) so it is possible to see their journey, as well as where they decided to drop
off.

Relation with our approach This section shows interesting ways to easily understand
the flow and great amounts of data. We could build our tool on this Sankey Diagrams to

4Sankey diagrams are a specific type of flow diagrams, in which the width of the arrows is shown pro-
portionally to the flow quantity.

60

3. ANALYSIS 3.8. Use of SQL in Industrial Applications

understand how the queries are presented in some set and easily understand and manage
the visualization of the existing patterns. Imagining the example from Figure 3.41 that
we start with a root node Select statement (20.1K occurrences) that is composed by sub-
nodes (children) such as From (9K occurrences from 20.1K), and this sub-node once again
with children nodes such as Outer Join (6K occurrences from 9K) and Inner Join (3K
occurrences from 9K).

Select

...

From
...
...

Inner Join

Outer Join

20.1K

9K
6K

3K

Figure 3.41: Example of representation of Select statement visualization

However, after we trying to visualize a dataset using Sankey Diagrams we discover
that it is not so understandable, which means it is not the best way to visualise and
understand a dataset. Then, we decide to look for other ways and we find the parallel-
sets, that are presented on the previous section.

At this moment, we finished the presentation of all the analysis process and, in the
next section, we can present some studies carried out about the usage of SQL which is
somehow related with our work. We also describe the differences between their goals
and ours.

3.8 Use of SQL in Industrial Applications

Some studies have been carried out with the aim of further understanding the use of SQL
within industries. [LCW93] present a study with the purpose of gaining a broad view of
the use and acceptance of SQL in Singapore’s IT industry. With this study it was possible
to develop a profile of the major SQL users and applications, depending on the job title
of the developers, the application areas of SQL, the complexity of SQL queries formed
and the use of particular clauses to Order or Group. As a conclusion, they found that a
very small number of queries were nested more than 3 levels against a quarter with just
1 level and another quarter of the queries with 2 or 3 levels. In terms of relations, half the
queries have just 1 or 2 relations, about a quarter involve 3 or 4 relations and the remain
queries with more than 4 relations. Regarding to operations such as Intersect, Union and
Minus, they discovered that around 25% of the queries use the Intersect, about 25% use
the Union, and as expected, Minus operation was the less used. The Group and Order
By were also target of study with a significant presence (nearly half the queries each one).
Furthermore, they detected that related to aggregate functions (Sum, Count, Max, Min,
Avg), the most commonly used were Sum with around 40% and Count in almost 38% of
the queries.

61

3. ANALYSIS 3.9. Discussion

Other study [Pö95], similar to the previous one, was developed some years later. It
was an empirical study to investigate the use of SQL in commercial applications of three
large Austrian companies. Based on 38,000 statements, they analysed the practical mean-
ing of the Data Manipulation Language - part of SQL language constructs. They conclude
that the frequency of use of some particular statements depends on the environment, e.g.
modify statements are more used in development environment in comparison with a
production environment. The use of Joins is not expected since in the production en-
vironments they avoid to use Joins, from their point of view due to unfamiliarity with
the use of joins and uncertain about their performance. Moreover they found the use of
Order By clause is one of the most important requirements of commercial applications
and the most frequently used comparison operator was the equal-operator. Finally, the
aggregate functions that were also aim of study and with a relevant presence, mainly the
use of Count and Sum functions.

Relation with our approach This approach fits in our work because it analyses the use
of SQL in the Business World. As we can see, some years ago, they just worried about
the use of clauses such as Order by, Group by, Aggregate functions, among others, and
also about the complexity of written SQL in order to distribute the developers along
different profiles. Even if some of these points still be interesting to study about their
use and frequency, at the moment the concerns changed, and in this particular case, we
are dealing with the attempt to reduce written SQL improving the use and experience of
visual query builders, whether to make the developers life easier or to do not have the
need of developers with so much skills. Consequently, we are mainly interested in what
the visual query builders do not provide and what is frequently written in SQL as we
analysed in Section 3.5.

3.9 Discussion

In this Chapter we explained how we extract all the queries to create a dataset to support
our analysis, and some interesting OutSystems case studies.

In a first stage, we were ready to carry out the analysis starting with a term histogram
that allows to understand, albeit limited, the frequency of some terms in queries. Since
this term histogram was not a solution to the problem, we showed an adapted parser
responsible to parse a program that follows some grammar, in the presented case we
are parsing queries with a syntax closer to SQL (variant of SQL) and using the proper
grammars provided by OutSystems.

Afterwards, we focused our discussion in the OutSystems context in order to try to
find an answer for the provided case studies. The case study from Section 3.5.2 has a
definitive answer, however, the second case still needs to be studied since it cannot be
correctly answered using the current specific pattern finder feature (using XPath) from
our tool.

62

3. ANALYSIS 3.9. Discussion

In the next Chapter we identify the most frequent patterns and present a proposal for
a novel Simple Query model.

63

3. ANALYSIS 3.9. Discussion

64

4
Model Proposal

In this chapter we present an overview of the features we identified as possible additions
to the current Simple Query model, justifying our choices with the results of the analysis
presented in the previous chapters. Moreover, we will add a propose in terms of the order
of implementation of the identified features as well as a propose of how to integrate such
features with Agile PlatformTM .

The order of implementation is of the highest importance since in the business do-
mains there are schedules to comply and goals to achieve, which can create some tech-
nical issues in terms of what can be done in the remaining time. Thus, some goals need
to be split into several small goals ordered by priority (cost-benefit relationship), e.g. im-
prove the expressiveness of Simple Query model which can be split into several parts,
each one regarding the extension of the model with one feature and its priority considers
the gains offered versus costs of the feature for that business and product.

4.1 Most Frequent Identified Patterns

After the analyses from the previous chapters, we are facing different patterns that result
in a list of key features getting to the target of the new model proposal. In the following
sections we present these features as well as a scenario where they can occur and the
justification for extend the model with them regarding previous analyses.

65

4. MODEL PROPOSAL 4.1. Most Frequent Identified Patterns

4.1.1 Selection of Columns

What characterizes it?

The developer should be able to manage the output of a query. Instead of what happens
currently, where just entities have meaningful values assigned, it should be also possible
to select a structure as query output and define which value should be assigned to each
field/attribute from that structure.

When does it occur?

A common use case where such feature would be worthwhile and would bring some
extra value to Simple Queries is precisely when a developer wants to send some data to be
consumed by a Web Service over an exposed action. The problem is that the action needs
to receive a specific type of records, usually, a structure with some specific fields.

Listing 4.1 shows some examples of queries following the pattern identified in this
section. The first query refers to the selection of just two columns from an entity Users
instead of all its columns. Another case where this pattern can occur is shown on the
second query, the results to retrieve should have five attributes per row however we just
can fill two of them with the First and Last Name from Users. Thus, the developers need
to assign default values in the other fields as it is possible to see with ”, NULL and 1.

Listing 4.1: Examples of SQL queries Selecting specific values to retrieve

1 SELECT {Users}.[FirstName],{Users}.[LastName]

2 FROM {Users}

3

4 SELECT ’’,{Users}.[FirstName],{Users}.[LastName],NULL,1
5 FROM {Users} WHERE [Col] = Value

Why should the model be extended with it?

The decision of extend Simple Queries with this feature is supported by cluster analysis
from Section 3.6.5, query analysis inside clusters, as well as by collected feedback from
different scenarios.

4.1.2 IN Operator

What characterizes it?

In operator allows specifying multiple values in the query condition, it introduces the
possibility to specify a list of values and check if another value belongs to that list.

66

4. MODEL PROPOSAL 4.1. Most Frequent Identified Patterns

When does it occur?

Scenario: The University administrator wants to list all the Users that have one of the
roles, assuming that the Role Ids are known a priori by the Administrator (looking for
RoleId 1, 2 or 3).

Listing 4.2: Example of SQL query using IN operator
1 SELECT {Users}.* FROM {Users}

2 WHERE {Users}.[RoleId] IN (’1’,’2’,’3’)

Why should the model be extended with it?

This pattern was detected in different clusters and proven that it occurs in almost 16% of
queries from all the dataset of Select statements.

4.1.3 Complex Joins

What characterizes it?

In our context a Complex Join occurs when the Join condition is not just a simple equal-
ity between two columns or is a condition composed by at least one AND or one OR
operator. This particular type of joins was the subject from our case study presented in
Section 3.5.2.

When does it occur?

Scenario: A member from the University staff wants to get all the Users from a specific
Department joining them also by a particular RoleId

Listing 4.3: Example of SQL query using Complex join
1 SELECT {Users}.* FROM {Users}

2 LEFT OUTER JOIN {Department}

3 ON ({Users}.[DepartmentId] = {Department}.[Id] AND {Users}.[RoleId] = 1)

Why should the model be extended with it?

Complex joins were defined as a key feature during the first case study presented in Sec-
tion 3.5.2, after being cleared that it occurs with significant frequency.

4.1.4 Distinct Values

What characterizes it?

Occasionally, duplicated values can appear within the retrieved data. This could not be a
problem, however sometimes the developer will need to retrieve just the distinct values
and, currently, to do that using Agile PlatformTM the developers would need an Advanced
Query.

67

4. MODEL PROPOSAL 4.1. Most Frequent Identified Patterns

When does it occur?

Scenario: The University staff would like to know which departments from the institu-
tion have users from Lisbon. The result should be the list of distinct department names.

Listing 4.4: Example of SQL query selecting Distinct values
1 SELECT DISTINCT {Department}.[Name]

2 FROM {Users} INNER JOIN {Department}

3 ON ({Users}.[DepartmentId] = {Department}.[Id])

4 WHERE {Users}.[City] = ’Lisbon’

Why should the model be extended with it?

During cluster analysis, we discovered that a specific cluster used it with high frequency,
and such behaviour led us to detect that around 17% of the dataset was also using Distinct
keyword. For this reason it is considered a key feature in our model proposal.

4.1.5 Aggregate Functions

What characterizes it?

Aggregate functions are characterized by performing a calculation on a set of values and
return a single value. All aggregate functions ignore null values except Count().

In this context, we focus in specific functions such as Count(), Sum(), Avg(), Max() and
Min() functions. Note that Group By is handled separately as you will see on Section 4.1.7.

When does it occur?

Scenario: An University accountant wants to create a report to the University secretary.
One of the details that he wants to attach to the report is the average of salaries of profes-
sors (RoleId = 1).

Listing 4.5: Example of SQL query from scenario using Aggregate functions
1 SELECT Avg({User}.[Salary])
2 FROM {Users} WHERE {User}.[RoleId] = 1

Why should the model be extended with it?

Despite the fact that Count() function is already supported by Simple Queries, its use is
highly restricted since it only allows to know the number of rows that would be retrieved
by a query. Furthermore, it is useful to have available other functions such as Sum(),
Avg(), Min() or even Max().

Such a conclusion is entailed after visual cluster analysis, backed up by Advanced SQL
Term Histogram. Histogram shows that Count term is presented in almost 20% of the
Select statements, against 9% from Sum term and almost 5% of Max, Min and Avg terms.

68

4. MODEL PROPOSAL 4.1. Most Frequent Identified Patterns

4.1.6 Append Literals

What characterizes it?

It allows appending values from different columns retrieving just one column or even
adding a specific literal to some column.

When does it occur?

Scenario: The employee of the secretary wants to do the list of all the Users from the
University ordered first by their LastName and after that by their First Name.

The results should be retrieved as one field only (full name), thus the employee should
append first name with last name and separate them with a comma.

Listing 4.6: Example of SQL query using Append literals
1 SELECT {Users}.[LastName] || ", " || {Users}.[FirstName]

2 FROM {Users}

3 ORDER BY {Users}.[LastName], {Users}.[FirstName]

Why should the model be extended with it?

The decision to support this feature in the new model is taken according terms his-
tograms from several clusters where the operator occurs with some frequency, and re-
garding all dataset where it occurs in almost 7% of the queries.

4.1.7 Group By Columns

What characterizes it?

The Group By statement can be used in conjunction with the aggregate functions to group
the result-set by one or more columns. However, if there are no aggregate functions in
the query it can produce the same results as the Distinct operator.

When does it occur?

Scenario: The University accountant wants to build a report containing the average
salaries grouped by role.

Listing 4.7: Example of SQL query using Group By
1 SELECT {Role}.[Name], Avg({Users}.[Salary])
2 FROM {Users} INNER JOIN {Role}
3 ON ({Users}.[RoleId] = {Role}.[Id])
4 GROUP BY {Role}.[Name]

69

4. MODEL PROPOSAL 4.2. Defining an Order of Implementation

Why should the model be extended with it?

The need of this feature can be justified through its presence in almost 9% of the queries
from dataset. It brings much more freedom to developers, e.g. it eases the creation of
reports. However, note that its use is much more valued when combined with aggregate
functions, which can create some concerns about possible dependencies in terms of what
needs to come first.

4.2 Defining an Order of Implementation

Each feature has its own impact on the entire solution. Thus, the model proposal should
follow an incremental process, i.e. we propose the model idealizing and designing fea-
ture by feature in order to better understand what is the value added by such feature.

Also it is important to understand if there are any dependencies between the identi-
fied features, and that is what we present in the next section.

4.2.1 Dependencies

Analysing the set of identified features, it is reasonable to say that Distinct, Append literals
and Aggregate functions will need to be used in the context of certain columns selected,
which represent that these three features depend on the Selection of columns. Group By fea-
ture is not really depending on Aggregate functions, however in our opinion and according
developers it makes much more sense to use simultaneously with Aggregate functions, that
it is the reason why it is considered as a dependency.

In relation to In operator with a list of values, it is independent from other features,
however it creates a dependency to the implementation of In operator with a sub-query.

Regarding Complex Joins, it is the only feature that is totally independent from the
others, which means that it can be implemented without concern about other features.
All the previous identified dependencies are shown in Figure 4.1.

In the meantime, we discuss this topic with R & D team and we come to some con-
clusions. All features involving sub-queries have high costs in terms of visual changes to
the current Simple Query model and also on the implementation time needed to have it
ready to insertion on the product. Even not proposing new features that depend on sub-
queries, we decide to study their impact in terms of coverage and then we can answer to
"What would be the coverage of queries the new model would cover with these features?".

4.2.2 Heuristic

After realizing what are the features to be extended in the new model and their depen-
dencies, it is time to define an order of implementation. This order definition becomes
necessary, once in the software businesses / real markets although predictable it is im-
possible to precise how many features can be implemented in a specific period of time.
This constraint is due to several variables that can change over the time such as potential

70

4. MODEL PROPOSAL 4.2. Defining an Order of Implementation

Figure 4.1: Dependencies between identified features

unexpected problems that may arise, the need to focus human resources in other tasks,
among others.

To accomplish an acceptable order of implementation we need to define a strategy
which involves creating an heuristic that allows us to find a plausible solution to order the
implementation process. This heuristic is based on extend the model always according
the feature that will bring a higher immediate gain in terms of coverage. In other words,
if we have to choose between a feature A that gives a total of 17% of immediate coverage,
and a feature B that gives just 2% of coverage, we choose to implement first feature A.
Thus, it is an incremental process once we extend the current Simple Query model with a
new feature on each iteration.

To verify what is the coverage offered by a specific feature A, we have a grammar that
supports all the implemented functionalities until then and we add it new rules in order
to start also supporting the new feature A. Thereby, we are able to parse all Select queries
from the dataset that were considered Advanced Queries. The parse action allows us to
verify the percentage of queries that is valid against the built grammar. This percent-
age of queries without any kind of syntax problems is considered the new coverage of
queries following that new intermediate grammar. It is noteworthy that every time we
add rules to a grammar it represents a new intermediate grammar, which means that we
will have several intermediate grammars until we have a final grammar supporting all
the identified features since we will do several iterations. Figure 4.2 illustrates how the
proposal process works.

1st stage

DB DBOutSystems
App

OML file XML text

2nd stage

Actual
Simple
Query
Model

New
Model

Proposal

Intermediate
Model

+ 1 feature + 1 feature + 1 feature...

Current
Simple
Query

Grammar

Final
Grammar

New
Intermediate

Grammar

+ 1 feature

+ 1 feature

(adding new rules to the
Simple Query grammar to
support the new feature)

(adding new rules to
the current grammar)

after N iterationsGetting the
new coverage

of queries

parse

Figure 4.2: Model proposal process

4.2.3 Order of Implementation

This section defines the path to follow to integrate all the key features in a new model.
According the identified dependencies from Figure 4.1, there are only three features that

71

4. MODEL PROPOSAL 4.2. Defining an Order of Implementation

are completely independent:

• Selection of columns

• In operator with list of values

• Complex joins

Since the above features are free of dependencies, one of them is our start point in
terms of first feature to be implemented. According the heuristic defined, after create all
the three grammars that support all the functionalities of Simple Queries plus each one of
the features, we test them against the dataset of Advanced Queries. The results are shown
in Figure 4.3

Note that, since we discovered on the clustering analysis that there are several queries
on the dataset that have patterns that are already supported on Simple Queries, we decide
to quantify them. To do that, we buid a grammar with all the rules supported by Sim-
ple Queries and then we parse all the dataset of Advanced Queries to analyse how many
of them are successfully parsed. We find out that 3,725 queries are considered Simple
Queries, which means that our dataset of Advanced Queries is reduced to 17,352 queries
(21, 077 � 3, 725) from now on, and all mentions to coverage will be related with this
reduced dataset.

Figure 4.3: Heuristic - extending Simple Queries with the first new feature

Figure 4.3 depicts the astonishing increase of 17.8% in terms of coverage with the
feature of Selection of columns, against 1.7% with In feature and 2.3% with the addition of
Complex Joins. Thus, the feature that offers greater immediate gains and that we propose
to be implemented first is the Selection of columns.

Once the first new feature to add is already defined, we can do another iteration
using the defined heuristic without forgetting the dependencies. Figure 4.4 shows the
gains obtained to each one of the possible features to this iteration.

Figure 4.4: Heuristic - extending Simple Queries with the second new feature

72

4. MODEL PROPOSAL 4.2. Defining an Order of Implementation

This time the gains are smaller than in the first iteration and the feature that stands
out is the Distinct. Starting to support queries with Distinct values (after introducing the
possibility to manage the selection of columns) brings us gains of 6.9%, against 4.2% from
adding support to Aggregate functions, 3.4% from Complex Joins, 2.4% from IN operator
with list of values or parameters, and 0.2% from Append of literals. Thus, the feature
that offers greater immediate gains and that we propose to be the second feature being
implemented is the Distinct values.

Since the second new feature to extend the model of Simple Queries is defined, we can
go to the next iteration using the defined heuristic and taking into account once again the
dependencies defined in Section 4.2.1. Figure 4.5 shows the gains obtained to each one of
the possible features to this iteration.

Figure 4.5: Heuristic - extending Simple Queries with the third new feature

Following the heuristic, after extending the model with Selection of columns and Dis-
tinct values features, what brings more immediate gains are the Aggregate functions with
4.2%. The other three features that could be added on this iteration are the Append of lit-
erals with 0.2% of gains, In operator with 3.0% and, last but not least, Complex joins with
worthy gains of 4% which means that could bring also high gains. Thus, the third feature
to implement is the Aggregate functions.

Another iteration of the heuristic is done and the third new feature to extend is de-
fined, then we can continue iterating the heuristic. This iteration allows us to choose
between four different features as shown in Figure 4.6, and the next feature extending
the model is the Complex Joins, offering more 4.2% of coverage.

Figure 4.6: Heuristic - extending Simple Queries with the fourth new feature

After define the fourth new feature to extend the model we can perform a new it-
eration of the heuristic. There are three features remaining and, according the iteration
results that are presented in Figure 4.7, it is the In operator the next feature to be proposed

73

4. MODEL PROPOSAL 4.2. Defining an Order of Implementation

since it presents immediate gains of 3.5%. Group By clause would allow an increase of
2.6% in terms of coverage, and Append literals brings a very small percentage of 0.6%.

Figure 4.7: Heuristic - extending Simple Queries with the fifth new feature

At the moment, the intermediate grammar is composed by all the features supported
by Simple Queries, as well as Selection of columns, Distinct values, Aggregate functions, Com-
plex joins and In operator. There are only two features remaining to have the final model
complete and these features are Group By clause and Append Literals.

Figure 4.8: Heuristic - extending Simple Queries with the sixth new feature

As illustrated in Figure 4.8, the next feature to implement is the Group By offering
gains of 2.8%. However, if we did not consider the implementation costs of features
with sub-queries, of course the natural path to follow would be the implementation of IN
operator with sub-queries since it would increase the coverage in 5.4%.

Another worthy note is related with the Exist operator (that offers 2.3% of gains) since
in our context the queries that are using it can also be expressed using the In operator,
which lead us to a conclusion. If we would propose any features involving sub-queries,
we could present a proposal regarding only the IN operator and consider as gains of
coverage at least the 7.7% offered by both features (5.4% + 2.3%).

Until now we have proposed the order of integration for the first six features in the
current model of Simple Queries, and there is only one iteration left to finish the execution
of the heuristic method defined. The feature that is missing is Append literals, and after
analyse Figure 4.9, it is possible to see that this last feature only brings gains of less then
1%.

As Figure 4.10 depicts, it is not only now that the coverage gains offered by Append
literals feature are less than 1%, which means that its 7% of presence that we refer in
Section 4.1.6 are not only depending on the features that we proposed but also on other

74

4. MODEL PROPOSAL 4.3. Extending the Model

Figure 4.9: Heuristic - extending Simple Queries with the seventh new feature

features that still not being supported in the current model proposed. Thus, this means
that this feature will not be proposed since its gains are meaningless.

After identifying the list of key features that should support the new model for a
visual query builder, as well as identifying the respective order of implementation, we
see that these seven features together increase the expressiveness of the current Simple
Query model, since about 40% of the Advanced Queries can now be specified as Simple
Queries. Although these 40% might seem a small percentage, it presents a really good
relationship cost/benefit. At this moment, increasing this value with additionally 10%
(reaching the overall percentage of 50%) would have the same cost as the current 40%.
This means there is a large difference between the cost of implementing features that
cover 40%, and features that cover 50%, since it costs twice as much.

In the next section we present our model proposal integrating each one of the iden-
tified key features in the context of visual integration with the product Agile PlatformTM ,
more specifically in its component Service Studio, as well as how works the conversion
from a query in the visual query builder to SQL code. The proposal follows the order
defined above.

4.3 Extending the Model

The new target model will be composed by all the functionalities available on Simple
Queries plus the pointed key features. Between these two models we will have the inter-
mediate models.

4.3.1 Selection of Columns

The Selection of output is one of the most important features since it gives a huge increase
in terms of number of queries that can be done using the visual query builder from Simple
Queries.

Regarding our previous experience with Agile PlatformTM , the first idea emerging to
integrate the Selection of Columns to be the output of a query is through adding a new
folder to the query tree from Simple Query (Figure 4.11). Thus, with the visual analysis
of the query tree is clear and easy to understand how the mapping from Simple Query to
SQL generated is done:

75

4. MODEL PROPOSAL 4.3. Extending the Model

Figure
4.10:H

euristic
-tree

defining
the

com
plete

path
to

follow
during

the
im

plem
entation

76

4. MODEL PROPOSAL 4.3. Extending the Model

• current folder "Parameters" remains there

• new folder called "Output Entities / Structures" allows to manipulate what it is
intended to select

• current folder "Entities / Structures" remains there, possibly renamed to "Source
Entities / Structures"

• current folder Conditions remains there with the same purpose, manage the condi-
tions whether being used as join conditions or as filters

Figure 4.11: Mockup - extending Simple Queries with the first new feature (first approach)

Nevertheless, there are some cons on this approach, the first is related with the fact
that entities inside the folder "Output Entities / Structures" are intrinsically replicated
since, by design, all entities from folder "Entities / Structures" are selected in the query,
i.e. in the new Simple Query context, they inherently belong to the folder "Output Entities
/ Structures".

Thus, it is necessary to discuss and try to find a better approach, not only to address
this gap presented by the previous approach but also to try something closer to the cur-
rent query builder. So we come to the conclusion that, since the output folder might bring
duplicated objects to the tree, it might be possible to propose something without it.

Then, this new approach that we propose keeps the current structure of the query tree,
with folders "Parameter", "Entity / Structure", "Conditions" and "Order By". However,
there is a small change in a specific type of elements from the query, the elements that
we are talking about are Structures from "Entity / Structures" folder. Until this moment,
it is possible to add Structures to a Simple Query, although such Structures are not able to
manage in terms of the values assigned to each one of its attributes (the assigned value

77

4. MODEL PROPOSAL 4.3. Extending the Model

is the default value for the specific type of each attribute). What we propose is the pos-
sibility to define a value to each one of the attributes, referring to them in the context of
Simple Queries as Output Attributes. The valid syntax for the value assigned to an Output
Attribute is given in Figure 4.12.

Output Attribute ::= null
| int (Integer literal)
| real (Real literal)
| string (String literal)
| Table.Column

Figure 4.12: Output Attribute Syntax

Note that when Table.Column appears in the syntax, it refers to an identifier from an
entity of the database (Table) and other identifier from an attribute of this entity (Column).

Regardless the chosen approach, both allow the user of Agile PlatformTM to expand
a structure belonging to the query tree of a Simple Query and see the Output Attributes
composing that structure. Thereafter, each one of these attributes is clickable and its
properties are shown in the right panel of the Simple Queries. The only property that can
be changed is the Value to assign to that attribute.

After defining all the specifications for the second approach, we are able to show in
Figure 4.13 how this propose can fit in the Agile PlatformTM . In the figure we can see that
the developer has defined that the value for the attribute CompleNameFromUser.FirstName
is obtained from the Users entity using the expression "Users.FirstName", something sim-
ilar is done to define the value for the attribute CompleteNameFromUser.LastName with the
expression "Users.LastName".

Figure 4.13: Mockup - extending Simple Queries with the first new feature (final approach)

78

4. MODEL PROPOSAL 4.3. Extending the Model

Note that the value assigned to each one of the Output Attributes appears after their
names, and it is simple to justify why this decision was taken, since the query tree should
auto-express its behaviour. If the value of some attribute is not yet defined, it is only
shown the name of the attribute in the tree.

Cast from List of Several Records to List of Records

Moreover, we can not forget the original purpose of this feature, it usually is used to select
data from the database and send it to be consumed by a Web Service. Due to this fact, it
is need to apply some changes on the behaviour of Agile PlatformTM and then, from now
on if a list is composed by a tuple of records, e.g. (A, B, C) but the Web Service just need
to consume a record list of (B) such cast should be done intrinsically and this operation
should be error free. Currently, if we do this action from the example we get an Invalid
Data Type Error on TrueChangeTM with the message "The same ’Record’ data type required.
Expected ’B’ instead of ’A,B,C’".

4.3.2 Distinct Values

The support to Distinct values in Simple Queries can lead users of Agile PlatformTM to avoid
use Advanced Queries in specific cases. This particular feature can easily be seen as a query
property, since we want a query to return a list of distinct values, which means that this
Distinct values property can be coupled together with the other query properties.

Currently, there is a specific panel to show and manage all the properties of a selected
object. What we propose is when a query is selected, the properties of it are shown as
usual, however there is a new property in the list of properties from the panel. As we
previously referred, this new property is called Distinct values, and can take the boolean
values Yes or No. By default, it is reasonable to say that the property is No since all the
entities have always an Id which means that, if all its fields are selected by the query, it is
enough to guaranty the distinct values on the results.

Besides the addition of the property mentioned above, we need to allow the users to
define if an Entity involved on the query, i.e. inside folder "Entities / Structure", will or
will not belong to its Output (will be selected or not). Once, as already referred, the enti-
ties have always an Id and if we force them to belong to the Output then it is impossible
to affect the results even after changing the Distinct property since, whatever its value,
the results will be always distinct.

It should also exist different icons to distinguish when an Entity is belonging to the
Output and when it is not belonging. "Why?" Because it should be possible and easy look
to the query tree and understand what will be the behaviour of the query. After present
the characteristics of the second feature to extend the model, we show in Figure 4.14 how
would be its integration.

At a certain moment, we have to make some decisions once we are facing a standoff.
This standoff is related with the fact that if the Distinct values property should or should

79

4. MODEL PROPOSAL 4.3. Extending the Model

Properties Panel

New feature

Figure 4.14: Mockup - extending Simple Queries with the second new feature

not be always enable to change its value from No to Yes, and vice-versa. The first propose
is that it should be disabled until a Structure be added to the query and all the Entities
from the query be defined as not belonging to the Output. However, this can create some
problems, since the user can miss the property transition from disable to enable, which
can be considered as an interface problem. That is the reason why we decide to let that
query property always enable and inject a warning/info using TrueChangeTM of Service
Studio in the case of that property be set to Yes and there is at least one Entity selected as
belonging to the Output.

Hereupon, in the next section it is defined the proposal that supports Aggregate func-
tions since it is the third new feature to implement.

4.3.3 Aggregate Functions

Aggregate functions can give precious help when a developer is facing the creation of re-
ports, since it is a common scenario in the current market and businesses. Such reports
can allow to understand how were the current movements and actions of a company
in a specific range of time. Sometimes they can be weekly reports, other times monthly,
quarterly or even annually. Regardless the subject, aggregate functions can support these
reports whether for show the total revenue achieved by a specific employee or a partic-
ular branch office in some month, or whether for show the annual expenses in terms of
office material for distinct offices.

To start supporting this feature, the syntax for the value assigned to an Output At-
tribute needs to be reviewed. The new syntax is given in Figure 4.15.

After specifying the syntax that validates an expression of an Output Attribute, it is
easy to idealize that there is no big changes in terms of interface, since what really needs
change is the syntax that is supported by the expression of an Output Attribute. Thus, in
Figure 4.16 is presented a mockup of a query tree using an aggregate function.

80

4. MODEL PROPOSAL 4.3. Extending the Model

Output Attribute ::= null
| int (Integer value)
| real (Real value)
| string (String literal)
| Count(⇤) (Count function)
| Count(int)
| Count(string)
| Count([DISTINCT] Table.Column)
| Sum ([DISTINCT] Table.Column) (Sum function)
| Avg ([DISTINCT] Table.Column) (Average function)
| Max (Table.Column) (Max function)
| Min (Table.Column) (Min function)
| Table.Column

Figure 4.15: Output Attribute Syntax - with Aggregate functions

Figure 4.16: Mockup - extending Simple Queries with the third new feature

81

4. MODEL PROPOSAL 4.3. Extending the Model

The only interface change that can be proposed in this stage is related with the ex-
pression editor of a Value from an Output Attribute. With this, we implicitly aware the
developer to this new feature and it takes him to understand what are the boundaries
of an Output Attribute. Figure 4.17 presents our proposal for the expression editor of an
Output Attribute. It is possible to see the text area in the top where should be written the
expression, the scope tree in the left bottom panel, and the right bottom panel is related
with local properties.

Figure 4.17: Mockup - extending Simple Queries with the third new feature (expression
editor)

4.3.4 Complex Joins

Complex joins were one of ours case studies (see Section 3.5.2), regarding the fact that joins
from Simple Queries need to follow a syntax Table.Column = Table.Column as shown in
Figure 4.18. We come into the conclusion that complex joins allow us to increase the
coverage in terms of queries that can be done as Simple Queries.

Complex Join ::= ON Expression

Expression ::= Table.Column = Table.Column
| (Expression)

Figure 4.18: Join Condition Syntax - current model

However, starting to support a new kind of joins can be challenging, once we have the
duty of keep the usability of Simple Queries, as well as its simplicity. To do that, we should
avoid putting all the responsibility to the developers’ side and try to help them during
the use of Agile PlatformTM . What we mean by this is that we should continue helping

82

4. MODEL PROPOSAL 4.3. Extending the Model

developers over a detection and auto-conversion from a condition to a join condition,
nevertheless we need to define the rules that would detect a Join condition.

As we previously mentioned, currently the rule that should be verified in order to
consider a condition as a Join condition is an Table.Column = Table.Column equality
between two different entities, however we can try to explore this rule in order to deal
with Complex Joins by relaxing the new rule and saying that if a condition contains at least
a Table.Column = Table.Column condition it is auto-classified as a Join condition. It is
also important to notice that the columns from the left and right side of the condition
should belong to different Entities, since these two Entities are important to define the
Join Type property of a condition.

Join Type of a condition is the property that allows to distinguish if it is an Inner Join,
a Left Outer Join,a Right Outer Join or a Full Outer Join. Figure 4.19 shows an example of a
query where the join condition is more than a simple condition, since it is composed by
a Table.Column = Table.Column AND Table.Column =

Figure 4.19: Mockup - extending Simple Queries with the fourth new feature (expression
editor)

What we propose with the new specifications for Join conditions lead us to a new
syntax shown in Figure 4.20. Furthermore, it is need to do some pos-verification in the
condition to understand if there is at least one equality Table.Column = Table.Column

between two different tables in order to auto-classify it as a Join condition.
The specifications that we have defined above were based on the analysis regarding

the Join condition patterns that we have made over the 4.2% of the new queries from the
dataset that would start to be covered with the addition of Complex Joins, relaxing the
Join condition, if they just need to follow the syntax from Figure 4.20. However we have
the pos-verification to guaranty that they have at least a Table.Column = Table.Column

condition, thus we also check it in the different patterns from these 4.2%, and we come to

83

4. MODEL PROPOSAL 4.3. Extending the Model

Complex Join ::= ON Expression

Expression ::= AndExpression OR Expression
| AndExpression

AndExpression ::= PredExpression AND AndExpression
| PredExpression

PredExpression ::= V alue IS [NOT] NULL
| AritmeticExpression Operator AritmeticExpression
| AritmeticExpression

Operator ::= = | <> | > | >= | < | <= |[NOT]LIKE

AritmeticExpression ::= AddExpression + MultExpression
| AddExpression � MultExpression
| MultExpression

MultExpression ::= MultExpression ⇤ SignalExpression
| MultExpression / SignalExpression
| SignalExpression

SignalExpression ::= � V alue
| V alue

V alue ::= Table.Column
| null
| int
| real
| string
| InputParameter
| Function(Table.Column)
| (Expression)

Figure 4.20: Join Condition Syntax - new model

84

4. MODEL PROPOSAL 4.3. Extending the Model

the conclusion that 96% from this 4.2% refer to queries where the Complex Join conditions
are always composed by, at least, a Table.Column = Table.Column condition.

Moreover, 86% of the this 4.2% with complex joins refer to queries with Join condition
involving just 2 entities, which help us to decide what will be the different Join Types.
Then, for the new model we propose that if there are more than 2 entities in a complex
join condition, the entities that are considered for the different Join Types are the first two
entities of the condition Table.Column = Table.Column, e.g. if we have a Join condition
such as Table.Column = Table2.Column AND Table3.Column NOT LIKE 00, we can
choose one of the four Join Types between Table and Table2.

Out of curiosity, regarding the 4.2% of queries that follow the syntax shown in Fig-
ure 4.20, we also notice that:

• more than 47% contains a condition with the syntax Table.Column = Table.Column

AND Table.Column = @Parameter

• almost 15% contains a condition with the syntax Table.Column = Table.Column

AND Table.Column = Table.Column

• more than 12% contains a condition with the syntax Table.Column = Table.Column

AND Table.Column = 1

Review Until this stage, we proposed how should be carried the extension of four new
features and we also presented the reasons to do so. We have referred to Selection of
Columns, Distinct values, Aggregate Functions, and Complex Joins, although regarding the
list of most frequent identified patterns there stills missing three of them to propose, IN
operator, Group By clause and Append literals. Adding all the features presented until now
on the current model of Simple Queries allows us to specify 33.1% of the Advanced Queries
from the dataset as Simple Queries.

4.3.5 IN (List of Values or @Parameter)

Since In operator was detected as a frequent pattern during the analysis of our dataset,
it is included in the list of most frequent identified patterns. This operator can be split
into two parts, primarily the In operator using a List of Values or a @Parameter, secondly
the In operator using a sub-query. We decide that the second part is dependent on the
first part as shown in Figure 4.1, mainly due to the costs related with features involving
sub-queries, as we presented in Section 4.2.1.

The first thing to do is add a new operator In inside the group of other operators such
as like in the query condition editor and, as an expression, this boolean operator has a left
and a right part. The left part is related with the column that has a value, the right part
should contain the list of values that will be checked against the value that comes from
the left part, in order to understand if the left part is contained in the right part.

85

4. MODEL PROPOSAL 4.3. Extending the Model

The question that emerges here is "how should be this list of values presented?". At a
first sight, it can be easy to have an idea, however it should be well argued. We could
allow the developer to set the list in full way, like "(’1’,’2’,’3’,...)", however this approach
could deviate from the current paradigm of lists in Agile PlatformTM . In Agile PlatformTM a
list is named Record List and has an associated Record Definition that can be an Entity or a
Structure from the data model. What we propose is start supporting Record Lists also for
Paramaters, just on the queries, and the Record List needs to be validated in order to check
if it is a Structure composed by one, and only one, attribute of a basic type such as:

• Text;

• Number, Integer, Decimal;

• Identifier;

• Date, Date Time, Time;

• Phone Number, Email.

If this kind of parameter is supported in Simple Queries, we can create query condi-
tions with In operator, where the left part is a column of an entity involved on the query
and the right part is the specified parameter from the query.

The definition of the parameter that is used on the query condition is displayed on
Figure 4.21. The scenario shown contains a query with a ListOfValues parameter. This
parameter is defined as a Record List of ActivityTypeIdentifiers (structure composed by one
attribute called Value of the type ActivityType Identifier).

Figure 4.21: Mockup - extending Simple Queries with the fifth new feature (parameter
definition)

86

4. MODEL PROPOSAL 4.3. Extending the Model

This specification of allow only query Parameters as Record List of Structures with one,
and only one, attribute of a basic type is a constraint that needs to be verified always on
the fly.

Once the parameter is defined, it starts to be visible in the scope of query conditions
and it is possible to build a query condition based on it using an In operator as shown in
Figure 4.22.

Figure 4.22: Mockup - extending Simple Queries with the fifth new feature (query condi-
tion editor)

Afterwards, at compilation time, the list of values needs to be converted in order to
have the correct syntax to generate valid SQL code.

In summary, to extend the model with this fifth feature, we need to add the In operator
inside the query condition editor, add Record List as a possible data type for query param-
eters, and last, but not least, restrict the Record definition of these parameters of Record List
type, allowing only the Structures composed by one, and only one, attributes of a basic
type as referred above.

At the moment, the intermediate model is composed by all the features supported
by Simple Queries, as well as Selection of columns, Distinct values, Aggregate functions, Com-
plex joins and In operator. There are only two features remaining to have the final model
complete and these features are Group By clause and Append Literals.

4.3.6 Group By Clause

A plausible approach is adding a new folder called "Group By" to the current interme-
diate model obtaining a query tree as shown in Figure 4.23. The query tree is now com-
posed by folders "Parameters", "Entities / Structures", "Conditions", "Group By" and "Or-
der By".

87

4. MODEL PROPOSAL 4.4. Suggestion Mechanism

Figure 4.23: Mockup - extending Simple Queries with the sixth new feature

Figure 4.23 depicts the action of adding a new element to the Group By. To do that the
developer just needs to do a right-click over Group By folder, after that choose one Entity
between the entities available and finally choose the respective column that defines the
Group By (Figure 4.24).

The behaviour of this feature is similar to Order By, since it is possible to choose any
column from the entities involved in the query. Depending on the columns that are in
the Group By folder, the property of an Entity that specifies if it belongs to the Output can
change from Yes to No and vice-versa. If there is any Group By column defined, in order
to have an Entity belonging to the Output, all the columns of that Entity should be added
in the Group By folder.

Another characteristic of this feature is related with the columns that are used in the
Output Attributes. All the columns that are not used with aggregate functions need to be
on the Group By folder. Furthermore, all the Output Attributes that are using aggregate
functions must be disabled on Group By, otherwise the aggregate function does not do
any effect (will be always applied to one row).

The scenario presented in Figure 4.24 shows that ActivityLog, ActivityType, and Users
entities are involved in the query, which is the reason why they are available to Group By.
The goal of the query is to retrieve the number of movements grouped by Users.

Notice that we also give a suggestion to the developer about what column he should
add next, putting the name of the column as bold text.

4.4 Suggestion Mechanism

In Service Studio, the validation engine TrueChangeTM can be a great help afterwards in
terms of validation of queries and suggestions, since it allows us to aware developers

88

4. MODEL PROPOSAL 4.5. Discussion

Figure 4.24: Mockup - extending Simple Queries with the sixth new feature (Group By
column)

about some possible mistakes, or even aware them when an Advanced Query can be done
as Simple Query.

The last point mentioned is relevant in order to aware existing users from Agile PlatformTM .
Would be also interesting to provide a new command on Right-click over the query to au-
tomatically convert an Advanced Query into a Simple Query. Furthermore, it would be as
well interesting to do the reverse, convert a Simple Query into an Advanced Query since it
allows the developer to still writing the complex query that usually is based on a Simple
Query that evolves over time.

4.5 Discussion

In this Chapter we presented the list of most frequent identified patterns that guided our
model proposal along with the answers to some questions such as "What characterizes each
feature?", "When does it occur?" and "Why should the model be extended with it?".

Afterwards, since the model proposal followed an incremental process, we presented
an heuristic that allowed us to define a plausible order of implementation for the features,
bearing in mind all the dependencies identified between them.

Furthermore, we defined our proposal to extend the model with the identified fea-
tures, trying to validate all the decisions adopted with the R & D team. In the end, we
also fulfilled the model proposal with suggestions taking advantage of the benefits of-
fered by Agile PlatformTM validation engine, TrueChangeTM.

The next Chapter presents the prototype implemented and it is split in two parts.
The first focuses on what is extended in the prototype regarding the current Simple Query
model, and once we need to submit the prototype to usability tests in order to validate

89

4. MODEL PROPOSAL 4.5. Discussion

our proposal, the second part presents some important components of usability tests such
as the scenario, the script, and the feedback from the testers.

90

5
Prototype

After identifying the key features of the new model, we decide to implement a high-
fidelity prototype. But, since we have some time constraints, we start to implement the
first feature proposed, feature that brings more gains in terms of coverage of Advanced
Queries that can start to be built as Simple Queries.

The implemented feature is the Selection of columns, however during its implemen-
tation we discover that it is easier to define the Output Attribute syntax as shown in
Figure 5.1, opposing the initial proposal since in the prototype the domain of Output
Attributes is now much more comprehensive. The Built-in Function on the syntax refers
to functions available on Service Studio, that allow the developer to manage Date, Time,
Numbers, Text, among others. Regarding the new domain of Output Attributes it is pos-
sible to say that the coverage of Advanced Queries that now can be done as Simple Queries
will be greater than 17.8%, the percentage pointed to the feature of Selection of columns
since the prototype implicitly and simultaneously implements other features such as Ap-
pend literals, use of built-in functions on Output Attributes, and others.

Output Attribute ::= null
| int (Integer literal)
| real (Real literal)
| string (String literal)
| Table.Column
| BuiltInFunction(Output Attribute)
| Table.Column + Output Attribute

Figure 5.1: Output Attribute Syntax in Prototype

91

5. PROTOTYPE 5.1. Usability tests

In Figure 5.2 is shown a screenshot of the prototype where is possible to see a struc-
ture expanded as well as the Output Attributes from that structure, already with values
assigned as may be seen after each Output Attribute name, surrounded by parenthesis.

Figure 5.2: Prototype - Output Attributes from Simple Query

The prototype done will be submitted to usability tests that are the topic of the next
section, such tests will allow us to validate the model.

5.1 Usability tests

“Why didn’t we do this sooner? — what everyone says at some point during the first
usability test of their web site.” [Kru06]

Although Krug mentions a web site, this situation can occur in other contexts, namely
during the first usability test of a software.

To submit our prototype to usability tests we need a scenario, a script and tasks
[Ros12, Fal12, oHS06]. In this particular case it is a single task since we are testing a
unique feature.

5.1.1 Scenario

We are representing the campus IT team, and we know that will occur an event in a
specified department in a few weeks.

A company of events management was engaged to set up everything:

• Space decoration,

92

5. PROTOTYPE 5.1. Usability tests

• Snacks & drinks,

• Entrances,

• and so on. . .

Now, in order to manage the entrances, they are asking us the list of names of people
that will be allowed on the event. Basically, we are talking about users belonging to that
specific Department.

To this end, they provided us a Web Reference with an action SendInviteesList accepting
a list of names of people.

5.1.2 Script

If the tester uses Advanced query Let him finish the action. After that, ask him to try
again but, this time, using Simple Query.

If the tester uses Simple Query Let him finish the action, and

If the tester uses a foreach to iterate the list of users from the query and create a
new list with the loop, then let him finish the action. After that, ask him why he did not
use a structure. Then, ask him to try it using the structure.

Just on the limit, advise him to check "Add Another Entity / Structure..." with
right-click. Maybe he will see the Web Service on the Structures folder from the Picker.

In the end of the test ask for suggestion of improvements that can allow to make the
feature more usable and discoverable.

5.1.3 Feedback

In this section we present the feedback collected during the usability tests from the sev-
eral iterations that we have done.

5.1.3.1 First iteration

In this iteration we intend to collect feedback about several aspects such as scenario,
proposed interface, new incoming ideas, among others. After that, we analyse all the
received feedback and then, if necessary, we apply some changes according it.

Tester 1

• He followed the Simple Query path a priori (maybe due to having some knowledge
about the project of add new functionalities on Simple Queries)

93

5. PROTOTYPE 5.1. Usability tests

• He did not understand what was a list of details referred on the scenario (list to
be consumed by the Web Service) -> Solution is to change some sentences on the
scenario, and now we have "... an action SendInviteesList accepting a list of names
of people" instead of "... an action SendInviteesList accepting a list of details".

• He did not find the output -> Possible solution is to change the Label "Entity /
Structure" on the query tree or even change the label "(Add Another Entity / Struc-
ture...)" from the right-click command to add new entities on the query to "(Add
Another Entity / Output Structure...)"

5.1.3.2 Second iteration

Basically, in the previous iteration we needed to adjust the scenario description making
it more understandable. Then, we are able to start a new iteration with new testers.

Tester 2

• He followed the Simple Query path

• Meantime, when he realized that Invitee was a structure, he deleted the Simple
Query and created an Advanced Query

• After concluding the Advanced Query and finish the exercise, we asked him if there
was another way to solve the scenario presented using a Simple Query and we en-
courage him to try

• Then, he created a query selecting the Users, however after that he was looking for
a way to add a structure to the query

• After that he added the structure Invitee to the query, he expanded it and assigned
the values for each one of the Output Attributes

• In the end, he exposed an idea, if a structure contains attributes with the same
name and type of an attribute from any involved entity on the query, then such
entity attributes should be suggested when the developer decide to click on the
dropdown from the Output Attribute value expression.

Tester 3

• He followed the Simple Query path obtaining a list of Users

• He created a local variable that was a Record List of Invitees

• He created another local variable, this time was from the type Invitee, to assign the
values from the Users list on each iteration

94

5. PROTOTYPE 5.1. Usability tests

• Then, this last local variable Invitee was appended to the Record List of Invitees, and
when all the Users list was covered he sent it to be consumed by the Web Service

• In the end, we asked him to try it without iterate the Users list, peeking the right-
click option "(Add Another Entity / Structure...)"

• When he finished the action, he said that was expecting something closer to Ad-
vanced Queries that have a dedicated folder to Output (or the User Action that have
also the concept of Output [parameter])

• Furthermore, when he looks for a Simple Query tree he links the "Entities / Struc-
tures" folder to the From clause of a query, the "Conditions" folder to the Where
clause, and so on.

Tester 4

• He performed the scenario with a Simple Query getting a list of Users (maybe due
to the fact that he has some previous knowledge about some new functionalities on
Simple Query)

• However, he did not figure out how to manipulate the structure on the Simple
Query, and decided to done it using an Advanced Query giving up on the Simple
Query

• When he successfully finished the scenario using the Advanced Query, we asked him
to try again guiding him to use Simple Query instead.

• He block and we said to take a look to "(Add Another Entity / Structure...)". He
added the structure and finished the scenario without problems.

5.1.3.3 Third iteration

We concluded with the previous iteration that all the testers were performing the scenario
similarly and they never found the new feature which lead us to a question "How should
we aware developers about this feature?".

Hereupon, we decide to change few things in the prototype, and if an Advanced Query
is parseable as a Simple Query (new Simple Query model with support to Selection of
columns) the Platform launches an Info message on TrueChangeTM and aware the devel-
oper with the message "Do you know that [queryName] could be built as a Simple Query?".
With this information we are avoiding some interaction with the testers in the end of their
execution of the scenario presented. Figure 5.3 depicts the message that appears to the
developer using TrueChangeTM when a query is done using Advanced Query however is
simple enough to do as Simple Query.

95

5. PROTOTYPE 5.1. Usability tests

Figure 5.3: Prototype - message to aware developers about new functionalities of Simple
Query

Tester 5

• He executed the scenario using Simple Query, then he obtains a list of Users

• After building the query, he checked what will be consumed by the Web Service and
he discovered that will be a structure

• Created a new local variable that is a List of Records and another local variable that
is a Record (more specifically an Invitee Structure)

• He iterates all the list retrieved from the list and on each iteration assign the values
that he wants to the local variable Invitee and after that, append it to the local
variable Record List

• After finishing the scenario following the previous steps, we asked him to try with-
out iterate the list. Then, he added a structure and saw that it was expandable,
however he almost ignore that fact but "Why?" -> The mandatory property of an
output attribute should be confirmed, and if an attribute is mandatory but the value
is not filled (even without the default value type) an error should appear on the
TrueChangeTM and the attribute should be distinguished with a red color maybe.
This action would help to identify that there is something new in the Simple Query
tree.

• Another problem that he detected was related with the fact that the query returns
(A,B,C) but the Web Service just needs (B) and until now such thing was not possible,

96

5. PROTOTYPE 5.2. Discussion

"Why is it happening now?" Such thing can be accepted by developers if it is included
in the new learning process.

5.1.4 Top Issues

Taking into account all the feedback collected during the previous iterations, there are
some top issues detected that we list bellow:

• Understandability of the scenario (SOLVED)

• Discoverability of the feature (see Discussion, Section 5.2)

• Possibility to pass list of records of type (A,B,C) and consume just one of the types,
e.g. a list of records of the type (B), is unknown (related with the previous one, see
also Discussion, Section 5.2)

5.2 Discussion

In this Chapter we first referred to the prototype developed with some features according
the model proposed in Chapter 4. After the implementation, the prototype was submit-
ted to usability tests in order to validate the model, and we then presented all the feed-
back collected during the several iterations from these tests as well as some top issues
detected.

One of the most important top issues was related with the discoverability of the fea-
ture, since its a new thing it is need to define methods to aware developers about it.
Although it is not part of the scope of the problem that we are trying to solve, we present
below some ideas to tackle it.

How to aware new developers about this feature Of course the first thing to do would
be update the existing tutorials and videos from online training in order to explain how
powerful are Simple Queries right now. Basically, we are talking about performing some
changes on Academy Courses from OutSystems Academy [Aca13]. Moreover, it could also
be integrated on the learning process from bootcamps, etc. . .

How to aware existing developers about this feature Maybe with workshops, train-
ing, tutorials, or even generating a suggestion through TrueChangeTM that would allow
to recognize when an Advanced Query could be specified as Simple Query (already imple-
mented on the prototype). How could that be done? Through the grammars that we have
built, we can now parse a query and check if it is syntactically correct as Simple Query or
not. (Going deeper, it would be nice if it was possible to auto-convert with right-click).

Since all the top issues are solved or we have presented a solution for them, we can
conclude that after fix some certain aspects on the prototype it can be integrated with the

97

5. PROTOTYPE 5.2. Discussion

product in a short-term. The referred aspects are related with the fact that mandatory
Output Attributes should be filled otherwise the developer should get an error, the type
of an Output Attribute should be also visible as a read-only property from it, and some
additional visual awareness should be provided on the arrow to expand a structure on
the query tree.

Hereupon, in the next Chapter we present the final remarks from this Master Thesis.

98

6
Final Remarks

This thesis is integrated in the Research and Development (R & D) team of the OutSystems
company and had two different parts.

During the first part of this dissertation we described a preliminary study about dif-
ferent subjects such as the use of SQL on industrial environments, query languages, clus-
tering algorithms, searching for patterns on structured data, and visualization of data.
Furthermore, we built our dataset of queries after extract these queries from thousands
of applications from OutSystems clients and we also started an analysis over the dataset.

This analysis was composed by several steps from the histogram of terms to the
searching tool implemented that supported searching for patterns using XPath expres-
sions. Then, we proposed a possible solution for our tool that would allow us to im-
prove its capabilities to discover patterns and to visualize and understand the dataset of
queries. Some algorithms and techniques were studied as a basis for the decisions that
we later made along the development phase of the improvements on the tool.

The first phase occupied 50% of the time available and was already made in collabo-
ration with the company and with all the support from both sides, University and Com-
pany.

In a second part, the development of our tool, the implementation of the clustering
algorithm, the new query model proposal and the prototype implementation were ad-
dressed on a full time basis at the company, and it was integrated in a team with other
interns, each one responsible for a particular project regarding his Master Thesis. In this
phase, it followed the OutSystems Agile Methodology, a methodology based on SCRUM
Agile Methodologies [All01, Met01, SB01], for control and organization of projects.

The development of improvements in our tool and the implementation of the cluster-
ing algorithm to group queries according their structure were done in iterative process

99

6. FINAL REMARKS 6.1. Conclusions

as well as the proposal of the new Simple Query model, that suffered some changes along
the time. For example, in some stages of the model proposal we were dealing with two or
more different ways to implement a specific feature. With the arise of new challenges, we
were forced to reinforce the proposal and rethink some decisions, reasons and arguments
along time. Since we were integrated in a team of specialists, they provided us with
valuable comments and interesting discussions. In the end, we were able to decide for
the best proposal according the feedback obtained from these comments and discussions.

It was necessary to understand the functionalities and purposes of the main compo-
nent of the Agile PlatformTM , Service Studio. It was also important to (partially) understand
the DSL compiler and the OutSystems language. The next step was to start implementing
the prototype, following the new model proposal.

The prototype implemented with this thesis need a few more days of work in or-
der to be fully functional, nevertheless it can integrate the development branch of Agile
PlatformTM in a short-term. The usability tests done are a great help to the near future
since they provided important information to the R & D team.

6.1 Conclusions

In the end, we can point out some existing problems that should be addressed in the fu-
ture. The clustering algorithm could be more automatic explaining what are the patterns
contained in each cluster, instead that we need to manually perform a visual analysis and
some important facts can be missed due to possible human errors. There are some other
limitations in what concerns the pattern search feature that we integrate with the Tool
since it is using XPath, which means that it needs previous knowledge from the user.

We referred the issues of our approach. Nevertheless, now we present its benefits.
Primarily we can mention the tool built for use with OutSystems Agile PlatformTM with an
extension where should be attached all the grammars that are intended to be used on the
parse of a set of queries along with the clustering algorithm. This algorithm was imple-
mented as a C# program and it can easily be adapted to a new set of queries, generating
four different elements for analysis per cluster. These elements for analysis comprise a set
of queries that belongs to a particular cluster, a complete and a detailed colored graphs,
and an histogram of terms. Joining all these four elements, it is possible to overcome the
limitations mentioned above regarding the possible human errors from the analysis of
the clustering algorithm results.

Furthermore, since this tool has attached a search feature using a XPath processor
(good approach for users with XPath knowledge), it is also possible to take a look at the
parsed dataset and search for specific patterns from the business that would be interest-
ing to understand if they are or are not relevant in a the specific context of that dataset.

The key features that should extend the current Simple Query model were identified,
which opens a new door and helps the R & D team during the next decisions on their
product development path.

100

6. FINAL REMARKS

Additionally, a prototype was implemented and submitted to usability tests that can
be considered by the R & D team during the integration of some key features proposed
with the new model.

6.2 Future Work

One interesting topic of future work can be to understand deeply why were the queries
done as Advanced Queries if they could be done as Simple Query. This can lead the re-
searchers to a new level of challenges, possible interface problems in the current Simple
Query model or even the need to update some OutSystems Academy courses in order to
direct users attention to Simple Query as well as making them more attractive.

Furthermore, improving the usability of the tool created can be another topic of study,
discovering an easier way for looking for patterns in a big dataset of queries instead of
using the XPath. Moreover, adjust the clustering algorithm or even apply a new kind of
algorithm or technique that allows to discover patterns in a more automatic way, trying to
avoid the visual analysis that can be a source of errors possibly due to human mistakes. If
the visual analysis continue on the process of analysis, there are another point that could
be reviewed, and it is related with the colored graphs used on this analysis since only the
nodes are colored which means that a possible improvement could be done on its edges,
coloring them as well according their occurrence frequency.

Regarding the heuristic defined to order the implementation of features on the new
model, could be also interesting to have a tree as the one presented with the final path of
the implementation, however with all the possible combinations of features. With that,
we could understand better what would be the immediate gains obtained by implement-
ing two features at a time (as unexpectedly happened on the prototype), or if there is
a need to change the current path of implementation, the next step could be properly
decided and justified with the obtained gains in terms of coverage.

6.3 Discussion

In this Chapter we have provided a sum up of the work experience that we live, fol-
lowed by the work that was developed in this thesis, the main contributions and key
aspects that could be improved in future work. These improvements include some more
technical details of the tool implementation to improve its usability, improve the detec-
tion of patterns trying to make it more an automatic process, as well as understand the
reason why were some of the queries specified as Advanced Query instead of using Simple
Query.

101

6. FINAL REMARKS

102

References

[Aca13] Academy. Outsystems. https://www.outsystems.com/Academy/,
2013. [Online; accessed 05-March-2013].

[All01] Agile Alliance. The agile manifesto. http://www.agilealliance.org/
the-alliance/the-agile-manifesto/, 2001. [Online; accessed 15-
Frebruary-2013].

[Bos12] Michael Bostock. D3.js - data driven documents. http://d3js.org/, 2012.
[Online; accessed 12-March-2013].

[Cal09] Calitha. Calitha C# Gold Parser Engine. http://www.calitha.com/

goldparser.html, 2009. [Online; accessed 14-June-2012].

[CG04] Luca Cardelli and Giorgio Ghelli. TQL: a query language for semistruc-
tured data based on the ambient logic. Mathematical. Structures in Comp. Sci.,
14(3):285–327, June 2004.

[CGA+02] Giovanni Conforti, Giorgio Ghelli, Antonio Albano, Dario Colazzo, Paolo
Manghi, and Carlo Sartiani. The Query Language TQL, April 2002.

[Coo12] Devin Cook. GOLD Parsing System. http://goldparser.org/, 2012.
[Online; accessed 14-June-2012].

[Dav12] Jason Davies. Parallel sets. http://www.jasondavies.com/

parallel-sets/, 2012. [Online; accessed 12-March-2013].

[Eag12a] Eagereyes. Parallel sets. http://eagereyes.org/parallel-sets, 2012.
[Online; accessed 12-March-2013].

[Eag12b] Eagereyes. Parallel sets. https://code.google.com/p/parsets/

source/checkout, 2012. [Online; accessed 12-March-2013].

103

https://www.outsystems.com/Academy/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/
http://d3js.org/
http://www.calitha.com/goldparser.html
http://www.calitha.com/goldparser.html
http://goldparser.org/
http://www.jasondavies.com/parallel-sets/
http://www.jasondavies.com/parallel-sets/
http://eagereyes.org/parallel-sets
https://code.google.com/p/parsets/source/checkout
https://code.google.com/p/parsets/source/checkout

REFERENCES

[Fal12] Trine Falbe. An epiphany: Usability testing on high fidelity prototypes.
http://www.trinefalbe.com/?p=311, 2012. [Online; accessed 12-
March-2013].

[GMT06] Calin Garboni, Florent Masseglia, and Brigitte Trousse. Sequential pattern
mining for structure-based xml document classification. In Proceedings of
the 4th international conference on Initiative for the Evaluation of XML Retrieval,
INEX’05, pages 458–468, Berlin, Heidelberg, 2006. Springer-Verlag.

[Goo11] Google. High order bit. http://www.web2summit.com/web2011/

public/schedule/detail/20861, October 2011. [Online; accessed 25-
June-2012].

[Hel12] Service Studio Help. Outsystems agile platform 7.0. http://www.

outsystems.com/help/servicestudio/7.0, 2012. [Online; accessed
02-August-2012].

[HM04] Elliotte Rusty Harold and W. Scott Means. Xml in a nutshell, 3rd edition.
O’Reilly Media, Inc., 3 edition, 2004. Chapters 1,2,9.

[Kru06] S. Krug. Don’t make me think!: a common sense approach to Web usability. Voices
That Matter Series. New Riders, 2006. Chapter 9.

[LCMY04] Wang Lian, David Wai-lok Cheung, Nikos Mamoulis, and Siu-Ming Yiu. An
efficient and scalable algorithm for clustering xml documents by structure.
IEEE Trans. on Knowl. and Data Eng., 16(1):82–96, January 2004.

[LCW93] Hongjun Lu, Hock Chuan Chan, and Kwok Kee Wei. A survey on usage of
sql. SIGMOD Rec., 22(4):60–65, December 1993.

[Met01] Scrum Methodology. Scrum methodology agile scrum methodologies.
http://scrummethodology.com, 2001. [Online; accessed 15-Frebruary-
2013].

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to
develop domain-specific languages. ACM Comput. Surv., 37(4):316–344, De-
cember 2005.

[oHS06] U.S. Dept. of Health and Human Services. Research-Based Web Design & Us-
ability Guidelines. U.S. Government Printing Office, 2006.

[Out12] OutSystems. Agile platformTM. http://www.outsystems.com/

agile-platform/, 2012. [Online; accessed 08-July-2012].

[Phi07] Phineas. Blog about Sankey Diagrams. http://www.sankey-diagrams.
com/, 2007. [Online; accessed 25-June-2012].

104

http://www.trinefalbe.com/?p=311
http://www.web2summit.com/web2011/public/schedule/detail/20861
http://www.web2summit.com/web2011/public/schedule/detail/20861
http://www.outsystems.com/help/servicestudio/7.0
http://www.outsystems.com/help/servicestudio/7.0
http://scrummethodology.com
http://www.outsystems.com/agile-platform/
http://www.outsystems.com/agile-platform/
http://www.sankey-diagrams.com/
http://www.sankey-diagrams.com/

REFERENCES

[Pö95] Richard Pönighaus. ’Favourite’ SQL-Statements — An Empirical Analysis
of SQL-usage in Commercial Applications. In Subhash Bhalla, editor, Infor-
mation Systems and Data Management, volume 1006 of Lecture Notes in Com-
puter Science, pages 75–91. Springer Berlin / Heidelberg, 1995. 10.1007/3-540-
60584-3_25.

[Ros12] Jim Ross. Ux matters - tips on prototyping for usability test-
ing. http://www.uxmatters.com/mt/archives/2012/10/

tips-on-prototyping-for-usability-testing.php, 2012. [Online;
accessed 12-March-2013].

[SB01] Ken Schwaber and Mike Beedle. Agile Software Development with Scrum. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2001.

[SCDT00] Jaideep Srivastava, Robert Cooley, Mukund Deshpande, and Pang-Ning Tan.
Web usage mining: discovery and applications of usage patterns from web
data. SIGKDD Explor. Newsl., 1(2):12–23, January 2000.

[Sim02] John E. Simpson. XPath and XPointer: Locating Content in XML Documents.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2002. Chapters 1-5.

[SKS10] Abraham Silberschatz, Henry Korth, and S. Sudarshan. Database Systems Con-
cepts. McGraw-Hill, Inc., New York, NY, USA, sixth edition, 2010. Chapter
3.

[Tuf01] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press,
Cheshire, Conn., 2nd ed. edition, 2001. Pages 40-41, 51.

[vDKV00] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages:
an annotated bibliography. SIGPLAN Not., 35(6):26–36, June 2000.

[Wal07] Priscilla Walmsley. XQuery. O’Reilly Media, Inc., 2007.

[Wik12] Wikipedia. Gold (parser) — Wikipedia, the free encyclopedia. http://en.
wikipedia.org/wiki/GOLD_(parser), 2012. [Online; accessed 14-June-
2012].

105

http://www.uxmatters.com/mt/archives/2012/10/tips-on-prototyping-for-usability-testing.php
http://www.uxmatters.com/mt/archives/2012/10/tips-on-prototyping-for-usability-testing.php
http://en.wikipedia.org/wiki/GOLD_(parser)
http://en.wikipedia.org/wiki/GOLD_(parser)

REFERENCES

106

A
Appendix

A.1 Glossary

• Domain Specific Language (DSL) - a Domain Specific Language is a programming
language or executable specification language designed to express solutions to prob-
lems from a particular domain.

• Service Studio - a visual Integration Development Environment (IDE) that allows
to edit an eSpace as well as publish it to a development environment, to be tested
and analysed, or publish it to a production environment.

• eSpace - a web application project of Service Studio. It contains all definitions needed
for developing and managing web application, from the logic layer to data layer
elements.

• OML - stands for OutSystems Markup Language and is the format by which the eS-
paces are saved to file. It is also the extension (.oml) for the eSpaces.

• Simple Query - visual query builder available on OutSystems Agile PlatformTM that
allows the developers to query the entities from a specific eSpace (recall Chapter 2).

• Advanced Query - element from Agile PlatformTM that allows the developers to exe-
cute more complex query statements or any other SQL statements. This element can
be used to manage your entities or to execute any other statement in the database.

• Web Service - it is a software function provided at a network address over the web
or the cloud, it is a service that is "always on". In the context of Service Studio, it

107

A. APPENDIX

is possible to add a Web Reference that, as a Web Service, provide the developers
with several functions that can be used to consume or retrieve data.

108

A. APPENDIX

A
.2

Pa
tt

er
ns

D
et

ec
te

d
on

C
lu

st
er

s
V

is
ua

lA
na

ly
si

s

C
lu

st
er

Se
le

ct
cl

au
se

w
it

h
Fr

om
cl

au
se

w
it

h
W

he
re

cl
au

se
w

it
h

O
rd

er
B

y
C

ol
um

ns
A

gg
r.

fu
nc

tio
n

Si
ng

le
en

tit
y

In
ne

r
Jo

in
O

ne
co

nd
iti

on
Se

ve
ra

lc
on

d.
U

se
d

N
ot

U
se

d

C
1

X
X

X
C

2
X

X
X

X
C

3
X

X
X

X
C

4
X

X
X

X
C

5
X

X
X

X
C

6
X

X
X

X
C

7
X

X
X

X
*C

8
X

X
X

X
C

9
X

X
X

C
10

X
X

X
X

Ta
bl

e
A

.1
:S

um
m

ar
y

ta
bl

e
co

nt
ai

ni
ng

th
e

pa
tt

er
ns

fr
om

cl
us

te
ri

ng
re

su
lts

109

	Introduction
	Motivation
	Work Description
	Contributions
	Outline

	OutSystems Agile Platform™
	Agile Platform™& Service Studio
	Visual Programming Language
	Query primitives

	Discussion

	Analysis
	Pre-analysis - Extraction
	Advanced SQL Term Histogram
	SQL Parser
	Searching for Patterns using XPath
	Query Languages

	Specific Domain OutSystems
	Common patterns
	First case study - Complex Joins
	Second case study - specific use of Outer Join followed by Inner Join

	Clustering Phase
	Implementation of the Clustering Algorithm
	Execution of the Clustering Algorithm
	Visual Analysis
	Results
	Discussion

	Visualization Manager
	Visualization Tool
	Statistical Graphics

	Use of SQL in Industrial Applications
	Discussion

	Model Proposal
	Most Frequent Identified Patterns
	Selection of Columns
	IN Operator
	Complex Joins
	Distinct Values
	Aggregate Functions
	Append Literals
	Group By Columns

	Defining an Order of Implementation
	Dependencies
	Heuristic
	Order of Implementation

	Extending the Model
	Selection of Columns
	Distinct Values
	Aggregate Functions
	Complex Joins
	IN (List of Values or @Parameter)
	Group By Clause

	Suggestion Mechanism
	Discussion

	Prototype
	Usability tests
	Scenario
	Script
	Feedback
	Top Issues

	Discussion

	Final Remarks
	Conclusions
	Future Work
	Discussion

	Appendix
	Glossary
	Patterns Detected on Clusters Visual Analysis

