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THE U.S. AND EUROPEAN M&A CYCLES: A MARKOV SWITCHING AND 

STATE SPACE APPROACH 
1
 

 

 

Abstract 

 

Mergers and Acquisitions’ cycles have been, over the past decades, an extremely 

interesting field of research, raising numerous questions concerning its length, triggers 

or even its relationship with the economic cycle. In this Work Project I intent to 

contribute with new evidence, mainly for European merger waves, but also to support 

previous studies in what regards to merger waves. I have chosen nonlinear models, such 

as the Markov Switching and the State Space models, to characterize the merger data, 

due to the advantage of identifying structural changes. I have concluded that there is 

evidence of merger waves, both in the U.S. and in Europe, and the possible surge of a 

new merger wave in Europe. 
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1 - Introduction 

The analysis of merger waves is an old, but still fashionable and debated subject 

which has gathered the interest of many economists over the past century, see, e.g. 

Nelson (1959) and Golbe and White (1987). The number and value of Mergers and 

Acquisitions (M&A) has steadily grown over the last decades and its impact on the 

economy is seen not only as relevant at a macro level, e.g. business cycles (for instance, 

Becketti, 1986, examined the relationship between business cycles and merger activity, 

and concluded that M&A activity is strongly procyclical and is, for instance, highly 

influenced by changes on interest rates; but also at a micro level, e.g. industry 

consolidation, Chen, 2006, studied the effects of mergers in terms of welfare). This 

empirical study will focus on a macro perspective rather than on a micro, since the 

objective is to understand the M&A cycles over the past thirty years, and not to assess 

how M&A waves impact society in terms of value creation / destruction
2
. Therefore, 

one of the main challenges will be the development of appropriate models which 

capture the stochastic behavior of M&A and forecast its activity. 

The study of this subject has always been significantly conditioned by the available 

statistical understanding. Before the seminal work of Hamilton (1989), who argued that 

U.S. real GNP could be modeled as a Markov-Switching (MS) process, where the 

transition between states is determined by a first-order Markov process, the most 

frequently used techniques to model this type of series were linear models, such as 

Autoregressive (AR), Moving Average (MA) or a mix of both, ARMA, which for 

instance, Nelson and Plosser (1982) applied to U.S. real output. However, linear 

techniques are not efficient and flexible enough to capture the nonlinear movements, 

                                                      
2 One of the main fields of research in M&A is to assess evidence of returns on this type of activity. Robert Bruner, for instance, is 

well known for his extensive research in this area. 
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such as, asymmetries; amplitude dependence and volatility clustering, which in series 

like GDP or M&A are fundamental, e.g. deregulation, innovation in financial markets, 

corporate trends, changes in consumer demand and supply or technological changes, so 

as to completely understand its pattern. Nevertheless, there are researchers who support 

that linear models can described M&A waves quite well. For instance, Barkoulas et al. 

(2001) claimed that the U.S. M&A activity is a strongly correlated process, which could 

be modeled using a fractionally integrated model, since the series presented long-

memory and persistence dynamics, and consequently there would be no need to use 

nonlinear models.  

Hence, there is still no unanimous view on which functional form, linear or 

nonlinear, is the most adequate to model this type of time-series. Nonetheless, it was 

possible to attain similar empirical evidence through different class of models, 

supporting the existence of a cyclical behavior in M&A activity. 

MS models are one class of models frequently used to study nonlinear time-series. 

After the breakthrough of Hamilton (1989), many researchers started to develop further 

applications. For instance, Town (1992) constructed a two-state MS model for M&A 

activity, both for the U.S. and the U.K, and succeeded in rejecting the absence of 

different regimes. Later, Gartner and Halbheer (2004), instead of estimating the 

unknown parameters through Maximum Likelihood Estimation (MLE), applied 

Bayesian inference – Gibbs-Sampling, treating both parameters and the unobservable 

variable as random, though they have managed to produce similar results to studies 

using classical approaches. A commonly used simplifying assumption, frequently used 

in MS models, is that the transitions probabilities are constant over time. Resende 

(2005), based on theoretical improvements made by Diebold et al. (1994), in which a 
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MS model with time-varying transition probabilities (TVTP) was proposed, developed a 

two-state, MS model with TVTP for the U.K. M&A activity, and found evidence that 

one should reject the constant transition probabilities in detriment of the TVTP model, 

however, since in this empirical study a new analysis for the European M&A activity 

will be undertaken, for simplification, the TVTP model is not going to be used. 

An alternative technique that also allows for regime shifts are Threshold Models 

(TM), see, e.g. Tong (1983) and Potter (1995). Although TM can capture switches in 

regimes reasonably well, there is a crucial difference, when compared to MS models, in 

the former, regimes are defined through a deterministic scheme, that is, one has to 

determine in the time-series where the structural change occurs, while in the latter 

regimes are treated as an unobserved variable defined by the exogenous state of a 

Markov chain, and thus are determined by the model and not by the researcher. Hence, 

albeit there is a vast literature regarding business cycles analysis, see, e.g. Beaudry and 

Koop (1993), there are no significant developments within this type of models 

concerning modeling M&A activity, mainly due to the fact there is no consensus on the 

M&A cycle periods, and therefore it is difficult to determine the M&A thresholds in 

order to construct TM models with this type of data. 

Another prominent method to characterize economic and financial time-series is the 

State Space (SS) approach, which was first introduced by Kalman (1960). This method 

enables time-series to be decomposed into several components, one of them being the 

cyclical component. Though the application of this technique to model M&A activity 

has not yet been widely used, it has been successfully employed in the study of business 

cycles, see, e.g. Harvey (1989); Kim and Nelson (1999) and Guerreiro (2010). Thus, it 

appears not only worth to model M&A activity through the SS approach, but also to 
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compare its results to those of the MS model and to use the SS results as a validation 

instrument. Therefore, the models that are going to be constructed under this research 

will be both the MS and the SS models. 

Thesis’ objective 

This empirical research, as previously said, will focus on the dynamics of the merger 

waves both in the U.S. and Western Europe (W.E.). Whereas on the former, a 

considerably literature developed over the last thirty years, on the latter there is very 

little research. Therefore, one of the innovative features of this investigation will be the 

analysis of the W.E. merger data as a proxy for the European Union (E.U.), in order to 

assess if, for instance, there was actually a shift in the European merger activity with the 

introduction of the Euro, if the merger cycles in Europe are different, in terms of length 

and timing, from the ones in the U.S., or if the W.E. M&A activity is correlated with the 

U.S. Furthermore, the hypothesis constructed along this paper can draw some 

conclusions on the European M&A trends, and how its behavior is correlated with 

economic activity, which could be extremely useful to anticipate or even predict the 

merger cycles within the European region.  

Ultimately I attempt to contribute to the current understanding of M&A cycles, more 

specifically to the comprehension of the European M&A taking into account the recent 

developments to create a common financial and political zone, which I believe to be 

fundamental to have a more stable merger cycle, like the one in the U.S.. 

Hence, the chief objectives of this empirical paper are: (i) assess the M&A cycles 

and its features, both in the U.S. and in W.E., where the latter is of particular interest; 

(ii) analyze the comovement between U.S. and W.E. M&A series, so as to evaluate 
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possible leads and lags in what concerns the timings of both series, and (iii) explore the 

relationship between M&A and economic activity. 

 The paper is organized as follows. Section 2 presents the data employed, Section 3 

briefly describes both methods used, and how inference and estimation is carried out, 

Section 4 presents the estimation results and the empirical findings, and finally Section 

5 offers some final comments.  

2 - The Data 

In order to choose the most appropriate proxy for M&A activity, two possible 

variables may be considered: (i) the number of transactions and, (ii) the aggregate dollar 

value. The former is used by Linn and Zhu (1997) and Gartner and Halbheer (2004), 

whereas the latter is applied, for instance, by Golbe and White (1988). In this paper the 

number of deals will be chosen in detriment of the aggregate dollar value. The main 

argument to support this decision is that the number of transactions best reflects the 

breadth
 
of M&A activity, whereas the aggregate dollar value is highly dependent on 

exceptional deals, which can deceive the understanding of M&A waves and 

consequently its modeling.  

In what concerns the data itself, for the U.S. activity the transactions in which the 

target was an U.S. company, from Q1 1980 until Q2 2012, were considered and for 

Western Europe the same reasoning was employed, though for a shorter period, from 

Q1 1982 until Q2 2012, due to lack of data. Quarterly data was selected in order to 

reduce the noise of less aggregated data, e.g. monthly data, which at the same time, have 

a more detail view on the evolution of the merger activity over the past thirty years. The 

data was collected from the financial platform ThompsonONE.com Deals
3
.  

                                                      
3 Excluding Debt Tender Offers; Equity Carveouts; Exchange Offers; Loan Modifications; and Open Market Repurchases. All 

pending and complete deals are comprised in both series. 
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In the figures below, two graphs regarding the number of transactions are presented, 

one for the U.S., and the other for Western Europe. At a first glance M&A activity 

appears to have a time trend and one could argue that a linear model would be suitable 

to characterize this set of data. However, in this type of financial data, there are 

structural changes which can be detected in the figures below. For instance around the 

year 2000 there is an abrupt swing in the number of deals in the U.S., and in order to 

take these structural shifts into account non-linear models may be suitable.  

 

As described in the previous chapter, the 1980s’ merger wave both in the U.S. and in 

W.E. can be perceived and also the merger wave of the 1990s, which had its peak 

around the year 2000. Finally, as the literature suggests, the merger wave of 2000s is 

also evident. These data will be the raw material of the models that I am going to 

developed in the following chapter, in order to support the previous merger waves’ 

hypothesis, developed over the past years, and hopefully, to construct new hypothesis 

based on the output of the models and its subsequent analysis. 

 

 

Figure 1 - M&A activity in the U.S.  
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3 – The Methodology 

In order to test for cyclical behavior in merger activity, in this section, two different 

approaches will be presented. The first is the Markov-Switching [MS] model which will 

be based on the work of Hamilton (1989) and Town (1992), while the second is the 

State Space [SS] approach which will be centered on the work of Kalman (1960). There 

will be more details on the MS model, as this is the head model of this paper, 

nonetheless the SS model will be extremely valuable since it will be used as an 

assessment tool and will help emphasize the MS model’s results.   

When dealing with time series, more specifically financial data, one of the central 

challenges is to model the conditional expectation of a series, which is very likely to 

change over time due to, for instance, structural changes. Hence, to account for 

fluctuations in the conditional mean, models such as the MS and the SS are very useful 

as they capture those oscillations, and therefore are able to provide consistent output to 

develop and build reasonable statements. 

Before introducing both models, the first step is to observe if M&A activity in the U.S. 

and in W.E. is stationary. This is an important step since the MS model that is going to 

be developed is based on an auto-regressive representation. From the application of the 

Figure 2 - M&A activity in the Western Europe 
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ADF unit root test, it is concluded that the U.S. and the W.E. M&A activity are 

stationary
4
. The U.S. M&A activity follows an AR(1) process while the W.E. M&A 

activity follows an AR(2) process. 

3.1 - Markov-Switching Model 

The Markov Switching model that is going to be considered in this dissertation is a 

univariate auto-regressive MS model, where the changes in regimes will be governed by 

a two-state Markov chain. The main feature of this technique is that it accounts for 

abrupt variations in the conditional mean and variance of a time series, e.g. structural 

changes, so that it combines two or more dynamic models. In (3.1.1) a simple MS 

AR(1) process is presented, the one which is going to be used to model the U.S. M&A 

activity, 

     {
         

                             

             
              

  ,                                (3.1.1) 

where the AR coefficient, |β| < 1, and    is an i.i.d. random variable with zero mean and 

variance   
 . As expressed in equation (3.1.1), the M&A activity,    , is dependent on 

the value of   , which can be either 1 or 2 (being 1 in the low-state, and 2 in the high-

state of merger activity). At a first glance, one could argue that this model is simply 

constructed as two different linear equations, whereas one has a dummy variable, when 

     . However, that would only be valid if the changes between the values of     

were determined by a deterministic event, that is, if until a certain time   ,     would be 

governed by the first equation and after    by the second equation, therefore assuming 

that the transition between states would be determined a priori. However,    is a 

random variable, i.e. an imperfectly predictable force that produces the correspondent 

                                                      
4
 The first differences of the M&A activity are stationary, but for interpretation purposes I will just referred to M&A activity. 



 

11 
 

changes in     (Hamilton, 2005). The probabilistic model that will be employed to 

ascertain the shifts in    is known as a time invariant first-order Markov-chain, that is, 

  (     |                                  (     |             . (3.1.2) 

The condition in (3.1.2) assumes that the probability of a change in regime depends only 

on the past regime and thus undermines the precedent regimes. Although this 

assumption seems convenient and simplistic, it is a good starting point and it is 

considerably more consistent than assuming that the swings in regimes are deterministic 

events. Moreover, besides the research done by Golbe and White (1993), which suggest 

that the U.S. M&A activity is a high memory process, recent literature justified that the 

M&A shifts are indeed processes with little memory.
5
  Note that the transition 

probabilities in (3.1.2), are time invariant (FTP), as opposed to the time-varying 

transition probabilities (TVTP) model, which assumes that the transition probabilities 

change over time. Although the TVTP model is more robust, (see Kim and Nelson, 

1998, and Filardo, 1998), for the sake of simplicity the FTP model was the one chosen.  

The transition matrix, which is presented below, determines the regimes’ transition 

through the transition probabilities considered in (3.1.2), i.e., 

    [
  (     |           (     |         

  (     |           (     |         
]    [

      

      
] .       (3.1.3) 

As can be inferred from (3.1.3),           , where       . Therefore, the only two 

parameters of the transition matrix are      and    , which define the changes in 

regimes, and also the persistence of each regime. For instance, if         and 

       , according to what was mentioned above, the interpretation of these 

probabilities, in a merger context, is that the low-state is less persistent than the high-

state, and therefore if we are currently experiencing high levels of merger activity 

                                                      
5 Gartner and Halbheer (2004). 
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within a specific region, the probability of remaining in the same regime is higher than 

that of changing regime, if                        . Another important remark 

is that if      or     are 1, it means that the observable state is permanent, leaving no 

evidence of merger cycles. Nevertheless, this is a very unlikely and extreme scenario, 

since in the economic and financial field there are no permanent events, one clear 

example are the recessions, although some are extremely severe there is always an 

inflexion momentum.  

Hence, the parameters that one has to estimate to define the transition matrix, and 

consequently the transition probabilities of    , are the auto-regressive coefficient  , the 

variance of the so called Gaussian innovation   
 , both intercepts    and   , and finally 

the two-state transition probabilities     and    . The estimation method that will be 

considered is the Maximum Likelihood Estimation (MLE) method described in the 

following section. 

3.2 –Maximum Likelihood Estimation 

There are several methods to estimate MS models, either through MLE, which is 

usually entitled as the Classic approach (Hamilton, 1989, 1994); the Expectation 

Algorithm (EM) (Hamilton, 1990); or through the Bayesian methods - Gibbs Sampling 

(which was first developed by Albert and Chib, 1993, and used latter in an M&A 

context by Gartner and Halbheer, 2004). After assessing the advantages and 

disadvantages of these estimation methods, in the end the MLE is not only the most 

straightforward technique but also the most commonly applied method used in 

empirical applications.  

Taking into consideration the model described in (3.1.1), the corresponding log 

likelihood function, assuming Gaussianity, is, 
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     ∑  (
 

√    
   ( 

      

   
))

 

   

                                      (       

If all values of    were known, we would only need to maximize (3.2.1) in order to 

estimate the values of the parameters,          
 , however since one of the MS model 

features is that    is stochastic, estimation becomes more complex. If we consider, 

 (   |          as the likelihood function of    for      , where      , conditional 

on  , where    {          
         }, then the complete log likelihood function is,  

     ∑   ∑( (   |           (      )                              (      

 

   

 

   

 

Since the probabilities,   (       cannot be observed, Hamilton (1989) proposed an 

iterative algorithm, to calculate the filtered probabilities, which is constantly updated 

with the new information available. Considering,      the available information at time 

t-1, inference should be made through the following sequence:  

i. for     we assume that   (           in order to trigger the process; 

ii. for     , we have: 

  (     |        ∑   (  (       |                                  (      

 

   

 

where     are the transition probabilities mentioned in (3.1.3), and calculate the 

probability of each state given the available information at     ; 

iii. After having the information at time  , update the probability of each state given 

the new information through the following formula: 

  (     |     
 (  |             (     |      

∑  (  |           
 
     (     |      

                 (       
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iv. If we set      , and repeat steps ii. and iii. until the end of the sample, a set 

of filtered probabilities is provided for each state, through all the observations. 

Therefore, in order to estimate the MS model the log like function in (3.2.5) should be 

maximized, i.e., 

            ∑  ∑( (   |           (     |    )

 

   

 

   

                      (       

Note that in the empirical application below, all computations referred throughout the 

last two sections were performed in Matlab
6
.  

3.3 – State Space Model 

The SS model introduced in this section is based on the findings of Kalman (1960), and 

more recently Guerreiro (2010)
7
. The main idea of the SS models is to create a 

structural model which represents a more complex linear system, and then decompose 

the observed time series into its different components: trend, cyclical and error. 

The first step of the process is the definition of the structural model, which you can find 

below (3.3.1), which according to Wada and Perron (2006) is the most widely used. 

{

             
                

          

                   

                                              (       

As previously indicated, the time series {  }, is decomposed into three factors. The one 

which raises more interest to assess M&A cycles, is the cyclical factor,   , which under 

this structure is assumed to follow an AR(2) process with   ~ i.i.d.  (     .  

After considering the structural model, (3.3.1), we must represent it in a state space 

model framework, such as,  

                                                      
6
 The Matlab code used was developed by Marcelo Perlin (2012). 

7
 Who I am extremely grateful to making available its estimation process and respective code. 
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   [        ] [

  
  

    

  

]                                                (       

which can be expressed as,           , assuming that        [        ]. 

The following step is to define the transaction equation, which defines a relationship 

between the actual state and the previous one, assuming that the state follows a first 

order Markov process. Thus, the transaction equation is characterized as
8
: 

         [

    

    

  

    

]    ⌈

 
 
 
 

 
  

 
 

    

 
  

 
 

 
 
 
 

⌉ [

  
  

    

  

]  [

 
 
 
 

 
 
 
 

 
 
 
 

] [
  

  

  

]                       (       

                                                                          (                          

where      and     , being constant over  . Since the SS model that represents 

M&A activity, (3.3.2), and its transaction equation, which governs the link between the 

states, (3.3.4), are defined we can proceed to the estimation process through the Kalman 

filter.  

3.4 – Kalman Filter 

This filter is somehow similar to the estimation process of the MS model, where 

Hamilton (1989) proposed an iterative method based on MLE to estimate the unknown 

parameters. However there is one crucial difference to the MS model, which is how the 

initialization process is triggered. In order for the Kalman filter to be effective, an initial 

distribution for    or at least the determination of  (       and for the    (    

   must be considered, the method that is intrinsic in the estimation code is the diffusion 

                                                      
8 A more detailed explanation of the transaction equation can be found in Guerreiro,“Filtro de Kalman, filtro Hodrick-Prescott, 

filtro Baxter-King e o ciclo económico português”. 
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initialization
9
. Therefore, taking into consideration (3.3.2) and (3.3.4), the unknown 

parameters which maximize the likelihood function are   [  
    

    
    

       ]. The 

method for determining the optimal values of the vector   is based on a non-linear 

search
10

.  

Once the vector   is determined, the several components of the state space model 

defined in (3.3.1) can be estimated
11

, and consequently the cyclical component,     can 

be extracted from the model
12

. 

4 – Results 

In this section the estimation results of the MS and the SS models, described in the 

previous section, are presented. A comparison with previous empirical studies is also 

offered. The U.S. M&A activity will be analyzed first, followed by the results for W.E.. 

Below you can find a table summarizing the findings of the MS model. 

 

 

 

                                                      
9 Koopman, Wang and Zivot (2004), Wada and Perron (2006) and Guerreiro (2010) 
10 The method chosen by Guerreiro (2010) was the framework proposed by Clark (1997) and by Kim and Nelson (1999) 
11 The remaining components of the State Space model can be found in the Appendices. 
12 Although I have used the number of deals as the input for the MS model, for the SS model I have used the logarithm of the 

number of deals. 

 Table 1 - Summary of MS models’ output  

 U.S. Western Europe 

p11 92.08% 90.81% 

p12 7.92% 9.19% 

p22 91.86% 84.87% 

p21 8.14% 15.13% 

Expected Duration of Regime #1 12.62 10.88 

Expected Duration of Regime #2 12.28 6.61 
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4.1 – U.S. M&A activity 

The U.S. M&A observations are from 1980:Q1 until 2012:Q2, as expressed in Figure 

1, which comprises more than 30 years of merger activity. Economists have been 

characterizing M&A waves for the U.S. for some years and there is some consensus on 

that matter, despite the lack of supporting models. Therefore, the results of the models, 

constructed throughout this empirical research, will be compared with the historical 

awareness that has been developed over the last years, in order to validate, or not, the 

hypotheses of merger waves. 

During this period, the first wave is considered to have started at the beginning of the 

1980s, caused by a set of factors, such as: (i) deregulation, as the Kemp-Roth Tax Cut in 

1981, known as the “Reagan Tax Cuts”, which essentially simplified the tax code, 

reducing the amount of deductions and the number of brackets; (ii) during the 1960s 

there was an attempt to conglomerate or diversify companies revenue streams, whereas 

this vision was discarded in the 1980s by being too complex, “It’s not that 

conglomerates are difficult for analysts to understand. We worry that conglomerates 

are difficult for management to understand”
13

, and therefore managers started to 

restructure and divesture, since being a conglomerate was no longer seen as an 

advantage; (iii) more innovative financial products e.g. issuing junk bonds to finance 

takeovers or more leverage, that eventually led to an increase in the level of M&A 

activity. As can be seen in Figure 3 (MS model) and Figure 4 (SS model), the output of 

both MS and SS models clearly identify the 1980s merger wave, although the merger 

wave is more persistent in the MS model, there is evidence of a cyclical behavior in the 

1980s, which is also supported by past studies (Town, 1992 and Linn and Zhu, 1997). 

According to the output, particularly of the MS model, this wave ends around 1986 and 

                                                      
13 Michael Sherman, Head of investment strategy for Shearson Lehman Brothers, stated. 
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1987 matching with the U.S. economic slowdown and the 1987 “Black Monday”. 

Nevertheless, the empirical study of Gartner and Halbheer, 2004, did not succeed to 

identify the 1980s’ merger wave. One possible explanation may be the fact that they 

applied Gibbs sampling for inference, while the remaining studies used MLE. 

 

The second merger wave, for this period, took place after the recession of 1990-

1992, which was characterized by the jump in oil prices, due to the Gulf War, associated 

with a decrease in consumer confidence, a high leveraged economy and a drop in real 

estate prices. However the situation changed in late 1992. M&A activity started to 

upturn considerably, where strategic buyers were now more active, so as to pursue 

synergies, rather than the financial buyers during the 1980s, where very large deals 

Figure 3 - Output Markov-Switching U.S. 

Figure 4 – Output State Space U.S. 
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occurred to enhance synergies, as Worldcom / MCI Communications, BP / Amoco or 

Daimler-Benz / Chrysler. There was a special feature of this wave, as there was a 

sector-focused activity in industries such as the banking, healthcare, defense and 

technology. Furthermore, the high level of M&A activity, during this period, matched 

with historically low interest rates and rising stock prices, culminating in the Internet 

bubble of March 2000. If we investigate Figures 3 and 4, we succeed in identifying a 

merger wave for this time frame, which again, reveals the solidness and reliability of 

both models. Moreover, in both models there is a sharp drop in the probability of a high 

state, which suggests an end of the 1990s merger wave. Gartner and Halbheer, 2004, 

were successful in identifying this wave, contrary to the one during the 1980s, hence the 

choice of the estimation procedure clearly influences the final output.  

Lastly, concerning the 2000s merger wave some empirical studies (Alexandridis, 

Mavrovitis and Travlos, 2011), suggest that this wave started during 2003, peaking in 

2006 and coming to an end in late 2007. This merger wave was characterized by an 

intense activity from Venture Capital, Private Equity and Hedge Funds firms, whereas 

liquidity difficulties were no longer a problem, i.e. the percentage of equity financing 

dropped significantly during this merger. From the models’ output this merger wave is 

not as clear as the previous ones, since in the MS model we have an inflexion point in 

2003 [Figure 3], though not strong enough to bring the high state probabilities to levels 

as the ones observed in the previous waves, and thus fails to identify the last merger. 

Nonetheless, the SS model successfully identified this merger, demonstrating the 

importance of having two different models to support the argumentation.  

An interesting observation, from Table 1, are the transition probabilities    , which 

suggest that M&A states, either the low or high, in the U.S. are highly persistent, 
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        when    , and consequently         when    . This is better 

understood observing the expected duration of both merger states, which in the case of 

the U.S. are around 12 quarters, a considerably high figure when compared to the 

European proxy.  

 

The purpose of Figure 5 is to show that U.S. M&A activity and GDP
14

 have a similar 

behavior over the past 30 years, and this could somehow shed some light on the link 

between merger and economic activity, which was firstly proposed by Becketti (1986). 

The correlation of the series suggests a very strong relationship, with a correlation 

coefficient of 0.83. Moreover, also with the aim to understand how the economic cycle 

and the level of M&A relate I have performed a lead / lag analysis, this is done through 

observing if the M&A series and the maximum correlation: (i) coincides with the 

economic activity, and therefore there is no lead / lag; (ii) the maximum correlation is 

found when the M&A is ahead of the economic cycle, the M&A series is understood to 

                                                      
14 Downloaded from Thomson and Reuters’ DataStream platform. 

Figure 5 - U.S. M&A and Economic activity 
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be lagged; (iii) the maximum correlation is found when the M&A is lagging the 

economic cycle, the M&A series is understood to be lead. In this particular case, the 

maximum correlation is achieved when the series are coincident, meaning that, together 

with the 0.83 correlation coefficient, both the U.S. economic and M&A activity have 

very similar and coincident patterns. 

All in all, according to the last decades’ literature, it was possible, through both 

models, to successful identify the three big merger waves of the last three decades. This 

objective was substantially simplified by the fact that the merger waves were already 

defined by some authors (Martin, 2007; Bruner, 2005), nevertheless it was a particularly 

interesting analysis to confirm the past findings and also to compare the results of both 

models. 

4.2 – Western European M&A activity 

In what regards to the Western European activity, the task to analyze and understand 

merger cycles, is harder. As previously mentioned, there are no studies concerning the 

modeling of the Western European M&A activity, and there is also very little literature 

concerning European merger waves. 

When looking at Figure 2, and in line with the U.S. graph for the M&A activity 

[Figure 1], there is a perceptible upward trend along the series and a cyclical behavior, 

which are characteristics of M&A series. However, in the output of the MS models, 

Table 1, the first thing that leaps out, when compared with the U.S. output, is that the 

transition probabilities     and     are higher, suggesting that W.E. merger waves are 

more volatile or less persistent than U.S. waves. Between 1982 and 2012 we can 

observe more merger cycles than for the U.S. series, particularly after the year 2000. 

The fact that the W.E. sample comprises different economies, with different growth 
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policies highly influences European M&A activity, especially the cross border deals. 

These are also translated into the expected duration of the regimes, whereas in the U.S. 

we observe longer cycles, either in the Low (1) or High State (2), in W.E. we observe 

shorter cycles in both regimes, see Table 1.  

Additionally, the first two merger waves, observed from the MS model [Figure 6], 

the 1980s and the 1990s, appeared delayed by some periods when compared to the U.S., 

see Figure 8, suggesting that these merger waves started to be verified in the U.S. and 

only after in the W.E., which is a particularly interesting fact taking into account that the 

U.S. during those 20 years were by far the world’s largest economy, and thus 

determining the corporate trends, which could be translated into new forms of M&A 

waves. Also, the development and the creation of new financial products during the past 

Figure 7 - Output State Space W.E. 

Figure 6 - Output Markov-Switching W.E. 
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decades occurred mostly in the U.S., as the competition among financial institutions 

was much more intense than in Europe, thus there was a need to innovate by developing 

new products in order to differentiate from the competition. In order to sustain this 

hypothesis, of the W.E. M&A activity lags the U.S. M&A activity, I have performed the 

lead /lag analysis, aforementioned above, and determined that the W.E. M&A activity 

lags the U.S. M&A activity by 2 quarters, and if the correlation coefficient of 0.84 

between both series is taken into account, there is enough evidence that in fact the 

European M&A waves are delayed to the U.S..   

Moreover, the most remarkable finding is the fact that the MS model suggests that 

we are currently observing the beginning of a new merger wave in W.E., as can be 

inferred from Figure 6, which is at least surprising considering the current European 

financial situation, however if we take a more throughout look to the European banking 

system, mainly Western European financial institutions, these are currently undertaking 

restructuring plans by, for instance, selling non-core assets in order to comply with the 

Figure 8 - U.S. and W.E. M&A activity 
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European Banking Authority capital requirements. The fact that European financial 

institutions, and other class of companies, are desperately seeking for liquidity, offers 

new business opportunities for private equity firms willing to buy distressed assets, 

“There are a myriad opportunities as banks have publicly said they have more than $1 

trillion of assets they need to sell and we can form partnerships with them and build 

businesses”
15

, this is clearly a consequence of regulation changes, which in this specific 

case may lead to an asset sale merger wave in Europe. 

When comparing the output of both MS and SS models for the W.E. activity [Figure 

6 and 7], there is clear evidence of a considerable swing between both regimes, and 

consequently the fact that in the European region M&A activity is more prone to be 

affected by external shocks, such as changes in regulation, international crisis, corporate 

trends. Albeit both models present almost the same results, there is a small, yet 

importance difference, the SS model does not conceive the start of a new merger wave, 

hence the merger hypothesis aforementioned is only supported by the MS model. 

                                                      
15 Head of Kohlberg Kravis Roberts expect to make big returns from buying distressed assets in Europe as regulatory changes force 

banks to deleverage. 

Figure 9 - W.E. M&A and Economic activity 
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5 – Conclusion 

The primary objective of this paper was to study the features of M&A waves in the 

U.S. and W.E., validating previous studies (Town, 1992; Linn and Zhu, 1997; and 

Gartner and Halbheer, 2004) and to develop new hypothesis. Regarding the U.S., the 

results were similar to those found in literature, although with some differences, mainly 

explained by the estimation methods and the period of observation. Essentially, it was 

possible to identify three merger waves over the last 30 years. An important remark is 

the fact that the MS model alone could not identify the last merger wave, highlighting 

the importance to have two models to support the hypothesis construction. 

As expected, the most interesting findings from this research were related to the 

European M&A activity. First, the fact that since 2000 the M&A cycles observed in this 

region are much more volatile, and consequently with a shorter period length, than in 

previous years. This could eventually be explained by the creation of the Euro, and all 

the political and economic regulation that were established to support this currency, 

which substantially affected the Eurozone. Another important observation from this 

empirical study is the fact that the European M&A until the year 2000, seemed to be 

delayed when compared to the U.S. M&A activity, due to reasons such as corporate 

trends and financial innovation. Last, the most striking evidence is the possible surge of 

a new merger wave in Europe, due to the corporate restructuring that this economic area 

is suffering. 

All in all, this empirical study clearly supports the M&A wave hypothesis in both 

U.S. and W.E., revealing extremely interesting facts about the nature and dynamics of 

these mergers and acquisitions waves.  
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Appendices 

 

Annex 1 – Output of Markov Switching Model 

       

 

 

Figure 10A - Output of Markov Switching model for the U.S. Figure 10B - Output of Markov Switching  model for the W.E. 
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Annex 2 – Output of State Space Model 

U.S. 

      

 

 

Figure 11A – Trend component of the SS model for the U.S. Figure 11B – Random component of the SS model for the U.S. 

Figure 11C – Cycle component of the SS model for the U.S. Figure 11D – Error component of the SS model for the U.S. 
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Western Europe 

 

 

 

Figure 12A – Trend component of the SS model for the W.E. Figure 12B – Random component of the SS model for the W.E. 

Figure 12C – Cycle component of the SS model for the W.E. Figure 12D – Error component of the SS model for the W.E. 


