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Abstract

A transonic density based solver implemented in OpenFOAM is shown to be robust

and presents consistent results, when simulating three dimensional viscid flows in a low

pressure compressor. Towards the validation of the code above, the NASA Rotor 67

geometry has been tested in different mesh levels, with and without tip-gap, with grid

independence being suggested.

It is used an odd approach in turbomachinery, to compare experimental with nu-

merical data: BIAS, Root Mean Square Error and Concordance Index compare results

in pitch-wise and stream-wise directions, provided a linear interpolation to correct all

data.

Several Riemann problems are simulated to test the shock resolution and entropy

conditions due to the transonic nature of the Rotor 67 flow.

Finally, a full compressor stage is assembled with the Mixing Plane method and a

solution to the multi-row problem is achieved, increasing the reliability of OpenFOAM

libraries.





Resumo

O código transónico de massa espećıfica variável implementado no software Open-

FOAM mostra-se robusto e apresenta resultados consistentes, quando são simulados

escoamentos v́ıscidos tri-dimensionais num compressor de baixa relação de pressão.

Com vista a validação do código, testa-se a geometria do NASA Rotor 67 em diferentes

ńıveis de malha, com e sem espaçamento entre a pá e a caixa, ficando sugerida uma

independência da mesma.

Segue-se uma abordagem pouco comum nas turbomáquinas, para comparar resul-

tados experimentais com numéricos: os indicadores estat́ısticos BIAS, Raiz Quadrática

Média do Erro e o Índice de Concordância compararam valores nas direções das lin-

has de corrente e do ângulo de ataque, uma vez que todos os valores tenham sido

normalizados com uma interpolação linear.

Foram também resolvidos variados problemas de Riemann para testar a resolução

de ondas de choque e satisfação de condições de entropia devido à natureza transónica

do escoamento no Rotor 67.

Por último, constrói-se um andar completo de um compressor com o método Mixing

Plane e obtém-se a solução do escoamento, com a finalidade de acrescentar confiança

no uso do software OpenFOAM.
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periência internacional e pelo conhecimento de design/simulação em aerodinâmica que
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Y + Dimensionless distance to wall -

R Specific gas constant kJ kg−1K−1
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CHAPTER 1

INTRODUCTION

Turbomachinery plays an important role in the industry, in the world’s energy supply

and mobility. From an engineering perspective, its applications can be divided into their

governing physics: compressible and incompressible flows. This work only concerns the

former.

Turbomachines ruled by compressible flows are designed to create a great pressure

differential. The most sounding example is the gas turbine cycle used in airplanes,

automobiles and even boats: air flows through compressors, combustors and turbines.

The latter extracts some if not all energy, depending on the applications, i.e. a fighter

doesn’t need to pass much energy to a shaft while in a Thermoelectric, that is the main

purpose.

Although there are considerably distinct applications, the flow structures are similar

between all and it becomes important to understand how they work in detail. Com-

putational Fluid Dynamics (CFD) and the advance in computing performance in the

last decades allowed complex and large simulations to be made in reasonable time, thus

much of the pre-project budget is reduced. Furthermore, it has proved to be a pow-

erful research tool when examining complex physics and multi-phenomena interaction,

namely on turbomachinery.

In CFD, an important task is to validate numerical results so that these compu-
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tational methods can be used with safety. The motivation of this thesis is to add

reliability to the steady density based solver implemented by Borm et. al. [8] in the

OpenFOAM libraries: the transonicMRFDyMFoam. Moreover, the code used in this

thesis is open-source which clearly is an advantage compared to commercial codes.

The main objective of this thesis is to solve a three dimensional (3D) flow of an

aircraft fan component, the NASA Rotor 67, and compare it with experimental data.

A fan is a low pressure (LP) compressor which is part of a turbofan’s compressor set

(Figure 1.1). It is responsible for generating about 80% of the engine’s thrust in common

commercial airplanes. Statistical tools and plots will show how well data matches.

Figure 1.1: Turbofan’s compressor set: LP, intermediate pressure (IP), high pressure

(HP) compressors (Courtesy Rolls Royce [1])

This thesis will also present some simple tests, called Riemann problems, that show

how accurate the hyperbolic system in the Navier-Stokes equations is solved. By last,

a numerical feature specially designed to turbomachinery is tested: the mixing plane.

It allows steady multi-row problems to be solved which gives strength to OpenFOAM

as a reliable alternative to commercial software.

This Chapter will continue by introducing some important concepts and phenom-
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ena that are useful when dealing with turbomachinery. Chapter 2 will describe the

numerical methods that build the OpenFOAM’s transonic density-based solver while

Chapter 3 presents the Riemann problems. Chapter 4 is the highlight of the thesis

and will present the NASA Rotor 67. Chapter 5 presents the multi-row simulation and

Chapter 6 is reserved for final appreciations and conclusions.

1.1 Compressible flow

Compressible flows are considered when fluid velocity is above Mach (Ma) 0.3, be-

coming comparable with sound velocity, Ma = 1. In air, sound velocity is a func-

tion of state, i.e. function of static temperature (Ts). Flows in the transonic region,

0.8 < Ma < 1.2 are a characteristic of turbomachinery thus they are the focus of this

thesis. When in presence of such flows, some phenomena may happen: they are shock

waves, choked flows and surge flows.

Shock waves [9] start to exhibit when flow enters the transonic region and they are

characterized by a thermodynamic state discontinuity, usually velocity decreases with

an increase of Ps and Ts. They indeed provoke a compression, which is the objective of

a compressor, but are mainly a source of losses and noise. Shock waves in wall bounded

flows have and additional complexity because there exists an increased interaction with

the boundary layer (Figure 1.2).

Figure 1.2: Normal shock in a wall bounded flow: interaction between shock and

boundary layer can be seen (after Korpela [2])

Choked flows are called when there is a section in a duct where flows reachMa = 1.

3
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It is demonstrated for isentropic flows [10] that this critical section imposes a maximum

mass flow. This phenomena obviously must be taken in mind when projecting a duct,

or more precisely a turbo-machine, because depending on their geometry , mass flow

will always be limited.

Surge flows exhibit when flow incidence in compressor blades starts to be misaligned

with their metallic angles: separation produces losses and instability. This phenomena

is closely related to stall: it usually happens with low mass flow and airflow can simply

stop, entering a surge cycle (Figure 1.3).

Another compressible flow effect is that air compressibility can no longer be ne-

glected meaning that density (ρ) of air will change. For further details see White [10]

or Anderson [9].

Figure 1.3: Surge cycle: strong separation makes airflow stop (stall) and high pres-

sure air downstream rushes back through compressor. When back-flow stops, airflow is

reestablished and the cycle repeats itself (Courtesy of Thy-Engineering; Private com-

munication)

1.2 Turbomachinery

It is important to introduce static and stagnation quantities. Static quantities define a

thermodynamic state. Taking the line of thought of Anderson Jr. [9]: static quantities

4 A.J.F. Reis



Turbomachinery

is what you feel if you were moving with the flow. Total quantities is what you would

feel if you could grab the flow and adiabatically take the velocity to zero. In other

words, total quantities take into account kinetic energy and it is usual to define the

following [2]: total enthalpy (Eq. 1.1), total pressure (Eq. 1.2) and total temperature

(Eq. 1.3).

h0 = h+
V 2

2
(1.1)

with h = CpTs being the static enthalpy, Cp the specific heat at constant pressure and

V the magnitude of absolute velocity.

P0 = Ps × (1 +
γ − 1

2
Ma2)

γ
γ−1 (1.2)

T0 = Ts × (1 +
γ − 1

2
Ma2) (1.3)

with Ma =
V

c
, c =

√
γRTs is the speed of sound,γ the specific heat ratio and R the

specific gas constant.

It follows that overall aerodynamic parameters [6] can be defined and will be used

in the next chapters. They are adiabatic efficiency (Eq. 1.4) and total pressure ratio

(Eq. 1.5),

ηa =

(
P02

P01

) (γ−1)
γ

− 1

T02
T01

− 1

(1.4)

Π =
P02

P01
, (1.5)

where subscripts 1 and 2 denote inlet and outlet of the rotor, respectively.

1.2.1 Compressor flow

Compressor flow is characterized by a deceleration of relative velocities. It can be seen

in Figure 1.4 the Euler velocity triangles of a rotor and a stator. The work done by the

blades [2] is related to the change in tangential velocity (Vθ), according to Eq. 1.6.

W = Ublade (Vθ2 − Vθ1) , (1.6)
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with Ublade being the blade velocity.

Figure 1.4: Euler triangle velocities in a compressor stage; exceptional notation for

blade velocity U (after Korpela [2])

Compressors are designed for the flow to achieve a pressure ratio at a specific mass

flow. It is called the design point and it is thought to be the point where the compressor

will work more often. Usually, there will be more points where the compressor needs

to work and it will be limited by the choked mass flow and surge or stall conditions.

Therefore, every compressor has a map closely related to Figure 1.5: ψ and φ denote

dimensionless work and velocity, respectively. It can be advanced that a map for NASA

Rotor 67 will be made in Chapter 4.

Figure 1.5: Example of a compressor map (after Korpela [2])
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It is important to remark some phenomena in compressor flows that will gain bigger

relevance in next sections. There is a clearance between the blade and the casing called

Tip-Gap: flow that goes through that gap is called tip leakage. Figure 1.6 shows a flow

structure provoked by the tip-gap: a tip vortex. It is created because the suction and

pressure side don’t have a surface to separate them in the gap and so they struggle to

get mixed. In Chapter 4 this situation will be simulated and illustrated.

Figure 1.6: Tip-gap flow structure (after Tang [3])

Under certain conditions there is also separation induced by passage shock/bound-

ary layer interaction which was seen in Figure 1.2. By last, secondary flows may appear

too and will be described next.

1.2.2 Secondary flows

Secondary flows are seen as the difference between the 3D inviscid solution and the real

viscous flow happening in turbomachinery flows. Van den Braembussche [4] pointed

out recently that this flows redistribute low energy fluid, due to blockage, through the

stream-wise vorticity influencing the inviscid core velocity and pressure.

∂

∂s

[
Ωsw

W

]
=

2

W

[
1

<n

∂W

∂b
+

1

<b

∂W

∂n
+

2Ω

W

∂W

∂z

]
(1.7)
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The first two right hand side terms of Eq. 1.7 express the generation of vorticity due

to flow turning in meridional and blade-to-blade (B2B) planes, respectively. The last

term represents generation of vorticity due to Coriolis forces. Thus, second and third

term generate passage vortices (PV), first term generates vortices along blade vortices

(BV) and again third term also generates Coriolis vortices (CV). <n and <b stand

for curvature radius in meridional and B2B plane, respectively. Ωs is the stream-wise

vorticity and s denotes streamline. Figure 1.7 presents a scheme of these vortices.

Further details in [4] [11].

(a) PV vortices

(b) BV vortices

(c) CV vortices

Figure 1.7: Vortices’s schemes (after Landmann [4])
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CHAPTER 2

NUMERICAL METHODS

This chapter will introduce the numerical methods used by Borm et. al. [8] to im-

plement the transonic density-based libraries [12] in OpenFOAM. These libraries have

mainly two solvers, the steady transonicMRFDyMFoam and the unsteady transonicUn-

steadyMRFDyMFoam. It is also available an arbitrary Lagrangian–Eulerian (ALE) [13]

method for moving meshes like Fluid-Structure Interaction (FSI) or rotating compo-

nents and a Conjugate Heat Transfer (CHT) formulation.

In the main solvers, primitive variables [ρ, U, p]T are reconstructed by a Monotone

Upstream-Centered Schemes for Conservative Laws (MUSCL) [14]. Then, they are

used as an input to an upwind approximate Riemann solver (ARS) which will return

the inviscid numerical fluxes. These were first used in a Godunov scheme [5] to solve

the Euler equations.

The viscid terms are build with central difference discretization and are added as

diffusive fluxes to inviscid ones, thus a new Godunov-like scheme is assembled. This

new scheme is nothing more than a discretized form of the conservative Navier-Stokes

equations (N-S). It becomes a set of algebraic equations which are solved by a direct

inversion method [15]. Finally, time discretization can reach 3rd order if unsteady calcu-

lation is done and Local Time-Stepping is implemented as an accelerating convergence

technique. The following sections will provide further details.

9
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2.1 Navier-Stokes equations

The complete form of the N-S presented in the differential form [16] is read

∂U

∂t
+∇ ·Fc(U) = ∇ ·Fd(U,∇U) (2.1)

where U is a conservative state vector

U =


ρ

ρu

ρv

ρw

ρE

 (2.2)

Fc = (F x
c , F

y
c , F

z
c ) is the convective flux tensor

F x
c =


ρu

ρu2 + p

ρuv

ρuw

(ρE + p)u

 , F y
c =


ρv

ρvu

ρv2 + p

ρvw

(ρE + p)v

 , F z
c =


ρw

ρwu

ρwv

ρw2 + p

(ρE + p)w

 (2.3)

Fd = (F x
d , F

y
d , F

z
d ) is the dissipative flux tensor

F x
d =


0

τxx

τxy

τxz

uτxx + vτxy + wτxz + qx

 , F y
d =


0

τyx

τyy

τyz

uτyx + vτyy + wτyz + qy

 ,

F z
d =


0

τzx

τzy

τzz

uτzx + vτzy + wτzz + qz



(2.4)

and τij the dissipative stress tensor

τij =

τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 , (2.5)

considered symmetric and a linear function of velocity gradients due to Newtonian fluid

assumptions [15].
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RANS equations in a rotating referential

If viscosity and thermal conduction is neglected one arrives to the Euler equations,

which are solved first by Godunov for compressible flows [5].

When dealing with problems that admit discontinuities (i.e. shocks) it becomes

necessary to solve the N-S equations in a conservative form. Non-conservative numerical

schemes will fail in providing the right shock speed if we are in presence of a Riemann

problem [5]. As Zanoti and Manca [17] remember, Hou & Le Floch [18] proved that

non-conservative schemes do not converge if a shock wave is part of the solution while

Lax & Wendroff [19] showed that conservative schemes, if convergent, they converge to

the weak solution of the problem.

2.2 RANS equations in a rotating referential

In order to solve turbulence in a practical way, the transonic density-based libraries are

implemented under the N-S equations with mean flow quantities: the so called called

Reynolds-Average Navier-Stokes (RANS) equations. In fact, for compressible flows,

there is a variation of RANS equations called Favre-average Navier-Stokes. If the first

uses a time average of the quantities, its variant uses a mass-average because density

indeed changes in compressible flows. Hereinafter this work will use the Favre equations

but the reference to the Reynolds-Average Navier-Stokes will remain the same.

Flow quantities of RANS are defined by

A = Ã+A
′′

(2.6)

where the double prime is the fluctuation and the tilde is the mass-average quantity

and has the form

Ã =
ρA

ρ̄
(2.7)

with

ρA ≡ 1

∆t

∫ t0+∆t

t0

ρAdt. (2.8)

Eq. 2.1 expanded with Eq. 2.6 gives place to the RANS equations, see William [20]

for the full expansion. The following pseudo heat fluxes and stresses appear (also called

11
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Reynolds Stress)

(τij)Turb = −ρu′′
i u

′′
j (2.9)

(qj)Turb = −CpT
′′ρu

′′
j . (2.10)

The so called closure of the RANS equations is made by expressing the Reynolds stress

(Eq. 2.9) with the mean quantities. For most well known turbulence models (i.e.

Spalart Allmaras [21], k − ω [22], k − ω SST [23]) this is done with a linear relation

between Reynolds stress and the mean strain tensor Sij

Sij =
1

2

[∂Ũi

∂xj
+
∂Ũj

∂xi

]
(2.11)

that is read

(τij)Turb = −2µTurb

(
Sij −

1

3

∂Ũk

∂xk
δij

)
+

2

3
ρ̃K̃δij . (2.12)

Eq. 2.12 is analogous to the linear constitutive equation for Newtonian flows

(τij)Lam = −2µLam

(
Sij −

1

3

∂Ũk

∂xk
δij

)
, (2.13)

being (τij)Lam the laminar stress tensor: this analogy is called Boussinesq hypothesis

[24]. Note the last term in Eq. 2.12 is added to correct the trace of Reynolds stress [25].

Eq. 2.9 and 2.12 are very popular and are worth some comments. They have been

the base for development of the most used turbulence models in industry but fail in

physical meaning. Even for the simplest flow, concepts such as fluctuating velocities

don’t seem to have solid experimental support neither have an explicit derivation from

equations. Schmitt [24] reviewed in the detail the work of Boussinesq, pioneer of mean

quantities in NS equations, and pointed its major weakness: a bad extrapolation of

molecule kinetic energy theory to turbulent flows is made concerning the mean free

path of molecules.

Once pointed out the derivation and limitation of RANS, and being this thesis

about compressible flow in turbomachines, it makes sense to present those equations

in a rotating referential. This relative frame of reference is the only one where steady
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state assumptions are valid. Gönç [26] and Borm [8] write them in vectorial form,

where quantities are already in their mean value

∂ρ

∂t
+∇ · (ρ~Urel) = 0

∂ρ~U

∂t
+∇ · (ρ~Urel ⊗ ~U) +∇p = −ρ(~w × ~U) +∇ ·σ

∂ρE

∂t
+∇ · ((ρE + p)~Urel + p~Urot) = ∇ · (σ · ~U)−∇ · ~q +∇ · (µ+ β∗µT )∇K

(2.14)

σ = (µLam + µTurb)
(
∇~U+ (∇~U)T − 2

3
(∇ · ~U)δij

)
− 2

3
ρKδij . (2.15)

Note that Eq. 2.15 is the total shear stress tensor and it is the sum of Eq. 2.12 and

2.13. It is usually called effective turbulent quantity [16].

2.3 Hyperbolic system solution

The transonic density-based solvers implemented in OpenFOAM by Borm et. al. [8]

use an ARS to calculate the inter-cell’s flux based on characteristic’s speed. Then, a

Godunov scheme solves the hyperbolic system.

2.3.1 Godunov scheme

The Godunov scheme can be written in the conservative form [5]

Un+1
i = Un

i +
∆t

∆x

(
Fi−1/2 − Fi+1/2

)
. (2.16)

To understand how the Godunov scheme is assembled, one must consider the fol-

lowing conservative form of the 1D Euler equations

Ut + F(U)x = 0, (2.17)

with the conservative state vector and the flux

U =

 ρ

ρu

ρE

 F =

 ρu

ρu2 + p

(ρE + p)u

 . (2.18)
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One can divide the spacial domain inN computing cells Ii =
[
xi−1/2, xi+1/2

]
of length

∆x = xi+1/2 − xi−1/2 with a “height” of ∆t =
[
tn − tn+1

]
(Figure 2.1). Integrating Eq.

2.17 on cell Ii, first in space and then in time, it results the following∫ xi+1/2

xi−1/2

U
(
x, tn+1

)
dx =

∫ xi+1/2

xi−1/2

U (x, tn) dx+∫ t+1

t
F
(
U
(
xi−1/2, t

))
−
∫ t+1

t
F
(
U
(
xi+1/2, t

))
.

(2.19)

Figure 2.1: Computational mesh (after Toro [5])

At this point two concepts are introduced. Eq. 2.20 makes some information being

lost and the scheme to be first order. This is called the piecewise constant data [5] and

it is the first concept. It is convenient to note that in order to make this averaging,

waves can’t interact (Figure 2.2). The second (Eq. 2.21) is the Godunov flux or inter-

cell numerical flux. Rewriting Eq. 2.20 and Eq. 2.21 into Eq. 2.19 one arrives to the

Godunov scheme.

Un
i =

1

∆x

∫ xi+1/2

xi−1/2

U (x, tn) dx (2.20)

Fi±1/2 = F
[
U
(
xi±1/2, t

)]
(2.21)
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Figure 2.2: Godunov averaging of local solutions to the Riemann problem within cell

Ii at fixed time ∆t (after Toro [5])

Other note about this scheme is that in order to prevent the interaction of waves

described above, the time step ∆t must satisfy the following condition,

∆t ≤
Ccfl∆x

Sn
max

(2.22)

with Sn
max being the fastest wave speed in the domain at time tn. This is the so called

Courant-Friedrich-Lewy (CFL) condition [27] and Ccfl is the CFL number . For the

3D Euler system, results follow similarly.

2.3.2 Solution of the Riemann problem in the Euler equations

Considering the following initial valued problem with discontinuous data, the Riemann

problem [5]

Hyperbolic system : Ut + F(U)x = 0,

Initial condition : U(x, 0) = U(0)(x),

Boundary condition : U(0, t) = Ul(t), U(L, t) = Ur(t),

(2.23)

in a domain xl < x < xr using the explicit conservative formula of Eq. 2.16. The

Godunov flux at interface xi+1/2 is defined by

Fi+ 1
2
= F

(
Ui+ 1

2
(0)
)
, (2.24)

being Ui+ 1
2
(0) the exact similarity solution Ui+ 1

2
(x/t) of the Riemann problem. Figure

2.3 shows all the possible wave patterns resulting from the Euler equations and Table
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2.1 shows all the possible state solutions Wi+ 1
2
(0). Note that they are computed as

primitive variables and the star region is the space between the fastest and slowest

speed waves (Figures 2.3 and 2.4).

Sub-case Case (a) positive speed u∗ Case (b) negative speed u∗

1 WL WR

2 W∗L W∗R

3 WL WR

4 W∗L W∗R

5 WLfan WRfan

Table 2.1: Value of Wi+ 1
2
(0) required to evaluate the inter-cell flux (after Toro [5])

Figure 2.3: Wave pattern possibilities; a) positive particle velocity in star region b)

negative particle velocity in star region; Thick, dashed and multi lines represent shock,

contact and rarefaction waves (after Toro [5])

For example, considering the situation in which u∗ is positive, to calculate Wi+ 1
2
(0)

one must identify the character of the left wave. If it is a shock, one calculates the state

W∗L between the contact and shock wave through shock relations [5]. Than the speed

SL of the left shock is computed. If SL ≥ 0 it is said supersonic and

Wi+ 1
2
(0) = WL. (2.25)
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If SL ≤ 0 it is said subsonic and

Wi+ 1
2
(0) = W∗L. (2.26)

It follows that the inter-cell flux is calculated by Eq. 2.27 and the remaining possibilities

presented in Figure 2.3 are solved in a analogous way.

Fi+ 1
2
= F

(
Wi+ 1

2
(0)
)

(2.27)

This method is the exact1 solution of the Riemann problem applied to the Euler

equations but it is not efficient due to large number of iterations. Next section will

present an approximate Riemann solver called Harten Lax Van Leer Contact (HLLC)

which is more practical and it is used in all simulations.

2.3.3 The HLLC approximate Riemann solver

Harten, Lax and Van Leer (HLL) [28] introduced the HLL approximate Riemann solver

which consisted in defining a new wave structure. Because they considered just two

waves [5], the solver becomes unacceptable when solving the Euler equations: the

contact wave is missing and has an important physical meaning.

Toro, Spruce and Spears [29] introduced the HLLC approximate Riemann solver

that takes the HLL and recovers the contact wave. The star region is composed by two

states and the structure of the solution is presented in Figure 2.4.

Figure 2.4: Structure of the HLLC approximate solution (after Toro [5])

Then, the HLLC solver is given by

1It doesn’t have an analytical solution, the user specifies the desired accuracy
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Ũ (x, t) =



UL if
x

t
≤ SL

U∗L if SL ≤ x

t
≤ S∗

U∗R if S∗ ≤ x

t
≤ SR

UR if
x

t
≥ SR

(2.28)

By applying the Rankine-Hugoniot conditions [30] and relating the states in the star

region [5], the Godunov flux to be applied into the Godunov scheme can be written as

Fhllc
i+ 1

2
=


FL if

x

t
≤ SL

F∗L = FL + SL (U∗L −UL) if SL ≤ x/t ≤ S∗

F∗R = FR + SL (U∗R −UR) if S∗ ≤ x/t ≤ SR

FR if
x

t
≥ SR

(2.29)

It only remains to calculate the wave speeds which can be done directly from data

SL = uL − aL, SR = uR + aR (2.30)

and

SL = min {uL − aL, uR − aR} , SR = max {uL + aL, uR + aR} . (2.31)

where u denotes the particle speed and a the sound speed. For different approaches in

calculating wave speeds or more details about the Riemann problem, see Toro [5].

2.4 Turbulence modeling

It is widely accepted that the 3D N-S are the correct representation of turbulent

flow [31]. Every length scales are modeled in a RANS approach whether in Large

Eddy Simulation (LES) only the smallest scales [32] are modeled. In Direct Numerical

Simulations (DNS) every scale is calculated which leads to the need of massive com-

putational resources. Landmann [16] rescues Kolmogorov and its micro-scale theory,

pointing out that one needs O(Re
3/4) to resolve all turbulent length scales per space

dimension. Due to the fact that turbulence is a three dimensional phenomena, one

would need O(Re
9/4) grid cells.

OpenFOAM has a wide range of turbulence models available and these transonic

density-based solvers can use every RANS based model, i.e. one that returns a turbulent
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viscosity µT . Borm [8] points out there might be some conflict in rotor-stator problems

when using a turbulence model that use vorticity terms because velocity jumps in the

interface. The Shear stress transport model was used and doesn’t have this problem:

it is described below.

2.4.1 Shear stress transport (SST)

The SST model, introduced by Menter [23], is a two equation model that takes the

approach of the k−ω [22] at the inner region of the boundary layer, using the k− ε in

the outer region and free-stream. It modifies the definition of eddy viscosity by taking

into account the transport of turbulent shear stress. This modification proved to be

very important for accuracy in adverse pressure gradients [33] which is a requisite in

aerodynamic turbulence models [34]. The k − ω formulation makes it robust and a

good choice for the logarithmic and viscous sublayer regions. For the outer region and

free-stream, k − ω predictions are very sensible to the free-stream specific dissipation

rate ω, therefore SST switches to k − ε model which hasn’t this behavior. In SST

transport equations one can read the (1) Lagrangian derivative, (2) production term,

(3) destruction term and (4) the dissipation term

k :
Dρk

Dt︸ ︷︷ ︸
1

= τij
∂ui
∂uj︸ ︷︷ ︸
2

−β∗ρωk︸ ︷︷ ︸
3

+
∂

∂xj

[
(µLam + σkµTurb)

∂k

∂xj

]
︸ ︷︷ ︸

4

(2.32)

ω :
Dρω

Dt︸ ︷︷ ︸
1

=
γ

νT
τij
∂ui
∂uj︸ ︷︷ ︸

2

−β∗ρω2︸ ︷︷ ︸
3

+

∂

∂xj

[
(µLam + σωµTurb)

∂k

∂xj

]
+ 2ρ(1− F1)σω2

1

ω

∂k

∂xj

∂ω

ωxj︸ ︷︷ ︸
4

(2.33)

where constants2 Ckω, Ckε correspond to k − ω model, k − ε, respectively

Ckω


σk1 = 0.85 σω1 = 0.5 β1 = 0.0750

β∗ = 0.09 k = 0.41 γ1 =
β1
β∗

− σω1k2/
√
β∗

2Turbulence model constants are not indexed on List of Symbols
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Ckε


σk2 = 1 σω2 = 0.856 β2 = 0.0828

β∗ = 0.09 k = 0.41 γ2 =
β2
β∗

− σω2k2/
√
β∗

.

The constants CkωSST will result of a combination between Ckω and Ckε that reads

CkωSST = F1Ckω + (1− F1)Ckε (2.34)

and the model closes with the following relations

F1 = tanh


{[

max

( √
k

β∗ωd
,
500ν

d2ω

)
,

4σω2k

CDkωd2

]}4
 , (2.35a)

F2 = tanh

[max( 2
√
k

β∗ωd
,
500ν

d2ω

)]2 , (2.35b)

CDkω = max

(
2ρσω2

1

ω

∂k

∂xi

∂ω

∂xi
, 10−10

)
, (2.35c)

νTurb =
a1k

max(a1ω,ΩF2)
, (2.35d)

being νTurb the kinematic turbulent viscosity.

The derivation of Eq. 2.32 and 2.33 comes from a transformation of the k−ε model

to a k − ω formulation with the following relation

ω =
ε

β∗k
. (2.36)

and then a combination of both k − ε and k − ω models with a function F1 that acts

like a switch in the inner and outer regions of the boundary layer. Full details are given

by Davidson [35].

There are variations of the model with different approaches [36] [37].

2.5 Space discretization

The discretization method implemented in these transonic density-based libraries is

known as method of lines [38]: it allows the selection of numerical methods with different

accuracy for time and space.
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Space discretization

The interpolation formulae of the inviscid terms is done with Van Leer’s MUSCL [14]

which defines them as second-order accurate in space.

Taking the Godunov integral average for a specific quantity ϕn
i in cell Ii = [xi− 1

2
, xi+ 1

2
],

the piece-wise linear reconstruction of MUSCL is given by

ϕi(x) = ϕn
i +

(x− xi)

∆x
∆ϕ, x ∈ [0,∆x] (2.37)

where
∆ϕ

∆x
is a chosen slope of ϕi(x) in cell Ii. Figure 2.5 shows the average and its

linear reconstruction.

Figure 2.5: Piece-wise linear reconstruction for three successive cells (after Toro [5])

It is also of great importance the extreme points of ϕi(x), they will define the right

ϕi+1/2 and left ϕi−1/2 states introduced in Section 2.3.2 and are given by

ϕi−1/2 = ϕn
i − 1

2
∆ϕ, ϕi+1/2 = ϕn

i +
1

2
∆ϕ. (2.38)

The slope is read

∆ϕ =
1

2
(1 + ω)∆ϕi−1/2 +

1

2
(1− ω)∆ϕi+1/2 (2.39)

with

∆ϕi−1/2 ≡ ϕn
i − ϕn

i−1, ∆ϕi+1/2 ≡ ϕn
i+1 − ϕn

i . (2.40)

and ω is a free parameter in the real interval [−1, 1]. Setting ω = 0 leads to a second-

order accurate upwind-biased linear interpolation. The MUSCL scheme needs to add

more features when in presence of strong gradients. They are called limiter functions

or limiters and are build to reduce the solution wiggles near discontinuities.
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In all simulations the Venkatakrishnan [39] limiter is used. It is second order accu-

rate ω = 0 and reduces the reconstructed gradient by the following factor

Ψ =



1

∆2

[ (
∆2

1,max + ε2
)
∆2 + 2∆2

2∆1,max

∆2
1,max + 2∆2

2 +∆1,max∆2 + ε2

]
if ∆2 > 0

1

∆2


(
∆2

1,min + ε2
)
∆2 + 2∆2

2∆1,min

∆2
1,min + 2∆2

2 +∆1,min∆2 + ε2

 if ∆2 < 0

1 if ∆2 = 0

(2.41)

where

∆1,max = φmax − φi∆1,min = φmin − φi. (2.42)

In Eq. 2.42, φmax and φmin are the maximum and minimum values of all neighbor nodes

and the owner itself. The parameter ε2 is meant to control the amount of limiting and

it was found that it should be proportional to a local scale length, i.e.

ε2 = (K∆h)3 (2.43)

It was found [39] that setting K = 5 provided the best convergence properties with the

best shock resolution thus this value is used in all simulations.

Other limiters are implemented such as Barth-Jespersen [40] and Minmod [41]. The

upgrade of MUSCL with limiter schemes is also called Total Variation Diminishing

(TVD) schemes.

The viscid terms are build with central difference discretization which is second

order. Therefore, this solver is second order in space although lower order can be used.

2.6 Time discretization

2.6.1 Steady solver

For each control volume, Eq. 2.1 can be written in a semi discrete form

∂υU

∂t
= −R(U) (2.44)

with υ for volume and the residual vector R being the full spacial discretization and

a non-linear function of the conservative state vector. By integrating Eq. 2.44 in
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Time discretization

time, one can reach a steady state R(U) = 0 or an unsteady solution. Although both

solutions are available in the density-based libraries, just the former will be presented

in detail.

It is important to note that time accuracy in steady cases is irrelevant. The accuracy

of the solution only depends on spacial discretization making the advantage of method

of lines clearer. From the other side, in unsteady flows, the aim is to get the highest

temporal accuracy possible not forgetting stability and computational costs issues.

Runge-Kutta [42] time stepping is available and will used in all simulations. It is

given by

U0 = Un

U1 = U0 − α1
∆t

∆x
R(U0)

U2 = U0 − α2
∆t

∆x
R(U1)

U3 = U0 − α3
∆t

∆x
R(U2)

U4 = U0 − α4
∆t

∆x
R(U3)

Un+1 = U4

(2.45)

and the following coefficients were used in all simulations

α1 = 0.11

α2 = 0.2766

α3 = 0.5

α4 = 1.0

. (2.46)

By reducing the residual of equation 2.44 towards machine zero, a steady state will

be reached. Convergence measures will be introduced in Section 2.8.

2.6.2 Unsteady solver

The unsteady solver will only be used in Chapter 3 to solve the Riemann problems.

The approach to calculate an unsteady problem used in this solver called dual time-

stepping (DTS) and it a is common practice. Explicit Runge-Kutta and convergence

acceleration techniques are not time accurate and so, Jameson [43] introduces a pseudo-

time τ solver that will reformulate Eq. 2.44 the following way

∂υU

∂τt
=
∂υU

∂t
+R(U) = R∗(U). (2.47)
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R∗(U) is a new residual and the physical time derivative
∂

∂t
is approximated by a

second order accurate three-point backward difference [44]. Hence,

∂υU

∂τt
=

3υn+1Un+1 − 4υnUn + υn−1Un−1

2∆t
+R(Un+1) = R∗(Un+1), (2.48)

with the steady state techniques mentioned above being used to reduce the residual

R∗(U). When the pseudo-time solver converges
∂ΩU

∂τt
≈ 0, the physical time step

advances.

2.7 Accelerating convergence techniques

Here is described the only accelerating convergence technique implemented in the

density-based libraries: the Local Time Stepping (LTS).

The LTS consists in using the maximum allowable time step taking the dissipative

and convective contributions. Hence, according to Blazek [44] they can be given by

∆td = max

(
4

3ρ
,
γ

ρ

)(
µLam
PrLam

+
µTurb

PrTurb

)
(∆x)2

υ
, ∆tc = (|U |+ c)∆x (2.49)

and Andrea [45] proposes the following final time step

∆t = Ccfl

(
∆td∆tc

∆td +∆tc

)
. (2.50)

Other accelerating convergence techniques are Implicit residual smoothing (IRS)

and Multigrid. IRS is a technique to diminish the dependence of time steps from CFL

number and consequently raise the maximum time step. Applying IRS in the explicit

multistage scheme mentioned in section 2.6 was introduced by Jameson [46] and consists

in replacing the residual for an average of neighbor’s residuals.

Multigrid is a powerful technique and the literature about the subject is vast [47]

[45] [44]. Basically, it creates coarse mesh levels with an agglomeration technique [48]

that speed up the computation of residuals. This way, much of the work is done in

a coarse mesh and then can be extrapolated to the fine mesh. Hence, convergence is

reached with significant less CPU time [49].
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2.8 Convergence in metric spaces L2 and L∞

Metric spaces are a useful tool to see how much converged a solution is. In fact, it is

the metric on R that defines the concept convergence of a sequence [50].

A metric space is a setX of elements whose nature is left unspecified, with a distance

function d defined on it [50]. It is convenient to note that the pair (X, d) is a metric

space if d satisfies some conditions.

The L∞(X, d) metric space is the set X of all bounded sequences with the metric

d (x, y) = sup
j∈N

|ξj − ηj | (2.51)

where ξj and ηj are sequences of the set. Here it is enough to say, without the proof [50],

that L∞ is a complete metric space (Banarch space). A Cauchy sequence is a sequence

{xn}∞n=1 such that

∀ε > 0 ∃Nε ⇒ d (xn, xm) < ε ∀n,m < Nε. (2.52)

Again, without the proof, it follows that all Cauchy sequences converge in complete

spaces.

The Lp metric space is a set of sequences x = (ξj) = (ξ1, ξ2, · · · ) such that |ξ1|p +

|ξ2|p + · · · 3 converges. The metric reads

d (x, y) =

 ∞∑
j=1

|ξj − ηi|p
1/p

. (2.53)

Setting p = 2 one arrives to the well known Hilbert sequence space L2 [51].

Applying these concepts to CFD and more precisely to residuals, one can make

the following analogy. Every cell’s residual can be seen as a sequence and the whole

mesh is the set of sequences: it is true that at each step they have a value. If a steady

state is to be reached, LMSC is true and we can measure the steadiness with Eq. 2.53.

Moreover, LMSC is a Cauchy sequence thus we are sure it will converge in L∞.

In a practical way, by plotting the metrics of both L2 and L∞, some results follow

naturally and can be mathematically proven:

3Lp metric space condition (LMSC)
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� if the problem is steady, the residual can definitely be interpreted as a sequence

in L2 and its metric will converge to d (x, y) = 0;

� the metric d (x, y) in L2 gives a qualitative measure of steadiness;

� if the residual can be interpreted as a sequence in L2, LMSC will converge in L∞;

� the solution is said to be converged if and only if both the L∞ and L2 metrics

reduces its order to an arbitrarily value ε;

� convergence in L2 implies convergence in L∞ but the inverse need not to be true.

2.9 Comments on OpenFOAM

OpenFOAM is an open-source software which uses an unstructured mesh connection by

nature, thus all numerical schemes must be implemented accordingly. Being unstruc-

tured makes it very versatile when dealing with cell shapes [52] which allows higher

mesh quality in complex geometries and easier local refinement.

Its creator Weller and chief architect Jasak planed it with an object oriented pro-

gramming technique [53] that allows the user to extend functionalities as he pleases in

a consistent manner, thus being highly customizable. OpenFOAM is available under a

GNU General Public License and it is free.

Parallel computation is handled via a domain decomposition method [54] and is

often available in all solvers. The steady solver used in this thesis supports paralleliza-

tion except when using the mixing plane4 and when performing unsteady simulations.

Finally, both of these solvers run with OpenFOAM’s version 1.6-ext.

4Difficulties and solutions will be given in Chapter 5
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CHAPTER 3

RIEMANN PROBLEM VALIDATION

This chapter checks the performance of the ARS used in this thesis and, consequently,

the ability of Borm’s code implementation to catch shock, rarefaction and contact

waves. Moreover, second order extensions will be compared to first order and the

performance of the limiters will be accessed.

Recalling Section 2.3, the Riemann problem in the Euler equations is a discontinu-

ous initial valued problem with a left UL = [ρ, U, p]T and right state UR whose solution

is approximated with the propagation of three waves through the medium. This ap-

proximation is done by an ARS and the one being used is the HLLC. Physically, this

situation is illustrated as two states separated by a diaphragm: at t = 0 the diaphragm

is broken. Solutions are naturally evaluated at t > 0.

The computational domain used for all the following tests is a one dimensional

mesh defined such that x ∈ [0, 1]. It is discretized in 100 cells and the notation xdiaph

denotes the position of the diaphragm. All tests are compared with the exact solution

of Riemann-problem provided by Toro and all data is non-dimensional.

3.1 Sod’s shock tube

The so called shock tube problem was heavily studied by Sod [55] and consists in a

right shock wave, a right contact wave and a left sonic rarefaction wave. Its initial data
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is composed by UL = [1, 0, 1]T , UR = [0.125, 0, 0.1]T .

Figure 3.1: First order HLLC solver. The numerical (icon) and exact (line) solutions

are shown for t = 0.2 and xdiaph = 0.5.
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Sod’s shock tube

Figure 3.2: Second order HLLC solver with Van Albada slope limiter. The numerical

(icon) and exact (line) solutions are shown for t = 0.2 and xdiaph = 0.5.

Results for first and second order simulations are plotted in Figures 3.1 and 3.2,

respectively. Across shock waves it is usual to have discontinuities in all variables while

in contact waves, velocity and pressure are continuous. Regarding internal energy across

contact waves, continuity isn’t observed which is natural as this type of wave separate

two different states. This test is meant to evaluate the entropy condition across shock

established in the last half of 19th century by Rankine and Hugoniot [56] [30] [57].
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3.2 123 problem

This Riemann problem consists of two rarefaction waves and a trivial stationary contact

discontinuity. The region between the two waves is characterized by very low pressure,

close to vacuum, and this test is usually done to evaluate the solver’s ability to deal with

low density flows. The initial data is composed by UL = [1,−2, 0.4]T , UR = [1, 2, 0.4]T

with results for first and second order presented in Figures 3.3 and 3.4, respectively.

Figure 3.3: First order HLLC solver. The numerical (icon) and exact (line) solutions

are shown for t = 0.15 and x0 = 0.5.
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Collision of 2 shocks

Figure 3.4: Second order HLLC solver with Van Albada slope limiter. The numerical

(icon) and exact (line) solutions are shown for t = 0.15 and xdiaph = 0.5.

It can be noted that near zero pressure and density, the HLLC behaves quite wrong

as already mentioned by Toro. This is coherent with the fact that Godunov-like solvers

fail in this kind of test. Nevertheless, it’s remarkable the improvement achieved with

second order extensions and results are in agreement with Toro’s.

3.3 Collision of 2 shocks

The wave system presented in Figures 3.5 and 3.6 has resulted from a collision of two

shocks. Three discontinuities arise propagating to the right: two shocks and a contact
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wave being the right shock the fastest signal. Left shock is slow and it is defined

with two grid points as can be seen in pressure plot. This is coherent with the fact

that Godunov-like methods resolve perfectly slow moving shocks. The contact wave

is heavily smeared where the fast shock is smeared in five or six grid points. This is

also a test to see the robustness and accuracy of the solver as different discontinuities

are present. The initial data is composed by UL = [5.99924, 19.5975, 460.894]T , UR =

[5.99242,−6.19633, 46.0950]T .

Figure 3.5: First order HLLC solver. The numerical (icon) and exact (line) solutions

are shown for t = 0.035 and xdiaph = 0.4.

32 A.J.F. Reis



Stationary contact

Figure 3.6: Second order HLLC solver with Van Albada slope limiter. The numerical

(icon) and exact (line) solutions are shown for t = 0.035 and xdiaph = 0.4.

3.4 Stationary contact

The main reason to perform this test is to access the ability to catch slowly moving con-

tact discontinuities. Stationary contact test initial data reads UL = [1,−19.5975, 1000]T , UR =

[1,−19.5975, 0.01]T and the exact solution is composed by a left rarefaction wave, a right

traveling shock wave and a stationary contact discontinuity. Figures 3.7 and 3.8 show

the good accuracy, almost exact, when dealing with stationary discontinuities.
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Figure 3.7: First order HLLC solver. The numerical (icon) and exact (line) solutions

are shown for t = 0.012 and xdiaph = 0.8.
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Extra tests

Figure 3.8: Second order HLLC solver with Van Albada slope limiter. The numerical

(icon) and exact (line) solutions are shown for t = 0.012 and xdiaph = 0.8.

3.5 Extra tests

Two more tests are done in this chapter, Test 6 and Test 7. These tests access the

performance for contacts, shear waves and vortices. For Test 6, the initial data reads

UL = [1.4, 0, 1]T , UR = [1, 0, 1]T and the wave system is composed by an isolated sta-

tionary contact wave. For Test 7 the initial data is UL = [1.4, 0.1, 1]T , UR = [1, 0.1, 1]T

and the solution consists in a isolated slowly moving contact.
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Figure 3.9: First and second order HLLC solver. The numerical (icon) and exact (line)

solutions are shown for t = 2 and xdiaph = 0.5.

Test 6 has equal performance for first and second order space accuracy and the

results are plotted in Figure 3.9.

Figure 3.10: First (left) and second order (right) HLLC solver. The numerical (icon)

and exact (line) solutions are shown for t = 2 and xdiaph = 0.5.

Regarding Test 7 plotted in Figure 3.10, second order discretization presents some

improvements and results are also in agreement with Toro. Toro [5] points out that

these tests have the same results when extending to multi-dimensional problems.
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3.6 Remarks

This chapter presented the performance of the approximate Riemann solver HLLC used

to evaluate the convective term of the Navier-Stokes equations. Results are good in the

generality: they achieve perfect accuracy in slowly moving discontinuities and, from the

other side, highly smeared results are produced in fast moving contact discontinuities.

It is important to note that all results are in agreement with Toro, which means the

algorithm is well implemented. Second order extensions help reducing the necessary

grid points to define shock discontinuity thus accuracy being gained, however, even the

implementation of slope limiters isn’t enough to eliminate the wiggles in presence of

strong shock. Moreover, because all the above shocks satisfy the entropy condition and

the HLLC does a good approximation to the exact solution, it follows that it can be

used with safety in transonic flows. More details about the simulation’s parameters are

given in Appendix B.
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CHAPTER 4

NASA ROTOR 67

A widespread test case is the NASA Rotor 67 (R67) [6]. NASA stands for National

Aeronautics and Space Administration. It is used since the late 80s to test computa-

tional algorithms, specially those which include viscous terms. The R67 is a great test

case to see the robustness of the density-based code implemented by Borm: the flow is

transonic with shock, vortex are created at the tip-gap and at the trailing edge (TE).

Figure 4.1 presents the fan R67: it is a low pressure compressor, made with 22

blades. The low pressure compressor has the total of two stages and it is designed for

short-haul aircraft. It is characterized by a low aspect ratio geometry and designed to

achieve a tip speed of 429 m s−1.
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Figure 4.1: Fan rotor

4.1 Data

4.1.1 Experimental Data

Experimental data is available near stall and near peak efficiency. A laser anemometer

(LA) technique was used to collect the tangential and axial velocities. A 1100 windows

cover 360 degrees of the rotor providing a single passage to be measured in 50 positions

along θ. 30 axial positions crossed with 9 surface revolutions gives a total of 50×30×9

measuring positions in a rotor passage where results are often presented in radius×theta-

meridional (rθ-M) planes, also called B2B. Figure 4.2 illustrates how the positions of

measurements are defined.
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Data

Figure 4.2: Measurement coordinates: radial position (RP), axial position (AP), cir-

cumferential position (CP) (after NASA TP2879 [6])

It is important to mention how experimental plots were generated because it will

influence how numerical data should be manipulated. There exists two kinds of plots:

stream-wise and pitch-wise. As the name implies, stream-wise will follow a streamline

(Figure 4.3) and pitch-wise will follow the pitch, each one always in constant % span.

Obviously, a stream-wise plot will be defined by constant pitch percentage and pitch-

wise plot will be defined by constant chord percentage position. Moreover, when the

pitch is defined, consequently so it is the streamline. Thus, 50 windows per passage

define a range for the pitch and Figure 4.4 shows how these windows are numbered.

Therefore, the starting window number (WNBEG) for LA survey is available for all

plots.
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Figure 4.3: Streamlines (after NASA TP2879 [6])

Figure 4.4: Window numbering (after NASA TP2879 [6])

Besides the blade surveys on velocity, radial measurements were taken up and down-

stream of the rotor. These included P0 and T0 that were used to calculate the overall

rotor aerodynamic performance. All data is corrected to National Advisory Commit-
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tee for Aeronautics (NACA) standard day conditions at sea level: T0 = 288.15Kand

P0 = 101325Pa.

4.1.2 Numerical Data

Extracting numerical data from a rotor is not straightforward, at least with open-source

software. A Cartesian referential isn’t appropriate to understand rotating geometries

and solutions, while the open source visualizer software Paraview doesn’t have the

necessary tools in the Graphic User Interface (GUI) to perform B2B cuts. Moreover,

as experimental data is only available in such formats, there is no other way than

implementing this tools in order to be able to compare results. Fortunately, Borm [59]

developed some python scripts that do the task and work together with Paraview.

Despite the effort of Borm, there is no tool that extracts streamlines along span.

Therefore, an utility called Plot on Interception Curves from Paraview is used. We

make the span cut being intercepted by a sphere with sufficient radius to approximate a

streamline with constant pitch percentage. Figure 4.5 illustrates one attempt considered

successful and similar was done for all plots.

To extract pitch-wise lines the task is much easier: taking into account that chord

percentage we (and experimental data) mean axial chord, coordinates of leading edge

(LE) and TE were taken and extraction follows naturally. If streamlines are difficult

and error prone to extract, but very easy to plot, pitch lines are very easy to extract

and difficult to plot: the reason is relating the WNBEG with the numerical R×θ-M

plane.
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Figure 4.5: Streamline extraction in Paraview

As only one passage is simulated, it comes necessary to identify where all the relevant

WNBEG are, just in one numerical passage. The solution the author found was to

associate the passage pitch range at constant chord percentage to 0.285599 radians,

which is equivalent to 1/22 × 360 degrees, and then getting the ∆WNBEG between a

known point(i.e. blade surface point) and the unknown starting position.

Concerning the overall aerodynamic performance, OpenFOAM® provides a func-

tionObject utility called patchAverage that acts like the radial surveys up and down-

stream of the rotor by making an area average or mass-average of variables. In this

case, an area average is made because density wasn’t measured in the experimental fa-

cility. In a related way, another function object called patchMassFlow is used to know

whether there is conservation of mass between the inlet and outlet of the rotor1

4.2 Mesh

The rotor and casing geometries are available in [6]. Due to time limitations, a full

hexahedral mesh was generated with a commercial mesher.

1Useful to test convergence, see Section 4.4.5
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First, a commercial design program was used to introduce blade’s surfaces and

camber coordinates with angles beta: it is the angle of blade’s surfaces/camber from

meridional direction. The blade surface and camber line were defined with 35 points

in the r×θ-M plane and thickness was set symmetric to camber line. All blade sections

were linearly stacked at the LE due to limited input parameters when defining the blade

position. One can see from Figure 4.6 that stacking isn’t linear. Then, the geometry

was imported to the commercial mesher which was used to build a mesh of only one

passage. Meshes were created so that the fine level had about 8× 105 cells, which is a

common practice [60].

Figure 4.6: RZ plane (after NASA TP2879 [6])

Three mesh levels were created: fine intermediate and coarse. They were converted

to OpenFOAM’s format with the utility fluent3DMeshToFoam. They differ in the cell

number by a factor of approximately 2 and tip gap is only meshed in the intermediate

level. Tip gap can be seen in Figure 4.6.
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Attention was specially given to mesh quality, namely aspect ratio and non-orthogonality

which must stay under 1000 and 70, respectively. These values change from code to

code and Appendix A shows the quality reports of all the meshes used in this chapter.

It is worth mention that those reports were produced with an utility called checkMesh

from OpenFOAM libraries. Table 4.1 resumes all the meshes used and Figures 4.7, 4.8

and 4.9 present some mesh details.

Mesh level ID Number of cells

Coarse R67 C 272400

Intermediate R67 I 417600

Tip Gap R67 GAP 484640

Fine R67 F 793600

Table 4.1: Mesh cell number

(a) Fine mesh (b) Coarse mesh

Figure 4.7: Blade-to-Blade mesh detail with repetition
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(a) Fan blade (tip gap in

blue)
(b) Tip gap detail

Figure 4.8: Mesh details

Figure 4.9: 3D mesh (fine)
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4.3 Numerical setup

4.3.1 Solver

The transonicMRFDyMFoam solver from the densityBasedTurbo library was used in

all simulations.

The dictionary named MRFZones which denotes Multiple Rotating Frames must

be specified to the desired blade speed and the direction of rotation is specified with

positive or negative value. In all simulations, blade speed was 16042 rpm and the value

introduced was −1680 rad s−1. This dictionary not only sets the blade velocity but it

is where the relative frame of reference is defined in the mesh. The relative frame is

thus defined with a set of cells taken from the utility cellSet or regionCellSets.

Sutherland’s law is used in the transportProperties dictionary and links the absolute

temperature to the dynamic viscosity, which is set to 1.8× 10−5 kgm−1 s−1.

As in this chapter we only deal with steady state simulations, the dynamicMesh

dictionary is set to staticFvMesh: because we are in the relative frame, there will be no

mesh motion. Additional details about steady state solutions and this particular solver

were already given in Chapter 2.

4.3.2 Turbulence modeling

It was defined in Chapter 2 that we were following a RANS approach so turbulence-

Properties dictionary will be set to RASModel. Specification of the turbulence model

comes with the RASProperties dictionary and it is set to kOmegaSST. All mesh’s Y +

is approximately 1 so that we are solving the boundary layer from somewhere between

the viscous (sublayer) and buffer layer (Figure 4.10) above.
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Figure 4.10: Boundary layer regions (after Bakker [7])

4.3.3 Boundary Conditions

Standard day conditions are imposed at inlet so that all solution data is ready to

be compared with experimental results without further manipulation. To close the

problem, a back-pressure will be specified and changed so that a compressor map can

be built. All walls are modeled as adiabatic and with no slip conditions. There is a

back-flow control that switches the pressure at outlet to “zeroGradient“ if indeed exists

back-flow. Table 4.2 resumes the inlet boundary conditions used in all simulations.

inlet boundary conditions

P0 = 101325 Pa

T0 = 288.15 K

µTurb = 0.0001 Pa s−1

Table 4.2: Boundary conditions

4.3.4 Mesh connection

In this thesis only one passage is meshed. One passage simulations are common practice

as the full annulus simulations most of the time carry huge computational costs. If one

considers rotors with 20 to 50 blades, each passage made of 8× 105 cells, a full meshed

rotor can easily reach 40 million cells becoming intractable in modern computers. In
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addition, a General Grid Interface (GGI)2 [61] is implemented in cyclic boundaries.

GGI interfaces behave as boundary conditions and are used when a connection in the

mesh is needed but cell faces don’t match: an interpolation is done. Because the number

of cells in the pressure side is usually different than the suction side, cyclicGGI is used

as periodic boundary. Thus, the boundary file must read

pe r i o d i c

{

type cy c l i cGg i ;

nFaces 4578 ;

s ta r tFace 465742;

shadowPatch p e r i o d i c 0 ;

zone p e r i o d i c f a c e s ;

br idgeOver lap fa l se ;

r o ta t i onAx i s (0 0 1) ;

ro tat ionAng le −16.363636364;

s epa r a t i onO f f s e t (0 0 0) ;

}

where periodic is the name of the boundary condition and it refers to the repetition of

the rotor. type specifies the kind of boundary condition whether nFaces and startFaces

refer to which faces the boundary is assigned to. shadowPatch is the name of the

boundary which will make a pair for the repetition, therefore a similar entry must be

introduced for periodic 0. zone defines a global position for the boundary and it is

needed for parallel computation. bridgeOverlap is a parameter that checks if every face

in the specified boundary is covered in the correspondent pair: false means it won’t

allow any mismatch and it is the only situation in this thesis. The last three entries

follow naturally from their names.

Other mesh configurations might exist such that there is no GGI in the repetition

boundary, i.e. it is a simple cyclic boundary. If that is the case, and a tip-gap is being

reproduced, a GGI is always needed and it is usual to implement it in the tip-gap.

Nevertheless, whether reproducing or not the tip-gap, GGI will always bring better

2In commercial codes is called Full Non Matching Boundary (FNMB)
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mesh quality thus it is always used in this thesis.

4.4 Results

Overall aerodynamic data will be presented in tabular form while relatives Mach num-

ber and flow angle at peak efficiency will be presented in plots. All numerical data will

be presented with the correspondent experimental data and both refers to constant3

blade speed. This section is meant to evaluate the sensibility of the solution with mesh

size and mesh type. Turbulence parameters are left constant as well as all boundary

conditions except back pressure: it will change to build a compressor map.

It is worth mention that near stall conditions aren’t presented because there was

difficulty in achieving convergence probably due to the unsteady effects characteristic

of stall.

The following section is going to present plots in 10%, 30% and 70% span from the

shroud. Most of the plots will present experimental data with error bars. It should

be highlighted that although the apparatus of R67 has its uncertainty, characteristic

of the measuring tools, error bars will be used to present many measurements in the

same position. In fact, those with the largest error bars correspond to the presence of

unsteady phenomena and numerical results are, a priori, expected to fail. Moreover,

pitch-wise plots are expected to give poorer results as LE and TE are not exactly

reproduced as it was mentioned in section 4.2. Finally, all simulations whose results

are presented here had a value of 115000Pa as back-pressure, to better compare the

different meshes.

4.4.1 Relative flow angle and relative Mach number

As was mentioned earlier, we expect to see a deceleration of relative velocities and

a decrease of relative flow angle along axial chord: it will prove that our problem is

well defined. Figures 4.11, 4.19 and 4.27 present the rotor’s Mach number structure

at 10%, 30% and 70% span. Stream-wise and pitch-wise distributions of relative Mach

3LA experimental readings with blade speed drift bigger than 0.4% are excluded.
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number and relative flow angle are presented in Figures 4.12-4.18 for 10% span, Figures

4.20-4.26 for 30% span and Figures 4.28-4.34 for 70% span.
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(a) Experimental

(b) Numerical (R67 F)

(c) Numerical (R67 GAP)

Figure 4.11: Mach number plot at 10% span from shroud near peak efficiency
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Figure 4.12: Plot of −5.4% chord at 10% span

Figure 4.13: Plot of 30% chord at 10% span
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Figure 4.14: Plot of 70% chord at 10% span

Figure 4.15: Plot of 124% chord at 10% span
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Figure 4.16: Plot of 20% pitch at 10% span

Figure 4.17: Plot of 50% pitch at 10% span
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Figure 4.18: Plot of 80% pitch at 10% span
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(a) Experimental

(b) Numerical (R67 F)

(c) Numerical (R67 GAP)

Figure 4.19: Mach number plot at 30% span from shroud near peak efficiency
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Figure 4.20: Plot of −10% chord at 30% span

Figure 4.21: Plot of 23% chord at 30% span
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Figure 4.22: Plot of 50% chord at 30% span

Figure 4.23: Plot of 124% chord at 30% span
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Figure 4.24: Plot of 20% pitch at 30% span

Figure 4.25: Plot of 50% pitch at 30% span
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Figure 4.26: Plot of 80% pitch at 30% span
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(a) Experimental

(b) Numerical (R67 F)

(c) Numerical (R67 GAP)

Figure 4.27: Mach number plot at 70% span from shroud near peak efficiency
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Figure 4.28: Plot of −10% chord at 70% span

Figure 4.29: Plot of 30% chord at 70% span
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Figure 4.30: Plot of 70% chord at 70% span

Figure 4.31: Plot of 121% chord at 70% span
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Figure 4.32: Plot of 20% pitch at 70% span

Figure 4.33: Plot of 50% pitch at 70% span
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Figure 4.34: Plot of 80% pitch at 70% span
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Some trends pop up when inspecting the rotor’s Mach number structure: at 10%

span, it is clear that the R67 GAP is in better agreement with experimental data than

the R67 F. Although the number of cells between those meshes increases by a factor of

approximately 2, the coarser is more accurate. At 30% and 70% span the differences

don’t seem to be significant and other tools to quantify these are needed: stream-wise

and pitch-wise plots are studied with statistical tools in the Section 4.4.3.

As mentioned earlier, pitch-wise graphs are more likely to give bad results due to the

linear stacking of blade’s sections. Indeed, results appear to be associated with some

translation vector which could be related to the distance between real and meshed LE

and TE. It happens specially at ”out-of-chord“ positions because pressure distribution

around LE and in the blade wake are most peculiar. Nevertheless, again with R67 GAP

in Figure 4.15, it has a remarkable match despite what has been said, reinforcing the

idea of the serious flow dependence on the tip-gap.

Finally, to strengthen that major errors in pitch-wise data are due to the linear

stacking assumption, note the generality of stream-wise plots before 0% and after 100%

chord and particularly Figures 4.18, 4.25: they are plotting a Mach distribution (wig-

gles) created by the LE and TE that doesn’t exist in experimental data. If these results

just occurred at the TE, it could be argued that the wake wasn’t being resolved prop-

erly by turbulence models. Yet, flow arrives clean at the LE, where dissipative terms

don’t dominate. Thus, the geometry being different is a plausible justification for this

local behavior.

4.4.2 Overall aerodynamic performance

Table 4.3 resumes the experimental and numerical overall aerodynamic performance

while Figure 4.35 presents the experimental and numerical compressor maps4. Similarly

to the previous section, only near peak efficiency results are presented.

4Mass flow is reduced to choked flow to better compare results.
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Near Peak Efficiency

Experimental Numerical

R67 C R67 I R67 GAP R67 F

Mass flow (ṁ/ṁchoked) 0.988 0.951 0.953 0.973 0.946

Π (-) 1.642 1.581 1.581 1.576 1.578

Adiabatic efficiency (-) 0.93 0.831 0.808 0.862 0.814

Table 4.3: Overall aerodynamic performance (numerical)

Near Peak Efficiency

Numerical

R67 C R67 I R67 GAP R67 F

Mass flow (%) 3.75 3.54 1.52 4.25

Π (%) 3.71 3.71 4.02 3.90

Adiabatic efficiency (%) 10.65 13.11 7.31 12.47

Table 4.4: Relative error

From Table 4.4 it is clear the superior match of R67 GAP to experimental data.

From the other meshes, it is not easy to deduce any conclusion or trend. This follows

essentially because this parameters, as the name implies, are an overall measure and

by default gather many variables.

Figure 4.35: Compressor map
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To justify why the R67 GAP has greater efficiency, Figure 4.36 plots the relative

total pressure at 10% span for all the different meshes. Relative total pressure gives

a measure of where and how much are the losses: in an ideal compressor, the relative

total pressure is constant across the rotor. Thus, one can see less losses in R67 GAP

which supports the greater overall aerodynamic performance.
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(a) R67 C (b) R67 I

(c) R67 GAP
(d) R67 F

Figure 4.36: Relative total pressure at 10% span
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4.4.3 Statistical analysis

This section presents some useful statistics that give a quantitative measure about how

close numerical results relate to experimental data. Statistical tools are BIAS, root

mean square error (RMSE) and concordance index (CI).

BIAS gives the average of difference between numerical and experimental data. It

is useful to see if numerical data is over or under-predicting experimental results. The

formulae reads

BIAS =

∑n
i=1(yi − xi)

n
. (4.1)

The RMSE is similar to BIAS but measures instead the distance between numerical

and experimental data. It is often used as an accuracy accessing tool. The formulae is

given by Eq. 4.2.

RMSE =

√∑n
i=1(yi − xi)2

n
(4.2)

By last, CI shows how well numerical and experimental data match. Although it is

a quantitative tool, its output can be interpreted as a qualitative information. If CI is

1 we are in presence of a perfect match between data while if CI is 0 the data clearly

isn’t related. Again, the formulae is given by Eq. 4.3.

CI = 1−
∑n

i=1 |yi − xi|2∑n
i=1(|yi − x| − |xi − x|)2

(4.3)

It is important to mention how the following plots were generated. To be able to

apply such statistical tools, it is necessary to have pairs of data. A pair of data is called

when numerical and experimental data have exactly the same X coordinate. Without

those, comparing data becomes naturally useless.

Problems arise because the exact position of experimental data extraction will often

be different from numerical, creating difficulties to get pairs. The solution was to

interpolate all data, discretize it in 100 points and select a common range both to

numerical and experimental data. This interpolation as well as all graphs were done in

the open-source software QTIPlot.
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Graphs are separated in pitch-wise and stream-wise data. Each graph plots only

a statistical tool and compares all the different meshes. By last, red colored columns

refer to statistics about relative flow angle and black colored columns refer to relative

Mach number.
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(a) Pitch-wise (b) Stream-wise

Figure 4.37: 10% Span BIAS

(a) Pitch-wise (b) Stream-wise

Figure 4.38: 10% Span CI
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(a) Pitch-wise (b) Stream-wise

Figure 4.39: 10% Span RMSE

(a) Pitch-wise (b) Stream-wise

Figure 4.40: 30% Span BIAS
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(a) Pitch-wise (b) Stream-wise

Figure 4.41: 30% Span CI

(a) Pitch-wise (b) Stream-wise

Figure 4.42: 30% Span RMSE
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(a) Pitch-wise (b) Stream-wise

Figure 4.43: 70% Span BIAS

(a) Pitch-wise (b) Stream-wise

Figure 4.44: 70% Span CI
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(a) Pitch-wise (b) Stream-wise

Figure 4.45: 70% Span RMSE
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From the above plots, one can make several observations. We start by saying that

indeed stream-wise have bigger CI then pitch-wise plots in all %span. This fact, as

mentioned earlier, can be justified in part by the need of stacking linearly the blade

sections which differs from the real geometry. LE and TE coordinates will be different

and consequently at each span percentage, the axial chord length will be different.

Again regarding CI, it is the R67 GAP that has the highest values thus becoming the

best match to experimental data.

Paying attention to the RMSE, one can observe that in every span percentage,

independently of pitch-wise or stream-wise plots, the solutions of the intermediate and

fine meshes are always very close. This suggests some evidence of grid independence

that should be further investigated. Continuing with the same statistical tool, the

R67 GAP stays around the R67 F and gets better results at 10% span. This makes

perfect sense since it is the closest survey plan to the tip gap.

By last, when inspecting the BIAS, similar conclusions to the RMSE can be drawn

because these tools are very related. Nevertheless, additional information can be added:

at 10% and 30% span, the relative Mach number is generally overestimated and relative

flow angle is underestimated. At 70% span both relatives Mach number and flow angle

are overestimated.

4.4.4 Vortex shedding

Figure 4.46 illustrates the particular tip gap case where vortex shedding can be seen.

It should be noted that the result is not much accurate as vortex shedding is a tran-

sient phenomena with determined frequencies. Therefore, the steady state form of this

phenomena displays the average energy contained in the vortex across space.
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Figure 4.46: Tip gap vortex shedding

As mentioned earlier, this geometry also creates a vortex in the TE. Although

this work is not meant to validate unsteady phenomena, or make any comparison

whatsoever, Figure 4.47 shows, once again, that the HLLC can catch vortex as suggested

in Chapter 3.
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Figure 4.47: Trailing edge vortex shedding

4.4.5 Convergence Time

Convergence was introduced in Section 2.8 and it is achieved when L∞ and L2 metrics

drops by 3 orders of magnitude. Plus, the difference between mass flow at inlet and

outlet of the rotor must be under 0.1%. Total pressure ratio must also be constant for a

solution to be said convergent. Table 4.5 presents the simulations computational cost5

5Time based in a parallel computation with two cores of 3.10Ghz each; 8Gb RAM
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Case

Average time

per iteration

(seconds)

R67 C 2.32

R67 I 3.45

R67 GAP 3.91

R67 F 6.59

Table 4.5: Convergence time

and to reach convergence, between 15000 and 25000 iterations need to be done with

Ccfl = 0.7. The number of iterations depend with some factors, namely mesh quality,

flow structure generated by the imposed boundary condition and initial conditions6.

4.5 Remarks

R67 geometry was tested under Borm’s implementation of a density-based solver in

OpenFOAM. Steady state simulations were carried out with three different mesh levels,

having the finest about 8× 105 cells for a single passage.

Experimental data was compared near peak efficiency. The analysis was done at this

point because it is where steady state assumptions are most correct, i.e. less transient

phenomena and convergence is reached easier.

Thanks to LA technology, it was possible to identify the flow structure across the

rotor, thus conclusions can be drawn when comparing experimental with numerical

results. Indeed, absolute values are not similar but that is not alarming: giving the

correct trend becomes equally important in CFD. The concordance index being the

highest in the R67 GAP is a good result thus confirming what is well known: the

tip-gap geometry is a very important parameter on turbomachinery [3].

The linear stacking assumption seems to be a plausible justification for data that

match poorly, specially in positions ”out-of-chord“: lack of precision in LE and TE co-

6More will be said about this topic in Chap. 6.
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ordinates causes different Mach number distributions and consequently every variables

vary accordingly.

Regarding flow structures across the rotor, it is clear that the hyperbolic system is

being well resolved and it doesn’t need many cells to reach good accuracy: statistical

tools suggested that grid independence from 4 − 8 × 105 is being reached and R67 C

overall aerodynamic data doesn’t differ much from both R67 I and R67 F.

Finally, every major flow structure known to exist a-priori was captured by the

HLLC: tip gap vortex, trailing edge vortex and shock. This shows how robust the

numeric methods implemented are and what can be expected when using this solver.
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CHAPTER 5

NASA COMPRESSOR STAGE

This chapter is meant to test multi-row problems, namely with the use of the Mixing-

Plane (MP) approach. A complete validation will not be attempted as a very coarse

mesh will be used to show how this type of simulations is carried out in OpenFOAM.

Nevertheless, overall results will be compared with experimental data to find out what

can be expected of the MP.

The original geometry, tested in the same facility as the R67, is a two-stage fan

designed to achieve 2.40 pressure ratio and a tip speed of 427 m s−1. It is designed to

develop efficient, lightweight engines for short-haul aircraft and axial spacing is given

between blade rows to reduce noise.

In this chapter, only one stage is meshed, as the computational procedure is the

same for more stages and the computational resources are limited. Thus, the rotor has

43 blades while the stator has 34: the geometry is reported on [62] and the CAD model

is presented in Figure 5.1.
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Figure 5.1: Complete stage: orange - rotor blades; blue - stator blades; green - hub

5.1 Data

In the experimental facility, radial measurements of flow quantities were made, namely

T0 and P0. Probes were installed at the inlet and outlet of each row and that is why,

for the sake of comparing data, there is no complication in just simulating one stage.

This setting allowed the survey of eleven radial positions which provide the overall

aerodynamic performance across each row. For more detailed information about the

apparatus consult [62].

Concerning numerical data and how it is extracted to compare results, the proce-

dures are equal to R67, presented in Chapter 4.

5.2 Mixing plane

The MP [63] is a common technique to simulate steady multi-row problems. It does an

circumferential averaging of variables at the interface (Figure 5.2) which can be seen as
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an inlet boundary condition to the second row. This method doesn’t give a physically

correct representation of the rotor-stator interaction as this is an unsteady phenomena

and the main structures of the flow will be lost in the average. Nevertheless, it is one of

the two feasible1 ways of getting steady solutions of multi-row problems and it provides

a reasonable representation of the problem. The other approach is the frozen rotor,

where the difference to the MP is that is doesn’t perform the circumferential averaging:

the solution will depend on the relative position between rotor and stator.

Figure 5.2: Stage layout: blue - mixing plane

5.3 Mesh

The procedure to input geometry from the tabular to both design and mesh softwares

is the same as used in R67. One must have in mind when a geometry is described, it

is usual the suction surfaces of every row to be faced to the same side, which naturally

is a ill defined problem2.

The most important issue when building the multi-row mesh is the interface between

rows. In OpenFOAM, the MP has its own well defined interface plane3, which the

1Full annulus simulations don’t require a MP but are far too expensive
2Rotor’s suction surface is usually in the opposite direction from the stator’s (Figure 1.4)
3Cartesian, cylindrical
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mesh must obey otherwise the simulation will blow up. These plane, called ribbon

in OpenFOAM, has other specifications, namely the direction in which it will average.

Finally, the MP interface must be in the same frame of reference, i.e. every cell attached

to the ribbon must be in the rotating frame.

Figure 5.3 presents the interface boundaries of the rotor’s outlet (also stator’s inlet)

and the following specifications4 must be written in the boundary file:

ou t l e t 0 {

type mixingPlane ;

nFaces 1936 ;

s ta r tFace 1973984;

shadowPatch i n l e t 1 ;

coordinateSystem

{

name mixingCS ;

type c y l i n d r i c a l ;

o r i g i n (0 0 0) ;

e1 (1 0 0) ;

e3 (0 0 1) ;

}

ribbonPatch {

sweepAxis Theta ;

s tackAxis R;

d i s c r e t i z a t i o n bothPatches ;

} }

4Similar has to be defined for the inlet of the stator
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Figure 5.3: Stage layout: blue - mixing plane grid

outlet 0 is the name of the boundary condition and it refers to the outlet of the rotor.

type specifies the kind of boundary condition whether nFaces and startFaces refer to

which faces the boundary are assigned to. shadowPatch is the name of the boundary

which will make a pair for the MP. In coordinate system, type is chosen cylindrical where

e1 and e3 define the directions of the cylindrical referential. As was mentioned, the

ribbon patch will specify the direction in which it will perform the average (sweepAxis)

and in which direction it will stack the cells (stackAxis).

Finally, the number of cells of this mesh is presented in Table 5.1. For simplicity

and time reasons, wall functions are used as the mesh Y + is bigger than 11 and no

tip-gap is reproduced.

Row Number of cells

Rotor 451264

Stator 204672

Table 5.1: Rotor-stator mesh number
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5.4 Numerical setup

The numerical setup is the same defined in R67, presented in Chapter 4. Naturally,

there will exist extra boundary conditions as there exists an extra row but, apart from

the MP boundary described above, there is nothing to add. Thus, the solver, the

turbulence model, inlet boundaries, and mesh connection are all the same used in R67.

For the outlet boundary condition, a back-pressure is set to 95000 Pa.

When running a simulation with the mixing plane, performing parallel computations

is only allowed with first spatial order. The reason for this might be the limiters that

prevent the wiggles that enter in conflict with the mixing plane averaging. Because

there was short time to run the simulation, a solution to this problem was not seeked.

5.5 Results

Overall aerodynamic performance is presented in Table 5.2. Experimental data corre-

spond to the reading 190 [62], at 100% blade speed of 16042 rpm, which is the best

match between experimental and numerical mass flow.

Near Peak Efficiency

Experimental Numerical

Rotor total pressure ratio (-) 1.526 1.469

Stage total pressure ratio (-) 1.502 1.403

Rotor total temperature ratio (-) 1.153 1.153

Stage total temperature ratio (-) 1.153 1.153

Rotor adiabatic efficiency (%) 0.836 0.759

Stage adiabatic efficiency (%) 0.803 0.664

Rotor polytropic efficiency (%) 0.845 0.772

Stage polytropic efficiency (%) 0.814 0.679

Mass weight (kgm−3) 32.87 30.02

Flow coefficient (-) 0.453 0.347

Table 5.2: Overall aerodynamic performance

Due to the lack of time, appropriate validation could not be done. There might
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exist better points to match experimental data although pressure ratio decreases with

increasing mass flow. Nevertheless, given the coarse level of the mesh the results are

acceptable.

Experimental data from reading 190 at approximately 10% span shows a flow angle

of 0 ◦and 41 ◦at rotor’s inlet and outlet, respectively. Concerning the stator, experimen-

tal data shows a flow angle of −37.5 ◦and −0.2 ◦at stator’s inlet and outlet, respectively.

Numerical flow angle at 10% span is illustrated in Figure 5.4 and shows good agreement

with experimental data described above.

Figure 5.4: Flow angle at 10% span; left blade - rotor; right blade - stator

5.5.1 Remarks

This section was meant to use the Mixing Plane approach to simulate multi-row prob-

lems. A validation was not attempted due to the lack of time and even the unique

simulation presented here can’t be said converged. Indeed, there was a reduction of

three orders of magnitude in L2 and L∞ metrics but mass flow didn’t remain constant

below 0.1%. A very likely justification is the level of the mesh being so coarse and

too high static pressure as outlet boundary condition. Nevertheless, despite the sim-

plicity of the simulation, i.e. wall functions, no tip-gap and coarse mesh, preliminary
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results seem promising and very interesting work could be done with OpenFOAM, when

solving multi-row problems.
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CHAPTER 6

CONCLUDING REMARKS

The validation of an airplane’s fan, the NASA Rotor 67, has been made with the open-

source software OpenFOAM. A density based algorithm supported by a Godunov-like

scheme discretized the average Navier-Stokes equations, which were the main model of

this numerical simulation.

The motivation for this work had two components: the first was the need of more

validation cases to safely predict the physics of machines that surround us everyday

and which we end up to depend on. The second was being able to do so with a software

that is thought to be used by the scientific community, free of charge, and proves itself

as a great tool not only to industry but also for academic research and teaching.

A big range of subjects was mentioned here, from pure mathematics to the funda-

mentals of fluid dynamics and engineering applications. All of these were thought to

be presented with such a structure that the answers to the following questions could

be induced: how can Computational Fluid Dynamics predict a compressor flow; can it

be proved that it is correct and what can be expected to see as a result.

One dimensional Riemann problems were done to see how much accurate could this

solver be in presence of shocks and how much cells would it need to represent one:

good results arose, with considerable gains by switching on the spatially second order

extensions.
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Regarding the NASA Rotor 67, numerical results are good if one pays attention to

statistical tools. Along the streamlines, all plots of the R67 GAP have a Concordance

Index of, at least, 90% and goes above 94% at 10% span: the closest survey to the

tip gap. Indeed, the mesh that reproduces a tip-gap passed expectations as it turned

out to predict the flow structure across the rotor considerably better than a finner

mesh. From the pitch-wise plots no significant trend can be seen and results are worse

than expected. This is attributed to the assumption of the linear stacking of blade’s

sections, which can cause the wiggles seen near 0% and 100% chord of stream-wise

plots. Nevertheless, every major flow structure known to exist a-priori was captured by

the HLLC: tip gap vortex, trailing edge vortex and shock, thus proving the reliabiliy

of this solver.

There were some difficulties to extract numerical data in the correct positions be-

cause open-source tools are still in development. Nevertheless, it is remarkable what can

be already done with free software. Difficulties also arise when installing and learning

OpenFOAM but essentially, “all“ that is needed is patience and persistence.

Finally, a complete compressor stage (multi-row) was run to show that OpenFOAM

has a variety of features, namely the Mixing-Plane, that allows complex simulations to

be made. Although only one simulation was carried out and at a coarse level, overall

aerodynamic data agreed reasonably.

6.1 Future Work

It was stressed that particularly related to this work, the convergence time and initial

data were the major issues that could be addressed. One can reduce the convergence

time by implementing other accelerating convergence schemes like IRS or Multigrid,

mentioned earlier. Multigrid is already under development but the IRS is relatively

simple and reduces the convergence time to half [64].

About the initial data, Borm also implemented an open-source C++ code that

runs outside OpenFOAM called Streamline Curvature Method. Basically, it is a two

dimensional solver for turbomachinery that runs very fast and, after some converting
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Future Work

steps, can be mapped into OpenFOAM’s initial fields. This is important to reduce

convergence time but it has other purpose: in highly deviated blades, a bad initial data

can blow up the simulation otherwise a scale of blade velocity and Ccfl must be done,

in order to keep the solver stable.

The present work concerned almost only steady state simulations, which is not a true

assumption when simulating turbomachinery. One considers that unsteady phenomena

dominate when in presence of multi-row problems but to be precise, as pointed out

earlier, secondary flows inside turbomachines are seen as the difference between the

inviscid and viscid solution. Because secondary flows appear as vortices through the

rotor, it isn’t definitely a steady problem, even if we are in the blade frame of reference.

Of course, computational costs are the major problem to accomplish this.

Unsteady simulations are, if computationally affordable, a very interesting future

work. Application to a single row follows naturally whether for multi-row one has

different possibilities. The Domain Scaling (DS) approach to catch the rotor-stator

interaction is already implemented in OpenFOAM with the boundary condition over-

lapGGI. The DS scales the number of blades in the stator with the number of blades

in the rotor and only the result is meshed. The other option which is harder to imple-

ment, but with significant reduction in computational cost, is the Nonlinear Harmonic

Method [65]. The conservative variable is decomposed into a time-averaged value and

into a sum of periodic perturbations which in turn can be decomposed into N har-

monics, characteristic of the problem itself (blade passing frequency, vortex shedding

frequency).

Aeroelastic problems can also be addressed with FSI simulations which are imple-

mented in OpenFOAM’s transonic density based solvers, with some limitations [8].

Finally, all of the mentioned above plus the main object of this thesis enclosures the

turbomachinery’s numerical simulation state of art.
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APPENDIX A

MESH QUALITY REPORT

Here are presented the quality reports of the meshes used in this thesis. Mesh stats

informs about the number of points, cells and boundaries while Mesh topology informs

if they are well connected. Checking patch topology informs the name of the boundaries

and Checking geometry informs about skewness, non-orthogonality, aspect ratio, etc,

which are closely related to mesh quality. Finally, it gives the output Mesh OK if every

quality test is passed.

A.1 R67 C

. . .

Mesh s t a t s

a l l po in t s : 290779

l i v e po in t s : 290779

a l l f a c e s : 835424

l i v e f a c e s : 835424

i n t e r n a l f a c e s : 798976

c e l l s : 272400

boundary patches : 7

po int zones : 0

f a c e zones : 4

c e l l zones : 8
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Mesh quality report

Overa l l number o f c e l l s o f each type :

hexahedra : 272400

prisms : 0

wedges : 0

pyramids : 0

t e t wedges : 0

t e t rahedra : 0

polyhedra : 0

Checking topology . . .

Boundary d e f i n i t i o n OK.

Point usage OK.

Upper t r i a n gu l a r o rde r ing OK.

Face v e r t i c e s OK.

Number o f r e g i on s : 1 (OK) .

Checking patch topology for mult ip ly connected s u r f a c e s . . .

Patch Faces Points Sur face topology

per1 7900 8080 ok (non−c l o s ed s i n g l y connected )

per2 7900 8080 ok (non−c l o s ed s i n g l y connected )

blade 10000 10100 ok (non−c l o s ed s i n g l y connected )

shroud 2724 2879 ok (non−c l o s ed s i n g l y connected )

hub 2724 2879 ok (non−c l o s ed s i n g l y connected )

i n l e t 2800 2929 ok (non−c l o s ed s i n g l y connected )

ou t l e t 2400 2525 ok (non−c l o s ed s i n g l y connected )

Checking geometry . . .

This i s a 3−D mesh

Overa l l domain bounding box (0 .0859758 −0.0383107 −0.0684196) (0 . 257

0.150445 0 .354423)

Mesh (non−empty , non−wedge ) d i r e c t i o n s (1 1 1)

Mesh (non−empty ) d i r e c t i o n s (1 1 1)

Mesh (non−empty , non−wedge ) dimensions 3

Boundary openness (3 .44438 e−16 −7.23005e−16 −2.64524e−16) Threshold =

1e−06 OK.

104 A.J.F. Reis



R67 I

Max c e l l openness = 2.43211 e−15 OK.

Max aspect r a t i o = 555.072 OK.

Minumum fac e area = 1.98755 e−09. Maximum fac e area = 8.71777 e−05.

Face area magnitudes OK.

Min volume = 1.49226 e−13. Max volume = 1.36261 e−07. Total volume =

0.00275568 . Ce l l volumes OK.

Mesh non−o r thogona l i t y Max: 60 .4634 average : 18 .3499 Threshold = 70

Non−o r thogona l i t y check OK.

Face pyramids OK.

Max skewness = 2.2858 OK.

Mesh OK.

. . .

A.2 R67 I

. . .

Mesh s t a t s

a l l po in t s : 442986

l i v e po in t s : 442986

a l l f a c e s : 1277976

l i v e f a c e s : 1277976

i n t e r n a l f a c e s : 1227624

c e l l s : 417600

boundary patches : 7

po int zones : 0

f a c e zones : 4

c e l l zones : 8

Overa l l number o f c e l l s o f each type :

hexahedra : 417600

prisms : 0

wedges : 0

pyramids : 0

t e t wedges : 0

t e t rahedra : 0
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Mesh quality report

polyhedra : 0

Checking topology . . .

Boundary d e f i n i t i o n OK.

Point usage OK.

Upper t r i a n gu l a r o rde r ing OK.

Face v e r t i c e s OK.

Number o f r e g i on s : 1 (OK) .

Checking patch topology for mult ip ly connected s u r f a c e s . . .

Patch Faces Points Sur face topology

per1 10600 10807 ok (non−c l o s ed s i n g l y connected )

per2 12200 12423 ok (non−c l o s ed s i n g l y connected )

blade 12800 12928 ok (non−c l o s ed s i n g l y connected )

shroud 4176 4386 ok (non−c l o s ed s i n g l y connected )

hub 4176 4386 ok (non−c l o s ed s i n g l y connected )

i n l e t 4000 4141 ok (non−c l o s ed s i n g l y connected )

ou t l e t 2400 2525 ok (non−c l o s ed s i n g l y connected )

Checking geometry . . .

This i s a 3−D mesh

Overa l l domain bounding box (0 .0860314 −0.0352895 −0.068584) (0 .257012

0.149137 0 .354423)

Mesh (non−empty , non−wedge ) d i r e c t i o n s (1 1 1)

Mesh (non−empty ) d i r e c t i o n s (1 1 1)

Mesh (non−empty , non−wedge ) dimensions 3

Boundary openness (−3.10694e−16 −2.21482e−15 5.05216 e−16) Threshold =

1e−06 OK.

Max c e l l openness = 2.66918 e−15 OK.

Max aspect r a t i o = 302.924 OK.

Minumum fac e area = 1.9965 e−09. Maximum fac e area = 4.68775 e−05. Face

area magnitudes OK.

Min volume = 1.49544 e−13. Max volume = 7.32467 e−08. Total volume =

0.00278774 . Ce l l volumes OK.

Mesh non−o r thogona l i t y Max: 61 .1455 average : 17 .6942 Threshold = 70

Non−o r thogona l i t y check OK.
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R67 GAP

Face pyramids OK.

Max skewness = 2.29269 OK.

Mesh OK.

. . .

A.3 R67 GAP

. . .

Mesh s t a t s

a l l po in t s : 512078

l i v e po in t s : 512078

a l l f a c e s : 1481180

l i v e f a c e s : 1481180

i n t e r n a l f a c e s : 1426660

c e l l s : 484640

boundary patches : 7

po int zones : 0

f a c e zones : 4

c e l l zones : 10

Overa l l number o f c e l l s o f each type :

hexahedra : 484640

prisms : 0

wedges : 0

pyramids : 0

t e t wedges : 0

t e t rahedra : 0

polyhedra : 0

Checking topology . . .

Boundary d e f i n i t i o n OK.

Point usage OK.

Upper t r i a n gu l a r o rde r ing OK.

Face v e r t i c e s OK.

Number o f r e g i on s : 1 (OK) .
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Mesh quality report

Checking patch topology for mult ip ly connected s u r f a c e s . . .

Patch Faces Points Sur face topology

per1 12900 13130 ok (non−c l o s ed s i n g l y connected )

per2 11300 11514 ok (non−c l o s ed s i n g l y connected )

blade 13312 13389 ok (non−c l o s ed s i n g l y connected )

shroud 6184 6338 ok (non−c l o s ed s i n g l y connected )

hub 4424 4653 ok (non−c l o s ed s i n g l y connected )

i n l e t 4000 4141 ok (non−c l o s ed s i n g l y connected )

ou t l e t 2400 2525 ok (non−c l o s ed s i n g l y connected )

Checking geometry . . .

This i s a 3−D mesh

Overa l l domain bounding box (0 .0860282 −0.0352269 −0.0768108)

(0 .257014 0.149137 0 .354423)

Mesh (non−empty , non−wedge ) d i r e c t i o n s (1 1 1)

Mesh (non−empty ) d i r e c t i o n s (1 1 1)

Mesh (non−empty , non−wedge ) dimensions 3

Boundary openness (−6.89563e−16 −1.69678e−16 −1.45567e−16) Threshold =

1e−06 OK.

Max c e l l openness = 3.63818 e−15 OK.

Max aspect r a t i o = 420.229 OK.

Minumum fac e area = 2.66526 e−11. Maximum fac e area = 5.55851 e−05.

Face area magnitudes OK.

Min volume = 1.01696 e−15. Max volume = 1.22299 e−07. Total volume =

0.00285691 . Ce l l volumes OK.

Mesh non−o r thogona l i t y Max: 66 .438 average : 17 .1283 Threshold = 70

Non−o r thogona l i t y check OK.

Face pyramids OK.

Max skewness = 2.51257 OK.

Mesh OK.

. . .

A.4 R67 F
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R67 F

. . .

Mesh s t a t s

a l l po in t s : 830624

l i v e po in t s : 830624

a l l f a c e s : 2417536

l i v e f a c e s : 2417536

i n t e r n a l f a c e s : 2344064

c e l l s : 793600

boundary patches : 7

po int zones : 0

f a c e zones : 4

c e l l zones : 8

Overa l l number o f c e l l s o f each type :

hexahedra : 793600

prisms : 0

wedges : 0

pyramids : 0

t e t wedges : 0

t e t rahedra : 0

polyhedra : 0

Checking topology . . .

Boundary d e f i n i t i o n OK.

Point usage OK.

Upper t r i a n gu l a r o rde r ing OK.

Face v e r t i c e s OK.

Number o f r e g i on s : 1 (OK) .

Checking patch topology for mult ip ly connected s u r f a c e s . . .

Patch Faces Points Sur face topology

per1 15600 15857 ok (non−c l o s ed s i n g l y connected )

per2 15600 15857 ok (non−c l o s ed s i n g l y connected )

blade 18400 18584 ok (non−c l o s ed s i n g l y connected )

shroud 7936 8224 ok (non−c l o s ed s i n g l y connected )

hub 7936 8224 ok (non−c l o s ed s i n g l y connected )
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Mesh quality report

i n l e t 4800 4949 ok (non−c l o s ed s i n g l y connected )

ou t l e t 3200 3333 ok (non−c l o s ed s i n g l y connected )

Checking geometry . . .

This i s a 3−D mesh

Overa l l domain bounding box (0 .0857991 −0.0316234 −0.0749792)

(0 .257028 0.143075 0 .354423)

Mesh (non−empty , non−wedge ) d i r e c t i o n s (1 1 1)

Mesh (non−empty ) d i r e c t i o n s (1 1 1)

Mesh (non−empty , non−wedge ) dimensions 3

Boundary openness (−1.43693e−16 2.53705 e−15 6 .174 e−16) Threshold = 1e

−06 OK.

Max c e l l openness = 1.80276 e−15 OK.

Max aspect r a t i o = 253.388 OK.

Minumum fac e area = 1.94024 e−09. Maximum fac e area = 2.8986 e−05. Face

area magnitudes OK.

Min volume = 1.47858 e−13. Max volume = 4.51918 e−08. Total volume =

0.00282741 . Ce l l volumes OK.

Mesh non−o r thogona l i t y Max: 68 .4792 average : 17 .2376 Threshold = 70

Non−o r thogona l i t y check OK.

Face pyramids OK.

Max skewness = 2.29946 OK.

Mesh OK.

. . .
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APPENDIX B

RIEMANN PROBLEM’S SIMULATION PARAMETERS

A mesh was created in the blockMeshDict with 10 meters, composed by 1000 uniform

cells. By setting all directions except X to empty, one can make one dimensional

simulations in OpenFOAM. The dictionary reads

convertToMeters 1 ;

v e r t i c e s

(

(−4.5 −0.1 −0.1)\\V0

(5 . 5 −0.1 −0.1)\\V1

(5 . 5 0 .1 −0.1)\\V2

(−4.5 0 .1 −0.1)\\V3

(−4.5 −0.1 0 . 1 ) \\V4

(5 . 5 −0.1 0 . 1 ) \\V5

(5 . 5 0 .1 0 . 1 ) \\V6

(−4.5 0 .1 0 . 1 ) \\V7

) ;

b locks

(

hex (0 1 2 3 4 5 6 7) (1000 1 1) simpleGrading (1 1 1)

) ;
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Riemann problem’s simulation parameters

edges

(

) ;

patches

(

patch s i d e s

(

(1 2 6 5)

(0 4 7 3)

)

empty empty

(

(0 1 5 4)

(5 6 7 4)

(3 7 6 2)

(0 3 2 1)

)

) ;

mergePatchPairs

(

) ;

Althought our domain of interest in the Riemann problem is just 1m around x0, a

bigger numerical domain was choosen so that shock waves can’t reflect and interfere

with the solution.

Then, because we will use the transonicUnsteadyMRFDyMFoam, some dictionaries

have to exist despite no specification is there: it is the case of MRFzones. The tur-

bulenceProperties dictionary is set to RASModel and RASModel dictionary is set to

laminar. The thermophysicalProperties is set as follows

thermoType hPsiThermo<pureMixture<constTransport<specieThermo<

hConstThermo<perfectGas>>>>>;

// name , nMoles , mol weight , CP, Hf , mu, Pr ;
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//mixture a i r 1 28.9 1007 0 0 0 . 7 ;

mixture normalisedGas 1 11640.3 2 .5 0 .0 0 . 0 1 . 0 ;

It can be seen the gas is modeled as a normalized gas. This is done so that we

can use the original problem initial states and compare with its solution. Note that

dynamic viscosity (mu) is also set to zero thus we are only solving the Euler equations

which is the objective: evaluate the performance of the HLLC to solve a hyperbolic

system.

Finally, the time step in controlDict is taken to be 0.001 with a CFL of 0.18 in

agreement with Toro [5].
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