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Abstract 

 

Acrylamide (AA) has been classified as a probable human carcinogen by IARC. 

Besides being used in numerous industrial applications, AA is also present in a variety 

of starchy cooked foods. This AA exposure scenario raised concerns about risk in 

human health and suggests that the oral consumption of AA is an additional risk factor 

for cancer. A considerable number of findings strongly suggest that the reactive 

metabolite glycidamide (GA), an epoxide generated presumably by cytochrome P450 

2E1, plays a central role in AA carcinogenesis. 

Until now there are a scarcity of results concerning the mechanisms of 

genotoxicity of AA and GA in mammalian cells. In view of that, the study described in 

this thesis aims to unveil the genetic consequences of AA and GA exposure using 

mammalian cells as a model system. 

With this aim we evaluated the cytotoxicity of AA and GA using the MTT assay 

and subsequently performed two cytogenetic end-points: chromosomal aberrations 

(CAs) and sister chromatid exchanges (SCEs), in order to evaluate DNA damage 

induced by these compounds in V79 Chinese hamster cell line. The results showed that 

GA was more cytotoxic and clastogenic than AA. 

Within the scope of this thesis the quantification of specific DNA adducts were 

also performed, namely N7-(2-carbamoyl-2-hydroxyethyl)guanine (N7-GA-Gua) and 

N3-(2-carbamoyl-2-hydroxyethyl)adenine (N3-GA-Ade). Interestingly, the GA 

concentration and the levels of N7-GA-Gua presented a linear dose-response 

relationship. Further, a very good correlation between the levels of N7-GA-Gua and the 

extent of SCEs were observed. 

In order to understand the mechanisms of AA-induced toxicity, the modulation 

of reduced glutathione (GSH)-dependent mechanisms were studied, namely the 

evaluation of the effect of buthionine sulfoximine (BSO), an effective inhibitor of GSH 

synthesis, of GSH-monoethyl ester (GSH-EE), a cell permeable compound that is 

intracellularly hydrolysed to GSH and also of GSH endogenously added to culture 

medium,z in V79 cell line. The overall results reinforced the role of GSH in the 

modulation of the cytotoxic and clastogenic effects induced by AA. 
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Complementary to the studies performed in V79 cells, SCEs, specific DNA-

adducts and alkaline comet assay in lymphocytes from healthy donors exposed to AA 

and GA were also evaluated. Both, the frequency of SCE and the quantification of 

specific GA DNA adducts, produced comparable results with those obtained in V79 cell 

line, reinforcing the idea that GA is far more genotoxic than AA. Further, the DNA 

damaging potential of AA and GA in whole blood leukocytes evaluated by the alkaline 

comet assay, showed that GA, but not AA, increases DNA damage.  

Additionally, this study aimed to identify associations between DNA damage 

and biomarkers of susceptibility, concerning individual genetic polymorphisms 

involved in detoxification and DNA repair pathways (BER, NER, HRR and NHEJ) on 

the GA-induced genotoxicity assessed by the SCE assay and by the alkaline comet 

assay. The extent of DNA damage determined by the levels of SCEs induced by GA 

seems to be modulated by GSTP1 (Ile105Val) and GSTA2 (Glu210Ala) genotypes. 

Moreover, the results obtained from the comet assay suggested associations between 

DNA damage and polymorphisms of BER (MUTYH Gln335His and XRCC1 

Gln399Arg) and NER (XPC Ala499Val and Lys939Gln) genes, either alone or in 

combination. 

The overall results from this study contribute to a better understanding of the 

genotoxicity and carcinogenicity of AA and GA in mammalian cells, as well as the 

knowledge about the variability in individual susceptibility involved in detoxification 

and repair of DNA damage due to these dietary xenobiotics.  

 

 

 

 

 

 

 

Keywords: acrylamide; glycidamide; sister chromatid exchange; chromosomal 

aberrations; DNA-adducts; comet assay; SNPs; genotoxicity; carcinogenicity.  
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Resumo 

 

Em 1994 a acrilamida (AA) foi classificada pela IARC como um provável 

cancerígeno para o homem. Para além da utilização de AA em numerosas aplicações 

industriais, a AA está também presente numa grande variedade de alimentos ricos em 

amido e processados a temperaturas elevadas. Esta exposição através da ingestão de 

produtos alimentares despoletou elevadas preocupações ao nível do risco para a saúde 

pública e poderá implicar um risco adicional para o aparecimento de cancro. A 

glicidamida (GA), o metabolito epóxido formado a partir da oxidação da AA 

provavelmente através do citocromo P450 2E1, é considerada por vários estudos, o 

principal responsável pela carcinogenicidade da AA.  

Actualmente existe uma escassez de resultados relativamente aos mecanismos de 

genotoxicidade da AA e GA em células de mamífero. Por este motivo, o objectivo deste 

estudo centra-se na avaliação das consequências genéticas da exposição à AA e GA, 

recorrendo-se para tal ao uso de células de mamífero como modelo. 

Tendo como base este objectivo avaliou-se a citotoxicidade da AA e GA, através 

do ensaio do MTT, e realizaram-se dois testes citogenéticos, o teste das aberrações 

cromossómicas (CAs) e o teste da troca de cromátides irmãs (SCEs), de modo a avaliar 

as lesões de DNA induzidas por estes compostos em células de hamster Chinês V79. Os 

resultados globalmente mostraram que a GA é mais citotóxica e clastogénica do que a 

AA. 

No âmbito deste trabalho, foi também efectuada a quantificação de aductos 

específicos de DNA, nomeadamente N7-(2-carbamoil-2-hidroxietil)guanina (N7-GA-

Gua) e N3-(2-carbamoil-2-hidroxietil)adenina (N3-GA-Ade). Os resultados obtidos 

permitem afirmar que os níveis de N7-GA-Gua e a concentração de GA apresentam 

uma relação linear dose-resposta. Foi também identificada uma óptima correlação entre 

os níveis de N7-GA-Gua e a frequência de troca de cromátides irmãs. 

Adicionalmente, e de forma a compreender os mecanismos de toxicidade da AA, 

estudaram-se os mecanismos dependentes da modulação do glutationo reduzido (GSH), 

nomeadamente da butionina sulfoximina (BSO), um inibidor da síntese de GSH, do 

GSH-monoetil estér (GSH-EE), um composto permeável nas células e que é intra-

celularmente hidrolisado a GSH e ainda do GSH adicionado exogenamente ao meio de 



 

iv 
 

cultura, em células V79. Os resultados obtidos reforçaram o papel da modulação do 

GSH nos efeitos de citotoxicidade e clastogenicidade da AA. 

Para além dos estudos efetuados com células V79, procedeu-se também à 

determinação da frequência de SCEs, à quantificação de aductos específicos de DNA, 

bem como ao ensaio do cometa alcalino em amostras de dadores saudáveis expostos à 

AA e GA. Tanto os resultados obtidos através do ensaio das SCE, como pela 

quantificação de aductos específicos de DNA, ambos efectuados em linfócitos 

estimulados, originaram resultados comparáveis aos obtidos anteriormente para as 

células V79, reforçando a ideia de que a GA é bastante mais genotóxica do que a AA. 

Por outro lado, os resultados obtidos pelo ensaio do cometa para exposição à AA e GA 

mostraram que apenas esta última aumenta o nível das lesões de DNA. 

Outro objectivo deste trabalho, foi a identificação de possíveis associações 

existentes entre as lesões de DNA, quantificadas através do ensaio das SCEs e do 

cometa, e biomarcadores de susceptibilidade, tendo em conta os polimorfismos 

genéticos individuais envolvidos na destoxificação e nas vias de reparação do DNA 

(BER, NER, HRR e NHEJ) em linfócitos expostos à GA. Tal permitiu identificar 

associações entre os níveis de lesão de DNA determinados através do ensaio das SCEs, 

e os polimorfismos genéticos estudados, apontando para uma possível associação entre 

o GSTP1 (Ile105Val) e GSTA2 (Glu210Ala) e a frequência de SCEs. Por outro lado, os 

resultados obtidos através do ensaio do cometa sugerem uma associação entre as lesões 

de DNA e polimorfismos da via BER (MUTYH Gln335His e XRCC1 Gln39Arg) e da 

via NER (XPC Ala499val e Lys939Gln), considerando os genes isoladamente ou 

combinados. 

Estes estudos contribuem para um melhor entendimento da genotoxicidade e 

carcinogenicidade da AA e GA em células de mamífero, bem como da variabilidade da 

susceptibilidade individual na destoxificação e reparação de lesões de DNA provocadas 

pela exposição a estes xenobióticos alimentares. 

Palavras chave: acrilamida; glicidamida; troca de cromátides irmãs; aberrações 

cromossómicas, aductos de DNA; ensaio do cometa; SNPs; genotoxicidade; 

carcinogenicidade.   
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Gua) and N3-(2-carbamoyl-2-hydroxyethyl)adenine (N3-GA-Ade) 
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Fig. 6.2 Percent DNA in Tail (% Tail DNA) induced by GA in whole blood 
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1.1. Causes of Cancer 

 

1.1.1. Principles 

 

Cancer is a leading cause of death all over the world and is characterized by 

uncontrolled cellular growth as a result of changes in the genetic and epigenetic 

information of cells. Each year, tens of millions of people are diagnosed with cancer and 

more than half of the patients eventually die from it. Moreover, cancer rates could 

further increase by 50% to 15 million new cases in the year 2020, according to the 

World Cancer Report [1, 2]. 

It is known that about 5-10% of all cancers are caused by genetic defects, while 

90-95% are caused by environmental factors and lifestyle, including diet (30-35%), 

tobacco smoking (25-30%) and alcohol (4-6%) [1]. Cancer related with genetic defects 

can result directly from inherited mutated genes. However, the majority involves 

alterations or damage accumulation over time of the genetic material within cells [3]. 

This damage can be caused by both endogenous (internal) and exogenous 

(environmental) factors, known as important for cancer development [1]. The 

endogenous causes can be inherited germ line mutation, oxidative stress, generated 

through normal oxidative metabolism and pathophysiologic states, such as 

inflammation [1, 3]. There are also several known exogenous factors including tobacco 

smoking, infectious agents (e.g. viruses, bacteria and parasites), drug intake, radiation, 

that can damage DNA, both directly by causing breaks in DNA strands and indirectly 

by interacting with water molecules and generating reactive oxygen species (ROS), 

industrial chemicals and carcinogenic agents in food and drink that are established as 

carcinogenic by IARC [3].  

Already in 1981 Doll and Peto [4] identified and attempted to quantify the 

causes of cancer. The factors related with cancer and their relation with the proportions 

of cancer deaths are listed in next table.  
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Table I.1-Proportions of cancer deaths attributed to various different factors, according 

to Doll and Peto (from [4]). 

 

Factor or class of factors Percent of all cancer deaths 

Best estimate Range of acceptable estimates 

Tobacco 30 25-40 

Alcohol 3 2-4 

Diet 35 10-70 

Food additives <1 -5-2 
a
 

Reproductive and sexual 

behavior 

7 1-13 

Occupation 4 2-8 

Pollution 2 <1-5 

Industrial products <1 <1-2 

Medicines and medical 

procedures 

1 0.5-3 

Geophysical factors 
b 

3 2-4 

Infection 10? 1-? 

Unknown ? ? 
a 
Allowing for a possibly protective effect of antioxidants and other preservatives. 

b
 Only about 1% could reasonably be described as “avoidable”. Geophysical factors also 

cause a much greater proportion of nonfatal cancers (up to 30% of all cancers, depending on 

ethnic mix and latitude) because of the importance of UV light in causing the relatively nonfatal 

basal cell and squamous cell carcinomas of sunlight-exposed skin. 

 

According to the previous table, the cause of 97% of all human cancers is 

explainable and it was estimated that 35% of cancer deaths might be avoidable through 

changes in diet [4-6]. Diet has long been recognized as potentially important modifiers 

of cancer risk, beyond that, human beings are often being exposed to carcinogenic 

factors during their life, some of which are nutritional factors [1]. It is important to note 

that during their life a human being ingests about 15 tons of dry matter in the form of 

food [7]. Although many foodstuffs contain genotoxic compounds, the majority of these 

only occur at low levels, however, multiple genotoxic substances in the same food may 

result in cumulative or synergistic actions leading to neoplasia in humans [8]. These 

findings moved attention away from environmental factors such as pollution or viruses 

or occupational factors, and turned the focus instead onto dietary factors as a major 

contributor to disease risk [9]. In the same way, through the 1970s and 1980s, many 
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chemicals from various sources (e.g. environment, occupation and diet) were tested for 

mutagenic effects with the Ames test and concluded that natural chemicals, present in 

human diet as complex mixtures may be a more important source of human mutation 

than environmental or occupational exposure [9].  

 

 

1.1.2. Food contaminants 

 

Food contaminants can be classified as genotoxic and non-genotoxic mutagens 

according to the mechanistic view of carcinogenesis. Genotoxic agents begin their 

action at the DNA level, causing DNA damage (gene point mutations, deletions and 

insertions, recombination, rearrangements and amplifications, as well as chromosomal 

aberrations). Non-genotoxic agents presumably affect indirectly the cell through tumor 

promoters, however their modes of action are less defined. These non-genotoxic agents 

are generally macro-components, e.g. high fat [1]. 

Genotoxic mutagens are frequently natural products that can be avoided. For 

instance, through fungal contamination, mycotoxins (e.g. Aflatoxin B1); or 

anthropogenic chemicals produced through cooking or preserving methods, (e.g. 

heterocyclic amines (HCAs), polycyclic aromatic hydrocarbons (PAHs), N-nitroso 

compounds (NOCs) and AA). On the other hand, there are also genotoxic mutagens in 

natural products that can be present in food and are unavoidable (e.g. Ptaquiloside and 

Pyrrolizidine alkaloids (PAs)). Furthermore, there are chemicals intentionally added to 

foods or food coloring, that can act as genotoxic agents, however these cause much less 

concern, since they are added intentionally [1, 5, 9, 10].  

One of the most important genotoxic food carcinogens is aflatoxin B1 (AFB1). 

This mycotoxin is produced by the mold Aspargelius flavus, which grows on poorly 

(hot and humid climate) stored foods including corn, peanuts and rice [1, 9]. Through 

epidemiologic studies, AFB1 has shown to increase carcinogenic risk in humans. These 

toxins proved to be very important liver carcinogens, especially in combination with 

chronic infection with hepatitis B virus [11-17]. AFB1 initiates its action with metabolic 
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activation by cytochrome P450, forming an exo-8,9-epoxide and subsequent adduct 

formation producing DNA damage [18, 19].  

Other important carcinogenic formed within muscle foods (beef, lamb, and 

poultry, but also in fish) cooked at high temperatures (e.g. frying, broiling and 

barbecuing) are the heterocyclic amines [1, 5, 9, 10]. These are formed through a 

pyrolysis process from amino acids, proteins and creatines of the meat. In humans there 

is good epidemiologic evidence correlating the consumption of food containing high 

levels of HCAs and cancer, namely colorectal [14, 20-24], breast [25-27], prostate [14, 

28-30] and pancreatic cancers [31-33]. HCA carcinogenesis mechanism encompasses a 

bioactivation of N-hydroxylation by CYP1A2 and subsequent esterification. The 

nitrenium ion is likely the ultimate carcinogen, capable of binding guanine at position 

C8, causing altered DNA sequences with subsequent base substitution, deletion and 

insertion [1, 34]. 

PAH compounds are also considered food carcinogens formed during 

incomplete combustion of organic matter during food processing (smoking, barbecuing 

and grilling). PAH can also be found in wood fires, automobile exhaust, tobacco smoke 

and occur as environmental contaminants on food plants (e.g., cereals and vegetable) [1, 

9, 35]. In humans there is some evidence of association of dietary PAH exposure with 

colon cancer [36, 37]. Carcinogenesis mechanism of PAHs is conducted through 

benzo(a)pirene (BaP) adduct formation, after being activated by CYP1A and CYP1B 

enzymes. This adduct is associated with site-specific hotspot mutation in p53 tumor 

suppressor gene [1]. 

Another important food carcinogen are N-nitroso compounds which can be 

found in a wide variety of foods, like salted, smoked or dried fish and meat [9]. 

Moreover, NOCs can be formed in vivo during simultaneous ingestion of nitrite or 

nitrogen oxides and a nitrosable substrate such as a secondary amine [38]. Various types 

of cancer (lung, liver, kidney, mammary gland, among others) have been observed and 

related to NOCs in humans [1, 39, 40]. The common carcinogenic mechanism of N-

nitrosamines requires metabolic activation through hydroxylation. This is catalyzed 

mainly by CYP2E1, but other cytochrome P450 isoforms including CYP2A6 have been 

implicated. N-nitrosodimethylamine undergoes enzymatic hydroxylation and 
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subsequent hydrolysis to aldehyde and monoalkylnytrosamine that rearranges and 

releases a carbocation that is reactive toward DNA bases. [1, 38]. 

Acrylamide is another important carcinogen formed through cooking, identified 

in starch-based foods such as potato chips and French fries cooked using high 

temperature deep-frying, grill and baking methods [35]. Acrylamide is clearly an animal 

carcinogen and a neurotoxin. However, extrapolation of effects in cell systems and in 

animals to effects in humans has been controversial [9]. This compound is the main 

focus of the present study and because of its importance in the development of this 

thesis, a more explanatory chapter will be developed ahead (chapter point 1.5.). 

Despite the great importance attributed to the existence of food genotoxic 

agents, the relevance of the absence of some dietary components should also been taken 

into account, especially micronutrients, that can be related with increased cancer risk. 

Folate deficiency is well known as one of the most common vitamin deficiencies, which 

contributes to chromosomal instability and may increase susceptibility to radiation-

induced DNA damage [9, 41]. Folate deficiency may contribute to carcinogenesis by 

causing DNA hypo-methylation and proto-oncogene activation or by inducing uracil 

misincorporation during DNA synthesis [41]. Another, equally important deficiency is 

the lack of selenium, which has been linked with increased cancer risk. Some studies 

reported selenium supplementation as protective against the development of cancer at 

numerous sites including prostate, colon, and lung. Although the mechanisms of 

chemoprevention by selenium remain unclear, enhanced protection against oxidative 

stress may be involved [42, 43].  

As a general conclusion, one can say that conventional epidemiology can show 

association between cancer and some types of food, and/or with cooking process. 

However, these are not constitutive proofs of cause and effect. It is difficult, if not 

impossible, to attribute such results with certainty to any specific compound, since food 

is a complex mixture [9]. Many food components have already genotoxic potential and 

more can be produced endogenously during digestion [5]. There is increasing evidence 

that consumption of some foods, like fresh fruits and vegetables may decrease the risk 

of cancer. In the same way, a number of plant constituents have been shown to have the 

potential to inhibit various stages of the carcinogenic process [5]. Consequently, the risk 

of cancer related with nutrition outcome from an imbalance of carcinogenesis and anti-
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carcinogenesis process [1]. Nevertheless, the role of food and nutrition in the 

modification of the cancer process is very complex [5]. 

 

 

1.2. Biomarkers of genetic DNA damage 

 

1.2.1. Principles 

 

The National Academy of Sciences defines a biomarker as a xenobiotically 

induced alteration in cellular or biochemical components or processes, structures or 

functions that is measurable in a biological system or sample, this means that 

biomarkers are observable endpoints that indicate events in the processes leading to 

disease [44, 45]. 

Biomarkers are becoming increasingly important in toxicology and human 

health and many research groups are carrying out studies to develop biomarkers of 

exposure to chemicals and apply these for human biomonitoring [46]. Biological 

monitoring has advantages over environmental monitoring because it measures the 

internal dose of a compound. However, is important take into account the inter-

individual differences in absorption, bioavailability, excretion and DNA repair [44].  

Biomarkers used in human health studies are typically divided into three classes: 

biomarkers of exposure, effect and susceptibility (Fig. 1.1), depending on their 

toxicological significance, whose concepts will be developed later. 
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Fig. 1.1- Relation of events and biomarker classification (adapted from [46]). 

 

Susceptible individuals could be identified by biomonitoring and molecular 

epidemiology, particularly those suffering a combination of high risk factors, namely a 

high level of exposure to chemicals, inherited cancer predisposing genes and a 

deficiency of protective factors. Individual susceptibility factors can influence all the 

stages between exposure and the onset of disease (Fig. 1.1) [46]. 

 

 

1.2.2. Biomarker of exposure 

 

A biomarker of exposure is a chemical, its metabolite or the product of an 

interaction between a chemical and some target molecule or macromolecule that is 

measured in a compartment or a fluid of an organism [45]. It involves measurements of 

the internal dose by chemical analysis of the parent compound, metabolites or DNA or 

protein adducts in body fluids or excreta such as blood, urine and exhaled air [44, 47]. 
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Biomarkers of exposure can be divided into biomarkers of internal dose and biomarkers 

of biological effective dose [46, 48]. 

 

 

1.2.2.1. Biomarkers of internal dose 

Biomarkers of internal dose are indicative of the occurrence and extent of 

exposure of the organism [48]. These markers indicate the actual exposure to a 

particular compound that occurred by measuring the compound or its metabolite(s) in 

body fluids. However these biomarkers do not reveal to what extent the metabolized 

agent has affected the target tissue or cells [48]. One example is the measurement of the 

excretion of 1-hydroxypyrene, an urinary metabolite that is widely used for 

measurement of exposure of PAHs. The excretion of this metabolite was found to 

correlate well with PAHs exposure. Another example is mercapturic acids in urine that 

have also been used for monitoring exposure to a number of specific chemicals, for 

example epichlorohydrin and styrene [46]. 

 

 

1.2.2.2. Biomarkers of effective dose 

Biomarkers of effective dose are indicative of the extend of exposure of the 

target molecule, structure or cell [48]. These biomarkers included the measurement of 

adducts formed by the reaction products of alkylation of endogenous or exogenous 

chemicals compounds, often called alkylating agents, and cellular macromolecules, such 

as proteins and DNA [49, 50], giving rise to hemoglobin (Hb) and DNA adducts. The 

alkylation occurs between the nucleophilic atoms (nitrogen, oxygen, or sulfur) within 

the biomolecule and an electrophilic atom in the reactive molecule [49]. This is 

especially useful, since represents the dose that has escaped the detoxification process 

and that has reached the macromolecule [46]. 
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DNA adducts 

It is well known that genotoxic carcinogens-like alkylating agents or epoxides 

initiate tumorigenesis by reacting with nucleophilic sites of DNA and by generating 

DNA adducts [51]. Besides the DNA adducts that can be formed from alkylating agents, 

numerous DNA adducts are also formed endogenously, for example from the 

methylating factor S-adenosylmethionine or by oxidative metabolism that produces 

ROS [49]. 

The use of DNA adducts as biomarker have disadvantages, because DNA from 

susceptible human tissues is not readily accessible in large amounts and DNA adducts 

are susceptible to repair and at different rates depending on the tissue, cell type and 

DNA region [44]. Moreover, the stability of DNA adducts is a complex issue in 

investigation, because some adducts are naturally chemically unstable (e.g. guanine N7 

and adenine N3 adducts) generating repairable apurinic sites (AP) on DNA. It is also 

important to note that DNA adducts can suffer enzymatic repair [49]. The formation of 

adducts by the reaction of chemicals with DNA is thought to be the critical step for the 

initiation of carcinogenesis [50, 52, 53]. Up to now DNA adducts do not allow a 

quantitative estimate of cancer risk. However, the occurrence of DNA adducts show at 

least an elevated cancer risk [52]. DNA adducts not only represent an exposure that 

already occurred, but they also imply a potential for significant biological 

consequences, e.g. mutations [53]. 

DNA adducts analysis started in the beginning of the 1980s when Randerath et 

al developed the 
32

P-postlabelling analysis technique [46, 49]. Later, another method of 

analysis of DNA adducts that became popular was the reversed phase HPLC-MS/MS. 

Nowadays, tandem mass spectrometry, particularly if combined with HPLC, is currently 

the recommended detection technique [49]. 

 

Protein adducts 

Protein alkylation products are stable in vivo and thus are excellent targets for 

biomonitoring purposes. The most commonly used molecules are hemoglobin and 

albumin, because these molecules can be obtained in an easy way from blood samples. 

The most commonly studied alkylation site on hemoglobin is the N-terminal valine, 
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however sulfhydryl group of cysteine and nitrogen of histidin are also preferred sites of 

binding [49, 52]. 

Protein adducts can be regarded as an integrative exposure methods. One good 

example is that hemoglobin adducts are considered good biomarkers to measure the 

cumulative internal dose due to repeated exposures, since red blood cells live for as long 

as 4 months in humans [46, 49, 54]. These type of adducts are chemically stable and 

they are not prone to repair mechanisms [46, 49, 52]. In contrast, albumin adducts have 

a shorter lifetime in blood of about 20 days and therefore reflect a more limited period 

of exposure [46]. 

The important role of protein adducts were highlighted in 2002 by a study were 

high levels of acrylamide protein adducts were found in occupational settings [49]. 

However, there are several compounds including PAHs, HCAs, aromatic amines, 

micotoxins and chemotherapeutic agents, among others that forms Hb-adducts [44]. 

The protein adducts analysis was developed by Enrenberg’s group in Stockholm 

based on the hemoglobin molecule [46]. The most widely applied and most successful 

procedure is through the modified Edman degradation of globin protein. In this method, 

globin is precipitated from red blood cells and the valine terminal of hemoglobin is 

cleaved. Subsequently, adducts are analyzed by GC-MS [46, 49, 52].  

 

 

1.2.3. Biomarkers of effects 

 

A biomarker of effect is a measurable biochemical, structural, functional, 

behavioral or any other kind of alteration in an organism that, according to its 

magnitude, can be associated with an established or potential health impairment or 

disease [45]. These include well-established biomarkers for chromosome damage 

measured by micronuclei, chromosome aberrations, sister chromatid exchanges and 

comet assay. 
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1.2.3.1. Micronuclei (MN) 

Measurement of micronuclei frequency in human lymphocytes is one of the 

most commonly used methods for measuring DNA damage in human populations 

exposed to genotoxic agents [55, 56]. This assay has been also successfully applied to 

identify occupational, dietary and genetic factors that have a significant impact on 

genome stability [55].  

Micronucleus is originated from chromosome fragments or whole chromosomes 

that fail to engage with the mitotic spindle and therefore lag behind when the cell 

divides [56]. The formation of MN in dividing cells is the result of chromosome 

breakage (clastogenesis) due to unrepaired or mis-repaired DNA lesions, or 

chromosome mal-segregation (aneugenesis) due to mitotic malfunction [55, 57]. The 

most widely used test for the detection of MN is based on the use of cytochalasin B, a 

fungal metabolite that inhibits cytokinesis, being this assay named the cytokinesis-block 

micronucleus (CBMN) test [57].  

Compared to other cytogenetic assays, quantification of MN, using the CBMN 

assay, confer several advantages, including high reliability and low cost of the 

technique, no requirement for metaphase cells and reliable identification of cells that 

have completed only one nuclear division, which prevents confounding effects [55, 56].  

According to Bonassi et al [55] there is an association between MN induction 

and cancer development. This association was also evident in a cohort study done by the 

Human MicroNucleus project, where there are significant evidences in all cohorts for all 

major cancer sites, especially urogenital and gastrointestinal cancers. This study 

provided valuable evidence that MN frequency in PBL is predictive of cancer risk, 

suggesting that increased MN formation is associated with early events in 

carcinogenesis [58]. 

 

1.2.3.2. Chromosomal aberrations (CAs) 

CAs has been used as a biomarker of chromosomal damage and genome 

instability and represent the most extensively used and validated biomarker in 

populations exposed to genotoxic agents [56, 57, 59].  
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Chromosomal aberrations are changes in normal chromosome structure 

(structural aberrations) or number (numerical aberrations) that can occur spontaneously 

or as a result of chemical/radiation treatment. Structural CAs may be induced by direct 

DNA breakage, by replication on a damaged DNA template, by inhibition of DNA 

synthesis and by other mechanisms (e.g. topoisomerase II inhibitors) [60]. Numerical 

CAs refers to changes in normal chromosome number (i.e. aneuploidy, polyploidy) 

which occur due to abnormal chromosome segregation; they may arise either 

spontaneously or as a result of aneugen treatment [60]. CAs are evaluated in stimulated 

peripheral blood lymphocytes arrested at metaphase and stained, usually by the Giemsa 

band technique [57].  

An increased frequency of CAs in circulating lymphocytes is generally 

considered indicative of increased cancer risk for those exposed to DNA damaging 

agents [56, 61]. Moreover data obtained from both studies carried out by Hagmar et al. 

[62] and Bonassi and Abbondandolo [63], indicated that the frequency of CAs in 

peripheral blood lymphocytes is a relevant biomarker for cancer risk in humans, 

reflecting both early biological effects of exposure to genotoxic carcinogens and 

individual cancer susceptibility [56]. In spite of the excellent sensibility of this 

technique and proved predictive value regarding cancer risk, the detection of 

chromosomal aberrations is technically demanding and a slow process [57].  

 

 

1.2.3.3. Sister chromatid exchange (SCE) 

SCE is the process whereby the sister chromatid effectively break and rejoin 

with one another, physically exchanging regions. SCEs are formed during the S phase 

of the cell cycle and can be induced by UV light and a large number of genotoxic 

chemicals, especially those chemicals that are S-phase-dependent clastogens [64, 65]. 

They can be visualized in cultured cells when division is induced in the presence of 5-

bromodeoxyuridine (BrdU) [57]. 

According to Suspiro and Prista [57] there is some uncertainty regarding the 

significance of increased SCE frequency with regard to cancer risk. Norppa et al (2006) 

reviewed some of the results of the European collaborative project (Cancer Risk 

Biomarkers) and suggest that the association between frequencies of SCEs and cancer 
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risk may be difficult to predict [66]. They also observed that the frequencies of SCEs 

are heavily affected by technical variation, which makes it difficult to define a high SCE 

level when data from a number of studies are combined. However, SCEs are known to 

be increased by exposure to various genotoxic carcinogens and seem to reflect the repair 

of DNA lesions by homologous recombination [66]. SCE assay is well-known for its 

sensitivity to detect DNA damage induced by chemical genotoxicants. 

 

1.2.3.4. Comet assay  

The comet assay, also known as single cell gel electrophoresis, is a versatile and 

sensitive method for measuring DNA damage. This technique has become very popular 

for the assessment of DNA damage with applications in genotoxicity testing, human 

biomonitoring and molecular epidemiology, ecotoxicology, as well as in research in 

DNA damage and repair [67]. Under alkaline (pH>13) conditions, the assay can detect 

single and double stranded breaks, incomplete labile sites, alkali labile sites, and also 

possibly both DNA-protein and DNA-DNA cross-links in eukaryotic cells [68-70].  

The comet assay consists of a single cell suspension embedded in agarose and 

layered onto a microscope slide, after lysis to deliberate DNA content and 

electrophoresed under alkaline conditions. The product can be visualized after staining 

with a suitable dye [52, 57, 71]. This type of test as many advantages, namely high 

sensitivity for detecting low levels of DNA damage, requirement of small number of 

viable cells per sample, the simplicity, low cost and short time of test performance [57, 

71]. However is important to note that there is a wide variability of the comet data since 

the basal level of DNA damage is influenced by a variety of factors such as lifestyle, 

diet, infections, medication, air pollution, season, climate or exercise [52].  

The significance of comet assay as a marker of increased cancer risk remains 

unclear [57]. Comet assay can be considered, for the time being, a biomarker of 

exposure rather than a biomarker of effect, due to the lack of prospective studies 

demonstrating an increased cancer risk [57, 71]. It should however been mentioned that 

the comet assay is actually an emerging tool to properly assess primary DNA damage 

either in vitro or in vivo. 
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1.2.4. Biomarker of susceptibility 

 

A biomarker of susceptibility may be defined as an indicator of an inherent or 

acquired ability of an organism to respond to the challenge of exposure to a chemical 

[45]. They serve as indicators of particular sensitivity of individuals to the effect of a 

xenobiotic or to the effects of a group of such compounds. They can be genetic markers 

that include alterations in chromosomal structures, genetic polymorphisms, among 

others [44].  

It is generally agreed that genetic polymorphisms (GP) are associated with most 

common disorders with a genetic component such as cancer. However, the complex 

metabolism of these compounds involving different polymorphic genes and also 

different DNA repair polymorphic genes could in association modulate the individual 

risk factor for this kind of disease [61]. 

It is normally accepted that the biotransformation of xenobiotic compounds 

including drugs involved mainly two Phases I and II. Phase I reaction include 

transformation of a parent compound to more polar metabolite(s). For example, phase I 

reactions includes N- and O-dealkylation, aliphatic and aromatic hydrolylation, N- and 

S-oxidation and deamination. The main enzymes in this phase are cytochrome P450 

(CYPs) performing mainly hydroxylations and hence acting as monooxygenases, 

dioxygenases and hydrolases [72].  

Phase II enzymes play also an important role in the biotransformation of 

endogenous compounds as xenobiotics to more easily excretable forms. The purpose of 

phase II biotransformation is to perform conjugating reactions. These include 

glucuronidation, sulfation, methylation, acetylation, glutathione and amino acid 

conjugation. In general, the respective conjugates are more hydrophilic than the parent 

compounds. Phase II drug metabolizing enzymes are mostly transferases and include: 

UDP-glucuronosyltransferases (UGTs), sulfotransferases (SULTs), N-acetyltransferases 

(NATs), glutathione S-transferases (GSTs) and epoxide hydrolase (EPHX) [44, 72-74].  

In general the actions of phase I and phase II enzymes render susceptible 

compounds more soluble and more readily excreted and ought to reduce genetic damage 

and cancer risk with several exceptions. It is important to note that some authors 
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consider epoxide hydrolase as a phase II enzyme [73, 74] while others consider the 

same as a phase I enzyme [72]. 

 

 

1.2.4.1. Main Metabolism/Detoxification polymorphisms 

 

Cytochrome P450 family (CYPs) 

The family of CYPs is involved in the metabolism of several xenobiotics, 

biosynthesis of steroids, lipids, vitamins and natural products. [44, 75]. The CYPs are 

enzymes which catalyze the insertion of one atom of molecular oxygen into a substrate 

[61]. The liver generally expresses the highest CYP activity, but all tissues express the 

enzymes in a tissue-specific manner [76]. Some of the enzymes of CYP family will be 

discussed below. 

CYP1A is one of the major Phase I enzymes responsible for the metabolic 

activation of PAHs (e.g. benzo[a]pyrene), one of the main carcinogens found in 

cigarette smoke and environmental pollution [61, 77, 78]. Previous studies have 

described several polymorphisms in the CYP1A1 gene (CYP1A1*2A and CYP1A1*2C 

for example) [79, 80]. In relation to CYP1A1 an association between this polymorphism 

and cancer risk, namely lung cancer [81], susceptibility in childhood acute 

lymphoblastic leukemia [82] and colorectal cancer [83] was found. On the other hand, 

no association was found, specifically with renal cell carcinoma [79, 84] and esophageal 

cancer [85].  

Another example is CYP2E1 that plays an important role in the activation of a 

variety of carcinogens, including nitrosamines, some components of tobacco smoke, 

and many organic chloride and non-chloride solvents, including benzene and also AA 

[61, 78]. This enzyme may be induced by ethanol, and thus alcohol intake may 

influence carcinogenesis by exposure to carcinogens activated by CYP2E1 [61]. This 

enzyme is constitutively expressed in the liver and in many other tissues and is of 

clinical and toxicological importance [86].  
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Concerning the correlation of CYP2E1 and cancer risk, some studies observed 

that CYP2E1 polymorphism may affect the susceptibility to lung cancer [87] and of 

esophageal squamous cell carcinoma [78].  

 

Microsomal epoxide hydrolase polymorphisms 

The EPHX1catalyzes the hydrolysis of reactive epoxides to their corresponding 

dihydrodriols, playing an important role in detoxification of epoxides [78, 88]. This 

irreversible reaction produces metabolites, which are more water soluble, less reactive, 

and readily conjugated and excreted [61]. Although EPHX is considered a detoxifying 

enzyme, the dihydrodiol deriving from PAHs may be further transformed by CYP into 

more reactive species, an example is dihidrodiol epoxides, that are the most mutagenic 

and carcinogenic of PAHs metabolites [61]. EPHX1 is expressed in all tissues studied, 

including white blood cells [88]. 

For EPHX1 SNP and like an example of cancer risk association, in white 

populations, the high-activity (variant) genotype of EPHX1 polymorphism at exon 4 

was associated with a modest increase in risk of lung cancer, while the low-activity of 

EPHX1 polymorphism at exon 3 was associated with decreased risk of lung cancer [89, 

90].  

 

Glutathione S-transferases (GSTs) polymorphisms 

GSTs, one of the major phase II detoxification enzymes are involved in the 

metabolism of xenobiotics and play an important role in cellular process against 

oxidative stress [72]. 

GSTs play a major role in the detoxification of epoxides derived from PAHs and 

alfa-beta unsaturated ketones. Moreover, a number of endogenous compounds such as 

prostaglandins and steroids are metabolized via glutathione conjugation [72-74, 91].  

Human GST enzymes belong to five different classes designated by Alpha, 

Gamma, Mu, Pi and Theta, with their isoenzyme type designed by Arabic numerals. 

Several types of allelic variations have been identified in the class Alpha, Mu, Pi and 

Tetha gene families [73, 74]. Overall, individuals lacking GSTM1, GSTT1 and GSTP1 
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genes have a higher incidence of bladder, breast, colorectal, head/neck and lung cancer. 

Loss of these genes has also been found to increase susceptibility to asthma and 

allergies, atherosclerosis and rheumatoid arthritis [72]. 

GSTT1 enzyme is expressed mainly in the liver and kidney, but also in red blood 

cells and is involved in the metabolism of several important epoxides, such as 

methylene chloride and ethylene oxide [74]. Overall, epidemiologic studies do not show 

any clear association between the GSTT1 null genotype and cancer development [73, 

74, 76]. 

GSTM1 enzyme is expressed in many organs including liver, testis, adrenals and 

white blood cells and metabolizes epoxides such as styrene 7,8-oxide and the ultimate 

form of aflatoxin B1 [74, 76]. GSTM1 null genotype was not associated with risk of oral 

and lung cancer in Caucasians [92, 93], however it was associated with an increased risk 

of sporadic colorectal cancer [94].  

The GSTP1 is widely expressed in tissues and is the major enzyme in the blood 

(white and red cells). Polymorphisms in GSTP1 have been associated with a reduction 

in enzymatic activity toward several substrates, including both chemotherapy agents 

(such as cisplatin, a common agent used in lung cancer treatment) and carcinogens 

found in tobacco smoke [95]. The association between GSTP1 and lung cancer risk was 

examined by Cote et al that found no significant association between this type of cancer 

and the GSTP1 exon 5 polymorphism [95]. However, GSTP1 Ile105Val appears to be 

associated with a modest increase in the risk of bladder cancer [96]. Moreover, Ramos 

et al [97] suggested a possible role of GSTP1 on the modulation of the genotoxicity 

induced by Doxorubicin. 

GSTA2 belongs to the Alpha class of GSTs that are strongly expressed in liver, 

kidney and adrenal tissue. The Alpha class has commonly been described as one of the 

most versatile GST families, since it is responsible for GSH conjugation of compounds 

such as bilirubin, bile acids and penicillin, thyroid and steroid hormones, allowing their 

solubilisation and storage in the liver [98, 99]. Since the Alpha family is involved in a 

wide range of roles that include steroid biosynthesis and providing protection against 

alkylating agents, polymorphic variations in these genes could be responsible for 

physiological consequences that could alter the susceptibility to disease and drug 

response [91, 99]. Two members of this class, GSTA1 and GSTA2 catalyze the GSH 
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conjugation of a wide variety of electrophiles, possess glutathione-dependent steroid 

isomerase activity, and glutathione-dependent peroxidase activity [100]. The GSTA2 

gene is believed to represent a major line of defence against oxidative stress [99]. No 

association was observed between individual GSTA2 polymorphisms and individual 

susceptibility, namely to breast [98, 101], colorectal and prostate cancer [102]. 

However, the variant allele of this polymorphism seems to be associated with an 

increased risk of lung cancer [103]. 

 

 

1.2.4.2. DNA repair enzymes polymorphisms 

As abovementioned, a wide variety of DNA damage may be induced by normal 

endogenous metabolic processes or by environmental carcinogens. If not repaired, such 

damage can lead to gene mutations and genomic instability, which in turn may cause 

malignant transformation of cells. The individual response to DNA damage induced by 

xenobiotics depends largely on the efficiency of DNA repair mechanisms. Normal 

function of DNA repair enzymes is essential for the removal of damage. It has been 

shown that reduced DNA repair is associated with increased risk of cancer. 

These repair mechanisms and respective enzymes, due to their importance in the 

present work, will be discussed in the next section entitled DNA damage. 
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1.3. DNA Damage 

 

1.3.1. Principles 

 

DNA damage is a relatively common event in the life of a cell and may lead to 

mutation, cancer and cellular or organismic death [104]. The genome is inherently 

unstable due to spontaneous chemical reactions, and its fidelity is compromised due to 

very low but significant replication errors [105]. Moreover, the genomes of all 

organisms are continuously exposed to a wide variety of insults, responsible for the 

lesions that arise in DNA (Figure 1.2). The most common insults are environmental 

agents, such as the ultraviolet (UV) component of sunlight, ionizing radiation and 

numerous genotoxic chemicals. Products of normal cellular metabolism that include 

ROS (superoxide anions, hydroxyl radicals and hydrogen peroxide) derived from 

oxidative respiration and products of lipid peroxidation cannot be forgotten. Finally, 

under physiological conditions, some chemical bond in DNA tends to spontaneously 

break, leading non-instructive abasic sites from hydrolysis of nucleotide residues [106]. 

The most common types of DNA damage and their sources are summarized in 

Figure 1.2. 

Fig. 1.2– DNA damage, repair mechanisms and consequences (from [106]). 
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These endogenous and exogenous insults promote several DNA lesions, such as 

single and double strand breaks, abasic sites and the formation of DNA adducts 

(Fig.1.2). These DNA lesions need to be repaired in order to a proper functioning of the 

cell, by DNA repair systems discussed in next section point.  

 

 

1.3.2. DNA Damage Repair System 

 

The cells need a multiple DNA repair pathways to avoid the broad DNA 

damaging agents which are responsible for different types of DNA lesions. These 

pathways include: (a) direct repair of alkyl adducts by O
6
-alkylguanine DNA 

alkyltransferase, (b) repair of base damage and single strand breaks by base-excision 

repair (BER), (c) repair of bulky adducts by nucleotide-excision repair (NER), (d) repair 

of double strand breaks by homologous recombination repair (HRR) and non-

homologous end joining (NHEJ) and (f) repair of mismatches and insertion/deletion 

loops by DNA mismatch repair (MMR) [106, 107]. 

 

 

1.3.2.1. Direct repair (DR) 

Direct repair is involved in DNA damage repair due to alkylating agents. There 

are two different mechanisms of direct repair in the majority of organisms: the 

photoreversal of UV-induced pyrimidine dimmers and the removal of the O
6
-methyl 

group from O
6
-methylguanine (O

6
MeGua) in DNA [104]. In mammals, the only known 

DR pathway is the last one, that is comprised of a single protein (and thus a single 

gene), termed O
6
-methylguanine (O

6
-MeGua) DNA methyltransferase (MGMT). This 

protein transfers the alkyl group at the O
6
 position of guanine to a cysteine residue 

within its active site, leading to the direct restoration of the natural chemical 

composition of DNA without the need for genomic “reconstruction”. However, this 

repair event leads to the irreversible inactivation of the MGMT protein and thus has 

often been referred to as a “suicide” reaction [104, 108]. Deficiencies in MGMT can 
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lead to an increase in mutations, in part because O
6
-MeG mispairs with thymine during 

DNA replication [108]. 

 

1.3.2.2. Base excision repair (BER) 

Base excision repair commonly deals with small chemical alterations of bases 

that may or may not block the transcription and replication, although they frequently 

miscode. BER is particularly important for preventing mutagenesis and the main lesions 

subjected to BER are oxidized DNA bases, arising spontaneously within the cell during 

inflammatory responses, or from exposure to endogenous agents, including ionizing 

radiation and long-wave UV light [106, 109]. Lesions for this repair process affect only 

one of the DNA strands. BER is known as the main guardian against DNA damage, 

commonly due to cellular metabolism, including that resulting from reactive oxygen 

species, methylation, deamination and hydroxylation [106] and is responsible for 

removing DNA-damaged bases, which can be recognized by specific enzymes, the 

DNA glycosylases [109]. 

BER presents two optional repair patches depending on the initial events in base 

removal, the short patch, the dominant mode, when one single nucleotide is removed 

and the long patch when 2-10 nucleotides are removed [104]. 

Base excision repair is initiated by a DNA glycosylase which catalyzes the 

hydrolysis of the N-glycosyl bond between the base and the sugar phosphate backbone 

forming an abasic site (AP) in the DNA [106, 110]. The resulting abasic site can also 

occur spontaneously by hydrolysis [106] . 

There are different DNA glycosylases that recognize oxidized/reduced bases, 

alkylated (usually methylated) bases, deaminated bases (e.g. uracil, xanthine), or bases 

mismatches. In BER, the damaged base is removed by different DNA glycosylases 

(depending on the damage) and APE1 endonuclease [111]. Two classes of DNA 

glycosylases have been identified, some DNA glycosylases catalyses only the 

hydrolytic removal of the base to form apurinic/apyrimidinic (AP) site, whereas others 

remove the base and subsequently cleave off the base by a lyase mechanism and 

catalyze a subsequent AP lyase reaction [104]. The initiating glycosylase dictates the 

downstream repair events.  
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When excision is done by a glycosylase without associated AP lyase, a free base 

is released and an AP site is formed in DNA. The AP site is cleaved by a 5’ AP 

endonuclease (APE1), generating a 3’-hydroxyl group and a 5’-deoxyribose phosphate 

moiety [110]. The later one can be removed by DNA polymerase β (Pol β), leaving a 

one-nucleotide gap in DNA, which will be filled by DNA Pol β (short patch BER). 

Alternatively, when the AP site is formed by spontaneous hydrolysis, the 5’-

deoxyribose phosphate can be displaced from its complementary DNA which may 

involve Pol δ/ε (DNA polymerase δ/ε) and PCNA (proliferating cell nuclear antigen) for 

repair synthesis (2-10 bases) as well as the FEN1 endonuclease to remove the displaced 

DNA flap [106, 110]. If BER is initiated by a glycosylase/ AP lyase the resulting AP 

site is cleaved at its 3’ by the glycosylase-associated AP lyase activity immediately after 

the base excision. The 3’ baseless sugar phosphate at the DNA nick can subsequently be 

removed by the 5’ AP endonuclease, generating one nucleotide gap [110]. BER is 

completed by a DNA ligation step, involving DNA ligase III-XRCC1 complex and 

DNA ligase I [106, 110]. 

Up to now a mutation in germ line gene MUTYH (MYH) is associated with a 

predisposition to multiple colorectal adenomas, known as MYH polyps and is described 

as an autosomal recessive [112-114] 
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Fig. 1.3–Base excision repair mechanisms in mammalian cells (from [104]). 

 

 

1.3.2.3. Nucleotide excision repair (NER) 

Nucleotide excision repair deals with the wide class of helix-distorting lesions 

that interfere with base pairing and generally obstruct transcription and normal 

replication. Most NER lesions arise from exogenous sources [106]. NER is the most 

important repair system to remove bulky DNA lesions that can be caused by UV 

radiation and large chemical adducts generated from exposure to aflatoxine, 

benzo[a]pyrene and other genotoxic agents [109, 111]. Of all repair systems, NER is the 

most versatile in terms of lesion recognition. Two NER sub-pathways exist with partly 

distinct substrate specificity: global genome NER (GG-NER) and transcriptional-

coupled repair (TCR). GG-NER scans genome constantly and removes lesions from the 

non-transcribed domains of the genome and the non-transcribed strand of transcribed 

regions. TCR removes different RNA-polymerase-blocking lesions from the transcribed 

strand of active genes and is thought to be focuses on damage that blocks elongating 

RNA polymerases [106, 109, 111]. 
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NER is mechanistically complex, involving more than 20 proteins in the repair 

pathway (Figure 1.4) and can be divided into five distinct steps: (a) damage recognition, 

(b) dual incisions bracketing the lesion, (c) excision, (d) repair synthesis to fill in the 

resulting gap and (e) DNA ligation [104, 110]. 

In GG-NER, the DNA lesions are recognized by the XPC-HR23B complex, 

whereas in TCR the lesions are recognized by two specific factors: CSB and CSA [106]. 

The subsequent stages of GG-NER and TCR may be identical. After recognition of the 

lesion, the transcript factor TFIIH, consisting of seven different proteins, is recruited to 

the site of DNA damage and is the responsible for unwinding DNA around the lesion 

[109]. After the formation of an open complex the excision of the lesion is carried out 

by dual incisions at defined positions flanking the DNA damage. XPG and XPF-ERCC1 

are respectively responsible for the cleavage in 3’ and 5´ of the borders of the opened 

stretch only in the damage strand, generating a 24-32 base oligonucleotide containing 

the injury [106, 109]. The arising DNA gap is filled in by Polδ and Polε with the aid of 

replication accessory proteins PCNA and RFC and sealed by DNA ligase I [104, 109]. 

Cells defective in NER belong to different complementation groups and UV-

hypersensitive disorders, such as Xeroderma Pigmentosum, Cockayne syndrome, 

trichothiodystrophy (TTD) and UV-sensitive syndrome (UVSS), all characterized by 

photosensitivity, predisposition to cancer and neurological degeneration in some cases 

[106, 109, 110]. The Cockayne syndrome is thought to be directly related with defects 

in TCR [109]. 
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Fig. 1.4- Mechanism of nucleotide excision repair (NER). A- global genome repair and 

B- transcription-coupled repair (from [106]). 

 

 

1.3.2.4. Double strand breaks  

Double strand breaks (DSBs) are highly potent inducers of genotoxic effects and 

cell death [109]. In DSBs both strands are affected and the cell has to know which ends 

belongs together what is a very difficult task given the size of the mammalian genome 

[106]. Because both strand of the DNA helix are broken, chromosomal fragmentation, 

translocations and deletions can easily occur and rapid repair is crucial [111]. DNA 

DSBs can be caused by ionizing radiation, ROS and chemotherapeutic drugs and can 

arise during replication of a single strand break [106, 111]. 

There are two possible pathways for the repair of DNA double strand breaks, the 

homologous recombination repair (HRR) and non homologous end joining (NHEJ). The 

two main differences between these pathways are the requirement for extensive DNA 
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homology on the sister chromatid in HRR and the accuracy of repair [111]. When after 

replication, a second identical copy is available, homologous recombination seems to be 

preferred, otherwise cells rely on end joining, which is more error-prone [106]. The 

usage of NHEJ and HRR also depends on the phase of the cell cycle. NHEJ occurs 

mainly in G0 and G1 or terminally differentiated cells, whereas HRR occurs during the 

late S or G2 phase [109, 111]. 

The NHEJ system is initiated by the biding of a heterodimeric complex 

consisting of the Ku70 and Ku80 proteins to the damaged DNA. Following DNA 

biding, the Ku-heterodimer associates with the catalytic subunit of DNA-PK, which is 

activated by interaction with single strand DNA at the site of DSB and display Ser/Thr 

kinase activity. The XRCC4-ligase IV complex is the responsible for the link of duplex 

DNA molecules with complementary but non ligatable ends [104, 109]. The HRR is 

more complex, since DSBs generated by mutagenic agents needs to be processed first. 

This process (Figure 1.5) has three steps: (a) strand invasion, (b) branch migration and 

(c) Holliday junction formation. This repair process is initiated by a nucleolytic 

resection of the DSB in the 5’-3’ direction by the MRE11-Rad50-NBS1 complex which 

displaysexonuclease, endonuclease and helicase activity. The resulting 3’ single-

stranded DNA is thereafter bound by a heptameric ring complex formed by Rad 52 

proteins. After DSB recognition and strand exchange performed by Rad proteins, the 

resulting structures are resolved according to the model of Holliday [104, 109]. 
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Fig. 1.5-Double strand break/recombinational repair. A- Homologous recombination 

and B- Nonhomologous end-joining (from [104]). 

 

 

1.3.2.5. Mismatch Repair (MMR) 

Mismatch repair pathway is involved in the repair of specific types of errors that 

occur during new DNA synthesis. The loss of this system accelerates the accumulation 

of potential mutations and predisposes to certain types of hereditary and sporadic 

cancers [115]. 

MMR system is responsible for removal base mismatches caused by 

spontaneous and induced base deamination, oxidation, methylation and replication 

errors and is also involved in the repair of DNA lesions induced by a variety of 

cytotoxic agents [107, 109].  

The steps (presented in Figure 1.6) by which MMR proceeds are: (a) recognition 

of DNA lesions, (b) recruitment of additional MMR factors, (c) search for a signal that 
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identifies the wrong (newly synthesized) strand followed by degradation past the 

mismatch and (d) resynthesis of the excited tract [106, 115].  

The recognition of mismatches or chemically modified bases is performed by a 

complex composed by the homologous proteins MSH2 and MSH6 called MutSα 

complex that is able to recognize base/base mismatches and short insertion/deletion 

loops. MSH2 can also form another complex with the mismatch repair protein MSH3, 

that is designated MutSβ complex that is only capable of biding to larger 

insertion/deletion loops [109, 115]. Upon biding to the mismatch, MutSα associates 

with MutLα, a complex that consist of the MutL homologous mismatch repair proteins 

MLH1 and PMS2. After that the excision of DNA strand containing the mispaired base 

is performed by exonuclease I and the new synthesis by DNA polymerase δ (polδ) 

[109]. 
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Fig. 1.6 – Mismatch repair pathway. A- repair of a single nucleotide mismatch in S 

phase and B- repair of insertion/deletion errors at microsatellites sequences (from 

[115]). 

 

Defects in MMR can lead to microsatellite instability, consequently 

heterozygotic defects in MLH1, MSH2 or PMS2 genes predispose humans to hereditary 

nonpolyposis colorectal cancer [110]. 
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1.4. Reactive Oxygen Species  

 

1.4.1. Principles 

 

Oxidative stress by definition is an imbalance between oxidants and 

antioxidants, potentially leading to damage [116-118]. Oxidants are produced by an 

increased generation of oxygen free radicals, i.e. species containing one or more 

unpaired electrons, and non-radical derivatives [119]. ROS as well as reactive nitrogen 

species (RNS) overcomes cellular antioxidants, producing a disturbance in the 

equilibrium status of pro-oxidant/antioxidant reaction in living organism [117, 119].  

Oxidative stress has been implicated in a various pathological processes, 

including cancer, inflammatory disorders, cardiovascular disease, pulmonary disease 

and neurodegenerative disease, as well as in ageing process [117, 120-122]. These 

major chronic diseases increase rapidly in both incidence and mortality as a function of 

age [122].  

In respect to cancer, is important to note that ROS are tumorigenic due to their 

ability to increase cell proliferation, migration and survival, and by inducing DNA 

damage, all contributing to tumor initiation, promotion and metastasis [122, 123]. 

ROS and RNS are produced during normal cellular function, as a consequence 

of endogenous sources as aerobic respiration and substrate oxidation [117, 119, 122]. 

Besides the endogenous sources of reactive species (RS) there are several external 

agents that can trigger RS production. This include different types of radiation, such as 

ionizing and UV radiations, alcohol, tobacco smoking, diet and some environmental 

carcinogens, as well as viral infections [122, 124]. Figure 1.7 represents the sources and 

cellular responses to reactive oxygen species [125]. 
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Fig. 1.7- The sources and cellular responses to reactive oxygen species (from [125]). 

 

ROS include superoxide anion (O2˙
-
), hydroxyl radicals (HO˙), hydrogen 

peroxide (H2O2), singlet oxygen (
1
O2), alkoxyl radicals (RO˙), and peroxyl radicals 

(ROO˙) [119, 126]. RNS include nitric oxide (NO˙) and peroxynitrite anion (ONOO
-
) 

[119, 126]. Some ROS, especially O2˙
-
 and HO˙ are extremely unstable and reactive. On 

the other hand, other ROS like H2O2 or ROO˙ are relatively stable, with half-lives in the 

range of seconds. These species may diffuse away from their site of generation, 

transporting the radical or the oxidant function to other target sites [116, 125]. 

Superoxide anion and H2O2 are formed in biological system by the partial reduction of 

molecular oxygen. O2˙
-
 is produced from one electron reduction of molecular oxygen 

and H2O2 is produced from a reduction of O2˙
-
 with a second electron or by two electron 

reduction of molecular oxygen. Formation of hydroxyl radical (HO˙) is thought to occur 

through the one electron reduction of H2O2, a reaction that is facilitated by transitions 

metals (e.g. Cu(I) and Fe(II)), that are in reduced valence state, this is called Fenton 

reaction. Alternatively, hydrogen peroxide may be converted into water by the enzymes 

catalase or glutathione peroxidase [116, 121, 127]. Four electrons and two protons are 
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required to reduce molecular oxygen to water. Additionally, ROS can react with other 

molecules (e.g. polyunsaturated lipids, thiols and nitric oxide) producing other reactive 

species, such as ROO˙ [116, 121].  

ROS are transient due to their high chemical reactivity that leads to lipid 

peroxidation and oxidation of DNA and proteins [119]. The formation of 8-

hydroxyguanine is a common DNA lesion, and this is one of the most extensively 

studied DNA lesions in humans [52]. Upon oxidation of guanine, a hydroxyl group is 

added to the 8
th

 position of the molecule and the modified product 8-hydrox-2’-

deoxyguanosine (8-OHdG) is one of the predominant forms of free radical induced 

lesions of DNA. The presence of 8-OHdG reveals a lower fidelity in the replication 

process and enhances the probability of adenine incorporation into the complementary 

strand, giving rise to G-T transversions [49, 52]. Agents that increase levels of 8-OHdG 

should thus increase the risk of cancer development [52]. 

The oxidative DNA damage leads to alterations in purine and pyrimidine bases 

and deoxyribose sugar as well as cleaving the phosphodiester DNA backbone to create 

DNA strand breaks [122]. 

The production of ROS that are generated as a result of normal intracellular 

metabolism occurs mostly within the mitochondria of the cell [117, 125]. Low levels of 

ROS are beneficial and even indispensable in many biochemical processes, including in 

cellular response to noxia (e.g. defense against infectious agents and in function of 

signaling systems). However, the excess of ROS can cause severe metabolic 

malfunctions and cellular damage in lipids and membranes, proteins and DNA, 

inhibiting their normal function [117, 120, 123]. 

 

1.4.2. Antioxidant defenses 

 

Antioxidants are substances that prevent or delay oxidation of cellular oxidizable 

substrates and involve several strategies, both enzymatic and non-enzymatic [116, 119]. 

Antioxidants exert their effect by scavenging reactive species or by activating 

detoxifying/defensive proteins [119]. Under normal conditions, antioxidant systems of 

the cell minimize the perturbations caused by ROS [119]. Moreover, several biological 
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compounds have been reported to have antioxidant functions. Enzymatic antioxidant 

defenses include superoxide dismutase (SOD), glutathione peroxidase (GPX) and 

catalase (CAT). Non-enzymatic antioxidants are represented by vitamin C (ascorbic 

acid), vitamin E (α-tocopherol), pyruvate, glutathione (GSH), carotenoids, flavonoids 

among other [117, 119, 122, 127]. 

 

 

1.5. Acrylamide 

 

1.5.1. Acrylamide: production, uses and sources of exposure 

 

Acrylamide (CH2=CHCONH2) is an important industrial monomer produced by 

hydration of acrylonitrile with commercial availability since the mid-1950s. It is mainly 

used to produce water-soluble polyacrilamides, used as flocculents for clarifying 

drinking-water, for treating municipal and industrial waste waters and as flow control 

agents in oil-well operations. It was also used in soil stabilization and in grouting for 

repairing sewers and manhole. The monomer itself is also handled in many molecular 

biology and genetic engineering laboratories for the preparation of electrophoresis gels 

[54, 128-130]. In the workplace the major routes of exposure appear to be dermal 

absorption of acrylamide monomer from solution and inhalation of dry monomer or 

aerosols of acrylamide solution. Additionally, AA has other uses such as cosmetic 

additives (e.g. creams, body lotions, shampoos) and is also a component of tobacco 

smoke (1-2 µg/cigarette) [54].  

Besides the industrial and laboratory uses the general population is exposed to 

varying amounts of AA via diet. In fact, recently, it was discovered that AA can be 

formed in significant amounts and measured at significant concentrations in many 

common human foods during high-temperature frying, roasting or baking. However this 

compound is not typically found in boiled or micro-waved food [128, 129, 131, 132]. 

Moreover, the general population is exposed to small quantities of AA in drinking 

water, refined with poliacrylamide [133]. 
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Acrylamide can be generated from food components during heat treatment as a 

result of the Maillard reaction between an amino acid, primarily asparagine (the major 

amino acid in potatoes and cereals) and reducing sugars, such as glucose [134, 135]. AA 

formation begins at temperatures between 160 and 180ºC [132] and the products of 

Maillard reaction are responsible for much of the flavor and color generated during 

baking and roasting [129, 134, 135]. Figure 1.8 represents the proposed pathway for the 

formation of acrylamide by Heatox 2007 [136]. 

 

Fig. 1.8- Proposed pathway for the formation of AA after thermal processing (from 

[136]). 

 

The proposed mechanism for AA formation (see Figure 1.8) involves the 

formation of a Schiff base from the reaction of a carbonyl compound with asparagine. 

Decarboxylation of the Schiff base, in a Strecker-type reaction, gives an unstable 

intermediate that can hydrolyze to 3-aminopropamide, which on elimination of 

ammonia yields AA. Alternatively, the decarboxylated Schiff base could form AA via 

elimination of an imine [136]. In addition to the Maillard reaction, alternative routes for 

the formation of AA have been proposed [137]. 

AA is very soluble in water, to the extent of 215.5 g/100ml at 30ºC [131], but is 

equally well soluble in some organic solvents including methanol and ethanol [138]. 
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Acrylamide was evaluated by the International Agency for Research on Cancer 

in 1994 as “probably carcinogenic to humans” (IARC, Group 2A) on the basis of the 

positive bioassay results in mice and rats, supported by evidence that AA is 

biotransformed in mammalian tissues to a chemically reactive genotoxic metabolite 

named glycidamide (GA). In the European Union classification system it is classified as 

a category 2 carcinogen, a category 2 mutagen and as toxic to reproduction in category 

3 [54, 130, 131, 133]. 

 

 

1.5.2. Acrylamide dietary exposure 

 

More than one-third of the calories we consume in each day come from foods 

with detectable levels of AA [132]. Average daily intake was estimated to be ranged 

from 0.3 to 2.0 μg/kg bw in the general population. For high percentiles consumers 

(90th to 97.5th) intake estimates ranged from 0.6 to 3.5 μg/kg bw per day, and up to 5.1 

μg/kg bw per day for the 99th percentile consumer [139]. Children would generally 

have exposures 2-3 times higher and therefore they are at higher risk than adults [54, 

140]. This may be due to a combination of children’s higher caloric intake relative to 

body weight as well as their higher consumption of certain AA-rich foods, such as 

French fries and potato crisps, but butter biscuits and sweet biscuits are also important 

sources. [132], these products contribute to approximately 55-65% of the total mean 

intake [141]. 

Studies conducted in Sweden in 2002 showed that high levels of AA were 

formed during the frying or baking of a variety of foods and this finding was quickly 

confirmed by authorities in Europe and in United States [142]. Due to the high concerns 

about the possible public health risks from dietary exposure to AA several reports were 

performed with the purpose to reduce dietary AA intake. This requires that dietary 

levels of AA should be further reduced by appropriate technology in food processing 

and that AA levels should be monitored regularly in commercially distributed food 

items. Moreover, the consumers must be instructed and follow appropriate rules of food 

preparation, especially for home-made food [129]. 
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In 2005 and according to Joint FAO/WHO Expert Committee on Food Additives 

(JECFA) a report showed that the major contributing foods to total exposure to AA, for 

most countries were potato chips (French fries) (16-30%), potato crisps (Chips) (6-

46%), coffee (13-39%), pastry and sweet biscuits (Cookies) (10-20%) and bread and 

rolls/toasts (10-30%). Conversely others foods items contributed less than 10% of the 

total exposure. Given that, it can be said that foods rich in AA precursors are largely 

derived from vegetable sources, such as potatoes and cereals, but apparently not from 

animal sources [139, 143]. 

The more recent results on AA levels in certain foodstuffs were reported by the 

European Food Safety Authority (EFSA) in 2010. This report describes the results of 

the monitoring exercise in the period from 2007 to 2009 from a total of 23 Member 

States, plus Norway submitted 10366 results to EFSA for the three-year period [144]. 

Portugal was one of the countries that did not provide results of AA levels in food 

items, therefore not contributing for this EFSA report. However, a study is currently 

being performed in young adult Portuguese population and the overall results obtained 

in this study showed that the estimation of the amount of AA consumed in the large 

group of participants was approximately 0.35, 0.56, 0.87, 1.35 and 1.74 µg/kg wt/ day 

for 25, 50, 75, 90 e 95 percentiles respectively. 

The 3728 results from 2008 were compared with the 3281 results collected in 

2007 (Table I.2). The product categories potato crisps, instant coffee and substitute 

coffee showed statistically significantly higher levels of AA in 2008 compared to 2007. 

On the other hand, French fries and fried potato products for home cooking, soft bread, 

bread not specified, infant biscuit, biscuit not specified, muesli and porridge and other 

products not specified showed statistically significantly lower levels of AA in 2008 

compared to 2007. There were no statistically significant differences in AA level for the 

other food groups [144]. This report suggests lower AA values in 2008 compared to 

2007. 
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Table I.2 - Acrylamide levels in various food reported by the Member States of 

European Union and Norway in 2007 and 2008 (Adapted from [144]).  

Food 2007 2008 

 Median 

(μg/kg) 

Maximum 

(μg/kg) 

Median 

(μg/kg) 

Maximum 

(μg/kg) 

Biscuits  

Crackers  

Infant  

Not specified  

Wafers 

 

195 

100 

173 

118 

 

1526 

2300 

4200 

1378 

 

185 

64 

126 

109 

 

1042 

1200 

1940 

2553 

Bread 

Bread crisp 

Bread soft  

Non specified 

 

116 

30 

58 

 

2430 

910 

2565 

 

107 

30 

19 

 

1538 

528 

86 

Breakfast cereals 100 1600 75 2072 

Cereal-based baby food 38 353 25 660 

Coffee  

Instant  

Not specified 

Roasted 

 

188 

183 

197 

 

1047 

1158 

958 

 

482 

210 

164 

 

1373 

734 

1524 

French fries 246 2668 220 2466 

Jarred baby food 30 162 25 297 

Other products 

Gingerbread  

Muesli and porridge  

Not specified  

Substitute coffee 

 

226 

156 

134 

334 

 

3615 

805 

2529 

4700 

 

227 

30 

60 

702 

 

3307 

112 

2592 

7095 

Potato crisps 413 4180 436 4382 

Home-cooked potato 

products 

Deep fried  

Not specified  

Oven fried 

 

 

182 

150 

260 

 

 

1661 

2175 

941 

 

 

152 

75 

172 

 

 

1220 

3025 

1439 

Note: Median values are upper bound values. 

 

According to this EFSA report, the area of potato products has drawn much 

attention because of their important contribution to the AA exposure based both on a 

high consumption of the products and on a relatively high content of AA. Potato crisps 

were identified as a food product with potential for high levels of AA formation [145]. 

Given their popularity as a snack food, particularly among younger age groups, it is 

important to reduce its AA content [144]. 
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Moreover, there are a second large group of products contributing to AA 

exposure which are cereals. From the comparison of AA data between 2007 and 2008 it 

was observed that the overall trend in cereal products tends towards lower AA content 

showing a statistically significant decrease in soft bread, infant biscuit and muesli and 

porridge. However, no statistical difference in AA content between 2007 and 2008 was 

found for the other cereal products [144]. 

On the other hand, coffee is also an important contributor to AA exposure. The 

results of laboratory scale experiments have led to the conclusion that only limited 

process options are available to reduce AA levels without affecting the quality in 

respect to the consumer acceptance of a product. Other conclusion in studies at pilot 

scale showed that asparagine content of dried chicory was correlated to the formation of 

AA [144]. 

The wide variations in levels of AA in different food categories as well as in 

different brands of the same food category (e.g. French fries, potato chips) appears to 

result from the variation in processing conditions (temperature; time; nature of frying 

oil; nature of food matrix) [128, 129]. Large variations are also to be expected during 

home cooking, although this aspect has been less well documented. Additionally, the 

composition of the food also has an influence, crucially the content of free asparagine 

and reducing sugars. Storage and seasonal variations can also occur and other important 

factors could be pH and water content [139].  

In order to confirm whether the AA levels tend indeed towards a decrease over 

time more food samples need to be collected and analyzed in coming years [144]. 

 

 

1.5.3. Acrylamide toxicokinetics 

 

Acrylamide is reactive in three different ways. First, it can undergo radical-

mediated polymerization. Secondly, AA has an alpha, beta unsaturated double bond, 

that reacts with nucleophile, including amino and thiol groups in amino acids and 

proteins by Michael additions. This alpha, beta double bond is responsible for much of 

its activity. The thiol addition represents a detoxification pathway by yielding primarily 
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AA-glutathione conjugates as urinary excreteable compounds. On the other hand it can 

also result in alkylation of proteins and can also bind to DNA in a similar “Michael 

type” addition, however with low reactivity [54, 131, 146]. Thirdly, AA can be 

metabolized to glycidamide (GA) an epoxide derivative, presumably by cytochrome 

P4502E1 (Fig. 1.9), being readily reactive toward DNA and other molecules [146]. 

 

 

 

 

 

 

Fig. 1.9 - CYP2E1 mediated biotransformation of AA to GA. 

 

For several decades is known that AA is metabolized to GA, but only in 1993 

Bergmark et al showed the first evidences for formation for GA in humans. These 

evidences have been shown indirectly in the hemoglobin workers exposed to relatively 

high levels of AA, through the detection of Hb-adducts of GA [147]. 

Glycidamide is an epoxide metabolite which is genotoxic in a variety of in vitro 

and in vivo test system [131, 138]. GA has an epoxide group that appears generally 

more reactive with hemoglobin that the double bond of AA, and GA has been reported 

to be 100-1000 times more reactive with DNA than AA [131]. Due to this, the 

genotoxic effect of AA is mostly attributed to GA, focuses much of the toxicological 

interest of this compound in its metabolite and making it the objective of a large number 

of studies. However, the role of GA in the toxicity of AA is not fully understood and 

continues to be worthy of attention by the scientific community. 

After oral administration, AA is rapidly absorbed by the gastrointestinal tract in 

all species, including rats, mice and human. On the other hand, dermic absorption and 

inhalation is much less efficient [148, 149]. AA passes in the blood and is widely 

distributed in the body, including breast tissue, due to hydrosolubility, in all animal 
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species so far investigated (rats, mice, dogs and mini-pigs) [54, 138, 150, 151]. 

Additionally, it has been shown that AA could cross the blood/placenta barrier in a 

human placenta in vitro model as well as the blood/breast milk barrier in vivo of 

lactating mothers [152]. 

Ingested AA is taken up into circulation and metabolism of AA can proceed 

according to Figure 1.10. As already previously seen, AA is largely oxidized in mice, 

rats and humans to GA, being cytochrome P450 2E1 the more plausible candidate for its 

oxidation. This enzyme also oxidizes alcohol and is induced by ethanol [54, 153-156]. 

Secondly both AA and GA can be conjugated with GSH yielding excreatable 

mercapturic acids conjugates, which can be eliminated via the urine [86]. The 

conjugation of AA with GSH yield N-acetyl-S-(3-amino-3- oxopropyl)cysteine and 

when GA reacts with GSH yield N-acetyl-S-(3-amino-2-hydroxy-3-oxopropyl)cysteine 

and N-acetyl-S-(carbamoyl-2-hydroxyethyl)cysteine [54, 129, 153]. Thirdly GA 

hydrolysis can occur via epoxide hydrolase (EH) forming 2,3-dihydroxypropionamide 

[153, 155].  

 

Fig 1.10 - Proposed mammalian metabolic pathway for AA. GSH, glutathione; EH, 

epoxide hydrolase (from [153]). 
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Except for the differences related to the metabolism of AA and its metabolites, 

few quantitative differences are expected between rats and humans with respect to 

absorption, distribution and excretion, in part due to the high hydrosolubility [153]. In 

what concerns the expected differences between humans and rats it is important to note 

that human metabolizes much less AA to GA compared to rats in similar doses, and the 

GA produced in rats is conjugated by GSH to a much larger extent than in humans. This 

is very important with respect to risk assessment [129, 153]. Humans, on the other hand, 

detoxify and eliminate GA via hydrolysis almost exclusively, while rats only hydrolyze 

GA to a limited extent. In view of this, humans will have a much lower blood level of 

GA than rats, for a given dose of AA [153]. Presently, one can say that in humans, at 

relatively low doses GA is formed at higher extent than in rats, most likely because of 

the higher levels of CYP2E1 [54]. 

Several studies on the toxicokinetics of AA were carried out [148, 149, 153, 

156]. The overall results suggest conjugation of AA with GSH exceeds the formation of 

reactive metabolite GA, having a bioavailability of AA in humans of about 20-49%. It 

is metabolized to GA, than for your turn is detoxified by conjugation with GSH [148]. 

Both AA and GA are equally distributed among the tissues and have half-lives 

of about 5 h in rats. The conversion of AA to GA is saturable, ranging from 50% of 

very low doses to 13 % at 100 mg/Kg bw in rats [54]. 

It is also important to note that there are several exogenous factors that are very 

important in the formation of GA in humans that should be taken into account, such as 

alcohol consumption, smoking habits, age and sex [157, 158]. Two studies by Vikström 

et al [158] and Vesper et al [157] investigated whether alcohol (ethanol) consumption 

might have an influence on the metabolism of AA to GA in humans exposed to AA 

through foods. In these studies a decrease of GA adducts associated with alcohol 

consumption was observed. This can be explained due to a competitive effect between 

ethanol and AA as both are substrates for cytochrome P4502E1. These results strongly 

indicate that ethanol influence metabolism of AA to GA. 

The thorough knowledge of AA metabolism is very important, since only the 

knowledge of these mechanisms will allow us to dissipate any doubts regarding the 

toxicology of this compound. 
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1.5.4. Adducts of AA and GA 

 

1.5.4.1. Hemoglobin adducts 

An important reaction of AA with protein is the formation of hemoglobin (Hb) 

adducts. These adducts are formed at the site of sulfhydryl (SH) groups and on the 

amino groups of the N-terminal aminoacids (α-NH2), and have been widely used to 

estimate internal exposures in human biomonitoring studies [54, 138]. Hemoglobin 

adducts from direct reaction of AA and from reaction with GA have been detected in 

rodents administered AA, in exposed humans, and in cigarette smokers [141]. Data 

showed that Hb adduct formation was linear in a dose response manner when the 

epoxide GA was administrated in experimental animals [138]. Moreover, preliminary 

studies that measured concentrations of AA- and GA-haemoglobin adducts in rodents 

and humans with background exposure to AA through the diet suggested that there may 

be species differences in the relative formation of GA with mouse > rat >human. 

However, the formation of GA and AA adducts with Hb is directly proportional in man 

and rat [54]. Additionally, the detection of Hb-adducts for GA in both rodents and 

humans confirms the formation of GA in vivo in humans [54]. 

Smoking is one example of an exogenous factor that has been studied by 

correlating exposure of tobacco smoking and Hb-AA and Hb-GA adducts. These 

studies revealed levels of hemoglobin adducts significantly higher in smokers than in 

non-smokers [159, 160]. 

Hb-adducts are not used as an indicator of toxicity. However, they are used as a 

measure of human exposure to electrophilic compounds, for example as a marker of in 

vivo exposure to AA [54]. Some studies have used hemoglobin adducts of AA and GA 

as biomarkers of AA exposure to determine the internal exposure dose [147, 159, 161, 

162]. Hemoglobin adducts were also correlated with neurotoxicity, but there has been 

no systematic standardization of hemoglobin adducts with dose [163]. 
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1.5.4.2. DNA adducts 

Acrylamide adduct formation with DNA has also been reported, although the 

reaction is very slow. AA itself is of low DNA reactivity under in vitro conditions but 

after metabolic activation specific DNA adducts on the basis of GA were observed 

[164]. Due to this, the genotoxicity of AA has been mainly attributed to the epoxide 

metabolite GA [146]. 

AA is proposed to interact with DNA, giving rise to promutagenic AA DNA-

adducts. The structural analysis of reaction products of AA with DNA in vitro revealed 

the formation of the following adducts in descending order of abundance, N1-(2-

carboxyethyl)-adenine, N3-(2-carboxyethyl)-cytosine, N7-(carbamoylethyl)-guanine, 

N6-(2-carboxyethyl)-adenine and N1-(carboxyethyl)-guanine (Figure 1.11) [146, 165]. 

 

Fig. 1.11 - Chemical structures of major DNA adducts of AA and GA (from [146]). 

 

On the other hand GA forms adducts with DNA in vivo and in vitro in 

considerable amounts [164]. The predominant adduct detected in mice and rats has been 

a GA-guanine adduct the N-7-(2carbamoyl-2-hydroxyethyl)guanine (N7-GA-Gua), 
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formed by reaction of the DNA with the epoxide metabolite GA. N3-(2-carbamoyl-2-

hydroxyethyl)adenine (N3-GA-Ade) and N1-(2-carboxy-2-hydroxyiethyl)-2’-adenine 

(N1-GA-Ade) were also identified as additional GA-derived DNA adducts, (Figure 

1.11) [164, 166]. Both N7-GA-Gua and N3-GA-Ade are promutagenic, because they 

can undergo spontaneous depurination, producing an apurinic (AP) sites [146, 167]. It 

has been suggested that the abasic sites that are produced by depurination of N7-GA-

Gua are likely to promote incorporation of deoxyadenosine during DNA replication 

leading to G-T transversions [146, 167]. The N3-GA-Ade also can block transcription, 

which can lead to sister chromatid exchange, S-phase arrest, chromosomal aberration 

and cytotoxicity [164]. N1-GA-Ade is also highly promutagenic, because of its 

impaired base-pairing potential [146, 168]. 

DNA adducts have been found in liver, lung, testis, leukocytes, and kidney of 

mice and in liver, thyroid, testis, mammary gland, bone marrow, leukocytes, and brain 

of rats treated with either AA or GA [139]. These adducts, formed in rodents, showed 

the formation of higher amounts of DNA adducts by treatment with GA than after AA 

treatment, at all doses tested [131, 146]. DNA adducts formation from AA was 

saturable, while formation of most DNA adducts from GA was dose-dependent at the 

doses tested [131, 146]. 

In mice higher levels of DNA adducts were detected when compared to rats. 

This is already expected due the correlation with the greater metabolic conversion of 

AA to GA in mice compared to rats [54, 138]. According to Maniére et al [51] the N7-

GA-Gua was detected in similar levels in brain and liver and at lower levels in testes of 

rats treated with a single oral dose of AA. The overall DNA adducts in adult mice 

treated with GA were 1.2-1.5 fold higher than those in their AA treated counterparts 

[146]. DNA adducts formation after AA exposure in humans is still lacking [54, 138]. 

 

 

1.5.5. Genotoxicity of acrylamide and glycidamide 

 

The genotoxicity of AA as well as of its reactive metabolite epoxide GA, has 

been extensively studied. AA is both clastogenic and mutagenic in mammalian cells in 
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vitro and in vivo. In addition, dominant lethality studies have showed that AA is a germ 

cell mutagen in male rodents. Additionally, the mutational spectra produced by AA and 

GA in transgenic mouse cells are consistent with formation of promutagenic purine 

DNA adducts in vivo [131]. Furthermore, there is some evidence of the involvement of 

free radicals in AA genotoxicity, leading to oxidative modification of pyrimidines 

[169]. 

 

1.5.5.1. Genotoxicity in Prokaryotes  

AA was not mutagenic in bacterial systems, since did not induce gene mutations 

in different strains of Salmonella typhimurium (Ames test), in the presence or in the 

absence of an exogenous activating system. In contrast, GA was mutagenic in bacterial 

system, since it induces gene mutations in S. typhimurium strains TA1535 and TA100 

with and without metabolic activation [54, 129, 138]. The fact of AA did not induce 

gene mutations may be related with the scarce presence or lack in the S9 mix of the 

specific isozyme (as been already seen the most plausible is P4502E1) capable of 

metabolizing small molecules [54]. Moreover, a study in vitro demonstrated that AA is 

not activated in presence of the most common exogenous system of metabolic 

activation (rat liver S9 mix) [170]. 

 

1.5.5.2. Genotoxicity in mammalian cells 

In vitro, AA generated positive results for mutagenicity even without metabolic 

activation. These positive results showed mutations thymidine kinase (TK) locus in 

mouse lymphoma cells [171] and in human lymphoblastoid TK6 cells [170] but only for 

high concentrations (>10 mM). However, in V79 cells AA was inactive up to 

concentration of 10 mM in hypoxanthine-guanine phosphoribosyl transferase (Hprt) 

mutagenicity test [172]. On the other hand, GA was mutagenic in relatively low 

concentrations in both TK and Hprt assays [170-172]. Furthermore, molecular analysis 

of the TK mutants revealed that AA predominantly induced loss of heterozygosity 

mutation like spontaneous one while GA-induced primarily point mutations [170]. 

In vivo, both AA and GA originated dominant lethal mutations in rodents [173]. 

In Big Blue rats, both compounds significantly increased lymphocyte Hprt mutant 
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frequency [174, 175]. However, neither compound increased the cII mutants in testis, 

mammary gland and liver, while both compounds induced weak positive increases in 

bone marrow and thyroid [174]. Opposing results were observed by Majanatha et al in 

relation to cII mutants frequencies that were increased in liver for high doses of AA and 

GA. Moreover, molecular analysis of the mutants indicated that AA and GA produced 

similar mutations spectra, of which, the predominant were G to C tranversions and 

frameshifts [175]. 

Previously in another in vitro study, GA showed to be more mutagenic than AA 

at any given dose. The spectrum of GA-induced cII mutations was statistically 

significant different from the spectrum of spontaneously occurring mutations in control-

treated cells. Further cells treated with GA or AA had more A→G transitions and G→C 

tranversions and moreover cells treated with GA had more G→T transversions [53]. 

This last mutation is compatible with in vivo studies and the authors concluded that 

although both AA and GA are mutagenic in mice, the mutagenicity of AA is based on 

the capacity of its epoxide metabolite GA to form DNA adducts [53, 175], pointing out 

that the mutation spectrum been totally compatible with adducts of adenine and guanine 

previously identified [164]. 

Several studies showed pronounced evidence about the role of GA mutagenicity 

in vivo and in vitro. On the contrary, in relation to AA only a weak in vitro mutagenic 

potential was attributed, showed possible clastogenic effects. AA is clearly a direct-

acting clastogen in mammalian cells in which it also induces, at lower extent, 

aneuploidy, polyploidy and other mitotic disturbances [54]. In fact the clastogenicity of 

AA have been reported in several studies, namely cytogenetic studies [176-178].  

The in vivo exposure to AA induced positive results in chromosomal alterations 

in mouse bone marrow cells but negative in spermatoigonia [179]. 

On the other hand, in vitro studies reported that AA induced sister chromatid 

exchanges and chromosomal aberrations in V79 cells [176, 178]. AA also showed to be 

clastogenic in micronucleus assay and presented DNA strand breaks (comet assay) in 

HepG2 cells [180]. However, significant micronucleus inductions were only found in 

human blood cells [172] and TK6 cells [170]. Others authors also found DNA damage 

in V79 and in Caco-2 cells but for AA high concentrations (6 mM) [181]. 
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In relation to GA a significant level of DNA damage was reported in vitro in 

testicular cells of mice and human peripheral blood lymphocytes [182]. Also the 

induction of micronuclei in human TK6 cells [170] and in human blood [172] has been 

reported. Other studies observed an increase in micronuclei in peripheral blood [175, 

183, 184] and in bone marrow of mice [179] but not in rats [174, 184] when 

administered with AA. Paulsson et al (2003) showed that mice suffer a dose-dependent 

increase in micronucleus when exposed to GA [185]. These genotoxicity differences 

may be related with the different metabolism between rats and mice [186]. Overall, the 

studies in vitro of DNA damage confirmed the major mutagenic potential for GA in 

relation to AA, not only for the significant increases of DNA damage with low doses of 

compound, but also the positive results obtained in all cell lines studied [170, 181, 182]. 

Additionally studies with CYP2E1 in mice also suggest strong evidences about 

genotoxicity of AA trough GA in germ cells [187] and in somatic cells [168]. 

Overall in cytogenetic studies both AA and GA has demonstrated being 

clastogenic, however the reactive metabolite GA showed a greater potent to induce 

CAs, MN, SCEs and DNA strand breaks [170, 176, 188]. 

 

 

1.5.6. Animal carcinogenicity 

 

Acrylamide is carcinogenic to experimental mice and rats, causing tumors at 

multiple organ sites, in both species given in drinking water or by others means. AA 

was tested for carcinogenicity in two experiments in Fischer 344 rats by oral 

administration [189, 190]. In these studies an increase of the incidence of peritesticular 

mesotheliomas and folicular adenomas of the thyroid was observed in males and of 

thyroid follicular tumors, mammary tumors, glial tumors of the central nervous system, 

oral cavity papillomas, uterine adenocarcinomas and clitoral gland adenomas in females 

[189, 190]. These positive biosassays of AA carcinogenicity in experimental animals 

establish that AA is a multiorgan carcinogen in both rats and mice. This is of high 

importance, since they indicate that AA presents a potential carcinogenic hazard to 

humans [131].  
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1.5.7. Epidemiologic studies 

 

Epidemiology is the study of the distribution and determinants of disease in a 

population that can suggest association but not causation, between exposure to an agent 

and an outcome, e.g., disease [53, 132]. Several epidemiologic studies were conducted 

with the aim of assess the association between AA intake and the risk of cancer in many 

sites, however, there are some conflicting results. 

In the 1980’s, two studies investigating the correlation between occupational AA 

exposure and cancer mortality, were carried out by Sobel et al [191] and Collins et al 

[192]. In these studies occupational AA exposure was evaluated in two cohorts of 

industrial workers who were exposed in the monomer production and polymerization 

industries. After the analysis of cancer incidence in those workers, no consistent effect 

of AA exposure on cancer incidence at any site was identified [131, 138].  

In 1999, an extended and updated investigation of the mortality experience of 

part of the cohort originally studied by Collins et al [192] was undertaken by March et 

al [193]. In an exploratory exposure-response analysis of rectal, oesophageal, 

pancreatic, and kidney cancer, increased standardized mortality ratios for some 

categories of exposure to AA were observed but little evidence of an exposure-relation 

was found. These results corroborated the original cohort study findings [193]. An 

updated follow up done by the same authors [194] concluded the same results, since AA 

exposure at the level present in the study sites was not associated with elevated cancer 

mortality risks. 

In recent years, due to the high concern of AA exposure, several studies 

evaluated the carcinogenicity of AA/GA in relation to dietary intake in various 

European countries, including Sweden, Switzerland, Netherlands, Norway and Italy and 

also in American population were carried out and are summarized in Table I.3. Several 

sites of cancer risk were assessed and the AA intake was carried out for estimative with 

bases in food frequencies questionnaires (FFQs) to assess diet. It is, however, not well-

known, whether FFQs can accurately measure AA [172] intake in the diet. AA content 

in a particular food varies with specific cooking and processing methods for both 

homemade and commercially prepared foods, which makes measuring individual intake 

difficult [195]. Only recently case-control studies have examined the relationship 
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between the AA-Hb and GA-Hb adducts and breast and prostate [195] cancer risk. They 

analyzed N-terminal hemoglobin adduct levels of AA and its genotoxic metabolite, GA 

in blood samples [195, 196]. 

As shown in Table I.3 most of the results of the case-control and cohort studies 

done revealed no significant correlation between frequent consumption of foods with 

high levels of AA and the increase of cancer risk in various sites, like bowel, bladder, 

kidney, prostate, among others. However, positive results have also been found, 

particularly in relation to breast, ovarian, endometrial, lung, renal and esophageal 

tissues.   
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Table I.3 - Epidemiological studies of dietary AA intake and cancer risk (adapted from 

[197]). 

Cancer site Design Population Sample size Cancer risk Published 

Colon, rectum, 

Bladder 

kidney 

case-control Swedish men and 

women 

591 cases; 538 controls 

263 

133 

- 

- 

- 

[198] 

Renal case-control Swedish men and 

women 

379 cases; 353 controls - [199] 

Breast cohort Swedish women 43404 

667 cases 

- [200] 

Colon, rectum cohort Swedish women 504/237 cases(colon/rectal) 

823072 person-years 

- [201] 

Breast Case-control American women 582 cases; 1569 controls + [202] 

Oral/pharynx 

Esopgagus 

Large bowel 

Larynx 

Breast 

Ovary 

Prostate 

Case-control Italian and Swiss 

men and women 

749 cases; 1772 controls 

395 cases; 1066 controls 

2280 cases; 4765 controls 

527 cases; 1297 controls 

2900 cases; 3122 controls 

1031 cases; 2411 controls 

1294 cases; 1451 controls 

- 

- 

- 

- 

- 

- 

- 

[203] 

Endometrial 

Ovarian 

Breast 

Sub-cohort Dutch women 2589; 327 cases 

300 cases 

1835 cases 

+ 

+ 

- 

[204] 

Breast Case-control Danish women 374 cases; 374 controls + 
a 

[196] 

Renal cells 

Bladder 

Prostate 

Sub-cohort Dutch men and 

women 

5000; 339 cases 

1210 cases 

2246 cases 

+ 

- 

- 

[205] 

Lung cohort Dutch men and 

women 

58279 men; 62573 women 

2649 cases 

- [206] 

Brain cohort Dutch men and 

women 

5000; 216 - [207] 

Breast cohort Swedish women 61433; 2952 cases - [208] 

Ovarian cohort Swedish women 61057; 368 cases - [209] 

Endometrial cohort Swedish women 61226; 687 cases - [210] 

Colorectal cohort Swedish men 45306; 676 cases - [211] 

Prostate cohort Swedish men 45306; 2696 cases - [212] 

Oral cavity 

Oro-hypopharynx 

Larynx 

Thyroid 

cohort Dutch men and 

women 

120852; 101 cases 

83 cases 

180 cases 

66 cases 

+ 
b 

- 

- 

- 

[213] 

Prostate Case-control Swedish men 1499 cases; 1118 controls 

170 cases; 161 controls 

-(FFQ) 

-(AA-Hb) 

[195] 

Breast cohort American women 90628; 1179 cases 

 

- [214] 

Breast cohort English women 33731; 1084 cases + 
c 

[215] 

Breast cohort Dutch women 62573; 2225 cases + 
d 

[216] 

Endometrial 

Ovarian 

Breast 

cohort American women 69019; 484 cases 

80011; 416 cases 

88672; 6301 cases 

+ 

+ 
 

- 

[217] 

Lung 

Prostate 

Urotherial 

Colorectal 

Stomach 

Pancreatic 

Renal 

Lymphomas 

cohort Finnish men 27111; 1703 cases 

799 cases 

365 cases 

316 cases 

224 cases 

192 cases 

184 cases 

175 cases 

+ 

- 

- 

- 

- 

- 

- 

- 

[218] 
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Table I.3 (continued) 

Cancer site Design Population Sample size Cancer risk Published 

Esophageal Case-control Swedish men and 

women 

618 cases; 820 controls +
e 

[219] 

Prostate cohort American men 47896; 5025 cases - [220] 

 

 (+) significant association between AA intake and cancer risk; (-) absence of a positive 

association. 
a
 Association with hormonal receptor status; 

b 
positive association for female non-smokers; 

c
 weak association with premenopausal breast cancer; 

d
 association with hormonal receptor 

status in postmenopausal never smoking women; 
e
 stronger association among overweight or 

obese persons was indicated. 

 

In 2007, Hogervorst et al [204] investigate the association between AA intake 

and endometrial, ovarian and breast cancer risk. In this study the risk of breast cancer 

was not associated with AA intake. However, an increased risk of postmenopausal 

endometrial and ovarian cancer with increasing dietary AA intake was observed [204]. 

The same authors examined the association between AA intake and renal cell, bladder 

and prostate cancer and found some associations between dietary AA intake and renal 

cell cancer risk. However, it was a slight association that was noted only after the 

authors attempted to adjust for smoking, hypertension, body mass index, and fruit and 

vegetable consumption [205]. Negative results were also obtained by other authors in 

relation to prostate and breast cancer [195, 217]. On the other hand, there are other 

studies that correlate positively the dietary intake of AA and breast cancer risk. For 

example, Michels et al (2006), correlate diet during preschool age and risk of breast 

cancer and observed a possible association between diet before puberty and the 

subsequent risk of this type of cancer [202]. Furthermore, Olesen et al [196] used AA-

Hb and GA-Hb adducts as biomarkers of acrylamide exposure founded a weak 

association between GA hemoglobin levels and incidence of estrogen receptor positive 

breast cancer after adjustment for smoker behavior. This was the first epidemiologic 

study done using AA-Hb and GA-Hb adducts as biomarkers. Later Wilson et al [195] 

using the same type of biomarkers (AA-Hb) found no association between AA-Hb 

adducts with risk of prostate cancer. Another study done by Pedersen et al [216] also 

showed some indications of a positive association between dietary acrylamide intake 

and receptor positive of breast cancer risk in postmenopausal never smoking women. 

Burley et al [215] showed a weak association of premenopausal breast cancer, however 

requires further investigation. Lastly Shouten et al [213] founded some association 
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between dietary AA intake and oral cavity cancer risk for female nonsmokers and Lin et 

al [219] found that dietary intake of AA might be a risk exposure for esophageal cancer, 

mainly among overweight or obese persons. Furthermore, dietary AA intake was 

positively associated with the risk of lung cancer by Hirvonen et al [218] in a Finnish 

male smoker’s population. 

The results obtained concerning animal and human data on AA risk diverge. 

This should be analyzed in light of the strengths and limitations of epidemiologic 

studies. One possible explanation for this disparity is that the adverse effects of AA are 

present in the cohort studies, but cannot be observed in the study populations due to 

limitations in statistical power to detect pathological events. Alternatively, the disparity 

may be due to invalid assumptions made in risk assessments [132]. Two common 

assumptions in human health risk assessment include (1) extrapolation in a systematic 

manner to predict response rates in humans according to tumor or other pathology 

response rates in a test species and (2) tumor and other pathology response rates 

observed following high dose exposures can be extrapolate to predict response rates 

following low-dose exposure [153]. It is important to note that the level of conversion 

of AA to GA may be different at very low versus high doses, and cellular protective 

mechanisms such as DNA repair may effectively lower the deleterious effects of AA 

and GA at the lower doses. AA exposure may also produce different effects when 

delivered with a multitude of nutrients and other compounds in foods rather than as a 

single additive in water, since the bioavailability of AA is also different according to the 

source of AA exposure [132, 153]. In addition, the tumors observed in rodents and the 

increased risk observed in some studies suggests that AA can influence the hormonal 

systems, for which rodents could not be a good model [221]. 
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2.1. Problem and Method 

 

In 1997, an incident involving tunnel workers in southern Sweden led to a 

toxicological contamination in which fish died, cows became paralyzed and workers 

presented reversible mild neurotoxicity [1]. Acrylamide (AA) a component of the grout 

used to seal the tunnel seemed to be implicated in this toxicological accident, due to its 

known potential neurotoxicity. However, analysis of samples derived from exposed and 

non-exposed workers revealed the presence of AA-hemoglobin adducts in non-exposed 

workers [1]. In addition, and although tobacco smoke can be a possible source of AA 

background, Bermark [2] has reported that nonsmoker´s samples also contained 

background levels of the protein adduct of AA. In view of this, the possibility that AA 

was present in food became a real and worrying consideration. Subsequently, the 

analysis of a number of foodstuffs were performed and AA was identified has being 

formed during heat processing of starch-rich foods [3]. According to some authors, AA 

is formed by the Maillard reduction of the amino acid asparagine with reducing sugars 

such as fructose or glucose upon heating at temperatures above 120 ºC [4, 5]. This 

compound is found at relatively high concentrations (µg to mg/Kg) in common food 

items such as French fries, potato crisps, crisp bread, bread, coffee and biscuits [3, 6, 7]. 

Based on food contents, the estimated average daily intake of AA in US and Europe 

through food consumption is about 0.5 µg/Kg body weight, but the intake is often 

higher in children and adolescents [6]. AA is classified by the International Agency for 

Research on Cancer [8] as potentially carcinogenic to humans (class 2A) based on 

animal experiment data. The discovery of AA in many common cooked starchy foods 

triggered significant challenges to toxicologists, food scientists, national regulatory and 

public health organizations due to the potential risks of neurotoxicity and cancer. In 

fact, these findings have raised a great concern in general public health in recent years. 

AA is metabolized to glycidamide (GA) in both human and experimental 

animals. This step seems to be determinant for the formation of several AA-induced 

DNA adducts observed in rodents [9, 10] as well for the induction of bacterial 

mutagenicity [11], micronuclei [12] and dominant lethality in mouse spermatids [13].  
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As abovementioned, AA possesses a range of hazardous properties, being the 

key effects carcinogenesis, genotoxicity and reproductive toxicity [14]. AA has been 

shown to cause neurotoxicity in laboratory animals and humans, as well as to induce 

various types of tumors, including mammary gland [15, 16]. Different epidemiologic 

studies have reported lack of association between intake of food containing AA and 

various types of human cancer [17, 18]. However, other epidemiological studies also 

reported positive associations. In this context, recent reports from Hogervorst et al. [17, 

19] described an increased risk of ovarian, endometrial and renal cancer in humans with 

high AA dietary intake. Moreover, Olesen et al [20], have recently reported a positive 

association between AA-hemoglobin adducts concentrations, as a biomarker of AA 

exposure and estrogen receptor-positive breast cancer. Overall, it is important to 

highlight that there is a growing concern about the intake of food containing AA and the 

possible association with several types of cancer.  

In view of the importance of AA and GA it is crucial to increase our knowledge 

on the deleterious effects induced by these agents in mammalian cells. In this context, 

different biomarkers (exposure, effect and susceptibility) were used in the present study, 

for the determination of AA and GA genotoxicity and individual susceptibility 

associated with these chemical compounds. The use of mechanistic biomarkers is 

important in toxicology and human health. In fact, the relation between different 

biomarkers is capable to give us valuable insights about the mode of action of these 

compounds. In this work, chromosomal aberrations (CAs), sister chromatid exchanges 

(SCEs), comet assay, specific GA-DNA adducts and individual genetic polymorphisms 

were selected as key biomarkers.  

Complementary approaches were used throughout this work. In order to assess 

genotoxicity of AA and GA-induced, CAs, SCEs and DNA-adducts in V79 Chinese 

hamster cells, a mammalian cell line essentially devoid of CYP2E1 activity were first 

evaluated (Chapter 3). Later, and with the knowledge that GSH is a key factor for 

mammalian cell homeostasis, a study of the effect of the GSH modulators, namely 

evaluation of the effect of buthionine sulfoximine (BSO), an effective inhibitor of GSH 

synthesis, of GSH-monoethyl ester (GSH-EE), a cell permeable compound that is 

intracellularly hydrolysed to GSH and also of GSH endogenously added to culture 

medium in the same cell line were performed using cytotoxicity and clastogenicity 

endpoints (Chapter 4).  
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With the aim of expanding the previous results obtained in the first chapters to 

human cells, the quantification of AA and GA-induced SCEs and DNA-adducts in 

stimulated human lymphocytes was also performed, and the results presented in 

Chapter 5. Moreover, DNA damage accumulation measured by comet assay in whole 

blood leucocytes from healthy individuals was evaluated and described in Chapter 6. 

Genes encoding the enzymes involved in the metabolism and repair of xenobiotics 

substances are often polymorphic in humans. Such genetic polymorphisms may result in 

inter-individual differences in detoxification and clearance of certain chemicals, as well 

in the repair of certain DNA damage, possibly affecting health-risk assessments. In 

view of this, the present thesis also addressed the role of individual genetic 

polymorphisms that can affect metabolism and DNA repair pathways (BER, NER, HRR 

and NHEJ) on GA-induced genotoxicity assessed by the SCE (Chapter 5) and by the 

alkaline comet assay (Chapter 6) in order to evaluate individual susceptibility to GA 

induced genotoxic effects.  

The results obtained in the context of this thesis may help to predict the impact 

of the genotoxic effects of AA and of its metabolite GA in human health. Moreover, the 

association of the previously described methods with a food frequency questionnaire 

can provide valuable information to future epidemiologic studies. 
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Pingarilho M, Costa GG, Martins V, Marques MM, Beland FA, Churchwell MI, Doerge 
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Abstract  

 

Acrylamide (AA) is a suspected human carcinogen generated in carbohydrate-

rich foodstuffs upon heating. Glycidamide (GA), formed via epoxidation, presumably 

mediated by cytochrome P450 2E1, is thought to be the active metabolite playing a 

central role in AA genotoxicity. In this work we investigated DNA damage induced by 

AA and GA in mammalian cells, using V79 Chinese hamster cells. For this purpose, we 

evaluated two cytogenetic end-points, chromosomal aberrations (CAs) and sister-

chromatid exchanges (SCEs), as well as the levels of specific GA-DNA adducts, 

namely N7-(2-carbamoyl-2-hydroxyethyl)guanine (N7-GA-Gua) and N3-(2-carbamoyl-

2-hydroxyethyl)adenine (N3-GA-Ade) using high-performance liquid chromatography 

coupled with tandem mass spectrometry. GA was more cytotoxic and clastogenic than 

AA. Both AA and GA induced CAs (breaks and gaps) and decreased the mitotic index. 

GA induced SCEs in a dose-responsive manner; with AA, SCEs were increased at only 

the highest dose tested (2 mM). A linear dose-response relationship was observed 

between the GA concentration and the levels of N7-GA-Gua. This adduct was detected 

for concentrations as low as 1 µM GA. N3-GA-Ade was also detected, but only at very 

high GA concentrations (≥ 250 µM). There was a very strong correlation between the 

levels of N7-Gua-GA in the GA- and AA-treated cells and the extent of SCE induction. 

Such correlation was not apparent for CAs. These data suggest that the induction of 

SCEs by AA is associated with the metabolism of AA to GA and subsequent formation 

of depurinating DNA adducts; however, other mechanisms must be involved in the 

induction of CAs. 
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3.1. Introduction 

 

Acrylamide (AA; Fig. 3.1) is an important industrial chemical that has been 

produced for about 50 years in Europe, Japan, and the United States. AA has numerous 

applications; it has been used as starting material for the synthesis of polyacrylamide 

polymers, which are employed mainly as flocculating agents in water treatment 

(drinking and waste waters), as flow control agents in oil well operations, in pulp and 

paper processing, and in mining and mineral processing. AA is also used as an 

ingredient in several cosmetic formulations and in molecular biology research 

laboratories [1, 2]. 

AA was recently found to be generated during the heating of carbohydrate-rich 

foodstuffs, predominantly from the precursor asparagine [3]. This finding has refocused 

the interest in this genotoxicant, especially because appreciable amounts of AA are 

present in Western diets. In fact, some foods (e.g. French fries, potato crisps, bread and 

breakfast cereals, and coffee) may contain up to 3 ppm of AA [4]. The average daily 

intake of AA has been estimated at about 0.5-1.0 µg/kg bw in adults and up to twofold 

higher in 13-year-old children consuming a normal Western diet [4]. Until 2002, AA 

was mainly regarded as an industrial or occupational toxicant, and the foremost routes 

of exposure were considered to be dermal absorption and inhalation of aerosols in the 

workplace; the new data suggest that oral consumption of AA may be a key element for 

global risk assessment.  

In addition to its well-known neurotoxicity [5], the toxicological hazards 

associated with AA exposure include germ cell mutagenicity [6] and cancer [7] in 

rodents. AA has been classified as a probable human carcinogen by IARC (group 2A) 

[1]. This classification is based on experimental rodent models that have shown AA to 

be carcinogenic, causing tumours at multiple organ sites in both male and female mice 

and rats, including follicular thyroid tumours, adrenal pheochromocytomas, scrotal 

mesotheliomas, mammary gland tumours, lung adenomas and carcinomas, glial brain 

tumours, oral cavity papillomas, and uterine adenocarcinomas (reviewed in [1, 7]). 

Evidence for the induction of malignant neoplasia by AA in humans is inadequate, 

mainly because it is quite difficult to associate dietary consumption of AA with a 

specific cancer outcome. Moreover, occupational studies have failed to show that AA is 
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carcinogenic to industrial workers. It is therefore extremely important to obtain data on 

the mechanisms of action of AA, in order to understand how this genotoxicant may 

affect the human genome.  

 

 

 

Fig. 3.1. CYP2E1-mediated biotransformation of acrylamide to glycidamide and 

chemical structures of the depurinating adducts (N7-GA-Gua and N3-GA-Ade) 

mentioned in the text. 

 

AA is metabolized to glycidamide (GA; Fig 3.1) by an epoxidation reaction, 

presumably mediated by cytochrome P450 (CYP) 2E1 [8-10]. This metabolic 

conversion appears to be critical for the genotoxicity of AA because when the 

mutagenicity of AA and GA have been compared, GA has typically been more potent 

[11-14]. Recently, a number of DNA adducts have been characterized from the 

interaction of GA with DNA. These adducts include N7-(2-carbamoyl-2-

hydroxyethyl)guanine (N7-GA-Gua, Fig. 3.1), N3-(2-carbamoyl-2-

hydroxyethyl)adenine (N3-GA-Ade; Fig. 3.1), and N1-(2-carboxy-2-hydroxyethyl)-2’-

deoxyadenosine (N1-GA-dA) [15, 16]. In this work we have compared the extent of 

GA-DNA adduct formation induced by AA and GA with the genotoxicity of AA and 

GA using two different mechanistically based cytogenetic assays: the induction of 



 

87 
 

chromosomal aberrations (CA) assay and the sister chromatid exchanges (SCE) assay. 

These assays were performed in V79 Chinese hamster cells, a widely used non-

transformed mammalian cell line devoid of cytochrome P450 activity [10, 17]. 

 

 

3.2. Materials and methods 

 

3.2.1. Chemicals 

5-Bromo-2’-deoxyuridine (BrdU), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-

2H-tetrazolium bromide (MTT), trypsin, Ham´s F-10 medium, Hoechst 33258, 30% 

hydrogen peroxide (w/w),  newborn calf serum, mitomycin C, phosphate buffered saline 

pH 7.4 (PBS), ribonuclease A, and penicillin-streptomycin solution were purchased 

from Sigma-Aldrich (St. Louis, MO). Dimethylsulphoxide (DMSO), methanol, acetic 

acid, potassium chloride, sodium chloride, and Giemsa dye were obtained from Merck 

(Darmstadt, Germany). Colchicine and AA (CAS Registry Number 79-06-1,  99.5 % 

pure) were purchased from Fluka (Buchs, Switzerland). GA (CAS Registry Number 

5694-00-8, >98.5% pure, containing approximately 1% AA) was obtained from Toronto 

Research Chemicals (North York, Ontario, Canada).  

 

 

3.2.2. V79 Cells culture 

V79 Chinese Hamster cells (MZ), kindly provided by Prof. H.R. Glatt - German 

Institute of Human Nutrition, Nuthetal, Germany were cultured using Ham’s F10 

medium, supplemented with 10% newborn calf serum and 1% antibiotic solution 

(penicillin-streptomycin). The cells growing up at 37ºC in an atmosphere containing 5% 

CO2. 
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3.2.3. MTT cytotoxicity assay 

The MTT assay is based on the reduction of the yellow MTT tetrazolium by 

mitochondrial desydrogenases to form a blue MTT formazan, in viable cells [18, 19].  

Approximately 5  10
3 

V79 in 96-well plates and incubated at 37 ºC under a 5% 

CO2 atmosphere. The cells were grown for 16 hours and then exposed to different 

concentrations of AA and GA (dissolved in PBS, pH 7.4), ranging from 100 to 10000 

µM, for a 24-h period. Hydrogen peroxide (250 µM) was used as a positive control. The 

cells were washed with culture medium, incubated with MTT (500 µg/ml) for a further 

period of 4 h and then carefully washed with PBS. At the end of the incubation period, 

the media was discarded and DMSO (200 µl) was added to each well. Absorbance was 

read at 595 nm in a Zenyth 3100 microplate reader. Four independent experiments were 

performed and eight individual cultures were used for each GA or AA concentration in 

each independent experiment. 

 

 

3.2.4. Chromosomal aberration assay 

Twenty-four hour cultures (approximately 5 x 10
5
 cells), growing in 25 cm

2
 

culture flasks, were exposed to different concentrations of AA and GA, ranging from 1 

to 2000 µM, for a period of 16 h. Mitomycin C (750 nM) was used as the positive 

control. The cells were subsequently washed with fresh culture medium and colchicine 

was added at a final concentration of 600 ng/ml; the cells were incubated for a further 

period of 2.5 h and then harvested by trypsinization. After 3-min hypotonic treatment 

with KCl (0.56%, w/v) at 37 ºC, the cells were fixed with methanol/acetic acid (3:1), 

and slides were stained with Giemsa 4% [(v/v) in phosphate buffer 0.01 M, pH 6.8] for 

10 min, according to Oliveira et al. (2005) [20] and scored [21, 22].  

For the quantification of the DNA damage induced by both AA and GA, the 

index of percentage of aberrant cells excluding gaps (%ACEG) was used. This index 

represents the frequency of metaphases containing chromosomal aberrations excluding 

gaps and is the standard indicator for the CA assay. The types of aberrations considered 

for this index were breaks (chromatid and chromosome), dicentric chromosomes and 
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rings, chromatid-type rearrangements (triradial, quadriradial), other complex 

rearrangements, and multi-aberrant cells (MA, cells with more than 10 aberrations, 

including heavily damaged pulverized cells). The presence of chromatid and 

chromosome gaps in AA and GA exposed cultures was also evaluated. The index 

percentage of aberrant cells including gaps (%ACIG) was calculated as mentioned for 

the %ACEG, including, however, the metaphases containing gaps.  

The evaluation of cell proliferation was carried out using the mitotic index (MI). 

For this index, 1000 V79 cells were scored for each independent experiment and the 

number of metaphases recorded.  

 

 

3.2.5. Sister chromatid assay 

Twenty-four hour cultures (approximately 5 x 10
5
 cells), growing in 25 cm

2
 

culture flasks, were exposed to different concentrations of AA and GA, ranging from 1 

to 2000 µM. BrdU was also added at a final concentration of 6 µM. Mitomycin C (750 

nM) was used as a positive control. After a period of 27 h, the cells were washed with 

fresh culture medium and colchicine (600 ng/ml) was added. The cells were then 

incubated for a further 2.5-h period and then harvested by trypsinization, as described 

before. 

Differential staining of BrdU-substituted sister-chromatids was performed 

according to the fluorescence-plus-Giemsa (FPG) method [23]. Briefly, the slides were 

stained for 12 min with the fluorescent dye Hoescht 33258 (10 µg/ml) in 2% KCl (w/v), 

exposed to UV (254 nm) for approximately 9 min, and then stained with 4% Giemsa 

[(v/v) in 10 mM phosphate buffer, pH 6.8] for 10 min.  

SCEs per cell were scored in 30 second-metaphases for each dose-level in each 

independent experiment. At least two independent experiments were performed. The 

evaluation of cell proliferation was carried out using the MI, as described above. At 

least 100 metaphases per culture for each dose-level, in each independent experiment, 

were scored for the replication index (RI), calculated according to [24].  
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3.2.6. DNA adducts 

 

3.2.6.1. Chemical exposure and DNA extraction 

Twenty-four hour cultures (approximately 8 x 10
6
 cells), growing in 75 cm

2
 

culture flasks, were exposed to different concentrations of AA (0-2000 µM) and GA (0-

2000 µM) during two different time periods, 18 h (corresponding to parallel cultures of 

the CAs assay) and 29 h (corresponding to parallel cultures of the SCE assay). The cells 

were then harvested by trypsinization as described above, washed with PBS, and the 

cell suspensions were immediately stored at -20 ºC. DNA was extracted from the cell 

suspensions using the QIAamp DNA mini Kit (Qiagen, Hilden, Germany), according to 

the manufacturer’s instructions, with minor modifications done in order to prevent 

depurination of the DNA adducts [25]. Cell suspensions (200-250 µl) were lysed with 

20 µl of proteinase K, provided by Qiagen, and ribonuclease A (200 µg) for 1 h at 37 ºC 

and at the end of the chromatographic process DNA samples were eluted in water (200 

µl), and stored at -20 ºC for subsequent DNA quantification and determination of DNA 

adducts.  

 

3.2.6.2. DNA quantification 

Quantification of DNA was carried out using a PicoGreen dsDNA quantitation 

kit (Molecular Probes, Eugene, OR). λ Phage DNA (100 µg/ml) was used as the 

standard. The DNA concentration in the standard curve ranged from 0 to 300 ng/ml. 

Briefly, 10 µl of final DNA eluate was mixed with 190 µl of Tris-EDTA (10 mM Tris-

HCl, 1 mM EDTA, pH 7.5) diluted with PicoGreen reagent. Fluorescence intensity was 

measured in a Zenyth 3100 microplate reader at excitation and emission wavelengths of 

485 and 535 nm, respectively. The yield of DNA extracted from each cell suspension 

was in the range of 20-40 µg, in accordance with the manufaturer’s standard yields of 

DNA for cultured cells. 
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3.2.6.3. Quantification of DNA adducts 

GA-DNA adducts, specifically N7-GA-Gua and N3-GA-Ade (Fig. 3.1), were 

released from the DNA by neutral thermal hydrolysis and quantified by HPLC coupled 

with tandem mass spectrometry, essentially as described in Gamboa da Costa et al. [16]. 

Briefly, aliquots of DNA solutions (~5 µg), containing the 
15

N-labeled adducts as 

internal standards, were heated at 100 ºC for 15 min and then filtered through a 

prewashed 3-kDa molecular weight cutoff spin filter. The adducts were separated on a 2 

x 150 mm C18 analytical column (Luna C18(2), Phenomenex, Torrance, CA) with 2% 

acetonitrile in water and quantified by tandem mass spectrometry in the multiple 

reaction monitoring mode, using a Quattro Ultima triple quadrupole mass spectrometer 

(Waters, Milford, MA) equipped with an electrospray source. 

 

 

3.2.7. Statistical analyses 

Dose-related effects were assessed using linear regression analysis. One-way 

ANOVA, followed by Dunnett's test, was used to compare specific treatment levels to 

the control group. Two-way ANOVA, followed by Dunnett's test, was used to compare 

AA and GA treatments. Pearson's Product Moment test was used to assess correlations 

between variables.  

 

 

3.3. Results 

 

A wide range of AA and GA concentrations were tested in a 24-hour incubation 

MTT cytotoxicity assay protocol. The average survival values obtained from four 

independent experiments with V79 cells treated with AA and GA are depicted in Figure 

3.2. Previous experiments revealed no changes in the survival frequency of V79 cells 

using a 3-hour incubation period with both compounds (data not shown). It is clear from 

Figure 3.2 that both AA and GA induced dose-dependent cell death, as measured by the 

MTT assay. Moreover, GA was clearly more cytotoxic than AA, causing lower survival 
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rates at all the equimolar concentrations studied. Very low (< 5%) survival values, 

occurred at very high concentrations of GA ( 4 mM) and AA (10 mM). 

 

Fig. 3.2. Cytotoxicity of acrylamide and glycidamide in V79 cells (MTT assay). The 

results are expressed as the average ± SEM from four independent experiments. 

 

Both AA and GA induced CAs (Table III.1) and decreased the MI, evaluated as 

a measure of cell proliferation associated with this cytogenetic end-point. This 

antiproliferative effect was more pronounced in GA exposure, with the MI being zero at 

2000 µM, which prevented the cytogenetic evaluation at this dose level (Table III.1).  

AA and its metabolite GA increased the %ACEG, especially for the higher 

concentrations evaluated (1000 and 2000 µM, for GA and AA, respectively). As 

observed in the survival assays, GA had, as expected, a more pronounced effect than 

AA at equimolar concentrations (Table III.1). 

 



 

 

Table III.1- Induction of chromosomal aberrations in V79 cells by acrylamide and glycidamide. 

Test compound 

 
Chromosomal aberrations per 100 cells

a
 MA Gaps/cell %ACIG

b
 %ACEG

c
 MI (%)

d
 

  Ctg Csg  Ctb Csb Rearr Dic+rings (%)   (Average  S.D.) (Average  S.D.) 

              

Acrylamide (M)              

0  6.5 0.5  0.5 0 0 0 0 0.07  0.03 6.0  1.4 0.5  0.7 9.3  0.1 

250  3.5 0  1.0 0 0 0 0 0.04  0.02 4.5  3.5 1.0  1.4 8.5  0.4 

500  11.5 1.5  2.0 0.5 0 0 0 0.13  0.01 14.5  3.5 2.5  0.7
+
 8.4  0.2 

1000  17.5 0  3.0 0 0 0 0.5 0.18  0.01 18.0  4.2 3.5  2.1 6.9  0.1
+
 

2000  19.0 1.5  8.5 1.5 0.5 0 0 0.21  0.01 27.0  5.7 10.0  4.2 5.2  1.7
+
 

Glycidamide (M)              

0  5.8 0.5  0.5 0 0 0 0 0.06  0.02 5.5  1.3 0.5  0.6 9.2  0.1 

1  3.0 0  1.0 0 0 0 0 0.03  0.01 4.0  2.8 1.0  1.4 8.4  2.0 

2.5  6.0 0  0.5 0 0.5 0 0.5 0.06  0.03 6.5  0.7 1.5  0.7 8.2  0.1 

5  5.5 0  0.5 0 0 0.5 0 0.06  0.04 6.5  3.5 1.0  0.0 8.7  0.3 

10  4.0 0.5  1.5 0 0 0 0 0.05  0.04 5.5  3.5 1.5  0.7 8.0  1.1 

25  8.5 0.5  0.5 0 0 0 0.5 0.09  0.07 9.0  7.1 1.0  0.0 7.5  0.1 

50  7.5 0  1.5 0 0 0 0 0.08  0.02 8.0  1.4 1.5  0.7 8.2  1.0 

100  10.5 0.5  1.0 0 0 0 0 0.11  0.01 10.0  1.4 1.0  1.4 7.2  0.4 

250  12.0 0.5  2.5 0 0 0 0 0.13  0.02 13.5  2.1 2.5  0.7
*
 8.1  0.6 

500  18.5 0.5  5.5 0 0.5 0 0 0.19  0.03 19.5  0.7 6.0  0.0
**

 5.8  0.7 

1000  29.5 1.5  6.5 0 2.0 0 0.5 0.31  0.08 30.0  1.4 9.0  1.4
**

 4.8  0.0 

2000  - -  - - - - - - - - 0.0  0.0 

              

Mitomycin C (nM)              

750  34.3 3.7  26.0 4.3 17.7 0.3 7.0 0.38  0.04 55.0  1.0 40.3  6.7 4.4  1.3 
a
The results are expressed as the average from two independent experiments (100 metaphases analysed per experiment) for all the points, except for negative V79 cell 

controls and mitomycin C. In these cases the results are expressed as the average from four independent experiments (100 metaphases analysed per experiment). Ctg, 

chromatid gap; Csg, chromosome gap; Ctb, chromatid break; Csb, chromosome break; Dic, dicentric chromosome; Rearr, rearrangements (triradial, quadriradial, and 

other complex rearrangements); 
b
%ACIG, percent of aberrant cells including gaps (average  standard deviation); 

c
%ACEG, percent of aberrant cells excluding gaps 

(average  standard deviation); MA, multi-aberrant cells, corresponding to cells with more than 10 aberrations. MA are included in the index %ACEG and %ACIG; 
d
MI, mitotic index. 

*
 P<0.05 when compared with control experiment; 

**
 P<0.001 when compared with control experiment. 

+
 P<0.05 when compared with the same 

concentration of glycidamide. 
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For both AA- and GA-exposed cultures, the CA pattern consisted mainly of 

chromatid breaks, although some few chromatid-type rearrangements (e.g. 

triradial/quadriradial) were also found for GA. Dicentric and ring chromosomes, and 

multi-aberrant cells were nearly absent.  

Gaps are generally considered to be a minor class of aberrations, and their real 

biological significance has been a matter of discussion. These events are usually 

recorded separately from the other aberrations [21, 22]; however, it is clear that both 

AA and GA are very efficient inducers of chromatid gaps, leading to a consistent dose-

response effect (P<0.001) (Table III.1). In view of this, we also calculated the %ACIG 

and the number of gaps per cell (Table III.1). The highest values of %ACIG were about 

30% for both the AA-exposed (2000 µM) and GA-exposed (1000 µM) cultures. 

Moreover, the gaps/cell index revealed a maximum value of 0.2 for AA (2000 µM) and 

0.3 for GA (1000 µM) treatment (Table III.1), showing the importance of these 

aberrations.  

Table III.2 presents data on the two cytogenetic indices associated with the SCE 

assay (SCE/cell and SCE/chromosome), as well as the proliferation indices (mitotic and 

replicative) associated with exposure to AA and GA. A wide range of GA (1-1000 µM) 

and AA (250-2000 µM) concentrations were included in this study. The results clearly 

show that GA consistently induces SCEs for concentrations 10 µM (see Table III.2), 

increasing the background level of SCEs by about 10-fold, to levels of ~60 SCE/cell at 

the highest concentration tested (1000 µM). For AA-exposed cultures, a significant 

increase in SCE/cell was only observed for the highest dose tested (Table III.2) and this 

effect can be considered as mild, since it represents only a ~1.6 fold increase over 

background. 

The levels of N7-GA-Gua and N3-GA-Ade in V79 cell cultures exposed to AA 

and GA for 18 and 29 hours (corresponding to parallel cultures of the CAs and SCE 

assays, respectively) are presented in Table III.3. These data show that GA is a potent 

inducer of N7-GA-Gua, with a linear dose-response dependence (P<0.001). For both 

periods of exposure, the detection of N7-GA-Gua was observed for doses as low as 1 

µM GA. In addition, the levels of N7-GA-Gua did not show any significant differences 

between the two exposure periods tested (Table III.3). In fact, these levels were in the 

same range for all the concentrations tested, except for the highest concentration of GA 
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(2000 µM), which showed an approximately twofold increase in the 29-h exposure 

period when compared to the 18-h period; however, this difference did not reach 

statistical significance.  

 

Table III.2. Sister chromatid exchanges induced by acrylamide and glycidamide in V79 

cells 

Test compound SCE /chromosome
a
 SCE/metaphase

a 
MI (%)

c
 RI

d
  

 (Average  S.D.
b
) (Average  S.D.) (Average  S.D.) (Average  S.D.) 

     

Acrylamide (M)     

0 0.31 ± 0.03     6.83 ± 0.52 4.5 ± 0.4 2.00 ± 0.01 

250 0.35 ± 0.00      7.65 ± 0.02
+
 4.3 ± 0.1 2.00 ± 0.01 

500 0.39 ± 0.01       8.33 ± 0.14
++

 4.0 ± 0.6 2.04 ± 0.06 

1000 0.36 ± 0.04    7.70 ± 0.90 3.9 ± 0.8 1.99 ± 0.00 

2000 0.51 ± 0.01      11.08 ± 0.02
*
 4.1 ± 1.0 1.99 ± 0.01 

     

Glycidamide (M)     

0 0.29 ± 0.02 6.19 ± 0.50 5.2 ± 0.7 1.97 ± 0.04 

1 0.33 ± 0.04 7.05 ± 0.68 6.1 ± 1.3 2.08 ± 0.01 

2.5 0.35 ± 0.05   7.72 ± 1.06 5.7 ± 0.6 2.06 ± 0.02 

5 0.33 ± 0.03 7.12 ± 0.68 5.5 ± 1.1 2.07 ± 0.04 

10 0.49 ± 0.13   10.53 ± 2.64
*
 6.4 ± 0.8 2.00 ± 0.03 

25 0.54 ± 0.07     11.60 ± 1.41
**

 4.5 ± 0.2 2.04 ± 0.02 

50 0.47 ± 0.06    10.26 ± 1.38
**

 5.1 ± 1.2 2.02 ± 0.06 

100 0.72 ± 0.07     15.42 ± 1.26
**

 4.7 ± 1.0 2.02 ± 0.02 

250 1.10 ± 0.10     23.75 ± 2.57
**

 4.3 ± 1.1 2.00 ± 0.00 

500 1.73 ± 0.03     37.98 ± 0.21
**

 2.8 ± 0.3 1.98 ± 0.01 

1000 2.71 ± 0.44     59.02 ± 9.88
**

 1.3 ± 0.5 1.96 ± 0.04 

2000 - - 0.0 ± 0.0 0.00 ± 0.00 

     

Mitomycin C (nM)     

750 4.05 ± 0.62 88.32 ± 13.70 4.4 ± 0.8 1.66 ± 0.37 
a
The results are expressed as the average from at least two independent experiments (30 

metaphases analysed per experiment) for all the points; 
b 

S.D., standard deviation; 
c
MI, 

mitotic index; 
 d

RI, replication Index. 
*
 P<0.01 and 

**
 P<0.001  when compared with the control experiment. 

+
 P<0.05, 

++
 P<0.001 when compared with the same concentration of glycidamide. 

 

N3-GA-Ade was only detected for GA concentrations higher than 250 µM, with 

a dose-response effect. In addition, the levels of this adduct were in all circumstances 

two orders of magnitude lower than those of N7-GA-Gua, which is fully consistent with 

previous data from DNA modifications in vitro and from AA and GA administration to 
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mice [16]. As observed for N7-GA-Gua, the levels of N3-GA-Ade were independent of 

the exposure time period, although a twofold to threefold decrease was apparent at 29 

hours for the highest GA doses tested (1000 and 2000 µM), compared to the 18-h 

incubation period (Table III.3).  

 

Table III.3. Levels of GA-DNA adducts in cell cultures exposed to acrylamide and 

glycidamide. 

Test compound 18 hours exposure
a
 29 hours exposure

a
 

 
N7-GA-Gua/ 

10
6
 nucleotides 

N3-GA-Ade/ 

10
6
 nucleotides 

N7-GA-Gua/ 

10
6
 nucleotides 

N3-GA-Ade/ 

10
6
 nucleotides 

     

Acrylamide (M)     

0 <LOD
b
 <LOD <LOD <LOD 

500 <LOD <LOD <LOD <LOD 

1000 <LOD <LOD <LOD <LOD 

2000 0.2  0.0 <LOD <LOD <LOD 

     

Glycidamide (M)     

0 <LOD <LOD <LOD <LOD 

1 0.2  0.0 <LOD 0.2  0.0 <LOD 

2.5 0.3  0.1 <LOD 0.3  0.0 <LOD 

5 0.6  0.1 <LOD 0.7  0.1 <LOD 

10 1.2  0.3 <LOD 1.6  0.3 <LOD 

25 3.1  0.4 <LOD 3.7  1.6 <LOD 

50 6.4  0.9 <LOD 7.6  2.8 <LOD 

100 13.2  2.8 <LOD 12.8  1.9 <LOD 

250 31.6  3.0 0.3  0.4 34.2  0.5 0.4  0.1 

500 50.2  6.2 0.9  0.1 73.0  9.0 1.0  0.2 

1000 137.6  69.8 2.3  1.3 156.8  17.2 1.1  0.8 

2000 220.4  25.9 3.8  1.2 488.4  149.4 1.3  1.9 

a
The results are expressed as the average  standard deviation  from at least two independent 

experiments; 
b
LOD, limit of detection. 

The LOD for N7-GA-Gua and N3-GA-Ade, when assaying 5 µg of DNA, was 0.1 adducts/10
6
 

nucleotides. 

 

AA exposure led to very low levels of N7-GA-Gua, which were only observed 

for concentrations higher than 1000 µM. The adduct levels detected at 2000 µM AA 

were comparable to those observed for 1 µM GA. N3-GA-Ade was not detected in AA-

exposed cultures at any dose level. Negative controls, corresponding to cells not 

exposed to either AA or GA, did not present any detectable levels of GA-DNA adducts. 
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The levels of N7-GA-Gua were compared with the levels of cytogenetic damage 

in AA- and GA-exposed cultures, at the periods of time corresponding to parallel 

cultures for the SCE and CA assays. A very strong correlation was observed between 

the levels of N7-GA-Gua and SCE/cell (r=0.987; P=1.25 x 10
-12

). 

 

 

3.4. Discussion 

 

AA is metabolized to GA in mice, rats, and humans [25-27]. The conversion of 

AA to GA is apparently saturable in rodents [28] and both compounds are detoxified by 

conjugation with glutathione; in addition, GA can also be detoxified by epoxide 

hydrolase [1].  

The cytotoxic potential of both AA and GA was investigated in this work in 

order to select the range of concentrations to be tested in the subsequent studies using 

different cytogenetic end points (CAs, SCEs). The results show that, with our 

experimental conditions, GA is clearly more cytotoxic than AA for all the 

concentrations evaluated. Additionally, at concentrations up to 4 mM for AA and up to 

1 mM for GA, the cell survival was clearly above 50%, indicating that the cytotoxicity 

of both compounds would not hinder the cytogenetic studies (Fig. 3.2). These results are 

in agreement with data recently reported by other groups, using different cell survival 

end points [11, 12] . 

The genotoxicity of AA has been evaluated in several systems (reviewed in 

[13]). Positive results for the induction of CAs and SCEs in Chinese hamster V79H3 

cells at concentrations in the millimolar range were reported by Tsuda et al. [29]. These 

results are in general agreement with the results reported in the present work. Our data 

showed that AA induced CAs in a dose-response manner, with chromatid gaps and 

breaks being the typical features observed. However, if we exclude the gap-type 

aberrations, the genotoxicity observed at the highest AA concentration tested (2 mM), 

can be considered moderate. Since CYP2E1 activity is not detectable in V79 cells [10, 
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17], the clastogenicity observed, about 10% ACEG, must be related to mechanisms 

other than metabolic conversion to GA. 

AA may undergo Michael-type additions in particular with thiols, thus 

potentially depleting the levels of glutathione, a molecule protecting the cell against 

endogenous oxidants and electrophiles [10]. Michael-type addition reactions, which 

proceed at very low rates, have also been reported between AA and DNA to yield a 

series of depurinating and non-depurinating adducts [30]. Additionally, there is some 

evidence of the involvement of free radicals in AA genotoxicity, leading to oxidative 

modification of pyrimidines [31]. These mechanisms might, to some extent, explain the 

clastogenic activity of AA observed in this study. SCEs were induced at only the 

highest AA dose evaluated (2 mM), which was similar to what was observed for the 

induction of CAs and also consistent with previously reported data [10, 29]. The same 

aforementioned reasons for the results of the chromosomal aberrations assay may 

explain the slight increase in the frequency of SCEs observed in 2 mM AA-treated 

cultures. 

Our results concerning the induction of CAs by GA showed that this compound 

is approximately twofold more clastogenic than AA and, as observed for AA, chromatid 

gaps and breaks were the most common features observed (Table III.1). In addition, the 

induction of chromatid gaps was observed to be dose dependent. Considering that gaps 

might be a consequence of DNA breaks [32], these data are in agreement with the 

results obtained by other authors using the comet assay, where GA induced alkali-labile 

sites [12, 33, 34]. The comparison of the genotoxicity of AA and GA in human 

lymphoblastoid TK6 cells in three different endpoints (comet assay, micronucleus test 

and thymidine kinase assay) also suggested that GA is more genotoxic than AA [12], 

which is in agreement with the data obtained in our cytogenetic end-points. 

There are only a few studies comparing, in the same experimental conditions, 

the genotoxic activity of AA to that of its reactive metabolite, GA. In addition, only 

limited information is available concerning cytogenetic end-points for both compounds. 

To our knowledge, this is the first study reporting data from SCEs and CAs for both 

compounds in the same experimental conditions. Moreover, it should be noted that the 

serum levels of AA and GA observed in animals exposed to AA are in the same range 

of concentrations used in this study. In fact, a single oral dose of 50 mg/kg AA in mice 
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produced peak serum concentrations of AA and GA of approximately 450 and 200 µM, 

respectively [35] and a repeat dosing through drinking water of approximately 1 

mg/kg/day, produced steady state serum concentrations of approximately 500 nM in rats 

for both AA and GA [36]. 

The data concerning the levels of N7-GA-Gua after exposure to AA showed that 

this adduct was only detected for doses higher than 1 mM, but at very low levels (Table 

IIII.3). Since the V79 cells used in our study are essentially devoid of CYP2E1 activity, 

the low levels of N7-GA-Gua stemming from AA exposure might be related to either 

residual metabolism of AA in V79 cells or to a small extent of spontaneous non-

enzymatic oxidation to GA, under the aerobic conditions used for the incubations [13]. 

In cells treated with GA, the measurement of the N7-GA-Gua levels was much 

more dose-sensitive than the determination of the cytogenetic end-points evaluated in 

this study. In fact, N7-GA-Gua was detected for concentrations as low as 1 µM GA at 

two different exposure periods. However, the detection of N3-GA-Ade was only 

possible for exposure to doses higher than 250 µM, which is consistent with the data 

previously reported by Gamboa da Costa et al. [16]. In that study, the levels of N7-GA-

Gua in mice treated with AA were found to be considerably higher than those of N3-

GA-Ade, and a similar result was obtained from in vitro incubations of GA with DNA. 

The levels of N7-GA-Gua in V79 cultures, corresponding to parallel cultures of the CAs 

and SCEs assays (18 and 29 h, respectively), were within the same range. Since the 

half-life of N7-GA-Gua in DNA was determined to be 42 h at 37 ºC [16] a 

depurination-related decrease in adduct levels between the 18- and 29-h incubation 

periods would not be expected to exceed 16%, which is consistent with our 

observations. Moreover, the absence of a net increase in the levels of N7-GA-Gua at 29 

h further suggests that the GA concentrations in the incubation media might be 

essentially depleted at 18 h, presumably through hydrolysis. Likewise, considering that 

the half-life of N3-GA-Ade in DNA was estimated to be 14 h at 37 ºC [16], and 

assuming no mechanisms involved other than spontaneous depurination, a decrease of 

approximately 42% in the N3-GA-Ade levels would be expected in the 11-h period 

separating the 18 and 29-h incubations. This is compatible with the apparent decrease in 

adduct levels observed for N3-GA-Ade at 29 h. 
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This study shows that GA induced SCEs, in a linear dose-response manner, with 

a 10-fold increase being observed at 1 mM GA (Table III.2). Moreover, GA was 

approximately two orders of magnitude more potent than AA, for which SCEs were 

only induced at the highest dose tested (2 mM). The DNA adducts investigated in the 

present work are depurinating lesions, known to be formed upon direct reaction of GA 

with DNA, even at low GA concentrations [16]. The fact that there is an excellent 

correlation (r = 0.987; P = 1.25 x 10
-12

) between the levels N7-Gua-GA in the GA- and 

AA-treated cells and the extent of SCE induction strongly suggests that the metabolism 

of AA to GA and the ensuing formation of depurinating DNA lesions [8, 9] is 

responsible for the SCE induction.  

The repair of the lesions induced by GA was recently associated with the small 

patch of base excision repair pathway [33]. In addition, the authors also noted that GA 

is a strong inducer of single strand breaks (SSB). It is well known that base excision 

repair can lead to the formation of DNA breaks [37]. Likewise, depurination produces 

abasic sites that can initiate DNA breaks [37]. Therefore, DNA breakage may to some 

extent explain the higher clastogenic effect of GA, compared with AA. 

DNA breaks can also be repaired by homologous recombination. This type of 

repair is important for double strand break repair in late S and in G2 phases of the cell-

cycle [38]. However, in the case of an unrepaired SSB, conversion into a double strand 

break can occur. This event may take place during replication, collapsing the replication 

fork and leaving one free DNA end that is a substrate for homologous recombination 

[39]. This newly created double-strand break may initiate a SCE by homologous 

recombination after two subsequent mitotic steps. There is growing evidence that SCEs 

are formed from persisting SSB; for example, cells deficient in SSB repair have 

increased levels of SCEs [39]. It should be stressed that while only a moderate increase 

in clastogenicity was observed with GA, compared to AA, there were substantial 

differences (two to three orders of magnitude) in the levels of N7-GA-Gua between 

cells treated with equimolar doses of AA and GA. Thus, while there appears to be a 

causal relationship between depurinating adduct levels and SCEs/cell, other 

mechanisms must be involved in the induction of the other cytogenetic end points 

measured in this study. For example, while GA should be intrinsically less reactive than 

AA with free radicals, due to the absence of the olefinic double bond, it is still a potent 

electrophile that may contribute to glutathione depletion, thus increasing vulnerability 
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of the cells to oxidative damage, as suggested for AA [31]. Additionally, 

nondepurinating GA adducts (e.g., N1-GA-dA), and depurinating and nondepurinating 

adducts from direct reaction of AA with DNA [30] might play a role in the cytogenetic 

responses. 

In summary, these results are consistent with the conclusion that the induction of 

SCEs by AA is associated with the metabolism of AA to GA and subsequent formation 

of depurinating DNA adducts. Other mechanisms, however, must be involved in the 

formation of CAs. The elucidation of these mechanisms warrants further investigation.  
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Abstract  

 

Acrylamide (AA) is a suspected human carcinogen found to be generated during 

the heating of carbohydrate-rich foodstuffs. AA exhibits ‘Michael-type’ reactivity 

towards reduced glutathione (GSH), resulting in vivo in the urinary
 
excretion of 

mercapturic acid conjugates. GSH is a key factor for mammalian cell homeostasis, with 

diverse functions that include, among others, the conjugation of electrophilic 

compounds and the detoxification of products generated by oxidative stress. Therefore, 

studies focusing on the modulation of GSH are of great importance for the 

understanding of the mechanisms of AA induced toxicity. This report addresses this 

issue by analyzing cytotoxicity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-

tetrazolium bromide (MTT) reduction assay) and clastogenicity (chromosomal 

aberrations) as endpoints in V79 cells exposed to AA. The experiments described herein 

include the evaluation of the effect of buthionine sulfoximine (BSO), an effective 

inhibitor of GSH synthesis, GSH-monoethyl ester (GSH-EE), a compound that is taken 

up by cells and intracellularly hydrolysed to GSH, and also GSH exogenously added to 

culture medium. Pre-treatment with BSO increased the cytotoxicity and the frequency 

of aberrant cells excluding gaps (ACEG) induced by AA. While pre-treatment with 

GSH-EE did not modify the cytotoxicity or the frequency of ACEG induced by AA, co-

treatment with AA and GSH decreased both parameters, rendering the cells less prone 

to the toxic effects of AA. In vitro studies in a cell-free system, using 

monochlorobimane (MCB), a fluorescent probe for GSH, were also performed in order 

to evaluate the role of AA in GSH depletion. The results obtained showed that 

spontaneous conjugation of AA with GSH in the extracellular medium is involved in the 

protection given by GSH. In summary, these results reinforce the role of GSH in the 

modulation of the cytotoxic and clastogenic effects induced by AA, which may be 

relevant in an in vivo exposure scenario.  
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4.1. Introduction 

 

Acrylamide (AA) is a suspected human carcinogen generated during the heating 

of carbohydrate-rich foodstuffs, predominantly from the precursor asparagine [1]. 

Acrylamide toxicity to mammalian cells has been described and characterized in the last 

few years using different approaches [2, 3].  

AA is metabolized to glycidamide (GA) by an epoxidation reaction, presumably 

mediated by cytochrome P450 2E1 (CYP2E1) [4, 5]. This metabolic conversion appears 

to be critical for the genotoxicity of AA [2, 3, 6, 7]. Recently, we have also found that 

AA, compared to GA, is clearly less cytotoxic and genotoxic, as evaluated by different 

endpoints [8]. In fact, either the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-

tetrazolium bromide (MTT) reduction assay or the DNA damage endpoints studied, viz 

chromosomal aberrations (CAs), sister-chromatid exchanges (SCEs) and glycidamide-

DNA adducts (GA-DNA adducts), showed that GA unequivocally possesses more 

toxicity than AA. However, while the importance of GA is nowadays convincing, 

further studies focusing on the metabolic fate of AA are still needed for a better 

mechanistic understanding of its toxicity. The modulation of reduced glutathione (GSH) 

status could give additional insight into this matter. GSH has several crucial roles in 

mammalian cell including, among others, the conjugation of electrophilic compounds 

and the detoxification of products generated by oxidative stress [9]. Both GSH functions 

can indeed be important for mitigation of AA toxicity in an in vivo exposure scenario. 

In fact, besides the possibility of AA being an oxidative stress inducer [10-13], this 

compound is efficiently conjugated with reduced glutathione (GSH) [3, 14]. The α,ß-

unsaturated carbonyl group of AA allows
 
its ‘Michael-type’ reactivity toward GSH, 

resulting in the urinary
 
excretion of mercapturic acid conjugates [3]. The conjugates of 

GSH with AA have been quantified in humans and their importance reported. In fact, 

toxicokinetic studies in humans have shown that ~60%
 
of AA can be recovered in the

 

urine [15], essentially in the form of GSH conjugates [16]. GA is also conjugated with 

GSH, but the ratio of glycidamide-GSH to acrylamide–GSH conjugates excreted in 

human urine is
 
only

 
~0.1 [15].  
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In this report, we describe the evaluation of the effect of the GSH modulators 

buthionine sulfoximine (BSO), a specific inhibitor of GSH synthesis, and GSH-

monoethyl ester (GSH-EE), a compound that is taken up bycells and intracellularly 

hydrolysed to GSH. While BSO pre-treatment effectively reduces the endogenous 

content in GSH [17], the pre-loading of mammalian cells with GSH-EE has proven to 

significantly increase GSH intracellular content [18]. In this work, we performed cell 

viability studies, using the MTT reduction assay and also evaluated the levels of 

chromosomal damage by use the chromosomal aberrations assay in V79 Chinese 

hamster fibroblasts. In addition, the simultaneous treatment of AA with exogenously 

added GSH was studied using the same endpoints. In this co-treatment protocol the 

effect of GSH is essentially extracellular, since this compound does not easily enter the 

cells [19]. In view of this, we have performed in vitro studies in a cell-free system, 

using monochlorobimane (MCB), a fluorescent probe for GSH [20], in order to evaluate 

the depletion of GSH in the presence of AA and thus the role of the spontaneous, non-

enzymatic conjugation of AA with GSH. 

 

 

4.2. Materials and methods 

 

4.2.1. Chemicals 

 

L-Glutathione reduced (GSH; CAS registry number 70-18-8), glutathione 

reduced monoethyl ester (GSH-EE; CAS registry number 92614-59-0), 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), trypsin, newborn 

calf serum, Ham’s F-10 medium, phosphate buffered saline pH 7.4 (PBS), mitomycin 

C, and penicillin-streptomycin solution were purchased from Sigma-Aldrich (St. Louis, 

MO). Dimethylsulphoxide (DMSO), ethanol, methanol, acetic acid, potassium chloride, 

sodium chloride, and Giemsa dye were obtained from Merck (Darmstadt, Germany). 

Colchicine, monochlorobimane (MCB), L-buthionine sulphoximine (BSO; CAS 
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registry number 83730-53-4), and acrylamide (AA; CAS registry number 79-06-1,  

99.5 % pure) were purchased from Fluka (Buchs, Switzerland).  

 

4.2.2. MTT reduction assay 

 

Cytotoxicity assay was carried out in V79 cells, cultured as described in Capter 

3 (3.2.2). The MTT assay was performed according to Martins et al. [8], as described in 

Chapter 3 (3.2.3). Ten-hour cultures, growing in 96-well microplates, were incubated 

with BSO (0.1 mM) or GSH-EE (1.0 and 2.5 mM) for a period of 14 h. Afterwards, the 

medium was removed, the cells were washed with culture medium, and exposed to AA 

(2.0 and 4.0 mM) for 24 h. In the co-incubation experiments, cells exposed to AA (0.5-

6.0 mM) were simultaneously incubated with GSH (1.0 mM). After 24 h of incubation, 

the cells were washed and MTT (0.5 mg/ml) was added to each well. The cells were 

grown for a further period of 3 h and the assay was carried out as described in the 

previous chapter. Absorbance values presented by V79 cell cultures without the 

addition of AA, BSO, GSH-EE or GSH, i.e. control cultures, correspond to 100% of 

cell viability. At least two independent experiments were performed. Eight individual 

cultures were used in each independent experiment.  

 

 

4.2.3. Chromosomal aberrations assay 

 

The chromosomal aberrations assay was performed as described previously [8, 

21] and as described in Chapter 3 (3.2.4). V79 cells (24-h cultures) were exposed to 2.0 

mM AA for a period of 16 h. BSO (0.1 mM) and GSH-EE (1.0 mM) were added 14 h 

before the incubation with AA. In the co-incubation experiments, cells were 

simultaneously exposed to AA and GSH (1.0 and 3.0 mM). Mitomycin C (0.75 µM) 

was used as the positive control. After the treatments, the assay was carried out as 

described in the previous chapter. Two independent experiments were performed except 
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for the co-treatment of AA with GSH 1.0 mM. In this case four independent 

experiments were performed. 

For each independent experiment, 100 well-spread metaphases were observed 

using a 1250x magnification on a light microscope. Scoring of the different types of 

aberrations was performed according to published criteria [22, 23]. For the 

quantification of the DNA damage induced by AA, the index %ACEG (percent of 

aberrant cells excluding gaps) was used. This index represents the frequency of 

metaphases containing chromosomal aberrations excluding gaps and constitutes the 

standard indicator for the chromosomal aberrations assay. The types of aberrations 

considered for this index were: breaks (chromatid and chromosome), dicentric 

chromosomes and rings, chromatid-type rearrangements (triradial, quadriradial), other 

complex rearrangements and multi-aberrant cells (MA, cells with more than 10 

aberrations, including heavily damaged pulverized cells). 

 

 

4.2.4. GSH conjugation assay 

 

The conjugation studies of AA with GSH were carried out in 96-well black 

microplates using an in vitro cell-free assay based on the MCB fluorimetric method [20, 

24]. MCB is a probe that reacts with GSH generating an adduct (MCB-GSH conjugate) 

that can be detected by fluorimetry [20]. 

To each well was first added PBS, and afterwards AA (up to 6.0 mM, final 

concentration) and/or GSH (up to 1.0 mM, final concentration). The microplates were 

placed in an incubator at 37 ºC, protected from the light for a period of 1 h or 24 h. 

Afterwards, MCB solution (stock solution of 10 mM in absolute ethanol and diluted 10x 

with PBS) was added to each well at a final concentration of 100 µM. Control 

experiments were performed with AA and GSH without any incubation. The plates 

were then placed in an incubator with shaker for 30 min at 37 ºC (100 rpm, protected 

from light) and then fluorescence was measured in an Anthos Zenyth 3100 multimode 

detection microplate reader (λexc= 405 nm , λem = 465 nm).  
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The results were expressed either in fluorescence intensity using relative 

fluorescence units (RFU) after the subtraction of the background fluorescence or 

normalized in terms of free GSH (%), i.e. the mean value of fluorescence (RFU) 

observed in GSH alone plus MCB wells corresponded to 100%. For each experimental 

point four wells were used in each independent experiment. At least two independent 

experiments were carried out.  

 

4.2.5. Statistical analysis 

 

The Kolmogorov-Smirnov test was used to test the normality of continuous 

variables (% cell viability, %ACEG). For the variables with a normal distribution the 

homogeneity of the variances was evaluated using the Levene test, and the differences 

in the mean values of the results observed in cultures treated with AA versus AA+GSH 

modulators were evaluated by the Student t-test. For non normal variables the Mann-

Whitney was used. The levels of significance considered were P<0.05, and P<0.01. All 

analyses were performed with the SPSS statistical package (version 15, SPSS Inc. 

Chicago Il., USA). 

 

 

4.3. Results  

 

4.3.1. MTT reduction assay 

 

The results from a set of cell-based experiments using the MTT reduction assay 

are presented in Fig. 4.1. These experiments were performed in order to evaluate the 

effect of GSH modulators on the viability of V79 cells treated with AA.  

Fig. 4.1.A presents the effect of the depletion of intracellular GSH by pre-

incubation of V79 cells with BSO. BSO alone slighlty reduced cell viability compared 
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with that of control cells (Fig. 4.1.A). The viability of AA-treated V79 cells decreased 

as a function of AA concentration (Fig. 4.1.A). The pre-incubation with 0.1 mM BSO 

caused an additional decrease in viability of 35% at 4 mM of AA (P<0.05).  

The effect of the pre-treatment with GSH-EE on the viability of V79 cells 

exposed to AA is shown in Fig. 4.1.B. In these experiments, two concentrations of 

GSH-EE were used (1.0 and 2.5 mM). GSH-EE alone at 1.0 mM concentration was not 

cytotoxic, but the high concentration (2.5 mM) caused a decrease in cell viability of 

about 17%. The cell viability in AA-treated cultures was not significantly altered in the 

presence of both 1.0 and 2.5 mM concentrations of GSH-EE.  

Cell viability data corresponding to simultaneous treatment of V79 cells with 

AA and GSH are presented in Fig. 4.1.C. A slight decrease in cell viability was 

observed for GSH alone (1.0 mM). Co-treatment with AA (0.5-6.0 mM) and GSH (1.0 

mM) consistently enhanced the viability of V79 cells when compared with AA 

treatment alone. In fact, absolute increases in cell viability of approximately 15-20 % 

were observed for AA concentrations of 2.0 mM (P<0.05), 4.0 mM (P<0.05) and 6.0 

mM (P<0.01) in the presence of GSH (Fig. 4.1.C.).  
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Fig. 4.1. Effect of glutathione modulators on cell viability presented by V79 fibroblasts 

exposed to acrylamide (AA, 24 h incubation) using the MTT reduction assay (% MTT 

reduction). (A) Effect of BSO (0.1 mM) pre-treatment (14 h). Results are expressed as 
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mean values and SD from three independent experiments (*P<0.05 when compared 

with the same concentration of AA in the absence of BSO). (B) Effect of GSH-EE (1.0 

and 2.5 mM) pre-treatment (14 h). Results are expressed as mean values and SD from 

two independent experiments. (C) Effect of GSH (1.0 mM) co-incubation (24 h). 

Results are expressed as mean values and SD from three independent experiments 

(*P<0.05 and ** P<0.01 when compared with the same concentration of AA in the 

absence of GSH).  

 

 

4.3.2. Chromosome aberration assay 

 

The results from the CAs assay in V79 cells exposed to AA are presented in Fig. 

4.2. Considering all four independent CA experiments, AA at 2.0 mM significantly 

increased the frequency of ACEG from ~1% to ~12 % (P<0.05). While pre-treatment 

with BSO (0.1 mM) caused an increase of the genotoxicity of AA by a factor of 1.5 (not 

significant), pre-treatment with GSH-EE had no effect on the frequency of ACEG 

induced by AA (Fig. 4.2.A).  

The effect of GSH co-treatment (1.0 mM) on the %ACEG induced by AA is 

depicted in Fig. 4.2.B. The presence of GSH 1.0 mM led to a decrease of about 25% in 

the clastogenicity of AA (not significant). GSH 3.0 mM markedly reduced AA-induced 

ACEG by more than 50%, and this effect almost reached statistical significance 

(P=0.06). As depicted in Fig. 4.2.B, there is a consistent trend in the decrease of ACEG 

induced by AA as a function of GSH concentration. 
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Fig 4.2. Effect of glutathione modulators on the induction of chromosomal aberrations 

by acrylamide (2.0 mM) in V79 cells. (A) Effect of BSO (0.1 mM) or GSH-EE (1.0 

mM) pre-treatment (14 h). Results are expressed as mean values and SD from two 

independent experiments. (B) Effect of GSH (1.0 and 3.0 mM) co-incubation (24 h). 

Results are expressed as mean values and SD from two (GSH 3.0 mM) or four (GSH 

1.0 mM) independent experiments. 
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4.3.3. GSH conjugation assay 

 

The results from cell-free experiments performed in order to evaluate the 

spontaneous non-enzymatic conjugation of AA with GSH are presented in Fig. 4.3. Fig. 

4.3.A shows the fluorescence curve of the conjugate GSH-MCB for increasing 

concentrations of GSH, up to 1.0 mM, presenting a clear dose-response and an increase 

in the intensity of the fluorescence. The pre-treatment by 0.5 mM AA for 1 h (37 ºC) 

with the same concentrations of GSH did not change the intensity of the fluorescence 

observed (Fig. 4.3.A).  

Fig. 4.3.B shows the effect of 1-h pre-treatment with GSH (0.5 mM) with 

increasing concentrations of AA, up to 4.0 mM. The results expressed in terms of free 

GSH (%) show a slight conjugation of GSH at different concentrations of AA, which 

was only evident for the higher concentrations of AA. A control experiment was 

performed in the same conditions with the purpose of evaluating the immediate 

conjugation of AA with GSH (without pre-incubation). Under these circumstances no 

spontaneous conjugation was found (data not shown). 

The effect of 24-h pre-treatment of GSH (1.0 mM) with increasing 

concentrations of AA, up to 6.0 mM is presented in Fig. 4.3.C. The conjugation 

observed was much more pronounced than for 1-h incubation (Fig. 4.3.B). At the higher 

concentrations of AA (4.0 and 6.0 mM) the GSH-MCB fluorescence was very low 

(<3%), which means that almost all the GSH was involved in the conjugation with AA. 
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Fig. 4.3. In vitro non-enzymatic GSH conjugation studies with acrylamide (AA) using the 

fluorimetric monochlorobimane (MCB) assay. (A) Dose-effect curves of GSH-MCB 

fluorescence intensity presented by GSH alone or GSH incubated 1 h with AA (0.5 mM). 

Results are expressed as mean values and SD of fluorescence intensity (Relative Fluorescence 

Units -RFU) from two independent experiments. (B) Dose-effect curve of free GSH (%) 

observed upon incubation of GSH (0.5 mM) during 1 h with different concentrations of AA. 

Results are normalized in terms of the GSH-MCB fluorescence, considering 100% the 

fluorescence presented by GSH alone plus MCB. Results are expressed as mean values and SD 

from three independent experiments. (C) Dose-effect curve of free GSH (%) observed upon 

incubation of GSH (1.0 mM) during 24 h with different concentrations of AA. Results are 

normalized in terms of the GSH-MCB fluorescence, considering 100% the fluorescence 

presented by GSH alone plus MCB. Results are expressed as mean values and SD from two 

independent experiments.  

 

 

4.4. Discussion 

 

Recently, we have shown that the induction of sister chromatid exchanges and 

the levels of G7-GA-DNA adducts were found to be two-to-three orders of magnitude 

lower in AA-treated V79 cells than in GA exposed cells [8]. However, AA cytotoxicity 

as assessed by the MTT assay and clastogenicity in terms of %ACEG were only about 

twofold lower when compared with those seen with GA [8]. In view of these clear 

different effects it seemed important to evaluate the role of GSH modulators in AA-

induced toxicity using the aforementioned endpoints of cell viability and clastogenicity 

in the same cell line. The V79 cells are essentially devoid of CYP2E1 activity [5, 25], 

being thus adequate for this study, since only negligible amounts of GA are expected to 

be formed. 

In this work, different approaches for the modulation of GSH status were used. 

First, the effect of endogenous depletion of GSH was studied. Typically, GSH depletion 

has been carried out by use of BSO, an effective inhibitor of GSH synthesis [17]. In our 

experimental protocol, V79 cells were incubated with BSO 0.1 mM for a period that 

approximately corresponds to the duration of one cell cycle (14 h). This concentration 

of BSO has proven to deplete the GSH content in V79 cells [26]. Other authors using 

even lower concentrations of BSO also reported marked reductions in the GSH levels in 

this cell line [27, 28]. In our experiments, BSO treatment alone was associated with 
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relatively low toxicity leading to a slight decrease in cell viability (Fig. 4.1.A) and to a 

slight increase in the frequency of ACEG (Fig. 4.2.A). 

Several reports have shown the sensitization potential of GSH depletion for the 

toxicity of physical and chemical agents (reviewed in [29]). As far as AA is concerned, 

there are few reports focusing on its toxicity in cultured mammalian cells depleted of 

GSH. Park et al. [30] found that BSO increased the percent of morphologically 

transformed colonies of Syrian hamster embryo cells induced by AA. Recently, other 

authors described increases in the cytotoxicity of AA in HepG2 cells pre-treated with 

BSO [12], and others reported enhanced DNA damage as measured by the comet assay 

in V79 cells pre-treated with BSO [31]. Our results show that the depletion of GSH 

significantly decreased the viability of AA-treated cells supporting the role of 

endogenous GSH in the mitigation of the toxic effects triggered by this agent. The 

clastogenicity of AA was also further enhanced in the presence of BSO. However, this 

~1.5 fold increase observed was not significant, which may suggest that, at least in 

some extent, AA-related cytotoxicity and clastogenicity could be achieved by different 

mechanisms. 

Intracellular GSH enrichment by means of pre-treatment with GSH-EE is a 

common procedure to evaluate the potential protective effect of GSH towards the 

toxicity of a given xenobiotic agent. Wellner et al [18] showed that the increase in GSH 

became effective after ~4 h of pre-incubation with GSH-EE and that the GSH content 

increased either with the duration of the pre-treatment period (up to 24 h) or with the 

concentration of GSH-EE. In our study, we selected a pre-incubation period of 14 h and 

two concentrations of GSH-EE, 1.0 mM and 2.5 mM. Longer periods of incubation and 

higher concentrations of GSH-EE were avoided in order to minimize the possibility of 

toxicity due to GSH-EE per se. In contrast to several reports focusing on the 

cytoprotective effects of GSH-EE [18, 29, 32-35] there are also some published data 

where the pre-incubation with GSH-EE did not protect cells against a toxic insult [36-

39].  

As far as we know there are no previous reports on the effect of GSH-EE against 

the toxicity induced by AA. The results obtained in this study were consistent with 

respect to both the cytotoxicity and the clastogenicity endpoint, and fail to show a 

protective effect of GSH-EE. These results may suggest that the intracellular 
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concentration of GSH is not the limiting factor for the detoxification of AA in V79 

cells, although other issues including the extrusion of GSH-EE as well as some toxicity 

derived from GSH-EE pre-treatment could be involved. In fact, it has been previously 

reported that the hydrolysis of the ethyl esters of GSH produces ethanol [18]. This 

occurrence may be related to the cytotoxicity sometimes associated with GSH 

monoesters [35, 40], although some authors attribute the toxicity to impurities present in 

GSH-EE (reviewed in [33]). In this study, we have also observed a modest cytotoxic 

effect (Fig. 4.1.B) for the higher concentration of GSH-EE (2.5 mM).  

While the pre-treatment with GSH-EE readily increases the intracellular 

concentration of GSH to values significantly above physiological values [32, 40], the 

incubation with GSH generally leads to small increases in intracellular GSH [32] and 

therefore can give additional information on extracellular protective effects by GSH. 

The results presented here show that exogenously added GSH can effectively reduce the 

cytotoxicity (Fig. 4.1.C) and the induction of chromosomal aberrations (Fig. 4.2.C) by 

AA. In order to evaluate the effect of a potential conjugation of AA with GSH in the 

extracellular medium we studied in a set of cell-free experiments the intensity of 

fluorescence of the conjugate GSH-MCB after incubation of AA with GSH. There are 

only some reports on the conjugation of AA with GSH in in vitro cell-free systems [41]. 

The experiments herein described with the MCB probe show that the spontaneous 

conjugation of AA is favoured when AA concentrations are higher than GSH 

concentrations. Also, these results show that this spontaneous conjugation is clearly 

time-dependent since 1-h incubation barely decreased the percentage of free GSH when 

compared to a 24-h incubation period.  

The cytotoxicity data from Fig. 4.1.C were obtained in experimental conditions 

(concentration, incubation period, temperature) comparable to those used in the 

conjugation studies (Fig. 4.3.C). These results show a marked decrease in free GSH 

after 24-h incubation, supporting the notion that spontaneous conjugation with AA may 

be implicated in the reduction of the cytotoxicity of AA when GSH is simultaneously 

added to the culture medium. However, we should also consider that GSH could be 

responsible for the scavenging of reactive oxygen species that could be formed by AA 

in mammalian cells. In fact, some reports have suggested that AA induces oxidative 

stress in cell-based and animal models [10-13]. 
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It is also interesting to mention that the increase in the viability of V79 cells co-

treated with AA and GSH corresponds roughly to 20% in terms of absolute cell viability 

irrespective of the concentration level. In contrast, the in vitro data from the MCB 

experiments show a clear dose-response decrease in the percentage of free GSH. This 

apparent lack of correlation may be explained by mechanistic differences between cell-

free and cellular systems, since AA is taken up by the cultured cells, and is thus less 

available for extracellular conjugation with GSH and more prone to exert its toxic 

effects intracellularly. 

In summary, the results presented here reinforce the role of GSH in the 

modulation of the cytotoxic and clastogenic effects induced by AA. The protection 

afforded by GSH could be achieved by different mechanisms, including the conjugation 

with AA and also by an antioxidant-based mechanism. Since GSH is considered to be a 

key protective factor for mammalian cells and its content may vary at cellular level and 

also according to patho-physiological conditions, these results may be relevant for an in 

vivo AA exposure scenario. 
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Chapter 5 

 

 

Induction of sister chromatid exchange by acrylamide and glycidamide 

in human lymphocytes: Role of polymorphisms in detoxification and 

DNA-repair genes in the genotoxicity of glycidamide 

 

 

This chapter was adapted from: 

 

“Induction of sister chromatid exchange by acrylamide and glycidamide in human 

lymphocytes: Role of polymorphisms in detoxification and DNA-repair genes in the 

genotoxicity of glycidamide.” Pingarilho M, Oliveira NG, Martins C, Gomes BC, 

Fernandes AS, Martins V, Labilloy A, Lima JP, Rueff J, Gaspar JF. Mutation Research 

(2013), 752, 1-7. 

 

And some data present in this chapter was adapted from: 

“Glycidamide-DNA adducts and sister chromatid exchanges in human lymphocytes 

exposed to acrylamide and glycidamide.” 98
th

 Annual Meeting of the American 

Association for Cancer Research – Los Angeles (Abril 2007). Pingarilho M, Martins C, 

Oliveira NG, Vaz S, Costa GG, Martins V, Marques MM, Beland FA, Churchwell M, 

Doerge D, Rueff J and Gaspar JF.   
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Abstract  

 

Acrylamide (AA) is a probable human carcinogen generated in carbohydrate-

rich foodstuffs upon heating. Glycidamide (GA), formed via epoxidation, presumably 

mediated by cytochrome P450 2E1, is considered to be the active metabolite that plays a 

central role in the genotoxicity of AA. The aim of this work was to evaluate the 

cytogenetic damage induced by AA and GA in cultured human lymphocytes by use of 

the sister chromatid exchange (SCE) assay and the levels of specific glycidamide-DNA 

adducts,
 
namely N7-(2-carbamoyl-2-hydroxyethyl)guanine (N7-GA-Gua) and

 
N3-(2-

carbamoyl-2-hydroxyethyl)adenine (N3-GA-Ade). Furthermore, this report addresses 

the role of individual genetic polymorphisms in key genes involved in detoxification 

and DNA-repair pathways (BER, NER, HRR and NHEJ) on the induction of SCE by 

GA. While AA induced the number of SCE/metaphase only slightly, especially for the 

highest concentration tested (2000 µM), GA markedly induced SCEs in a concentration-

dependent manner up to concentrations of 750 µM, leading to an increase in SCEs of up 

to about 10-fold compared with controls. A linear dose-response was observed between 

the GA concentrations (up to 750 μM) and the level of N7-GA-Gua, with this adduct 

been detected at the lower studied dose (10 μM). AA-induced DNA adducts were not 

found at any concentration studied. By combining DNA damage in GA-treated 

lymphocytes and data on polymorphisms, associations between the induction of SCEs 

with GSTP1 (Ile105Val) and GSTA2 (Glu210Ala) genotypes are suggested.  
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5.1. Introduction 

 

Acrylamide (AA) is a well-known industrial chemical classified as a probable 

human carcinogen by IARC since 1994 [1]. Until 2002 AA was regarded only as an 

industrial or occupational genotoxicant. In fact, AA has been used to manufacture 

polymers, as additives for water treatment, as flow control agent in oil recovery, in pulp 

and paper processing, in mining and mineral processing and in laboratory gels. The 

foremost routes of exposure were considered to be dermal absorption and inhalation of 

aerosols in the workplace [2, 3].  

In 2002 it was shown that AA can be formed during heating via the Maillard 

reaction between asparagine and reduced sugars in processed food [4-7]. Moreover, 

there is evidence that the major contribution for acrylamide-Hb adducts in 

occupationally non-exposed subjects is originated from acrylamide formation during 

cooking and food preparation [8]. AA can be found in commonly consumed foods and 

beverages, such as processed cereals, French fries, potato chips and coffee. Average 

daily intake of AA was estimated to be about 0.5-1.0 µg/Kg bw in adults and up to 2-

fold higher in 13 year-old children with a normal western diet [9].  

The metabolism of AA occurs via conjugation with reduced glutathione (GSH) 

resulting in the urinary excretion of a mercapturic acid conjugate, or through 

epoxidation presumably mediated by cytochrome P450 (CYP2E1) to yiel the genotoxic 

epoxide glycidamide (GA). GA can be metabolized via conjugation with GSH or 

undergo hydrolysis of the epoxide group by epoxide hydrolase (EPHX) to form 

glyceramide, which is also excreted in urine [6, 10, 11]. 

The alpha/ beta-unsaturated double bond of AA is responsible for much of its 

reactivity, being involved in Michael-type reactions. In fact, the beta-carbon of AA can 

react with nucleophiles [2], leading to formation of protein adducts (e.g. AA-Hb 

adducts). In addition, the biological activity of AA is also mediated by its metabolite 

GA. Besides generating protein adducts, GA has high affinity to DNA, giving rise to 

DNA-adducts. Conversely, AA has a rather weak capacity to bind DNA [2]. 

Recently, a number of GA-DNA adducts have been characterized including the 

N7-(2-carbamoyl-2-hydroxyethyl)guanine (N7-GA-Gua, Fig. 5.1), N3-(2-carbamoyl-2-
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hydroxyethyl)adenine (N3-GA-Ade, Fig. 5.1), and N1-(2-carboxy-2-hydroxyethyl)-2’-

deoxyadenosine (N1-GA-dA) [12]. 

 

 

 

 

 

 

Figure 5.1 - Chemical structures of N7-(2-carbamoyl-2-hydroxyethyl)guanine (N7-GA-

Gua) and N3-(2-carbamoyl-2-hydroxyethyl)adenine (N3-GA-Ade). 

 

Long-term studies in rodent models have shown that AA is carcinogenic at 

different organ-sites [6]. However, no consistent evidence of an increased cancer risk 

was found among workers exposed to AA. Moreover, the association of the increased 

risk for human cancer with dietary consumption of AA is still a matter of discussion [3, 

6]. While some studies have found significant associations between oral exposure to AA 

and cancer, others failed to prove such a relationship. For instance, a recent study by 

Wilson et al [13] found no association between acrylamide and breast cancer. However, 

with high acrylamide consumption a greater risk for endometrial and possibly ovarian 

cancer was observed. Similar findings were reported by Hogervorst et al [14] whereas 

Olesen et al found a positive association with estrogen-positive breast cancer [15]. In 

view of the conflicting results in the epidemiological studies it is crucial to develop 

valuable toxicological biomarkers to be associated with the information in food-

frequency questionnaires (FFQ) in order to improve the assessment of carcer risk upon 

oral consumption of AA. 

In this context, the primary aim of the present report is to assess the usefulness 

of sister chromatid exchange (SCE) as a cytogenetic toxicological biomarker in human 

lymphocytes exposed in vitro to AA and GA and compare this end-point results with 

the extent of GA-DNA adducts formation. Moreover, this study aims to identify 
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possible associations of SCE with biomarkers of susceptibility concerning individual 

genetic polymorphisms in detoxification and DNA-repair genes. The polymorphisms 

herein studied comprise genes associated with metabolism, specifically glutathione S-

transferases (GSTM1, GSTT1, GSTP1, GSTA2) and EPHX1. Moreover, this study is 

focused on polymorphisms in DNA-repair genes from the base-excision repair (BER), 

nucleotide-excision repair (NER), homologous recombination repair (HRR) and non-

homologous end-joining repair (NHEJ) pathways, which could be critical in the repair 

of GA-induced DNA lesions. 

 

 

5.2. Materials and Methods 

 

5.2.1. Chemicals 

Acrylamide (AA; CAS registry number 79-06-1, ≥99.5% pure) was purchased 

from Fluka (Buchs, Switzerland) and glycidamide (CAS Registry Number 5694-00-8, 

>98.5% pure, containing ~1% AA) was obtained from Toronto Research Chemicals 

(North York, Ontario, Canada). Fetal calf serum, Ham’s F-10 medium, penicillin-

streptomycin solution, L-glutamine, phosphate-buffered saline pH 7.4 (PBS), methanol, 

acetic acid, Hoechst 33258, 5-bromo-2’-deoxyuridine (BrdU), mitomycin C, ethidium 

bromide and colchicine were purchased from Sigma–Aldrich (St. Louis, MO, USA). 

Potassium chloride and Giemsa dye was acquired from Merck (Darmstadt, Germany). 

Phytohemagglutinin (PHA) was purchased from Gibco (Grand Island, NY, USA) and 

heparin was acquired to B. Braun (Lisbon, Portugal). 

 

 

5.2.2. Blood samples collection 

Peripheral blood samples were obtained from 13 healthy donors (8 female and 5 

male, mean ages 28.1 ± 4.3). The samples were collected under sterile conditions by 

venipuncture in heparinized tubes, coded and analyzed under blind conditions. 



 

134 
 

All donors were informed about the aim and experimental details of the study 

and an informed consent was obtained from all participating subjects prior to the start of 

the study. Each participant completed one standardized questionnaire about health 

history, lifestyle, alcohol consumption, medication usage, family history of cancer, 

exposure to indoor/outdoor pollutants, and dietary habits. All individuals were all non-

smokers. Ethical approval for this study was obtained from the institutional Ethical 

Board of the Faculty of Medical Sciences. 

 

 

5.2.3. Lymphocytes culture 

The lymphocytes cultures were set up by adding 0.5 ml of whole blood to 4.5 ml 

of Ham’s F-10 medium supplemented with 24 % fetal calf serum, 100 IU/ml penicillin, 

100 μg/ml streptomycin, 1 % L-glutamine, and 50 IU/ml heparin. Lymphocytes were 

stimulated with 1.5 % (v/v) of PHA and incubated at 37 ºC for 72 h in an atmosphere 

containing 5 % CO2. 

 

 

5.2.4. Sister chromatid exchange assay 

Firstly, different concentrations of AA and GA up to 2000 µM (dissolved in 

PBS, pH 7.4) were evaluated in order to characterize the dose-response pattern of both 

chemicals. For this purpose 24-h cultures of lymphocytes from two donors were treated 

with AA or GA and two independent experiments were performed for each donor. From 

the dose-response curve of GA, the concentration of 250 µM was chosen to be further 

assayed in all the donors (two replicate cultures).  

For both studies, after 46 h incubation with AA or GA in the presence of BrdU 

(final concentration of 10 µM), lymphocytes were washed with fresh culture medium 

and colchicine (0.6 µg/ml) was added. The lymphocytes were then incubated for a 

further 1.5h. Differential staining of BrdU-substituted sister chromatids was performed 

according to the fluorescence-plus-Giemsa method [16], as described in Chapter 3 
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(3.2.5). The frequency of SCE in each metaphase (SCE/metaphase) was scored in 30 

second-division metaphases, whenever possible, for each concentration in each 

experiment. Mitomycin C (0.75 µM) was used as positive control. 

 

 

5.2.5. Mitotic index 

The mitotic index (MI) was carried out as a measure of the cell proliferation. 

This index can be defined as MI = (no. of cells in division / total no. of cells) x 100 [17]. 

To determine this index, 1000 lymphocytes were scored for each experiment and the 

number of metaphases recorded. 

 

 

5.2.6. DNA adducts 

 

5.2.6.1. Chemical exposure and DNA extraction.  

Twenty-four hour cultures growing in culture tubes, were exposed to different 

concentrations of AA (0–1000 μM) and GA (0–2000 μM) during 22 hour period 

(corresponding to parallel cultures of the SCE assay, already explained in Chapter 

5.2.4). The lymphocytes were washed with PBS, and the cell suspensions were 

immediately stored at 20 ºC. DNA was extracted as described in Chapter 3 (3.2.6.1).  

 

 

5.2.7. DNA quantification.  

Quantification of DNA was carried out using a Pico-Green dsDNA quantitation 

kit as described in Chapter 3 (3.2.6.2). The yield of DNA extracted from each cell 

suspension was in the range of 20–40 μg, in accordance with the manufacturer’s 

standard yields of DNA for lymphocytes cells. 
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5.2.8. Quantification of DNA adducts.  

GA-DNA adducts, specifically N7-GA-Gua and N3-GA-Ade, were released 

from the DNA by neutral thermal hydrolysis and quantified by high-performance liquid 

chromatography coupled with tandem mass spectrometry, essentially as described in 

Gamboa da Costa et al [12] as described in Chapter 3 (3.2.6.3). 

 

 

5.2.9. Genotyping  

 

5.2.9.1. Detoxification pathways 

Genotyping of GSTM1 and GSTT1 for gene deletions were carried out by a 

multiplex PCR as described by Lin et al. [18] with minor modifications described in 

Costa et al [19]. After electrophoretic separation the amplified products were visualized 

in 2 % agarose gel stained with ethidium bromide (2.0 g/ml). 

The genotyping of GSTP1 Ile105Val (rs1695), EPHX1 Tyr113His (rs1051740) 

and His139Arg (rs2234922) and GSTA2 Glu210Ala (rs6577) was conducted with the 

polymerase chain reaction and restriction fragment length polymorphisms (PCR-RFLP). 

GSTP1 Ile105Val genotyping was performed according to Gaspar et al [20], EPHX1 

Tyr113His and His139Arg polymorphisms were determined as described by Teixeira et 

al [21] and GSTA2 Glu210Ala polymorphisms were determined according to published 

procedures [22, 23] with minor modifications. For the EPHX1 genotypes, in codons 113 

and 139, individuals were classified according to the expected activity on the basis of 

their genotypes as: low activity: His/His–His/His; His/His–His/Arg; Tyr/His–His/His; 

His/His–Arg/Arg; medium activity: Tyr/Tyr–His/His; Tyr/His–His/Arg; Tyr/His–

Arg/Arg; high activity: Tyr/Tyr–Arg/Arg; Tyr/Tyr–His/Arg [22, 24]. 
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5.2.9.2. DNA repair Pathways 

The genotyping of XRCC2 Arg188His (rs3218536), XRCC3 Thr241Met 

(rs861539) was performed by means of PCR-RFLP according to Bastos et al [25]. XPC 

Lys939Gln (rs2228001) and Ala499Val (rs2228000) polymorphisms were also 

conducted by means of PCR-RFLP and the primers sequences and PCR product for the 

polymorphic sites of these genes are shown in Table V.1. For these polymorphisms the 

nucleotide change resulted in either gain or loss of a restriction site, which therefore 

allowed the common and variant alleles to be discriminated by RFLP after appropriate 

enzyme digestion (see Table V.2). 

APEX Asp148Glu (rs1130409; C___8921503_10), ERCC1 Gln504Lys 

(rs3212986; C__2532948_10), ERCC2 Lys751Gln (rs13181; C___3145033_10), 

ERCC4 Arg415Gln (rs1800067; C___3285104_10), ERCC5 Cys529Ser (rs2227869; 

C___15956775_10) and His1104Asp (rs17655; C___1891743_10), ERCC6 

Gln1413Arg (rs2228529; C__16171343_10) and Arg1230Pro (rs4253211; 

C__25762749_10), GSTA2 Pro110Ser (rs2234951; C__12027714_50) and Ser112Thr 

(rs2180314; C__22275149_30), Ku80 Ex21-238G➝A (rs2440; C___3231046_20); 

Ex21+338T➝C (rs1051677; C___8838367_1_), Ex21-352C➝A (rs6941; 

C__8838374_10), Ex21+466A➝G (rs1051685; C___8838368_1_), LIG4 Thr9Ile 

(rs1805388; C__11427969_20), MUTYH Gln335His (rs3219489; C__27504565), NBS1 

Glu185Gln (rs1805794; C__26470398_10), OGG1 Ser326Cys (rs1052133; 

C___3095552_1_), PARP1 Val762Ala (rs1136410; C___1515368_1_), PARP4 

Gly1280Arg (rs13428; C___8700143_10) and Pro1328Thr (rs1050112; 

C___8700142_10), RAD23B Ala249Val (rs1805329; C__11493966_10), RAD51 

5’UTR (rs1801321; C__7482700_10), XRCC1 Arg194Trp (rs1799782; 

C__11463404_10) and Gln399Arg (rs25487; C____622564_10) and XRCC4 It7G>A 

(rs1805377; C__11685997_10) and Thr134Ile (rs28360135; C25618660_10) 

polymorphisms were genotyped by Real-Time PCR (AB7300), using TaqMan SNP 

Genotyping Assays from Applied Biosystems, according to the manufacturer’s 

instructions and previous studies from our group [23, 25-27]. DNA samples were 

quantified with PicoGreen dsDNA Quantification Reagent (Molecular Probes, Eugene, 

Ore., USA) according to the manufacturer’s recommendations. The SNP genotyping 

assay information for BER and NER polymorphisms is summarized in Table V.3. 
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Genotype determinations were carried out twice (all samples for multiplex and 

PCR-RFLP and 20 % of samples for Real-Time PCR) in independent experiments and 

all the inconclusive samples were reanalyzed. 

 

 

5.2.10. Statistical Analysis 

For the concentration-response curves of AA and GA, regression analyses were 

performed using the Graphpad Prism v.5 software. The non-parametric Mann-Whitney 

(for 2 groups comparisons) and Kruskal-Wallis (for more than 2 groups comparisons) 

tests were used to evaluated the association of different genotypes with the frequency of 

GA-induced SCE after subtracting the background values. The level of significance 

considered was p≤0.05. All analyses were performed with the SPSS statistical package 

(version 17, SPSS Inc., Chicago, IL, USA). 
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Table V.1. Primer sequences, melting temperature (Tm), GC content and PCR product 

for XPC polymorphisms. 

Primer Sequences Tm 
GC 

content 

PCR 

product (bp) 

XPC Lys939Gln 

Forward 5´- ACC AGC TCT CAA GCA GAA GC- 3' 58º C 55% 

281 

Reverse 5' -CTG CCT CAG TTT GCC TTC TC- 3´ 56º C 55% 

XPC Ala499Val 

Forward 5´- TAA GGA CCC AAG CTT GCC CG- 3' 51º C 60% 

152 

Reverse 5' –CCC ACT TTT CCT CCT GCT CAC AG - 3´ 52º C 56% 

 

 

 

Table V.2. – Restriction enzymes used to digest the different PCR products and the 

respectively digestion time, temperature and restriction patterns for XPC 

polymorphisms. 

Polymorphism and effect on 

restriction enzyme site 

Digestion time and 

temperature 

Restriction patterns after enzyme 

digestion 

XPC Lys939Gln 

 

2 h 37ºC 

Lys/Lys : 281 bp 

C→A, create one Pvu II site Lys/Gln : 281 bp + 150 bp + 131 bp 

 Gln/Gln : 150 bp +131 bp 

XPC Ala499Val 

 

16-18 h 37ºC 

Ala/Ala: 152 bp 

C→T, create one Sac II site Ala/Val: 152 bp + 131 bp + 21 bp 

 Val/Val: 131 bp + 21 bp 



 

 

Table V.3. Single Nucleotide Polymorphisms genotyping assay information for BER and NER pathways. 

Repair Pathway Gene SNP region Amino Acid Exchange dbSNP ID ABI ID 

BER 

APEX   Asp148Glu rs1130409 C__8921503_10 

OGG1 Ex6-315C>G Ser326Cys rs1052133 C___3095552_1_ 

PARP1 Ex17+8T>C Val762Ala rs1136410 C__1515368_1 

 

PARP4 Ex31+172G>C Gly1280Arg rs13428 C__8700143_10 

  

Ex31+316C>A Pro1328Thr rs1050112 C__8700142_10 

  XRCC1 Ex10-4A>G Gln399Arg rs25487 C____622564_10 

 

ERCC2 Ex23+61A>C Lys751Gln rs13181 C___3145033_10 

 

 

ERCC5 Ex15-344G>C His1104Asp rs17655 C___1891743_10 

NER 

 

ERCC6 Ex21+176A>G Gln1413Arg rs2228529 C__16171343_10 

 

Ex18-90G>C Arg1230Pro rs4253211 C__25762749_10 

  RAD23B Ex7+65C>T Ala249Val rs1805329 C__11493966_10 
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5.3. Results 

 

5.3.1. GA markedly increases the formation of SCE in human lymphocytes 

The cytogenetic response in terms of SCE was firstly evaluated in stimulated 

lymphocytes from whole blood cultures of two healthy individuals. Different 

concentrations of AA and GA (up to 2000 µM) were used. The individual 

concentration-response curves for SCE/metaphase obtained for both compounds are 

presented in Fig. 5.2. The MI was evaluated as a measure of cell proliferation associated 

with the cytogenetic end-point and both AA and GA decreased the MI. However, the 

anti-proliferative effect was more pronounced for GA (data not shown). For the 

concentration of 750 µM, GA decreased the MI to about 29 % of the MI observed in 

non-treated controls, and a MI of zero was found for 2000 µM. This cytotoxic effect 

precludes the assessment of SCE frequency for GA concentrations ≥ 1000 µM. For AA, 

a smaller anti-proliferative effect was noted. However, at a very high concentration of 

AA (2000 µM) the MI decreased to ~13% of controls (data not shown).  

Fig. 5.2. Sister chromatid exchanges (SCE/metaphase) induced by acrylamide (AA) and 

glycidamide (GA) in cultured lymphocytes from two donors. Results are expressed as 

the mean values ± SD from two independent experiments. 
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With regards to the induction of SCE, regression analyses performed on the 

concentration-response curves indicated slopes that were significantly different from 

zero for AA (slope 0.0022, donor 1; 0.0019 donor 2; p<0.01) and GA (slope 0.074, 

donor 1; 0.052, donor 2; p<0.01). These results suggest that AA causes a concentration-

dependent increase in SCE, although with a much lower response compared to GA. In 

fact, AA increased the levels of SCE/metaphase by about 1.5-1.8 fold. This slight 

increase was particularly observed for the high concentration tested (2000 µM). 

Conversely, GA was far more genotoxic than AA at all concentrations tested (up to 750 

µM), increasing the level of SCE in about 10-fold when compared with control cultures.  

 

 

5.3.2. GA-induced SCE show inter-individual variability  

 

Based on the concentration-response curve of GA (Fig. 5.2), the concentration of 

250 µM was selected to be used for the SCE assay on samples from all 13 individuals. 

This concentration was chosen since it led to a clear genotoxic response of 

approximately 4.5-fold when compared with non-treated control lymphocytes. 

Moreover, this concentration caused a decrease of the MI to ~ 62 % of that observed in 

non-treated controls, which is acceptable for evaluation of chemically-induced 

chromosome damage [17]. The effect of 250 µM of GA (46 h-exposure) for each donor 

in terms of SCE/metaphase is depicted in Fig. 5.3 (A). The collective average values 

and respective standard deviations (SD) for all donors are presented in Figure 5.3 (B). 

The mean level of SCE/metaphase obtained for the lymphocytes of all individuals 

whose blood was exposed in vitro to 250 µM of GA was 27.2 ± 3.8 while this was 6.6 ± 

1.1 for the controls. This represents a significant 4.1-fold increase in number of 

SCE/metaphase after treatment with GA, compared with the control (p<0.001). The 

results obtained for blood from individual donors treated with GA (Fig 5.3.A) show the 

extent of inter-individual variability in terms of SCEs results. In fact, the lymphocytes 

from donors 2, 5 and 9 clearly responded to GA insult to a lesser extent than did donor 

6, 8 and 10.  
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Fig. 5.3. Sister chromatid exchanges (SCE/metaphase) induced by glycidamide (GA) in 

cultured lymphocytes from 13 donors. (A) Individual frequencies of SCE/metaphase (B) 

Collective average values of SCE/metaphase. Results are expressed as mean values±SD. 

 

 

5.3.3. DNA-adducts levels induced by AA and GA 

 

The cytogenetic response in terms of DNA adducts (N7-GA-Gua and N3-GA-

Ade) was firstly evaluated in stimulated lymphocytes from whole blood culture of two 

healthy individuals. Different concentrations of AA and GA (up to 2000 µM) were 

used. The levels of individual GA-DNA adducts obtained are presented in Table V.4. 

AA adducts were not found at any concentration studied. However, a linear dose-

response was observed between the levels of GA exposure and the level of N7-GA-Gua 

adduct up to GA 750 µM, being this adduct detected at the lower dose studied (10 μM). 

A high increased in adducts levels were detected for higher doses studied (1000 and 

2000 μM) for both donors. GA adducts were not detected in non treated control samples 

in any of the experiments. 
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Table V.4. Levels of GA-DNA adduct (N7-GA-Gua and N3-GA-Ade) in lymphocytes 

treated with different concentrations of AA and GA (0-2000 µM) for a 46-hour period 

for two different donors. 

Test compound Donor 1 Donor 2 

 
N7-GA-Gua/ 

10
6
 nucleotides 

N3-GA-Ade/ 

10
6
 nucleotides 

N7-GA-Gua/ 

10
6
 nucleotides 

N3-GA-Ade/ 

10
6
 nucleotides 

     

Acrylamide (M)     

0 <LOD <LOD <LOD <LOD 

100 <LOD <LOD <LOD <LOD 

250 <LOD <LOD <LOD <LOD 

500 <LOD <LOD <LOD <LOD 

750 <LOD <LOD <LOD <LOD 

1000 <LOD <LOD <LOD <LOD 

2000 <LOD <LOD <LOD <LOD 

     

Glycidamide (M)     

0 <LOD <LOD <LOD <LOD 

10 1.8 <LOD 1.3 <LOD 

25 4.7 <LOD 4.3 <LOD 

100 18.1 <LOD 26.8 <LOD 

250 46.6 <LOD 55.7 <LOD 

500 86.5 <LOD 79.3 <LOD 

750 98.2 <LOD 93.7 <LOD 

1000 630.2 <LOD 603.6 6.20 

2000 874.2 11.4 1051.9 <LOD 

Note. The LOD for N7-GA-Gua and N3-GA-Ade, when assaying 5 µg of DNA, was 0.1 

adducts/10
6
 nucleotides. 

 

N3-GA-Ade, was also analyzed, but only detected for GA treated lymphocytes 

and for the highest concentrations studied (1000 and 2000 µM for donor 2 and 1, 

respectively). Further studies must be done in order to clarify these results. For AA 

treated lymphocytes and for the rest of concentrations, DNA adduct levels were near or 

below the limit of detection. 
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Fig. 5.4. Correlation between N7-GA-Gua adduct levels and SCE in lymphocytes 

exposed to glycidamide (100–750 µM) for two independent donors. Results for 

SCE/Metaphase are expressed as average values from two independent experiments. 

 

The levels of N7-GA-Gua adducts were compared with the levels of SCEs in 

AA and GA exposed cultures. A strong linear correlation between the levels of GA 

exposure and the level of N7-GA-Gua adducts obtained were observed (Figure 5.4) for 

both donors (r=0.994 and r=0.977). 

 

 

5.3.3. Role of genetic polymorphisms in induction of SCE by GA 

 

The inter-individual variability described above in terms of GA-induced SCE 

could be related with different polymorphisms in detoxification and DNA- repair genes 

(Tables V.1 and V.2, respectively). In view of this, the different donors were genotyped 

for detoxification (GSTM1, GSTT1, GSTP1, GSTA2 and EPHX1) and DNA-repair 

polymorphisms. For DNA repair, different genes involved in BER (APEX1, MUTYH, 
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OGG1, PARP1, PARP4, and XRCC1), NER (ERCC1, ERCC2, ERCC4, ERCC5, 

ERCC6, RAD23B and XPC), HRR (NBS, RAD51, XRCC2 and XRCC3) and NHEJ 

(Ku80, Lig4 and XRCC4) pathways were also analyzed in order to find out possible 

associations with GA-induced SCE.  

 

Table V.5. Sister-chromatid exchanges induced in vitro by glycidamide, considering 

different genotypes in detoxification genes  

Detoxification pathway Genotypes N SCE/metaphase ± SD P value 

GST GSTM1    

 Null 6 21.1 ± 3.9   

 Positive 7 20.1 ± 2.3  N.S.
(b) 

 GSTT1    

 Null 2 18.5 ± 3.3   

 Positive 11 20.9 ± 3.0 N.S.
(b)

 

 GSTP1 (Ile105Val)    

 Ile/Ile 4 23.1 ± 3.0   

 Ile/Val 6 20.1 ± 2.2  N.S.
(a) 

 Val/Val 3 18.0 ± 2.4  N.S.
(a)

 

 Ile/Val+Val/Val 9 19.4 ± 2.4  0.050
(b)

 

 GSTA2 (Pro110Ser)    

 Pro/Pro 13  20.6 ± 3.0   

 Pro/Ser 0 -----  

 Ser/Ser 0 -----  

 GSTA2 (Ser112Thr)    

 Ser/Ser 4 20.0 ± 1.9   

 Ser/Thr 6 22.1 ± 3.5  N.S.
(a)

 

 Thr/Thr 3 18.3 ± 2.1  N.S.
(a)

 

 Ser/Thr+Thr/Thr 9 20.8 ± 3.5  N.S.
(b)

 

 GSTA2 (Glu210Ala)    

 Glu/Glu 11 21.3 ± 2.7   

 Glu/Ala 2 16.7 ± 0.7  0.026
(b)

 

 Ala/Ala 0  ---  

EPH EPHX1 (Tyr113His + His139Arg)    

 Low activity 7 20.8 ± 3.7   

 Medium activity 2 19.0 ± 2.6  N.S.
(a)

 

 High activity 3 21.8 ± 1.8  N.S.
(a)

 

N.S. non significant p-value; (a) Kruskal-Wallis Test; (b) Mann-Whitney Test 
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Table V.6. Sister-chromatid exchanges induced in vitro by glycidamide, considering 

different genotypes in DNA repair genes 

REPAIR PATHWAY Genes N SCE/metaphase ± SD P value 

BER XRCC1 (Arg194Trp)    

 Arg/Arg 13 20.6 ± 3.0  

 Arg/Trp 0  -----  

 Trp/Trp 0  -----  

 XRCC1 (Gln399Arg)    

 Arg/Arg 5 20.1 ± 2.9  

 Arg/Gln 8 20.9 ± 3.2 N.S.
(b)

 

 Gln/Gln 0  -----  

 OGG1 (Ser326Cys)    

 Ser/Ser 5 20.8 ± 1.8  

 Ser/Cys 8 20.4 ± 3.7 N.S.
(b)

 

 Cys/Cys 0  -----  

 PARP1 (Val762Ala)    

 Val/Val 7 20.6 ± 2.7  

 Val/Ala 6 20.6 ± 3.6 N.S.
(b)

 

 Ala/Ala 0  -----  

 PARP4 (Pro1328Thr)    

 Pro/Pro 9 20.8 ± 3.5  

 Pro/Thr 3 19.7 ± 2.1 N.S.
(a)

 

 Thr/Thr 1 21.0 N.S.
(a)

 

 Pro/Thr+Thr/Thr 4 20.0 ±1.9 N.S.
(b)

 

 APEX1 (Asp148Glu)    

 Glu/Glu 3 19.2 ± 2.6  

 Glu/Asp 7 19.9 ± 2.4 N.S.
(a)

 

 Asp/Asp 3 23.4 ± 3.6 N.S.
(a)

 

 Glu/Asp+Asp/Asp 10 21.0 ± 3.1 N.S.
(b)

 

 MUTYH (Gln335His)    

 Gln/Gln 8 20.6 ± 3.6  

 Gln/His 3 19.3 ± 1.9 N.S.
(a)

 

 His/His 2 22.2 ± 1.7 N.S.
(a)

 

 Gln/His+His/His 5 20.4 ± 2.2 N.S.
(b)

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

148 
 

Table V.6. Continued 

REPAIR PATHWAY Genes N SCE/metaphase ± SD P value 

NER ERCC2 (Lys751Gln)    

 Lys/Lys 3 18.9 ± 3.9  

 Lys/Gln 7 20.2 ± 2.1 N.S.
(a)

 

 Gln/Gln 3 23.1 ± 3.5 N.S.
(a)

 

 Lys/Gln+ Gln/Gln 10 21.1 ± 2.8 N.S.
(b)

 

 ERCC1 (Gln504Lys)    

 Gln/Gln 8 20.3 ± 2.8   

 Gln/Lys 4 19.5 ± 1.6 N.S.
(a)

 

 Lys/Lys 1 27.1
 

N.S.
(a)

 

 Gln/Lys + Lys/Lys 5 21.0 ± 3.7 N.S.
(b)

 

 ERCC4 (Arg415Gln)    

 Arg/Arg 9 20.6 ± 3.2  

 Arg/Gln 3 21.8 ± 1.8 N.S.
(a)

 

 Gln/Gln 1 16.2 N.S.
(a)

 

 Arg/Gln + Gln/Gln 4 20.4 ± 3.2 N.S.
(b)

 

 ERCC5 (His1104Asp)    

 His/His 8 19.9 ± 2.5  

 His/Asp 5 21.6 ± 3.8 N.S.
(b)

 

 Asp/Asp 0 -----  

 His/Asp + Asp/Asp  -----  

 ERCC5 (Cys529Ser)    

 Cys/Cys 12 20.6 ± 3.2  

 Cys/Ser 1 20.4 N.S.
(b)

 

 Ser/Ser 0  -----  

 ERCC6 (Arg1230Pro)    

 Pro/Pro 11 20.3 ± 3.2  

 Pro/Arg 2 22.2 ± 1.7 N.S.
(b)

 

 Arg/Arg 0  -----  

 ERCC6 (Gln1413Arg)    

 Arg/Arg 8 21.2 ± 3.6  

 Arg/Gln 5 19.5 ± 1.7 N.S.
(b)

 

 Gln/Gln 0  -----  

 RAD23B (Ala249Val)    

 Ala/Ala 9 19.8 ± 2.8  

 Ala/Val 4 22.4 ± 3.2 N.S.
(b)

 

 Val/Val 0  -----  

 XPC (Ala499Val)    

 Ala/Ala 0  -----  

 Ala/Val 6 21.9 ± 3.3  

 Val/Val 7 19.4 ± 2.4 N.S.
(b)

 

 XPC (Lys939Gln)    -----  

 Lys/Lys 7 20.2± 2.4  

 Lys/Gln 6 21.0 ± 3.8 N.S.
(b)

 

 Gln/Gln 0  -----  
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Table V.6. Continued 

REPAIR PATHWAY Genes N SCE/metaphase ± SD P value 

HRR RAD51 (5’UTR)    

 G/G 5 19.5 ± 2.9  

 G/T 8 21.2 ± 3.1 N.S.
(b)

 

 T/T 0 -----  

 NBS (Glu185Gln)    

 Glu/Glu 7 21.5 ± 3.2  

 Glu/Gln 4 19.5 ± 3.4 N.S.
(a)

 

 Gln/Gln 2 19.6 ± 1.7 N.S.
(a)

 

 Glu/Gln + Gln/Gln 6 19.5 ± 2.7 N.S.
(b)

 

 XRCC3 (Thr241Met)    

 Thr/Thr 3 22.2 ± 5.6  

 Thr/Met 7 20.0 ± 2.3 N.S.
(a)

 

 Met/Met 3 20.2 ± 1.6 N.S.
(a)

 

 Thr/Met + Met/Met 10 20.1 ±2.0 N.S.
(b)

 

 XRCC2 (Arg188His)    

 Arg/Arg 11 20.5 ± 3.1  

 Arg/His 2 20.9 ± 3.6 N.S.
(b)

 

  His/His 0  ------  

NHEJ XRCC4 It7G>A    

 G/G 8 21.1 ± 3.1  

 G/A 5 19.7± 3.1 N.S.
(b)

 

 A/A 0   

 XRCC4 Thr134Ile    

 Ile/Ile 13 20.6 ± 3.0  

 Ile/Thr 0  -----  

 Thr/Thr 0  -----  

 Lig4Thr9Ile    

 Thr/Thr 10 20.9 ± 3.1  

 Thr/Ile 3 19.3 ± 2.7 N.S.
(b)

 

  Ile/Ile 0  -----  

 Ku80Ex21-238G>A    

 G/G 5 21.3 ± 1.5  

 G/A 4 21.0 ± 5.2 N.S.
(a)

 

 A/A 4 19.3 ± 1.8 N.S.
(a)

 

 G/A+A/A 8 20.1 ± 3.7 N.S.
(b)

 

 Ku80Ex21+338T>C    

 T/T 10 20.8 ± 3.3  

 T/C 3 19.7 ± 2.2 N.S.
(b)

 

 C/C 0  -----  

 Ku80Ex21-352C>A    

 C/C 10 20.8 ± 3.3  

 C/A 3 19.7 ± 2.2 N.S.
(b)

 

 A/A 0  -----  

 Ku80Ex21+466A>G    

 A/A 10 20.7 ± 3.0  

 A/G 3 20.2 ± 3.7 N.S.
(b)

 

 G/G 0  -----  

N.S. non significant p-value; (a) Kruskal-Wallis Test; (b) Mann-Whitney Test 
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The genotypic distribution of the polymorphisms involved in detoxification 

pathways and its association with the levels of GA-induced SCE is presented in Table 

V.5. In this table, as in Table V.6, the values of GA-induced SCE correspond to the 

SCE observed in GA-treated cultures (250 µM) after subtracting the respective 

background of SCE in non-treated controls. GSTM1 and GSTT1 deletion 

polymorphisms did not influence the level of SCEs induced by GA. Conversely, for 

GSTP1 Ile105Val, lymphocytes from wild-type individuals have a higher level of GA-

induced SCE than those with at least one variant allele (p=0.050, Table V.5). With 

respect to GSTA2, three SNPs (Pro110Ser, Ser112Thr, Glu210Ala), all non-

synonymous were analyzed. For GSTA2 Glu210Ala polymorphism, no homozygous 

donor for the variant allele was present in our study group. For this SNP, the level of 

SCE was lower for lymphocytes of heterozygous individuals (Glu/Ala) when compared 

with wild-type homozygous individuals (Glu/Glu) (p=0.026). For the Ser112Thr SNP 

no significant associations were found with SCE data (Table V.5). With regards to the 

third SNP, i.e.,GSTA2 Pro110Ser polymorphism, the analysis of a possible association 

was precluded since all donors had the wild type genotype. EPHX1 genotypes 

(Tyr113His and His139Arg) were also analyzed and individuals were classified 

according to the expected activity of the correspondent enzyme [22, 24]. These SNPs 

did not show any influence on the level of SCEs induced by GA.  

For DNA repair, the distribution of genotypic frequencies related with repair 

pathways (BER, NER, HRR and NHEJ) and its association with SCE levels is presented 

in Table V.6. For the DNA-repair pathways studied, i.e. BER (6 genes), NER (7 genes), 

HRR (4 genes) and NHEJ (3 genes), no associations with the level of GA-induced SCEs 

were found. 
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5.4. Discussion 

 

The development of predictive biomarkers for cancer-risk assessment is a 

challenging issue in food toxicology. The SCE test is well-known for its sensitivity to 

detect chemical genotoxicants [28]. The usefulness of SCE to evaluate genotoxicity of 

AA and GA has been previously shown in mammalian cells [29-31]. However, in vitro 

studies using human cells are still lacking. These studies are of utmost importance to 

predict the potential importance of SCE formation as a valuable cytogenetic 

toxicological biomarker to be used in the assessment of human risk from exposure to 

AA. Therefore, in the present work, the levels of SCEs induced by AA and GA were 

evaluated in human lymphocytes.  

PHA-stimulated lymphocytes from whole blood cultures were used throughout 

this report. This “whole blood” approach has been followed by other authors [32-34] 

and may be considered more closely related to the physiological situation than isolated 

lymphocyte cultures, since it encompasses the influence of other factors, such as red 

blood cells [35], platelets and plasma. 

In this study, a slight induction of SCE by AA was found, which was specially 

associated with the very high and cytotoxic concentration of 2000 µM. In contrast, GA 

markedly increased the frequency of SCE in a concentration-dependent manner. This is 

in agreement with our previous study [31], which reported a much higher genotoxic 

potential of GA when compared with AA, using the same end-point in V79 cells. In 

addition, the same trend was observed in a recent study from our group, carried out in 

human whole blood leukocytes analyzed with the comet assay [36].  

Additionally, data concerning the levels of DNA-adducts after exposure to AA 

showed that no DNA-adducts were detected at any concentration studied. In spite of 

AA-induced DNA adducts not have been detected in the present work, it is important to 

note that AA highly reacts with protein, specifically haemoglobin, originating 

haemoglobin adducts [2, 37]. The concentration of haemoglobin adducts reflects the 

internal doses of AA and GA and this type of adducts are biomarkers for the biological 

effect [38]. Moreover, several authors have reported positive results of haemoglobin 

adducts of AA and GA as biomarker of AA exposure [39-42]. On the other hand, our 

results showed that the major adduct analyzed in human lymphocytes was N7-GA-Gua, 
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formed by reaction of the DNA with the epoxide metabolite glycidamide. N7-GA-Gua 

was detected for concentrations as low as 10 µM GA.  

Furthermore, N3-GA-Ade was also analyzed but data showed that was formed in 

much lower amounts and only for the highest concentration studied (1000 and 2000 

µM). Similar results were found for DNA adducts measured in liver, brain and testes of 

rats administered with single oral doses of acrylamide [43, 44]. 

The cytogenetic end-point evaluated by sister chromatid exchange in stimulated 

lymphocytes exposed to GA, was compare in same conditions with N7-GA-Gua DNA-

adducts obtained. The results showed a strong correlation between these two end-points 

(Figure 5.4). This correlation is consistent with a mechanism involving the formation of 

GA-DNA adducts on the induction of SCEs in human lymphocytes after exposure to 

GA [12] and already suggested by our group in a previous study [31]. 

In view of this clear genotoxicity of GA, in contrast to AA, the further step of 

this study was to evaluate the inter-individual response to a GA concentration of 250 

µM and to associate it with polymorphisms in detoxification and DNA-repair genes. 

Although this concentration is much highter than human dietary exposure levels, it was 

clearly genotoxic for human lymphocytes, without a marked cytotoxicity. Therefore, it 

enabled us to distinguish differences among individuals. This approach is crucial not 

only for a thorough understanding of the usefulness of SCE frequency as a cytogenetic 

biomarker in risk assessment, but also for the identification of genotypes that potentially 

modulate the genotoxic damage in an AA-exposure scenario.  

The induction of SCE by the metabolite GA revealed inter-individual variability 

(Fig. 5.2.A). The heterogeneity in terms of DNA damage, among individuals with 

different genotypes, has been described for other xenobiotics and the association with 

detoxification genes has been reported [32, 45]. The metabolic fate of GA has been 

extensively reviewed [5, 6]. GA is detoxified by conjugation with glutathione via GSTs, 

or can be hydrolyzed by EPHX [11, 46]. Therefore, the possible association between 

inter-individual variations in GA-induced DNA damage and polymorphisms in the 

genes GSTM1, GSTT1, GSTP1, GSTA2 and EPHX1 was further analyzed. The SCEs 

results from this study suggest that GSTP1 (Ile105Val) and GSTA2 (Glu210Ala) 

polymorphisms may influence the detoxification capacity of GA.  
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The GSTP1 enzyme is the major GST enzyme in blood and metabolizes several 

diol-epoxides of polycyclic aromatic hydrocarbons (PAH) [10]. The GSTP1 isoenzyme 

with valine in position 105 has a higher efficiency for conjugation of PAH diol-

epoxides [47]. Our results indicate a lower level of cytogenetic damage in lymphocytes 

from individuals presenting at least one variant allele for GSTP1 suggesting that a 

higher conjugation efficiency of GA with GSH could be achieved for the variant forms 

of GSTP1. A similar study by Teixeira et al [21] reported that SCE frequencies 

presented by plastic workers with low exposure to styrene were also related with the 

GSTP1 (Ile105Val) polymorphism. Styrene is a small molecule that undergoes 

metabolization to styrene-7,8-oxide, a low molecular weight epoxide comparable in size 

to GA. Moreover, the detoxification of toluene di-isocyanate seems to be affected by 

GSTP1 105Val variant allele [48]. 

With regards to GSTA2, there is lack of data on the role of genetic 

polymorphisms associated with exposure to environmental genotoxicants. GSTA2 is 

predominantly expressed in the liver, the major site for detoxification of drugs and 

xenobiotics [23, 49]. In this study, the heterozygous genotype of GSTA2 (Glu210Ala) 

SNP showed a decrease in SCE levels versus wild-type individuals (Glu/Glu). This 

result suggests the possible involvement of GSTA2 in detoxification of GA. The alpha-

class GSTs has commonly been described as one of the most versatile GST classes, 

since it is responsible for detoxification of a heterogeneous group of compounds [23]. In 

this context, Ketterer et al, pointed out a role for GSTA2 genotypes in the detoxification 

of small molecules like cumene hydroperoxide [49, 50]. Previous studies have reported 

that for the polymorphisms Ser112Thr and Glu210Ala the respective amino acid 

residues are not at the active site of GSTA2. However, while in the case of Ser112Thr 

polymorphism the amino acid change did not show an important effect in protein 

structure, for the Glu210Ala a slight effect in protein function may be observed [49], 

which may explain the differential results obtained in our study where no differences 

were found for the Ser112Thr polymorphism. In respect to Pro110Ser polymorphism, 

which may have some impact on rigidity of the active site [49], no individuals displayed 

the variant genotype, precluding any analysis.  

GSTT1 and GSTM1 enzymes are involved in the metabolism of epoxides and 

are mainly expressed in liver and blood [10]. Our results show that deletions in the 

genes GSTT1 and GSTM1 do not seem to affect the levels of SCEs. This is in 
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accordance with previous reports [10, 51] that addressed the involvement of GSTT1 and 

GSTM1 in the toxicokinetics of AA in terms of haemoglobin (Hb)-adducts, concluding 

that these enzymes do not seem to play a major role in the AA and GA conjugation with 

glutathione. In contrast, a recent study from Duale et al [52] suggested a possible 

involvement of both GSTM1 and GSTT1. These conflicting results clearly anticipate the 

need for further studies focusing on GSTs with the use of additional toxicological 

biomarkers.  

The same is valid for the genetic polymorphisms of EPHX1 for which some 

association has been recently reported in terms of urinary acrylamide metabolites from 

workers exposed to acrylamide [53]. EPHX1 catalyzes the hydrolysis of reactive 

epoxides to their corresponding dihydrodriols, playing an important role in their 

detoxification. EPHX1 is probably involved in the metabolism of GA to a less reactive 

and more soluble glyceramide. EPHX1 is expressed in all tissues, including white blood 

cells [10, 52, 54]. The data reported here did not show any effect of EPHX1 

detoxification in relation to GA-induced SCE. Our results are in accordance with 

Paulson et al [10] who previously showed that the chemical inhibition of EPHX1 had 

no significant effect in the Hb-adducts levels after exposure to AA and GA.  

DNA-repair polymorphisms that modulate DNA repair capacity may influence 

the individual susceptibility to DNA-damaging agents and, therefore, modify cancer 

risk. In fact, polymorphic variants in DNA-repair genes have been associated with 

susceptibility for several types of DNA lesions and cancer risk [55]. However, the 

overall data presented here did not show relevant associations between SCE levels and 

individual genetic polymorphisms in DNA-repair genes.  

In summary, our results show that AA only slightly induced SCEs at a very high 

concentration. Conversely, GA is clearly genotoxic to cultured human lymphocytes, 

highlighting the importance of this metabolite. It was also demonstrated that SCE 

frequency constitutes a sensitive and reliable endpoint to evaluate DNA damage, being 

a valuable cytogenetic biomarker that could be used, along with other cytogenetic 

biomarkers (e.g. micronuclei, chromosomal aberrations), to evaluate genotoxic effects 

in an AA-exposure scenario.  

Although these results are based on a small number of blood donors, this 

exploratory study points out to a possible role for GSTP1 Ile105Val and GSTA2 
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Glu210Ala on the modulation of the genotoxicity induced by GA. These data provide a 

further step towards the development of potential susceptibility biomarkers for AA and 

GA. However, for more conclusive results, studies involving a larger number of 

individuals should be performed and other polymorphisms and combinations of 

polymorphisms regarding genes involved in GA detoxification and DNA repair should 

be further evaluated. 
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Genetic polymorphisms in detoxification and DNA repair genes and 
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Abstract  

Acrylamide (AA) is a probable human carcinogen formed in carbohydrate-rich 

foodstuffs upon heating. Glycidamide (GA), the AA metabolite formed by epoxidation 

is considered the ultimate genotoxic agent. In this study, the in vitro genotoxic potential 

of AA and GA in human whole blood leukocytes was compared using the alkaline 

comet assay. Although AA did not induce DNA damage in the concentrations tested (up 

to 1000 µM), GA markedly increased the %Tail DNA at concentrations ≥ 250 µM 

(p<0.005). Further, this study addressed the role of genetic polymorphisms in key genes 

involved in metabolism and DNA repair pathways (BER, NER, HRR and NHEJ) on 

GA-induced genotoxicity assessed by the alkaline comet assay. The results obtained 

suggested associations between DNA damage and polymorphisms of BER (MUTYH 

Gln335His and XRCC1 Gln399Arg) and NER (XPC Ala499Val and Lys939Gln) genes, 

either alone or in combination. 
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6.1. Introduction 

 

Acrylamide (AA) is a suspected human carcinogen classified as a probable 

human carcinogen by IARC [1]. AA is an important industrial monomer mainly used 

for the production of polyacrylamides since the mid-1950s. These compounds gained 

importance in many field application, namely in wastewater treatment, as flocculants 

for clarifying drinking-water, as flow control agents in oil-well operations and in gels 

used for laboratory techniques [2-6].  

Acrylamide is also a component of tobacco smoke (1-2 µg/cigarette) and is 

used in cosmetic additives, including creams, body lotions and shampoos [2]. Further, 

the general population is exposed to varying amounts of AA via diet [4, 7]. In fact, AA 

may be generated from food components during heat treatment as a result of the 

Maillard reaction between an amino acid, primarily asparagine (the major amino acid 

in potatoes and cereals) and reducing sugars, such as glucose [8]. The extent of AA 

formation strongly depends on the heating conditions and type and concentration of 

certain foodstuffs [9]. AA is found at relatively high concentrations (micrograms to 

milligrams per kilogram) in common food items such as French fries, potato crisp, 

crisp bread, bread, coffee and cookies [10-12]. Average intake was estimated to be in 

the range of 0.3 to 0.8 µg AA/Kg body weight (bw)/d for developed countries, 

corresponding to aproximately 21-26 µg/day for a 70-Kg person, although in children 

the oral exposure may be two- to threefold highter [2]. 

Concerns on the health risks of AA for the general population have been raised, 

since AA is a known rodent neurotoxicant and multisite carcinogen [13, 14]. In fact, 

chronic studies in rodent models demonstrated that AA is carcinogenic at different 

organ sites, including the mammary gland [6, 7]. AA is metabolized to the epoxide 

derivative glycidamide (GA), presumably mediated by cytochrome P450 2E1 and 

postulate to be the ultimate metabolite that plays a critical role in AA-induced 

genotoxicity [15-17]. While AA possesses high capacity to bind proteins, GA has a 

high affinity to bind DNA, generating  DNA-adducts [2]. In this context, different 

DNA adducts have been quantified, being N7-(2-carbamoyl-2-hydroxyethyl)guanine 

(N7-GA-Gua), the predominant adduct [18-20].  
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Epidemiological data in human populations exposed to AA are conflicting with 

respect to cancer risk assessment [21-25]. Genetic variability in metabolism 

(detoxification) and DNA repair genes might influence individual susceptibility to 

cancer [26, 27]. It is therefore important to correlate genetic polymorphisms with DNA 

damage using adequate biomarkers of genotoxicity. 

Primary DNA damage in human cells may be evaluated by the single-cell gel 

electrophoresis (SCGE) or comet assay, a simply, sensitive, versatile, rapid and 

economic method [28]. The comet assay, under alkaline conditions, detects single- and 

double-strand breaks, incomplete repair sites, alkali-labile sites and DNA cross-linking 

in any eukariotic cell population [29]. The aim of this study was to assess the in vitro 

genotoxicity of AA and GA in human peripheral blood leukocytes (PBL) using the 

comet assay. Further, this study aimed to identify possible associations between DNA 

damage and biomarkers of susceptibility concerning individual genetic polymorphisms 

in key metabolism and repair genes.  

 

 

6.2.Materials and Methods 

 

6.2.1.Chemicals 

Acrylamide (AA; CAS registry number 79-06-1, ≥99.5% pure) was purchased 

from Fluka (Buchs, Switzerland). Glycidamide (CAS Registry Number 5694-00-8, 

>98.5% pure, containing ~1% AA) was obtained from Toronto Research Chemicals 

(North York, Ontario, Canada). Fetal calf serum (FCS), Ham’s F-10 medium, 

penicillin-streptomycin solution, phosphate-buffered saline pH 7.4 (PBS), Na2EDTA, 

Trizma base, Triton X-100, low melting point (LMP) agarose and ethidium bromide 

were purchased from Sigma–Aldrich (St. Louis, MO, USA). Dimethyl sulfoxide 

(DMSO), ethanol, sodium chloride and sodium hydroxide were acquired from Merck 

(Darmstadt, Germany). Agarose multi-purpose, used as normal melting point (NMP) 

agarose, was obtained from Bioline (London, UK). Heparin was acquired from B. 

Braun (Lisbon, Portugal). 
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6.2.2. Blood Sample Collection 

Peripheral blood samples were obtained from 25 healthy donors (18 female and 

7 male, mean ages 27.1 ± 4.5). Samples of 10 ml were collected under sterile conditions 

by venipuncture in heparinized tubes. All samples were coded and analyzed under blind 

conditions. All donors were informed about the aim and experimental details of the 

study and an informed consent was obtained from all participating subjects prior to the 

start of the study. Each participant completed one standardized questionnaire about 

health history, lifestyle, alcohol consumption, medication usage, family history of 

cancer, exposure to indoor/outdoor pollutants and dietary habits. Donors were all 

nonsmokers. Ethical approval for this study was obtained from the institutional Ethical 

Board of the Faculty of Medical Sciences of New University of Lisbon. 

 

6.2.3. Comet assay 

The comet assay was performed under alkaline conditions essentially according 

to the procedures of Singh et al.[30] and Busto et al, [31] with minor modifications. 

Nonstimulated whole blood (125 µl) was suspended in 1125 µl of Ham’s F-10 medium 

supplemented with 24 % (v/v) of FCS, 1% (v/v) antibiotics (final concentrations of 100 

UI/mL penicillin G and 100 μg/mL streptomycin), 1% (v/v) L-glutamine and 1% (v/v) 

heparin in a 10 ml sterile tube. Blood cultures were then exposed to different 

concentrations of AA or GA, ranging from 10 to 1000 µM and incubated for 1 hour at 

37 ºC. Afterwards, cells were washed twice with fresh culture medium and then 

collected by centrifugation (1200 x g for 5 min). Seven microliters of cell suspension 

were ressuspended in 70 µl of 0.5 % LMP agarose in PBS (pH=7.4) and dropped onto a 

frosted slide precoated with a layer of 1 % NMP agarose. Slides were placed at 4 ºC for 

20 min and allowed to solidify. Cover slips were then removed and slides immersed in a 

4 ºC freshly prepared lysing solution (2.5 M NaCl, 100 mM Na2EDTA, 10 mM Trizma 

base, 1% Triton X-100, 10 % DMSO, pH=10) overnight in the dark. After lysis, slides 

were washed twice with ice-cold bidistilled water for 10 min and then slides were 

randomly placed on a horizontal electrophoresis tank at 4 ºC. The tank was filled with 

freshly made alkaline electrophoresis solution (1mM EDTA, 300 mM NaOH, pH≥13) 

to cover the slides. The slides were left in electrophoresis solution for 20 min in the dark 
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to allow DNA unwinding and alkali-labile sites expression. Electrophoresis was carried 

out for 20 min at 25 V (1.0 V/cm) and 300 mA. The slides were washed gently thrice at 

5-min intervals with a neutralizing buffer (400 mM Tris, pH=7.5) to remove excess 

alkali and reagents. After neutralization, slides were passed through 50, 70 and 100 % 

solutions of ethanol for 5 min each, drained, stained with 100 µl of ethidium bromide 

solution (20 µg/ml), and covered with cover slips. Slides were stored at 4 ºC in 

humidified containers until analysis. Two independent experiments were conducted in 

duplicate for the dose-response curve (four slides per data point) and two replicate 

blood cultures were carried out for each donor.  

The comets were observed at a 400 x magnification with a fluorescent 

microscope (Leica DMLB 100S) equipped with an excitation filter of 530-545 nm and a 

suppressor filter of 610-675 nm. Fifty individual cells from each slide were randomly 

analyzed, giving a total of 200 cells analyzed per data point. The percentage of DNA in 

Tail (% Tail DNA) of comets was measured to assess the extent of DNA damage.  

Image analysis was performed using the Tri Tek Comet Score
TM

 v 1.5, using a 65 

% cutoff. The median of the % DNA in Tail was used as representative value for each 

subject, and the media of medians was used for statistical analysis [32]. 

 

6.2.4. DNA extraction 

Genomic DNA was obtained from 250 µl of whole blood using a commercially 

available kit, according to the manufacturer instructions (QIAamp DNA extraction kit; 

Qiagen, Hilden, Germany). Each DNA sample was stored at –20 C until analysis. 

 

6.2.5. Genotyping  

This study included polymorphisms in genes associated with metabolism, 

specifically glutathione S-transferases (GSTM1, GSTT1, GSTP1, GSTA2) and EPHX1. 

In addition, polymorphisms in DNA repair genes from the base excision repair (BER), 

nucleotide excision repair (NER), homologous recombination repair (HRR) and non-

homologous end-joining repair (NHEJ) pathways were studied. 
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6.2.5.1. Detoxification pathways 

GSTM1 and GSTT1 genotyping for gene deletions were carried out by a 

multiplex PCR as described by Lin et al. [33] with minor modifications described in 

Costa et al [26] and as described in Chapter 5 (5.2.9.1).  

The genotyping of GSTP1 Ile105Val (rs1695), EPHX1 Tyr113His (rs1051740) 

and His139Arg (rs2234922), GSTA2 Glu210Ala (rs6577), were determined by 

polymerase chain reaction (PCR) and restriction fragment length polymorphisms 

(RFLP), as described in Chapter 5 (5.2.9.1). 

 

6.2.5.2. DNA repair pathways 

The genotyping of XRCC2 Arg188His (rs3218536), XRCC3 Thr241Met 

(rs861539) and XPC Lys939Gln (rs2228001) and Ala499Val (rs2228000) were 

determined by polymerase chain reaction (PCR) and restriction fragment length 

polymorphisms (RFLP) as described in Chapter 5 (5.2.9.2).  

APEX Asp148Glu (rs1130409), ERCC1 Gln504Lys (rs3212986), ERCC2 

Lys751Gln (rs13181), ERCC4 Arg415Gln (rs1800067), ERCC5 Cys529Ser 

(rs2227869) and His1104Asp (rs17655), ERCC6 Gln1413Arg (rs2228529) and 

Arg1230Pro (rs4253211), GSTA2 Pro110Ser (rs2234951) and Ser112Thr (rs2180314), 

Ku80 Ex21-238G➝A (rs2440); Ex21+338T➝C (rs1051677), Ex21-352C➝A (rs6941), 

Ex21+466A➝G (rs1051685), LIG4 Thr9Ile (rs1805388), MUTYH Gln335His 

(rs3219489), NBS1 Glu185Gln (rs1805794), OGG1 Ser326Cys (rs1052133), PARP1 

Val762Ala (rs1136410), PARP4 Gly1280Arg (rs13428) and Pro1328Thr (rs1050112), 

RAD23B Ala249Val (rs1805329), RAD51 5’UTR (rs1801321), XRCC1 Gln399Arg 

(rs25487) and XRCC4 It7G>A (rs1805377) and Thr134Ile (rs28360135) 

polymorphisms were genotyped by Real-Time PCR (AB7300), using TaqMan SNP 

Genotyping Assays from Applied Biosystems, according to the manufacturer’s 

recommendations and to previous reports from our group [34-37] with minor 

modifications and as described in Chapter 5 (5.2.9.2). Genotype determinations were 

carried out twice (all samples for multiplex and PCR-RFLP and 20% of samples for 
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Real-Time PCR) in independent experiments and all the inconclusive samples were 

reanalyzed. 

 

6.2.6. Statistical analysis 

The Kolmogorov-Smirnof test was used to verify the normality of the 

continuous variables (% Tail DNA). For the variables with a normal distribution the 

homogeneity of the variances was evaluated using the Levene test and the association of 

% Tail DNA (value obtained subtracting the tail DNA percent value for background) 

and the different genotypes obtained was evaluated by Student’s t-test. The level of 

significance considered was p≤0.05. All analyses were performed with the SPSS 

statistical package (version 17, SPSS Inc., Chicago, IL, USA). 

 

 

6.3. Results: 

 

The concentration-response profile of AA and GA in terms of DNA damage was 

evaluated by the comet assay in PBL from one healthy individual, and the results are 

depicted in Figure 6.1. For AA, no marked changes in % Tail DNA were found for the 

concentrations studied (10-1000 µM). Conversely, GA elevated the % Tail DNA in a 

concentration-dependent manner for concentrations ranging from 10 to 1000 µM, and 

this rise was more pronounced and significant for concentrations higher than 250 µM. 

GA at 1000 µM increased the % Tail DNA approximately 4.4-fold compared to 

controls. Based on the concentration-response curve of GA, the concentration of 250 

µM was selected to be used in the comet assay to all 25 individuals. This concentration 

provided sufficient sensitivity to discriminate between individual responses, increasing 

the % Tail DNA in about 2.6 fold in relation to control PBL (Figure 6.1). 
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Figure 6.1. Percent DNA in Tail (%Tail DNA) induced by AA and GA in whole blood 

leucocytes from a healthy donor. Results are expressed as the mean ± SD from two 

independent experiments  

 

The individual effects of 250 µM of GA in terms of % Tail DNA obtained for 

the 25 individuals are presented in Figure 6.2 (A). The collective average values and 

respective SD are presented in Figure 6.2 (B). The mean level of % Tail DNA was 11.4 

± 4.9 for untreated PBL of all donors, while it rose 1.7-fold after 1 h of exposure to GA 

to a mean value of 19.0 ± 6.0 %. From Fig 6.2, it is also clear that the results obtained 

for individual donors treated with GA showed interindividual variability. In fact, some 

donors displayed a much more pronounced response (e.g. donors 1 and 23) to GA insult 

than other donors (e.g. 11 and 12), that only numerically increased the % Tail DNA.  

p=0.00

3 
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Figure 6.2. Percent DNA in Tail (% Tail DNA) induced by GA in whole blood 

leukocytes for 25 healthy donors. (A) Individual values of % Tail DNA. Results are 

expressed as mean ± SD from two replicates. (B) Collective values of % Tail DNA. 

Results are expressed as mean values ± SD. 

 

This variability in terms of GA-induced % Tail DNA may be correlated with 

different polymorphisms in detoxification and repair genes. In this context, the study 

subjects were therefore characterized with respect to genetic polymorphisms in 

detoxification (GSTM1, GSTT1, GSTP1, GSTA2 and EPHX1), and DNA repair 

pathways genes. Among these repair pathways, genes from BER (XRCC1, OGG1, 

PARP1, PARP4, APEX1 and MUTYH), NER (ERCC2, ERCC1, ERCC4, ERCC5, 

ERCC6, RAD23B and XPC), HRR (RAD51, NBS, XRCC3 and XRCC2) and NHEJ 

(XRCC4, Lig4 and Ku80) were evaluated. Afterwards, genotyping data was integrated 

with the GA-induced % Tail DNA obtained from the comet assay, in order to establish 

possible associations between those polymorphisms and DNA damage.  

The genotypic distribution of polymorphisms involved in metabolism and repair 

pathways and its association with the levels of GA-induced % Tail DNA are presented 

in Tables VI.1 to VI.5. In these tables, the values of GA-induced % Tail DNA were 

calculated by subtracting the % Tail DNA value for the non treated controls 

(background) from the % Tail DNA value observed in GA treated cultures (250 µM). 

In relation to the metabolism polymorphisms studied involved in the 

detoxification of xenobiotics, no significant correlations between GA-induced %Tail 

DNA values and genotypic frequencies of polymorphisms were observed (Table VI.1). 

[GA]=2

50µM 
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The same was noted for the haplotypes generated from GSTA2 polymorphisms 

Pro110Ser, Ser112Thr and Glu210Ala (data not shown). 

Polymorphisms in DNA repair pathways included 6 genes involved in BER 

(Table VI.2). However, it is important to note that PARP4 polymorphisms Pro1328Thr 

and Gly1280Arg are in linkage disequilibrium. In view of this only PARP4 Pro1328Thr 

was studied. It was noted that for MUTYH Gln335His there was a marked increase in 

GA-induced % Tail DNA in homozygous individuals for variant genotype (11.9 ± 

1.8%) when compared with heterozygous individuals (6.1 ± 1.7%). However, in relation 

to other BER SNP studied, no significant associations were found.  

In order to further characterize the influence of BER in GA-induced 

genotoxicity, the combination of different polymorphisms of this pathway was also 

included in this study. This approach allowed the identification of haplotypes 

potentially associated with DNA damage induced by GA (Table VI.6). These 

haplotypes included XRCC1 Gln399Arg and MUTYH Gln335His. A significant rise in 

GA-induced % Tail DNA was obtained for ArgArg+ArgGln/HisHis (11.9 ± 1.8%) 

compared with ArgArg+ArgGln/GlnGln+GlnHis (7.0 ± 4.5%) and with 

GlnGln/GlnGln+GlnHis (4.3±1.2%). 

The NER polymorphisms per se did not present any significant association with 

GA-induced DNA damage (Table VI.3). However, haplotypes generated from XPC 

Ala499Val and Lys939Gln (Table VI.7) showed a significant association when 

comparing AlaVal/LysGln with ValVal/LysGln (2.8 ± 3.7% vs. 9.1± 3.3%, p<0.05). 

Other associations between SNPs of a single gene of this pathway (e.g. ERCC5 

Asp1104His and Cys529Ser polymorphisms) did not reveal any significant association 

(data not shown).  

For the other DNA repair pathways studied, that is HRR (four genes) and NHEJ 

(three genes) no statistically significant associations were found between the genotyping 

frequencies and the GA-induced % Tail DNA (Tables VI.4 and VI.5). In addition, no 

marked associations were found for NHEJ haplotypes and DNA damage attributable to 

GA (data not shown).  
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Table VI.1. Percent DNA in Tail (%Tail DNA) induced by GA in whole blood leukocytes 

from 25 healthy individuals considering different genotypes of genes involved in 

metabolism. 

Detoxification pathway Genotypes N % Tail DNA ± SD 

GST GSTM1   

 Positive 13 8.9 ± 4.6  

 Null 12 6.3 ± 4.0  

 GSTT1   

 Positive 22 7.3 ± 4.6  

 Null 3 9.8 ± 3.1  

 GSTP1 (Ile105Val)   

 Ile/Ile 12 8.1 ± 5.5  

 Ile/Val 11 7.0 ± 3.7  

 Val/Val 2 8.0 ± 0.0  

 Ile/Val + Val/Val 13 7.2 ± 3.4  

 GSTA2 (Pro110Ser)   

 Pro/Pro 23  7.5 ± 4.4  

 Pro/Ser 2  8.9 ± 6.3  

 Ser/Ser 0  --- 

 GSTA2 (Ser112Thr)   

 Ser/Ser 7 7.7 ± 5.4 

 Ser/Thr 11 6.6 ± 4.6  

 Thr/Thr 7 9.1 ± 3.2  

 Ser/Thr + Thr/Thr 18  7.6 ± 4.2  

 GSTA2 (Glu210Ala)   

 Glu/Glu 21 8.0 ± 4.7  

 Glu/Ala 4 5.6 ± 2.3  

 Ala/Ala 0  --- 

EPH EPHX1 (Tyr113His + His139Arg)   

 Low activity 12 7.9 ± 5.0  

 Medium activity 6 6.3 ± 1.9  

 High activity 6 8.0 ± 5.5  
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Table VI.2. Percent DNA in Tail (%Tail DNA) induced by GA in whole blood leukocytes 

from 25 healthy individuals considering different genotypes of genes involved in BER 

pathway. 

 

Genotypes N % Tail DNA ± SD 

XRCC1 (Gln399Arg)   

Arg/Arg 10 9.6 ± 5.0 

Arg/Gln 13 6.6 ± 3.9 

Gln/Gln 2 4.3 ± 1.2 

Arg/Gln + Gln/Gln 15 6.3 ± 3.7 

OGG1 (Ser326Cys)   

Ser/Ser 11 8.8 ± 4.0 

Ser/Cys 14 6.6 ± 4.7 

Cys/Cys 0  ----- 

PARP1 (Val762Ala)   

Val/Val 19 8.2 ± 3.8 

Val/Ala 5 5.7 ± 7.1 

Ala/Ala 1 5.5 

Val/Ala + Ala/Ala 6 5.7 ± 6.4 

PARP4 (Pro1328Thr)   

Pro/Pro 12 7.7  ± 4.6 

Pro/Thr 12 7.0 ± 4.4 

Thr/Thr 1 13.4 

Pro/Thr+Thr/Thr 13 7.4 ± 4.6 

APEX1 (Asp148Glu)   

Glu/Glu 8 7.7  ± 4.4 

Glu/Asp 12 8.2  ± 4.9 

Asp/Asp 5 6.0  ± 4.2 

Glu/Asp + Asp/Asp 17 7.5 ± 4.7 

MUTYH (Gln335His)   

Gln/Gln 14 7.1 ± 5.3 

Gln/His 7 6.1 ± 1.7
 

His/His 4 11.9 ± 1.8*
 

Gln/His+His/His 11 8.2 ± 3.3 

Note. Asterisk indicates significant at p<0.001 compared to homozygous variant genotypes with 

heterozygous genotypes. 
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Table VI.3. Percent DNA in Tail (%Tail DNA) induced by GA in whole blood leukocytes 

from 25 healthy individuals considering different genotypes of genes involved in NER 

pathway. 

Genotypes N % Tail DNA ± SD 

ERCC2 (Lys751Gln)   

Lys/Lys 8 8.2± 4.2 

Lys/Gln 13 6.5 ± 3.5  

Gln/Gln 4 10.0 ± 7.5  

Lys/Gln+ Gln/Gln 17 7.3 ± 4.7  

ERCC1 (Gln504Lys)   

Gln/Gln 17 8.1 ± 4.9  

Gln/Lys 6 7.3 ± 2.9  

Lys/Lys 2 4.4 ± 5.9 

Gln/Lys + Lys/Lys 8 6.6 ± 3.6 

ERCC4 (Arg415Gln)   

Arg/Arg 20 7.1 ± 4.3 

Arg/Gln 3 10.8 ± 7.0 

Gln/Gln 2 7.6 ± 0.7 

Arg/Gln + Gln/Gln 5 9.5 ± 5.3 

ERCC5 (His1104Asp)   

His/His 15 7.9± 4.9 

His/Asp 9 7.2 ± 4.2 

Asp/Asp 1 5.5 

His/Asp + Asp/Asp 10 7.1 ± 4.0 

ERCC5 (Cys529Ser)   

Cys/Cys 24 7.4 ± 4.5 

Cys/Ser 1 10.9 

Ser/Ser 0  ----- 

ERCC6 (Arg1230Pro)   

Pro/Pro 22 7.3 ± 4.5 

Pro/Arg 3 9.6 ± 4.6 

Arg/Arg 0 ----- 

ERCC6 (Gln1413Arg)   

Arg/Arg 17 7.6 ± 4.4 

Arg/Gln 6 7.5 ± 5.9 

Gln/Gln 2 7.6 ± 0.7 

Arg/Gln + Gln/Gln 8 7.5 ± 5.0 

RAD23B (Ala249Val)   

Ala/Ala 19 7.1 ± 4.1 

Ala/Val 6 9.1± 5.6 

Val/Val 0 ----- 

XPC (Ala499Val)   

Ala/Ala 2 6.9 ± 4.3 

Ala/Val 10 6.6 ± 6.0 

Val/Val 13 8.4 ± 3.2 

Ala/Val + Val/Val   

XPC (Lys939Gln)   

Lys/Lys 11 7.4 ± 5.4 

Lys/Gln 12 8.0 ± 4.0 

Gln/Gln 2 6.2 ± 2.6 

Lys/Gln + Gln/Gln 14 7.8 ± 3.8 
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Table VI.4. Percent DNA in Tail (%Tail DNA) induced by GA in whole blood 

leukocytes from 25 healthy individuals considering different genotypes of genes 

involved in HRR pathway. 

Genotypes N % Tail DNA ± SD 

RAD51 (5’UTR)   

G/G 6 10.4 ± 5.7 

G/T 11 6.9 ± 4.7 

T/T 8 6.4 ± 2.3 

G/T + T/T 19 6.7 ± 3.8 

NBS (Glu185Gln)   

Glu/Glu 15 7.3 ± 4.6 

Glu/Gln 8 7.7 ± 5.0 

Gln/Gln 2 9.2 ± 1.8 

Glu/Gln + Gln/Gln 10 8.0 ± 4.5 

XRCC3 (Thr241Met)   

Thr/Thr 6 5.8 ± 3.7 

Thr/Met 13 7.9 ± 4.4 

Met/Met 6 8.6 ± 5.7 

Thr/Met + Met/Met 19 8.1 ± 4.7 

XRCC2 (Arg188His)   

Arg/Arg 22 7.0 ± 4.5 

Arg/His 3 11.6 ± 1.5 

His/His 0   ----- 
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Table VI.5. Percent DNA in Tail (%Tail DNA) induced by GA in whole blood 

leukocytes from 25 healthy individuals considering different genotypes of genes 

involved in NHEJ pathway. 

 Genotypes N % Tail DNA ± SD 

 XRCC4 Asn298Ser   

 Asn/Asn 17 8.4 ± 4.7 

 Asn/Ser 8 5.9 ± 3.6 

 Ser/Ser 0  ------ 

 XRCC4 Thr134Ile   

 Ile/Ile 24 7.8 ± 4.5 

 Ile/Thr 1 3.5  

 Thr/Thr 0  ----- 

 Lig4Thr9Ile   

 Thr/Thr 19 8.2 ± 4.7 

 Thr/Ile 6 5.7 ± 3.4 

 Ile/Ile 0  ------ 

 Ku80Ex21-238G>A   

 G/G 12 7.4 ± 4.2 

 G/A 8 6.6 ± 4.4 

 A/A 5 9.8 ± 5.5 

 G/A+A/A 13 7.8 ± 4.9 

 Ku80Ex21+338T>C   

 T/T 20 7.8 ± 4.6 

 T/C 4 6.7 ± 5.4 

 C/C 1 7.2  

 T/C+C/C 5 6.8 ± 4.6 

 Ku80Ex21-352C>A   

 C/C 20 7.8 ± 4.6 

 C/A 4 6.7 ± 5.4 

 A/A 1 7.2  

 C/A+A/A 5 6.8 ± 4.6 

 Ku80Ex21+466A>G   

 A/A 20 7.8 ± 4.7 

 A/G 5 6.8 ± 4.0 

 G/G 0  ----- 

 



 

 

Table VI.6. XRCC1 Gln399Arg and MUTYH Gln335His association and DNA damage 

 

 

 
XRCC1Gln399Arg / MUTYHGln335His 

 ArgArg+ArgGln/GlnGln+GlnHis ArgArg+ArgGln/HisHis* GlnGln/GlnGln+GlnHis** Gln/Gln/His/His 

%Tail DNA ±SD (n) 7.0 ± 4.5 (19) 11.9 ± 1.8 (4) 4.3 ± 1.2 (2) n.d. 

Note. Asterisk indicates significant difference at p=0.05 compared with ArgArg+ArgGln/GlnGln+GlnHis; Double asterisk indicates significant difference at 

p<0.05 compared with ArgArg+ArgGln/HisHis; n.d. non detected 

 

 

Table VI.7 XPC haplotypes and DNA damage 

 

 XPCAla499Val / XPCLys939Gln 

 AlaAla/LysLys AlaVal/LysLys AlaVal/LysGln* ValVal/LysLys ValVal/LysGln ValVal/GlnGln 

%Tail DNA ±SD (n) 6.9 ± 4.3 (2) 7.6 ± 6.2 (8) 2.8 ± 3.7 (2) 6.7 (1) 9.1 ± 3.3 (10) 6.2 ± 2.6 (2) 

Note Asterisk indicates significant difference at p<0.05 when compared AlaVal/LysGln with ValVal/LysGln 
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6.4. Discussion: 

 

Acrylamide is a public health concern in terms of cancer risk assessment 

justifying the need of reliable toxicological biomarkers. In this context, the comet assay 

is actually an emerging tool to properly assess primary DNA damage either in vitro or 

in vivo. Using this methodology, the in vitro genotoxic potential of AA and GA was 

characterized by the % DNA in Tail in peripheral blood leukocytes from healthy donors.  

Acrylamide 1-h exposure did not alter DNA damage at any concentration level 

tested up to 1 mM. Our results are in agreement with Baum et al [38], who also did not 

find AA genotoxicity in the comet assay with human blood cells at 1-4 h of incubation. 

In addition, Hansen et al. [39] reported an absence of AA-induced DNA damage up to 5 

mM in human peripheral PBL at 2 h. However, other studies with HepG2 [40, 41], V79 

cells and Caco-2 cells [9] detected significant increases in DNA damage but only at 

very high concentrations of AA (millimolar range). In contrast, Blasiak et al [42] 

showed significant DNA damage in isolated human lymphocytes exposed to AA at low 

concentrations, reinforcing the need for further evaluation of AA in human cells using 

different experimental conditions and protocols. In contrast to the use of isolated human 

lymphocytes, the present report was carried out using whole blood, an approach that can 

be considered more closely related to the physiological situation, since it takes into 

account the influence of other factors, such as red blood cells, platelets and plasma [43, 

44]. Another important feature when whole blood is used is that AA reacts with 

haemoglobin forming Hb adducts [2], rendering AA less available to a potential cellular 

damaging effect.  

There are convincing data showing that GA acts as the ultimate genotoxic agent 

in AA exposure. Our results using the comet assay revealed that GA indeed produced 

significant increases in terms of %Tail DNA, at concentrations starting from 250 µM. 

These results are in agreement with the data published by Baum et al [38] who observed 

that GA induced DNA damage for concentrations of 300 µM and highter. In addition, 

the results presented here are generally in accordance with other investigations that also 

found DNA damage for GA in the comet assay, although for higher GA concentrations 

(≥ 500 µM) in human lymphoblastoid TK6 cells [45] and isolated lymphocytes [39].  
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The results from our study also demonstrated that PBL from healthy donors 

respond differently in vitro to a given genotoxic concentration of GA. This is an 

important point that has not yet been fully addressed. The heterogeneity of the response 

observed in the comet assay using whole PBL from different donors may be in part 

attributed to individual genome sensitivity [46]. A plausible explanation for the 

interindividual variability noted herein may rely on individual genetic polymorphisms 

associated with detoxification and repair pathways that are likely to influence the levels 

of DNA damage after exposure to GA.  

With respect to the detoxification polymorphisms in GSTs and EPHX1 no 

relevant associations with GA-induced DNA damage were found. For a definitive 

conclusion further studies need to be performed using different endpoints of DNA 

damage, namely the induction of sister chromatid exchanges, which were shown to 

correlate with GA-DNA adducts [20]. 

The predominant adduct N7-GA-Gua is promutagenic since it might undergo 

spontaneous depurination [19, 47, 48]. The abasic site thus generated is likely to 

promote incorporation of deoxyadenosine during DNA replication, leading to G→T 

transversions [47]. DNA repair is therefore essential for the understanding of GA-

induced genotoxic effects, for which a number of different primary lesions are present, 

including GA adducts, abasic sites and DNA breaks [20, 49]. Johansson et al using 

DNA repair deficient cell lines, suggested that the repair of the lesions induced by GA 

involves BER (short patch) and HRR, but not NER [49].  

Concerning the BER pathway, MUTYH gene encodes a glycosylase involved in 

the repair of DNA damage resulting from the oxidation of guanine nucleotides. 

MUTYH protein can prevent transversions of a G:C base pair with a T:A base pair, 

resulting from the oxidation product of guanine that mispairs to adenine [50]. There is 

scarce information on the formation of reactive oxygen species by GA, although for AA 

some reports suggest the involvement of oxidative stress [40, 51]. Our results suggest 

that MUTYH (Gln335His) influences the genotoxicity induced by GA, since variant 

individuals presented higher levels of DNA damage. Further studies should be 

performed to clarify this point.  

XRCC1 has multiple roles in repairing DNA base damage and single-strand 

DNA breaks. Although XRCC1 does not have a known enzymatic activity, there is 
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evidence suggesting that it may act as a nucleating factor by bringing different BER 

components together at the site of action [52]. The importance of XRCC1 Gln399Arg 

polymorphism was previously identified in occupational studies using the comet assay. 

Studies performed with welders [53], and healthy Japanese workers [54] associated with 

higher DNA damage with XRCC1 variant allele. However, conflicting results have also 

been published (e.g. fruit growers exposed to pesticides) [55].  

Our results suggested a significant interaction between XRCC1 Gln399Arg and 

MUTYH Gln335His polymorphisms, as PBL from individuals with the haplotype 

ArgArg+ArgGln/HisHis were more prone to DNA damage than those with 

ArgArg+ArgGln/GlnGln+GlnHis and with GlnGln/GlnGln+GlnHis. In view of this 

MUTYH and XRCC1, seem to be involved in the genotoxicity induced by GA. Overall, 

our results emphasize that the BER pathway may be operative in the repair of lesions 

generated by GA. However, as a consequence of sample size, further confirmations 

need to be made in a larger population.  

Data presented here also suggest an association of global genome NER pathway, 

specifically XPC, and GA-induced DNA damage. XPC is involved in DNA damage 

recognition, and in DNA repair initiation. The binding of XPC to damaged DNA is the 

rate-limiting step for NER [56]. Several epidemiological studies have been carried out 

to evaluate the association of XPC polymorphisms with cancer risk at different organ 

sites and in diverse populations (reviewed in [56]). Further, a study performed by Wang 

et al [57] suggested that the polymorphisms of XPC genes might modulate the 

genotoxicity by PAH in coke oven workers. Our results suggest that XPC 

Ala499Val/Lys939Gln diplotype, might be associated with DNA damage induced by 

GA.  

Overall, this study shows that GA, but not AA, increases DNA damage as 

measured by the comet assay. Using this methodology, the interindividual variation 

observed in terms of GA-induced genotoxicity might be associated with polymorphic 

genes involved in BER and NER pathways. Further studies should be performed to 

reinforce these findings, including a larger number of individuals with different 

genotypes. Further, functional studies are required in order to understand the underlying 

mechanisms of the variability in the GA-induced DNA damage. 
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7.1. Concluding remarks and future prospects 

 

Acrylamide is a well-known industrial chemical classified as probable human 

carcinogen by IARC since 1994 [1] presented in stuff foods [2]. This carcinogen can be 

formed by Maillard reaction between primarily the amino acid asparagine and reducing 

sugars in food processing upon heating [3, 4]. Furthermore, AA can be found in 

commonly consumed foods and beverages, such as processed cereals, French fries, 

potato chips and coffee [2]. The average daily intake of AA was estimated to be about 

0.5-1.0 µg/Kg bw in adults and up to 2-fold in 13 year-old children with a normal 

western diet [2]. This has raised concerns about the positive health risks of AA for the 

general population, even more because AA is a known rodent carcinogen [5]. 

Furthermore, the association of the increased risk of human cancer with AA dietary 

consumption is still a matter of discussion [5, 6]. 

AA can be metabolized by cytochrome P450 (CYP2E1) to the genotoxic 

epoxide glycidamide (GA), the ultimate genotoxin. However, the mechanisms of 

genotoxicity of AA- and GA- dependent in mammalian cells are not yet fully 

understood. In view of this, the evaluation of DNA damage induced by these two 

compounds is of major importance. With this purpose, we resorted to the use of distinct 

assays: chromosomal aberrations (CAs), sister chromatid exchange (SCEs), 

quantification of DNA adducts and comet assay in V79 Chinese hamster cells and in 

human lymphocytes. 

V79 cells are a well established mammalian cell line widely used in cytotoxicity 

and genotoxicity studies. These cells are very important in present study as they do not 

express detectable levels of CYP2E1, the recognized cytochrome P450, responsible for 

AA epoxidation [7, 8]. These cells revealed to be an adequate model to properly address 

the mechanisms of genotoxicity by AA and GA. However, the use of human cells is 

obviously more suitable for human risk assessment, and also provides the possibility to 

address inter-individual variation in terms of DNA damage and the association with 

individual susceptibility. The use of human cells from whole blood samples was chosen 

in this work since it is considered to be more closely related to the physiological 

situation than isolated lymphocytes, including the influence of others factors, such as 

red blood cells, platelets and plasma [9]. 
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In view of that, the cytotoxicity of AA and GA in V79 cells, evaluated by the 

MTT reduction assay, was performed. The results showed that both AA and GA 

induced dose-dependent cell death, being GA clearly more cytotoxic than AA for all the 

concentrations studied, which is in agreement with data reported by others groups, using 

different cell survival end points [10, 11]. 

The clastogenicity of these compounds were then analyzed by CAs assay in V79 

cells. The results suggested that both AA and GA induced CAs, especially chromatid 

breaks and gaps. AA and GA increased the % ACEG mainly for the higher 

concentration studied (1000 and 2000 µM, for GA and AA, respectively). 

The genotoxicity of AA and GA were also analyzed by SCEs assay in V79 cells 

and in stimulated human lymphocytes. The results concerning SCE formation in V79 

cells clearly showed that GA consistently induced SCEs for concentrations above 10 

µM, increasing the background levels of SCEs by about 10-fold to levels of about 60 

SCE/cell for the highest concentration tested. On the other hand, for AA-exposed 

cultures, a significant increase in SCE/cell was observed only at a very high 

concentration level (2000 µM). The induction of SCE in lymphocytes revealed results 

that are in agreement with the previous one obtained in V79 cells, since the induction of 

SCEs by AA was slight and specially associated with the very high and cytotoxic 

concentration of 2000 µM and that GA markedly induced SCE in a dose-response 

manner (up to 750 µM). These results reinforce the knowledge that GA is far more 

genotoxic than AA and also highlight the high sensitivity of SCE to be used as a 

toxicological biomarker in an AA exposure scenario.  

The levels of N7-GA-Gua and N3-GA-Ade were also measured in V79 cells and 

in stimulated lymphocytes exposed to AA and GA. Data showed that AA exposure in 

V79 cells lead to very low levels of N7-GA-Gua, which were only observed for 

concentrations higher than 1000 µM. These low levels of N7-GA-Gua stemming from 

AA exposure might be related to either residual metabolism of AA in V79 cells or to a 

small extent of spontaneous nonenzymatic oxidation to GA, since V79 cells are 

essentially devoid of CYP2E1. On the other hand, GA showed to be a potent inducer of 

N7-GA-Gua with linear dose-response dependence. The detection of this adducts was 

observed for doses as low as 1 µM and 10 µM of GA, respectively in V79 cells and in 

lymphocytes. The second more frequent adduct, N3-GA-Ade was only detected at very 
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high GA concentrations precluding the interest of its quantification in human dietary 

studies. It is recognized that compounds that form DNA adducts are also strong SCEs 

inducers. Our results showed, in fact, a very strong correlation between the levels of 

N7-GA-Gua and SCE/cell for both cell types. This finding is very important in terms of 

the understanding of the mechanisms involved in DNA damage signaling and repair. 

These results suggested that the metabolism of AA to GA and the ensuing formation of 

depurinating DNA lesions [12, 13] are responsible for SCE induction. 

In view of these showed clearly differences between AA and GA genotoxicity, it 

seemed important to clarify the genotoxicity mechanisms induced by AA per se. The 

modulation of reduced glutathione (GSH) status could give additional insight into this 

matter, as GSH is a key factor for mammalian cells homeostasis, with diverse functions 

that include, among others, the conjugation of eletrophilic compounds, including AA 

and GA, and the detoxification of products generated by oxidative stress. For this 

purpose the cytotoxicity was analyzed by the MTT assay and clastogenicity evaluated 

by CAs. This study evaluated the effect of GSH modulators, including the evaluation of 

the effect of buthionine sulfoximine (BSO), of GSH-monoethyl ester (GSH-EE) and 

also of GSH endogenously added to culture medium in V79 cells. BSO treatment alone 

was associated with relatively low toxicity leading to a slight decrease in cell viability 

and a moderate increase in the frequency of ACEG. In order to evaluate the potential 

protective effect of GSH towards AA toxicity, the intracellular GSH enrichment was 

performed by pre-treatment with GSH-EE. The results obtained fail to show the 

protective effect of GSH-EE. Co-treatment with GSH exogenously added to the culture 

medium revealed a protective effect either in terms of cytotoxicity or clastogenicity 

induced by AA. This effect could be a consequence of the spontaneous conjugation of 

AA with GSH in the extracellular medium. In this sense, the evaluation of the potential 

conjugation of AA with GSH in the extracellular medium was performed. With this 

purpose, we studied in a set of cell free experiments the intensity of fluorescence of the 

conjugate GSH-monochorobimane (MCB), a fluorescent probe for GSH, after 

incubation of AA with GSH. These results showed that spontaneous conjugation of AA 

is favored when AA concentrations are higher than GSH concentrations and that 

spontaneous conjugation is clearly time-dependent (1-h incubation decreased the 

percentage of free GSH when compared with a 24-h incubation period). The results 
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presented here reinforce the role of GSH in the modulation of the cytotoxic and 

clastogenic effects induced by AA. 

The “single cell gel electrophoresis” or comet assay was also performed to study 

the genotoxicity of AA and GA in human cells. We compared the DNA damage 

potency of AA and its metabolite GA in the comet assay using human leukocytes 

(whole blood samples) and the results revealed that AA was not genotoxic up to 1000 

µM, while GA showed to significantly increase % Tail DNA at concentrations starting 

from 250 µM. 

Both SCE and comet assay showed some extent of inter-individual variability 

that could be related with different polymorphisms in detoxification and DNA repair 

genes. In view of this, the different donors were genotyped for detoxification (GSTM1, 

GSTT1, GSTP1, GSTA2 and EPHX1) and DNA repair genes involved in BER (APEX1, 

MUTYH, OGG1, PARP1, PARP4, and XRCC1), NER (ERCC1, ERCC2, ERCC4, 

ERCC5, ERCC6, RAD23B and XPC), HRR (NBS, RAD51, XRCC2 and XRCC3) and 

NHEJ (Ku80, Lig4 and XRCC4) pathways. These polymorphic genes were analyzed in 

order to find out possible associations between genotypes and GA-induced SCE 

frequency and % Tail DNA.  

By combining DNA damage, assessed by SCE assay, in GA-treated 

lymphocytes and polymorphisms data, associations between the induction of SCEs and 

GSTP1 (Ile105Val) and GSTA2 (Glu210Ala) genotypes are suggested, but not the other 

polymorphic genes associated with DNA repair pathways. Moreover, our results 

suggested associations between DNA damage, assessed by the alkaline comet assay, 

and polymorphisms of BER (MUTYH Gln335His and XRCC1 Gln399Arg) and NER 

(XPC Ala499Val) genes, either alone or in combination. Further studies should be 

performed in order to evaluate other polymorphisms and different combinations of 

polymorphisms. These future studies necessarily need larger population samples and 

will be important to reinforce these findings and understand the underlying mechanisms 

of variability in GA-induced DNA damage. 

The overall results showed that GA is far more genotoxic than AA in all the 

endpoints studied and in both types of cell models used. All biomarkers developed in 

the framework of this study revealed to be adequate to understand the mechanisms 

triggered upon AA or GA exposure. Nonetheless, the use of specific N7-GA-Gua a GA-



 

193 
 

DNA adduct revealed to be of utmost importance in terms of toxicological significance 

in view of the high sensitivity, being much relevant its quantification in cultured cells 

exposed to GA at concentrations as low as 1 µM. Taken together the results from this 

thesis strongly point out that GA, the epoxide metabolite of AA is the responsible for 

the genotoxic effects of AA. 

In the future it would be important to validate these results with a group of 

young Portuguese individuals, taking into account the amount of foodstuff consumed 

containing AA. This study is already being performed by us and shall evaluate the 

results obtained in a food frequency questionnaire and the basal levels of DNA damage 

in this group using the cytogenetic biomarkers (SCEs, CAs, comet assay and DNA-

adducts) validated in this work. 
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Resumo  

 

A acrilamida (AA) é um composto químico, utilizado principalmente como 

agente floculante no processo de depuração de água potável e tratamento de águas 

residuais urbanas e industriais, e como agente de controlo de fluxo em operações em 

poços de petróleo. Por outro lado, a AA é utilizada em engenharia civil, em fundações, 

como constituinte da argamassa utilizada na construção e reparação de esgotos, túneis e 

barragens. A AA é ainda utilizada na estabilização de solos, síntese de corantes, 

produção de materiais de embalagem, co-polímeros para lentes de contacto, cosméticos, 

e em muitos laboratórios de biologia molecular e engenharia genética na preparação de 

géis de electroforese. 

A AA foi classificada como potencial carcinogéneo para os humanos, pela IARC 

(International Agency for Research on Cancer), com base em resultados obtidos em 

estudos com animais. Estudos de carcinogenicidade em ratos mostraram que a AA 

aumenta o número de tumores em diferentes órgãos, incluindo a glândula mamária. Foi 

também demostrado que a AA é neurotóxica em humanos e em experiências com 

animais, e que apresenta propriedades mutagénicas em células somáticas e germinais. A 

AA absorvida pode ser oxidada ao seu metabolito epóxido glicidamida (GA) através do 

citocromo P450 2E1, podendo ambas, AA e GA, ser conjugadas com o glutationo 

reduzido (GSH), originando conjugados de ácido mercaptúrico, que serão eliminados 

pela urina. A GA, por sua vez, pode também ser conjugada com a epóxide hidrolase, 

originando a gliceramida. Tanto a AA como a GA podem ligar-se a macromoléculas, 

tais como a hemoglobina e o DNA originando aductos específicos. Estes aductos podem 

ser usados como biomarcadores de dose efetiva de exposição à AA e GA.  

Durante a década de 90 pensava-se que o homem estava exposto à AA apenas 

através da exposição ocupacional, e também apenas em pequenas quantidades através 

do consumo de água potável refinada com poliacrilamida, ou ainda pela inalação do 

fumo de tabaco. No entanto, alguns estudos verificaram a existência de níveis elevados 

de aductos de AA-hemoglobina em indivíduos não expostos, o que provocou uma forte 

preocupação em termos de risco para a saúde humana, principalmente porque foram 

descobertos níveis relativamente elevados de AA em diversos alimentos ricos em amido 

quando sujeitos a elevado tratamento térmico. Os referidos produtos alimentares, além 
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de serem consumidos em larga escala, são especialmente consumidos por crianças e 

jovens, sendo que nos mesmos se incluem por exemplo as batatas fritas, “snacks”, 

cereais de pequeno-almoço, bolachas e café, tendo sido estimado que a dose total diária 

de AA ingerida por adulto tendo como base uma dieta ocidental normal, se encontra na 

ordem dos 1 µg/Kg por peso corporal, podendo ser 2 a 3 vezes superior em crianças e 

adolescentes.  

Desde 2002 as investigações sobre a presença de AA nos alimentos, e as 

possíveis consequências para a saúde pública têm-se sucedido e vários progressos têm 

sido alcançados. No entanto, até à data os resultados são escassos tendo em conta os 

mecanismos de genotoxicidade da AA e GA. Por esse motivo, o objectivo desta tese 

centra-se na avaliação das consequências genéticas da exposição à AA e GA, 

recorrendo ao uso de linhas celulares e de linfócitos humanos. 

Neste estudo procedeu-se inicialmente à avaliação da citotoxicidade e das lesões 

de DNA induzidas pela AA e GA em células de hamster Chinês V79, uma linha celular 

deficiente em CYP2E1, de modo a prevenir a conversão de AA a GA (Capítulo3). Para 

avaliar a citoxicidade recorreu-se ao ensaio do MTT para concentrações compreendidas 

entre 0.1 e 10 mM. A AA mostrou ser menos citotóxica do que a GA para todas as 

concentrações testadas, apresentando baixos níveis de sobrevivência (<5%) para 

concentrações elevadas de GA (≥ 4mM) e de AA (10 mM). 

De modo a avaliar a genotoxicidade e a clastogenicidade da AA e GA em 

células de mamífero, recorreu-se à utilização de dois testes citogenéticos diferentes: o 

teste das aberrações cromossómicas (CAs), e o teste da troca de cromátides irmãs 

(SCEs). Os resultados obtidos no teste das CAs em células V79, mostraram claramente 

que tanto a AA como a GA, são compostos clastogénicos induzindo a formação de 

aberrações cromossómicas, com uma dependência dose-resposta, especialmente 

observada para as concentrações mais elevadas (1000 µM e 2000 µM). No entanto, para 

concentrações equimolares a GA mostrou ser mais clastogénica do que a AA. Através 

dos resultados obtidos no teste da troca de cromátides irmãs, na mesma linha celular, 

pode-se afirmar que a GA é um potente indutor de SCEs para concentrações igual ou 

superiores a 10 µM, com uma clara relação dose-resposta, aumentando a frequência 

basal de troca de cromátides irmãs em cerca de 10 vezes, para níveis de 

aproximadamente 60 SCE/célula para a concentração mais elevada (1000 µM). Em 
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contrapartida, a AA demonstrou ser um fraco indutor de SCEs, observando-se apenas 

um aumento no nível de lesão para a concentração mais elevada (2000 µM). Os 

resultados no geral, para todas as doses testadas, mostraram que a GA é mais citotóxica 

e clastogénica do que a AA em células V79. Este estudo demonstrou também a elevada 

sensibilidade do ensaio da troca de cromátides irmãs, de modo a poder ser utilizado 

como biomarcador toxicológico no caso de um cenário de exposição à AA. 

No âmbito desta tese efetuou-se também a quantificação de aductos específicos 

de DNA, nomeadamente N7-(2-carbamoil-2-hidroxietil)guanina (N7-GA-Gua) e N3-(2-

carbamoil-2-hidroxietil)adenina (N3-GA-Ade) em células V79. Os resultados 

mostraram que a exposição à AA origina níveis muito baixos de aductos N7-GA-Gua, 

os quais foram apenas observados para concentrações superiores a 1000 µM. Estes 

baixos níveis de aductos que são provenientes da exposição à AA devem estar 

relacionados com a oxidação não enzimática espontânea da AA a GA, uma vez que as 

células V79 são deficientes em CYP2E1. No entanto, a GA mostrou ser um potente 

indutor de N7-GA-Gua, apresentando uma dose-resposta linear, sendo a detecção deste 

aducto observada para concentrações tão baixas como 1 µM. O segundo aducto mais 

frequente, N3-GA-Ade foi apenas detectado para concentrações muito elevadas de GA, 

limitando o seu interesse em estudos sobre dieta humana. Adicionalmente, observou-se 

que as concentrações de GA e os níveis de N7-GA-Gua apresentam uma relação dose-

resposta linear. Obteve-se também uma óptima correlação entre os níveis de N7-GA-

Gua e o nível de SCE/célula (r=0.987; p=1.25x10
-12

). 

Durante este trabalho procurou-se também compreender os mecanismos da 

genotoxicidade induzida pela AA. Para tal estudaram-se os mecanismos de modulação 

do glutationo reduzido (GSH), o qual possui vários papéis importantes nas células de 

mamífero, incluindo a conjugação com compostos electrofílicos e a destoxificação de 

produtos obtidos por stress oxidativo. Deste modo, foram efetuados ensaios onde se 

averiguou o efeito da deplecção intracelular de GSH (pré-incubação com butionina 

sulfoximina, BSO), o efeito do enriquecimento intracelular com GSH (pré-incubação 

com GSH-monoetil estér, GSH-EE) e o papel do GSH adicionado extracelularmente 

(através da co-incubação com GSH) em células V79 (Capítulo 4). Com este objectivo, 

avaliaram-se diferentes parâmetros, tais como a citotoxicidade (ensaio do MTT) e a 

clastogenicidade (ensaio das ACs). Nos ensaios das células V79 expostas a AA e com 

pré-incubação com BSO, verificou-se um decréscimo na viabilidade celular e um 
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aumento na fequência das aberrações cromossómicas excluindo gaps (ACEG). Por 

outro lado, através da pré-incubação com GSH-EE não se verificaram alterações 

significativas na percentagem de sobrevivência das células V79 expostas à AA, nem na 

frequência de ACEG. Por fim, no co-tratamento com GSH adicionado exogenamente ao 

meio de cultura, verificou-se um efeito protectivo tanto em termos de viabilidade celular 

quer em termos de clastogenicidade induzidas pela AA. Este efeito pode ser 

consequência da conjugação expontânea da AA com GSH no meio extracelular. Deste 

modo, foi posteriormente avaliado o potencial de conjugação da AA com o GSH com 

base no teste da fluorescência do monoclorobimano (MCB), uma sonda fluorescente 

que se liga ao GSH. Os resultados mostraram que a conjugação expontênea da AA é 

favorecida quando existem concentrações superiores de AA em relação ao GSH e que 

esta conjugação expontânea é claramente dependente do tempo de exposição (1h de 

exposição diminuiu a percentagem de GSH livre quando comparado com o período de 

24h de exposição). Globalmente, os resultados obtidos reforçaram o papel do GSH na 

modulação da citotoxicidade e clastogenicidade induzidas pela AA. 

Apesar do uso das células V79 ser adequado como modelo para inferir sobre a 

genotoxicidade induzida pela AA e GA, o passo seguinte deste trabalho envolveu o 

estudo em células humanas. A utilização deste tipo de células é obviamente mais 

adequado para a avaliação de risco, permitindo também a possibilidade de investigar a 

variabilidade individual em termos de lesão de DNA, e a sua correlação com a 

susceptibilidade de cada individuo. Para tal recorreu-se à colheita de sangue periférico 

de dadores saudáveis, não sujeitos a medicação e não fumadores. Os dadores foram 

devidamente informados sobre o âmbito do estudo, e um consentimento informado foi 

assinado pelos mesmos, antes de se ter procedido ao início dos trabalhos. Cumprirá 

também salientar o facto de ter sido obtida uma aprovação do estudo pelo Comité de 

Ética da Faculdade de Ciências Médicas da Universidade Nova de Lisboa. No referido 

estudo recorreu-se ao uso de células humanas provenientes de sangue total, uma vez que 

é considerado ser mais aproximado da situação fisiológica do que o uso de linfócitos 

isolados, pois tem em conta a influência de outros factores, tais como glóbulos 

vermelhos, plaquetas e plasma.  

Deste modo, linfócitos estimulados com fitohemaglutinina foram expostos a 

diferentes concentrações de AA e GA e as lesões de DNA quantificadas através do 

ensaio das SCEs e dos níveis de aductos de DNA (Capítulo 5). A partir destes estudos e 
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em relação ao ensaio das SCEs, observou-se mais uma vez que a GA é muito mais 

genotóxica do que a AA, aumentando a GA o nível de SCEs em cerca de 10 vezes, 

quando comparada com o controlo, o que está de acordo com os resultados previamente 

obtidos com células V79. Por outro lado, a AA só induziu SCE para a concentração 

mais elevada (2000 µM). Do mesmo modo, a quantificação de aductos de DNA, 

nomeadamente N7-GA-Gua e N3-GA-Ade, efectuados em linfócitos estimulados, 

originaram resultados coerentes com os obtidos em células V79. Os resultados obtidos 

mostram uma dose-resposta linear entre os níveis de N7-GA-Gua e as concentrações de 

GA estudadas (até 750 µM), tendo sido este aducto detectado para a menor dose 

estudada (10 µM). O aducto (N7-GA-Gua) determinado em linfócitos expostos à GA 

apresentou uma correlação directa entre os níveis de aductos e a frequência de SCEs, tal 

como anteriormente já se tinha verificado em células V79. 

Por outro lado, foi também avaliado o potencial de lesão do DNA da AA e GA 

em leucócitos humanos, recorrendo-se à técnica do ensaio do cometa alcalino (Capítulo 

6). Os resultados mostraram que a GA aumentou significativamente a % de DNA na 

cauda do cometa, para concentrações superiores a 250 µM, enquanto a AA não 

provocou lesões de DNA significativas para as concentrações estudadas (até 1000 µM). 

Com base nas curvas dose-resposta obtidas para o ensaio das SCEs e do cometa 

alcalino, a concentração de 250 µM de GA foi escolhida para ser posteriormente 

utilizada em ensaios com vários indivíduos, tanto no que diz respeito às SCEs (13 

indivíduos) como ao ensaio do cometa (25 individuos). Ambos os ensaios mostraram 

alguma variabilidade inter-individual que poderá estar relacionada com os diferentes 

polimorfismos envolvidos na destoxificação e nas vias de reparação de DNA.  

Deste modo, o presente estudo teve também como objectivo a identificação de 

possíveis associações entre as lesões de DNA induzidas pela AA e GA quantificadas 

através dos ensaios das SCEs e do ensaio do cometa, e biomarcadores de 

susceptibilidade, considerando os polimorfismos genéticos individuais envolvidos nas 

vias de destoxificação (GSTM1, GSTT1, GSTP1, GSTA2 e EPHX1), e nas vias de 

reparação de DNA (Capítulo 5 e 6). No que diz respeito à reparação de DNA, foram 

estudados diferentes genes envolvidos na via de reparação por excisão de bases (BER), 

tais como APEX1, MUTYH, OGG1, PARP1, PARP4, e XRCC1, na reparação por 

excisão de nucleótidos (NER), tais como ERCC1, ERCC2, ERCC4, ERCC5, ERCC6, 
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RAD23B e XPC, na via de reparação por recombinação homóloga (HRR), tais como 

NBS, RAD51, XRCC2 e XRCC3, e na via de reparação por recombinação não homóloga 

(NHEJ), tais como Ku80, Lig4 e XRCC4.  

O nível de lesão de DNA determinado pela frequência de SCEs induzidas pela 

GA, aponta para uma modulação pelos polimorfismos do GSTP1 (Ile105Val) e do 

GSTA2 (Glu210Ala), mas não por outros polimorfismos associados com as vias de 

reparação de DNA. Por outro lado, os resultados obtidos com base no ensaio do cometa 

alcalino sugerem associações entre as lesões de DNA e polimorfismos da via BER 

(MUTYH Gln335His e XRCC1 Gln39Arg) e da via NER (XPC Ala499val e 

Lys939Gln), considerando os genes isoladamente ou combinados. No entanto, mais 

estudos devem ser efetuados contemplando uma maior amostragem de indivíduos 

saudáveis de modo a consolidar os resultados obtidos e compreender os mecanismos 

envolvidos nas diferenças individuais de resposta a genotóxicos. 

Os resultados globais mostraram que a GA é de facto mais genotóxica do que a 

AA, tendo como referência todos os ensaios efectuados bem como os vários tipos de 

células estudadas. Adicionalmente, todos os resultados apontam fortemente para que a 

GA, o metabolito epóxido da AA, seja o principal responsável pelos efeitos genotóxicos 

da AA. É de salientar também, que apesar dos vários tipos de ensaios utilizados neste 

trabalho terem demonstrado ser adequados para a compreensão dos mecanismos 

envolvidos na exposição à AA e GA, a quantificação de aductos de DNA por exposição 

à GA, nomeadamente N7-GA-Gua, mostrou ser aquele que revela maior robustez em 

termos de avaliação toxicológica devido à sua elevada sensibilidade. Assim sendo, este 

biomarcador de dose-efectiva pode e deve ser usado em estudos epidemiológicos em 

complementaridade com os questionários de frequência alimentar. Adicionalmente este 

trabalho permitiu tirar conclusões acerca da variabilidade da susceptibilidade individual 

relativa à destoxificação e reparação das lesões de DNA provocadas pela exposição a 

estes xenobióticos alimentares. 

 


