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Abstract 

In this work project I propose to study the effect of the 2008 credit crisis on the 

Portuguese banking system. I will analyze the volatility of stock-returns of seven 

representative banks in two distinct periods, before (2001-2007) and during (2008-

2012) the credit crisis. The purpose is the analysis of possible persistence changes in the 

structure of conditional volatility after the shock caused by the spread of the crisis. I 

will test for nonstationarity within a stochastic volatility model, using modified unit root 

tests, and also in a fractional integration context, in order to detect possible changes in 

the memory parameter. 
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1. The Credit Crisis and the Banking System 

The years of 2007 and 2008 marked the beginning of the most severe financial crisis 

since the Great Depression. Several incidents occurred due to the collapse of Lehman 

Brothers, the nationalization of Fanny Mae and Freddie Mac, and the difficulties 

suffered by the insurance company AIG, which resulted in a financial market turmoil 

that, ultimately, resulted in a large shock to the real economy. 

The break-down of the sub-prime mortgage market caused by the housing bubble is 

pointed out as the main trigger of the crisis. As stated by Naudé (2009) “The anatomy of 

the crisis is rather simple: easy credit, bad loans, weak regulation and supervision of 

complex financial instruments, debt defaulting, insolvency of key financial institutions, 

a loss of credibility and trust, and financial panic and mass-selling of stocks and a 

hoarding of cash by banks and individuals”. 

These consecutive events created a “domino effect”, boosting the contagion of all 

countries that were directly or indirectly exposed to US financial markets. Stock 

markets tumbled and a systemic crisis with global risk aversion started, with Europe in 

the forefront. The spread on sovereign debt increased and currency markets were under 

pressure, leading to the implementation of large fiscal measures that imposed enormous 

challenges on long-run sustainable growth. In this context, rather than to ensure price 

stability, financial stability has become one of the most important goals for Central 

Banks. 

Several mechanisms were responsible for the contagion of the crisis to other 

countries. One of the main propagation channels was through the banking sector. In 

Europe, many banks had in their portfolios large amounts of assets linked to the US 

housing market. A new financial system inaugurated at the time to manage the real 
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estate loans was one of the reasons for the great attraction of foreign investments to the 

US, and a consequent leverage of credit expansion. In this new system, loans were 

pooled, divided according to their degree of risk and then resold via securitization. It 

was expected, in this way, to increase the stability of the system by an efficient 

allocation of the risk. 

The European banks rushed to buy these assets, which promised high rates of return, 

but later revealed to have a much higher probability of default than originally alleged. 

After all, banks ended up buying a first class ticket to join the credit crisis. “The initial 

contagion from the US to international financial markets quickly morphed into real 

sector problems and revealed the strengths of the linkages between the financial system, 

the housing sector, the banking sector and the credit market (Martin and Milas, 2010).” 

The multiple financial tools that were implemented by the banking system over the 

last decade allowed for easy access to credit, which boosted and expanded markets at a 

worldwide level. However, the complexity of the system evolved to an “out of control” 

plan that turned out causing several banking crisis. 

Distress in the banking sector may lead some banks to fail and others to become 

capital constrained, thereby resulting in the contraction of credit supply. Under the 

Basel Accord, banks are only able to lend if specified capital requirements on the new 

loans are meet. Since the crisis, the levels of the required amount of capital sustained as 

collateral increased significantly which in turn limited the lending scope. 

The banks’ overdraft facilities and committed back-up lines for credit were created 

in order to protect against liquidity pressures from costumers, but Diamond and Dybvig 

(1983) show that this system will not work if costumers lose their confidence and 

decide to withdraw their funds earlier, originating “bank-runs”, or if banks do not trust 

each other. 
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A wave of bank failures can produce (as well as be caused by) a sharp and 

unanticipated contraction in the stock of money. Friedman and Schwartz (1963) argued 

that this effect was a root cause of recessions. Households and firms adjust to the 

contraction in the stock of money by reducing the spending and consumption, which in 

turn produces a decrease in output in the short-run. Repercussions in the long-run may 

even be verified, since investment will be restricted due to the difficulty in accessing 

credit, consequently reducing capital accumulation and thus productive capacity. 

The management of the crisis resolution by the authorities has a big impact on the 

overall consequences of the shock. “A policy of forbearance by regulators could 

increase moral hazard and harm output over an extended period, whereas a rapid clear-

out of bad loans might be expected to improve the performance of the economy over the 

long-run” ( Hoggart et al., 2001).  

 

2. Position of the Banking Sector in Portugal  

Although financial regulators have implemented several measures in order to 

restore financial stabilization since the current crisis began, the European banking 

system continues to be in very weak shape. The strong decrease of banks’ profitability, 

the sharp fall in stock market prices, the fragility of the debt issuance market and 

deterioration of the banks’ assets have contributed to this deterioration. 

In July 2010, European banks were submitted to a “stress test”, a process where 

the European Central Bank and the central national banks of the European Union 

participated. It was an attempt to restore confidence in the financial system. Two 

distinct macroeconomic scenarios were considered when performing the test, one taken 
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as reference based on the 2009 autumn forecasts and the other representing adverse 

conditions estimated by the ECB. 

The main conclusion of the tests was a significant capacity of overall European 

banks' resistance to the shocks presented. In Portugal the exercise also did not imply a 

recapitalization of the Portuguese Banks. Despite the deterioration of the profitability 

and solvency indicators in the adverse scenario, the banks analyzed showed ability to 

absorb the shocks, while continuing to provide Tier 1 capital ratios above the reference 

level (6%), hence well above the capital requirements (Morais, 2011/12). 

The Core Tier 1 is considered to be the capital ratio with higher quality and the 

most valued in financial markets, as an indicator of the financial health of a bank. In 

September 2011, the average ratio for the Portuguese banking sector was 8.5%, and 

6.8% in late 2008. Since then, Portuguese banks have continued to reinforce their 

financial strength indices (Banco de Portugal, 2012). These levels are sufficient to keep 

up with European Regulation and National Regulation.  

The Bank of Portugal has increased the minimum levels of Core Tier 1 

requirements to 9% at the end of 2011 and to 10% in late 2012, due to the Economic 

and Financial Assistance Agreement, signed in the second quarter of 2011 with the 

International Monetary Fund, the ECB and the European Commission. The agreement 

included the strengthening of the requirements relative to the Portuguese banks' 

solvency levels, in a context of extreme adversity in relation to access to international 

markets for funding and widespread deterioration of the economic environment (Banco 

de Portugal, 2012). 

The objectives settled for the Portuguese banking sector have been fulfilled 

through operations of capital increase, conversion of debt and repurchases of debt 

traded in the market. However, the major Portuguese banking groups show a negative 
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aggregate net income in 2011. This was mainly due to impairment losses related to loan 

portfolios and exposure to the Greek sovereign debt, as well as the transfer of the 

pension retirement liabilities to the Social Security (Banco de Portugal, 2012). 

 

3. Literature Review  

When attempting to model financial relationships in the econometric framework, 

we have to take into account that many of them usually present a non-linear structure. 

As Campbell, Lo and MacKinlay (1997) state, the payoffs of options are non-linear in 

some of the input variables, and investors’ willingness to trade off returns and risks are 

also non-linear. Literature also shows that some financial phenomena cannot be 

explained by linear time series models such as leptkurtosis, volatility clustering and 

leverage effects. Thus, there is strong motivation to consider the application of non-

linear models in order to construct reliable representations of the variables under 

analysis. 

Under the most popular volatility models, autoregressive conditional 

heteroskedasticity (ARCH) and generalized autoregressive conditional 

heteroskedasticity (GARCH), the tendency of volatility to occur in bursts is modeled by 

allowing the conditional variance of the error term,   
 , to depend on the previous value 

of the squared error. There are several advantages in modeling the volatility across time: 

first, more robust inference can be applied when modeling the mean; second, it may be 

a useful tool for prediction. However, some difficulties arise when estimating these 

models, in which stands out for the ARCH model the decision of the number of lags of 

the squared residual required to capture all of the dependence in the conditional 

variance, and the fact that non-negativity constraints might be violated. The GARCH is 
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a natural extension of the ARCH model, developed by Bollerslev (1986) and Taylor 

(1986). Under GARCH, shocks to variance persist according to an autoregressive 

moving average (ARMA) structure of the squared residuals of the process. The model 

tends to be in general more parsimonious than ARCH, as lagged conditional variances 

include much more information than lagged squared residuals, and are much less likely 

to breech non-negativity constraints. Nevertheless, GARCH models are still not able to 

account for a number of non-linear effects, such as leverage effects. Considering this 

characteristics of the model, several extensions have been proposed – e.g. the EGARCH 

is a more flexible model that does not imposes restrictions on the estimates, and also 

allows for leverage effects; as well as the TGARCH model which also allows for 

asymmetries (since in finance negative shocks may induce more volatility than positive 

ones), by including a dummy variable. Evidence from financial-market data suggests 

that the volatility of assets returns tends to follow the pattern of being time varying and 

highly persistent. This apparent empirical regularity has motivated Engle and Bollerslev 

(1986) to introduce the integrated-GARCH (I-GARCH) process, in which shocks to 

variance do not decay over time. Integration in variance is analogous to a unit root in 

the mean of a stochastic process, an example of which is a random walk (Lamoreux and 

Lastrapes, 1990). 

Poterba and Summers (1986) showed that the extent to which stock-return 

volatility affects stock prices (through a time-varying risk premium) depends critically 

on the permanence of shocks to variance. In this context, classifying a series as 

stationary or non-stationary is crucial to understand the effects of shocks on the 

financial variables. The impact of shocks will be transitory for stationary series, while 

for non-stationary ones random shocks may have persistent effects. 
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Recently, new stochastic volatility models were proposed (see e.g. Hansen, 

1995; Harvey et al. , 1994; Ruiz 1994) in which the variance at date t is random, 

although it is conditional on the information of previous periods. These models are 

natural discrete time analogues of the continuous time models used in modern finance 

theory, and may fit the data better than ARCH/GARCH models (Wright, 1999). 

The stochastic volatility model represents the volatility as an autoregressive 

process. Interestingly, we can test for a unit root in the unobserved volatility process by 

testing for a unit root in the log of the squared time series (Wright 1999), which 

constitutes an ARMA process. Although, there is a problem that results when 

performing these tests, as they are composed by large negative moving average roots 

(Harvey et al., 1994), which induce distortions and lead conventional unit root tests to 

have very poor size properties (Schwert, 1989); Pantula, 1991). Perron and Ng (1996), 

building on the work of Stock (1990, unpublished manuscript), presented modified unit 

root tests that have shown evidence to have better finite sample properties in tests with 

large MA roots. 

A major theme of non-linear time series in finance and econometrics concerns 

the influence of instantaneous non-linear transformations on measures of memory 

(Robinson 2000). Recently, several papers make reference to a property common to the 

squares, log-squares and absolute value of asset returns. According to literature, the 

autocorrelation functions of these variables are best characterized by a slowly- mean 

hyperbolic rate of decay. This property has been found in many exchange rate and stock 

returns, but is not consistent with the standard ARCH/GARCH or stochastic volatility 

models (Wright, 2000). As attempts to model this phenomenon of the autocorrelation 

function in time series, long memory models have been proposed – the most accepted is 
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the ARFIMA model, consisting of a fractional integrated ARMA model (Granger and 

Joyeux, 1998, and Hosking, 1981).   

Ultimately, the ARFIMA framework has been applied in order to model the 

volatility process, with long memory models that replicate the hyperbolic rate of decay 

observed in the volatility time series when measured by the squared, log-squared and 

absolute returns. These include the long memory ARCH model in Robinson (1991), the 

fractionally integrated GRACH, or FIGARCH, model in Bollerslev and Mikkelsen 

(1996) and Baillie, Bollerslev and Mikkelsen (1996) and the fractionally integrated 

stochastic volatility model in Breidt, Crato and de Lima (1998).  

 

4. The Model 

4.1. Stochastic Volatility Model – Ng Perron Test Statistics 

Wright (1999) proposes a stochastic volatility model which I will also consider, 

in order to test for persistence change in the conditional volatility of several Portuguese 

banks’ stock returns. 

The method is based on the standard autoregressive stochastic volatility (ARSV) 

model which specifies that {  }   
  is a time series of returns, such that, 

        ,                                                          (I) 

 where    is i.i.d. with mean zero and variance 1. 

Considering that: 

   (  )        
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 ( )       , where     is i.i.d. with mean zero and variance   
 , distributed 

independently of   ,   ( )   ( )(    ) is a pth-order autoregressive lag polynomial 

such that  ( ) has all roots outside the unit circle; and    is the largest autoregressive 

root of the volatility process. 

The model further represents volatility as an autoregressive process, implying 

that the log of the squared time series is an ARMA process i.e. , 

 ( )    (  
 )   ( )       ( )    (  

 )                          (II) 

 ( )    (  
 )         ( )          ,                      (III) 

where        (  
 )   (   (  

 ))      ( )(   (   (  
 ))) and        ( )  . 

Estimation of the parameters of this model is quite complex, requiring 

distributional assumptions for the error terms,    and   . However, if the purpose is just 

to test whether     or not, the method is simple and no distributional assumptions 

need to be imposed (Wright, 1999). 

As indicated by Wright (1999), the time series         ( )   is an MA(p) 

reduced form and    (  
 ) is a stationary ARMA(p,p) process if | |    and an 

ARIMA(p-1,1,p) if    , being α the largest autoregressive root of    (  
 ). Thus, it is 

possible to test the hypothesis     by testing for a unit root in the    (  
 ) series. 

In order to test for the presence of a unit root it is possible to use a variety of 

tests. However, as was already mentioned in the literature review, they are expected to 

have very poor size properties, since log(  
 ) has an ARMA or ARIMA representation 

with a large negative moving average root. 
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Applying these modified unit root tests to the    (  
 ) series, with the null 

hypothesis that     against the alternative | |   , the three test statistics are: 

     [ 
  (    ̅)

    ][    ∑ (    ̅)
  

   ]                 (IV) 

    [      ∑ (    ̅)
  

   ]  ⁄                                 (V) 

                                                           (VI) 

where         ,   ̅     ∑   
 
    and    is the autoregressive spectral density 

estimate obtained from the autoregression 

             ∑        
 
                                   (VII) 

where    (   ⁄ ). 

The three tests are all one-sided and Wright (1999) describes how they manage 

the size property in the presence of large negative MA roots, referring that it depends on 

the choice of the spectral density estimator.  

 

4.2. Long memory – Fractional Integration Model 

Wright (1999) also considers the fractional integrated stochastic volatility 

(FISV) as a simpler version of the model proposed by Breidt et al. (1998). I will use this 

model in order to test for persistence change of the Portuguese bank’s stock returns, in 

the fractional integration context. 

The model specifies that {  }   
  is a time series of returns such that: 

                                                            (VIII) 

where    is i.i.d. with mean zero and variance 1,    (  
 )       

(   )  (    )                                             (IX) 
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(   )   denotes the fractional differencing operator and    is i.i.d.  (    
 ) and is 

independent of   . 

Martins and Rodrigues (2012) introduce the persistence change tests. The null 

hypothesis of the test considers that the fractional integrated parameter    is constant 

over the complete sample (     ). The alternative hypothesis considers two 

fractional integration parameters -      corresponds to the first subsample and    to the 

second. Within the alternative hypothesis two different results can be considered: i) a 

decrease in persistence (     ) ; or ii) an increase in persistence (     ). Under 

both alternatives the change in persistence occurs at time [   ], with    unknown in 

[     ]    (   ) and        . 

Considering the data generated from (IX), with      , for each fixed   [     ], 

Martins and Rodrigues (2012) present the following auxiliary regression: 

     ( )    
                ,…, [  ]                               (X) 

where    (   )     and     
  ∑

    

 

   
   . Changes in the memory parameter are 

detected by recursively estimating (X) over the complete sample. Considering the 

auxiliary regression (X), the OLS t-statistic for  ̂( )   , which is denoted as    ( ), is 

computed for each    [     ], i.e., 

   ( )  
∑       

 [  ]
   

 ̂ ( )√∑     
  [  ]

   

                                               (XI) 

where  ̂ ( )  √
 

[  ]  
∑  ̂ 

 [  ]
    and  ̂  is the least square residual of (X). The parameter 

   that defines the lower bond of the set of values for   is an arbitrary value, typically 

0.15 or 0.20. 
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Martins and Rodrigues (2012) also introduce a second auxiliary regression, 

representing the reverse statistic,    ( ), where    is replaced by the time-reversed 

series          . Hence, for (   )  observations it follows: 

    ( )    
                ,…, [  ],                            (XII) 

 

where          ,     
  ∑

    

 

   
    ∑

        

 

   
          

 .  

The t-statistic to test  ̂( )   , follows: 

   ( )  
∑       

 [(   ) ]
   

 ̂ ( )√∑     
  [(   ) ]

   

 
∑             

 [(   ) ]
   

 ̂ ( )√∑       
  [(   ) ]

   

                    (XIII) 

where  ̂ ( )  √
 

[(   ) ]  
∑  ̂ 

 [(   ) ]

    and  ̂  is the least-squares residual of the 

auxiliary regression (XII). 

The authors also consider for the purpose of detection of possible changes in the 

memory parameter, the squares of the t-statistics (XI) and (XIII), introducing the 

supremum statistics over   [     ], such that: 

  
        

 ( )                                               (XIV) 

and for the case of the direction of the changes being unknown: 

    
     {  

    
 }.                                            (XV) 
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5. The results 

In this section I report the results of the Ng-Perron unit root and fractional 

integration test statistics applied to a series of Portuguese Banks’ daily returns. The 

purpose is the analysis of persistence change in the conditional volatility after the shock 

caused by the spread of the crisis, in the Portuguese banking system. I will therefore 

analyze the persistence of volatility of the stock returns of seven representative banks in 

the sector, in two distinct periods, before (2001-2007) and during (2008-2012) the 

crisis. 

The banks selected in order to perform the tests were: Banco Comercial 

Português (BCP), Banco Espirito Santo (BES), Banco Português de Investimento (BPI), 

Banco Popular Espanhol (BPE), Banco Santander Totta (SANT), Banif (BNF), and 

Finibanco (FNB). The daily stock prices data were obtained from Bloomberg and the 

stock returns were constructed as the first differences of the log daily prices. The data of 

the daily prices covered the years 2001-2012 (in 2012 until     October) for all banks, 

with the exception of BPE, whose data was only available since February 2006. 

The following figures represent the daily returns concerning each bank over the 

time period 2001-2012. 

 
Figure I Figure II 
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Figure III 

 

Figure IV 

 

Figure V 

 

 

Figure VI 

 

 

Figure VII 
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As one can observe, there is a significant increase in the volatility indices since 

2008. In almost all figures it is possible to see a clear difference between the two 

periods. 

 

5.1. Stochastic Volatility Model – Ng Perron Test Statistics 

By applying the unit root tests to the    (  
 ) series, we test for nonstationarity 

in the structure of the volatility since the crisis, which ultimately would be represented 

by a less significant degree of persistence in the stock-returns volatility series, in the 

2008-2012 time period. Thus, in theory, by performing the Ng-Peron test statistics, it 

would be expected that the results showed higher rejections of the null hypothesis - 

log(  
 ) has a unit root – in the post-crisis period, demonstrating that after the shock, 

past volatility values would have less impact on future ones, and so predicting risk has 

become more difficult. 

The following tables present the results of the Ng-Perron test statistics. Three 

different time samples were considered, in order to make a more accurate comparison. 

The first table (I) refers to the pre-crisis period (2001-2007), the second table (II) to the 

post-crisis period (2008-2012) and the third table (III) covers the whole sample (2001-

2012). The number of observations for the first sample consisted of 1825 for all banks 

with the exceptions of BPE bank, whose number was 502. The second sample was 

comprised by 1239 observations of all banks. The last sample is the sum of the first two, 

with the total of 3065 observations for all banks with the exception of BPE, whose 

value was 1742. 
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Table I - Ng-Perron unit root test: 2001-2007 Sample 

Ng-Perron Test 

Statistics: 

            

BCP -398.876*** -14.122*** 0.035*** 

BES -3.503 -1.112 0.317 

BNF -47.336*** -4.833*** 0.102*** 

BPE -19.005*** -3.061*** 0.161*** 

BPI -13.763** -2.457** 0.179** 

FNB -11.513** -2.398** 0.208** 

SANT -13.556** -2.544** 0.187** 

Null Hypothesis: log (  ) has a unit root 

Rejection Levels: *10%; **5%; ***1% 

 

 

Table II - Ng-Perron unit root test: 2007-2012 Sample 

Ng-Perron Test 

Statistics: 

            

BCP -13.665** -2.613*** 0.191** 

BES -7.691* -1.925* 0.250* 

BNF -50.067*** -4.938*** 0.099*** 

BPE -11.038** -2.349** 0.212** 

BPI -491.740*** -15.677*** 0.032*** 

FNB -2.003 -0.844 0.421 

SANT -102.065*** -7.124*** 0.070*** 

Null Hypothesis: log (  ) has a unit root 

Rejection Levels: *10%; **5%; ***1% 

 

 

Table III - Ng-Perron unit root test: 2001-2012 Sample 

Ng-Perron Test 

Statistics: 

            

BCP -58.462*** -5.344*** 0.091*** 

BES -10.691** -2.311** 0.216** 

BNF -18.273*** -3.020*** 0.165*** 

BPE -34.004*** -4.110*** 0.760*** 

BPI -27.750*** -3.725*** 0.134*** 

FNB -5.996* -1.602* 0.267* 

SANT -20.096*** -3.125*** 0.155*** 

Null Hypothesis: log (  ) has a unit root 

Rejection Levels: *10%; **5%; ***1% 
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Comparing the three tables (I, II, III), we can observe that there are no 

significant differences between the results presented by the tests performed, comprising 

each sample of the stock-returns volatility of the seven banks. Apart from the banks 

BES and FNB that do not reject the null hypothesis in the first and second samples, 

respectively, all the other tests present fairly high rejections, regardless of the time 

periods considered. However, despite the results do not let us take many conclusions 

regarding the comparison between the different samples, they are in accordance with the 

results presented by Wright (1999), who applied the tests to exchange rate returns 

series. The author describes the results as yielding “overwhelming rejections” with 

strong evidence against the model of a unit root in the volatility process at all 

conventional significance levels, using the tests that are robust to a large MA root, 

which are the conclusions that globally we also obtain. 

 

5.2. Long memory – Fractional Integration Model 

In this section we test for persistence change in the memory parameter of the 

Banks’ volatility series. Since the results of the first section were not very conclusive, 

by performing these tests, it is expected that the results reflect more accurately the 

shock caused by the crisis on the Portuguese banking sector. 

Firstly two regressions were considered in order to perform the tests for each 

bank: the first with four lags and a second with twelve lags. Both tests had the same 

consistent results, so for the purpose of exposition only the results of the first regression 

will be presented. The tests covered the whole sample (2001-2012), with a total of 3065 

observations for all banks with the exception of BPE, whose value was 1742. 

Under the null hypothesis     is constant over time (     ). When the null 

hypothesis is rejected, and there is evidence of a change in persistence, an estimated 
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break point is obtained,  ̂, and the two respective memory parameters, one for each sub 

period are estimated -      corresponds to the first subsample and    to the second. The 

results are provided in the following table: 

Table IV – Persistence test results: 2001-2012 Sample 

    {  
    

 }  ̂ date        

BCP 119.522*** 0.778 2008:04 0.3803*** → -0.1959* 
BES 130.397*** 0.788 2010:03 0.4259*** → 0 
BNF 100.705*** 0.790 2010:04 0.4209*** → -0.1936* 
BPE 71.042*** 0.710 2005:09 0.3976*** → -0.1943* 
BPI 102.262*** 0.775 2008:04 0.3879*** → 0 
FNB 61.738*** 0.798 2008:05 0.2349*** → -0.0577* 

SANT 120.071*** 0.798 2008:06 0.2980** → -0.4582*** 
Null Hypothesis:                                     (     ) 
Rejection Levels: *10%; **5%; ***1% 

 

By applying the squares of the t-statistics (as described in the second part of the 

model section) and considering the maximum value,     
     {  

    
 }, the 

rejection of the null hypothesis is based on specific critical values - Martins and 

Rodrigues (2012) present the critical values for different sample sizes,    

 {               }  and fractional integration parameters 

     {                      }  which were computed based on 10000 Monte Carlo 

replications, with        and       .  The values for   and      considered for the 

tests of each Bank were:        (maximum level of observations) and         (the 

values estimated for this parameter were approximately equal to 0.4 in all the seven 

tests). Consequently, the critical values obtained were: 6.153 for 10%, 8.720 for 5% and 

10.948 for 1% significance.     

As can be observed, the null hypothesis of parameter constancy is rejected for all 

banks. With the exception of BPE, in all the other banks, the break point occurs after 

2008, which is in accordance with what was expected, since the post-crisis period 

considered is (2008-2012).  
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Within the alternative hypothesis the results show that (     ), meaning a 

decrease in persistence and rejection of long memory in the volatility series. The critical 

values for the    parameter were obtained through the Normal distribution. 

This result may be explained by the fact that, as previously mentioned, the 

Portuguese Banks passed through a process of reinforcing their financial strength 

indices, providing Tier 1 capital ratios above the capital requirements. This behavior 

might have smoothed the shock that theoretically would reflect stronger repercussions 

in the volatility series. 

It is also important to note that the application of these persistence change tests 

is being performed in a new context, and that future investigation is still needed in terms 

of evaluating and analyzing the performance of the tests to provide the results greater 

robustness.  

 

6. Conclusion 

The Credit Crisis initiated in 2008 in the US market, quickly expanded in a 

global level, affecting with severe intensity Europe. Since the banking system was one 

of the main propagation channels of the crisis, in order to recover stability and 

confidence Banks made great efforts to reinforce their financial strengths. 

The aim of this work project was to study the effect of the crisis on the 

Portuguese banking system. Considering the stock-returns of seven representative 

Banks of the sector, an analysis within an econometric framework was made. The 

purpose was the detection of possible persistence changes in the structure of conditional 

volatility after the shock caused by the spread of the crisis. Two different and 

complementary models were applied: a stochastic volatility model, which presented 

modified unit root tests that have shown evidence of having better finite sample 
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properties in tests with large MA roots; and a fractionally integrated model in order to 

test for persistence change in the memory parameter of the volatility series. 

The unit root tests for the first model were performed on three different sample 

sizes, in order to compare the periods before and after the crisis. All three tests present 

fairly high rejections of the null hypothesis, regardless of the time periods considered. 

The results obtained at this stage were in accordance with the results presented by 

Wright (1999) who applied the tests to exchange rate returns series.  

With the objective of reaching better explanatory results, testing the memory 

parameter of the series showed evidence of persistence change, with a break point 

occurring after the shock (2008) in all the banks, excepting the BPE, what is in 

accordance what was expected. The tests results also indicate a decrease in persistence 

between each sub-period estimated by the alternative hypothesis, concluding that the 

processes have short-memory. This result may be explained by the fact that Portuguese 

Banks passed through a process of reinforcing their financial strength indices, providing 

Tier 1 capital ratios above the capital requirements, increasing their capacity of 

resistance to shocks. 
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